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Abstract

Due to the non-stationary, multicomponent nature of biomedical signals, the use of time-

frequency analysis can be inevitable for these signals. The choice of the proper time-frequency

distribution (TFD) that can reveal the exact multicomponent structure of biological signals is

vital in many applications, including the diagnosis of medical abnormalities. In this paper, the

instantaneous frequency (IF) estimation using four well-known TFDs is applied for analyzing

biological signals. These TFDs are: the Wigner-Ville distribution (WVD), the Choi-Williams

distribution (CWD), the Exponential T-distribution (ETD) and the Hyperbolic T-distribution

(HTD). Their performance over normal and abnormal biological signals as well as over multicom-

ponent frequency modulation (FM) signals in additive Gaussian noise was compared. Moreover,

the feasibility of utilizing the wavelet transform (WT) in IF estimation is also studied. The bio-

logical signals considered in this work are the surface electromyogram (SEMG) with the presence

of ECG noise and abnormal cardiac signals. The abnormal cardiac signals were taken from a

patient with malignant ventricular arrhythmia, and a patient with supraventricular arrhythmia.

Simulation results showed that the HTD has a superior performance, in terms of resolution and

cross-terms reduction, as compared to other time-frequency distributions.
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1. INTRODUCTION
Traditionally, biological signals such as electrocardiogram (ECG), electroencephalogram (EEG)

and electromyogram (EMG) are analyzed in the time-domain by skilled physicians. However,

pathological conditions may not always be obvious in the time-domain signal. For example, in

a subject with arrhythmia or a subject undergoing an epileptic seizure, certain rhythms become

more prominent where they experience change in amplitude and frequency. Investigation of such

biological signals can assist the surgeon in deciding on surgical intervention [1]. Sometimes, bi-

ological signals accompany by noise that may consist of artefact or environmental interference.

These facts have motivated the use of frequency domain techniques, such as Fourier transform

(FT), for analysis [2]. However, as the ECG and all other biological signals belong to the family

of multicomponent nonstationary signals [3], accurate time-varying spectral estimates can be ex-

tremely difficult to obtain. However, a proper time-frequency distribution (TFD) can tackle this

problem and reveal the multicomponent nature of such signals.

Time-frequency analysis plays a significant role in signal processing and biomedical engineering

[4, 5]. The instantaneous frequency (IF) is an important concept in time-frequency analysis,

especially when analyzing multicomponent signals. The concept of the instantaneous frequency

can be found in [6, 4, 5, 7]. Every TFD has a ridge or concentration of energy in the time-

frequency plane around the instantaneous frequency (IF) of each component. As such it can

be used to estimate the frequency variation of the ECG (or any biomedical) signal over time.

This presentation provides information where the time-domain and frequency-domain may fail

to produce. In particular, it uses to detect the QRS complex and arrhythmia [8]. Methods

of IF estimation can be classified into two major categories: parametric and non-parametric.

Parametric IF estimation methods are complicated and time-consuming, hence not suitable for

real-time applications. Non-parametric IF estimation for multicomponent nonstationary signals

is an important (and unresolved) issue in signal processing [6, 9]. Although Fourier analysis can

reveal the multicomponent nature of signals in some special cases (e.g., sum of sinusoids), it is

only time-frequency analysis that can be used for general IF estimation for multicomponent signals

through concentrating the signal energy in the time-frequency plane around the component IF

laws [4]. There are many TFDs in active use, the most significant class of TFDs is known as the

Quadratic Class or Cohen’s Class [4]. However, quadratic time - frequency distributions suffer from

the presence of cross-terms when used to analyze multicomponent signals [4, 5, 7]. Cross-terms

are fictitious concentrations of energy, resulting from the quadratic nature of Cohen’s class, which
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can obscure the real features of interest in the signal. On the other hand, joint time-frequency

resolution is another significant character that is different for different TFDs. In some applications

(e.g., biomedical signal analysis), we may be confronted by multiple components with narrow

separation in time, frequency, or both; in such a case many TFDs fail to reveal the true structure

as many components will overlap due to bad resolution. Considerable efforts have been made to

define TFDs which reduce the effect of cross-terms while improving the time-frequency resolution

[4, 7]. However, there is always a compromise between these two requirements. TFD’s have

different performances in this respect and the choice of the proper TFD is application dependent.

This paper is organized as follows. In Section II we will explain the process of IF estimation,

both in principle and numerically. In Section III, the acquisition of normal and abnormal biological

signals is explained. In Section IV we will discuss four time-frequency distributions (TFDs) that

will be used for the comparison purposes in this paper. Two of these TFDs are classified as time-

only kernels distributions. Section V discusses the process of frequency estimation using this class,

the T-distribution. Extensive performance comparison of the four TFDs over biological signals

and noisy mono- and multicomponent FM signals will be presented in Section VI.

