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1 Introduction

The triangular numbers namely, 1,3,6,10,15,..., whose n-th term is given by the expres-
sion n(n+1)/2, is an example of a polygonal or figurative number sequence, as each term
in the sequence counts the number of dots in an equilateral triangle having n dots in each

side as pictured below.

Other examples of figurative number sequences are of course, the perfect squares 1,4,9, ...
and the pentagonal numbers 1,5,12, ..., which each count the arrangement of dots in ever
increasingly larger planer geometrical arrays of squares and pentagons respectively. One
can also construct a three dimensional figurative number sequence from the triangular
numbers, by stacking the above planer equilateral triangles on top of each other to produce
a tetrahedral pyramid of dots. Such a stacking results in what is known as a tetrahedral
number sequence 1,4, 10,20, ... which by definition represent the successive partial sums
of the triangular number sequence as follows 1,1+ 3,1 +3+6,1+3 +6 + 10,.... Using
some rather ingenious counting devices, Conway and Guy (see [1, pp. 44]) showed that

the n-th tetrahedral number is given by the expression n(n + 1)(n + 2)/6.

Clearly the above process of sequentially adding partial sums of the natural number
can be repeated infinitum, to produce an infinite family of higher dimensional figurative
number sequences. Each such sequence represents an example of what is known as an
iterated or k-fold summation of the natural numbers. Formally a k-fold summation of
a given sequence {a,} can be defined as follows. Beginning with the n-th partial sum
of the sequence {a,} denoted, 5'7(10) = >, a;, one can proceed with the construction of
another sequence {5'7(11)}, formed from the n-th partial sums of the sequence {87(10)}, that
is Sy(Ll) =3, Sgo). Repeating this procedure a further k£ — 1 times, were k > 1, produces
the resulting k-fold summation sk = S SZ-(k_l) of the original sequence {a,}. With

this definition in mind, one may naturally question whether, like the tetrahedral numbers,
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a closed-form expression for each of the k-fold summations of the natural numbers can be

found.

In this article, we shall in fact show that for any arbitrary sequence of real numbers
whose terms are in arithmetic progression, a simple algebraic expression exists for Sgk),
and moreover is given in terms of two binomial coefficients involving the parameters n
and k. The question of determining such a closed-form expression will be tackled by
two contrasting methods, each of which will solve the problem by first finding the k-fold
summation of the natural numbers. One of these methods shall involve the use of a
generating function, that is a power series and its associated functional representation. In
particular for the sequence of natural numbers, we will identify, for each fixed k > 0, a
function denoted f(z), having > >° S’T(Lk)x” as its corresponding power series expansion.
As shall be seen, fi(z) will be given in terms of the function (14+x)®, from whose Maclaurin
expansion the desired closed-form expression for Sq(lk) can be derived. The second and more
elementary method, which we shall explore first, involves the use of the so-called Hockey
Stick Theorem (see [4]), to show that the k-fold summation for the sequence of natural

numbers can be identified as an entry in Pascal’s Triangle.

2 An Elementary Approach

To begin, we note that the problem of determining the k-fold summation for a general
arithmetic progression, can easily be reduced to that of determining the k-fold summation
of the sequence of natural numbers. Indeed, if we denote the k-fold summation of the
sequences a, = a1 + (n — 1)d and b, = n by Sq(lk) and Ték) respectively, then it is easily
proven by an inductive argument that for £ > 1

S = gTk) 4 () — d)TF—1) (1)

n n n

To construct a closed form expression for Trgk), let us first examine closely the diagonal
rows of Pascal’s Triangle pictured below.

Each diagonal labelled D = k for £ = 0,1,... contains a sequence of positive integers
whose first term is the number one. Indexing the terms of these sequences with say the
variable ¢, where ¢ = 1,2,..., the Hockey Stick Theorem states that the n-th partial sum
of the sequence in any diagonal D = k, is equal to the n-th term of the sequence found
in the neighbouring diagonal D = k + 1. For example, the sum of the first four terms
in diagonal D = 3 is 1 + 6 + 21 + 56 = 84, but the number 84 is the fourth term of the

sequence found in diagonal D = 4.

Now as diagonal D = 0 contains the sequence Ty(LO) = w, the Hockey Stick Theorem
implies the the n-th term of the sequence found in diagonal D = 1 must be Tél), while the
n-th term of the sequence in diagonal D = 2 must be TéZ) and so on infinitum. Thus by

applying the Hockey Stick Theorem k times, beginning at diagonal D = 0, we conclude
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Figure 1: Pascal’s Triangle.

that the integer Ty(Lk) must appear as the n-th term of the sequence found in diagonal
D = k. Consequently as each entry in the Pascal Triangle is a binomial coefficient, we
conclude from the above observation that

T(k):(r)zr(r—l)---(r—p—i-l) )

