
                                   
Universidade de Aveiro  
2011 

Departamento de 
Electrónica, Telecomunicações e Informática 

Paulo Dionísio 
Reinas Serralheiro 

Implementação de um Sistema de Comunicações 
Móveis para o Uplink 

 

 

   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/15566841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  



 

                                   
Universidade de Aveiro  
2011 

Departamento de 
Electrónica, Telecomunicações e Informática 

Paulo Dionísio 
Reinas Serralheiro 

Implementação de um Sistema de Comunicações 
Móveis para o Uplink 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 

requisitos necessários à obtenção do grau de Mestre em Engenharia 
Electrónica e Telecomunicações, realizada sob a orientação científica do Prof.
Dr. Adão Paulo Soares da Silva, Departamento de Electrónica, 

Telecomunicações e Informática, Universidade de Aveiro; e do Prof. Dr. Atílio 

Manuel da Silva Gameiro, Departamento de Electrónica, Telecomunicações e 

Informática, Universidade de Aveiro. 

   

  



  

  

  

  



  

  

o júri / the jury 
 

 

presidente / president Prof. Dr. José Carlos da Silva Neves 

Professor Catedrático do Departamento de Electrónica, Telecomunicações e Informática da 

Universidade de Aveiro 

  

 

orientador / adviser Prof. Dr. Adão Paulo Soares da Silva 

Professor Auxiliar do Departamento de Electrónica, Telecomunicações e Informática da 

Universidade de Aveiro 

  

 

co-orientador / co-adviser Prof. Dr. Atílio Manuel da Silva Gameiro 

Professor Associado do Departamento de Electrónica, Telecomunicações e Informática da 

Universidade de Aveiro 

  

 

arguente / examiner Prof. Dr. Paulo Jorge Coelho Marques 

Professor Adjunto do Instituto Politécnico da Escola Superior de Tecnologia de Castelo Branco 

  
  
  
  
  
  



  



  

  

agradecimentos / 
acknowlegements 

 

Ao concluir mais um importante passo na minha vida é com enorme satisfação 

que agradeço a todos que, directamente ou indirectamente, contribuíram para 
a realização desta dissertação e me apoiaram ao longo do meu percurso 

académico. 

Ao Professor Dr. Adão Silva, pela excelente orientação e coordenação deste 
trabalho e pela permanente disponibilidade. 

A todos os meus amigos e colegas, e um especial muito obrigado ao Gonçalo 
Teixeira, João Quintas, Andreia Campos, Duarte Rodrigues e Francisco 

Fonseca pelo excelente espírito de camaradagem, amizade incondicional e por 

todos os momentos passados ao longo destes anos. 

E por fim, mas não menos importante, um sincero muito obrigado aos meus 

pais, sem os quais todo este percurso não teria passado de uma mera utopia. 



  



  

  

palavras-chave LTE, OFDM, OFDMA, SC-FDMA, MIMO, Mapeamento Adjacente, 

Mapeamento Intercalado, MMSE, ZFC, EGC, MRC 

resumo 

 

É evidente que actualmente cada vez mais a internet móvel está presente na 

vida das sociedades. Hoje em dia é relativamente fácil estar ligado à internet 
sempre que se quiser, independentemente do lugar onde se encontra 

(conceito: anytime and anywhere). Desta forma existe um número crescente 

de utilizadores que acedem a serviços e aplicações interactivas a partir dos 
seus terminais móveis. Há, portanto, uma necessidade de adaptar o mundo 

das telecomunicações a esta nova realidade, para isso é necessário 
implementar novas arquitecturas que sejam capazes de fornecer maior largura 

de banda e reduzir os atrasos das comunicações, maximizando a utilização 

dos recursos disponíveis do meio/rede e melhorando assim a experiência do 
utilizador final. 

O LTE representa uma das tecnologias mais avançadas e de maior relevância 

para o acesso sem fios em banda larga de redes celulares. OFDM é a 

tecnologia base que está por traz da técnica de modulação, bem como as 

tecnologias adjacentes, OFDMA e SC-FDMA, usadas especificamente no LTE 
para a comunicação de dados descendente (downlink) ou ascendente (uplink), 
respectivamente. A implementação de múltiplas antenas em ambos os 

terminais, potenciam ainda mais o aumento da eficiência espectral do meio 

rádio permitindo atingir grandes taxas de transmissão de dados. 