2. INSTANTANEOUS FREQUENCY ESTIMATION
Consider a real signal s(t). To avoid aliasing in the digital implementation of the TFD for

this signal, we always consider its analytic associate z(t) = s(t) + jŝ(t), where ŝ(t) is the Hilbert

transform of s(t) [5].

Biological signals such as EEG can be described as a nonstationary random signal composed

of an amplitude modulation-frequency modulation (AM-FM) part in additive stationary random

noise, with low signal-to-noise ratio (SNR) [10]. As the AM variation is normally slow with-

out sudden or abrupt changes, noisy multicomponent IF estimation techniques are applicable to

biomedical signals. To verify the concept of IF we consider an analytic FM signal of the form

z(t) = aejφ(t) + ε(t) (1)

where the amplitude a is constant, φ(t) is the phase of the analytic signal, and ε(t) is a complex-

valued white Gaussian noise with independent identically distributed (i.i.d.) real and imaginary

parts with total variance σ2
ε . The instantaneous frequency of z(t) is given by the derivative of the

phase as follows:

fi(t) =
1
2π

dφ(t)
dt

. (2)
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We assume that fi(t) is an arbitrary, smooth and differentiable function of time with bounded

derivatives of all orders.

The continuous time-frequency distribution of the analytic signal z(t) associated with the

original real signal s(t) can be expressed as follows [5, 6]

ρ(t, f) = F
τ→f

[G(t, τ) ∗
(t)

Kz(t, τ)] (3)

where Kz(t, τ) = z(t + τ/2)z∗(t − τ/2) is the instantaneous autocorrelation product, F is the

Fourier transform, G(t, τ) is the time-lag kernel, and ∗
(t)

denotes time convolution. It is well-

known that the kernel can completely characterize the TFD and its properties (e.g., resolution)

[12]. The kernel can also be expressed in the Doppler-lag domain as follows

G(t, τ) = F−1

ν→t
{g(ν, τ)}. (4)

For practical implementation we need the discrete version of the TFD. First, in the discrete

lag-domain, the TFD ρ(t, f) can be expressed as follows

ρ(t, f) =
∫∞
−∞

∑∞
m=−∞Kz(u, 2mT ) G(t− u, 2mT )e−j4πfmT du (5)

where m is an integer and T is the sampling interval. Second, if ρ(t, f) is discretized over time

and frequency we get

ρ(n, k) =
∑N−1

l=−N

∑N−1
m=−NKz(lT, 2mT ) G(nT − lT, 2mT )e−j2π km

2N (6)

where 2N is the total number of signal samples. The implementation discrete frequency is given

by fk = k/4NT . Since all TFDs has a peak or a ridge around the IF, then the IF estimate will

be a solution of the following optimization problem:

f̂i(t) = arg[max
f

ρ(t, f)] ; 0 ≤ f ≤ fs/2 (7)

where fs = 1/T is the sampling frequency. The frequency estimation error is the difference

between the actual value in eq.(2) and the estimate in eq.(7) as follows:

∆f̂i(t) = fi(t)− f̂i(t) = φ′(t)/2π − f̂i(t). (8)
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The most important factors that decide the quality of estimation are the bias and the variance

of the estimate. In the above IF estimate, the bias and variance can be described as follows:

B(f̂i(t)) = E [∆f̂i(t)] = fi(t)− E [f̂i(t)]

V (f̂i(t)) = E [∆f̂i(t)]2 = E [{fi(t)− f̂i(t)}2]. (9)

For the T-Class of TFD’s, this bias is zero for single-tone and linear FM (LFM) signals, and

therefore a Cramer-Rao bound (CRB) exists for the variance. For the ECG signals, no significant

non-linearities in the component IF lags are expected, so we expect a very low bias (almost zero)

and a small variance that is not different from the LFM case.

3. ACQUISITION OF BIOLOGICAL SIGNALS
In this comparative study we consider two types of biological signals. These signals are:

1. Surface electromyogram (SEMG) with the presence of ECG noise (normal signal with arti-

facts) and,

2. Abnormal cardiac signals, ECG, for a patient with malignant ventricular arrhythmia, and

a patient with supraventricular arrhythmia (these arrhythmia data were obtained from the

Physionet database [13]).

Utilization of time-frequency analysis as a preprocessing stage is extremely important for both

signals. For the SEMG contaminated with an ECG, IF estimation of such a signal will reveal

all of its structural components and clearly provide the frequency components of the ECG signal

(P-QRS-T signature) as well as their time of occurrence. This will help in the removal of these

artifacts from the SEMG.

