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� Introduction

The triangular numbers namely� �� �� �� ��� ��� � � �� whose n�th term is given by the expres�

sion n	n
����� is an example of a polygonal or gurative number sequence� as each term

in the sequence counts the number of dots in an equilateral triangle having n dots in each

side as pictured below�
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Other examples of gurative number sequences are of course� the perfect squares �� �� �� � � �

and the pentagonal numbers �� �� ��� � � �� which each count the arrangement of dots in ever

increasingly larger planer geometrical arrays of squares and pentagons respectively� One

can also construct a three dimensional gurative number sequence from the triangular

numbers� by stacking the above planer equilateral triangles on top of each other to produce

a tetrahedral pyramid of dots� Such a stacking results in what is known as a tetrahedral

number sequence �� �� ��� ��� � � � which by denition represent the successive partial sums

of the triangular number sequence as follows �� � 
 �� � 
 � 
 �� � 
 � 
 � 
 ��� � � �� Using

some rather ingenious counting devices� Conway and Guy 	see ��� pp� ���� showed that

the n�th tetrahedral number is given by the expression n	n
 ��	n
 �����

Clearly the above process of sequentially adding partial sums of the natural number

can be repeated innitum� to produce an innite family of higher dimensional gurative

number sequences� Each such sequence represents an example of what is known as an

iterated or k�fold summation of the natural numbers� Formally a k�fold summation of

a given sequence fang can be dened as follows� Beginning with the n�th partial sum

of the sequence fang denoted� S
���
n �

P
n

i�� ai� one can proceed with the construction of

another sequence fS
���
n g� formed from the n�th partial sums of the sequence fS

���
n g� that

is S
���
n �

P
n

i�� S
���
i
� Repeating this procedure a further k� � times� were k � �� produces

the resulting k�fold summation S
�k�
n �

P
n

i�� S
�k���
i

of the original sequence fang� With

this denition in mind� one may naturally question whether� like the tetrahedral numbers�

�
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a closed�form expression for each of the k�fold summations of the natural numbers can be

found�

In this article� we shall in fact show that for any arbitrary sequence of real numbers

whose terms are in arithmetic progression� a simple algebraic expression exists for S
�k�
n �

and moreover is given in terms of two binomial coe�cients involving the parameters n

and k� The question of determining such a closed�form expression will be tackled by

two contrasting methods� each of which will solve the problem by rst nding the k�fold

summation of the natural numbers� One of these methods shall involve the use of a

generating function� that is a power series and its associated functional representation� In

particular for the sequence of natural numbers� we will identify� for each xed k � �� a

function denoted fk	x�� having
P
�

n�� S
�k�
n xn as its corresponding power series expansion�

As shall be seen� fk	x� will be given in terms of the function 	�
x��� from whose Maclaurin

expansion the desired closed�form expression for S
�k�
n can be derived� The second and more

elementary method� which we shall explore rst� involves the use of the so�called Hockey

Stick Theorem 	see ����� to show that the k�fold summation for the sequence of natural

numbers can be identied as an entry in Pascal�s Triangle�

� An Elementary Approach

To begin� we note that the problem of determining the k�fold summation for a general

arithmetic progression� can easily be reduced to that of determining the k�fold summation

of the sequence of natural numbers� Indeed� if we denote the k�fold summation of the

sequences an � a� 
 	n � ��d and bn � n by S
�k�
n and T

�k�
n respectively� then it is easily

proven by an inductive argument that for k � �

S�k�
n � dT �k�

n 
 	a� � d�T �k���
n � 	��

To construct a closed form expression for T
�k�
n � let us rst examine closely the diagonal

rows of Pascal�s Triangle pictured below�

Each diagonal labelled D � k for k � �� �� � � � contains a sequence of positive integers

whose rst term is the number one� Indexing the terms of these sequences with say the

variable i� where i � �� �� � � �� the Hockey Stick Theorem states that the n�th partial sum

of the sequence in any diagonal D � k� is equal to the n�th term of the sequence found

in the neighbouring diagonal D � k 
 �� For example� the sum of the rst four terms

in diagonal D � � is � 
 � 
 �� 
 �� � ��� but the number �� is the fourth term of the

sequence found in diagonal D � ��

Now as diagonalD � � contains the sequence T
���
n � n�n���

� � the Hockey Stick Theorem

implies the the n�th term of the sequence found in diagonal D � � must be T
���
n � while the

n�th term of the sequence in diagonal D � � must be T
���
n and so on innitum� Thus by

applying the Hockey Stick Theorem k times� beginning at diagonal D � �� we conclude

�
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Figure �� Pascal�s Triangle�

that the integer T
�k�
n must appear as the n�th term of the sequence found in diagonal

D � k� Consequently as each entry in the Pascal Triangle is a binomial coe�cient� we

conclude from the above observation that

T �k�
n �

�
r

p

�
�

r	r � �� � � � 	r � p
 ��

p�
� 	��

where r and p are the row and position number along a row� of the n�th term of the

sequence in diagonal D � k� noting the convention that
�
r

�

�
� �� Hence� to nd a

closed form expression for T
�k�
n � one must be able to determine r and p as functions of

the parameters n and k� To this end� note that the rst term of the sequence in any

diagonal D � k� occurs as the leftmost element in row k 
 � and that the row number

of each subsequent term of the sequence in diagonal D � k must increase by one� Thus

r � n 
 k 
 � is the row number of the n�th term of the sequence in diagonal D � k�

