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Abstract. Salvinorin A 1, a psychoactive neoclerodane diterpenoid from the Mexican 

sage S. divinorum, has gained interest as a selective -opioid receptor agonist. Non-

racemic 3-furylamines 9a and 9b have been prepared from (+)-pseudoephedrine and (-)-

ephedrine for application in the stereoselective synthesis of the ketone ring of 1. Diels-

Alder reaction of 9b with methyl acrylate in aqueous media, followed by selective ether 

bridge cleavage has allowed access to the cyclohexenone 17 with preservation of 

stereochemistry at C-2. A model route to the lactone ring has also been achieved via a 

one pot deconjugation/esterification procedure of 2-bromocrotonyl chloride 20 to the 

furyl alcohol 19 followed by Reformatski mediated ring closure.  
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7-oxabicyclo[2.2.1]heptanones, ether cleavage, aldol reaction, ,-unsaturated esters, 

Reformatski reaction, 3-furyl lactones.  

 

Introduction.  

Infusions prepared from the leaves of the lamiaceae Salvia divinorum (Epling and 

Jativa-M.), are traditionally used in divinatory rites by the Mazatec Indians of Oaxaca, 

Mexico. The trans-neoclerodane diterpene salvinorin A 1 has been isolated[1, 2] from 

bioactive fractions of the plant extract and identified to be the principal 

pharmacologically active component[3]. The absolute stereochemistry of salvinorin A has 

been determined by a number of methods[2, 4]. 
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Extensive receptor assays have indicated that salvinorin A acts selectively as a 

potent -opioid receptor (KOR) agonist[5, 6] exhibiting similar efficacy to known KOR 

agonists U69,593 and TRK-820[7]. The biological properties of salvinorin A are unique 

considering it is a non-nitrogenous opioid agonist and displays hallucinogenic effects 

similar to LSD 3, mescaline 4 and DMT 5 (Figure 1), whilst lacking structural similarity 

to these classical alkaloids. 

It has been reported that the diterpene 1 is localized within glandular trichomes[8] as a 

secondary metabolite in concentrations up to 0.37% (dry leaf). Salvinorins B[2] 2, C[9], D-

F[10] and G[11] have also been isolated from leaf extracts, along with salvinicins A-B[12] 

and divinatorins A-C[13] and D-E[11] in low concentrations. So far there have been no 

reports of isolated metabolites possessing KOR activity higher than that of 1. Recent 

efforts to elucidate structure-activity relationships of 1 have involved the modification of 

the C-2 acetoxy and C-4 ester substituents. The semisynthetic methoxymethyl C-2 

analogue has shown increased potency as a KOR agonist[14] and affinity for the -opioid 

receptor has been reported in analogues containing aromatic C-2 ester substituents[15]. C-

4 modified analogues have been reported to possess reduced binding affinity[16] and 

byproducts from ester hydrolysis under basic conditions have been shown to involve the 

oxidation of ring A [17]. 
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Figure 1.                                                                

 



Growing concern in regards to its potential as a drug of abuse has led to 

prohibition of both plant material and active component in some countries (Australia, 

Denmark, Italy)[18]. However, interest by the medicinal and pharmacological community 

has grown since novel psychotomimetic structures offer opportunities to explore the role 

of the receptor systems in humans. The use of KOR agonists has gained interest as a 

novel approach to relief from CNS-acting drug dependence[19]. However such medication 

may be problematic as 1 produces dysphoric effects, which are considered undesirable in 

medicinal use.  

 

Many labdane and clerodane diterpenes possess similar structures to salvinorin A 

but differ vastly in bioactivity. The furyl lactone moiety in salvinorin A is identical to that 

observed in the molluscicide ricciocarpin A[20] and has been found necessary for the 

insect antifeedant properties of bacchotricuneatin A[21]. Syntheses of neoclerodane 

diterpenes are not common in the literature and novel synthetic pathways are necessary to 

prepare these biologically important diterpenes. In this paper we wish to report on our 

progress towards an enantioselective route to ketone ring A of 1, along with preliminary 

studies towards a model route to the lactone ring C. 

 

Retrosynthetic analysis. 

 

Dissection of the tricyclic ring structure at C-9/C-10 and C-6/C-7 presents a 

functionalised cyclohexanone A (18) and an ,-unsaturated lactone C (22) as precursors 

in a convergent synthesis (Scheme 1). Stereocentres adjacent to ketone and ester 

functionalities contain acidic protons and were identified as potential sites for 

racemization during preparation and purification.   

Cyclohexanone ring A was retrosynthetically derived from the Diels-Alder adduct 

between a 3-furylamine 9 and methyl acrylate (MAC). Hydrolysis of the amine 

substituent provides a direct route to the 7-oxabicyclo[2.2.1]heptane (or 7-

oxanorbornane) species 12 (Scheme 3). The chemistry of 7-oxabicyclo[2.2.1]heptane 

compounds has been extensively explored and reviewed by Vogel and Le Drain[22]. Ring 

opening of 12 to the cyclohexenone 16 provides the core of the ketone ring present in 



both 1 and 2 (Scheme 5). Acetylation followed by 1,4-addition allows access to the 

convergent precursor A. 

Ring C was derived from rudimentary precursors, as -halovinyl esters may be 

achieved through a deconjugation/esterification procedure using -bromocrotonyl 

chloride. Reformatski mediated ring closure of the -bromoester followed by dehydration 

leads to the lactone ring C (22). Coupling of rings A and C should be possible via a 

Michael type addition using methodology developed by Stork[23], followed by olefin 

metathesis and hydrogenation. 
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Scheme 1. Retrosynthesis of Salvinorin A. 

 



 

 
Results and Discussion 
 

7-Oxa[2.2.1]bicycloheptane structures serve as useful intermediates in the 

preparation of specifically functionalised molecules for natural product synthesis. 

Heterosubstituted furans have found use as reactive dienes in the preparation of 7-

oxa[2.2.1]bicycloheptane structures using Diels-Alder methodology. A general method 

for the preparation of 3-furylamines has been developed by our group[24] and products 

have shown high reactivity in cycloaddition reactions with methyl acrylate[25]. This has 

allowed the preparation of racemic 7-oxabicyclo[2.2.1]heptanone structures and 

investigation into their chemical transformations has been part of ongoing studies.  

Face selectivity in the cycloaddition reactions of chiral 3-furylamines has been 

reported by Schlessinger[26] and is mediated by steric interactions of a proline derived 

auxiliary. This methodology has been applied successfully to the total synthesis of (+)-

cyclophellitol[27]. Our current investigation has led us to examine the utility of the 

naturally occurring ephedrine isomers as asymmetric amine substituents on the furan 

moiety.  

