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Efficient Reconfigurable Techniques for VLSI Arrays
With 6-Port Switches

Wu Jigang, Thambipillai Srikanthan, and Heiko Schröder

Abstract—This paper proposes an efficient techniques to reconfigure a
two-dimensional degradable very large scale integration/wafer scale inte-
gration (VLSI/WSI) array under the row and column routing constraints,
which has been shown to be NP-complete. The proposed VLSI/WSI array
consists of identical processing elements such as processors ormemory cells
embedded in a 6-port switch lattice in the form of a rectangular grid. It has
been shown that the proposed VLSI structure with 6-port switches elimi-
nates the need to incorporate internal bypass within processing elements
and leads to notable increase in the harvest when compared with the one
using 4-port switches. A new greedy rerouting algorithm and compensation
approaches are also proposed to maximize harvest through reconfigura-
tion. Experimental results show that the proposed VLSI array with 6-port
switches consistently outperforms the most efficient alternative proposed
in literature, toward maximizing the harvest in the presence of fault pro-
cessing elements.

Index Terms—Degradable very large scale integration/wafer scale inte-
gration (VLSI/WSI) array, fault-tolerance, greedy algorithm, reconfigura-
tion, VLSI routing.

I. INTRODUCTION

The mesh-connected processor array has a regular and modular
structure and allows fast implementation of many signal and image
processing algorithms. With the advancement in very large scale
integration (VLSI) and wafer scale integration (WSI) technologies,
integrated systems can now be built on a single chip or wafer by
interconnecting a large number of processing elements (PEs), such as
processors or memory cells [1]. As the density of VLSI/WSI arrays
increase, the probability of the occurrence of defects in the arrays
during fabrication also increases. Thus, fault-tolerant techniques must
be employed to enhance the yield and reliability of the arrays.

There are generally two methods for reconfiguration, namely, the re-
dundancy approach [2]–[4] and the degradation approach [5]–[8]. The
techniques in this paper belong to the latter, which treats all PEs of the
system in a uniform way and uses as many fault-free PEs as possible
to construct the target system. Different algorithms have been reported
in [6]–[8], which are based on the array connected by 4-port switches,
and each PE has two internal bypass links. Such an architecture is un-
able to support rerouting two neighboring PEs lying in same physical
row into same logical column.

In this paper, we focus on the design and analysis of efficient greedy
algorithms since the problem is NP-complete [5]. In an attempt to in-
crease the harvest, we form a 6-port switch consisting of a 4-port switch
and one bypass link. Unlike the existing architecture, in which the by-
pass is within the PE, we incorporate the bypass capability within the
switch. This provides for the ability to reroute two neighboring PEs
lying in same physical row into same logical column to obtain higher
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Fig. 1. 4� 4 arrays linked by 4-port and 6-port switches, respectively.

Fig. 2. Rerouting two PEs v and w into the same logical column based on
6-port switches. u is the predecessor of v and col(u) 6= col(w).

harvest. At the same time, we eliminate need to incorporating a bypass
circuitry within a PE.

II. PRELIMINARIES

The original array after manufacturing is called a physical array or
host array which may contain faulty PEs. A degradable subarray of the
physical array, which contains no faulty PE, is called a logical array or
target array. The rows (columns) in the physical array are called phys-
ical rows (columns). The rows (columns) in logical array are called log-
ical rows (columns). In this paper, row(e) (col(e)) denotes the physical
row (column) index of the PE e. H (S) denotes the physical (logical)
array. Ri denotes the ith logical row. e(i; j) (e0(i; j)) denotes the PE
located in the ith row and in the jth column of physical (logical) array.
Fig. 1(a) shows the architecture in [5]–[8], where each PE has two in-
ternal bypass links, and thus can be converted into a connecting one if
necessary. In a host array, if the PE e(i; j) can communicate directly to
e(i0; j) with external switches, where ji0 � ij � d, we call d the row
compensation distance. Keeping the same assumption as in [7], d is set
to 1 in this paper.

