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Abstract

A finite difference method based scheme incorporating a method
of false transients and an approximate factorisation technique is pre-
sented for solution of a system of Poisson’s equations used for grid gen-
eration. A time step cycling process with repeated endpoints enhances
the convergence rate. The scheme required much less computational
effort than that required by other numerical schemes. High quality
grid systems over an aircraft tailplane are presented. Although, the
superiority of the scheme is illustrated for the grid generation prob-
lem, it can be employed for other problems requiring the solution of a
set of similar elliptic partial differential equations.
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1 Introduction

In order to solve the governing partial differential equations (pdes) of fluid
dynamics numerically, approximations to the partial differentials are intro-
duced. Many of the numerical methods for solving such pdes required all
partial derivatives to be converted into finite difference equations (fdes),
which are solved at discrete points within the domain of interest. Hence, a
set of grid points within and on the boundaries of the domain is required
to be specified to form a grid system, in a process known as grid genera-
tion [3, 7, 8, 9].

We describe one of the most common methods for generating smooth
boundary fitted grid systems over a body, namely the elliptic grid genera-
tion method, together with a grid stacking technique in three dimensions. In
the grid stacking technique, a series of two dimensional O-type grids (say, in
the xz-plane) is generated at prescribed locations along the span of the body
(in the y-direction), and connected to form a final OH-type three dimensional
grid. The system of Poisson’s equations, subject to Dirichlet boundary condi-
tions on all boundaries [3, 7, 8], is solved in the computational domain for the
physical coordinates of the two dimensional grid points. The source terms
of the Poisson’s equations provide a capability for clustering of grid lines
and points in a specified region of the domain. A finite difference method
based scheme, incorporating a method of false transients [4, 5, 6], and an
approximate factorisation technique [1, 2, 4, 5, 6, 7], is developed and imple-
mented into a computer code named grid3daf. Section 3 generates grids
around an aircraft tailplane, and compares the performance of the scheme
with the following iterative schemes: Jacobi (grid3djac), point Gauss–
Seidel (grid3dpgs), line Gauss–Seidel (grid3dlgs), point successive over-
relaxation (grid3dpsor) and line successive over-relaxation (grid3dlsor).
In the last three decades, these iterative schemes were commonly employed
in the grid generation process; therefore it is more appropriate to compare
them (instead of more specialised methods such as the multigrid and conju-
gate gradient methods) to the grid3daf scheme.

2 Grid generation process

As an illustration, we use an aircraft tailplane as a body, with an understand-
ing that the grid generation process can be easily modified to accommodate
other bodies such as a turbine blade or a slender body with varying cross-
section. The process incorporates a grid stacking technique where a series
of two dimensional O-type grids [3, 7, 8, 9] in the xz-plane is generated at
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prescribed locations along the span of the tailplane (referred to as span sta-
tions). These grids are then connected to form a final three dimensional,
boundary fitted, OH-type grid over the tailplane.

2.1 Elliptic grid systems

In the xz-plane, the mapping process from the physical coordinates r = (x, z)
to the computational coordinates ϑ = (ξ, ζ) is described by the relation
ϑ = ϑ(r) , which is assumed to have continuous derivatives of all orders.
In order to generate an applicable grid, the mapping must be one-to-one to
ensure the grid lines of the same family do not cross each other [3], and
provides a smooth grid distribution with minimum skewness.

The following system of Poisson’s equations [3] is considered:

ϑxx + ϑzz = S(ϑ) , (1)

where S = (p, q) contains the source terms, and ϑx and ϑxx denote ∂ϑ/∂x
and ∂2ϑ/∂x2, respectively. Grid point clustering is enforced by proper selec-
tion of the functions p(ϑ) and q(ϑ), and the selection is based on grid point
or line attraction in the vicinity of defined grid lines or points, or even a com-
bination of both. Since it is more convenient to solve for r, where ϑ is known
in the computational domain, the dependent and independent variables of
equation (1) are interchanged to provide(

αrξξ + Prξ

)
− 2βrξζ +

(
γrζζ + Qrζ

)
= 0 , (2)

where 0 is a zero vector. The constants in equation (2) are

α = rζ · rζ , β = rξ · rζ , γ = rξ · rξ , (3)

where · represents the dot product of two vectors. The source terms are

P =
p

J2
, Q =

q

J2
, J =

1

xξzζ − xζzξ

, (4)

where J is the Jacobian of transformation. The solution to equation (2) is pe-
riodic in ξ-direction due to the existence of a re-entrant boundary that forms
the left and right boundaries of the computational domain. Since the sys-
tem is quasi-linear, linearisation must be used in the numerical solution. For
simplicity, a lagging of the coefficients (3) is employed, with the coefficients
evaluated at the previous iteration [3, 9].