Nesta dissertação é feito o estudo, implementação e avaliação do 
desempenho da camada física (camada 1 do modelo OSI) do LTE, no entanto 
o foco será a comunicação de dados ascendente e a respectiva técnica de 

modelação, SC-FDMA. Foi implementada uma plataforma de simulação 

baseada nas especificações do LTE UL onde foram considerandos diferentes 

esquemas de antenas. Particularmente para o esquema MIMO, usou-se a 
técnica de codificação no espaço-frequência proposta por Alamouti. Foram 
também implementados vários equalizadores. 

Os resultados provenientes da simulação demonstram tanto a eficiência dos 

diversos modos de operação em termos da taxa de erro, como o excelente 
funcionamento de processos de mapeamento e equalização, que visam 

melhorar a taxa de recepção de dados. 
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abstract It is clear that mobile Internet is present in the life of societies. Nowadays it is 

relatively easy to be connected to the internet whenever you want, no matter 
where you are (concept: anytime and anywhere). Thus, there are a growing 

number of users accessing interactive services and applications from their 

handsets. Therefore, there is a need to adapt the world of telecommunications 
to this new reality, for that it is necessary to implement new architectures that 

are able to provide higher bandwidth and reduce communication delays, 
maximizing use of available resources in the medium/network and thereby 

improving end-user experience. 

LTE represents one of the most advanced architectures and most relevant to 
wireless broadband cellular networks. OFDM is the technology that is behind 
the modulation technique and the underlying technologies, OFDMA and SC-

FDMA, used specifically in LTE for data communication downward (downlink) 

or upward (uplink), respectively. The implementation of multiple antennas at 

both ends further potentiate the increase of spectral efficiency allowing to 
achieve high rates of data transmission. 

In this dissertation is done the study, implementation and performance 

evaluation of the physical layer (OSI Layer 1) of the LTE, but the focus will be 

communication and its upstream data modeling technique, SC-FDMA. We 

implemented a simulation platform based on LTE UL specifications where were 
considered different antenna schemes. Particularly for the MIMO scheme, we 
used the technique of space-frequency coding proposed by Alamouti. We also 

implemented several equalizers. 

The results from the simulation demonstrate both the efficiency of different 

modes of operation in terms of error rate, as the excellent operation of mapping 
processes and equalization, designed to improve the rate of receiving data. 
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Chapter 1 

1. Introduction 

The Global System for Mobile communications (GSM) is the dominant wireless cellular standard 

with over 3.5 billion subscribers worldwide covering more than 85% of the global mobile market. 

Furthermore, the number of worldwide subscribers using High Speed Packet Access (HSPA) 

networks topped 70 million in 2008 [1]. HSPA is a Third Generation (3G) evolution of GSM 

supporting high speed data transmissions using Wideband Code Division Multiple Access (W-

CDMA) technology. Global uptake of HSPA technology among consumers and businesses is 

accelerating, indicating continued traffic growth for high speed mobile networks worldwide. In 

order to meet the continued traffic growth demands, an extensive effort has been underway in 

the Third Generation Partnership Project (3GPP) to develop a new standard for the evolution of 

GSM/HSPA technology towards a packet optimized system referred to as Long Term Evolution 

(LTE). 

 

Figure 1 - Mobile Technologies Evolution 
 

The goal of the LTE standard is to create specifications for a new radio access technology geared 

to higher data rates, low latency and greater spectral efficiency. The spectral efficiency target for 
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the LTE system is three to four times higher than the current HSPA system or others equivalents. 

These aggressive spectral efficiency targets require pushing the technology to a new level by 

employing advanced air interface techniques, such as orthogonal uplink multiple access based on 

Single Carrier Frequency Division Multiple Access (SC-FDMA) and Multiple Input Multiple Output 

(MIMO) techniques [1]. 

From both a technical and practical point of view, there is much to understand, examine and 

evaluate in the capabilities and benefits that SC-FDMA brings to LTE. SC-FDMA is a hybrid 

modulation scheme that combines multipath resistance by Orthogonal Frequency Division 

Multiplexing (OFDM) technology with low peak-to-average power ratio (PAPR) of traditional 

single-carrier formats, such as GSM, as also presents inter-cell interference mitigation techniques, 

low-latency channel structure and single frequency network broadcast [2]. Further details 

concerning these technologies can be found in [3] and [4]. 