Furans prepared from (1S, 2S)-(+)-pseudoephedrine 9a and (1R, 2S)-(-)-

ephedrine 9b were obtained in high yields from the starting amines by optimised 

procedures. Under conditions required for cyclization, tetrahydropyran-2-yloxy (THP)- 

group migration to the benzylic oxygen was observed in NMR and GCMS analysis, 

indicating the formation of furan 8 (Scheme 2). THP deprotection was subsequently 

performed by gentle heating with p-toluenesulphonic acid in ethanol. Furan products 

were stable for long periods upon storage at -18°C.  
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Scheme 2. (i) (+)-Pseudoephedrine, THF; ii) TFA, DCE; (iii) Aq. NaOH; (iv) p-TsOH, 

EtOH, 60oC, (v) (-)-Ephedrine. 

 
Studies of Diels-Alder reactions involving achiral 5-methyl-3-furylamines with 

MAC demonstrated both dichloromethane (DCM) and water to be suitable reaction 

media[25]. Cycloadditions of 9a and 9b carried out in DCM were quantitative as were 

heterogeneous reactions in water with the aid of ultrasonic irradiation. Furylamines 

containing aromatic substituents have been shown to react to completion without 

sonication[25], suggesting that the sonication in this case is simply a means of suspending 

the furan in solution, rather than a rate enhancing phenomenon.  

NMR studies on the cycloadduct of 9a prepared in DCM showed the product to 

exist preferentially as the oxazolidine 11. The disappearance of both the spiro- and 

methylene carbon signals at 108.5 and 41.5 ppm in acidic D2O suggests facile reversion 

to the enamine 10, although full characterisation of 10 could not be obtained. Upon 

heating in strong acidic solutions (pH = 1), 10 underwent a retro Diels-Alder reaction 

rather than hydrolysis. This led to a loss in enantio- and diastereomeric excesses along 

with slow decomposition. After many attempts, effective hydrolysis was achieved by 



gentle heating in a buffer solution of sodium acetate/acetic acid (pH = 5.5) to give the 

ketones 12a and 12b in good combined yields (81 - 90%) (Scheme 3). Diastereomeric 

ratio (endo:exo) and enantiomeric excesses (ee) of 12a and 12b were measured by chiral 

gas chromatography on a diethyl-tert-butyl--cyclodextrin column (MeGA, Italy) (Table 

1). Chiral GC analysis revealed both ephedrine isomers to direct face selectivity in the 

same manner, whereas the diastereomeric outcome was quite different.  
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Scheme 3. (i) DCM or Water; (ii) AcOH, NaOAc, H2O 
 
 
Table 1. Enantioselective Diels-Alder reactions using ephedrine auxiliaries.  
Run 9 MAC (eq.) Solvent Temp (oC) Time (hr.) endo:exoA ee (12a)  ee (12b) % yieldB

1 a 3.0 DCM  -50 to r.t. 8.0 99:1 85  n.d. 90 
2 a 1.5 Water  10 - 20 1.5 9:1 75 75 83 
3 b 3.0 DCM  -50 to r.t. 8.0 3:1 56 46 87 
4 b 1.5 Water  10 - 20 1.5 1:1 18 60 81 
ARatio of diastereoisomers (12a:12b) 
BCombined yield of endo and exo products. 
Results produced on < 1.0 mmol scales. 
 

Small scale reactions carried out using 9a in aqueous media achieved good 

enantioselectivity for both diastereomers of 12. Reasonable enantiomeric excess was 

observed for the exo- cycloadduct using 9b, achieving 60% ee and providing a 1:1 ratio 

of diastereoisomers when bath temperature was maintained between 10 and 20oC (Table 



1, entry 4). Aqueous reactions on multigram scales required 3 equivalents of acrylate to 

ensure the consumption of all starting materials, but did not perform as well and a loss of 

12 to 15% ee was commonly encountered. The addition of miscible co-solvents (DMF, 

dioxane, alcohols) or surfactants (TBAI) to aid in the aqueous solubility of reagents, led 

to a noticeable decrease in enantioselectivity.  

 

High selectivity was observed for the endo- adduct prepared from 9a in DCM and 

the multigram reaction performed comparably well (80% ee). Clean reduction of the 

enamine 10a was achieved using sodium triacetoxyborohydride[28], preformed from 

NaBH4 in acetic acid (Scheme 4). The distilled amine 13 underwent crystallization as the 

perchlorate salt to provide a diastereomerically pure product as shown by 1H and 13C 

NMR data. X-ray crystal structure data on the major isomer revealed facial selectivity in 

the [4 + 2] cycloaddition for the (1S, 4S) isomer (Figure 2). The enamine reduction 

was observed to be selective for the less hindered exo- face. 
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Scheme 4. (i) DCM, -50oC to r.t.; (ii) NaBH4, AcOH 
 
 
 
 
 
 

 
 
Figure 2. ORTEP drawing of (1S,2S,4S,5S)-methyl 5-(N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N-methylamino)-1-methyl-7-oxa-bicyclo[2.2.1]heptane-2-

carboxylate 13 perchlorate salt. 

 

Recrystallization of an enantioenriched mixture of 12b in ether at –18oC gave a 

single enantiomer as indicated by chiral GC analysis. (+)-12b enriched in the supernatant 

as the racemic precipitate was removed and was found to be a colourless resin at room 

temperature.  

Ether cleavage of 12a and 12b using TBDMSOTf in the presence of base as 

reported by Vogel[29] gave unexpected results. The appearance of furan signals in 13C 

NMR and a propionate ester in 1H NMR analysis indicated C-C bond cleavage had 

occurred between the ester and the tertiary bridgehead (C-1, C-2) to give 14. Ring 



opening reactions using LHMDS[30] in the absence of silylating agent gave the furanone 

15 as confirmed by COSY and HMBC 2D NMR data (Figure 3). Desilylation of 14 with 

TBAF revealed the formation of 15 by GC-MS analysis.  
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Figure 3.  

 
BBr3 ring cleavage followed by quenching in collidine gave clean conversion to 

the desired cyclohexenone 16 (61%) with no detectable epimerisation at C-5. COSY 

analysis showed correlations between H-1-H-6, H-6-H-5 indicating that the six-

membered ring was intact. The appearance of the olefinic proton at 6.00 ppm gave 

evidence of the ,-unsaturated system and connectivity was confirmed by HMBC 

analysis. Subsequent acetylation of the alcohol was performed in the quenching solution 

without isolation to give 17 in 40% yield from 12b (Scheme 5). NOESY analysis of 17 

showed correlation between H-1, H-5 which was absent in the C-5 epimer confirming the 

retention of relative stereochemistry. Interestingly, BBr3 cleavage on the endo product 

12a gave the corresponding cyclohexenone in 60% yield but stereochemistry at C-5 was 

not retained.  

