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Abstract. There are characteristics of Hadamard matrices that enable
an exhaustive search using algorithmic techniques. The search derives
primarily from the eigenvalues which are constant after the Hadamard
matrix is multiplied by its transpose. Generally this would be a perfor-
mance concern but there are additional properties that enable the eigen-
values to be predicted. Here an algorithm is given to obtain a Hadamard
matrix from a matrix of 1s using optimisation techniques on a row-by-row
basis.
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1 Introduction

Hadamard Matrices are named after Jacques Hadamard (1865-1963) and are
square matrices of order 1, 2, 4n, n = 1. . .∞, whose entries are on the unit
circle, and whose rows are all orthogonal to each other. That is,

HnHT
n = nI (1)

where n is the order of matrix.
Hadamard Matrices currently are found using construction techniques which

have been generally classified [3] as recursion theorems, ”plug-in” methods or
direct constructions. These are summarised in the following table:

Multiplicative or Recur-
sive Techniques

Any Kronecker product of existing Hadamard ma-
trices is itself a Hadamard matrix.

“Plug-in” methods Named after James Sylvester, this is the earliest
(1863) and simplest construction and is also based
on the Kronecker product.

Direct Constructions The Paley HMs are two constructions found using
quadratic residues in a finite field.

Williamson Also a ”plug-in” algorithm where the HM is con-
structed from an existing HM plus 3 other HMs
that satisfy specific conditions.

Full details of the construction methods mentioned above can be found in [3]
while other methods can be found in [8] and are not included here. The important
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aspect is that using any of the methods above, not all orders of Hadamard
matrices have been verified that they can be created since they are constructed
from matrices of lower orders. This is the long (since 1893) unsolved Hadamard
conjecture. In addition, the nature of equivalence is not fully understood and
only orders up to 28 have been fully explored, which has a known 427 equivalence
classes.

Hadamard matrices are formed into equivalence classes where they are deemed
to be equivalent if the following operations are performed on them to arrive at
the same matrix:

1. Any permutation of the existing rows and/or permutation of the columns
2. The multiplication of row(s) or column(s) by -1.

More recently [6] has defined Q-classes to enable more manageable cate-
gorisation of the equivalence classes by “extracting” common sub-matrices or
substructures of Hadamard matrices and classifying those matrices with these
common sub-matrices as Q-equivalent.

2 Background

Instead of relying on construction techniques to construct, and sheer brute force
to test for, Hadamard matrices, there are characteristics that enable Hadamard
matrices be searched for using optimisation methods [4, 7]. These characteristics
also provide clues to the nature of Hadamard equivalence classes.

There are two properties of matrices that offer the opportunity to search
for the existence of Hadamard matrices using optimisation techniques: the de-
terminant and the eigenvectors and eigenvalues. These are, of course related
measures.

The determinant for a Hadamard matrix is given by

detH = ±nn/2. (2)

But one of the drawbacks in using the determinant is that it has sharp peaks
and exhibits properties analogous to the Hamming cliffs encountered when using
optimisation methods with binary strings as distinct from gray encoded strings.
This primarily arises from the fact that the determinant is 0 when it becomes
singular which can occur as soon as one row becomes identical to another. Also,
there are multiple matrices that have the same determinant with little or no
indication as to the direction a search could or should progress.

The eigenvectors of a Hadamard matrix all lie on the unit circle and the
absolute value of the eigenvalues are constant and equal to n, where n is the
order of the Hadamard matrix. Since the eigenvectors can be complex and half
the eigenvalues are negative, it is easier to consider the RHS of (1) and the effects
on it when looking at the optimisation path.
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The question that arises is: what is the sensitivity of the eigenvalues to errors
that would enable its use in optimisation?

