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Abstract 

Two population balance approaches based on the MUltiple-SIze-Group (MUSIG) 

model and one-group Average Bubble Number Density (ABND) model for handling the 

bubble size distribution of gas-liquid bubbly flows under isothermal conditions are 

assessed. Three forms of coalescence and breakage mechanisms by Wu et al. (1998), 

Hibiki and Ishii (2002) and Yao and Morel (2004) are incorporated in the ABND 

model. To examine the relative merits of both approaches, local radial distributions of 

five primitive variables in bubbly flows: void fraction, Sauter mean bubble diameter, 

interfacial area concentration, and gas and liquid velocities, are compared against the 

experimental data of Liu and Bankoff (1993a,b) and Hibiki et al. (2001). In general, 

both of the ABND model and MUSIG model predictions yield close agreement with 

experimental results. To account for the range of different bubble sizes in the gas-liquid 

bubbly flows, the resolution required is achieved through the application of the MUSIG 

model. Nevertheless, computational times increase by a factor of two when compared to 

applying the simpler ABND model. To further exploit the models’ capabilities, 

investigations are carried out by extending the two population approaches beyond the 

bubbly flow regime of higher void fraction, particularly in the transition regime. The 

numerical results are found to be grossly over-predicted, which expose the inherent 

limitations of the models. It is known that bubbles in this regime are generally highly 

distorted and closely packed instead of spherically shape and allowed to move freely in 

bubbly flow regime. 

Keywords: Population balance; bubbly flow; CFD; average bubble number density



Nomenclature 

 aif  Interfacial area concentration  
 cf  increase coefficient of surface area 
 C  Adjustable model constant 
 CD  Drag coefficient  
 CL  Lift coefficient  
 CRC  Random collision coefficient  
 CTD  Turbulent dispersion coefficient 
 CTI  Turbulent impact coefficient  
 Cw1,Cw2 Wall lubrication constants 
 CWE  Wake entrainment coefficient 
 d  parent bubble diameter 
 di, dj daughter bubble diameters 

 dH  Maximum bubble horizontal dimension 
 D  Inner diameter of the pipe 
 DB  death rate due to break-up 
 DC  death rate due to coalescence 
 Ds  Sauter mean bubble diameter 

 Eo  Eötvos number 
Eodg Modified Eötvos number 

 fBV  breakage volume fraction 
 fi  scalar variable of the dispersed phase 
 FC,FB Coalescence and Breakage calibration factors 
 Flg  Total interfacial force 

drag
lgF  Drag force 

lift
lgF  Lift force 

nlubricatio
lgF  Wall lubrication force 

dispersion
lgF  Turbulent dispersion force 

 IAC Interfacial area concentration 
 g  Gravitational acceleration 
g   Gravitational vector 

 h0  initial film thickness 
 hf  critical film thickness 
 k  Turbulent kinetic energy 
   Outward vector normal to the wall surface  wn
 n  Average number density of gas phase (bubble) 
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 ni  number density of the ith class 
 nj  number density of the jth class 
 P  Pressure 
 PB  production rate due to break-up 
 PC  production rate due to coalescence 
 Re  Flow Reynolds number 

Rj  Net change rate of number density due to coalescence and break-up 
 t  Physical time 

u  Velocity 
ut  Turbulent Velocity 
u   Velocity vector 

 U  relative velocity between gas and liquid phase 
Ur  terminal velocity of bubbles 
iν ,  volume corresponding to bubble group i and j jν

 We  Weber number 
 Wecr Critical Weber number 
 yw  Adjacent point normal to the wall surface 
 
Greek Symbols 
α Void fraction 

 αmax Maximum allowable void fraction 
 ε  Turbulence kinetic energy dissipation 
ηjki  transfer coefficient between bubble groups arising from bubble breakup 

 λ  Eddy size in the inertial subrange 
 μe  Effective viscosity 

   Turbulent kinematic viscosity g,tν

ξ  size ratio between an eddy and a particle in the inertial subrange 
 ρ  Density 
 Δρ  Density difference = ρl − ρg 
 σ  Surface tension 
 σt,g  Turbulent Schmidt number 
τij  Bubble contact time 

  Bubble number density change rate due to random collision RC
nφ

   Bubble number density changes rate due to impact of turbulent eddies TI
nφ

  Modified random collision rate RC
nφ′

  Modified turbulent induced breakage rate TI
nφ′
WE
nφ  Bubble number density changes rate due to wake entrainment 

  χij  Turbulent random coalescence rate  
 Ω(v) Bubble breakup rate 

 
 

Subscripts 
 g  Gas 
 gl  Transfer of quantities from liquid phase to vapour phase 
 i  Index of gas/liquid phase 
 l  Liquid 
 lg  Transfer of quantities from gas phase to liquid phase 
 min  Minimum operator 
 max Maximum operator 
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1 Introduction 

Bubble column reactors, extensively used in a various chemical, petroleum, mining, 

food and pharmaceutical industries, are usually known as excellent systems for 

processes that require large interfacial areas for gas-liquid mass transfer and efficient 

mixing for competing gas-liquid reactions. Productivity of such kind of reactor is 

nonetheless governed by the limitations imposed by the interfacial areas that are 

affected by various hydrodynamic aspects such as the bubble size distribution as well as 

bubble coalescence and break-up rates. To better optimise bubble column design, a 

greater reliance on the fundamental knowledge of population balance of bubbles is 

required.  

Population balance modelling is becoming ever more prevalent in many industrial 

applications. The use of population balance in any system is to account for a record of 

the number of entities existing within the system, which for bubbly flow are bubbles, 

whose presence or occurrence may govern the behaviour of the system under 

consideration. In most of this system, the record of these entities is dynamically 

changing depending on the “birth” and “death” processes that create and destroy entities 

through the state space. The mechanistic behaviours of coalescence and breakage of 

bubbles in bubbly flows are examples of such processes. 