Due to its high time-frequency resolution and cross-terms control, the T-distributions are

expected to be efficient in analyzing more delicate biological signals like the EEG signal. TFD

ridge analysis for EEG signals appeared in [14]. The problem with cross-terms, resolution, and IF

estimation is more critical in EEG signals than in others, as the EEG signal may have very close

time-frequency components (ridges).

3.1 Surface Electromyogram

Surface electromyogram (SEMG) is a result of a noninvasive recording-technique of the electri-

cal activity of skeletal muscles [15]. It can be used to measure the properties of muscles supporting
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spinal segments. It is stochastic in nature and can be represented by a Gaussian distribution func-

tion [16]. However, the recording of such a signal suffers from the presence of an ECG signal [17].

In this measurement, a pair of surface-EMG electrodes were positioned on the right side of the

spine of the subject. The ground electrode was placed on the spinal cord [18]. The subject was

sitting normal (SitN). These electrodes were connected to BIOPAC systems, EMG module. The

EMG module (EMG 100C) consists of instrumentation amplifier (IA) and a 50 Hz notch filter.

The IA gain was set to 1000. The ECG data were recorded by using AcqKnowledge software

(v.3.7.1, BIOPAC Systems, Inc., CA) in ASCII text files and processed by programs written in

Matlab. The sampling rate for EMG was set to 1000 samples/second and down-sampled to 200

samples/second for time frequency analysis for memory limitation.

Fig. (1) shows the time domain of the raw SEMG signal with the ECG artefact during sitting

normal posture.

Figure 1: Time-domain signal of the raw SEMG with ECG artefact during SitN (sampling frequency =
200 sample/seccond).

3.2 Abnormal Electrocardiogram

The electrocardiogram (ECG) signal has a well-defined P, QRS, T signature that represents

with each heart beat. The P-wave arises from the depolarization of the atrium. The QRS complex

arises from depolarization of the ventricles and T-wave arises from repolarization of the ventricle

muscles. The duration, shape and amplitude of these waves are considered as major features

in time domain analysis. Sometimes, the time morphologies of these waves are similar. The IF

estimation of such signal using high resolution TFD can provide some parameters which behave

differently than that of the time or frequency domain techniques.

An arrhythmia is an abnormality in the heart’s rhythm, or heart beat pattern. The heart

beat can be too slow, too fast, have extra beats, or otherwise beat irregularly [19]. The types of

abnormal ECG signals investigated in this study were: supraventricular arrhythmia and malig-

nant ventricular arrhythmia. Supraventricular arrhythmia occurs in the upper areas of the heart

and is less serious than ventricular arrhythmia. It has irregular shapes of QRS complexes [19].

These arrhythmia data, supraventricular arrhythmia and malignant ventricular arrhythmia, were

obtained from the Physionet database [13]. A Matlab program was used to convert the ECG

binary format into Matlab format to be processed by the TFD. The sampling frequencies for

supraventricular arrhythmia and malignant ventricular arrhythmia were 128 sample/secconds and
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250 sample/secconds, respectively.

Fig. (2) shows the time-domain ECG signal of a patient with supraventricular arrhythmia.

The shape of the QRS complex in this signal is abnormal at the QR part. It requires high

resolution TFD to detect the change that occurs in a narrow duration of time.

Fig. (3) shows the time-domain ECG signal of a patient with malignant ventricular arrhyth-

mia. The depolarisation wave spreads through the ventricles by an irregular and therefore slower

pathway. The QRS complex is thus wide and abnormal. Repolarisation pathways are also differ-

ent, causing the T wave to have an unusual morphology. These sort of signals require a selection

of an appropriate time-frequency distribution that is capable of handling multicomponent signals

and tracking the abnormality in the signal.

Figure 2: Time-domain of signal-800 from supraventricular arrhythmia database (sampling frequency =
128 sample/secconds).

Figure 3: Time-domain of signal-418 from malignant ventricular arrhythmia database (sampling frequency
= 250 sample/secconds).