It will be shown that the variance of the eigenvalues (EVV) of the RHS of
(1) can provide a suitable optimisation path since:

1. The intra-row errors describe an EVV path that is represented by the parabolic
equation:

8x
(
1− x

N

)
(3)

where x is the number of cells within a row that are inverted and N is the
order of the matrix. The variance of the eigenvalues is calculated as:

EV V =
n∑

i=1

(
(λi − Eλ)2

n

)
(4)

Note: Eλ = n
2. The inter-row errors are described by the recursive equation:

EV Vx =
y (y − 1)

2
M (5)

where y is the number of non-orthogonal rows and M is the maximum EVV
for each row which occurs where x = N/2 in (3). Eg, for order 8, M = 16
and EVV for an entire order 8 matrix of ones = 448.

This information can be used to devise an optimisation path to a Hadamard
matrix from a unit matrix since at any stage it is known how many steps a
non-Hadamard matrix is from a Hadamard matrix.

It is inescapable that any algorithm that actually uses eigenvalues is not
going to be very efficient. Hence there needs to be an improvement to any al-
gorithm that does use the eigenvalues method that enables the eigenvalues to
be predicted. Fortunately, for row-by-row optimisation, there are two criteria or
tests that can be used to assist. This will be developed in the next section.

3 The Search For A Path

Consider the normalised Hadamard matrix H4 of order 4 given by

H4 =
[

1 1
1 −1

]
and the Hadamard matrix of order 8 H8 given by:[

H4 H4

H4 −H4

]
As successive errors are introduced to a row, the eigenvalues (of the RHS of

(1)) are affected according to the following tables and the variance follows an
inverted parabolic path.
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Number of cells inverted 0 1 2 3 4

Eigenvalues

4 0.5359 0 0.5359 4
4 4 4 4 4
4 4 4 4 4
4 7.4641 8 7.4641 4

Variance (EVV) 0 6 8 6 0

Number of cells inverted 0 1 2 3 4 5 6 7 8

Eigenvalues

8 2.7085 1.0718 .2540 0 .2540 1.0718 2.7085 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8
8 13.2915 14.9282 15.7460 16 15.7460 14.9282 13.2915 8

Variance (EVV) 0 7 12 15 16 15 12 7 0

By the time all the entries in a row are inverted we have arrived at another
(but equivalent) Hadamard matrix. Not only do the eigenvalues follow a predi-
cable path, there is an indication of the number of rows that are not orthogonal
to each other.

Fig. 1. Orders 4, 8 and 12 EVV as successive cells are inverted

What if there are errors in more than one row? In a simple situation where
there is a single error in another row, and the particular column entries of the
two rows have the same sign, then the errors aggregate, not only in that column,
but also in other columns that have the same sign. When the column entries
have opposite signs, they tend to compensate. (Figure 2)

But it is not so simple and with multiple errors, the situation needs to be
viewed of sub-matrices of order 2 that include the respective rows. The EVV
induced by errors on odd-weighted sub-matrices is double that of even weighted
sub-matrices.

What if we overwrite two rows with ones within a Hadamard matrix (besides
the first row)? Three rows, four rows....? What is the total EVV that can be
found for a matrix consisting only of +1 in a matrix of a given order? The
results are in the following table for those of order 8.
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Fig. 2. Order 8 with same sign and opposite sign in another row as successive cells are
inverted

Rows Non-orthogonal EVV

1 0

2 16

3 48

4 96

5 160

6 240

7 336

8 448

Fig. 3. Successive EVV as more rows non-orthogonal

The total EVV of a square matrix of ones, (eg for order 8 is 448) which is
the furthest a matrix can digress from Hadamard, can be broken down and it
is possible to determine how many rows are not orthogonal to each other. In
other words, every Hadamard matrix of any order must comply with (5) since
replacing successive rows will automatically induce a known level of EVV until
it reaches a maximum.

Putting the aforementioned characteristics into practice can be investigated
in two separate ways.

1. The first method is to consider the matrix as a whole and successively test
individual cells as to the effect on the EVV. In other words, each cell has
a marginal contribution to the total EVV of the matrix. At each iteration,
the entire matrix can be searched for the cell that when inverted, gives the
greatest reduction in EVV, and then invert that cell. This will not always
give a complete path to a Hadamard matrix since there are other criteria
elaborated below that also need to be satisfied. Also, given that the eigenval-
ues are continually being calculated, this method is only suitable for matrices
of smaller orders.