In this thesis we explore what LTE aims to bring to the wireless ecosystem. After considering the 

broader aspects of LTE, we take a deep look at the uplink, which uses a new modulation format 

(SC-FDMA). These are interesting times because it is rare that the communications industry rolls 

out a new modulation format. 

 

1.1. Motivation 

The systems of Third Generation are now a reality, having already reached some maturity. This 

system is based on technology Code Division Multiple Access (CDMA) and uses a band next of 2 

GHz, with transmission rates from the 144 kbps for high speed, up to 2 Mbps in inferior 

environments. The first step in the evolution of this system was given to the implementation of 

technologies High Speed Downlink Packet Access (HSDPA) for the downward direction (downlink) 

and High Speed Uplink Packet Access (HSUPA) for the upward direction (uplink). With these 

technologies it is possible to obtain transmission rates from 1.8 Mbps to about 14.4 Mbps. 

However, the anticipated increase in demand for broadband services, which require high 

transmission rates, may not be met in the future with these technologies. 

Thus, the Third Generation Partner-Ship Project [5] undertook a research and specification of a 

new standard, called Long Term Evolution (LTE). This mobile communications system can also be 

seen as an evolution of current 3G systems, also known as 4G
1
, but is based on completely 

different technology, the Orthogonal Frequency Division Multiple Access (OFDMA) for the 

downstream (downlink) and Single Carrier Frequency Division Multiple Access (SC-FDMA) for the 

                                                           
1
 4G (Forth Generation ) refers  the new generation of mobile communications, however taking into account the 3GPP 

specifications, LTE is considered as 3.9G as described in 3GPP Release 8 and LTE-Advanced is the true matching to 4G as 

described in 3GPP Release 10, although throughout this thesis we refer to LTE as the Fourth-Generation mobile. 
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upstream (uplink). One of major objective of this system is to provide future transmission rates of 

around 100 Mbps for downlink and 50 Mbps for uplink, values well above the current 3G systems. 

Portugal Telecom predicts the first commercial systems based on LTE technology, might enter the 

market in the end of this year. Actually, this process is pending the award of licenses by 

ANACOM
2
. 

The analysis of the performance of these systems in settings close to reality requires the use of 

simulation, so the development of an efficient simulation platform is a tool of extreme 

importance. The Institute of Telecommunications (IT) already has considerable expertise in this 

area of research, as part of an active participates in several European projects spearheading the 

research. The work has been done under the FCT project CADWIN. 

 

1.2. Objectives 

The work of this thesis falls under the area of wireless communications and its main goals are 

study, implement and evaluate the performance of the physical layer of LTE to the uplink. 

The aim is to implement a simulation platform based on the LTE UL with multiple MIMO schemes 

(1×1, 1×2 and 2×2), using the concept of Alamouti for the 2×2 scheme, allowing selection 

between various equalizers, such as Maximum Ratio Combining (MRC), Equal Gain Combining 

(EGC), Zero Forcing Combining (ZFC), Minimum Mean Square Error Combining (MMSEC). It is also 

desirable that allows different modeling schemes (BPSK, QPSK, 16QAM and 64 QAM), variable 

number of points of FFT modules, adjacent and distributed mapping, as well as allowing multiple 

users. 

After optimizing and validating platform is needed to simulate all scenarios and analyze the 

results. 

 

 

 

 

 

                                                           
2
 National Communications Authority in Portugal 
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1.3. Contributions of this Thesis 

The research performed in this work resulted in the following contributions: 

• Study of the physical layer specification for the LTE system; 

• Integration of a simulation platform for transmitting and receiving data with SC-FDMA 

modulation, MIMO architecture and consequent performance evaluation; 

• Understanding how this communication system improves the efficiency of data reception 

when used various equalization schemes or other strategies (e.g. the interleaved mode). 

 

1.4. Outline 

This thesis is structured as follows. Until the end of this chapter, we made an overview of the 

technologies used around the world and ended up with the next technology adopted worldwide 

for cellular network technologies. 

In Chapter 2, we first we make a description of the evolution of mobile telecommunication 

technologies so far, thus, we do a brief introduction over basic concepts of LTE standard and the 

network architecture that support this technology. 

Chapter 3 discusses the main ideas behind the multicarrier techniques that were implemented in 

this thesis, namely Orthogonal Frequency Division Multiplexing (OFDM) and its multiple access 

versions, such as Orthogonal Frequency Division Multiple Access (OFDMA), and Single-Carrier 

Frequency Division Multiple Access (SC-FDMA). 

