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The main problem that should be the focus of further research is to
prove that there are no nontrivial perfect codes in the Johnson scheme
by using the concept of k-regular codes.
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Cocyclic Simplex Codes of Type Over and

Nimalsiri Pinnawala and Asha Rao

Abstract—Over the past decade, cocyles have been used to construct
Hadamard and generalized Hadamard matrices. This, in turn, has led to
the construction of codes—self-dual and others. Herewe explore these ideas
further to construct cocylic complex and Butson–Hadamard matrices, and
subsequently we use the matrices to construct simplex codes of type � over
ZZZ and ZZZ , respectively.

Index Terms—Butson, cocycle, complex Hadamard, exponent, quater-
nary, self-orthogonal, simplex codes, trace.

I. INTRODUCTION

Various authors [1], [2], [11], [12] have studied the construction of
cocyclic Hadamard and cocyclic generalized Hadamard matrices and
the use of these matrices in the construction of cocyclic codes. Here
we extend these constructions to obtain cocyclic Butson and cocyclic
complex Hadamard matrices. Simplex codes of type � were studied by
Gupta [9], but no methods of constructions were given. We use the co-
cyclic complex and cocyclic Butson–Hadamard matrices to construct
simplex codes of type� overZZZ4 andZZZ2 , respectively.We assume that
the reader is familiar with the basic facts of the theory of Hadamardma-
trices (see, for example, [15]) and of binary linear codes (see [13]).
IfG is a finite group (written multiplicatively with identity 1) andC

is an Abelian group, a cocycle (overG) is a set mapping  :G�G!C

which satisfies

 (a; b) (ab; c) =  (a; bc) (b; c); 8a; b; c 2 G:

A cocycle is normalized if  (1; 1) = 1. A cocycle may be represented
as a cocyclic matrix M = [ (a; b)]a;b2G once an indexing of the
elements of G has been chosen.
Let Cp be the multiplicative group of all complex pth roots of unity,

Cp = f1; x; x2; . . . ; xp�1g, where x = exp(2�i=p) and p � 2 is
an integer. A square matrix H = [hij ] of order n with elements from
Cp is called a Butson–Hadamard matrix (BH(n; p)) (see [5]) if and
only ifHH� = nI ,H� being the conjugate transpose ofH and I the
identity matrix of order n. When p = 2 and n = 1; 2 or a multiple of
4, BH(n; p) is a Hadamard matrix.
A complex Hadamard matrix H of order n is a matrix with entries

from f1; i;�1;�ig that satisfies HH� = nI , where i =
p�1 and

H� is the conjugate transpose of H . It is conjectured that a complex
Hadamard matrix exists for every even order. In [15], it is shown that
every complex Hadamard matrix has order 1 or divisible by 2. A com-
plex Hadamard matrix is a special case of a Butson–Hadamard matrix
BH(n; p) for p = 4.
LetH = [hi;j ] be a square matrix overCp, where p is a fixed integer

p > 2. The matrix E = [ei;j ]; ei;j 2 ZZZp, which is obtained from
H = [xe ] = [hi;j ], where x = exp(2�i=p), is called the exponent
matrix associated with H . The elements of the exponent matrix E lie
in the Galois ring GR (p; 1) (Galois field GF (p), for p prime), and its
row vectors can be viewed as the codewords of a code over the integers
modulo p.
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In Section II, we introduce the main machinery of Galois rings for
the study ofZZZ4-codes and the trace map over GR (4; m). In Section III,
we define a cocycle for the construction of a complex Hadamardmatrix
and subsequently we use it for the construction ofZZZ4-simplex codes of
type �. We then extend these results to obtain cocyclic simplex codes
over ZZZ2 . The Galois ring GR (2s;m) and the generalized trace map
and codes overZZZ2 are studied in Section IV. In Section V, we define a
cocycle over GR (2s;m) to construct Butson–Hadamard matrices and
use these matrices to create ZZZ2 -simplex codes of type �.

