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Perceptually Lossless Medical Image Coding

David Wu*, Damian M. Tan, Marilyn Baird, John DeCampo, Chris White, and Hong Ren Wu

Abstract—A novel perceptually lossless coder is presented for
the compression of medical images. Built on the JPEG 2000 coding
framework, the heart of the proposed coder is a visual pruning
function, embedded with an advanced human vision model to iden-
tify and to remove visually insignificant/irrelevant information.
The proposed coder offers the advantages of simplicity and mod-
ularity with bit-stream compliance. Current results have shown
superior compression ratio gains over that of its information
lossless counterparts without any visible distortion. In addition,
a case study consisting of 31 medical experts has shown that no
perceivable difference of statistical significance exists between the
original images and the images compressed by the proposed coder.

Index Terms—Biomedical imaging, double blind testing, image
coding, just-not-noticeable- difference, medical image coding,
perceptually lossless image coding, 2-staged forced choice, vision
model.

1. INTRODUCTION

DVANCED medical imaging technologies, such as com-

puted tomography (CT), magnetic resonance imaging
(MRI) [1], [2], and traditional radiography performed using
computed radiography (CR) [3] and digital radiography (DR)
[1], [3] are fundamental tools in providing more efficient and
effective healthcare systems and services. The key to the pro-
liferation of these technologies is the digital representation of
images. Digital medical images have potential benefits in terms
of durability and portability. In addition, it offers versatility,
enabling or expanding its applications in medical imaging.
Durability permits a digital image to be stored indefinitely
without any degradation in image fidelity and portability allows
a digital image to be transmitted to any desired destination over
communication networks with relative ease. Problems involving
storage space and network bandwidth requirements arise when
large volumes of images are to be stored or transmitted, as is
the case with medical images [4]. From the diagnostic imaging
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point of view, the challenge is how to deliver clinically critical
information in the shortest time possible. A solution to this
problem is through image compression.

Generally, image compression schemes can be classified into
two distinct categories, reversible (information lossless) and
irreversible (information lossy) compression [4]. Reversible
compression schemes are highly desired as information in-
tegrity is maintained throughout the whole encoding and
decoding process. However, at best, the existing state-of-the-art
technology achieves compression ratios between 2:1 to 4:1 and,
thus, has been the limiting factor in its proliferation [5]. On the
other hand, irreversible compression schemes provide greater
compression gains at the expense of information integrity. Any
deterioration in image integrity may lead to visible distortions,
if the degradation is not monitored and controlled properly.
Nevertheless, it is the degree of loss of diagnostic information,
which must be ascertained to determine the acceptance of a
medical image compression strategy. As such, studies have
shown evidence that irreversible image compression with com-
pression ratios ranging from 10:1 up to 20:1 are achievable for
medical images without significantly impairing their diagnostic
value [5]-[8]. A possible approach to circumventing the limi-
tations of both reversible and irreversible image compression is
through perceptually (or visually) lossless image coding (PLIC)
[9]. PLIC provides greater compression gain than reversible
techniques while yielding compressed images without any
degradation in visual quality. The focus of this paper centers
on a novel perceptually lossless image coding technique —
presented as an alternative for the compression of medical
images. It is important to note that an objective of this paper
is to determine if images compressed by the proposed coder
(PC) are perceptually lossless to the original images. Thus,
perceptual image enhancement as well as feature extraction are
not considered here.

Based on the JPEG2000 coding framework [10], the heart of
the PC is the implementation of an advanced visual pruning
function combined with a human vision model [11], [12] to
identify and to remove visually insignificant/irrelevant informa-
tion as well as to offer the benefits of simplicity and modularity.
Furthermore, the visual pruning function can be embedded into
any discrete Wavelet transform-based coder while maintaining
bitstream compliance. This has been demonstrated previously
in [13], [14] based on the Set Partitioning of Hierarchical Trees
(SPIHT) coding framework [15]. Current results have shown
improved coding performance over the JPEG-LS LOCO-I algo-
rithm [16] without any perceivable visual distortions. In terms of
subjective performance, based on a subjective assessment with
31 medical expert viewers, no perceivable differences of sta-
tistical significance exists between the original images and the
images compressed by the PC.
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Fig. 1.

Top (left to right): Original; proposed coder; NLOCO (d = 2) [16] (see Section IV); Bottom (left to right): Difference of PC and original; Difference of

NLOCO (d = 2) and original. As an example, this image shows the distribution of the pixel differences. Both error images have been normalized to the largest
absolute pixel difference between the two images, which was 12. Here, NLOCO only has a maximum pixel difference of 2. The errors in the PC difference image
are concentrated only in areas where visual masking occurs (see Section III), while errors in the NLOCO difference image are distributed across the entire image.
White pixels in the error images represent no difference while black pixels represent that a difference exists.

This paper is organized with Section II providing a brief
overview of medical image coding and an introduction to PLIC.
Section III presents the PC, the underlying vision model and
its adaptation into the JPEG 2000 coding framework [17]. Sec-
tion IV evaluates the performance of the PC through coding and
subjective analyzes. Finally, a conclusion is drawn in Section V.

