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� Introduction

A natural number of the form mn where m is a positive integer and n � � is called a perfect

power� Unsolved problems concerning the set of perfect powers abound throughout much of

number theory� The most famous of these is known as the Catalan conjecture� which states

that the only perfect powers which di�er by unity are the integers � and �� It is of interest to

note that this particular problem has only recently been solved using rather deep results from

the theory of cyclotomic �elds �see ����� The set of perfect powers can naturally be arranged

into an increasing sequence of distinct integers� in which those perfect powers expressible

with di�erent exponents are treated as a single element of the sequence� The �rst few terms

of this sequence of perfect powers without duplication are

	� �� �� �� 	�� ��� ��� ��� ��� ��� ��� �	� 	��� 	��� 	�� � � � � �	�

and is listed in the On
Line Encyclopedia of Integer Sequences under Sloane A��	���� The

sequence in �	� has many properties� one being that the in�nite sum of its reciprocals is

convergent �see �����a clear indication of the scarcity of the perfect powers amongst the set

of natural numbers� This latter fact is naturally re�ected in the well known result that the

sequence of perfect powers has zero asymptotic density that is� if N�x� denotes the number

of elements of �	� less than a positive real x� then limx��N�x��x � �� In view of this result�

one may question what is the precise nature of the growth rate of the counting function

N�x�� in particular can an asymptotic estimate for N�x� be found� We shall establish such a

distributional result for the sequence of perfect powers by proving that N�x� � p
x as x���

As will be seen� this asymptotic formula can be interpreted as stating that the perfect squares

dominate the count of the sequence elements in �	� as x��� To contrast the main result� we

shall in addition develop a closed
form expression for N�x� using elementary sieve methods�
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As will be seen� this formula is some what reminiscent to Legendre�s counting function for

the number of primes in the interval �
p
x� x�� In what follows we denote the integer part of

x by bxc�

� An Asymptotic Formula

To help establish the main results of this paper we shall �rst need to formally introduce the

following family of sets�

De�nition ��� Suppose x � 	 and n � Nnf	g� then let An�x� denote the set of perfect powers

having exponent n and which are less than or equal to x that is� An�x� � fkn � k � N� kn � xg

We now establish the asymptotic formula for the counting function N�x��

Theorem ��� If N�x� denotes the number of sequence elements of ��� that are less than or

equal to x� then N�x� � p
x as x���

Proof� The �rst step of the argument will be to obtain upper and lower functional bounds

for N�x�� Assuming without loss of generality that x � � observe 	 � An�x� for each

n � Nnf	g but for n su�ciently large An�x�nf	g � �� De�ning the auxiliary function

M�x� � maxfn � Nnf	g � An�x�nf	g �� �g we clearly see M�x� � �� as A��x�nf	g �� �� and
that N�x� is equal to the number of elements of the set A �

SM�x�
n�� An�x�� Furthermore from

the inequality �blog� xc � x � �blog� xc��� it is immediately deduced that M�x� � blog� xc�
Since for large x the family of sets fAn�x�gblog� xcn�� are not mutually disjoint it follows that

N�x� � jAj �
blog� xcX
n��

jAn�x�j � ���

and since A��x� 	 A� one also has

jA��x�j � jAj � N�x� � ���

Now as An�x� �� � there must exist a largest integer m � 	 such that mn � x � �m � 	�n�

By taking the n
th root through the previous inequality we deduce m � n
p
x � m � 	� that

is m � b n
p
xc and so An�x� must contain b n

p
xc elements� Consequently ��� and ��� together

yields that

bpxc � N�x� �
blog� xcX
n��

b n
p
xc � ���

�



Using the upper and lower bounds in ��� we can establish required the asymptotic estimate

for N�x� as follows� Dividing ��� by
p
x observe for large x the following train of inequalities

bpxcp
x

� N�x�p
x

� bpxcp
x

�

blog� xcX
n��

b n
p
xcp
x

� bpxcp
x

�

blog� xcX
n��

n
p
xp
x

� bpxcp
x

�

blog� xcX
n��

�
p
xp
x

�
bpxcp

x
�

�blog� xc 
 ��
�
p
x

� ���

Via an application of L�Hopitals rule� it is easily seen that

� � blog� xc 
 �
�
p
x

�
log� x

�
p
x

� �

as x � �� moreover by recalling limx��bxc�x � 	� we �nally deduce from ��� that

N�x��
p
x� 	 as x���

Remark� ��� Since the number of perfect squares less than or equal to x is given by bpxc
and as bpxc � p

x we can interpret Theorem ��� as stating that the perfect squares dominate

the count of the sequence elements of ��� as x���

� An Exact Formula

One of the earliest known sieve methods was a simple e�ective procedure for �nding all prime

numbers up to a certain bound x� This procedure which involves the systematic deletion of

all multiples of primes less than or equal to
p
x was captured succinctly by Legendre using