2. A second method is to optimise to a Hadamard matrix from a matrix of
ones row-by-row. Exactly the opposite to successively substituting rows of a
Hadamard matrix by rows of ones. The objective is to find which combination
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of cells within each row needs to be inverted to fit the expected EVV from
(5).

By way of an example for the second method, start with a matrix of ones
of the desired order, say 8. (Assume the the matrix will be normalised whereby
there will be exactly 4 -1’s in every row or column except the first row and
column which will be all 1’s.)

1. Start with a matrix of ones.
2. Leave the first row and fill half the second row with -1s. Leave the first

column so that normalisation is maintained.
3. Calculate the ”Expected EVV” contributed by this row. That is, if this row is

orthogonal to all the preceding rows, what is the EVV by all the subsequent
rows. For the fourth row this is (using (3) where N = 8 and x = 4 and then
(5) where y = 5): 5 ∗ 4/2 * 16 = 160.

4. Determine all the combinations of columns 2. . . 8 in groups of 4 and calculate
the new EVV if they were chosen. If the EVV matches the Expected EVV,
then this combination forms part of a Hadamard matrix. Use it and move
onto the next row. It needs to borne that there are(

N − 1
n
2

)
possible combinations for each row.

Working through an example, in figure 4 we have the situation where rows 1,
2 and 3 are complete. To assist in clarification the terminology has been changed
and we will for the purposes of this example use ’.’ for a 1 and an X for -1. Any
new row will require the resultant matrix to have an EVV of 160 (using (5)).



. . . . . . . .

. . . . X X X X

. X X . X X . .

. . . . . . . .
...

0 1 1 0 2 2 1 1



Fig. 4. 3 Completed Rows

Note that the last row in the table is the sum of the “weights” or number of
X s already in each of the columns.

Any of the 8 rows in figure 5 are valid possible insertions for the fourth row
since if they are inserted, the resultant EVV is 160 and each row has exactly 2
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

. X X . . . X X

. X . X X . X .

. X . X X . . X

. X . X . X X .

. . X X X . X .

. . X X X . . X

. . X X . X X .

. . X X . X . X



Fig. 5. Possibilities for row 4

columns that match the -1s already in rows 2 and 3. Only one of these does not
include column 4 which stands to reason since there is only one way of matching
up exactly two columns with the existing rows 2 & 3. (Also note that this row
is the difference between rows 2 and 3. This characteristic may offer a method
of taking shortcuts in the algorithm or possibly lead to clues about the nature
of equivalence.)

Now compare these rows with rows in figure 6 which will be rejected because
they do not have the desired EVV (These are only 6 out of the possible 26.)

Rows EVV Row 2 Corr. Row 3 Corr.

. X X X . . X . 164 1 2

. . . X X X . X 164 2 3

. X X X X . . . 168 1 3

. . X . X X . X 168 3 3

. X X . X X . . 176 4 0

. . . . X X X X 176 0 4

Fig. 6. Rejected Rows

The EVV column displays the resultant EVV of the matrix should that row
be used as the new row 4. The last two columns show the difference between the
candidate new row and the pre-existing rows 2 and 3 respectively. The last two
candidate rows are the same as the rows already inserted and hence should be
immediately rejected.

The important thing to note is that all the rows that result in the desired
EVV of 160, have exactly

(
n
4

)
matches between itself and all previous rows (not

including the first row). In other words, for every possible column permutation
for the next particular row, if there aren’t

(
n
4

)
matches then the combination

can be rejected immediately.
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The other noticeable facet concerns the number of all the Xs (see the bot-
tom row of figure 4) or weights of the columns. Each successful combination or
candidate row satisfies: ∑

Weights = (row − 2)
(n

4

)
(6)

This is another rule that can be used to fine-tune the algorithm. For example,
the first successful candidate row tells us to insert Xs in columns 2, 3, 7 and 8.
These four coulmns have weights (from figure (4)) of

1 + 1 + 1 + 1 = 4 = (4− 2)
(

8
4

)
(7)

If we assume that the second candidate row is selected (from figure 5) for
row 4, what are the circumstances for the next iteration?