II. MEDICAL IMAGE CODING
A. An Overview

The coding of medical images differs from the coding of stan-
dard natural images in that it is imperative that the integrity of
the diagnostic information in medical images are maintained
while providing a reduction in storage space and network trans-
mission bandwidth requirements. Inevitably, the ultimate solu-
tion is through reversible compression. However, at present, the
existing state-of-the-art reversible technologies cannot achieve a
significant reduction in bit-rate deemed adequate for the current
practical applications in biomedical imaging [5]. A survey of re-
versible coding techniques for medical images can be found in
[18]. Other approaches such as progressive image transmission
[19], [20] and irreversible image coding schemes [17], [21]-[23]
have been investigated and applied to alleviate this problem.

Irreversible coding techniques generally can be subclassed
as rate-driven, quality-driven, error-driven and hybridized.
Rate-driven coders encode images at a given bit-rate and, thus,
a quality level cannot be guaranteed. Examples of rate-driven
coders include JPEG Baseline [24], standard JPEG2000 [10],
vector quantization [22], and fractal coding [23]. In con-
trast, quality-driven coders encode images at a given quality
level while attempting to achieve a best possible minimum

bit-rate. Error-driven techniques encode an image such that
the maximum absolute pixel error/difference is no more than a
specified error value, d. Error-driven techniques do not fall into
the categories of rate-driven or quality-driven since they do
not guarantee to achieve a fixed bit-rate or perceptual quality
criterion. Near-lossless coders such as JPEG-LS near-lossless
[16] is an example of an error-driven coder.

Finally, hybridized coding techniques [25], [26] encode areas
of an image [region of interest (ROI)] with a reversible coding
technique and the remaining areas with an irreversible tech-
nique. The selection of the ROIs can be done manually or au-
tomatically. Although automated ROIs selection is a practical
solution, the recognition and segmentation of the ROIs is a com-
plex issue [27].

B. Perceptually Lossless Image Coding

PLIC falls into the quality-driven category, that is, to encode
an image at the best possible minimum rate such that it is indis-
tinguishable from the original [9]. A common misconception is
that perceptually lossless can be achieved with any rate-driven
coder through “tuning” the bit-rate to a point where no loss
of detail can be seen. The key issue here is that image quality
is dependant on image content and rate-driven coders, such as
baseline JPEG [24], cannot guarantee reliable identification and
removal of visually insignificant/irrelevant information (Fig. 1
and Table I). Table I demonstrates that there is no fixed error
or bit-rate during the encoding phase of PLIC and, thus, picture
quality is image content dependant. These errors were obtained
by subtracting the PC compressed images from their respective
original images.
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TABLE 1
THE MAXIMUM AND MINIMUM PIXEL DIFFERENCES BETWEEN THE ORIGINAL
IMAGE AND THE IMAGES COMPRESSED BY THE PC

Image PC Maximum PC Minimum
Name Pixel Difference | Pixel Difference
Knee 18 -18
SideBrain 14 -18
Brain2 12 -12

The theoretical significance of PLIC is that by employing
an advanced model of human vision it is possible to identify
visually irrelevant/insignificant information and thereby to re-
move only psycho-visual redundancy [4]. Thus, the framework
of this problem can be posed as what is the minimum threshold
of human vision such that it is just below or equal to the just-
not-noticeable-difference (JNND) threshold, that is

d(x,%) < JNND (1

where d is a distortion function computing the visually
significant difference between an original image x and a recon-
structed image %, and JNND is the JNND level. A solution to
this problem is best described by models of the Human Visual
System (HVS). Although the concept of PLIC has appeared
previously in [9], its application to medical imaging is still in its
infancy as seen in the limited treatment of the subject in medical
imaging literature [28], [29]. The contributions of this paper
include an embedded advanced human vision model to identify
and to remove visually insignificant/irrelevent information
while maintaining bitstream compliance with the JPEG 2000
coding framework [10] and subsequently retaining compliance
with the Digital Imaging and Communications in Medicine
(DICOM) standard [30]. In addition, a subjective assessment
of the coder performance with 31 medical expert viewers using
16-bit medical (CT, MRI, and CR) images is presented.

III. PROPOSED CODER
A. Vision Modeling

Traditional metrics, such as the mean squared error (MSE),
the peak-signal-to-noise ratio (PSNR) and its variations [4] have
served as the basic means of quantifying visual distortions and
quality. These metrics are commonly classified as objective raw
mathematical measurements and offer the advantage of sim-
plicity in computation, requiring only a processed image and
the original image. However, it is well known that these met-
rics do not correlate well with what is perceived by a human
observer [31]. A solution is to utilize metrics which incorpo-
rate the perceptual characteristics of the HVS. This approach
has demonstrated its effectiveness in picture quality/impairment
assessments [32]-[35].