The foundation development of the population balance equation stems from the 

consideration of the Boltzman equation, where such an equation is generally expressed 

as an integrodifferential form of the particle distribution function. Owing to the complex 

phenomenological nature of events, analytical solutions are only available in very few 

cases (Bove et al., 2005). Nevertheless, mounting interest on population balances have 

resulted in several existing and emerging numerical techniques for solving the 

population balance equations (PBEs): Monte Carlo method (Ramkrishna, 2000), the 
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method of discrete classes (Kumar and Ramkrishna, 1996a,b), the quadrature method of 

moments (Marchisio et al., 2003a,b), the direct quadrature method of moments 

(Marchisio and Fox, 2005) and the least square method (Dorao and Jakobsen, 2006, 

2007). Among the many available numerical techniques, the method of discrete classes 

has received particular interest due to its rather straightforward implementation within 

CFD program. This method nonetheless suffers from discretization errors, which may 

bring to question the reliability of the model predictions. It will be demonstrated later 

that the main source of prediction error for gas-liquid flows comes predominantly from 

the spherical bubble assumption taken into account for the coalescence and break-up 

kernels and the uncertainties embedded in turbulence modelling. The method of discrete 

class is therefore adopted in the present study. 

With encouraging results demonstrated through a number of research studies, the 

population balance concept has been considered as a promising future modelling 

direction (Ramkrishna and Mahoney, 2002). Several studies based on the 

MUltiple-SIze-Group (MUSIG) model by Pochorecki et al. (2001), Olmos et al. (2001), 

Yeoh and Tu (2004), Frank et al., (2005), and Yeoh and Tu (2005) typified the 

application of this particular category of population balance approach. In the method of 

discrete classes, the continuous size range of bubbles is discretized into a number of 

discrete size classes. For each class, a scalar (number density of bubbles) equation is 

solved to accommodate the population changes caused by intra/inter-group bubble 

coalescence and break-up. However, excessive computational calculations to solve a 

large number of bubble classes for some gas-liquid flows having a wide range of bubble 

size distribution may significantly overwrite the potential benefits of the MUSIG model 

originally aims to achieve (Bove et al., 2005). 
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Alternatively, a transport equation for the interfacial area has been developed by a 

number of researchers (Kocamustafaogullari and Ishii, 1995; Wu et al, 1998; Hibiki and 

Ishii, 2002; Yao and Morel, 2004). Similar to the formulation of the interfacial area 

transport equation, an Average Bubble Number Density (ABND) equation was 

proposed very recently in our previous studies (Yeoh and Tu, 2006; Cheung et al., 

2006). As the distribution of bubbles is now represented by a single average scalar (i.e. 

interfacial area or bubble number density) in the formulations, these average scalar 

transport equations can be regarded as another simpler form for solving the population 

balance of bubbles. Chen et al. (2005) argued that the assumption of “mean” bubble size 

is only justified in bubbly flow where the range of bubble size is considerably narrow. 

For the bubbly flows considered, the application of the ABND is assessed against the 

use of a more sophisticated approach of the MUSIG model. 

Based on our previous work (Yeoh and Tu, 2006; Cheung et al., 2006), the primary aim 

of this paper is to determine the relative merits and capabilities applying two population 

balance approaches (i.e. MUSIG and ABND models) within the CFD framework to 

resolve various isothermal bubbly and bubbly-to-slug transition flow conditions. 

Particular attention is directed towards how these two different approaches measure up 

in handling bubbly-to-slug transition flow conditions. Three coalescence and break-up 

mechanism specifically by Wu et al. (1998), Hibiki and Ishii (2002) and Yao and Morel 

(2004) are incorporated in the ABND model. Predictions by the ABND and MUSIG 

models are compared against two different experimental data of isothermal gas-liquid 

bubbly flow in a vertical pipe performed by Liu and Bankoff (1993a, 1993b) and Hibiki 

et al. (2001). 



2 Mathematical Models 

2.1 Two-Fluid model 

2.1.1 Mass conservation 

Numerical simulations presented in this paper are based on the two-fluid model 

Eulerian-Eulerian approach. The liquid phase is treated as continuum while the gas 

phase (bubbles) is considered as dispersed phase (ANSYS, 2005). In isothermal flow 

condition, with no interfacial mass transfer, the continuity equation of the two-phases 

with reference to Ishii (1975) and Drew and Lahey (1979) can be written as: 

( ) ( ) 0=⋅∇+
∂

∂
iii

ii uαρ
t
αρ

   (1) 

where α, ρ and u  is the void fraction, density and velocity of each phase. The 

subscripts i = l or g denotes the liquid or gas phase. 

2.1.2 Momentum conservation 

The momentum equation for the two-phase can be expressed as follow: 

( ) ( ) ( )( )[ ] i
T

ii
e
iiiiiiiii

iii FuuμαgραPαuuαρ
t

uαρ
+∇+∇⋅∇++∇−=⋅∇+

∂
∂

  (2) 

On the right hand side of Eq. (2), Fi represents the total interfacial force calculated with 

averaged variables, g  is the gravity acceleration vector and P is the pressure. From the 

above equation, it is noted that closure law is required to determine the momentum 

transfer of the total interfacial force. This force strongly governs the distribution of the 

liquid and gas phases within the flow volume. Details of the closure are given below. 

2.2 Interfacial momentum transfer 

In isothermal bubbly flows, as demonstrated by Frank et al. (2004), interfacial 

momentum transfer exhibits a dominant effect in the multiphase momentum equations. 

- 8 - 



The total interfacial forces considered in the present study can be categorized into four 

main terms: drag, lift, lubrication and turbulence dispersion: 

dispersion
lg

nlubricatio
lg

lift
lg

drag
lggllg FFFFFFFi +++=−==    (3) 

Here, denotes the momentum transfer terms from the gas phase to the liquid phase 

and vice versa for . 

lgF

glF

2.2.1 Drag force 

The inter-phase momentum transfer between gas and liquid due to the drag force 

resulted from shear and form drag is modelled according to Ishii and Zuber (1979) as: 

( )lglglifD uuuuρaCFF −−=−=
8
1drag

gl
drag

lg   (4) 

where  is the drag coefficient which can be evaluated by correlation of several 

distinct Reynolds number regions for individual bubbles proposed by Ishii and Zuber 

(1979). 