II. THE GALOIS RING GR (4;m), THE TRACE MAP, AND
CODES OVER ZZZ4

Let h(x) be a basic irreducible polynomial of degree m over ZZZ4.
Consider the residue class ring ZZZ4[x]=(h(x)). The residue classes

a0 + a1x+ � � �+ am�1x
m�1 + (h(x))

where a0; a1; . . . ; am�1 2 ZZZ4, are all distinct elements of
ZZZ4[x]=(h(x)). Hence, jZZZ4[x]=(h(x))j=4m. The ring ZZZ4[x]=(h(x))
is called the Galois ring of order 4m and is denoted by GR (4;m).

In the Galois ring GR (4;m) there exists a nonzero element �
of order 2m � 1 (take � = x + (h(x)), for example), which is a
root of a basic primitive polynomial h(x) of degree m over ZZZ4 and
GR (4;m) = ZZZ4[�]. Moreover, h(x) is the unique monic polynomial
of degree � m over ZZZ4 having � as a root.

Let T = f0; 1; �; �2; . . . ; �2 �2g be the Teichmuller set; then any
element c 2 GR (4;m) can be written uniquely as c = a+ 2b, where
a; b 2 T . More details can be found in [16].

The Frobenius automorphism over the Galois ring GR (4;m) is de-
fined by

f : GR (4;m)! GR (4;m); c = a+ 2b! f(c) = a2 + 2b2

and the trace map over GR (4;m) is defined by

T :GR (4;m)! ZZZ4

T (c) = c+ f(c) + f2(c) + � � �+ fm�1(c); for all c 2 GR (4m):

From the definition of f and T it is clear that T is a nontrivial linear
transformation from GR (4;m) to ZZZ4.

Further, let c 2 GR (4;m). Boztaş et al. [4] show that if c is in-
vertible, then as x ranges over GR (4;m), T (cx) takes 0; 1; 2; and 3
equally often, i.e., 4m�1 times and if c is not invertible then as x ranges
over GR (4;m),T (cx) takes 0 and 2 equally often, i.e., 2�4m�1 times.

For a positive integer p, let ZZZp be the set of integers modulo p,
i.e., ZZZp = f0; 1; 2; . . . ; p � 1g. The Lee weight of a 2 ZZZp is de-
fined by WL(a) = minfa; p � ag. The Lee weight WL(xxx) of xxx =
(x1; x2; . . . ; xn) in ZZZnp is defined to be the integral sum of the Lee
weight of its components. The Lee distance between xxx; yyy 2 ZZZnp is de-
fined as

dL(xxx; yyy) =WL(xxx� yyy):

Let Z4 be the ring of integers modulo 4 (i.e., Z4 = f0; 1; 2; 3g), n
be a positive integer, and Zn4 be the set of n-tuples over Z4. i.e.,

Zn4 = fxxx = (x1; x2; . . . ; xn)jxi 2 Z4; for i = 1; 2; . . . ; ng:

Anonempty subsetC ofZn4 is called aZ4-code (or a quaternary code).
n is called the length of the code. n-tuples of C are called codewords
of C . For all xxx = (x1; x2; . . . ; xn) and yyy = (y1; y2; . . . ; yn) in Zn4 , if
the componentwise addition is defined as

(x1; x2; . . . ; xn)+(y1; y2; . . . ; yn)=(x1+y1; x2+y2; . . . ; xn+yn)

thenZn4 becomes an additive Abelian group of order 4n. Any subgroup
C of Zn4 is called a quaternary linear code, or simply Z4-linear code.