Ether cleavage was unsuccessful using BBr3-Me2S, TiCl4, FeSO4, and ZrCl4 and 

returned only starting material. 
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Attempted isolation of 16 and 17 by flash column chromatography on silica, 

neutral alumina and fluorosil led to almost complete isomerization at C-5. Semi-

preparative HPLC was trialled and we were pleasantly surprised to achieve complete 

separation on a Phenomenex C-18 column using ACN/H2O as eluent. The C-5 

stereoisomer was not observed in GC and NMR studies on products 16 and 17 after 

purification by HPLC. 1,4-Addition with vinyl Gilman reagent is expected to produce the 

convergent precursor A and is the subject of future work.  

  

 

Studies towards the synthesis of Ring C. 

  

Intramolecular cyclization of an ester side chain by an aldol or Reformatski 

reaction provides a practical formation of lactone fragments in a number of syntheses[31]. 

Likewise, the preparation of lactone 22 was thought possible by ring closure of a 

vinylacetic ester. 4-(Furan-3-yl)-4-hydroxybutan-2-one 19 was prepared by an aldol 

reaction between acetone and 3-furaldehyde based on an optimised literature procedure. 

Dehydration of 19 was facile in the presence of acidic and basic reagents at ambient 

temperature. Literature searches revealed a mild preparation of vinyl acetic esters from 

crotonyl chlorides[32]. Iwakura and co-workers have reported the action of triethylamine 



(TEA) on crotonyl chloride to give a ketene intermediate which provides the ,-

unsaturated esters in good yields upon reactions with sec-BuOH (Scheme 6). To date this 

methodology appears not to have been utilized in the preparation of larger organic 

molecules.  
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Scheme 6. Where R = H, Br.  
 

Initial reactions were performed using crotonyl chloride. Upon reaction with 19, 

esterification was successful providing the deconjugated ester in high yield. Subsequent 

ring closure using LDA failed and attempts at vinylic bromination using 

Br2/dibenzoylperoxide in CCl4 led to a mixture of brominated products. 2-

Bromocrotonyl chloride 20 (R = Br) was then prepared in 3 steps from crotonic acid by 

literature methods[33, 34]. Under conditions described by Cardillo et al.[35], the reaction of 

19 in the presence of 20 gave the deconjugated -bromoester 21 as shown by the 

appearance of terminal olefinic signals in 1H NMR. The formation of the ketene was 

accompanied by the appearance of a deep blue colour which gradually progressed to dark 

red as esterification took place. Ratios of ,- to ,- esters obtained were 10:1 and 

results were surprisingly reproducible given that the reaction mixture had a tendency to 

cake and required mechanical stirring to ensure proper mixing.  

Ring closure of 21 to the lactone 22 was achieved by a Reformatski reaction using 

Rieke Zinc in THF. Conveniently, dehydration of the intermediate alcohol was achieved 

by prolonged stirring in the aqueous acidic quenching solution, producing 22 in high 

purity and yield (92%) (Scheme 7). Further studies are focused on an efficient 

stereoselective aldol addition procedure of acetone to 3-furaldehyde to complete ring C in 

the convergent synthetic pathway. 
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Scheme 7. (i) Acetone, dil. NaOH; (ii) a) Br2, DCM, b) Pyridine; (iii) SOCl2; (iv) TEA, 

Et2O; (v) a) Rieke Zinc in THF b) H3O+. 

 

Conclusion 

 

The Diels-Alder reaction of 5-methyl-3-aminofurans possessing (+)-pseudoephedrine and 

(-)-ephedrine amine substituents have demonstrated face selectivity in reactions 

conducted in both organic and aqueous reaction media. The diastereomeric outcome has 

been observed to be dependant on both the amine substituent and the polarity of the 

solvent. As a result, both exo- and endo- products 12a and 12b have been prepared in 

enantioenriched form using the methodology described.  

 Lewis acid assisted ether cleavage using boron tribromide has provided 

conversion of 12b to the corresponding cyclohexenone (16) in moderate yields, and 

subsequent acetylation has been carried out in a two step, one pot procedure providing 

clean reaction mixtures of 17 with total retention of stereochemistry at C-5.  

 Since both acetoxy and ester substituents occupy a single face on the 

cyclohexanone ring, further work towards 1,4-conjugate addition is expected to occur at 

the opposite face due to steric considerations. 

 A model route to the lactone ring of 1 has also been accomplished under mild 

reaction conditions and in high yields.  

 



Experimental 

 

Unless noted, materials were obtained from Aldrich Chemical Co. and used without 

further purification. Diethyl ether and THF were dried first with CaH2, then distilled 

from sodium/benzophenone before use. Dry acetone (BDH) was obtained by refluxing 

over KMnO4 followed by distillation and storage over molecular sieves (4Å). 

Triethylamine was dried over KOH pellets before use. 1H and 13C NMR spectra were 

recorded on a Bruker Avance 300 (300MHz) NMR spectrometer and are indirectly 

referenced to TMS via CHCl3. FT-IR spectra were recorded on a Perkin-Elmer Spectrum 

2000 Fourier transform IR spectrometer. GC-MS data was recorded using a Hewlett 

Packard 6890 GC with BPX-5 column, and Hewlett Packard 5973 Mass Selective 

Detector. Chiral GC separation was achieved using a diEt-TBS--CD column (MeGA, 

Italy), 20 m, 0.25 mm x 0.25 m (film thickness). Semipreparative HPLC was performed 

using a Varian Prostar (Model 210), with Phenomenex C18 column (250 x 10 mm, 5u 

ODS (3), 50 x 10 mm, 5u ODS (3) guard column). Separation was achieved using 

ACN:H2O (55:45) at 3.5 mL/min flow rate, with UV-Vis detection. Reactions performed 

under ultrasonic irradiation were performed using a Elma Transsonic Digital S, 40kHz 

variable power ultrasonic bath. Optical rotations were determined on a Perkin-Elmer 241 

MC Polarimeter at 690nm wavelength, 20°C and at the concentration c (g/100 mL). 5-

(Tetrahydropyran-2-yloxy)-pent-3-yn-2-one 6 was prepared by previously reported 

procedures[24]. (E)-2-Bromo-but-2-enoic acid was prepared by method of Pfeiffer in a two 

step procedure[33]. (E)-2-Bromobut-2-enoyl chloride 20 was prepared from (E)-2-Bromo-

but-2-enoic acid by method of Klein and Zitrin[34] and was freshly distilled before use.  

 1H and 13C NMR spectra reported for isolated compounds of purity >97% unless 

quoted as a mixture. Where 13C data is included assignments are based on 2D 

experiments (DEPT, HMQC, HMBC, COSY) in each case. 

 



Preparation of Furans 9a and 9b 

 

Preparation of 7. 