The HVS can be described in three parts [36]. The first
part describes the optical characteristics of the human eye
with respect to its sensitivity relative to background luminance
levels and varying spatio-temporal frequencies. This sensitivity
is termed “contrast sensitivity” [37], which is functionally
described as the contrast sensitivity function (CSF). The second
part is the visual pathway and this provides a link between
the eye and the visual cortex. Finally, the third part describes
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the formation of images within the visual cortex. Neuron
interactions in the visual cortex leads to the visual masking
phenomenon [38] Visual masking affects a visual signal by di-
minishing its visibility when it is within the presence of another
visual signal. This occurs between neurons from similar (intra)
and different (inter) frequency, orientation and color channels.
It is these interactions that are modeled to describe the visual
masking effect.

The contrast gain control (CGC) (Fig. 2) coined by Watson
and Solomon [33] serves as a vision model template imple-
mented here. This vision model template is a unification of other
earlier vision models by Teo and Heeger [34] and by Watson
and Solomon [33]. The CGC consists of a linear transform, a
masking response and a pooling and detection phase. The CGC
takes two inputs, that is, a reference (original) image and a pro-
cessed image.

1) Linear Transform: A linear transform (7") takes into ac-
count of the frequency and orientation selectivity of the HVS

X = T(x) @)

where, X and x are the neural and pixel domain images,
respectively. Immediately after a linear transform, a set of CSF
frequency sensitive weights (Table II) are applied to modulate
the neural image to the sensitivity levels of the human eye. One
issue in vision modeling is the selection of filters for linear
transform. Over-complete (redundant) transforms, such as the
steerable-pyramid transform (SPT), are known to provide a
more accurate account of the visual mechanisms of the HVS
since they are free of “aliasing” and are shift invariant [33],
[34], [38], [39]. However, a drawback of using an over-com-
plete transform is that it requires additional resources to code.
To counter this problem, critically sampled (nonredundant)
transforms can be employed. The vision model here uses the
discrete wavelet transform (DWT) with the Daubechies 9/7
(D97) filter set, which are used for both vision modeling and
coding. An alternative is to employ separate transform filters,
one for modeling and one for coding. This leads to a signifi-
cantly higher computational complexity. The 5/3 filter set by
Le Gall and Tabatabai [40], adopted in the current JPEG 2000
standard for reversible coding [10], was not considered for the
current investigation due to its short filter length. Although
computationally less demanding, short filter lengths may cause
dramatic ringing distortions when coefficients are quantized.

Although there are issues, such as aliasing and shift variance,
associated with using the DWT with the D97 filter set, it never-
theless provides several practical advantages for the current ap-
plication. One such advantage is that it is linear and complete.
Therefore, this model can be embedded into any Wavelet based
coding framework, such as the JPEG2000 [10], while main-
taining bit-stream compliance and, thus, would not require a
specialized decoder. Subsequently, the second advantage is that
bit-stream compliance with the JPEG2000 coding leads to com-
pliance with the DICOM standard [30]. Due to the sensitivity!
of the vision model, only a 5-level Mallat [41] Wavelet trans-
form was employed.

ISensitivity refers to model parameters tuned to a specific level of decompo-
sition.
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Fig. 2. CGC model. The example given here only models the primary visual cortex. The CSF can be applied prior to or after the frequency decomposition. The
difference between the two approaches is the domain in which the CSF operates in — time or frequency. Here, the CSF operates in the frequency domain.

TABLE 1I
THE VISION MODEL PARAMETERS DERIVED FROM SUBJECTIVE EXPERIMENTS
IN [11]. THE CSF — LL WEIGHT IS NOT USED

| Parameters | |
CSF — LL 1.4800
CSF —1 1.5500
CSF —2 1.7700
CSF -3 1.6800
CSF —4 1.2900
CSF -5 0.8050
kv 1.0880
fo 09876
T 55550
Yo 7.6800
pr. 25800
Do 23950
q 2.0000
a7 0.7588
96 04834

2) Masking Response: The second stage of the CGC is the
masking response, which itself is encompassed into a single
multichannel response function, of the form [12]

Ez 1 9[m,n]
Iz 1,0[m,n] + 7%

3)

Rzg[m,n] =kz-

where m and n are the spatial frequency coordinate of a coef-
ficient, Ez ; g[m,n] and Iz ; g[m, n] are excitation and inhibi-
tion functions, kz and 'y% are the scaling and saturation con-
stants (Table IT), Z ¢ {O, T}, with © and Y representing the
interorientation and intrafrequency masking domains, respec-
tively2. I = {1,2,3,4,5} and § = {1,2, 3} represent the fre-
quency levels and the orientation bands, respectively. The exci-
tation and inhibition functions for each domain are defined as
follows:

= leg[m,n]p@ (4)
n]’r o)

Eo 1,9[m,n)
n] = leg[m.

’

3
Togelm,n] =Xielm,n]+ > Xya[m,n]*  (6)
a=1, a#b
8 m-1 n-+4l1

o Z Z Xy 0[u,v] + oy[m,n]? (7)

u=m—Ilv=n-—I

Iy 1 9[m,n] =

2Interfrequency masking was omitted to simplify the model.