As pointed out by Hammons et al. [10], a ZZZ4-linear code C
containing some nonzero codewords is permutation equivalent to a
ZZZ4-linear code with a generator matrix of the form

GC =
Ik A B

0 2Ik 2D

where Ik and Ik are the identity matrices of order k1 and k2, respec-
tively, A andD are ZZZ2-matrices, and B is aZZZ4-matrix. The code C is
an Abelian group of type 4k 2k and it contains 2(2k +k ) codewords.
Further, it is a free ZZZ4-module if and only if k2 = 0. Parameters of
a Z4-linear code C are denoted by [n; k; dL], where n is the length
of the code, k is the 2-dimension of the code, and dL is the minimum
Lee distance of the code. For more information on the 2-dimension of
a code see [9].
The Gray map is used to form binary codes from ZZZ4-codes. Some

well-known binary nonlinear codes are images under the Gray map
of linear codes over ZZZ4. The Gray map is usually denoted by �, and
defined as

� : ZZZ4 !ZZZ2
2

0 ! 00

1 ! 01

2 ! 11

3 ! 10:

More details on ZZZ4-codes can be found in [3], [10], [16], etc.
LetC be aZZZ4-linear code and dH and dL be theminimumHamming

distance and minimum Lee distance of C , respectively. In [14], Rains
has shown that for any ZZZ4-linear code C

dH �
dL
2

:

If dH = d d
2
e, then C is called a code of type �. Otherwise, it is said

to be of type �.

Definition 2.1: ZZZZZZZZZ4-simplex code of type ��� [9].

LetGm be anm�4m matrix overZZZ4 consisting of distinct columns.
Inductively Gm can be written as

Gm =
00 . . . 0 11 . . . 1 22 . . . 2 33 . . . 3

Gm�1 Gm�1 Gm�1 Gm�1

with G1 = [0123]. The code generated by Gm, denoted by S�m, is
called a ZZZ4-simplex code of type �.
The Gray image of �S�m is nonlinear for allm, where �S�m is the punc-

tured code of S�m obtained by deleting the zero coordinate [9].

III. COCYCLIC COMPLEX HADAMARD MATRICES AND ZZZ4-SIMPLEX

CODES OF TYPE �

The key focus of this section is the construction of complex
Hadamard matrices by using a cocycle and subsequently cocyclic
ZZZ4-simplex codes of type �.

Theorem 3.1: Let h(x) be a basic irreducible polynomial of degree
m over ZZZ4 and GR (4;m) = ZZZ4[x]=(h(x)). Let C4 = f1; x; x2; x3g
be the multiplicative group of all complex 4th roots of unity and T be
the trace map over GR (4;m). Then

i) the function

 : GR (4;m)� GR (4;m)! C4

given by

 (ci; cj) = (x)T (c c )

is a cocycle;
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ii) the matrix H = [ (ci; cj)]c ;c 2GR(4;m) is a complex
Hadamard matrix of order 4m.

Proof:

i) From the definition of  and the properties of the trace map, it is
obvious that  is a cocycle.

ii) For all a; b 2 GR (4;m), consider the sum

S =
8h2GR(4;m)

 (a; h) (b; h)

where  (b; h) is the complex conjugate of  (b; h). From the
properties of the trace map

S =
8h2GR(4;m)

(x)T ((a�b)h):

For a = b, S = 4m, and for a 6= b, S = 0. Thus,H is a complex
Hadamard matrix of order 4m.

Theorem 3.2: The rows of the matrix A = [T (cicj)] (the exponent
matrix associated with H in Theorem 3.1) form a quaternary linear
code [n; k; dL] = [4m; m; 4m] and it is a ZZZ4-simplex code of type �.
Further A is a free ZZZ4-module and a self-orthogonal code.

Proof: Consider the set K = f1; �; �2; . . . ; �m�1g, where �
is a root of h(x). It is clear that these elements are linearly inde-
pendent m-tuples in GR (4;m) and are invertible. Further, we know
that GR (4;m) = h1; �; �2; . . . ; �m�1i. Therefore, any element
ci 2 GR (4;m) can be written uniquely as

ci = a0 + a1� + a2�
2 + � � �+ am�1�

m�1

where aj 2 ZZZ4; j = 0; 1; 2; . . . ;m� 1 and i = 1; 2; . . . ; 4m.
Now consider the following matrix:

GA =

T (ci); i = 1; 2; . . . ; 4m

T (�ci); i = 1; 2; . . . ; 4m

...
...