 

(1S, 2S)-(+)-Pseudoephedrine (1.62 g, 9.8 mmol) in warm dry THF (15 mL) was added 

quickly with stirring to neat 5-(tetrahydropyran-2-yloxy)pent-3-yn-2-one (1.95 g, 10.7 

mmol) and allowed to stir at room temperature for 4 h or until the Michael addition was 

complete as monitored by GC-MS. The THF was removed under vacuum to leave a 1:1 

mixture of E/Z-4-(N-((1S, 2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methylamino)-5-

(tetrahydro-2H-pyran-2-yloxy)pent-3-en-2-one 7 as a viscous yellow resin (>97%, 

GCMS). 1H (300MHz, CDCl3): 7.50-7.25 (5H, m), 7.50-7.25 (5H, m), 4.67 (1H, s), 

4.67 (1H, s), 4.44 (1H, d, J = 8.7 Hz), 4.44 (1H, d, J = 8.7 Hz), 4.02 (1H, d, J = 10.6 Hz), 

3.97 (1H, d, J = 10.6 Hz), 3.87 (1H, m), 3.87 (1H, m), 3.56 (1H, m), 3.56 (1H, m), 3.57 

(1H, d, J1 = 10.6 Hz), 3.49 (1H, d, J = 10.6 Hz), 2.95-2.75 (2H, m), 2.95-2.75 (2H, m), 

2.46 (3H, s), 2.44 (3H, s), 2.29 (3H, s), 2.27 (3H, s), 1.90-1.47 (6H, m), 1.90-1.47 (6H, 

m), 1.06 (3H, d, J = 6.0 Hz), 1.06 (3H, d, J = 6.0 Hz).  
13C (75MHz, CDCl3): 207.4, 207.3, 139.6, 139.6, 128.4, 128.4, 128.2, 128.2, 127.0, 

127.0, 99.5, 99.5, 96.4, 96.4, 85.9, 85.8, 72.6, 72.1, 70.4, 69.9, 65.2, 65.2, 62.3, 62.1, 

46.5, 46.0, 49.8, 49.7, 32.3, 32.3, 32.2, 32.1, 30.7, 30.7, 25.6, 25.6, 19.4, 19.3, 15.1, 14.9. 

Mass spectrum m/z 347 (M+·, 0.1%), 233 (16.7), 232 (93.7), 205 (13.5), 149 (10.3), 148 

(100), 118 (34.9), 117 (19.0), 115 (7.1), 91 (11.9), 85 (19.8), 57 (7.9), 56 (17.5). 

 

Preparation of 9a. 

 

Freshly prepared 7 from the previous step was dissolved in 1,2-dichloroethane (135 mL). 

Anhydrous trifluoroacetic acid (5 mL) was added in one portion and the solution stirred 

at ambient temperature for 40 min after which time the solution had become dark red in 

colour. The solution was poured into a mixture of 4M NaOH (100 mL) and ice (300 g) 

then immediately shaken vigorously in a separating funnel. The organic layer was 

separated and the aqueous layer extracted with DCM (3 x 100 mL).  



Removal of the THP- group: The combined organic layers were evaporated and the 

orange resin 8 was re-dissolved in ethanol (200 mL) and used without purification. p-

Toluenesulphonic acid (4.0 g, 23.3 mmol) was added in one portion and the solution 

stirred for 4 h at 60°C. The ethanol was then evaporated under vacuum and the residue 

dissolved in HCl (250 mL, 1M aq.). The aqueous acidic solution was extracted with 

DCM (3 x 150 mL) and the organic layers re-extracted with HCl (3 x 100 mL, 1M aq.). 

The combined aqueous phases were extracted once more with DCM (50 mL) and ice 

(200g) was added to chill the solution to 5°C. The solution was then basified with ice 

cold 4M NaOH to pH 14, followed by extraction with DCM (4 x 100 mL). The organic 

phases were combined, dried with Na2SO4 and evaporated to leave (1S, 2S)-2-(N-methyl-

N-(5-methylfuran-3-yl)amino)-1-phenylpropan-1-ol 9a as a viscous dark yellow oil 

(2.26g, 94% overall yield calculated from (+)-pseudoephedrine, >97% pure GCMS). If 

necessary, discolouration and impurities of pseudoephedrine can be removed by 

dissolving the material in Et2O and rapidly eluting the solution through a short silica 

column, deactivated with triethylamine.  
1H (300MHz; CDCl3) 7.45-7.25 (5H, m, H-2’, H-3’, H-4’, H-5’, H-6’), 6.88 

(1H, s, H-2’’), 5.95 (1H, s, H-4’’), 4.47 (1H, d, J = 9.6 Hz, H-1), 3.49 (1H, s, OH), 3.26 

(1H, dq, J1 = 6.6 Hz, J2 = 9.6 Hz, H-2), 2.62 (3H, s, NCH3), 2.25 (3H, s, H-6’’), 0.81 

(3H, d, J = 6.6 Hz, H-3). 13C (75MHz; CDCl3) 152.5 (C-5’’), 141.5 (C-1’), 140.9 (C-

3’’), 128.6 (C-3’, C-5’), 128.2 (C-4’), 127.5 (C-2’, C-6’), 125.5 (C-2’’), 101.3 (C-4’’), 

75.1 (C-1), 64.8 (C-2), 33.0 (NCH3), 14.1 (C-6’’), 10.0 (C-3). Mass Spectrum m/z 245 

(M+·, 1.0%), 139 (11.1), 138 (100), 96 (8.7), 94 (6.3), 77 (8.7), 43 (7.9), 42 (11.9). 

Compound 9b was prepared following an identical procedure. 

 

Diels-Alder reactions of 9a and 9b 

Chiral Gas Chromatography analyses were conducted using a Hewlett Packard 5890 GC. 

A DiEtTBS--CD coated column of dimensions 20m, 0.25mm x 0.25 m (film 

thickness) (MeGA, Italy) was used. Flame ionisation detection was used to monitor 

analytes, and was operated at 230oC. Injections were performed at 200oC using split 

(50:1) conditions, with a hydrogen carrier gas, flow rate of 1.33 mL/min and linear 

velocity of 40.07 cm/sec. Temperature programming conditions were optimised for the 



separation of stereoisomers of 11. The GC oven was heated to 60oC and ramped to 180oC 

at 2oC/min (held for 20 min). 

 

 

Preparation of 11a. 