4. TIME-FREQUENCY ANALYSIS TECHNIQUES
Time-frequency analysis allows a joint time - frequency resolution. However, when used for

analyzing multicomponent signals, this approach is susceptible to cross-terms arising in the mid-

dle between the time-frequency (energy) components. Therefore, a TFD that provides a good

reduction of the cross-terms is needed to make sure that the off-diagonal elements of the TFD

matrix of the sources are negligible and that a diagonal structure can be maintained. In this study

we investigate and compare the performance of four TFD’s in analyzing biological signals. These

distributions are

1. The Wigner - Ville distribution (WVD).

2. The Choi - Williams distribution (CWD).

3. The Exponential T-distribution (ETD).

4. The Hyperbolic T-distribution (HTD).

In the following subsections these distributions will be briefly described.
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4.1 The Wigner-Ville distribution

The Wigner - Ville distribution (WVD) of a continuous signal z(t) is defined as [20]

WV (t, f) =
∫ ∞

−∞
z(t +

τ

2
)z∗(t− τ

2
)e−j2πfτdτ (10)

where f is the frequency variable. The WVD satisfies a large number of desirable mathematical

properties. In particular, WVD is always real-valued, it preserves time and frequency shifts and

satisfies the marginal properties. Based on (3), the WVD, which utilizes a time-only kernel

G(t, τ) = G(t) = δ(t) with g(ν, τ) = g(ν) = 1, has significant oscillatory cross-terms without a

controlling factor, where the cross-terms can be larger in amplitude than the auto-terms. However,

using a low-pass time-only kernel other than δ(t) will result in controlling the cross-terms by the

low-pass function g [21].

4.2 The Choi-Williams Distribution

The Choi - Williams distribution CW (t, f) was a significant step in the field of time-frequency

analysis where it opened the way for optimizing resolution with cross-terms reduction [24]. The

kernel of the Choi-Williams distribution (CWD) in the Doppler - lag domain is (g(ν, τ) =

exp(−4π2ν2τ2/σ)) which can be given in the time-lag domain by [5]

G(t, τ) =
√

σ/4πτ2 exp(−σt2/4τ2) (11)

where σ is a real parameter that can control the resolution and the cross-terms reduction. This

two-dimensional exponential kernel has shown excellent performance in reducing cross-terms while

keeping high resolution, with a compromise between these two requirements decided by the para-

meter σ.

4.3 The Exponential T-distribution (ETD)

The Exponential T-distribution (ETD) is a time-only kernel distribution. Time-only kernels

are a special case of separable time-lag kernels. Suppose we have a separable time-lag kernel as

follows

G(t, τ) = g1(t)g2(τ) (12)

where g1 and g2 are continuous and L2 integrable functions of time and lag, respectively.
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It was shown in [12] that for best time-frequency resolution we should have

G(t, τ) = R(t) = g1(t)/M

g(ν, τ) = r(ν) = F−1

τ→v
{g1(t)}/M (13)

where M =
∫

g2(u)du is a constant and G(t, τ) is now a time-only kernel. This is the formula for

all time-only kernels, which are the kernels of the T-distributions.

To examine the behavior of this kind of kernels in terms of resolution and cross-terms reduction,

we consider a sum of two complex sinusoids

z(t) = a1 exp{j(2πf1t + θ1)}+ a2 exp{j(2πf2t + θ2)} (14)

where a1, a2 are real constants and θ1 and θ2 are phase constants. We obtain

ρz(t, f) = a2
1δ(f − f1) + a2

2δ(f − f2) + 2a1a2 g(f1 − f2)

× cos{2π(f1 − f2)t + θ1 − θ2} δ(f − f1 + f2

2
) (15)

where there is an ideal concentration about the auto-terms, and cross-terms appear with a con-

trolling factor g(f1 − f2) [21]. In case of two complex sinusoids above we have the controlling

factor g(f1 − f2) with cross-terms reduction that depends on the shape of the low-pass function

g and the frequency separation f1 − f2, where better cross-terms reduction is obtained for wider

frequency separation.

A time-frequency distribution Te(t, f) with the exponential time-only kernel was proposed in

[12], where the kernel was given by

G(t, τ) = Rσ(t) =
√

σ/π exp(−σt2) (16)

σ being a real parameter and
√

σ/π is a normalization factor. It was shown in [6] that the

resolution of the ETD exceeds that of CWD by far.

4.4 The Hyperbolic T-distribution (HTD)

The Hyperbolic T-distribution (HTD) is another time-only kernel distribution. The kernel
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(the hyperbolic time-only kernel) for this distribution is given by [12]

G(t, τ) = Rσ(t) =
kσ

cosh2σ(t)
(17)

where σ is a real positive number and kσ is a normalization factor given by

kσ =
∫ ∞

−∞

1
cosh2σ(t)

dt = Γ(2σ)/22σ−1Γ2(σ)

in which Γ represents the gamma function. In the following section we will discuss the IF estima-

tion of the exponential and hyperbolic T-distributions. Their performance on linear and non-linear

FM signals will be considered.