Typical routing schemes include the row (column) bypass scheme
and the row (column) rerouting scheme. In the row bypass scheme, a
PEu in row i can be directly connected to another PE v in the same row.
In the process, all PEs in row i that lie between u and v are bypassed.
In the row rerouting scheme, a fault-free PE u in physical row i can
be directly connected to another fault-free PE v in physical row i0 if
ji0 � ij � d. Thus, in the row rerouting scheme, each row has both
bypass and rerouting capabilities. The column bypass scheme and the
column rerouting scheme can be similarly defined. The reconfiguration
problem in this paper is formulated as follows.

Given an m�n mesh-connected host array, integers r and c, find an
m0�n0 fault-free subarray under the row and column rerouting scheme
such that m0 � r and n0 � c.

1063-8210/$20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 18, 2008 at 22:15 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 13, NO. 8, AUGUST 2005 977

Fig. 3. Five cases occurred in local compensation.

Based on the architecture shown in Fig. 1(a), the most efficient al-
gorithm under the row and column rerouting is described in [7], de-
noted as RCRT in this paper. It consists of two procedures called GCR
and LRE. GCR is used for finding a target array that contains a set
of selected logical rows. It reroutes the fault-free PEs to form logical
columns, the successor of the fault free PE u in Ri is selected from
the set of the adjacent of u, Adj(u), in a left-to-right manner, where
Adj(u) = fv : v 2 Ri+1; v is fault-free; jcol(u) � col(v)j � 1g.
LRE selects one row, say R , to be excluded from a set of logical rows
that was previously selected from host array and uses it to compensate
for faulty PEs in its neighboring rows. GCR and LRE are executed it-
eratively until the target array is found. As the same assumptions as in
[7], faults are considered to be associated only with PEs. Interconnects,
reconfiguration controllers, and switches are assumed to be fault free.

III. PROPOSED ARCHITECTURE

The 4-port switch occupies less area than 6-port switch and supports
a more realistic assumption of fault-free switches and interconnects.
This ignores the additional bypass circuitry within each PE. Moreover,
two neighboring PEs lying in same physical row cannot be rerouted
into same logical column. The proposed 6-port switch consists of pass
gates to establish all possible connection pair among the six input rails.
In other words, any pair combination of the six ports can be used to
establish a pair wise connection. The only restriction is that no port can
be connected to more than 1 port. Fig. 1(b) shows an array linked by
the new switch model. In the new architecture two neighboring PEs can
communicate directly via the external switches. Internal bypass links
through PEs are not involved as a PE can be bypassed through tracks
that run externally. Moreover, the proposed architecture is capable of
allocating two neighboring fault-free PEs on the same physical row into
same logical column. Fig. 2 shows the feasible routing manners.

IV. ALGORITHMS

A. New Column Rerouting

Assume v is faulty. Its upper (lower) neighbor is defined as the
fault-free PE e0(i; j), where i = row(v) � 1 (row(v) + 1), and
j = col(v). The compensation for v with its upper or lower neighbor
during column rerouting is called local compensation for v. Fig. 3
shows the five cases that might occur during local compensation. The
switches and the links are omitted. Since the local compensation con-
siders the faulty PEs, we extend the definition ofAdj(u) toAdja(u) =
fv : v 2 Ri+1 and jcol(u)�col(v)j � 1g, where the PEs in Adja(u)
are ordered in increasing column numbers for each u 2 Ri. It is clear
that jAdja(u)j � 3.

Our greedy rerouting algorithm, denoted as New_GCR, attempts to
connect the PE u to the leftmost PE v of Adja(u) that has not been
previously examined. In GCR, if this step fails in doing so, a logical
column containing the current PE u cannot be formed and backtracking
occurs. But in New_GCR, local compensation is employed, i.e., the
upper or lower neighbor of v is examined to compensate v whenever
possible. New_GCR backtracks to the previous PE p, connected to u,

only if the local compensation fails. It then attempts to connect p to
the leftmost PE of Adja(p)� fug that has not been previously exam-
ined. The selection of the leftmost PE is a greedy choice and the local
compensation potentiates the greedy choice. To simplify the column
rerouting, rerouting ui+1 to the successor of ui is not allowed.