 

The phenylpropanol 9a (150 mg, 0.61 mmol) was dissolved in DCM (20 mL) and cooled 

to –50°C. Methyl acrylate (158 mg, 1.84 mmol) was then added and the solution allowed 

to warm to -10°C where it was kept for 2 h, then gradually warmed to room temperature 

and stirred overnight. Evaporation of the solvent and excess acrylate under vacuum gave 

a mixture of (1S,4S,5S)/(1R,4R,5R)-methyl 3’,4,4’S-trimethyl-5’S-phenylspiro[7-oxa-

bicyclo[2.2.1]heptane-2,2’-[1,3]oxazolidine]-5-carboxylate 11a as a viscous red 

semisolid. (199 mg, 97% yield via GCMS, d.r. >99:1).1H (300MHz, CDCl3): 7.40-7.22 

(5H, m, arom., H-2’’, H-3’’, H-4’’, H-5’’, H-6’’), 4.60 (1H, d, J = 15.1, H-5’), 4.54 (1H, 

s, H-1), 3.73 (3H, s, H-10), 3.05 (1H, dq, J1 = 6.7 Hz, J2 = 9.1 Hz, H-4’), 2.70 (1H, m, 

H-6A), 2.46 (3H, s, NCH3), 2.43 (1H, m, H-3A), 2.04 (1H, m, H-6B), 1.85 (1H, m, H-3B),

1.64 (3H, s, H-9), 1.26 (3H, d, J = 6.7 Hz, H-6’).

 

13C (300MHz, CDCl3): 173.2 (C-8), 140.9 (C-13), 128.6 (C-5’’, C-3’’), 127.5 (C-6’’, 

C-2’’), 126.0 (C-4’’), 108.8 (C-2/2’), 85.3 (C-4), 83.1 (C-1), 81.8 (C-5’), 67.1 (C-4’), 

52.1 (C-10), 51.8 (C-5), 41.7 (C-3), 33.9 (NCH3), 29.8 (C-6), 21.0 (C-9), 13.9 (C-6’). 

Mass Spectrum m/z 331 (M+·, 3.5%), 300 (9.2), 289 (20.8), 288 (100), 272 (12.3), 

204 (7.8), 149 (7.4), 148 (68.7), 141 (11.8), 118 (34.0), 117 (27.2), 115 (8.9), 109 (10.7), 

91 (14.3), 77 (6.8), 69 (7.4), 56 (14.7), 55 (10.3), 43 (11.4), 42 (11.0), 41 (13.3).HRESI 

Found [M]+·, 332.1855. [C19H26NO4]+ [M]+· requires 332.1862.An identical procedure 

was used for the reaction of 9b in DCM. 

 

Preparation of 12a. 

  

To a solution of acetic acid (0.5 mL), sodium acetate (3 g), distilled H2O (15 mL) was 

added 11a (196 mg, 0.61 mmol) and the solution heated with stirring in an oil bath at 

70oC. After 2 h the solution was cooled and extracted with DCM (3 x 40 mL). The 



combined organic phases were evaporated and the oil purified by column 

chromatography on silica gel (pentane:EtOAc, 5:1) to give (1S,2S,4S)-methyl 1-methyl-

5-oxo-7-oxa-bicyclo[2.2.1]heptane-2-carboxylate 12a as a pale yellow oil (101 mg, 90% 

yield, 85% ee, >98% pure GCMS). NMR spectroscopic data was consistent with the 

reported values for 12a[25]. 

 

Preparation of 12b. 

 

To 9b (100 mg, 0.41 mmol) was added distilled H2O (10 mL) followed by methyl 

acrylate (53 mg, 0.62 mmol) and the solution irradiated in an ultrasonic bath (80% 

power) for 95 min. The bath temperature was maintained between 10 and 20°C. After 

removing the excess methyl acrylate under high vacuum at room temperature the solution 

was extracted with DCM (3 x 15 mL). The combined organic layers were evaporated and 

the viscous red semisolid heated in an acidic buffer according to the reported procedure 

for 12a. The oil obtained was purified by column chromatography on silica gel 

(pentane:EtOAc, 10:1) to provide 12a (30 mg, 40% yield, 18% ee) and (1S,2R,4S)-

methyl 1-methyl-5-oxo-7-oxa-bicyclo[2.2.1]heptane-2-carboxylate 12b (31 mg, 41% 

yield, 60% ee). NMR spectroscopic data was consistent with the reported values for 

12b[25]. 12b was then crystallized from Et2O at -18oC until the supernatant solution was 

enriched to enantiomeric purity as indicated by chiral GC-MS. The Et2O was evaporated 

to dryness to leave pure (1S,2R,4S)-(+)-12b (14.5 mg, 19% yield from 9b, >99 % ee) [] 

= + 1.72° (c = 1.45, chloroform). 

An identical procedure was used for the reaction of 9a under aqueous conditions. 

 

 

Preparation of 13 for X-Ray Crystal Structure Analysis. 

 

NaBH4 (0.87 g, 23.0 mmol) was added portion-wise to glacial acetic acid (35 mL) with 

cooling in an ice bath and the mixture stirred until the evolution of hydrogen ceased. The 

heptane carboxylate 11a (2.55 g, 7.7 mmol) in glacial acetic acid (17 mL) was added 

drop-wise, followed by additional NaBH4 (0.50 g, 13.2 mmol) portion-wise over 30 min. 



The solution was allowed to stir for 4 h at ambient temperature then poured into distilled 

H2O (200 mL) and carefully neutralized with NaHCO3. The neutral solution was 

extracted with DCM (3 x 75 mL) and the combined extracts dried over Na2SO4. 

Evaporation under vacuum gave a red resin which was bulb distilled (150°C @ 0.1 

mmHg) to yield (1S,2S,4S,5S)-methyl 5-(N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-

methylamino)-1-methyl-7-oxa-bicyclo[2.2.1]heptane-2-carboxylate 13 as a viscous 

yellow resin (1.8 g, 70% yield, d.r. 10:1, >98% pure GCMS). 1H (300MHz; CDCl3) 

7.35-7.22 (5H, arom. m, H-2’’, H-3’’, H-4’’, H-5’’, H-6’’), 4.40 (1H, m, H-4), 4.27 

(1H, d, J = 9.6 Hz, H-1’), 3.78 (3H, s, H-10), 3.12 (1H, m, H-5), 2.78 (1H, m, H-2), 2.76 

(1H, m, H-3A), 2.64 (1H, m, H-2’), 2.10 (3H, s, NCH3), 2.03 (1H, m, H-3B), 1.64 (2H, 

m, H-6), 1.57 (3H, s, H-9), 0.66 (3H, d, J = 6.7 Hz, H-3’).   
13C (75MHz; CDCl3) 172.7 (C-8), 142.3 (C-1’’), 128.4 (C-5’’, C-3’’), 127.8 (C-6’’, C-

2’’), 127.5 (C-4’’), 87.0 (C-1), 79.4 (C-4), 74.5 (C-1’), 64.9 (C-5), 63.2 (C-2’), 53.3 (C-

2), 52.5 (C-10), 38.3 (C-6), 33.2 (NCH3), 28.0 (C-3), 21.6 (C-9), 7.5 (C-3’). 

