Inhibition of Signaling Cascades in Osteoblast Differentiation and Fibrosis

Carola Krause
The work in this thesis has been carried out at the Leiden University Medical Center. The author was funded by the Dutch Organization for Scientific Research (NWO 918.66.606), Centre for Biomedical Genetics and European Union FP7 Program TA-LOS.
Inhibition of Signaling Cascades in Osteoblast Differentiation and Fibrosis

PROEFSCHRIFT

ter verkrijging van

dea graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 5 oktober 2011

klokke 11:15 uur

door

Carola Krause

geboren te Neubrandenburg, Duitsland

in 1981
Promotor:
Prof. dr. Peter ten Dijke

Manuscriptcommissie:
Prof. dr. Socrates Papapoulos
Prof. dr. Wim van Hul Universiteit Antwerpen
Dr. Dorien Peters
CONTENTS

Contents v
Preface xi
Scope of investigations xiii
Outline of this thesis xv

I Inhibition of Signaling Cascades in Osteoblast Differentiation 1

1 Signal transduction cascades controlling osteoblast differentiation 5
 1.1 Summary .. 5
 1.2 Introduction 5
 1.3 Runx2 and Osterix transcription factors 6
 1.4 BMP signaling 7
 1.5 TGF-β signaling 8
 1.6 Wnt signaling 9
 1.7 Hedgehog signaling 9
 1.8 PTH signaling 10
 1.9 IGF-1 signaling 11
 1.10 FGF signaling 12
 1.11 Notch signaling 12
 1.12 Concluding remarks 12
 1.13 Acknowledgments 13
 1.14 References 13

2 Noggin 23
 2.1 Abstract .. 23
 2.2 Introduction 23
 2.3 Structure 25
 2.4 Expression, activation and turnover 26
 2.4.1 Noggin expression in ectoderm derivatives 26
 2.4.2 Noggin expression in mesoderm derivatives 26
 2.5 Biological Function 28
 2.6 Possible Medical and Industrial Applications 28
 2.6.1 Noggin's affinity to BMPs 28
Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to Noggin inhibition allows for engineered BMPs with superior agonist activity

3.1 Abstract
3.2 Introduction
3.3 Experimental Procedures
3.4 Results
3.4.1 Comparative Analysis of the Osteogenic Activity of a BMP Panel Revealed a Significant Difference in Activity between BMP-6 and BMP-7
3.4.2 BMP-6 and BMP-7 Induce Noggin Expression with Different Potencies
3.4.3 BMP-6 is more resistant to Noggin inhibition than BMP-7
3.4.4 BMP-6 and BMP-7 have comparable binding characteristics to immobilized Fc- Noggin using a Biosensor assay
3.4.5 Noggin inhibition of BMP binding to cell surface BMP receptors is more pronounced in the case of BMP-6 compared to BMP-7
3.4.6 A central region of the mature domain of BMP-6 confers Noggin resistance
3.4.7 A single amino acid substitution in BMP-7 yields a protein with increased resistance to Noggin
3.4.8 Mutation of BMP-2 at a position analogous to BMP-7 E60 yields a BMP-2 variant with increased resistance to Noggin
3.5 Discussion
3.6 Acknowledgments
3.7 Supplementary Data
3.8 References

4 Osteocyte-derived Sclerostin inhibits bone formation; Its role in BMP and Wnt signaling
4.1 Abstract
4.2 Identification of the SOST gene encoding Sclerostin
4.3 Sclerostin structure and expression
4.4 Mechanism of action of Sclerostin
4.4.1 Sclerostin as BMP antagonist
4.4.2 Sclerostin as Wnt antagonist
4.5 Concluding remarks and therapeutic potential
4.6 References
5 Distinct modes of inhibition by Sclerostin on bone morphogenetic protein and Wnt signaling pathways

5.1 Abstract .. 75
5.2 Introduction 75
5.3 Experimental Procedures 77
5.4 Results .. 81
 5.4.1 Sclerostin inhibits Wnt signaling 81
 5.4.2 Sclerostin inhibits BMP signaling 83
 5.4.3 Reduced SOST expression leads to elevated BMP signaling 84
 5.4.4 Sclerostin sequesters BMP-7 and mediates proteasomal degradation of intracellular BMP-7 86
 5.4.5 Sclerostin's effect on BMP signaling is independent of Wnt signaling 87
 5.4.6 Elevated Wnt- and BMP-signaling in Sclerostin knock out mice . 88
5.5 Discussion 91
5.6 Acknowledgments 95
5.7 Supplementary Data 95
5.8 References 100