In Chapter 4, we presented the understanding over multi-antenna techniques and emphasizes on 

mathematical framework for the capacity determination of MIMO systems. 

Chapter 5 is the core of this thesis. Here, we present the analysis for physical layer of LTE for the 

uplink. The model used for computing this wireless communication system is based on SC-FDMA 

modulation and evaluate simultaneously the performance of  the MIMO architecture and the 

equalizers schemes, as well as the results of the interleaver mode with  the ability to simulate 

multiple users. As also, we provide a more thorough description on the most relevant topic to this 

work: the mechanisms for equalization support which are specific to that mode. 

Finally, in Chapter 6 we conclude this thesis and provide guidelines for future research. 
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Chapter 2 

2. Background 

In this chapter we shall introduce the topics, standards and tools which are the groundwork for 

this thesis. In Section 2.1 we describe in detail the evolution of mobile telecommunication 

technologies until the present day; In Section 2.2 we introduces the technology of future mobile 

telecommunication, Long Term Evolution (LTE), and, in particular, its features of operation, upon 

which we implement and simulate all the work in this thesis; In Section 2.3 we talk about the 

network architecture, which implements support for LTE; and finally we summarize our research 

in Section 2.4. At each section also includes references to all of the related work, papers, books 

and technical reports related to the topics being approached in this thesis. 

 

2.1. Evolution of mobile technologies 

The cellular wireless communications industry witnessed tremendous growth in the past decade 

with over 4 billion wireless subscribers worldwide [1]. The First Generation (1G) analog cellular 

systems supported voice communication with limited roaming. The Second Generation (2G) 

digital systems promised higher capacity and consequently better voice quality than did their 

analog counterparts. Moreover, roaming became more prevalent thanks to fewer standards and 

common spectrum allocations across countries particularly in Europe. The two widely deployed 

2G cellular systems are based in TDMA (Time Division Multiple Access), e.g. GSM (Global System 

for Mobile Communications) and based in CDMA (Code Division Multiple Access), e.g. IS-95 from 

cdmaOne. In same way that 1G analog system, 2G systems were primarily designed to support 

voice communications, however in later releases of these standards, it were introduced 

capabilities to support data transmission. In this sense new protocols, labeled 2.5G, have 

emerged, such as GPRS (General Packet Radio Service) for GSM, it could provide data rates of 40 

kbps in the downlink and 14 kbps in the uplink by aggregating GSM time slots into one bearer, 

although enhancements in later releases meant that GPRS could theoretically reach downlink 

speeds of up to 171 kbps [5], and 1×RTT (One Carrier Radio Transmission Technology) for 

cdma2000, supporting bi-directional peak data rates up to 153 Kbit/s [6]. To close the 2G, 

Enhanced Data rates for GSM Evolution (EDGE) is standardized in 2003 by 3GPP as part of the 

GSM family, also known as Enhanced GPRS (EGPRS), labeled 2.75G. It is an upgrade that provides 

a potential three-fold increase in capacity of GSM/GPRS networks. The GSM EDGE Radio Access 

Network (GERAN) group of 3GPP specifies achieve data rates up to 384 Kbit/s by switching to 

more sophisticated methods of coding (8PSK replacing GMSK) within existing GSM timeslots. 
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Ongoing standards work in 3GPP has delivered EDGE Evolution as part of Release 7, designed to 

complement High Speed Packet Access (HSPA), increasing throughput speeds to 1.3 Mbps in the 

downlink and 653 kbps in the uplink [5]. 

In 2000, the ITU initiative on IMT-2000 (International Mobile Telecommunications 2000), driven 

by the ambition for higher bandwidth, paved the way for evolution to Third Generation (3G). It 

were published a set of requirements such as a peak data rate of 2 Mb/s and support for vehicular 

mobility. Both the GSM and CDMA2000 camps formed their own separate 3G partnership projects 

(3GPP and 3GPP2, respectively) to develop IMT-2000 compliant standards based on the CDMA 

technology. The 3G standard in 3GPP is referred to as Wideband CDMA (W-CDMA) because it uses 

a larger 5 MHz bandwidth relative to 1.25 MHz bandwidth used in 3GPP2’s cdma2000 system. The 

3GPP2 also developed a 5 MHz version supporting three 1.25 MHz subcarriers referred to as 

cdma2000-3x. In order to differentiate from the 5 MHz system (entitled cdma2000-3x standard) 

the 1.25 MHz system is referred to as cdma2000-1x or simply 3G-1x. 