T (�m�1ci); i = 1; 2; . . . ; 4m
m�4

:

Since 1; �; �2; . . . ; �m�1 are invertible, from the properties of the
trace map, each row in GA consists of 0; 1; 2; 3 equally often (i.e.,
4m�1 times). Further, the rows of the matrix GA are linearly inde-
pendent and GA generates the matrix A = [T (cicj)]c ;c 2GR(4;m).
It is obvious that the minimum Lee distance of the code A is
4m and hence A is a quaternary linear code with parameters
[n; k; dL] = [4m; m; 4m]. By deleting the all-zero column of A we
get the linear quaternary code A� with parameters [4m � 1;m; 4m].

From Definition 2.1, the generator matrixGA is equivalent to that of
Gm, the generator matrix of a ZZZ4-simplex code of type �. Therefore,
the code A is a ZZZ4-simplex code of type �.
GA has no rows with only 0’s and 2’s. Therefore, it should be equiv-

alent to a matrix of the formGA = [Im A B], whereA andB areZZZ2

and ZZZ4 matrices, respectively. Thus, the code generated by the matrix
GA is a free ZZZ4-module. In [8], it is shown that ZZZ4-simplex codes S�m
(m � 2) are self-orthogonal and, hence, A is a self-orthogonal code.

Further, the binary image of A�, which is obtained by deleting the
all-zero column ofA, is a nonlinearZZZ2-code C = �(A�) with param-
eters (n;M; dH) = (2 � (4m � 1); 4m; 4m).

Example 3.3: Consider the basic irreducible polynomial h(x) =
x2+x+1 overZZZ4. Define the Galois ring GR (4; 2) = ZZZ4[x]=(h(x)).
Let � be a root of h(x). Since m = 2, the order of � is 22 � 1 = 3.
Therefore, �0 = 1; �1 = �; �2 = 3� + 3 and T = f0; 1; �; �2g.
GR (4; 2) = fc = a+2b j a; b 2 T g. Elements of this ring and value
of each element under the trace map are given in the Table I.

Consider the set mapping

 : GR (4; 2)� GR (4; 2) ! C4;  (ci; cj) = (i)T (c c ):

TABLE I
ELEMENTS OF GR (4; 2) AND THEIR VALUES UNDER THE TRACE MAP

According to the proof of Theorem 3.1 i),  is a cocycle. The matrix

H = [ (ci; cj)]c ;c 2GR (4;2)

is shown in Fig. 1.
By Theorem 3.1 ii), HH� = 42I4 �4 . i.e., H is a complex

Hadamard matrix of order 42.
The matrix A = [T (cicj)]8 c ;c 2GR(4;2) (the exponent matrix as-

sociated with H) is shown in Fig. 2.
The rows of the matrix A can be considered as codewords over ZZZ4.

A generator matrix for this code is

GA =
T (ci); i = 1; 2; . . . ; 42

T (�ci); i = 1; 2; . . . ; 42
2�4

i.e.,

GA =
0 0 2 2 2 2 0 0 3 3 1 1 3 3 1 1

0 2 2 0 3 1 1 3 3 1 1 3 2 0 0 2
:

Parameters of this ZZZ4-linear code are [42; 2; 42]. By deleting the
all-zero column of A we get A�, a ZZZ4-linear code with parameters
[42 � 1; 2; 42]. It is clear that the generator matrix GA is equivalent
to the generator matrix G2 of Definition 2.1 and, hence, A is a
ZZZ4-simplex code of type �.

The binary image of A� is a nonlinear ZZZ2-code C = �(A�) with
parameters (n;M; dH) = (2 � (42 � 1); 42; 42).