Fig. 4 outlines New_GCR, in which, to shorten the paper,
Local_Comp(v) is assumed to be the procedure to finish the local
compensation for the faulty v. It returns the compensated v (fault-free
for successful compensation or fault for reverse) by examining the
cases shown in Fig. 3, from case 1 to case 5. In Fig. 4, logical columns
are constructed in left-to-right manner (see step 3). Each logical
column is produced in a top-to-down manner. The first PE of each
logical column is chosen from R0 or R1 by step 3.2, in which local
compensation is employed if the current PE in R0 is faulty. Step
3.4 continually constructs the remaining part of the current logical
column. In New_GCR, for each u 2 Ri, at most eight interconnects
(see Fig. 3) are examined at each step and each valid interconnect is
examined at most twice. Thus, following the analysis for GCR, it can
be deduced that New_GCR is in linear time O(N) for a host array of
N fault-free PEs.

B. New Compensation Strategy

Assume the previously selected rows are R0; R1; . . . ; Rk; R is to
be excluded; e0(; j) 2 R and it is fault-free, where 0 <  < k and
1 � j � n. In RCRT, compensations only occur in R�1 and R+1.
When e0( � 1; j) and e0( + 1; j) are both fault-free, e0(; j) will
not be utilized in the successive reconfigurations though it is fault-free
as R will be excluded. In our algorithm, however, the nearest upper
fault of e0(; j), say e0(up; j), will be found. Then e0(up; j) will be
compensated with e0(up+ 1; j) and e0(up+ 1; j) will be replaced by
e0(up+ 2; j) and so on. This process will continue until e0( � 1; j)
is replaced by e0(; j). If the PEs considered for compensation do not
satisfy the limitation of compensation distance (d � 1), the algorithm
will turn to find the nearest lower fault, and then a similar compensation
process will be done in the PEs below e0(; j). The aim of doing so is
to utilize as many fault-free PEs as possible in R .

LetUp_Comp (k, , j) be the function to search for the nearest upper
fault of e0(; j) in R0; R1; . . . ; Rk , then do compensations and re-
placements from e0(up+1; j) to e0(; j), one after another. To shorten
the paper, we omit its formal description. The function will return 1
for successful compensation, or 0 for the reverse. There is no need for
compensation in the case of all upper PEs of e0(; j) are fault-free. In
this case, Up_Comp terminates and returns 0, and e0(; j) is saved to
compensate its nearest lower fault. The time complexity of Up_Comp
is bounded by O(Nj) for Nj fault-free PEs in the jth column of the
current array. Symmetrically, let Down_Comp (k, , j) with the same
time complexity as that of Up_Comp (k, , j) to search for the nearest
lower fault and implement its compensation. The compensations for
the whole logical array with all fault-free PEs in R are described in
Overall_Comp shown in Fig. 5 (upper part). It runs before R is ex-
cluded. Its time complexity is O n

j=0
Nj , i.e., O(N) for the host

array of N fault-free PEs.
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Fig. 4. Formal description of the algorithm New_GCR.

C. Main Algorithm

Assume New_Row_First (New_Column_First) is to find a row
(column) based target array of maximum size. We outline the main
algorithm as follows.

Algorithm New_RCRT
1) Call New_Row_First to find a target array
of maximum size (say m1�n1) based on the row.
2) Call New_Column_First to find a target
array of maximum size (say m2 � n2) based on
the column.
3) The resultant target array is maxfm1�n1;m2�
n2g.

New_Row_First is shown in Fig. 5 (lower part). Initially, all rows in
the host array are selected for inclusion into the target array (see step 1).
Thus, each logical row is also a physical row. New_GCR is employed
to construct the first feasible subarray. Step 3.1 selects one row in linear
time [7] in each iteration. Compensation approach is employed in step
3.2, and then New_GCR produces a new feasible subarray in step 3.4
after excluding the selected row. Both step 3.2 and 3.4 run in O(N),
and thus each iteration of New_Row_First runs in O(N). Following
the analysis for RCRT, given anm�n host arrayH with N fault-free
PEs and integers r and c, the time required by New_RCRT to find an
m0 � n0 target arrays such that m0 � r and n0 � c is O(maxf(m�
r)N; (n � c)Ng) which is the same as that of RCRT.

Fig. 5. Formal description of Overall_Comp and New_Row_First.