5. WAVELET TRANSFORM

Wavelets have found application in many aspects of biomedical signal processing such as feature

extraction, noise reduction, data compression and QRS detection. The general equation of the

wavelet transformation for a time signal z(t) [22] is given as

Qz(τ, a) =
1√
a

∫ ∞

−∞
z(t)g∗

(
t− τ

a

)
dt (18)

where τ is the time shift parameter, a is the dilation parameter (scale) which governs the frequency,

and g(t) is called the basic wavelet or mother wavelet. The mother wavelets must satisfy the

admissibility condition [23]. There is a variety of mother wavelets that are application-dependent.

For example, a widely used wavelet is the Morlet’s wavelet, defined as

g

(
t

a

)
= ej ωo

a
te−

t2

2a2 . (19)

where ωo is a constant.

The wavelet time-scale representation can also be viewed as a time- frequency one, where

the analyzing frequency can be taken from the scale via ωo/2πa, ωo being the bandwidth of the

mother wavelet [22]. In this section we study the IF estimation of multicomponent non-linear FM

signal using wavelet transform (WT). WT is a good tool for multi-resolution analysis due to its

"zoomable" resolution while the scale changes, however, it is not appropriate for IF estimation.

Fig. (4: up) shows that the Daubechies-10 WT (db10) of a mono-component non-linear FM
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signal given by x1(t) = cos[2π(fot + et2)] with fo = 0.5 Hz and e = 0.5. It is evident that we

can take the IF of the signal from the ridge of the WT. However, the resolution will be different

between high and low frequencies.

Fig. (4: down) shows the time-scale representation of a two-component nonlinear FM signal

using the db10 WT. The two components are widely separated, where the instantaneous frequency

of one component is five times the IF of the other as follows:

x(t) = cos[2π(fot + et2)] + cos[2π(5fot + et2)]

with fo = 0.5 Hz and e = 0.5.

Fig. (5) displays the Morlet WT for the same signals as above. The difference in resolution

from Fig. (4) is clear, however, both transforms share the cross-terms problem. The cross-terms

is an inevitable problem that obscures IF estimation for multi-component signals using WT.

Unlike the reduced interference TFDs [24], which can control the cross-terms using special design

techniques, the WTs cannot control the cross-terms [25]. As we are considering multi-component

signals in this paper, we will concentrate on IF estimation using TFDs.

Figure 4: Time-scale representations of a mono- and a two- component nonlinear FM signals using the
db10 WT.

Figure 5: Time-scale representations of the same FM signals as in the previous figure using the Morlet
WT.

6. FREQUENCY ESTIMATION USING T-DISTRIBUTIONS

It can be shown that the T-distributions do not satisfy the time marginal property, hence

they do not satisfy the traditional condition for the instantaneous frequency. But in [6], Zahir

et al proposed the following general IF property: at any time t, the time-frequency distribution

ρz(t, f) should have absolute maximum at f = 1
2π

dφ(t)
dt , which is the actual important characteristic

needed for IF estimation. They have also shown that at any t, the hyperbolic T-distribution has

an absolute maximum at f = 1
2π

dφ(t)
dt for linear FM signals. This is general for all T-distributions

and constitutes the basis for our IF estimation. For non-linear FM signals this IF estimate is
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biased [6]. For an FM signal of the form z(t) = a ejφ(t), a being a constant, the general formula

for the T-distributions can be given by

ρz(t, f) ≈ |a|2
∫

Rσ(t− u) δ [
1
2π

φ
′
(u)− f ] du

= |a|2Rσ(t− ψ(f))ψ
′
(f) (20)

where ψ is the inverse of 1
2πφ

′ , i.e., 1
2πφ

′
(ψ(f)) = f and it is assumed that there is a relatively small

effect from higher-order derivatives φ(k)(t), k ≥ 3. Assuming that ψ
′
(f) is not a highly peaked

function of f and knowing that Rσ(t−ψ(f)) is peaked at t = ψ(f) since it is low-pass and even in

t, the absolute maximum of ρz(t, f) for any time t would be at ψ(f) = t, or f = 1
2πφ

′
(t), which is

the instantaneous frequency of the FM signal z(t). For non-linear FM signals, the energy peak of

ρz(t, f) is biased from the instantaneous frequency due to the higher-order phase derivatives. The

major contribution in this term is due to φ(3)(u) [6]. Therefore at the instants of rapid change

in the IF law the bias is not negligible and eq.(16) would not be an accurate approximation to

ρ(t, f) without a suitable lag windowing. However, these abrupt changes are not expected in

ECG signals (actually most biomedical signals). Hence, we needn’t to consider non-linear IF law

estimation techniques (like adaptive lag-window length as in [6]).