1=11=21=3 1=4 =5

D
Il
S}

Fig. 3. Orientation and spatial frequency locations of the hierarchical (Mallat
wavelet) decomposition. Each frequency level has three orientated bands,
6 = {1,2,3}, except for the lowest frequency level. At the lowest frequency,
there is an additional isotropic band (LL) (top left corner). At frequency level
4, the center (shaded) coefficient represents X4 ;[m, n] and the surrounding
coefficients are Xy 1[u,v] withu = {m —4,m — 3,...,m + 3,m + 4}
andv={n—4,n—3,...,n+3,n+4}.

where X, g[m,n] is the transform coefficient at orienta-
tion 6, spatial frequency location [m,n] and frequency
level | (see Fig. 3). Ig 1 6[m,n] is the sum of transformed
coefficients spanning all orientations. Iy ;g[m,n] is the
sum of neighboring coefficients about X;¢[m,n| (Fig. 3).
The neighborhood, 4; = (2] + 1)2, is a square area sur-
rounding X; g[m, n], whose size is dependant on the frequency
level of X;¢[m,n]. Thus, coefficients from the highest fre-
quency level would have the largest neighborhood. This
approach attempts to equalize the uneven spatial coverage
between images of different frequency levels inherent in
multiresolution representations. The neighborhood variance
oilm,n] = (1/A) T it (Xyou,v] = plm, n])?,
with u[m,n] representing the neighborhood mean, has been
added to the inhibition process to account for texture masking
[42]. Exponents pz and ¢ are governed by the condition
pz > q > 0 according to [33]. Currently, q is set to 2.
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Generalised JPEG 2000 Coding framework.
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Input C(?mpressed
Image ! Forward Wavelet X Quantisation X Entropy i bit-stream
i Transform o Coder i
Generalised JPEG 2000 Coding framework embedded with Visual Pruning.
Input F . Cbompresse(l
H orward . q < . s o it-stream
Image x : N X X i
g¢ x N Wavelet > Vis L!al > Quann‘s ation X > E{ltmpy s >
H X Pruning (step size =1) Coder i
Transform

Fig. 4. Generalized JPEG 2000 (hierarchical Mallat wavelet transform [41]) coder embedded with the visual pruning function. Modularity and simplicity is
achieved without disrupting the bit-stream flow. Thus; a specialized decoder is not required.

The Visual Pruning Process.

> CSF P Masking —.—¢
Detection and DT(!,e,m,n)
Poolin i
CSF > Masking 4—f \/_\/
i Visually _
X )‘,.\,\ 1% Adaptive .:i
¢ #*| Coefficient L
Pruning
Vf‘(ﬂ.m.u A ‘
£
> Bit-plane Percentage R’P(l,e,m,n)
Truncation Response

Fig. 5. Visual pruning function.

3) Detection and Pooling: The final component of the
model detects the perceptually significant difference between
two images. A squared-error (I norm) function defines the
distortion within each masking channel. The total distortion is

the sum of the distortions over all masking channels, given as
(12]

Dy, [m,n] = Zgz “|Raz,olm,n] — sz,z,o[m7n]|2 )
zZ

where I, ,, and Iy, , , are the masking responses of the two
images, a and b, respectively, and gz being the channel gain
(Table IT) with Z ¢ {©, T}, where © and T are the interorien-
tation and intrafrequency masking domains. The pooling equa-
tion, (8), pools the spatial and orientation masking responses
for each individual coefficient and provides an overall percep-
tual distortion, D1, ,[m,n], between the two images.

B. Coder Adaptation

Whilst it is possible to embed the vision model into the post-
compression rate-distortion optimization stage [10] and to re-

place the MSE distortion metric as done so previously [11],
the approach taken here embeds the vision model into a visual
pruning (VP) function. This modular approach enables the VP
function to be easily adapted into other Wavelet based coding
frameworks while maintaining bit-stream compliance [13], [14]
(Fig. 4). The VP function (Fig. 5) consists of two stages. For
each frequency level, /, at each orientation, #, and at a particular
location (m,n), the first stage takes in a reference coefficient,
X 6[m, n] and generates a set of distorted coefficients, Vi g s n-
These distorted coefficients are generated through progressive
bit-plane truncation from the least significant bit (Isb), upwards.
That is, given B € {0,1,2,...,3}
‘lieB }

where | | is a truncation function, X;, ,[m,n] is a coeffi-
cient from a reference image truncated to the i*" bit-plane,
where (3 specifies the maximum number of bit-planes for
the largest coefficient in the transformed image, X. Thus,

Viomn = {Xil‘o[m,n] | i ¢ B}. Immediately, each distorted

©))
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Fig. 6. The parameterization process. The first stage is the vision model
parameterization. The second stage is the calibration of the visual thresholds.
In this figure, the vision model parameters are subjectively parameterized once
to capture the visual nature of the images governed by the visual mechanics of
the observers. Visual thresholds are then calibrated to the JNND level for each
type (modality) of medical images for optimal coding performance.

coefficient from the set, V g » is compared with the reference
coefficient using the vision model described in the previous
section. This generates a set of perceptual distortion measures,
D1 (1,6,m,n) = {DTi(,_g)[m,n] | i € B}, and a set of percentage
responses, Rp (1 9.mn) = 1Bp,6,mn) | © € B}. The per-
centage response, R p,(1,6,m,n), fOr a given reference coefficient
and a distorted coefficient, is defined as

ZR’i(z,l,O) [m7 7‘L]
Z

=5————|1¢B
XZ:RO(Z,I,O) [m7 n]

Rp,(1,6,mmn) = (10)

where R, ., [m,n] and R; . [m,n] are, respectively, the
masking response, for a reference and a distorted coefficient,
taken from (3). Z ¢ {©, Y}, denotes the orientation and local
responses, respectively. Equation (10) provides a measurement
of the depreciation of the response energy over both the intrafre-
quency and interorientation channels.