V. EXPERIMENTAL RESULTS

We compare New_RCRTwith RCRT. The two algorithms are imple-
mented in C on an Intel Pentium-III 500-MHz computer. In order to
make a fair comparison, we maintain the assumptions made in [7], i.e.,
the faults in random host arrays were generated by a uniform random
generator; The fault size in host array is from 0.1% to 10%. Both al-
gorithms are tested with the same random input instances. The size of
each target array obtained by New_RCRT is compared with 1) an upper
bound on the size of target array and 2) the size of the target array ob-
tained by RCRT. The upper bound of the target array size is calculated
with the same method as described in [7]. Tables I and II summarize
the experimental results.

Table I shows the target-array comparisons, both in maximal target
array (MaxTA) and in maximal square target array (MaxSTA). For ex-
ample, for the host array of size 256� 256 with 10% faulty elements,
the theoretical maximal target array is 234� 252. The result derived
from New_RCRT is 240� 236, which is closer to the theoretical max-
imum of 234� 252. Also, the target array size is notably compared to
that produced by RCRT (i.e., 256� 196). In addition, New_RCRT ob-
tains a larger square target array of size 237� 237 than that produced
by RCRT (i.e., 208� 207).

Table II shows the performance comparison, 20 random instances
averaged, for 512� 512 arrays. harvest is the ratio of target array size
to the number of the good cells in host array. Degradation = 1 � �,
where � is the ratio of target array size to the host array size. It can be
see that the average harvest of New_RCRT is greater than 94% and the
average degradation is less than 14% for each type of random instances.
Especially for MaxSTA, the harvest can be improved by up to 20% for
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TABLE I
COMPARISON OF TARGET ARRAY WITH THEORETICAL MAXIMUM

TABLE II
AVERAGE PERFORMANCE COMPARISON FOR 512� 512 ARRAYS

10% fault size. Hence, the new algorithm is more efficient than the old
one.

The proposed architecture overcomes the drawbacks of previous ap-
proaches, be it at the expense of a small increase in hardware. Assuming
that the chip area of a 6-port switch can be as much as 50% more than
the 4-port switch, and the typical gate count for a PE is 50 000 gates.
The increment in the ratio of the switching circuits to the mesh array is
only 3.59% for a 256� 256 array by simple calculation based on the
analysis in hardware overhead in [9].

VI. CONCLUSION

We have proposed a 6-port switch based structure and associated al-
gorithms for the reconfiguration of two-dimensional degradable VLSI
arrays. The proposed architecture notably improves the harvest through
improved connectivity. The bypass links internal to the processing el-
ements are no longer required, thereby compensating for the increase
in the complexity of a 6-port switch. Evaluations based on the new re-
configuration algorithms show that, the average harvest of New_RCRT
is greater than 94% and the average degradation is less than 14% for a
number of random instances, when compared with the latest techniques
based on 4-port switches.
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Design and Analysis of Compact Dictionaries
for Diagnosis in Scan-BIST

Chunsheng Liu and Krishnendu Chakrabarty

Abstract—We present a new technique for generating compact dictio-
naries for cause–effect diagnosis in scan-BIST. This approach relies on the
use of three compact dictionaries and target both modeled and unmodeled
faults. We present analytical results that provide useful guidelines for the
design of these compact dictionaries. We also present experimental results
for the larger ISCAS-89 benchmark circuits for the diagnosis of various
types of unmodeled faults.

Index Terms—Compaction, diagnostic resolution, fault diagnosis, in-
terval-based dictionary, linear feedback shift register (LFSR).

I. INTRODUCTION

An advantage of cause–effect fault diagnosis based on fault dictio-
naries is that it alleviates the need for repeated fault simulation [5],
[13]. In contrast, effect–cause diagnosis requires repeated fault simu-
lation runs [12], [14], [17], [18], [20]. However, as designs grow in
complexity, dictionary-based diagnosis becomes infeasible due to pro-
hibitively large dictionary sizes. Dictionaries for realistic circuits tend
to be too large to fit in the limited memory of testers.

A number of techniques have recently been proposed for reducing
dictionary size through compaction [1], [3]–[5], [7], [10], [13], [15].
These techniques attempt to identify and eliminate redundant informa-
tion in the dictionary. A problem for all these methods is that reduced
dictionary size can lead to a larger candidate set, i.e., diagnostic reso-
lution is adversely affected.
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