An artificial time dependent term, rτ (where τ is the artificial time scale),
is appended to (2) to incorporate the temporal numerical dissipation:

rτ =
(
αrξξ + Prξ

)
− 2βrξζ +

(
γrζζ + Qrζ

)
. (5)
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Table 1: Well-known time difference rules for equation (6).
Time difference rule a b

Trapezoidal rule 0 1
2

Euler implicit 0 1
Three-point backward 1

2 1
Euler explicit 0 0
Leap frog −1

2 0

Since the boundary conditions are time independent for a static grid system,
and provided that the numerical solution converges [4, 5, 6, 7], we anticipate
that rτ → 0 as τ →∞ .

Let τ be discretised as τ ≡ τn = n∆τ , where ∆τ is a discrete increment
of τ and n the iteration or time level, and r(τn) = r(n∆τ) = rn . Here the
spatial dependence has been temporarily suppressed. The time derivative
is approximated by a general time difference rule of a form suggested by
Warming and Beam [10], which includes the rules presented in Table 1,(

∂r

∂τ

)n

=
(1 + a)

−→
∆τ − a

←−
∆τ

∆τ (1 + b
−→
∆τ )

rn +
(
b− a− 1

2

)
O(∆τ) +O(∆τ)2. (6)

In the above expression, a and b are constants that define the time difference

rule, and
−→
∆τ and

←−
∆τ are the forward and backward time difference opera-

tors. Inserting approximation (6) into equation (5) for rτ at time level τn,
and approximately factorising the left side of the resulting expression by ne-
glecting all mixed derivatives, and omitting third and higher order terms
in ∆τ , yields[

1−∆τ̃

(
αn ∂2

∂ξ2
+ P n ∂

∂ξ

)][
1−∆τ̃

(
γn ∂2

∂ζ2
+ Qn ∂

∂ζ

)]
−→
∆τr

n

= ã
←−
∆τr

n + ∆τ̃
ω

b
Rn . (7)

In equation (7), ω is a relaxation factor, ∆τ̃ = b ∆τ
1+a

, ã = a
1+a

with a 6= −1,
and Rn denotes the residual (which measures how well the fdes are satisfied
by the approximate solution). The factored equation (7) is then solved in an
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Figure 1: OH-grid generated over a tailplane.

alternating direction manner:[
1−∆τ̃

(
αn ∂2

∂ξ2
+ P n ∂

∂ξ

)]
∆r∗ = ã

←−
∆τr

n + ∆τ̃
ω

b
Rn, (8)[

1−∆τ̃

(
γn ∂2

∂ζ2
+ Qn ∂

∂ζ

)]
−→
∆τr

n = ∆r∗, (9)

rn+1 = rn +
−→
∆τr

n. (10)

Ly and Norrison [7] give a detailed description on the solution and time
step cycling processes, and of the finite difference discretisations used in
equations (3), (8), (9) and (10).

2.2 Grid stacking technique

The developed computer code, grid3daf, allows the user to allocate span
stations on the tailplane and in the region between the tailplane and far-
field spanwise boundary in the following manners: (1) uniform distribution,
(2) cluster towards the tailplane tip in an exponential manner, and (3) at
discrete locations designated by the user.

In the spanwise direction, the mapping is governed by η = η(y), where η
and y are the computational and physical coordinates, respectively. At each
span station, the location of leading and trailing edges, and the sectional
profile of the body, which are required for the generation of O-type grids, are
computed from the functions describing the body shape. However, at the tip
section and further spanwise, it is necessary to extend the leading and trailing
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Table 2: Comparison of numerical schemes.
Codes ω |Error| log10 |Error| |R| log10 |R|(

10−4
) (

10−6
)

grid3djac 1.067 −3.972 69.415 −4.159
grid3dpgs 1.430 −3.845 56.822 −4.246
grid3dlgs 1.720 −3.765 54.278 −4.265
grid3dpsor 1.665 1.984 −3.703 27.499 −4.561
grid3dlsor 1.580 1.496 −3.825 59.770 −4.224
grid3daf 1.975 0.252 −4.599 2.314 −5.635

edge functions, xle(y) and xte(y) , to ensure that ξ remains twice differentiable
with respect to both x and y, and ξy = 0 at the spanwise boundary [2]. This
guarantees that the grid generated in this region is smooth, see Figure 1 (for
visual clarity only relevant portions of the grid are shown). To ensure ξyy

is continuous at the tip section, it is necessary to have xle, xte, dxle/dy,
dxte/dy, d2xle/dy2 and d2xte/dy2 continuous. For ξy = 0 to hold at the
spanwise boundary, we set dxle/dy, dxte/dy, d2xle/dy2 and d2xte/dy2 to zero
at some point yc between the tip section and spanwise boundary. This point
is required as an input parameter in the code, with the value varying from 0
(at the tip section) to 1 (spanwise boundary). Usually, it is set to 0.5. The
leading and trailing edge functions are then continued to the boundary with
zero slope with respect to y, as shown in Figure 1. Gear [2] suggested that
the extended leading edge function should take the following form:

x =


xle(ŷ) for ŷ ∈ [−1, 0] ,

xle(0) + ŷ
[
1−

(
ŷ/ŷc

)2
+ 1

2

(
ŷ/ŷc

)3
]

dxle

dŷ

∣∣
ŷ=0

for ŷ ∈ [0, ŷc] ,

xle(0) + 1
2
ŷ dxle

dŷ

∣∣
ŷ=0

for ŷ ∈ [ŷc, ŷm] ,

(11)

where ŷ = y/yb − 1 , ŷc = yc/yb − 1 and ŷm = ym/yb − 1 . In the above
expressions, ym is the maximum spanwise value of y, the outermost grid line
on the tailplane has y value given by yb, which is less than or equal to the
semispan length of the tailplane. A similar trailing edge function can be
derived by replacing all xle in (11) with xte . If the tailplane is tapered, yc is
adjusted to ensure that the extended edge functions do not intersect.