DC

2.2.2 Lift force 

Due to velocity gradients in radial and azimuthal directions, bubbles rising in a liquid 

are subjected to a lateral lift force. The force can be correlated to the relative velocity 

and the local liquid vorticity from Drew and Lahey (1979) as: 

( ) ( )llglL uuuCFF ×∇×−=−= ρlift
gl

lift
lg   (5) 

For the lift coefficient, C , the Eötvos number dependent correlation proposed by 

Tomiyama (1998) is adopted and the lift coefficient can then be expressed as: 

L

       )]();Re121.0tanh(288.0min[ dgg Eof 4<gEo  

LC =   474.00204.00159.000105.0)( 23 +−−= dgdgdgdg EoEoEoEof 104 ≤≤ gEo  

                                                  29.0− 10>gEo  
  (6) 

where Reg is the local Reynolds number of the gas phase (bubbles) and Eog is the 

Eötvos number. The modified Eötvos number of the gas phase is: 
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σ
d)ρρ(g

Eo Hgl
dg

2−
=   (7) 

The variable dH is the maximum bubble horizontal dimension that can be evaluated by 

using the empirical correlation of Wellek et al. (1966): 

3/1757.0 )163.01( gSH EoDd +=   (8) 

 
2.2.3 Wall lubrication force 

In contrast to the lift force, lateral force due to the surface tension is formed to prevent 

bubbles attaching on the solid walls thereby results in a low gas void fraction at the 

vicinity of the wall area. The force is well-known as wall lubrication force which can be 

modelled according to Antal et al. (1991) given by: 

s

wwlglglg

w

S
ww D

nnuuuuρα
y
D

CCFF
2

21
nlubricatio

gl
nlubricatio

lg

]))(()[( ⋅−−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=−=  (9) 

where yw is the distance from the wall boundary and wn  is the outward vector normal 

to the wall. Following the proposal by Krepper et al. (2005), the model constants 

are  = -0.0064 and  = 0.016. Moreover, for avoiding attraction force emerges, 

the force is set to zero if the wall distance satisfies the follow condition: 

1wC 2wC

S
w

w
w D

C
Cy

1

2> . 

2.2.4 Turbulent dispersion force 

In the consideration of turbulence assisted bubble dispersion, the turbulent dispersion 

force expression in terms of Farve-averaged variables proposed by Burns et al. (2004) is 

adopted, viz: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∇
−

∇
=−=

g

g

l

l

g,t

g,t
DTD α

α
α
α

σ
ν

CCFF disperison
gl

disperison
lg    (10) 

with CTD, CD,  and  is the turbulent dispersion coefficient, drag force 

coefficient, turbulent kinematic viscosity for the gas phase and the turbulent Schmidt 

g,tν g,tσ
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number of the gas phase respectively. By default, the turbulent dispersion coefficient 

CTD = 1 and the turbulent Schmidt number 90.σ g,t =  is adopted. 

2.3 Average Bubble Number Density (ABND) transport equation 

For the dispersed isothermal bubbly flow without the consideration of mass transfer due 

to evaporation and condensation, the population balance of dispersed bubbles is mainly 

governed by three mechanisms of bubble coalescence and breakage, which can be 

expressed in the following average bubble number density transport equation: 

( ) WE
n

TI
n

RC
ng nu

t
n φφφ ++=⋅∇+
∂
∂  (11)

where n is the average bubble number density; ,  and  are the bubble 

number density changes due to random collision, turbulent induced breakage and wake 

entrainment. With the assumption of spherical bubbles, using algebraic substitution, the 

above transport equation is equivalent to the interfacial area transport equation which 

has been derived by Hibiki and Ishii (2000a). The phenomenological mechanism of 

coalescence and breakage source terms need closure to describe the spatial evolution of 

the gas phase. Three models describing the coalescence and breakage effects are 

employed in the present study. Formulation of each model is briefly discussed below. 

RC
nφ

TI
nφ

WE
nφ

2.3.1 Wu et al. (1998) Model  

An empirical modelling of the bubble coalescence and bubble breakage that has been 

widely cited is the model developed by Wu et al. (1998). Considering the characteristic 

times for binary collision and the mean travelling length between neighbouring bubbles, 

they have modelled the random collision rate of bubble coalescence according to: 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−

−
−=φ 3131

3131

313131311

312

exp1 /
g

/
max

/
g

/
max

/
g

/
max

/
max

/
S

/
g

RC
RC
n αα

αCα
αααD

εα
C  (12)
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where  and  are the adjustable model constants representing the 

coalescence efficiency. The maximum allowable void fraction  was chosen 

considering the transition point from slug to annular flow. 

0210.CRC = 03.C =

80.αmax =

Assuming a spherical bubble travelling with its terminal velocity, the rate of collision 

caused by wake entrainment is expressed as: 

4

2

S

g
rWE

WE
n D

α
UC−=φ  (13)

where  is a model constant determining the effective wake length and 

the coalescence efficiency. The terminal velocity of bubbles, , is given by: 

00730.CWE =

rU

21

3

/

lD

S
r ρ

ρ
C

gD
U ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
=  (14)

Turbulent induced breakage is derived from a simple momentum balance approach. In 

this mechanism, Wu et al. (1998) restricted only eddies with the same size as the 

bubbles responsible for breakage. The rate of bubble is given by: 

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=φ

We
We

We
We

D
εα

C crcr
/

S

/
g

TI
TI
n exp-1311

31

 (15)

 
Here,  while the critical Weber number 09450.CTI = 02.Wecr =  governs the criterion 

of breakage, are adjustable parameters. 

 
2.3.2 Hibiki and Ishii (2002) Model  

In contrast to the model of Wu et al. (1998), Hibiki and Ishii (2002) ignored the wake 

entrainment coalescence due to its insignificant effect in bubbly flow condition. By 

assuming bubble movement behaves analogously to ideal gas molecules, the 

coalescence rate due to turbulent random collision is determined as: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=φ 21

653121

311

312

exp /

/
S

//
l

gmax
/

S

/
g

RC
RC
n σ

Dερ
C

ααD
εα

C  (16)
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Instead of using a constant in Wu et al. (1998) model, coalescence efficiency is derived 

from the liquid-film-thinning model (Oolman and Blanch, 1986a, 1986b) and 

dimensional consideration for turbulent flow (Levich, 1962) using the Coulaloglou and 

Tavlarides (1977) expression as the main framework. 03.0=RCC  and  are 

the adjustable model constants that have been calibrated through experiments. 

Furthermore, Hibiki and Ishii (2000a) also derived the breakage rate from kinetic theory. 

The breakage rate is correlated to the frequency for a given bubble colliding with the 

turbulent eddy as: 

29.1=C

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
= 3/53/2

max
3/11

3/1
g

2

exp
)-(1

SlgS

g
TI

TI
n Dερ

σC
ααD
εαα

Cφ  (17)

Here,  and  are also adjustable model constants determined 

experimentally. 

03.0=TIC 37.1=C

2.3.3 Yao and Morel (2004) Model  

Recently, Yao and Morel (2004) pointed out that the aforementioned two models were 

developed based on two different considerations: the free travelling time or the 

interaction time. They argued that both characteristic times are identically important. 