6 Modulating osteoblast differentiation – Concluding Remarks 111
6.1 Noggin – an inhibitor of bone formation 111
6.2 Sclerostin – an inhibitor of bone formation 112
6.3 References 114

II Inhibition of Signaling Cascades in Fibrosis 117

7 Signal transduction cascades controlling fibrosis in Dupuytren's Disease 121
 7.1 Dupuytren's Disease 121
 7.1.1 Epidemiology 121
 7.1.2 Etiology 121
 7.1.3 Pathogenesis 122
 7.2 Treatment of Dupuytren's Disease 123
 7.3 Growth factor signaling in Dupuytren's Disease 123
 7.3.1 TGF-β signaling 123
 7.3.2 BMP signaling 125
 7.3.3 PDGF signaling 126
 7.3.4 bFGF signaling 126
 7.3.5 EGF signaling 128
 7.3.6 GM-CSF signaling 128
 7.3.7 IFN-γ signaling 129
 7.4 References 129
8 Elevated TGF-β and MAP kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Abstract</td>
<td>137</td>
</tr>
<tr>
<td>8.1.1 Background</td>
<td>137</td>
</tr>
<tr>
<td>8.1.2 Results</td>
<td>137</td>
</tr>
<tr>
<td>8.1.3 Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>8.2 Background</td>
<td>138</td>
</tr>
<tr>
<td>8.3 Methods</td>
<td>139</td>
</tr>
<tr>
<td>8.4 Results</td>
<td>145</td>
</tr>
<tr>
<td>8.4.1 TGF-β/Smad signaling is upregulated in DD</td>
<td>145</td>
</tr>
<tr>
<td>8.4.2 SB-431542 inhibited fibrogenic properties of Dupuytren's fibroblasts</td>
<td>148</td>
</tr>
<tr>
<td>8.4.3 BMP-6 attenuated TGF-β signaling in Dupuytren's fibroblasts</td>
<td>150</td>
</tr>
<tr>
<td>8.4.4 ERK1/2 MAP kinase signaling elevated in DD</td>
<td>150</td>
</tr>
<tr>
<td>8.4.5 Targeting of TGF-β type I receptor and ERK1/2 MAP kinase pathways in Dupuytren's fibroblasts</td>
<td>152</td>
</tr>
<tr>
<td>8.5 Discussion</td>
<td>154</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>157</td>
</tr>
<tr>
<td>8.7 Acknowledgments</td>
<td>157</td>
</tr>
<tr>
<td>8.8 Supplementary Data</td>
<td>158</td>
</tr>
<tr>
<td>8.8.1 Supplementary Figures</td>
<td>158</td>
</tr>
<tr>
<td>8.9 References</td>
<td>161</td>
</tr>
</tbody>
</table>

9 Concurrent inhibition of TGF-β and mitogen driven signaling cascades in Dupuytren's Disease – non-surgical treatment strategies from a signaling point of view

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Summary</td>
<td>169</td>
</tr>
<tr>
<td>9.2 Introduction</td>
<td>170</td>
</tr>
<tr>
<td>9.2.1 TGF-β signaling in Dupuytren's Disease</td>
<td>171</td>
</tr>
<tr>
<td>9.2.2 MAPK signaling in Dupuytren's Disease</td>
<td>171</td>
</tr>
<tr>
<td>9.3 Hypothesis</td>
<td>171</td>
</tr>
<tr>
<td>9.4 Evaluation of the hypothesis</td>
<td>171</td>
</tr>
<tr>
<td>9.5 Testing the hypothesis</td>
<td>172</td>
</tr>
<tr>
<td>9.6 Consequences of the hypothesis</td>
<td>174</td>
</tr>
<tr>
<td>9.7 Acknowledgments</td>
<td>174</td>
</tr>
<tr>
<td>9.8 References</td>
<td>174</td>
</tr>
</tbody>
</table>

A Abbreviations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>

B Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>

C Samenvatting

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>

D Acknowledgments

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>E</td>
<td>Curriculum Vitae (dutch)</td>
</tr>
<tr>
<td>F</td>
<td>Curriculum Vitae (english)</td>
</tr>
<tr>
<td>G</td>
<td>List of Publications</td>
</tr>
</tbody>
</table>