IV. GALOIS RING GR (2s; m) AND CODES OVER ZZZ2

Let ZZZ2 = f0; 1; 2; . . . ; 2s � 1g be the ring of integers modulo 2s.
Let h(x) be an irreducible polynomial of degree m over ZZZ2 . Define
the Galois ring GR (2s;m) = ZZZ2 [x]=(h(x)). Let � = x + (h(x)).
Then h(�) = 0 and, hence, GR (2s;m) = ZZZ2 [�]. Thus, we have
GR (2s;m) = h1; �; �2; . . . ; �m�1i and jGR (2s;m)j = 2sm.
Let T = f0; 1; �; . . . ; �2 �2g be the Teichmuller set. Then any

u 2 GR (2s;m) can be uniquely written as u = s�1

i=0
2iui, where

ui 2 T . Further, u is invertible iff u0 6= 0.
Consider the Frobenius automorphism given in [7]

f : GR (2s;m) ! GR (2s;m)

f(u) =

s�1

i=0

2iu2i

and the trace map

T : GR (2s;m) ! ZZZ2

T (u) =u+ f(u) + f2(u) + � � �+ fm�1(u):

Since f is an automorphism, obviously T is a nontrivial linear trans-
formation.
Also for any b 2 GR (2s;m), if b is invertible, then as x ranges

over GR (2s;m), T (xb) takes each element of ZZZ2 equally often, i.e.,
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Fig. 1. Cocyclic matrix over GR (4; 2) using the trace map.

Fig. 2. The exponent matrix associated with H .

2sm�s times and if b is not invertible then, asx ranges overGR (2s; m),
T (xb) takes elements in

f2kt j t = 0; 1; 2; . . . ; 2s�k � 1; k = 1; 2; . . . ; s� 1g

equally often, i.e., 2sm�(s�k) times.
Moving on to codes over ZZZ2 , the generator matrix G of any linear

code C of length n over ZZZ2 is equivalent to

Ik A0;1 A0;2 . . . . . . A0;s�1 A0;s

0 2Ik 2A1;2 . . . . . . 2A1;s�1 2A1;s

0 0 22Ik 22A2;3 . . . 22A2;s�1 22A2;s

...
...

... . . .
...

...
...

0 0 0 0 . . . 2s�1Ik 2s�1As�1;s

:

Here theAi;j are matrices overZZZ2 . Note thatC is a freeZZZ2 -module
if and only if ki = 0 for all i = 1; 2; . . . ; s � 1([6]).

The Gray map can be generalized to construct binary codes from
codes over Z2 [7].

Let s be any positive integer, u any element of Z2 , and
s

i=1 2
i�1ui its binary expansion (ui = 0; 1). The image of u by the

generalized Gray map is the following Boolean function on Zs�12 :

G(u) : (y1; y2; . . . ; ys�1)! us +

s�1

i=1

uiyi

where (y1; y2; . . . ; ys�1) 2 Zs�12 .

Definition 4.1: ZZZZZZZZZ2 -simplex code of type � [9].
Let Gm be anm� 2sm matrix over ZZZ2 defined inductively by the

expressions at the bottom of the page.
The code generated by Gm is called the ZZZ2 -simplex code of type

� and is denoted by S�m.
Let �C = S�m be the punctured code of S�m, which is obtained by

deleting the zero coordinate. The Gray image of �C under the general-
ized Gray map of 2-basis is a [2s�1(2sm� 1); sm; 2s(m+1)�2] binary
linear code.

V. COCYCLIC BUTSON–HADAMARD MATRICES AND

ZZZ2 -SIMPLEX CODES OF TYPE �

Here we define a cocycle over the Galois ring GR (2s;m) and con-
struct Butson–Hadamard matrices H2 of order 2sm. The exponent
matrix ofH2 is a simplex code of type� over the integersmodulo 2s.
The proofs of the following two theorems are very similar to those of
Theorems 3.1 and 3.2.

Theorem 5.1: Let C2 = f1; x; x2; . . . ; x2 �1g be the set of all
complex (2s)th roots of unity and and GR (2s;m) be the Galois ring
of order 2sm. Consider the set mapping

 : GR (2s;m)� GR (2s;m)! C2

 (a;b) = (x)T (ab):

Then

i)  is a cocycle,
ii) M = [ (a; b)]8a;b2GR (2 ;m) is a Butson–Hadamard matrix of

order 2sm.