For linear FM (LFM) signals we have φ(k)(t) = 0 for k ≥ 3. If φ(t) = 2π(fot + βot
2/2), where

fo, βo are constants, we have

ρz(t, f) =
1
βo
|a|2Rσ

[
t− 1

βo
(f − fo)

]
(21)

which has an absolute maximum at f = fo + βot, the instantaneous frequency. As βo → 0,

the linear-FM signal z(t) will approach a sinusoid, and we have ρ(t, f) → |a|2δ(f − fo) for

a monocomponent single-tone signal. For a signal composed of the sum of two LFM signals

z(t) = a1 ejφ1(t) + a2 ejφ2(t) with φi(t) = 2π(fit + βit
2/2), i ∈ {1, 2}, the T-distribution can be

expressed as follows:

ρz(t, f) =
1
β1
|a1|2Rσ

[
t− 1

β1
(f − f1)

]
+

1
β2
|a2|2Rσ

[
t− 1

β2
(f − f2)

]
+ cross− terms. (22)

where there are two peaks around the auto-terms, deformed by cross terms. As we will see later,

these peaks are sufficient for accurate IF estimation.

In the next section we will consider a monocomponent linear FM signal as well as a multi-
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component signal with LFM components to test the IF estimation capabilities and the immunity

to noise of the HTD, ETD, WVD and CWD. We also compare these distribution over the SEMG

signal with ECG artefact, a patient with malignant ventricular arrhythmia, and a patient with

supraventricular arrhythmia.

7. RESULTS AND DISCUSSION: A COMPARISON OVER BIO-
LOGICAL SIGNALS AND NOISY FM SIGNALS

In this section, we compare the four distributions over normal and abnormal biological signals.

Moreover, we study and compare their performance and immunity to noisy signals.

7.1 A Comparison Over Noisy Linear FM Signals

The performance of the four distributions over monocomponent linear FM and multicomponent

linear FM signals is analyzed.

First, as a monocomponent signal, a linear FM (LFM) test signal z(t) = a ejφ(t), φ(t) =

2π(fot + βt2/2), with a = 1, fo = 0.05fs, β = 0.4fs is considered. The instantaneous frequency

(IF) is given by f = 1
2πdφ/dt = fo + βt. For TFD implementation, the signal length 2N = 512

samples was selected. The sampling frequency was fs = 2N Hz, where the total signal duration

was 1 sec. For noise simulation, i.i.d noise samples were added using different SNR’s. For each

SNR, 1000 Monte Carlo iterations were considered for the purpose of calculating the variance of

the IF estimate.

Table 1 shows the result of applying IF estimation on the above noisy LFM for four TFD’s.

The performance of the HTD and the ETD are distinguished as superior to other TFD’s, especially

at low SNR’s. Performance of the ETD is comparable to that of the HTD for monocomponent

signals. It is also evident that the HTD and the ETD surpass other TFD’s in robustness where

they give the minimum IF variance (called the Cramer-Rao Bound), especially at low SNR’s. Note

that the bias is nearly zero for all cases.

Second, to test the performance in IF estimation for multicomponent signals, a multicom-

ponent test signal is considered with two linear FM components z(t) = a1 ejφ1(t) + a2 ejφ2(t),

φ1(t) = 2π(f1t + β1t
2/2), φ2(t) = 2π(f2t + β2t

2/2), where a1 = a2 = 1, fo1 = 0, fo2 = 0.2fs,

β1 = 0.45fs, β2 = 0.3fs. The instantaneous frequencies of the individual components are given

respectively by (see [6]) f1 = 1
2πdφ1/dt = fo + β1t and f2 = 1

2πdφ2/dt = fo2 + β2t. For TFD

implementation and robust testing of IF estimation performance, the number of signal points was

2N = 29 points, with fs = 2N Hz and total signal duration of 1 sec. Noise is applied as above.
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Table 1: Performance of various TFD’s in IF estimation of a linear FM signal with length 2N = 512
samples. The sampling frequency was fs = 2N Hz. For ETD, σ = 0.01, for CWD, σ = 19.