(1R,2R,4R,5R)-Diastereoisomer: 13C (75MHz; CDCl ) 172.7, 142.3, 128.4, 127.9, 

127.5, 87.1, 78.6, 75.1, 65.1, 63.2, 53.1, 52.2, 38.9, 33.2, 28.7, 21.7, 6.7. Mass Spectrum 

m/z 333 (M

3

+· not observed), 227 (21.0), 226 (100), 140 (10.0), 137 (5.9), 124 (4.1), 109 

(4.0), 84 (3.9), 81 (6.1), 79 (4.7), 58 (11.6). HRESI Found [M]+·, 334.2013. 

[C H NO ]19 28 4
+ [M]+· requires 334.2018. 

 

 

Crystallization of 13. 

 

To a solution of 13 (1.0 g, 30.0 mmol) in dry Et2O was bubbled HCl(g). A white 

hygroscopic salt precipitated and was quickly filtered and dried in a vacuum desiccator 

over drying silica. The hydrochloride salt was dissolved in ACN (20 mL) and silver 

perchlorate (620 mg, 30.0 mmol) was added as the solution was gently warmed (50°C). 

After 10 min, the solution was filtered and the salt crystallized by slow evaporation of 

solvent. Recrystallization from hot EtOH gave colourless needles that showed only a 

single diastereoisomer by 13C NMR analysis. One final crystallization was performed 

from ACN by the slow diffusion of Et2O to give pure (1S,2S,4S,5S)-methyl 5-(N-



((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methylamino)-1-methyl-7-oxa-

bicyclo[2.2.1]heptane-2-carboxylate perchlorate salt as colourless plates (m.p. 227°C). 
1H (300MHz; CD3CN) 7.27 (5H, arom. br. s., H-2’’, H-3’’, H-4’’, H-5’’, H-6’’), 4.76 

(1H, s, OH), 4.75 (1H, m, H-4), 4.74 (1H, d, J = 10.1 Hz, H-1’), 3.91 (1H, m, J = 5.3 Hz, 

H-5), 3.78 (3H, s, H-10), 3.47 (1H, m, H-2’), 2.95 (1H, apparent t., H-2), 2.87 (3H, s, 

NCH3), 2.30 (2H, m, H-3), 1.95 (2H, m, H-6), 1.54 (3H, s, H-9), 1.02 (3H, d, J = 6.8 Hz, 

H-3’). 13C (75MHz; CD3CN) 174.8 (C-8), 140.1 (C-1’’), 130.0 (C-4’’), 129.7 (C-3’’, 

C-5’’), 128.3 (C-2’’, C-6’’), 88.4 (C-1), 77.0 (C-4), 72.5 (C-1’), 67.8 (C-2’), 65.3 (C-5), 

53.5 (C-10), 52.5 (C-2), 35.6 (C-6), 35.1 (NCH3), 30.7 (C-3), 20.8 (C-9), 8.7 (C-3’). 

 

Crystal Data for 13. C19H28ClNO8, MW = 433.87, T = 293(2) K,  = 1.54180 Å, 

orthorhombic, space group P-212121, a = 8.511(2), b = 15.356(5), c = 15.839(3) Å, 

90.00o, 90.00o, 90.00o, V = 2070.1(9) Å3, Z = 4, Dc = 1.392 Mg/m3, (Cu 

K) = 2.025 mm-1, F(000) = 920, crystal size 0.20 x 0.10 x 0.02, 2462 reflections 

measured, 2365 independent reflections (Rint = 0.0230); the final wR(F2) was 0.1371 (all 

data) and final R was 0.0496 for 2006 unique data [I > 2(I)]. Goodness of fit on F2 = 

1.071. 

Crystallographic data for the structure reported has been deposited with the Cambridge 

Crystallographic Data Centre as deposition No. 288601. Copies of the data can be 

obtained, free of charge, via www.ccdc.ca.ac.uk or on application to Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge, CB@ 1EZ, UK (fax: +44 

233 336033). 

ther cleavage of 12. 

reparation of 14. 
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To 12a (100 mg, 0.54 mmol) in dry benzene (1.0 mL) under a dry (N2) atmosphere was 

added a solution of CF3SO3(t-Bu)Me2 (0.43 g, 1.63 mmol) and triethylamine (0.21 g, 

2.12 mmol) in benzene (1.5 mL) over 1.5 h. The solution was stirred at ambient 

temperature for 4 hours then poured into Et2O (15 mL) and washed with 1M HCl (10 

http://www.ccdc.ca.ac.uk/


mL) followed by 5% NaHCO3 solution (10 mL). The organic phase was evaporated 

under reduced pressure and the resin subject to column chromatography on silica gel to 

afford 3-[(3-tert-butyl-dimethyl-silanyloxy)-5-methyl-furan-2-yl]-propionic acid methyl 

ester 14 as a yellow oil (111 mg, 69% yield). 1H (300MHz; CDCl3) 5.66 (1H, s, H-4’), 

3.70 (3H, s, H-4), 2.85 (2H, apparent t, J = 8.5 Hz, H-2), 2.60 (2H, apparent t, J = 8.5 Hz, 

H-3), 2.16 (3H, s, H-6’), 0.96 (9H, s, H-3’’), 0.14 (6H, s, H-2’’). 13C (75MHz; CDCl3) 

173.6 (C-1), 148.2 (C-2’), 138.4 (C-3’), 136.9 (C-5’), 103.2 (C-4’), 51.8 (C-4), 32.8 (C-

2), 25.8 (C-3’’), 20.7 (C-3), 18.2 (C-2’’), 14.2 (C-6’), -4.5 (C-1’’). Mass Spectrum m/z 

298 (M+·, 18.3), 242 (10.3), 241 (60.3), 226 (15.1), 225 (81.0), 199 (19.0), 169 (9.5), 167 

(25.4), 135 (31.7), 131 (37.3), 111 (27.0), 90 (7.9), 89 (98.4), 75 (23.8), 74 (9.5), 73 

00), 59 (34.9), 55 (7.1), 45 (10.3), 43 (18.3).  

reparation of 15. 