You must be asking yourself why cdma2000-1×RTT belongs to the Second Generation. The first 

releases of the 3G standards did not fulfill its promise of high speed data transmissions because 

the data rates supported in practice were much lower than that claimed in the standards. This 

was the reason behind some of these technologies are considered Second Generation 

technologies. A serious effort was then made to enhance the 3G systems for efficient data 

support. The 3GPP2 first introduced the HRPD (High Rate Packet Data) [7] system that used 

various advanced techniques optimized for data traffic such as channel sensitive scheduling, fast 

link adaptation and hybrid ARQ, etc. The HRPD system required a separate 1.25 MHz carrier and 

supported no voice service. This was the reason that HRPD was initially referred to as cdma2000-

1xEVDO (Evolution Data Optimized) system. The 3GPP followed a similar path and introduced 

HSPA (High Speed Packet Access) [8] enhancement to the W-CDMA system. 

The HSPA standard reused many of the same data optimized techniques as the HRPD system. A 

difference relative to HRPD, however, is that both voice and data can be carried on the same 5 

MHz carrier in HSPA. In parallel to HRPD, 3GPP2 also developed a joint voice data standard that 

was referred to as cdma2000-1xEVDV (Evolution Data Voice) [9]. Like HSPA, the cdma2000-

1xEVDV system supported both voice and data on the same carrier but it was never 

commercialized. In the later release of HRPD, VoIP (Voice over Internet Protocol) capabilities were 

introduced to provide both voice and data service on the same carrier. The two 3G standards 

namely HSPA and HRPD were finally able to fulfill the 3G promise and have been widely deployed 

in major cellular markets to provide wireless data access. 

While HSPA and HRPD systems were being developed and deployed, IEEE 802 LMSC (LAN/MAN 

Standard Committee) introduced the IEEE 802.16e standard [10] for mobile broadband wireless 

access. This standard was introduced as an enhancement to an earlier IEEE 802.16 standard for 

fixed broadband wireless access. The 802.16e standard employed a different access technology 
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named OFDM (Orthogonal Frequency Division Multiplexing) and claimed better data rates and 

spectral efficiency than that provided by HSPA and HRPD. Although the IEEE 802.16 family of 

standards is officially called WirelessMAN in IEEE, it has been dubbed WiMAX (Worldwide 

Interoperability for Microwave Access) by an industry group named the WiMAX Forum. The 

mission of the WiMAX Forum is to promote and certify the compatibility and interoperability of 

broadband wireless access products. The WiMAX system supporting mobility as in IEEE 802.16e 

standard is referred to as Mobile WiMAX. In addition to the radio technology advantage, Mobile 

WiMAX also employed a simpler network architecture based on IP protocols. 

The introduction of Mobile WiMAX led both 3GPP and 3GPP2 to develop their own version of 

beyond 3G systems based on the OFDM technology and network architecture similar to that in 

Mobile WiMAX. The beyond 3G system in 3GPP is called Evolved Universal Terrestrial Radio 

Access (E-UTRA) [11] and is also widely referred to as LTE (Long-Term Evolution), while 3GPP2’s 

version is called UMB (Ultra Mobile Broadband) [12]. 

 

2.2. Long-Term Evolution 

As we known, HSPA and its evolution are strongly positioned to be the dominant mobile data 

technology for the next decade, however the GSM family of standards must evolve toward the 

future. Long Term Evolution (LTE) is part of the GSM evolutionary path beyond the 3G technology, 

following EDGE, UMTS, HSPA (HSDPA and HSUPA combined) and HSPA Evolution (HSPA+).  

LTE’s study phase began at 3GPP in late 2004. Two years later, the LTE of the 3rd generation radio 

access technology (E-UTRA) progressed from the feasibility study stage to the first issue of 

approved technical specifications. In December 2008, the specifications were sufficiently stable 

for commercial implementation and Release 8 was frozen [5].  