SNR (dB) Var-dB (IF)/ WVD Var-dB (IF)/ CWD Var-dB (IF)/ HTD
-5 -24.99 -35.15 -59.58
-4 -27.22 -48.20 -60.92
-3 -33.05 -49.98 -61.95
-2 -47.87 -51.29 -62.68
-1 -62.35 -52.39 -63.52
0 -63.66 -53.53 -64.76
1 -64.72 -54.37 -65.12
2 -65.44 -55.38 -66.62
3 -66.74 -56.84 -67.30
4 -67.01 -57.75 -67.80
5 -68.24 -59.01 -68.47
6 -68.69 -59.28 -69.10
7 -70.56 -60.75 -70.54
8 -71.36 -61.38 -72.16
9 -71.77 -62.65 -73.27
10 -74.68 -63.22 -75.85

Fig. (6) shows the result of applying IF estimation on the first component of the above noisy

multicomponent signal using four TFD’s. For each SNR, 1000 Monte Carlo iterations were con-

sidered to calculate the variance of the IF estimate. The performance of the ETD is distinguished

as superior to other TFD’s, including the WVD (which gives ideal concentration for LFM’s),

especially at low SNR’s. The HTD gives a comparable performance, while CWD lags far behind

these TFDs. It is worth noting that all TFD’s approach the same Cramer-Rao bound as SNR

increases.

Figure 6: Performance of different TFD’s in IF estimation of the first linear FM component of a multi-
component signal with length 2N = 29 samples. The sampling frequency was fs = 2N Hz.

7.2 A Comparison Over Biological Signals

In this section we compare the performance of four time-frequency distributions (WVD, CWD,

HTD, and ETD) over three types of biological signals: the surface electromyogram (SEMG)

with ECG artifacts, the abnormal electrocardiogram (ECG) of a patient with supraventricular

Arrhythmia and the abnormal ECG signal of a patient with malignant ventricular arrhythmia.
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7.2.1 Surface Electromyogram with ECG Artifacts

As mentioned before, the SEMG signal of the back contains artefact of ECG signals. The

removal of such artifacts requires a proper analysis technique to identify the ECG artifacts at

time and frequency domain. A SEMG with ECG artifacts data of 1.25 seconds was down-sampled

to 200 samples/second. Further, the data was converted by Hilbert transform into its analytical

form then processed using the four TFDs.

Fig. (7) shows the time-frequency representations of the SEMG with ECG artifacts in Fig. (1)

using HTD, CWD, ETD and WVD. The controlling parameter σ = 0.05 for HTD, 0.015 for ETD,

and 19 for CWD. These are practically the optimal values for these TFDs that balance between

resolution and cross terms reduction [21]. Any change will compromise one of these factor against

the other. Fig. (8) shows the frequency components of this signal at time instant t = 0.7 second.

From these figures we observe that the HTD and the ETD have the best resolution, as they can

reveal the frequency components of the signal in Fig. (1) with a resolution much higher than that

given by CWD and WVD. The cross-terms in the WVD make the task of identifying the QRS

peaks extremely difficult (see Fig. (1)).

Figure 7: Performance comparison and time-frequency representations of the signal in Fig. (1) using
HTD, CWD, ETD and WVD. The sampling frequency was fs = 200 samples/second. For HTD, ETD and
CWD σ = 0.05, 0.015 and 19, respectively.

Figure 8: Comparison between the HTD, ETD, CWD and the WVD as related to resolution and cross-
term reduction at time instants t = 0.7 second for the signal in Fig. (1) (with σ = 0.05 for HTD, σ = 0.015
for ETD, σ = 19 for CWD, sampling frequency = 200 samples/second, and signal length = 1.25 seconds).

Figs. (9) and (10) show the 3D time-frequency representations of the signal in Fig. (1) using

HTD and CWD, respectively. The HTD (Fig. (9)) reveals the two QRS complexes (peaks ’A’

and ’C’) with a high joint time-frequency resolution, while in Fig. (10) the CWD has broadened

these peaks (’A’ and ’C’) in the time-frequency domain, where the signal features are less clear as

compared to those given by the HTD. The HTD, ETD and CWD achieve much better reduction

in cross-terms than WVD. However, the HTD outperforms all these distributions in terms of

time-frequency resolution in this application.

Fig. (11-up and down) shows the signal magnitude for Fig. (9) as a function of time at time

instant t = 0.7 second and the signal magnitude as a function of frequency at normalized frequency
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Figure 9: 3D time-frequency representations of the signal in Fig. (1) using HTD. The sampling frequency
was fs = 200 samples/second. For HTD, σ = 0.05.

Figure 10: 3D time-frequency representations of the signal in Fig. (1) using CWD. The sampling frequency
was fs = 200 samples/second. For CWD, σ = 19.

f = 0.3. Fig. (12-up and down) shows the signal magnitude for Fig. (10) as a function of time

at time instant t = 0.7 second and the signal magnitude as a function of frequency at normalized

frequency f = 0.3

Figure 11: Up: signal magnitude for Fig. (9) as a function of time at time instant t = 0.7 second. Down:
signal magnitude as a function of frequency at normalized frequency f = 0.3.