The last stage gathers the set of distortion measures,
D1 (1,6,m,n) the set of percentage responses, Rp (i g,m,) and
performs visually adaptive coefficient pruning. By comparing
D1 (1,6,m,n) and Rp(1.9,m.n) to a set of predetermined INND
thresholds, 7p and 7p, respectively, a coefficient is truncated
[see (9)] to a perceptually optimal bit-plane level, iqp¢, only
when a distortion measure from Dz ;¢ ny i less than or
equal to a JNND threshold, 7p(; ) and when a percentage
response from Rp ;.9 m ) is less than or equal to a percentage
response threshold 7p ; 4y. Thus

leg[m, ’I’L]

2iopt

(1)

Xiopt,ﬂ [mvn] = { J X 2iopt

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 3, MARCH 2006

where

lopt = MaXx {L e BI(Driq,0,mmn) < Tp,e))

and
(Rpi1,6,mm) < TP(z,e))}~

All transform coefficients are subjected to this perceptual fil-
tering operation except for those in the isotropic lowpass band
(LL). The values in both 7p and 7p were derived from subjec-
tive experiments. For each orientation, 6, and each frequency
level, [, there are unique pairs of predetermined thresholds
TD(lﬂ) and Tp(l’g), for 6 = {].7 2., 3} and | = {]., 2., 3, 47 5}

C. Parameterization

There are two stages to the parameterization process. The
first concerns the vision model parameters (Table II), which are
subjectively determined [12] by capturing the visual nature of
the images governed by the visual mechanics of the observers.
The second is a set of visual thresholds 7p and 75, which are
mapped to the JNND level for perceptually lossless encoding
(Fig. 6). Vision model parameters affect the accuracy of the vi-
sual distortion measure and the thresholds capture the visually
sensitive nature of the images. Therefore, a change in vision
model parameters would require a re-calibration of the thresh-
olds. Hence, suboptimal vision model parameters may impede
the compression ratio gain once the visual thresholds have been
mapped to the JNND level for a particular type (modality) of
medical images.

Nevertheless, while a direct importation of vision model pa-
rameters (Table II) from an 8-bit natural image coder [11], [12]
to a 16-bit medical image coder may be less than adequate for
the desired application, these imported parameters provide a
rough indication of the performance capability of the PC. The
set of visual thresholds 7p and 7p were obtained through the
testing of approximately 5120 (32 x 32 pixels) 16-bit medical
greyscale subimages. These subimages originated from a par-
ticular base image (512 x 512 pixels), which was distorted in 20
different ways through bit-plane filtering. These 20 distorted im-
ages were then partitioned into 256 (32 x 32 pixels) individual
pieces. Subimage testing is preferred in this case over the com-
plete image testing because it is able to quantify the different
local threshold levels in different regions within images, i.e.,
the segmented test is better equipped to capture the localized
variation in image quality. Due to the varying nature of medical
images (CT, CR and so forth), each set of medical images of a
particular type required their own set of 7p and 7p thresholds
for optimal coding performance, thus, the above procedure was
subsequently repeated. Once the JNND level of test materials
have been mapped, the thresholds 7p; ¢y and 7p(; ¢y can be
determined by soliciting the responses (3) and (8) of the subim-
ages in the JNND map. In other words, only subimages at the
JNND level will be used to determine the thresholds 7p; 4y and
Tp(1,6)- A stringent test of flipping back and forth the encoded
image with the original image was used. This employs the tem-
poral sensitivities of the HVS to ensure that “distortion flickers”
between the two images are not visible.
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Fig. 7. Double blind 2SFC experiment flow. The first stage asks the viewer if
the two images are identical (“Yes” or “No”). If "No’, then the second stages asks
the viewer which of the image in the pair best describes the anatomy (“Left,”
“Right,” “Either”).

IV. CASE STUDY
A. Methodology

There are two aims to this study. The first is to ascertain if dif-
ferences can be perceived between original images and images
compressed by the PC. The secondary purpose is to determine if
the PC retains clinical information. To answer these questions, a
double blind two staged forced choice (2SFC) (Fig. 7) compar-
ative experiment with two benchmark coders was conducted.
These coders were the JPEG-LS LOCO-I lossless coder [16]
and the JPEG-LS NLOCO near lossless coder [16] withd = 2.
The error, d, specifies the maximum pixel difference between
the original image and the NLOCO compressed image. Only 3
coders were chosen to simplify the analysis of the results.