Taking two considerations into account, the bubbles coalescence rate is derived as: 

crgRC

crRC

S

g
RC

RC
n WeWeαCααα

WeWeC
D
εα

C
3

3/1
maxg

1/3
max

2
3/11

3/12

1 )/-(
)exp(-

+
−=φ  (18)

where the derived coefficients are respectively 86.21 =RCC , and 

. Similar to the Hibiki and Ishii (2002) model, coalescence caused by wake 

entrainment is neglected. 

017.12 =RCC  

922.13 =RCC

For the bubble breakage, they disputed that bubble breakage is mainly caused by the 

resonance oscillation. Considering the natural frequency of the oscillating bubbles, the 

interaction time can be approximated and the rate of bubble breakage is given by: 
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crgTI

cr

S

g
TI

TI
n WeWeαC

WeWe
D

εαα
C

)-(11
)exp(-)-(1

2
3/11

3/1
g

1 +
=φ  (19)

where the coefficients are respectively 611 .CTI =  and 4202 .CTI = . The critical Weber 

number of 1.42 was employed (Sevik and Park, 1973). Considering the transition point 

between the finely dispersed bubbly and slug flows, the maximum allowable void 

fraction in Hibiki and Ishii (2002) and Yao and Morel (2004) models retains a value of 

0.52. 

2.4 MUSIG Model 

To account for non-uniform bubble size distribution, the MUSIG model employs 

multiple discrete bubble size groups to represent the population balance of bubbles. 

Assuming each bubble class travel at the same mean algebraic velocity, individual 

number density of bubble class i based on Kumar and Ramkrishna (1996a) can be 

expressed as: 

( )
ij

jig
i Rnu

t
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅∇+

∂
∂ ∑  (20)

where ( )
ij jR∑  represents the net change in the number density distribution due to 

coalescence and break-up processes. The discrete bubble class between bubble volumes 

 and  is represented by the centre point of a fixed non-uniform volume 

distributed grid interval. Similar to Eq. (11), the interaction term 

iv 1+iv

( ) ( BCBCij j DDPPR −−+=∑ )  contains the source rate of , ,  and , 

which are, respectively, the production rates due to coalescence and break-up and the 

death rate due to coalescence and break-up of bubbles. 

CP BP CD BD
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2.4.1 MUSIG Break-up rate 

 The production and death rate of bubbles due to the turbulent induced breakage is 

formulated as: 

( ) jij

N

ij
B nvvΩP :

1
∑

+=

=  

iiB nΩD =                   with    ∑
=

=
N

k
kii ΩΩ

1
(21)

Here, the break-up rate of bubbles of volume  into volume  is modelled 

according to the model developed by Luo and Svendsen (1996). Similar to the 

aforementioned ABND models, the model is developed based on the assumption of 

bubble binary break-up under isotropic turbulence situation. The major different is the 

daughter size distribution have been taken account using a stochastic breakage volume 

fraction fBV. By incorporating the increase coefficient of surface area, cf = 

[ +(1-fBV)2/3-1], into the breakage efficient, the break-up rate of bubbles can be 

obtained as: 

jv iv

32 /
BVf

( )
( )

( ) dξ
dβρ
c

ξ
ξ

d
εCF

nα
vvΩ

l

f

ξ
j

B
jg

ij

min ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

− ∫ 3/113/53/2

1

3/11

23/1

2

12
exp1

1
:

ξε
σ

 (22)

where jd/λξ =  is the size ratio between an eddy and a particle in the inertial 

sub-range and consequently jminmin d/λξ =  and C and β are determined, respectively, 

from fundamental consideration of drops or bubbles breakage in turbulent dispersion 

systems to be 0.923 and 2.0. FB is the breakage calibration factor which will be 

discussed later. 

2.4.2 MUSIG Coalescence rate 

The number density of individual bubble groups governed by coalescence can be 

expressed as: 
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∑∑
= =

=
i

k

i

l
jiijjkiC nnP

1 12
1 χη               

        )/()( 11 −− −−+ iiikj ννννν        if ikji νννν <+<−1  

=jkiη  )/()( 11 iikji ννννν −+− ++        if 1+<+< ikji νννν  

                                   otherwise 0
 

∑
=

=
N

j
jiijC nnD

1

χ   (23)

As discussed in the previous section, bubble coalescence occurs via collision of two 

bubbles which may be caused by wake entrainment, random turbulence and buoyancy. 

However, only turbulence random collision is considered in the present study as all 

bubbles are assumed to be spherical (wake entrainment becomes negligible). 

Furthermore, as all bubbles travel at the same velocity in the MUSIG model, buoyancy 

effect is also eliminated. The coalescence rate considering turbulent collision taken from 

Prince and Blanch (1990) can be expressed as: 

[ ] ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++=

ij

ij
tjtijiCij

t
uuddF

τ
πχ exp
4

5.0222  (24)

where ijτ  is the contact time for two bubbles given by  and  is the 

time required for two bubbles to coalesce having diameter di and dj estimated to be 

. The equivalent diameter dij is calculated as suggested by 

Chesters and Hoffman (1982): . According to Prince and Blanch 

(1990), for air-water systems, experiments have determined the initial film thickness ho 

and critical film thickness hf at which rupture occurs as  and  m 

respectively. The turbulent velocity ut in the inertial subrange of isotropic turbulence 

(Rotta, 1972) is given by:

3/13/2 /)2/( εijd ijt

)/ln(]16/)2/[( 0
5.03

flij hhd σρ

1)/2/2(( −+= jiij ddd

4101 −× 8101 −×

3/13/12 du . Again, FC is the coalescence calibration 

factor which will be discussed section 5. In the present study, bubbles ranging from 0 

mm to 10 mm diameter are equally divided into 10 size groups (see Table 3).  

t ε=
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3 Experimental details 

The experimental set-up of Liu and Bankoff (1993a, 1993b) consisted of a test 

section with 2800mm long and a vertical acrylic pipe with an internal diameter of D = 

38 mm. Distilled water was circulated within the testing loop by a centrifugal pump and 

temperature was maintained in the range of 10 ± 0.01oC by cooling coils and heater 

installed in the water tank. Bubbles were produced and injected into the test section via 

a bundle of 64 equally-spaced 0.1 mm hypodermic needles at the bottom. Local radial 

measurements were obtained at the axial location of z/D = 36.0. Liquid velocity was 

attained by using hot-film anemometers while local void fraction and gas velocity were 

measured with two-point resistivity probe. A total of 48 flow conditions which covered 

the range jg: 0.027-0.347 m/s and jf: 0.376-1.391 m/s was investigated. The bubble 

diameters were controlled in a narrow range of 2-4 mm during the whole course of the 

experiments. 