Figure 7 has the starting position and figure 8 has the new possible rows for
row 5 (there are only 4 possibilities).



. . . . . . . .

. . . . X X X X

. X X . X X . .

. X . X X . X .

. . . . . . . .
...

0 2 1 1 3 2 2 1



Fig. 7. 4 Completed Rows and new column weights

Rows EVV Row 2 Corr. Row 3 Corr. Row 4 Corr.

. X X . . . X X 96 2 2 2

. X . X . X . X 96 2 2 2

. . X X X . . X 96 2 2 2

. . X X . X X . 96 2 2 2

Fig. 8. Candidate Rows for Row 5

All these rows have:

– the new desired EVV of 96
– exactly 2 matches with every row preceding it except row 1
– the sum of column weights = 6 which satisfies (5)
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In summary, there are 3 criteria to be satisfied for each row:

1. The desired EVV for each successive row needs to satsify EV V = x(x−1)
2 M

where M is the maximum EVV for each row which occurs where x = N/2.
2. Each new row must have

(
n
4

)
matches of X with every preceding row

3. The weights of each column must satisfy
∑

Weights = (row − 2)
(

n
4

)
Criteria 1 & 2 are synonymous while criterion 3 forms a type of a classical

subset-sum problem [2] where the count of the weights subset is known and there
are possible multiple solutions. The solutions are not necessarily known to exist.

3.1 An Incomplete Path

This is an example of when these methods will not allow us to proceed on our
search for a Hadamard matrix. The following situation arises at the start of
optimising to an order 12 matrix. After 3 rows we may have the following order
12 matrix: 

. . . . . . . . . . . .

. . . . . . X X X X X X

. X X X . . . . . X X X

. . . . . . . . . . . .
...


The following rows are all possible for the fourth row (there are others). . .[

. X X X . . X X X . . .
][

. X X . X . X . . X X .
][

. X X . X . X . . X . X
][

. X X . X . . X . X X .
]

If the first row was selected then the situation could arise where we have. . .

. . . . . . . . . . . .

. . . . . . X X X X X X

. X X X . . . . . X X X

. X X X . . X X X . . .

. . . . . . . . . . . .
...


This is a situation which could occur but the problem is there is no further

step. The EVV given by (5) is an expected 864 which satisfies criterion 1. Crite-
rion 2 is satisfied since each row matches exactly 3 times against each previous
row. However, criterion 3 fails, since the weights all = 2, and the required weights
to proceed needs 6 columns to add up to 9 which is an impossibility.

In other words, an additional constraint is needed to ensure that the sub-
sequent steps are valid which could lead to a large recursive tree for matrices
of larger orders. This particular problem is easily circumvented by not choosing
this particular row for row 4. This is the only exception encountered so far from
other simulations on orders 8, 12, 16, 20 and 24 by randomly selecting any of
the valid available rows.
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4 Conclusions

The methods presented in this paper are only the start of possible alternatives
using the eigenvalues and eigenvectors to search for Hadamard matrices. Can
they be investigated further?

The Eigenvectors How are they affected by disturbing a Hadamard matrix?
Is there some clue in the direction they shift to that may help find the “way
home” and may improve the algorithm?

Equivalence At what stage of the traversal of the optimisation path is it de-
cided whether a matrix belongs to another equivalence class or forms its own
equivalence class?

The Determinant Although this was discarded as a measure on its own, this
may not necessarily be desirable because it is hard to discuss eigenvalues
without acknowledging the determinant because of their direct relationship.
Given that the calculation of the determinant is much more efficient to cal-
culate for larger matrices, can it be used?

Although, the optimisation method is discussed as a “Hill-climb”, the final
solution forms a series of “Subset-sum” optimisation problems [2]. If these be-
come too unwieldy, maybe alternatives as such “genetic algorithms” [1, 5] could
be used.

The one example found that led to an incomplete path described above is
interesting because it may offer clues as to the existence of Hadamard matrices
(or the non-existence).
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