G1 = [0; 1; 2; . . . ; 2s � 1]

Gm =
00 . . . 0 11 . . . 1 . . . (2s � 1)(2s � 1) . . . (2s � 1)

Gm�1 Gm�1 . . . Gm�1
:
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Theorem 5.2: IfA = [T (ab)]8a;b2GR(2 ;m) is the exponent matrix
associated withM in Theorem 5.1, then the rows ofA form a simplex
code of type � over ZZZ2 .

VI. CONCLUSION

In this correspondence, we introduced a cocycle over the Galois
ring GR (4;m) for the construction of complex Hadamard matrices
and a cocycle over the Galois ring GR (2s;m) for the construction of
Butson–Hadamard matrices. Subsequently, we used these matrices for
the construction of simplex codes of type � over ZZZ4 and ZZZ2 , respec-
tively.

REFERENCES

[1] A. Baliga, “New self-dual codes from cocyclic Hadamard matrices,” J.
Combin. Maths. Combin. Comput., vol. 28, pp. 7–14, 1998.

[2] A. Baliga and K. J. Horadam, “Cocyclic Hadamard matrices overZZZ �

ZZZ ,” Australas. J. Combin., vol. 11, pp. 123–134, 1995.
[3] A. Bonnecaze and I. M. Duursma, “Translates of linear codes over Z ,”

IEEE Trans. Inform. Theory, vol. 43, pp. 1218–1230, July 1997.
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Code Construction on Fiber Products of Kummer Covers

Hiren Maharaj

Abstract—We show that Riemann–Roch spaces of divisors from fiber
products of Kummer covers of the projective line, which are invariant with
respect to the Galois group, decompose as a direct sum of Riemann–Roch
spaces of divisors of the projective line. Consequently, one obtains explicit
bases and good upper bounds for the minimum distance of the resulting
Goppa codes. This correspondence is a generalization of the work of Xing.

Index Terms—Algebraic-geometry codes, fiber products of Kummer
covers, geometric Goppa codes.

I. INTRODUCTION AND MAIN RESULTS

Motivated by applications in coding theory much work has been
done, using a variety of techniques, on the construction of curves with
many points over finite fields (see [4], [8]). Specifically, in [1]–[3], [5],
[7] such curves are constructed using Kummer covers or fiber prod-
ucts of Kummer covers of the projective line. Recall that a collection
of all functions defined on a curve, whose poles with pole order upper-
bounded by a prescribed set of corresponding fixed integers (specified
by a divisor) forms a vector space called a Riemann–Roch space. In this
correspondence, it is shown how to obtain explicit bases for a large class
of Riemann–Roch spaces from these curves by exhibiting the space as a
direct sum of Riemann–Roch spaces of divisors of the projective line.
In this section, we state the main results and the proofs are given in
Section II. In order to illustrate the application of this work to code
construction, in Section III we work two examples in detail. There we
indicate how to derive upper bounds on the minimum distance of the
corresponding Goppa codes.
Henceforth, we use the language of algebraic function fields (of a

single variable) as in [6]. For example, we denote the set of places of
a function field F by (F ). To state our first result, we need the fol-
lowing definition. Let F 0=F be a finite extension of algebraic function
fields. Any divisor of F 0 can be written in the form

G =
R2 (F )Q2 (F );QjR

aQQ

where the aQ are integers such that aQ = 0 for almost allQ 2 (F 0).
We define the restriction of G to F , denoted GjF , to be the following
divisor of F :

GjF :=
R2 (F )

min
aQ

e(QjR)
: QjR R:

Next we assume F 0=F is a Kummer extension of degree n > 1 so that
we can write F 0 = F (y) where yn 2 F .

Theorem 2.2: Let G be a divisor of F 0 which is invariant with re-
spect to Gal(F 0=F ). Then

L(G) =

n�1

i=0

L ((G+ i(y))jF ) y
i:

Thus, L(G) can be decomposed as a direct sum of Riemann–Roch
spaces of F . In the case that F is the rational function field, explicit
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