LTE’s project focused on enhancing the Universal Terrestrial Radio Access (UTRA) and optimizes 

3GPP’s radio access architecture to support packet-switched traffic. Within the formal 3GPP 

specifications, the LTE evolved radio access network is split into two parts: the Evolved UMTS 

Terrestrial Radio Access (E-UTRA) describing the radio evolution; and the Evolved UMTS 

Terrestrial Radio Access Network (E-UTRAN) for the core network evolution. For simplicity, this 

thesis refers to the new air interface by its project name, LTE. This name became common usage 

just as happened with another project name, UMTS, which has been synonymous with W-CDMA 

since 1999. The overall goal was to select technology that would keep 3GPP’s Universal Mobile 

Telecommunications System (UMTS) at the forefront of mobile wireless well into the next decade. 
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The key project objectives were set in the following areas [5] [13] [14]: 

• User demand for higher data rates (peak and average data throughput); 

• Spectral efficiency; 

• Minimal latency; 

• Quality of service (QoS); 

• Flexible channel bandwidths; 

• Avoid unnecessary fragmentation of technologies for paired and unpaired band 

operation; 

• Packet Switch optimized system; 

• Seamless mobility; 

• Low complexity; 

• Continued demand for cost reduction (CAPEX and OPEX); 

• Need to ensure the continuity of competitiveness of the 2G and 3G system for the future. 

To fulfill all needs, the main decision was whether to pursue the objectives by continuing to 

evolve the existing W-CDMA air interface (which incorporates HSPA
3
) or adopt a new air interface 

based on OFDM. At the conclusion of the study phase, 3GPP decided that the project objectives 

could not be entirely met by evolving HSPA. As a result, the LTE evolved radio access network (E-

RAN) is based on a completely new OFDM air interface. OFDM is an attractive choice to meet 

requirements for high data rates, with correspondingly large transmission bandwidths and flexible 

spectrum allocation. OFDM also allows for a smooth migration from earlier radio access 

technologies and is known for high performance in frequency selective channels. It further 

enables frequency domain adaptation, provides benefits in broadcast scenarios, and is well suited 

for Multiple Input Multiple Output (MIMO) processing. MIMO technology to beyond to provide 

even higher peak data rates, also support 10 times the users per cell as 3GPP’s original W-CDMA 

radio access technology [5]. 

 

 

                                                           
3
 HSPA (high-speed packet access) refers collectively to high-speed downlink packet access (HSDPA) and high-speed 

uplink packet access (HSUPA), the latter being formally known as the Enhanced Dedicated Channel (E-DCH). 
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Nevertheless, LTE uses others technologies derived from OFDM, Orthogonal Frequency Division 

Multiple Access (OFDMA) was selected for the Downlink, and Single Carrier-Frequency Division 

Multiple Access (SC-FDMA) for the Uplink. OFDMA is well suited to achieve high peak data rates in 

high spectrum bandwidth, however, a pure OFDMA approach results in high peak-to-average 

power ratio (PAPR) of the signal, which compromises power efficiency and, ultimately, battery 

life. Hence, on the uplink, LTE uses an approach for the uplink called SC-FDMA, which is somewhat 

similar to OFDMA, but has a 2 to 6 dB PAPR advantage over the OFDMA method [16]. This is an 

advantage when compared with other technologies, such as WiMAX IEEE 802.16e, that use OFDM 

in both stream directions. 

The standard supports a number of digital modulation schemes for the transmission of data. The 

four main modulations supported by LTE are BPSK, QPSK, 16QAM and 64QAM. The downlink 

supports data modulation schemes QPSK, 16QAM, and 64QAM and the Uplink BPSK, QPSK and 

16QAM [5]. Each modulation is capable of an increasingly higher bit rate at the expense of being 

less robust and more susceptible to signal errors and path loss. Figure 2 illustrates the 

modulations selected by LTE depending on the signal-to-noise ratio (SNR) (it is assumed, for the 

sake of simplicity, that a greater distance results in a lower SNR). 

 

16QAM

QPSK

BPSK

 

Figure 2 - Diagram of LTE UL selection of schemes modulation 

 

The possibility to operate in vastly different spectrum allocations is essential. LTE E-UTRA is also 

highly flexible in channelization, so a scalable number of defined channel bandwidths are used. 

Spectrum allocations supported are ranging from 1.25 to 20 MHz (1.4, 3, 5, 10, 15 and 20 MHz), 

contrasted with UTRA’s fixed 5 MHz channels. Different bandwidths are realized by varying the 

number of subcarriers used for transmission, while the subcarrier spacing remains unchanged. 
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LTE also boosts spectral efficiency, increased up to four-fold compared with UTRA. Due to the fine 

frequency granularity offered by OFDM (only 15 kHz of subcarrier spacing), a smooth migration of 

2G/3G spectrum is possible using only a fraction of the available OFDM subcarriers. In others 

words, LTE can co-exist with earlier 3GPP radio technologies, even in adjacent channels, and calls 

can be handed over to and from all 3GPP’s previous radio access technologies. Frequency-division 

duplex (FDD), time-division duplex (TDD), and combined FDD/TDD [17], to separate DL and UL 

traffic, allow the operation in paired as well as unpaired spectrum, as illustrated in Figure 3. 