A 2SFC is favored over a standard dichotomous forced choice
(DFC) [43] experiment, since it minimizes systematic errors in
the experiment [44]. The experiment was conducted using 2 cal-
ibrated Barco 10-bit 20.8-inch medical grade LCDs, which were
placed next to one another. Each screen has a maximum resolu-
tion of 1536 x 2048 pixels (3 megapixels). The source material
for the test consisted of 30 medical images from 30 different
patients, comprising CT, CR and MRI images. Each medical
image has a bit-depth of 16 bpp and a spatial resolution ranging
from 208 x 256 pixels up to 3732 x 3062 pixels. 30 source im-
ages produced a total of 90 test images from 3 coders, each with
30 images used in 9 permutations, e.g., LOCO versus LOCO,
PC versus LOCO, LOCO versus PC, and so forth. Each viewer
had to evaluate 30 different pairs of images.

In order to ascertain the effectiveness of the PC, viewers were
allowed to change the windows and levels [30] as they would
in their examinations. The testing software changed the win-
dows and levels simultaneously on both screens. This was ap-
plied through linear contrast stretching [4] [see (12)] as specified
in the DICOM standard [30]
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TABLE III
MODEL 1 (ARTEFACT ANALYSIS) ANALYSES WHEN TwO TRULY IDENTICAL
IMAGES ARE SHOWN. THIS TABLE SHOWS THE COMPUTED AVERAGE
RESPONSE (Iavg) AS IDENTICAL, WHICH SERVES AS A “BASELINE” FOR
“IDENTICAL”

| [Avs A BvsB [ CvsC]

T 0.69 0.79 0.77
I 0.31 0.21 0.23
I+1 1.00 1.00 1.00
Iavg

0.75

where x[4, j] and X[¢, j] are the original and transformed pixels
respectively at location (4, ), n, the gradient, is defined as m =
1023/ (uy — 1) with u, = w. + w,, /2 and I, = w, — Wy, /2,
and C is a clamping function that maintains pixel values within
an unsigned 10-bit range. Here w, and w,, are the window
center (brightness) and the window width (contrast), respec-
tively [30]. Differences were readily perceivable between 8-bit
and 10-bit screens, with the 10-bit screens having better con-
trast. Nevertheless, the images were still perceptually lossless
in both instances.

The experiment was conducted at Monash Medical Centre
in a standard radiological reporting room, simulating a typical
evaluation environment. However, only one person and an ex-
periment supervisor were allowed in the room during the exper-
iment to prevent contamination of results. The 2SFC approach
poses the following questions to each viewer: 1) Are the image
pairs identical (“Yes” or “No”) and 2) If not, which of the image
in the pair best displays the anatomy (“Left,” “Right,” or “Ei-
ther,” if no preference was held). It is important to note that
each viewer was asked not to determine the pathology or to per-
form a diagnosis, so as to avoid inducing “emotional” biases
into the results. A total of 31 medical expert viewers completed
the experiment, amongst whom 27 were radiologists and 4 were
radiographers. Of the 27 radiologists, 15 were consultants and
12 were trainee imaging consultants. An interesting observation
was that the viewing behavior of each expert was not a simple
evaluation of picture quality but also a natural reaction to search
for pathological and physical traits in the medical image.

B. Analysis and Results

Four data analysis models have been employed to interpret
the raw results of the experiment. The first two models aid the
first aim of the experiment, while the last two models aid the
last aim of the experiment, as discussed in the previous subsec-
tion. The first model determines a baseline for “identicalness”
(the average success rate of identification). This baseline is as-
certained by gathering the results for the first question of the ex-
periment when two truly identical images are shown. An image
is shown on both the left and the right screens and the viewers
are asked if they are identical.

To simplify the representation of the results, the lossless
LOCO coder is labeled as “A,” the PC is labeled as “B” and
the NLOCO coder is labeled as “C.” The results of the first
model are shown in Table III. In Table III, [ is the response in
each category perceived as identical, I is the response in each
category perceived as not identical and I,y is the average of
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TABLE IV
MODEL 2 DETERMINES IF THE PROPOSED CODER PRODUCES IMAGES THAT
ARE PERCEIVED AS BEING IDENTICAL TO THE ORIGINAL
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TABLE VI
MODEL 4 DETERMINES IF THE IMAGES BY THE ORIGINAL (LOSSLESS) CONTAIN
THE SAME DIAGNOSTIC VALUE AS THE IMAGES COMPRESSED WITH
THE PROPOSED CODER

[ [ AvsB | Avs C | Cvs B |

Response as

Identical (z) 0.74 0.70 0.71

Mean (z)

(Baseline for 0.75

identical)

Standard (oz)

Deviation 0.01

Z-Score (z) -0.78 -3.57 -2.85

Outcome Not Significant | Is Significant Is Significant
(Is Identical) (Not Identical) | (Not Identical)

TABLE V
MODEL 3 (ARTEFACT ANALYSIS) ANALYSES WHEN TwO TRULY IDENTICAL
IMAGES ARE SHOWN. THIS TABLE SHOWS THE COMPUTED AVERAGE
RESPONSE AS IDENTICAL AND EITHER (I E..,), WHICH SERVES AS A
“BASELINE” FOR “CLINICALLY RETAINING”
\ [ Avs AT BvsB [ CvsC |