Similar to the set-up of Liu and Bankoff (1993a), the experimental data by Hibiki et 

al. (2001) was taken in an acrylic round pipe with an inner diameter D = 50.8mm and a 

length of 3061 mm. The temperature of the apparatus was kept at a constant temperature 

(i.e. 20oC) within a deviation of ±0.2oC by a heat exchanger installed in a water 

reservoir. Local flow measurements using the double sensor and hotfilm anemometer 

probes were performed at three axial (height) locations of z/D=6.0, 30.3 and 53.5 and 15 

radial locations of r/R=0 to 0.95. Experiments at a range of superficial liquid velocities 

jf and superficial gas velocities jg were performed, which covered most of the bubbly 

flow regions, including finely dispersed bubbly flow and bubbly-to-slug transition flow 

regions. 

The aforementioned coalescence coalescence/breakage models for the ABND and 

MUSIG approaches have been primarily developed under bubbly flow conditions. 
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Bubbles were idealized according to spherical shape and finely dispersed bubbles were 

assumed to occupy the entire two-phase fluid flow domain. The primary objective in 

this present study is to compare the two population balance approaches for simulating 

bubbly flow regime. The experimental dataset of Liu and Bankoff (1993a) and Hibiki et 

al. (2001) in bubbly flow regime have been selected for validating these models. Six 

flow conditions were studied as depicted in Fig. 1. Also included in the figure, the solid 

lines represented the different flow regime transition boundaries predicted by the model 

of Taitel et al. (1980). As shown in the figure, all the six flow conditions lie within the 

bubbly flow region. As will be demonstrated later, these models were also assessed for 

their possible applications at high gas superficial velocity (i.e. transition regime). Two 

transition flow condition of Hibiki et al. (2001) were used (see also in Fig. 1). Details of 

the flow conditions are summarized in Table 1. For ease of discussion, experiments by 

Liu and Bankoff (1993a) and Hibiki et al. (2001) are hereafter referred as Exp. 1 and 

Exp. 2 respectively. 

4 Numerical Details 

In modelling isothermal gas-liquid bubbly flow, two sets of governing equations for 

momentum were solved. The generic CFD code ANSYS CFX 10 (ANSYS, 2005) was 

employed as a platform for two-fluid flow computation. The average bubble number 

density transport equation with appropriate sink or source terms describing the 

coalescence and break-up rate of bubble was also implemented through the CFX 

Command Language (CCL). The built-in MUSIG model was adopted for MUSIG 

simulations. Radial symmetry has been used in simulations. Numerical simulations 

were performed on a 60o radial sector of the pipe with symmetry boundary conditions at 

both vertical sides. At the inlet of the test section, as the diameter of the injected 

bubbles are unknown, uniformly distributed superficial liquid and gas velocities, void 



fraction and bubble size were specified in accordance with the flow condition described. 

Details of the boundary conditions have been also summarized in Table 1. At the pipe 

outlet, a relative averaged static pressure of zero was specified. Fig. 2 shows the mesh 

distribution within the computational model. For all flow conditions, reliable 

convergence were achieved within 2500 iterations when the RMS (root mean square) 

pressure residual dropped below 1.0×10-7. A fixed physical time scale of 0.002s is 

adopted for all steady state simulations. 

In handling bubble induced turbulent flow, unlike single phase fluid flow problem, 

no standard turbulence model is tailored for two-phase (liquid-air) flow. Nevertheless, 

numerical investigation revealed that standard k-ε model predicted an unrealistically 

high gas void fraction peak close to wall (Frank et al., 2004, Cheung et al., 2006). The 

k-ω based Shear Stress Transport (SST) model by Menter (1994) provided more 

realistic prediction of void fraction close to wall.  

The SST model is a hybrid version of the k-ε and k-ω models with a specific 

blending function. Instead of using empirical wall function to bridge the wall and the 

far-away turbulent flow, the k-ω model solves the two turbulence scalars right up to the 

wall boundary. This approach eliminates errors arising from empirical wall function and 

thus provides better prediction at the near wall region. It is thereby not surprise that 

more accurate liquid or gas velocities can be captured by the SST model which 

eventually provides better predictions of void fraction close to wall. The SST model is 

thereby employed in the present study. Moreover, to account for the effect of bubbles on 

liquid turbulence, the Sato’s bubble-induced turbulent viscosity model (Sato et al., 

1981) has been adopted as well. 

A three-dimensional mesh containing hexagonal elements was generated over the 

entire pipe domain. Six mesh structures corresponding to coarse, medium and fine with 
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three different mesh levels were tested covering the range of 4,000-69,120 elements for 

Exp. 1 and 4,000-108,100 elements for Exp. 2 (see Table 2). Comparing the predicted 

results between the medium and fine mesh, small discrepancies were observed. The 

maximum differences between these two mesh levels in the two experimental flow 

conditions were less than 5%. It can therefore be concluded that the fine mesh level is 

sufficient for obtaining grid independent solutions. Hereafter, predicted results shown 

were all obtained from the fine mesh.  

5 Results and Discussion 

Based on the experiments performed by Hibiki et al. (2001), they have observed 

that there was insignificant development of the Sauter mean bubble diameter along the 

axial direction. From the phenomenological view point, this implied that the breakage 

and coalescence rate among bubbles attained near equilibrium condition. Analogous 

findings have also been reported from other experimentalists (Bukur et al., 1996; 

George et al., 2000). In our numerical simulations, coalescence rate was nonetheless 

found to be around 10 and 20 times higher than breakage rate in ABND and MUSIG 

model respectively. Recently, similar difficulty in simulating bubble columns flows has 

been also reported by Chen et al. (2005). Coalescence rate was found about one order of 

magnitude higher than the breakage rate in their work. A plausible explanation for this 

discrepancy could be attributed to the error embedded in the turbulent dissipation rate 

prediction (Bertola et al., 2003). 