Secondly� note that the n�th term of the sequence in diagonal D � k� is located as the

n�th entry from the left in row r � n 
 k 
 �� However� as there are r 
 � elements in

row r whose position number p� counted from the left� assumes the values p � �� �� � � � � r�

we deduce that the n�th term of the sequence in diagonal D � k has a position number

p � n� � along the row r � n
 k 
 �� Hence from 	��

T �k�
n �

�
n
 k 
 �

n� �

�
�

�
n
 k 
 �

k 
 �

�
� 	��

and so nally substituting the second binomial coe�cient of 	�� into 	�� yields that the

k�fold summation of an arithmetic progression an � a� 
 	n� ��d is given by

S�k�
n � d

�
n
 k 
 �

k 
 �

�

 	a� � d�

�
n
 k

k 
 �

�
� 	��

In view of 	�� it is of interest to note that there is a combinatorial interpretation of the

k�fold summation of the natural numbers� Recall that two distinct decompositions of a

�



positive integer n into a sum of k non�negative integers is a representation of the form

n � a� 
 � � �
 ak � b� 
 � � �
 bk �

in which ai �� bi for at least one i� � � i � k� Now the number of distinct decompositions

of n into a sum of k non�negative integers is
�
n�k��
k��

�
	see ��� pp� ����� Thus by writing

T
�k�
n �

�
n����k���

k��

�
we see that the k�fold summation of the natural numbers represents

the number of distinct decompositions of n� � into k 
 � non�negative integers�

� A Generating Function Approach

In establishing 	�� we indirectly applied the Binomial Theorem with regards to the poly�

nomial expansion of 	� 
 x�n for positive integer n� In contrast� the second method to be

employed� will involve the use of generating functions together with an application of the

binomial series of the function 	� 
 x��� where � is an arbitrary real number� We begin

by reviewing the concept of a generating function� If one has a sequence fang of real or

complex numbers� then the function f	x� dened by the power series

f	x� �

�X
n��

anx
n �

is referred to as the generating function of the sequence fang� Many of the operations

one performs on generating functions can be justied rigorously in terms of operations

on formal power series� even when the series in question may not be convergent 	see

��� for a comprehensive treatment of the theory of generating functions�� One of these

familiar operations that we shall exploit here� is that of the multiplication of power series�

Specically if given two generating functions of the form f	x� �
P
�

n�� anx
n and g	x� �P

�

n�� bnx
n� then one can dene their product as

f	x�g	x� �

�X
n��

�
nX

r��

arbn�r

�
xn �

In particular� when f	x� � ��	� � x� �
P
�

n�� x
n for jxj � �� then the above product

f	x�g	x� results in the generating function for the sequence of partial sums of fbng as

follows
�

�� x
g	x� �

�X
n��

�
nX
r��

bn�r

�
xn� 	��

We shall use 	�� to rst identify� for each k � �� the generating function� denoted fk	x��

for the sequence fT
�k�
n g� Indeed� we claim that fk	x� � x�	� � x�k�� which can be

established via the following inductive argument� Setting g	x� � x�	�� x�� observe after

di�erentiating the series expansion of ��	� � x� that g	x� �
P
�

n�� nx
n� Substituting

g	x� � x�	��x�� into 	�� and dening T
�k�
� � �� for all k � �� one deduces from denition

�



of T
���
n that f�	x� � x�	��x��� Assume fm	x� �

P
�

n�� T
�m�
n xn � x�	��x�m��� for some

m � �� and upon setting g	x� � fm	x� in 	��� observe that

x

	�� x�m�	
�

�X
n��

�
nX
r��

T
�m�
n�r

�
xn �

�X
n��

T �m���
n xn �

Consequently fm��	x� � x�	� � x�m�	 and so the result holds for k � m 
 �� Having

identied for each k � �� the generating function for the sequence fT
�k�
n g� we can determine

a closed�form expression for T
�k�
n by examining the series expansion of the function x�	��

x�k�� via the binomial series of the function 	� 
 x��� Recall that if � is an arbitrary real

number and jxj � � then 	� 
 x�� �
P
�

n��

�
�

n

�
xn� Thus

fk	x� � x

�X
n��

�
�k � �

n

�
	�x�n �

�X
n��

	���n
�
�k � �

n

�
xn�� �

and so after equating coe�cients of xn one deduces� for n � �� that

T �k�
n � 	���n��

�
�k � �

n� �

�
� 	��

However by denition�
�k � �

n� �

�
�

�

	n� ���
	�k � ��	�k � �� � � � 	�k � n� ��

�
	���n��

	n� ���
	k 
 ��	k 
 �� � � � 	k 
 n
 ��

� 	���n��
�
n
 k 
 �

k 
 �

�
�

from which we see 	�� reduces down to the required expression in 	��� hence 	�� follows

immediately again from 	���

Having now seen both methods at work� it would appear that the later method could

be applied to the problem of constructing closed�form expressions for the n�th partial sum

or more generally the k�fold sum of other classes of sequences� Clearly the di�culty in

using generating functions is nding� for a given sequence fang� the correct functional

representation for the power series f	x� �
P
�

n�� anx
n�
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