 

 

Figure 3 - Duplex schemes [17] 

 

The targets were to have average user throughput of three to four times the Release 6 HSDPA 

levels in the Downlink (100 Mbps), and two to three times the HSUPA levels in the Uplink (50 

Mbps), allowing to bring many technical benefits to cellular networks [5]. W-CDMA radio 

technology is, essentially, as efficient as OFDM for delivering peak data rates of about 10 Mbps in 

5 MHz of bandwidth. Achieving peak rates in the 100 Mbps range with wider radio channels, 

although it would result in highly complex terminals and is not practical with current technology. 

This is where OFDM provides a practical implementation advantage, and by using OFDM, LTE is 

aligning with similar decisions made by 3GPP2 for Ultra Mobile Broadband (UMB) and by IEEE 

802.16 for WiMAX. 

LTE is, undoubtedly, the future technology for cellular networks. However, this does not mean the 

end of 3GPP’s interest in GSM and W-CDMA. Rather, the investment in these technologies and 

their remaining potential untapped mean that LTE is not the only format being developed in 3GPP 

Release 8. For example, the EDGE Evolution project will be pushing GSM to newer levels and the 

HSPA+ project will continue to evolve the underlying W-CDMA, HSDPA and HSUPA technologies. 

These features will suit the needs of different network operators that have different bandwidth 

allocations, and also allow operators to provide different services based on spectrum [2]. 

In addition to developing LTE, 3GPP also worked on a complementary project known as System 

Architecture Evolution (SAE), which defines the split between LTE and a new Evolved Packet Core 

(EPC), optimizing architecture and signalling for packet mode and in particular for the IP-
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Multimedia Subsystem (IMS), which supports all access technologies. This is a flatter packet-only 

core network that aims to deliver higher throughput, lower cost and reduce round-trip latency, 

providing capabilities for less than 10 ms latency for the transmission of a packet from the 

network to the user equipment. The EPC is also designed to provide seamless interworking with 

existing 3GPP and non-3GPP access technologies. This topic will be completed in next section. 

Table 1 shows the main features of LTE. Some of the issues covered here will be studied in detail 

in the following chapters. 

 

Table 1 - LTE system attributes [1] 

 Downlink Uplink 

Bandwidth 1.25 ‒ 20 MHz 

Duplexing FDD, TDD, half-duplex FDD 

Mobility 

Optimized mode 0 - 15 km/h 

High performance mode 15 - 120 km/h 

Functional mode 120 - 350 km/h 

Multiple access OFDMA SC-FDMA 

Peak rate in 20 MHz 

(theoretical values) 

100 Mbps (1×1 / 64QAM) 50 Mbps (1×1 / QPSK) 

172.8 Mbps (2×2 / 64QAM) 57.6 Mbps (1×1 / 16QAM) 

326 Mbps (4×4 / 64QAM) 86.4 Mbps (1×1 / 64QAM) 

Specified Modulation QPSK, 16QAM and 64QAM BPSK, QPSK and 16-QAM 

Channel coding Turbo code 

Latency < 10 ms 

Other techniques 

Channel sensitive scheduling 

Link adaptation 

Power control 

ICIC 

Hybrid ARQ 

 

Standards development for LTE continued with 3GPP Release 9 (finished in December 2009). 

3GPP recognized the need to develop a solution and specification to be submitted to the 

International Telecommunication Union (ITU) for meeting the IMT-Advanced requirements (4G). 