For engineering estimation and maintaining the balance of the coalescence and breakage 

terms, Chen et al. (2005) enhanced the breakage rates by a factor of 10 in their 

calculations. Similarly, in the work by Olmos et al. (2001), calibration factor of 0.075 

was also employed. In the present study, follow the same argument, the coalescence rate 

has been reduced by a factor of 1/10 in the ABND model (i.e. = , = ). TI
nφ′

TI
nφ

RC
nφ′

RC
nφ1.0
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Similarly, for the MUSIG model, coalescence and breakage calibration factors (i.e. FC 

and FB), were set as 0.05 and 1.0 respectively. It should be emphasised that the 

reduction and calibration factors are introduced by the mere means for engineering 

estimation, which may be case sensitivity and subject to the flow condition. Although 

adjustment to the reduction factor could obtain “better” results, it loses, however, the 

predictive nature of the models and the common ground for comparison. Therefore, 

values of the reduction and calibration factors are fixed for all the cases and flow 

conditions studied in this work. 

5.1 Experimental data of Liu and Bankoff (1993a, 1993b) 

5.1.1 Void fraction distribution 

Fig. 3 shows the void fraction distributions obtained from the MUSIG model and  

the three coalescence/breakage mechanisms employed in the ABND model comparing 

with the measured data at the dimensionless axial position z/D=36.0. From the 

phenomenological view point, the phase distribution patterns along the radial direction 

of the bubble column exhibits four basic types of distributions: “wall peak”, 

“intermediate peak”, “core peak” and “transition”, as categorized by Serizawa and 

Kataoka (1988). 

In the bubbly flow regime, maximum void fraction located close to the wall 

demonstrated the flow phase distributions typically known as the “wall peak” 

behaviour, which was mainly due to the positive lift force pushing the small bubbles 

toward the pipe wall. As depicted in Fig. 3, a well-developed wall peaking behaviour 

was recorded in the experiment and had been successfully captured by the ABND and 

MUSIG models. In the case of low gas superficial velocity (i.e. %5.2][ =gα , see also in 

Fig. 3a), all models of ABND approach under-estimated the void fraction at the core of 
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the pipe. In contrast, MUSIG model provided closer predictions with the experiment. 

However, as shown in Fig. 3b, void fractions at the core of the high gas superficial 

velocity case were slightly over-predicted by all models. One of the possible reasons of 

the over-prediction of the void fraction distribution could be the uncertainties associated 

with the application of the turbulence model for two-phase flow which inadequately 

predicted the turbulent energy dissipation and eventually affected the bubbles 

coalescence/breakage rate.  

As also pointed out by Frank et al. (2004), predicted wall lubrication forces of the 

Antal et al. (1991) model were generally relatively weak when compared with the other 

two models by Frank et al. (2004) and Tomiyama (1998). Applying these latter models 

might yield much larger values; the maximum radial gas fraction might be now found at 

some considerable distance away from the wall as recorded in the experiments. The 

adopted Antal et al. (1991) model could thus be another source of error causing the 

overestimated void fraction at the wall. In general, as similar assumptions and 

hypothesis have been adopted in the ABND and MUSIG models, predicted void 

fraction profiles are considerably similar while MUSIG model tends to provide higher 

void fraction values at the core region. 

5.1.2 Time-averaged liquid velocity 

The measured and predicted radial profiles of the liquid velocity are shown in Fig. 

4. In contrast to single phase flow, the introduction of bubbles into the liquid flow has 

the tendency to enhance or reduce the liquid flow turbulence intensity as indicated by 

Serizawa and Kataoka (1990). In the case of enhanced turbulence, as depicted in Fig. 

4b, the liquid velocity profile at the core is flattened by the additional turbulence while 

having a relatively steep decrease almost mimicking a step change close to the pipe 

wall. The recorded liquid velocity at the wall is not zero thereby exposing some 



uncertainties of the experiment (Politano et al., 2003). Nevertheless, the predicted 

velocity profiles, particularly the sharp decrease of the decreasing velocities close to 

wall, were successfully captured by all models and compared reasonably well with 

measurements. The MUSIG model appeared to yield marginally better agreement than 

the other models. One possible reason could be the higher resolution of bubble classes 

adopted within the MUSIG model. By introducing multiple size groups to discretize the 

range of bubble sizes that could exist within the flow, instead of using a single average 

parameter in the ABND model, the Sauter mean bubble diameter could have been better 

resolved that eventually enhanced the prediction of the liquid velocities. This issue will 

become more apparent by comparing the predictions of Sauter mean bubble diameter 

against measurements which will be presented in later sections. 

5.2 Experimental data of Hibiki et al. (2001) 

Although encouraging results were obtained and discussed in the previous section, 

unfortunately, Liu and Bankoff (1993a, 1993b) did not report other primitive variable 

measurements for the two flow conditions, such as: Interfacial Area concentration 

(IAC), Sauter mean bubble diameter and gas time-averaged velocity. A closer 

examination of the hydraulic dynamic behaviour of the isothermal bubbly flows can be 

analysed by further comparing the model predictions with a more comprehensive 

experimental data reported by Hibiki et al. (2001). Details of the comparison are 

discussed below. 

5.2.1 Void fraction distribution 

Fig. 5 compares the gas void fraction profiles obtained from the ABND and 

MUSIG models with the measured data in four different bubbly flow conditions. In low 

void fraction cases (i.e. fj =0.491 m/s), wall peaking profiles were well established at 
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the first measuring station of z/D=6.0 due to the considerably low liquid and gas 

velocities. However, the radial void fraction profile subsequently evolved along the 

axial direction becoming a well-developed wall peaking at the location of z/D=53.5 

for fj =0.986m/. As depicted, the phenomenological evolution of the wall peaking 

behaviours was properly captured by the ABND and MUSIG models. 

For fj =0.491m/s and gj =0.0556m/s, void fractions close to the pipe wall were 

slightly under-predicted by the ABND models at the location of z/D=53.5 (see also in 

Fig. 5f). Similar discrepancies were also found in Fig. 5g and Fig. 5h. In contrast, the 

wall peak values were better predicted by the MUSIG. This could be resulted from the 

superior predictions of bubble diameter which will be discussed in more detail in the 

next section. Nonetheless, the results revealed that the MUSIG has a tendency to predict 

higher void fraction at the core of pipe. Again, this could be attributed to the 

uncertainties embraced in the adopted turbulence and wall lubrication models. Overall, 

all the model predictions of the void fraction profile at the two measuring locations 

were in satisfactory agreement with measurements. 