P! ’

where r and p are the row and position number along a row, of the n-th term of the
sequence in diagonal D = k, noting the convention that (6) = 1. Hence, to find a
closed form expression for Ték), one must be able to determine r and p as functions of
the parameters n and k. To this end, note that the first term of the sequence in any
diagonal D = k, occurs as the leftmost element in row k 4+ 2 and that the row number
of each subsequent term of the sequence in diagonal D = k must increase by one. Thus
r =n+k+ 1 is the row number of the n-th term of the sequence in diagonal D = k.
Secondly, note that the n-th term of the sequence in diagonal D = k, is located as the
n-th entry from the left in row r = n + k 4+ 1. However, as there are r 4+ 1 elements in
row r whose position number p, counted from the left, assumes the values p =0,1,...,r,
we deduce that the n-th term of the sequence in diagonal D = k has a position number

p =n — 1 along the row r =n + k + 1. Hence from (2)

I ( n—1 k+2 ’ 3)

and so finally substituting the second binomial coefficient of (3) into (1) yields that the

k-fold summation of an arithmetic progression a, = a1 + (n — 1)d is given by

Sy d( g ) T@—d( ) (4)

In view of (3) it is of interest to note that there is a combinatorial interpretation of the

k-fold summation of the natural numbers. Recall that two distinct decompositions of a



positive integer n into a sum of k£ non-negative integers is a representation of the form
n=ai+---+ap=>bi 4 +b,

in which a; # b; for at least one 4, 1 < i < k. Now the number of distinct decompositions
of n into a sum of k non-negative integers is (n‘gffl) (see [2, pp. 87]). Thus by writing
Ték) = (n_llj' J£§+2)) we see that the k-fold summation of the natural numbers represents
the number of distinct decompositions of n — 1 into k£ + 1 non-negative integers.

3 A Generating Function Approach

In establishing (3) we indirectly applied the Binomial Theorem with regards to the poly-
nomial expansion of (1 + z)™ for positive integer n. In contrast, the second method to be
employed, will involve the use of generating functions together with an application of the
binomial series of the function (1 4+ )%, where « is an arbitrary real number. We begin
by reviewing the concept of a generating function. If one has a sequence {a,} of real or

complex numbers, then the function f(x) defined by the power series

f(z) = Zanx” ,
n=0

is referred to as the generating function of the sequence {a,}. Many of the operations
one performs on generating functions can be justified rigorously in terms of operations
on formal power series, even when the series in question may not be convergent (see
[3] for a comprehensive treatment of the theory of generating functions). One of these
familiar operations that we shall exploit here, is that of the multiplication of power series.
Specifically if given two generating functions of the form f(z) =3 77 ja,z™ and g(z) =

>0y bpa™, then one can define their product as

flz)g(z) = Z ( arbnr> z" .
0

n=0 \r=

In particular, when f(z) = 1/(1 — z) = >.>° ;2" for |z| < 1, then the above product
f(z)g(x) results in the generating function for the sequence of partial sums of {b,} as

follows

o)=Y ( b) o, )
0

n=0 \r=

We shall use (5) to first identify, for each & > 0, the generating function, denoted fi(z),
for the sequence {Trgk)}. Indeed, we claim that fi(z) = z/(1 — 2)¥™3 which can be
established via the following inductive argument. Setting g(z) = x/(1 — z)? observe after
differentiating the series expansion of 1/(1 — z) that g(z) = Y. 2 nz"™. Substituting
g(r) = z/(1—x)? into (5) and defining To(k) =0, for all £ > 0, one deduces from definition

4



of T\” that fo(z) = z/(1 —z)3. Assume f,(z) =300, T{™zn = z/(1 —xz)™*3, for some
m > 0, and upon setting g(x) = f(z) in (5), observe that

z _ - S (m) n __ - m—+1),.n
W—Z( an>x =D T
r=0 n=0

n=0

m+4 and so the result holds for & = m + 1. Having

Consequently fpn4+1(z) = /(1 — z)
identified for each k£ > 0, the generating function for the sequence {T,gk)}, we can determine
a closed-form expression for T,gk) by examining the series expansion of the function z/(1 —

k+3

x)" " via the binomial series of the function (1 4+ z)®. Recall that if « is an arbitrary real

number and |z| < 1 then (1 +2)® =32°  (¢)z". Thus

n=0
fule) = f} (57 ar = nfjo(—n” (757

and so after equating coefficients of " one deduces, for n > 1, that

G G (6)

n—1

However by definition

(_k_3> - ;!(_k_?’)(_k_ll)"'(—k—n—l)

n—1 (n—1)
(1!

+k+1
_ _1n71 n
(=1) ( k+2 )’

from which we see (6) reduces down to the required expression in (3), hence (4) follows

immediately again from (1).

Having now seen both methods at work, it would appear that the later method could
be applied to the problem of constructing closed-form expressions for the n-th partial sum
or more generally the k-fold sum of other classes of sequences. Clearly the difficulty in
using generating functions is finding, for a given sequence {a,}, the correct functional

representation for the power series f(z) = o0 ;anz".
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