20.6), 71 (11.9), 69 (14.3), 68 (58.7), 59 (13.5), 57 (11.9), 55 (81.0), 43 (42.9), 

2 (11.1). 
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P

 

Under an inert (N2) atmosphere a solution of 12b (100 mg, 0.54 mmol) in dry THF (2.5 

mL) was cooled to -78°C in a dry ice/acetone bath. LHMDS (1.35 mmol, 1.35 mL, 1M in 

THF) was then added dropwise and the solution stirred at –50oC for 1.5 hours. An 

additional volume of LHMDS (0.95 mmol, 0.95 mL, 1M in THF) was added and the 

solution stirred at -45°C for 30 min. The mixture was then quenched with saturated 

NH4Cl (10 mL), and extracted with DCM (3 x 15 mL). The combined organic layers 

were evaporated and the product was subject to column chromatography on silica gel 

(pentane:EtOAc, 5:3) to give methyl 3-(2,3-dihydro-5-methyl-3-oxofuran-2-

yl)propanoate 15 (63 mg, 63% yield). 1H (300MHz; CDCl3) 5.44 (1H, s, H-4’), 4.49 

(1H, dd, J1 = 4.9 Hz, J2 = 7.7 Hz, H-2’), 3.67 (3H, s, H-4), 2.46 (2H, m, H-2), 2.27 (1H, 

m, H-3A), 2.23 (3H, s, H-6’), 2.02 (1H, apparent sextet, J = 7.7 Hz, H-3B). 13C (75MHz; 

CDCl3) 204.3 (s, C-3’), 190.5 (s, C-5’), 173.1 (s, C-1), 104.6 (d, C-4’), 85.0 (d, C-2’), 

52.0 (q, C-4), 29.2 (t, C-2), 26.4 (t, C-3), 17.0 (q, C-6’). Mass Spectrum m/z 184 (M+·, 

26.2), 153 (33.3), 152 (34.9), 125 (14.3), 124 (19.0), 112 (7.1), 111 (100), 110 (15.9), 98 

(42.9), 85 (

4



Preparation of 16  

 

To a racemic solution of 12b (75 mg, 0.41 mmol) in dry DCM (100 mL) at -1°C was 

added BBr3 (0.3 mL, 0.30 mmol, 1M in DCM) at once under dry N2. The solution was 

stirred at -1°C for 10 min then quickly poured into a well stirred quenching solution of 

2,4,6-collidine (3 g) in DCM (25 mL, LR). The solution was stirred at ambient 

temperature for 35 min, then extracted with HCl (3 x 75 mL, 1M aq.). The organic phase 

was evaporated to give a mixture of compounds as a yellow/brown resin. The sample was 

purified by semi preparative HPLC (tR = 5.1 min, max = 235 nm) to give (1R, 5S)/(1S, 

5R)-methyl-5-hydroxy-2-methyl-4-oxocyclohex-2-enecarboxylate 16 as a colourless oil 

(46 mg, 61% yield). IR (neat)/cm-1 3452m, 2956w, 2922w, 2856w, 1735s, 1683s, 1438m, 

1379w, 1261m, 1197m, 1164m, 1106s. 1H (300MHz; CDCl3) 6.00 (1H, s, H-3), 4.05 

(1H, dd, J1 = 13.5 Hz, J2 = 5.5 Hz, H-5), 3.75 (3H, s, H-9), 3.55 (1H, m, H-1), 2.52 (1H, 

dt, J1 = 13.4 Hz, J2 = 5.5 Hz, H-6A), 2.07 (1H, apparent quartet, J = 13.4 Hz, H-6B), 1.98 

(3H, s, H-8). 13C (75MHz; CDCl3) 198.4 (C-4), 172.0 (C-7), 158.9 (C-2), 125.9 (C-3), 

71.2 (C-5), 52.7 (C-9), 47.4 (C-1), 34.4 (C-6), 22.2 (C-10). Mass Spectrum m/z 184 (M+·, 

1.4%), 140 (72.5), 112 (100), 109 (7.2), 97 (66.7), 95 (9.4), 67 (8.7), 53 (11.6), 41 (13.0). 

High Resolution Mass Spectrum (HRESI) Found [M+·], 207.0627. C9H12O4Na [M+·] 

requires 207.0633. 

 

Preparation of 17 

 

To a racemic solution of 12b (75 mg, 0.41 mmol) in dry DCM (100 mL) at -1°C was 

added BBr3 (0.3 mL, 0.30 mmol, 1M in DCM) at once under dry N2. The solution was 

stirred at -1°C for 10 min, then immediately poured into a well stirred quenching solution 

of collidine (3 g) in DCM (25 mL, LR). The solution was stirred at ambient temperature 

for 35 min then acetyl chloride (2 mL) was added and the mixture stirred for an 

additional 35 min. The solution was then extracted with HCl (3 x 75 mL, 1M) and the 

organic layer evaporated to leave a brown viscous resin. The sample was purified by semi 

preparative HPLC (tR = 7.2 min, max = 235 nm) to afford (1R, 5S)/(1S, 5R)-methyl 5-

acetoxy-2-methyl-4-oxocyclohex-2-enecarboxylate 17 as a pale yellow oil (37 mg, 40% 



yield). IR (neat)/cm-1 2925m, 2857w, 1742s, 1692s, 1634m, 1442m, 1379m, 1222s, 

1169s, 1078s. 1H (300MHz; CDCl3) 6.02 (1H, s, H-3), 5.32 (1H, dd, J1 = 11.1 Hz, J2 = 

6.2 Hz, H-5), 3.77 (3H, s, H-11), 3.58 (1H, m, H-1), 2.44 (2H, m, H-6), 2.17 (3H, s, H-

11), 1.98 (3H, s, H-10). 13C (75MHz; CDCl3) 192.2 (C-1), 171.8 (C-7), 170.3 (C-8), 

157.1 (C-2), 127.7 (C-3), 71.8 (C-5), 52.8 (C-11), 47.1 (C-1), 31.7 (C-6), 22.2 (C-10), 

21.0 (C-9). Mass Spectrum m/z 226 (M+·, 0.1%), 153 (10.1), 151 (5.8), 141 (8.0), 140 

(89.9), 123 (13.0), 112 (100), 109 (8.7), 97 (20.3), 95 (16.7), 79 (7.2), 67 (13.0), 43 

(35.5). High Resolution Mass Spectrum (HRESI) Found [M + Na]+·, 249.0734. 

C11H14O5Na [M + Na]+· requires 249.0739. 

 

Preparation of Ring C. 

 

Preparation of 19 

 

To a solution of 3-furaldehyde (1.0g, 10.4 mmol) in acetone (18 mL) was added a 1% 

NaOH solution (2.5 mL) drop-wise between –6 to -9°C. Stirring was continued for 

40min, before neutralization with 0.5M HCl. The solution was concentrated in vacuo and 

the residue dissolved in water (100 mL) then extracted with ether (3 x 75 mL). The 

combined organic extracts were dried with Na2SO4 and concentrated to leave 4-(Furan-

3-yl)-4-hydroxybutan-2-one 19 as a colourless oil (1.55g, 97% yield). Mass Spectrum m/z 

154 (M+·, 16.9), 111 (16.2), 97 (53.1), 96 (56.9), 95 (28.5), 94 (15.4), 93 (10.8), 83 (6.1), 

69 (64.6), 68 (12.3), 65 (10.0), 58 (15.4), 55 (9.2), 43 (100), 42 (18.5), 41 (51.5). 