Figure 12: Up: signal magnitude for Fig. (10) as a function of time at time instant t = 0.7 second. Down:
signal magnitude as a function of frequency at normalized frequency f = 0.3.

7.2.2 Abnormal Electrocardiogram of a Patient with Supraventricular Arrhythmia

A supraventricular rhythm is due to abnormal impulses arising from the atria [26, 27]. A

length of 4.69 seconds of the signal-800 from supraventricular arrhythmia database (Fig. (2))

was converted by Hilbert transform into its analytical forms and processed using the above four

TFDs. The sampling frequency for this signal is 128 samples/second. This signal has normal

QRS complexes duration of 0.1 second width and a short P-R interval. The QRS complexes have

irregular shapes.

Figs. (13), (14) and (15) show the 3D time-frequency representations of the signal in Fig. (2)

using HTD, CWD and ETD, respectively. All these techniques are able to detect the three QRS

complexes in the signal, however, the ETD, WVD and CWD fail to track changes in the frequency

components of the QRS complex of this signal. For example, in Fig. (13) the HTD manage to

track the change in the frequency components of each QRS complex as marked by ’A’ and ’A1’.

Figure 13: 3D time-frequency representations of the signal in Fig. (2) using HTD. The sampling frequency
was fs = 128 samples/second. For HTD, σ = 0.05.
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Figure 14: 3D time-frequency representations of the signal in Fig. (2) using CWD. The sampling frequency
was fs = 128 samples/ second. For CWD, σ = 19.

Figure 15: 3D time-frequency representations of the signal in Fig. (2) using ETD. The sampling frequency
was fs = 128 samples/second. For ETD, σ = 0.015.

7.2.3 Abnormal Electrocardiogram of a Patient with Malignant Ventricular Arrhyth-

mia

A length of 2.4 seconds of the signal-418 from malignant ventricular arrhythmia database

(Fig. 3) was converted by Hilbert transform into its analytical forms and processed using the four

TFDs. The sampling frequency for this signal is 250 samples/second. The QRS complexes in this

signal are wide and abnormal, while the T-wave has disappeared. The signal seems to have an

irregularity and is changing over time.

Fig. (16) shows the 3D time-frequency representations of the signal in Fig. (3) using the

HTD. The superior performance of the HTD is clearly demonstrated in this figure. All frequency

components in the signal of Fig. (3) are clearly revealed by the HTD.

Figure 16: 3D time-frequency representations of the signal in Fig. (3) using HTD. The sampling frequency
was fs = 250 samples/second. For HTD, σ = 0.05.

8. CONCLUSION

This paper has presented a comparative performance study of four well-known time-frequency

distributions (TFDs) in the instantaneous frequency (IF) estimation of biological signals towards

identifying normal and abnormal biomedical phenomena. These TFDs are: the Wigner-Ville dis-

tribution (WVD), the Choi-Williams distribution (CWD), the Exponential T-distribution (ETD)

and the Hyperbolic T-distribution (HTD). Their performance over the normal surface electromyo-

gram (SEMG) with the presence of ECG artifacts and abnormal cardiac signals as well as over

mono- and multicomponent FM signals in additive Gaussian noise was compared. When applying

IF estimation using the above distributions on the noisy monocomponent linear FM, it was shown

that the HTD and the ETD surpass other TFDs in robustness, where they give the minimum

variance, especially at low SNRs. In case of multicomponent linear FM, the performance of the
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ETD is distinguished as superior to other TFDs, including the WVD. The HTD gives a compa-

rable performance, while CWD lags far behind these TFDs. In analyzing the SEMG with ECG

artifacts, the HTD and the ETD gave the best resolution, as they revealed the whole frequency

components of this signal with a resolution much higher than that given by CWD and WVD. The

cross terms in the WVD make the task of identifying the QRS peaks extremely difficult. The

HTD outperforms all these distributions in terms of time-frequency resolution in this analysis.

The high resolution of the HTD in revealing the location in the joint time - frequency plane of

the QRS complexes is useful in removing the ECG signal from the SEMG automatically without

loss of information.

In case of abnormal signals (a patient with supraventricular arrhythmia and a patient with

malignant ventricular arrhythmia), all of the above TFDs are able to detect the QRS complexes

in these signals, however, the ETD, WVD and CWD fail to track changes (abnormality) in the

frequency components of the QRS complexes of these signals. The HTD has revealed the true

structure of the QRS complexes in the supraventricular arrhythmia signal where there are two com-

ponents with narrow separation in frequency. As such a high resolution time-frequency distribution

can be a preprocess towards automatic time-frequency arrhythmias detection and classification.
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