5.2.2 Sauter mean bubble diameter 

Fig. 6 illustrates the predicted and measured Sauter mean bubble diameter 

distributions at two measuring stations, corresponding to that of void fraction profiles in 

Fig. 5. As measured by Hibiki et al. (2001), the Sauter mean bubble diameter profiles 

were almost uniform along the radial direction with some increase in size at the vicinity 

of the wall. The slightly larger bubbles were formed near the wall might be due to the 

tendency of small bubbles migrating towards the wall creating higher concentration of 

bubbles thereby increasing the likelihood of possible bubble coalescence. In general, 

predictions from all models agreed reasonably well with the measurements. For all the 
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flow cases and locations especially for the MUSIG, predictions of the model were in 

remarkable agreement with the measurement and were also obviously superior than 

other ABND models. 

The above results clearly demonstrated that population balance of bubbles was 

accurately captured by using the “Multiple Size Groups” approach. Compared to the 

single average parameter of ABND models, higher resolution of multiple size groups 

were found to be better resolved through the dynamical changes of bubbles size 

distribution. Since the Sauter mean bubble diameter is generally closely coupled with 

the interfacial momentum forces (i.e. drag and lift forces), better predictions of the 

bubble diameter could significantly improve the prediction of liquid and gas velocities 

(see also in section 5.2.4). Unfortunately, as extra transport equations were required in 

the numerical calculations, additional computational effort is required to solve these 

equations. Computational efficiency and accuracy are issues of on-going debate. In the 

present study, the MUSIG model required around twice of the computational effort than 

the ABND models under the same arrangement of computational resources. 

5.2.3 Interfacial Area Concentration (IAC) 

Based on the assumption where the bubbles are spherical, the local Interfacial Area 

Concentration (IAC) profiles can be related to the local void fraction and Sauter mean 

bubble diameter according to sgif Da /6α= . The measured and predicted local 

interfacial area concentration profiles for the respective two axial locations are shown in 

Fig. 7. The IAC radial profiles roughly followed the same trend of the void fraction 

distribution as stipulated in Fig. 5. Similar to the comparison for the void fraction 

distribution, predictions of all models at the two measuring stations were in satisfactory 

agreement with measurements. The difference between predicted and measured data 

could be attributed to the deviation of bubble shape from sphere. Especially in high gas 
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void fraction cases, large distorted bubbles start to emerge introducing errors in IAC 

prediction. The peak values of IAC close to wall were, however, better predicted by the 

MUSIG model. This could have been benefited from the accurate prediction of the 

Sauter mean bubble diameter and void fraction values. In Fig. 7f-h, the IAC was 

over-predicted at the core region as reflected by both models. Nevertheless, the 

predictions of MUSIG generally appeared to yield marginally better agreement than the 

ABND models. 

5.2.4 Time-averaged liquid and gas velocities 

Fig. 8 shows the local radial gas and liquid velocity distributions at the measuring 

station of z/D=53.5 close to the outlet of the pipe. For low liquid superficial velocity 

cases (i.e. fj =0.491m/s), except the simulation results shown in Fig. 8f, all ABND 

models predictions of the gas and liquid velocity compared favourably with the 

experimental data. Owing to the errors introduced through the bubble diameter 

predictions, liquid velocities at the core of the pipe were generally under-predicted at 

the location of z/D=53.5 (see also in Fig. 8f). Similar observations were also found for 

the predictions of the gas or liquid velocity for fj =0.986m/s shown in Fig. 8c-d and 

Fig. 8g-h. 

Conversely, predictions made by the MUSIG model as depicted in Fig. 8a-d 

compared very well with measurements and were found to be noticeably better than 

those of ABND models. Although the liquid velocities at the core were still 

under-predicted for fj =0.986m/s, the MUSIG model generally gave better agreement 

than the ABND models. The ability to better determine the Sauter mean bubble 

diameter could indirectly enhance the liquid velocity predictions by the provision of a 
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more appropriate description of the interfacial forces within the interfacial momentum 

transfer between the air and water phases. 
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5.3 Examination of limitations of the population balance approaches 

The superior performance of the MUSIG model as well as encouraging predictions 

made by the ABND models clearly demonstrated their viable applications in resolving 

the coalescence and breakage bubble mechanistic behaviours in isothermal bubbly flow 

conditions. Nevertheless, the flow cases that have been investigated from above 

generally possessed only weak bubble-bubble interactions and narrow bubble size 

distributions. Attention is now directed in assessing whether the two population balance 

approaches can be applied beyond the bubbly flow regime. 

Two transitional flow conditions: fj =0.491 m/s, gj =0.129 m/s and 

fj =0.986m/s, gj =0.242m/s, are investigated. Similar to the bubbly flow 

simulations as aforementioned, the measured and predicted local radical void fraction, 

Sauter mean bubble diameter, IAC and gas velocity distribution at the measuring station 

of z/D=53.5 for the two flow conditions are depicted in Fig. 9. Notable discrepancies 

can be observed when comparing the numerical results against the experimental 

measurements. Wall peaking values of void fraction and IAC were considerably 

under-predicted by all the models. Particularly, Yao and Morel (2004) model 

substantially over-predicted the Sauter mean bubble diameter in the two flow 

conditions. Consequentially, the over-estimation of the bubble size introduced 

significant error in the void fraction, IAC and gas velocity predictions. 

Considering the MUSIG model, it did not fare much better than the ABND model 

even though higher resolution could be imposed within the model to account for the 

different ranges of bubble sizes. At the core region, local distributions of void fraction 
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and IAC were grossly over-predicted. This could be possibly due to inadequacy of the 

coalescence and breakage mechanisms that have been based on spherical-shape 

assumption is invalid for bubbles beginning to markedly distort or become cap-shape 

bubbles within the transitional flow regime. As suggested by the recent 

phenomenological investigation by Ho and Yeoh (2005), the coalescence and breakage 

rates based on the formulation for spherical bubbles introduced significant error into the 

calculations for these flow conditions. The Sauter mean bubble diameter was grossly 

over-predicted while the gas velocity profile was considerably under-predicted. It was 

apparent that the assumption using spherical-shape bubbles to model distorted bubble 

interactions was not strictly appropriate in simulating bubbly-to-slug transition flows. 

The likelihood of coalescence and breakage mechanisms other than driven by random 

collision and turbulent shearing needs to be further investigated. Moreover, the 

assumption of finely dispersed of bubbles could be another plausible source of error 

where in high void fraction condition, bubbles become closely packed and their 

movements are thus affected by the neighbouring bubbles, which requires more 

investigations.  