a theoretical analog of the sifting process� known today as the Inclusion
Exclusion Principal�

to study the prime counting function ��x� � jfp � x � p a prime gj� His method led to an

exact formula for the number of primes in the interval �
p
x� x� in particular� if ���� denotes

the M�obius function then

��x�
 ��
p
x� � 
	 �

X
djPx

��d�
jx
d

k
� ���

where the sum is taken over all divisors of Px �
Q

p�px p �see ��� pg�	���� In this section we

shall employ the same elementary sieve method of Legendre to establish an exact formula

for the counting function N�x� which is similar in form to �	��� We begin with a technical

lemma for the sets of De�nition ��	�

�



Lemma ��� For any set of m positive integers fn�� � � � � nmg all greater than unity

m�
i��

Ani�x� � A�n������nm	�x� � ���

where �n�� � � � � nm� denotes the least common multiple of the m integers n�� � � � � nm�

Proof� We begin by demonstrating that An�x� � Am�x� � A�n�m	�x� for any n�m � Nnf	g�
which is the base step of our inductive argument� Now since nj�n�m� andmj�n�m� any number

of the form k�n�m	 where k � N can be rewritten as a perfect power having an exponent n and

m� thus A�n�m	�x� 	 An�x� � Am�x�� Let s � An�x� � Am�x� with s �� 	� then s � kn� � km�

for some k�� k� � Nnf	g� We have to produce a k � Nnf	g such that s � k�n�m	� As

kn� � km� both k� and k� must have the same prime divisors� Writing k� � p��� p��� � � � p�rr
and k� � p��� p��� � � � p�rr we deduce from the equality kn� � km� that n�i � m	i for each

i � 	� �� � � � � r� Consequently njn�i and mjn�i and so n�i � �n�m�
i for some 
i � N� Thus

s � k�n�m	 where k � p��� p
��
� � � � p�rr which establishes that An�x� �Am�x� 	 A�n�m	�x��

Now suppose form � 	 the set identity in �		� holds for an arbitrary set ofm positive integers

fn�� � � � � nmg all greater than unity� Then as ��n�� n�� � � � � nm�� nm��� � �n�� � � � � nm��� observe

from the inductive assumption and the base step that

m���
i��

Ani�x� � �
m�
i��

Ani�x�� �Anm��
�x� � A�n������nm	�x� �Anm��

�x�

� A��n������nm	�nm��	�x�

� A�n������nm��	�x� �

Hence �		� holds for m� 	 arbitrary positive integers greater than unity and so the result is

established by the principal of mathematical induction�

Theorem ��� If x � � then the counting function for the sequence in ��� is given by the

explicit expression

N�x� � bxc 

X
djPx

��d�bx �

d c � ���

where the sum is taken over all divisors of Px �
Q

p�blog� xc p�

Proof� We begin by establishing a slight reformulation for the set A of Theorem ��	� Recall


ing that A � 
blog� xcn�� An�x�� we claim if p�� � � � � pm are the �rst m primes less than or equal

to blog� xc� then in fact A � B where

B �
m�
r��

Apr�x� �

�



The inclusion B 	 A follows automatically by de�nition as each set Apk�x� is included in the

union of sets which form A� To establish the reverse inclusion A 	 B� �rst observe that as

p�� � � � � pm represent the complete list of primes less than or equal to blog� xc� every integer

n � f�� �� � � � � blog� xcg must be divisible by at least one of these primes since otherwise� by

the fundamental theorem of arithmetic� n would be divisible by a prime p� � blog� xc and
so n � blog� xc� a contradiction� Consequently if given any s � An�x�� then s � kn and one

may write n � pr
 for some r � f	� �� � � � �mg and 
 � N� Thus s � �k��pr � Apr�x� and so

every element of A is contained in the set B�

Now N�x� � jAj � jBj and since for x large the family of sets fApi�x�gmi�� are not mutually

disjoint we deduce from an application of the Inclusion
Exclusion Principal applied to the set

B that

N�x� �

mX
k��

�
	�k��
X

��i������ik�m
jApi�

�x� � � � � �Apik
�x�j � ���

where the expression 	 � i� � � � � � ik � m indicates that the sum is taken over all ordered

k
element subsets fi�� � � � � ikg of the set f	� �� � � � �mg� As the least common multiple of the

k prime numbers pi� � � � � � pik is clearly the product d � pi�pi� � � � pik � observe from Lemma

��	 that jApi�
�x� � � � � �Apik

�x�j � jAd�x�j � bx �

d c� noting here we have again used the fact

that the number of elements in the set An�x� is b n
p
xc� De�ning Px �

Q
p�blog� xc p we see

that for each k � f	� �� � � � �mg the inner summation in ��� consists of adding
�
m
k

�
terms of

the form bx �

d c� where d � pi�pi� � � � pik is a divisor of Px having k distinct prime factors�

Consequently as ��pi�pi� � � � pik� � �
	�k the double summation in ��� must sum terms of the

form 
��d�bx �

d c over all divisors dwhere d of Px excluding d � 	� Finally by recalling that

��	� � 	 we deduce that the right hand side of ��� reduces to the right hand side of ����

Remark� ��� An immediate consequence of Theorem ��� is that the number of non	perfect

powers less than or equal to x is equal to
P

djPx ��d�bx
�

d c�

� Numerical Example

We examine now how the explicit expression for N�x� in ��� can be practically implemented

to compute the number of perfect powers less than or equal to a given large positive real x�

For notational convenience let the inner summation of ��� be denoted by

Sk�x� �
X

��i������ik�m

j
x�pi� ���pik �

��
k
�

�



Observe that in order to evaluate each Sk�x�� one must sum the terms bx�pi� ���pik ���c over

those subscripts i� � � � � � ik whose values are chosen from the ordered k
element subsets

of f	� �� � � � �mg� consequently the number of summands is
�
m
k

�
� Thus on �rst acquaintance�

it would appear that the calculation of Sk�x� would involve having to determine for each

	 � k � m� all
�
m
k

�
combinations of prime numbers from the set fp�� � � � � pmg� However� for

su�ciently large x this may not be necessary since for certain values of k one can show that

Sk�x� �
�
m
k

�
as follows�

To begin consider for any x � � the arithmetic function k�x� � minfk � N � p�p� � � � pk � xg�
where again pi denotes the i
th prime number� We wish to �rst show that if there are m

primes less than or equal to blog� xc� then k�blog� xc� will be at most m 
 � when m � ��

Recalling for any n � �� there exists a prime strictly between n and �n �Bertrand�s Postulate��

observe as each pi � �� that

pm�
pm���pm��pm��� � pm�
�pm��pm��� � pm�
pm � pm�� � blog� xc �

Thus when m � � we have p� � � � pm�� � blog� xc and so k�blog� xc� � m 
 �� Now for

blog� xc � p
 � 		 and k � k�blog� xc� we note that in the summation Sk�x� all
�
m
k

�
combinations of products pi� � � � pik � p� � � � pk�blog� xc� � blog� xc� Consequently from the

inequality �blog� xc � x � �blog� xc�� it is immediate that

	 � �blog� xc�pi� ���pik �
�� � x�pi� ���pik �

��

� ��blog� xc����pi� ���pik ��� � � �

Thus bx�pi� ���pik ���c � 	 and so the summation Sk�x� must consist of adding
�
m
k

�
terms all of

which are identically 	� that is Sk�x� �
�
m
k

�
� Hence for x � �p� � ��� the number of perfect

powers less than or equal to x can be calculated by the alternate expression

N�x� �

k�blog� xc���X
k��

�
	�k��Sk�x� �

mX
k�k�blog� xc�

�
	�k��

�
m

k

�
� �	��

For x � ��� the value of the arithmetic function k�blog� xc� will in practice be much smaller

than the number of primes less than or equal to blog� xc� consequently in calculating N�x��

we shall only have to evaluate Sk�x� for the few values of 	 � k � k�blog� xc�� In what

follows the reader may wish to consult the table of perfect powers less than or equal to 	��

by Serhart Sevki Dincer in �	��

Example ��� Consider x � ��
 � ���	��� From the table of perfect powers one can by

inspection deduce that N�x� � ���� To demonstrate the use of �
� we shall apply the alternate

�



expression in �		� to verify the number of perfect powers less than or equal to x is �
�� Now

blog� xc � 	� and so there are m � � primes� namely �� �� �� �� 		� 	�� 	� less than blog� xc�
As � � � � � � 	� � � � � we have that k�blog� xc� � � and so from ����

N�x� � S��x�
 S��x� �
�X

k��

�
	�k��

�
�

k

�
� �		�

Using a calculator one 
nds in this instance that

S��x� � b
p
��
c� b �

p
��
c� b �

p
��
c� b �

p
��
c� b ��

p
��
c� b ��

p
��
c� b ��

p
��
c

� �	� � �� � 	� � � � � � � � � � ��� �

To evaluate S��x� 
rst recall from de
nition

S��x� �
X

��i��i���

b��
�pi�pi� ���c �

Now if pi�pi� � 	� then b��
�pi�pi� ���c � 	� However� of the
��
�

�
� �	 combinations of products

pi�pi� with 	 � i� � i� � �� the only products less than 	� are � � �� � � �� � � � and � � �� Thus
the summation S��x� will consist of adding �	 
 � � 	� terms all of which are identically 	�

together with the sum of the terms b �
p
��
c� b ��

p
��
c� b �	

p
��
c and b ��

p
��
c� which are �� �� �

and � respectively� Consequently S��x� � 	�� �� ����� � �� and so 
nally adding in the

alternating sum of binomial coe�cients in ���� yields

N�x� � ���
 �� � ��
 �� � �	
 � � 	 � ��� �

as required�
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