IE 0.72 0.81 0.79
IE 0.28 0.19 0.21
IE+TE 1.00 1.00 1.00
IEqug 0.78

the responses in I, across all three categories. In the event of
when an image compressed by A is shown against the same
image compressed by A (A versus A), 69.39% (rounded up) in
proportion have correctly determined (a success) that the two
images are identical. In the event of B versus B, 78.79% have
correctly determined that the two images are identical and in the
case for C versus C, 76.64% have correctly responded that the
two images are identical. Thus, the baseline for “identicalness”
is formed by taking the average of these successes, across each
category, which leads to an average success rate of correct
identification of 74.94%.

The second model takes into account of the baseline deter-
mined in the first model. Here, the aim is to determine if the
results for A versus B, A versus C, and C versus B are, in each
event, considered as identical, that is, if they significantly far
from the baseline of “identicalness” (74.94%). This is done by
computing the z-score [see (13)] of the two tail 95% confidence
interval test [44], [45]

(13)

where z is the computed z-score, = and = represent the sample
observation and sample mean, respectively, and oz = /bs X by
is the sample standard deviation, where b, and by represent the
binomial success and binomial failure, respectively [44], [45].
Hence, when |z| < 1.96, there is no significant variation [45]
and, thus, there is no perceivable difference of statistical sig-
nificance. The results for this model can be found in Table IV.
Therefore, in the case for A versus B, 73.81% of selections con-
sidered both images as identical. By taking the average success
rate of identification (74.94%) found in the previous model and

3Normal distribution is approximated with binomial data.

[ [ AvsB | AvsC |

Response as Identical

& Either () 0.77 0.73

Mean (Z)

(Baseline for Identical 0.78

& Either)

Standard (oz)

Deviation 0.01

Z-Score (z) -0.46 -3.38

Outcome Not Significant Is Significant
(Is Clinically (Not Clinically

Retaining) Retaining)
TABLE VII

CODING PERFORMANCE, IN TERMS OF BIT-RATE, OF LOCO, PC AND NLOCO
d = 2. EACH IMAGE HAS A MAXIMUM BIT-DEPTH OF 16 BITS PER PIXEL

Image Dimensions Image Bitrate (bpp)
Name (pixels) Type | LOCO | PC | NLOCOg42

Ankle 1 2572 x 2040 CR 5.852 | 3.945 3.557
Ankle 2 1516 x 2044 CR 5.695 | 3.758 3.395
Body 1 512 x 512 CT 4.191 | 2.650 2.494
Body 2 512 x 512 CT 5.933 | 4475 4.116
Body 3 512 x 512 CT 6.851 | 4.675 4.517
Brain 1 512 x 512 CT 3.380 | 2.040 1.963
Brain 2 512 x 512 CT 3.841 | 1.595 2.058
Brain 3 512 x 512 MR 4.687 | 3.981 2.959
Brain 4 208 x 256 MR 3.898 | 2.500 1.624
Brain 5 512 x 512 CT 3.681 | 2.163 2.165
Brain 6 512 x 512 CT 3.597 | 1.427 1.893
Brain 7 512 x 512 CT 6.175 | 4.641 4.339
Brain 8 512 x 512 CT 3.962 1.640 2.124
Brain 9 512 x 512 CT 3.190 | 1.213 1.616
Chest 1 2496 x 2048 CR 6.786 | 4.803 4.468
Chest 2 2496 x 2048 CR 6.821 | 4.818 4.506
Chest 3 2496 x 2048 CR 6.259 | 4.320 3.948
Chest 4 2496 x 2048 CR 6.198 | 4.288 3.894
Chest 5 2496 x 2048 CR 6.020 | 4.061 3.737
Chest 6 1516 x 2044 CR 5912 | 4.015 3.598
Elbow 2044 x 1514 CR 6.177 | 4253 3.868
Knee 512 x 512 MR 7.143 | 5.897 4.838
Leg 2040 x 2570 CR 5.759 | 3.789 3.422
Liver 512 x 512 CT 5.029 | 2.690 2.783
Neck 2040 x 2570 CR 4.674 | 3.042 2779
Pelvis 3732 x 3062 CR 5915 | 4.093 3.683
SideBrain 256 x 256 MR 5.972 | 4.996 3.745
Spine 1 2040 x 2570 CR 6.437 | 4.498 4.173
Spine 2 512 x 512 CT 3.526 | 2.620 1.888
Spine 3 512 x 512 CT 6.106 | 4.675 4.255

AVERAGE 5322 | 3.585 3.280

the standard deviation (0.014 594), the z-score computed was
—0.775240. By taking a 95% two tail test, 0.775240 < 1.96,
the results show that 73.81% is not significantly far from 74.94%
and therefore, in this experiment, images compressed by B are
seen as identical without any perceivable difference of statis-
tical significance to the images compressed by A. This process
is repeated for cases, A versus C and C versus B, both of which
were not seen as identical.