 

Preparation of 21[35]. 

 

Compound 19 (1.0 g, 6.5 mmol) was added to dry Et2O (6 mL) then cooled to -78°C in a 

dry ice/acetone bath under inert atmosphere (N2). Dry triethylamine (2.1 g, 21 mmol) 

was then added, followed by a solution of 20 (1.9 g, 10 mmol) in Et2O (3 mL) drop-wise 

with overhead stirring. An additional volume of Et2O (3 mL) was added then the mixture 

was allowed to stir at -78°C for 45 min followed by vacuum filtration. The filter cake was 

washed with Et2O (2 x 25 mL, LR), and the solution was allowed to stand until all 



precipitate had formed, then filtered under suction once more. The ethereal solution was 

washed with HCl (3 x 20 mL, 1M), dried with Na2SO4 then evaporated to leave 1-(furan-

3-yl)-3-oxobutyl 2-bromobut-3-enoate 21 (1.8 g, 92% yield) as a 10:1 mixture of -- and 

,-unsaturated esters. The ,- ester was present as a 1:1 mixture of diastereoisomers. 

IR (neat)/cm-1 3136w, 2985w, 2917w, 1741s, 1724s, 1624m, 1504m, 1419m, 1369m, 

1315m, 1289m, 1252s, 1201s, 1148s, 1092m, 1037s. 1H (300MHz; CDCl3) 7.48 (2H, 

arom. m, H-5’’), 7.38 (2H, arom. m, H-2’’), 6.40 (2H, arom. m, H-4’’), 6.26 (2H, dd, J1 

= 8.1 Hz, J2 = 5.2 Hz, H-1’), 6.10 (2H, m, H-3), 5.37 (2H, dd, J1 = 16.9 Hz , J2 = 4.5 Hz, 

H-4A), 5.27 (2H, dd, J1 = 10.1 Hz, J2 = 3.3 Hz, H-4B), 4.73 (2H, d, J = 9.4 Hz, H-2), 

3.16 (2H, dd, J1 = 16.9 Hz, J2 = 8.1 Hz, H-2A’), 2.89 (1H, dd, J1 = 16.9 Hz, J2 = 5.4 Hz, 

H-2B’, isomer 1), 2.88 (1H, dd, J1 = 16.9 Hz, J2 = 5.2 Hz, H-2B’, isomer 2), 2.18 (6H, s, 

H-4’). 13C (75MHz; CDCl3) 204.0 (C-3’), 204.0 (C-3’), 167.0 (C-1), 166.9 (C-1), 143.0 

(C-5’’), 143.0 (C-5’’), 140.7 (C-2’’), 140.6 (C-2’’), 132.5 (C-3), 132.5 (C-3), 123.2 (C-

3’’), 123.2 (C-3’’), 120.6 (C-4), 120.6 (C-4), 108.6 (C-4’’), 108.6 (C-4’’), 66.3 (C-1’), 

66.2 (C-1’), 48.0 (C-2’), 47.9 (C-2’), 45.4 (C-2), 45.3 (C-2), 30.5 (C-4’), 30.5 (C-4’). 

Mass Spectrum m/z 302 (1.0%), 300 (M+·, 1.0), 221 (4.6), 161 (6.1), 155 (3.8), 154 

(50.0), 153 (30.0), 149 (4.6), 147 (4.6), 137 (9.2), 136 (9.2), 121 (22.3), 119 (15.4), 112 

(7.7), 111 (7.7), 96 (6.9), 95 (46.2), 94 (72.3), 93 (12.3), 68 (21.5), 65 (9.2), 43 (100), 38 

(20.8). 

 

Preparation of 22 

 

A solution of 21 (1.0 g, 6.0 mmol) in dry THF (40 mL) was cooled to 0°C and Rieke 

Zinc (120 mg, 18.0 mmol) suspension in THF (2.5 mL) was added in one portion. The 

solution was heated to reflux for 5 hours then cooled before quenching in HCl (30 mL, 

2M) and allowed to stir for 1 h. Distilled H2O (50 mL) was added and the solution 

extracted with Et2O (3 x 50 mL). The combined organic extracts were dried over Na2SO4 

then concentrated to leave 6-(furan-3-yl)-5,6-dihydro-4-methyl-3-vinylpyran-2-one 22 

(1.4 g, 92% yield via GCMS) as a deep yellow resin. IR (neat)/cm-1 3147w, 2972w, 

2933w, 1713s, 1629s, 1505m, 1430m, 1376m, 1260s, 1162s, 1122m, 1098m, 1061m, 

1034s. 1H (300MHz; CDCl3) 7.49 (1H, arom. m, H-5’), 7.42 (1H, arom. m, H-2’), 6.55 



(1H, dd, J1 = 17.7 Hz, J2 = 11.5 Hz, H-7), 6.45 (1H, arom. m, H-4’), 5.72 (1H, d, J = 

17.7 Hz, H-8A), 5.47 (1H, d, J = 11.5 Hz, H-8B), 5.35 (1H, dd, J1 = 11.5 Hz, J2 = 3.8 Hz, 

H-6), 2.78 (1H, dd, J1 = 18.2 Hz, J2 = 11.5 Hz, H-5A), 2.54 (1H, dd, J1 = 18.2 Hz, J2 = 

3.8 Hz, H-5B), 2.11 (3H, s, H-9). 13C (75MHz; CDCl3) 164.2 (C-2), 150.3 (C-4), 143.9 

(C-5’), 140.2 (C-2’), 128.9 (C-7), 125.4 (C-3), 124.1 (C-3’), 121.0 (C-4), 108.8 (C-4’), 

70.8 (C-6), 37.7 (C-5), 21.1 (C-9). EIMS m/z (relative intensity) 204 (M+ 41.5), 189 

(46.2), 160 (9.2), 159 (33.1), 158 (13.8), 145 (13.8), 131 (25.4), 129 (20.0), 128 (8.5), 

127 (10.0), 117 (18.5), 116 (13.1), 115 (29.2), 95 (20.8), 94 (22.3), 93 (7.7), 91 (30.0), 82 

(13.1), 81 (88.5), 80 (42.3), 79 (100), 78 (6.1), 77 (27.7), 75 (7.7), 67 (7.7), 66 (17.7), 65 

(27.7), 63 (11.5), 53 (13.8), 51 (13.1), 41 (8.5), 40 (10.8), 39 (36.2). High Resolution 

Mass Spectrum (HRESI) Found [M + Na]+·, 227.0677. C12H12O3Na [M + Na]+· requires 

227.0684. 
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