6 Conclusions 

An averaged one-group population balance approach, the Average Bubble Number 

Density (ABND) transport equation, coupled with the Eulerian-Eulerian two-fluid 

model is presented in this paper to handle the gas-liquid bubbly flows under isothermal 

conditions. Three forms of the ABND model incorporating three coalescence and 

breakage mechanisms by Wu et al. (1998), Hibiki and Ishii (2002) and Yao and Morel 

(2004) were compared against the MUSIG model and two experimental data by Liu and 

Bankoff (1993a,b) and Hibiki et al. (2001). Interfacial momentum transfer that 

accommodated various interfacial force including drag, lift, wall lubrication and 
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turbulent dispersion force was also accounted. In general, both population balance 

approaches gave close agreement for the local radial distributions of void fraction, 

interfacial area concentration, Sauter mean bubble diameter and gas and liquid 

velocities against measurements. With the MUSIG model, predictions of bubble 

diameter attained remarkable agreement with the measurements and obviously superior 

than ABND models because of the higher resolution imposed on the bubble size 

distribution. As a result, predictions for the gas and liquid velocity of MUSIG model 

were also notably better than those of ABND models. Numerical results clearly showed 

that the range of bubbles sizes exists in the gas-liquid flows required substantial 

resolution and they were achieved through the “Multiple Size Groups” approach. In the 

present study, the computations using the MUSIG model was twice as slow when the 

ABND was applied under the same computational resources. Nonetheless, predictions 

of ABND models were found to yield satisfactory agreement with measurements though 

appearing marginally inferior to some degree to the MUSIG model results. The ABND 

models thus can be considered as a viable option for a rapid design tool in simulating 

bubbly flows with reasonable accuracy. For the case of acquiring highly accurate Sauter 

mean bubble diameter distribution, the MUSIG model serves as the best alternative in 

handling such flows. 

In examining the limitations of both models, simulations for transition flow regime 

(i.e. high void fraction condition) were also investigated. Notable discrepancies were 

found between the numerical and experimental results. Wall peaking values of void 

fraction and IAC were considerably under-predicted by both models. The reason of 

these discrepancies could be due to the departure from the ideal spherical-shape 

consideration to distorted cap-shape bubbles. This inappropriate assumption to 

modelling distorted compared with spherical bubbles interactions introduced significant 
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error into the calculations. This shortcoming could be overcome by possibly enhancing 

the coalescence and breakage mechanisms to include distorted bubble-bubble 

interactions. Conceptually, the one-group approach based on spherical bubbles could be 

extended to two-group approach that distinguishes the “small” spherical bubbles from 

the “large” distorted bubbles (Hibiki and Ishii, 2000b; Fu and Ishii, 2002a,b). Also, 

considerable efforts have been devoted in developing an inhomogeneous MUSIG model 

using different momentum equations to describe individual velocity of each bubble size 

group (Frank et al., 2005). One possible future development is to further formulate the 

inhomogeneous model with the two-group approach. Furthermore, the recent model 

proposal using least square method (LSM) for solving PBEs appears to be an innovative 

approach for bubbly flow modelling (Dorao and Jakobsen, 2006, 2007).  

Finally, as bubbles become closely packed in high void fraction conditions and 

their movements greatly hindered by the neighbouring bubbles, adequate coalescence 

and breakage rates and the interfacial forces based on finely dispersed bubbles need to 

be formulated and incorporated within the models. 
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List of Table Captions 

 

Table 1 Bubbly flow conditions and its inlet boundary conditions employed in the 
present study 

Table 2 Details of numerical meshes adopted for the grid sensitivity study 

Table 3 Diameter of each discrete bubble class for MUSIG model 

 



Table 1  

Superficial liquid velocity, 
fj (m/s) 

Superficial gas velocity, 
gj (m/s) 

Liu and Bankoff (1993a) experiment Bubbly flow Regime Transition Regime 
1.087 
[

00.D/zgα =
(%)] 

[
00.D/zSD

=
(mm)] 

 

0.0270 
[2.5] 
[3.0] 

0.1120 
[10.0] 
[3.0] 

 

Hibiki et al. (2001) experiment    

0.491 
[

00.D/zgα =
(%)] 

[
00.D/zSD

=
(mm)] 

0.0275 
[5.0] 
[2.5] 

0.0556 
[10.0] 
[2.5] 

0.129 
[20.0] 
[2.5] 

0.986 
[

00.D/zgα =
(%)] 

[
00.D/zSD

=
(mm)] 

0.0473 
[5.0] 
[2.5] 

0.1130 
[10.0] 
[2.5] 

0.242 
[20.0] 
[2.5] 
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Table 2  

 Liu and Bankoff (1993a) 
experiment 

Hibiki et al. (2001) 
experiment 

 L×W×H Total L×W×H Total 
Coarse 10×10×40 4,000 10×10×40 4,000 
Medium 20×20×40 16,000 26×26×80 54,080 
Fine 24×24×120 69,120 30×30×120 108,000 
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Table 3  

Class No. Central class diameter, di (mm) 

1 0.5 
2 1.5 
3 2.5 
4 3.5 
5 4.5 
6 5.5 
7 6.5 
8 7.5 
9 8.5 
10 9.5 
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List of Figure Captions 

 

Fig. 1 Map of flow regime and the bubbly flow conditions studied in the present 
study. 

Fig. 2 Visualization and mesh distribution of computational models of: (a) Liu and 
Bankoff (1993a) experiment and (b) Hibiki et al. (2001) experiment. 

Fig. 3 Predicted radial void fraction distribution at z/D =36.0 and experimental data of 
Liu and Bankoff (1993b). 

Fig. 4 Predicted radial liquid velocity profile at z/D =36.0 and experimental data of 
Liu and Bankoff (1993a). 

Fig. 5 Predicted radial void fraction distribution and experimental data of Hibiki et al. 
(2001): (a-d) z/D =6.0 and (e-h) z/D =53.5. 

Fig. 6 Predicted Sauter mean bubble diameter distribution and experimental data of 
Hibiki et al. (2001): (a-d) z/D =6.0 and (e-h) z/D =53.5. 

Fig. 7 Predicted Interfacial Area Concentration (IAC) distribution and experimental 
data of Hibiki et al. (2001): (a-d) z/D =6.0 and (e-h) z/D =53.5. 

Fig. 8 Predicted radial gas and liquid velocity profile and experimental data of Hibiki 
et al. (2001) at z/D =53.5: (a-d) for gas velocity and (e-h) for liquid velocity. 

Fig. 9 Predicted and measured local radial void fraction, Sauter mean bubble diameter, 
IAC and liquid velocity distribution at z/D =53.5. 
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