3 Results and discussion

The afgrid3d scheme has been used with a second order accurate, three
point, backward time difference rule and a sequence of eight time steps, cycled
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Figure 2: Comparison of convergence histories.

from ∆τ = 102 to ∆τ = 105, to generate an OH-type grid around a tailplane.
In general, the maximum time step will typically be up to hundreds times
larger than the minimum. When the time step is at its largest value the linear
systems will not be, or are only slightly diagonally dominant, and information
rapidly distributes throughout the grid system. This rapid distribution is the
mechanism that enhances the convergence rate. Immediately after reaching
its maximum value the time step is reset to its minimum value. This ensures
that any instabilities, that may have occurred while the time step was large,
rapidly decay [2]. Numerical experiments indicate that the scheme becomes
unstable if the Euler explicit and leap frog time difference rules are used.

The tailplane has a naca 632-615 section with maximum thickness of 0.15`
located at 0.341` from the leading edge, and has a semispan length of 0.72`,
where ` is the chord length measured at the root section. The grid, which
is in a form of a six sided rectangular shape in the computational domain
and in a circular cylinder shape in the physical domain, has a radius and
length of 2`. In the chordwise and radial direction, 61 and 31 grid points
are respectively allocated. While in the spanwise direction, 15 points are
uniformly distributed on the tailplane and 15 points in the region beyond
the tailplane tip (clustered towards the tip). The source terms, p and q, were
computed according to equation (14) of Ly and Norrison [7], so that grid
lines are clustered toward the tailplane.

Optimal relaxation values were obtained by numerical experiments and
were used in the grid3dpsor, grid3dlsor and grid3daf scheme, see Ta-
ble 2. Initially, the optimal ω used in grid3dlsor scheme was very close to
one [7], and it was this reason that it took much longer than the grid3dpsor
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Figure 3: Initial (left) and final (right) OH-type grids over a tailplane.

scheme to produce a converged solution. It was later found that the direction
in which the grid3dlsor scheme swept through the computational domain
was not in the direction of the greatest changes in the solution. This issue
was rectified, and an optimal ω was found to be about 1.58. All schemes were
executed for 50 iterations. The errors which represent the total changes in the
solution per interior grid point, and the absolute maximum residual values
are compared in Table 2. The convergence histories are displayed in Figure 2,
and the plots show that the error and residual of the grid3daf scheme re-
duce substantially whenever the scheme completed one cycle of time step
cycling process. Table 2 indicates that after 50 iterations, the error of the
grid3daf scheme is about 4.2 to 7.9 times smaller than all other schemes,
and the residual is about 11.9 to 30 times smaller. In fact, grid3daf con-
verged within 50 iterations if maximum residual smaller than 10−5 is the
required tolerance.

We observed that the speed at which the scheme converges mainly de-
pended on the manner in which the shape of the branch-cuts are changing
from one iteration to the next. In the grid3daf scheme, the grid points
along the branch-cut are included implicitly into the equation system, and
so the branch-cut points are updated with all other interior points simultane-
ously. In comparison, the branch-cut points of all other schemes are updated
with one iteration lapsed. The initial and final grid grids over a tailplane,
generated by the grid3daf scheme are shown in Figures 3 and 4, where only
relevant planes of grid points are displayed to improve the visual clarity of
these plots. Careful examination of these plots reveal a smooth distribution
of the grid points within the domain (note the adjustment of the grid points
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Figure 4: Different views of the final OH-type grid over a tailplane.

on the branch-cut), and grid points are clustered toward and conformed to
the inner boundary (tailplane). The natural (due to the elliptic nature of the
governing pdes) and enforced clustering of grid points toward the body can
also be seen. For instance, a group of blue lines in the initial grid in Figure 3
contracts towards the tailplane as shown in the final grid (Figure 3) and in
Figure 4 as well.

4 Conclusion

A system of Poisson’s equations and a grid stacking technique are employed to
generate a structured OH-type grid around a single body of arbitrary shape in
three dimensions. The scheme incorporates a method of false transients and
an approximate factorisation technique where a time step cycling process
is used. It was shown that the scheme is significantly faster in reaching
convergence to the user’s required accuracy than all other numerical schemes
compared in this article. Furthermore, if the scheme is numerically stable
and solution converged, a correct final grid system can always be obtained
independent of the form of its initial grid system. Hence, the method is
suitable for automatic grid generation computer code. The grid generation
process could be extended to the generation of dynamic grid systems for a
body in motion.
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