In the third and fourth models, the aim is to determine if the
same level of clinical information is retained statistically be-
tween the original and a compressed image by either LOCO
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TABLE VIII
CODING PERFORMANCE, IN TERMS OF BIT-RATE, OF LOCO, JPEG 2000
(J2KL) AND NLOCO d = 1. EACH IMAGE HAS A MAXIMUM BIT-DEPTH
OF 16 BITS PER PIXEL

Image Dimensions Image Bitrate (bpp)
Name (pixels) Type LOCO | J2KL [ NLOCOg4;

Ankle 1 2572 x 2040 CR 5.852 | 5.892 4.260
Ankle 2 1516 x 2044 CR 5.695 | 5.707 4.095
Body 1 512 x 512 CT 4.191 | 4.327 2.993
Body 2 512 x 512 CT 5933 | 6.235 4.696
Body 3 512 x 512 CT 6.851 | 6.987 5.246
Brain 1 512 x 512 CT 3.380 | 3.558 2.321
Brain 2 512 x 512 CT 3.841 | 3.500 2.493
Brain 3 512 x 512 MR 4.687 | 4.650 3.501
Brain 4 208 x 256 MR 3.898 | 1.523 2.378
Brain 5 512 x 512 CT 3.681 | 3.789 2.575
Brain 6 512 x 512 CT 3.597 | 3.230 2.336
Brain 7 512 x 512 CT 6.175 | 6.459 4.920
Brain 8 512 x 512 CT 3.962 | 3.627 2.581
Brain 9 512 x 512 CT 3.190 | 2.815 2.046
Chest 1 2496 x 2048 CR 6.786 | 6.847 5.199
Chest 2 2496 x 2048 CR 6.821 | 6.874 5.235
Chest 3 2496 x 2048 CR 6.259 | 6.312 4.683
Chest 4 2496 x 2048 CR 6.198 | 6.288 4.662
Chest 5 2496 x 2048 CR 6.020 | 6.051 4472
Chest 6 1516 x 2044 CR 5912 | 5.965 4.324
Elbow 2044 x 1514 CR 6.177 | 6.200 4.608
Knee 512 x 512 MR 7.143 | 6.903 5.563
Leg 2040 x 2570 CR 5.759 | 5.740 4.144
Liver 512 x 512 CT 5.029 | 4.942 3.461
Neck 2040 x 2570 CR 4.674 | 4598 3.343
Pelvis 3732 x 3062 CR 5915 | 5.993 4414
SideBrain 256 x 256 MR 5.972 | 5.927 4.445
Spine 1 2040 x 2570 CR 6.437 | 6.482 4.863
Spine 2 512 x 512 CT 3.526 | 3.458 2.381
Spine 3 512 x 512 CT 6.106 | 6.375 4.842

AVERAGE 5322 | 5316 3.903

near-lossless or PC. Both the third and fourth models are sim-
ilar to the first and second models, respectively. The difference
here is that the “either” selections from the second question are
taken into consideration as well as the first question of the ex-
periment. The baseline for clinical retention was 77.57%, which
can be found in Table V. In Table V, I E is the response in each
category perceived as identical and chosen as either. I E is the
response in each category perceived as not identical and chosen
as not either. I I/, is the average of the responses in I I, across
all three categories.

In the case for A versus B, images compressed by B had
the same level of clinical information as those compressed
by A with no perceivable difference of statistical significance
(Table VI). Similarly for A versus C, statistically, images com-
pressed by C did not have the same level of clinical information
as that of the original images. It is important to re-iterate that
this paper focuses on the question of if the images compressed
by the PC were perceptually lossless to the original images.
Therefore, enhancement effects are not considered.

In terms of coding performance the proposed coder has on
average a compression gain of 48% compared with the LOCO
lossless coder and a 9% compression loss against the NLOCO
near lossless coder (Table VII). However, the statistical analysis
in Table IV, has shown that a significant difference between the
original images and the images compressed by NLOCO can be
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Fig. 8. Left: Original. right: Proposed coder. Top down: knee; sidebrain;
brain2.

perceived. For completeness, Table VIII includes the JPEG2000
[10] lossless mode and NLOCO d = 1 bit-rate. On average, the
PC has a compression gain of 9% over NLOCO d = 1. Nev-
ertheless, there were no visible distortions in the images com-
pressed by the PC (Fig. 8).

V. CONCLUSION

A perceptually lossless coder for medical images based on the
JPEG 2000 coding framework is proposed. The proposed coder
outperforms the LOCO coder [16] while preserving the visual
fidelity of the image. A double blind comparative experiment
with 31 medical experts has shown that no perceivable differ-
ence of statistical significance exists between the original im-
ages and the corresponding images compressed by the proposed
coder, while offering the same level of clinical information. Fur-
thermore, the heart of the proposed coder is the implementation
of a visual pruning function combined with a vision model [11],
[12] to identify and to remove visually insignificant information,
achieving simplicity and modularity. The visual pruning func-
tion can be embedded into any Wavelet based coding framework
while maintaining bit-stream compliance.
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