Therefore, in parallel with Release 9 work, 3GPP worked on a study item called LTE-Advanced 

[15], which defines the bulk of the content for Release 10 (finished in March 2011), and include 

significant new technology enhancements to LTE/EPC [5]. Actually, 3GPP continues to study 

further advancements for the E-UTRAN with work already in progress at 3GPP in Release 11. 
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2.3. Network architecture 

System Architecture Evolution (SAE) is the network architecture of 3GPP’s LTE. The main 

component of the SAE architecture is the Evolved Packet Core (EPC). SAE/EPC is defined by 3GPP 

in Release 8 as an entirely new core network with the goal of supporting flatter all-IP architecture, 

enabling higher data rate, seamless mobility, quality of service (QoS) and lower latency. 3GPP has 

targeted user-plane latency at 10 ms. It also supports multiple heterogeneous access networks, 

including E-UTRA (LTE and LTE-Advanced air interface), 3GPP legacy systems (GERAN and/or 

UTRAN networks connected via SGSN) and non-3GPP systems focusing on the packet-switched 

domain (e.g. WiMAX or cdma2000). Further, the packet-switched approach allows supporting all 

services via IP including voice through packet connections [16].  

Through the SAE work item, 3GPP has made a significant progress in Release 8 towards the 

standards development and definition of a new flatter-IP core network to support the Evolved 

UMTS Terrestrial Radio Access Network (E-UTRAN), which has recently been renamed the Evolved 

Packet Core (EPC) Architecture [19]. The result is a simplified architecture with only two network 

elements, called evolved NodeB (eNodeB) and Access Gateway (AGW), see Figure 4. One major 

change is that the radio network controller (RNC) is eliminated from the data path, so eNodeB 

integrates the functions traditionally performed by the radio network controller (RNC). This is in 

contrast to many more network nodes in the current hierarchical network architecture of the 3G 

system, where a separate node controlled multiple NodeB. Some of the benefits of a single node 

in the access network are reduced latency and the distribution of the RNC processing load into 

multiple eNodeB. The elimination of the RNC in the access network was possible partly because 

the LTE system does not support macro-diversity or soft-handoff. Meanwhile, the AGW integrates 

the functions traditionally performed in UTRAN by the SGSN and GGSN. The AGW has both 

control functions, handled through the Mobile Management Entity (MME), and user plane (data 

communications) functions. The MME supports user equipment context and identity, as well as 

authenticating and authorizing users. The user plane functions consist of two elements, a Serving 

Gateway (S-GW) that addresses 3GPP mobility and terminates eNodeB connections, and a Packet 

Data Network Gateway (PDN-GW) that addresses service requirements (controls IP data services, 

does routing, allocates IP addresses and enforces policy) and provides access for non-3GPP access 

networks. The MME serving gateway and PDN gateways can be collocated in the same physical 

node or distributed. EPC architecture also supports Policy Control and Charging Rules Function 

(PCRF) that manages QoS aspects. Note that the complete packet system consisting of the E-

UTRAN/LTE and the SAE/EPC is called the Evolved Packet System (EPS) [18]. 
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Figure 4 - Evolved Packet System 

 

The combination of LTE and SAE/EPC provides the long term vision for 3GPP, OFDM radio system 

and packet switching optimization performed improve the performance, providing higher data 

rates and reduced latency. This is particularly important today when all application services 

require greater bandwidth with low delay times. It’s a matter of time until mobile operators to 

add the HSPA + and LTE to their radio access networks, simultaneously, they will evolve the rest of 

their networks and subscriber devices and they will beef up their core and backhaul networks to 

handle the exponential increases in IP traffic enabled by HSPA+ and LTE. To keep their networks 

performing optimally, mobile operators will flatten their core network architectures considerably 

by using EPC technology. So, as we saw earlier, EPC reduces the number of nodes in the core, 

which reduces latency even as the amount of data traffic increases. It simplifies deployment of IP-

based networks and reduces the cost of their deployments [16]. 
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EPC will use IP Multimedia Subsystem (IMS) as a component. It will also manage Quality of Service 

(QoS) across the whole system, which will be essential for enabling a rich set of multimedia-based 

services. The EPS will be optimized for all services to be delivered via IP in a manner that is as 

efficient as possible, through minimization of latency within the system, for instance. The QoS 

architecture in EPC enables a number of important capabilities for both operators and users:  

• VoIP support with IMS. QoS is a crucial element for providing LTE/IMS voice service; 

• Enhanced application performance. Applications such as gaming or video can operate 

more reliably; 

• More flexible business models.  With flexible, policy-based charging control, operators 

and third-parties will be able to offer content in creative new ways. For example, an 

enhanced video stream to a user could be paid for by an advertiser; 

• Congestion control. In congestion situations, certain traffic flows (e.g. bulk transfers, 

abusive users) can be throttled down to provide a better user experience for others. 

Although it will most likely be deployed in conjunction with LTE, EPC may also be deployed for use 

with HSPA+, where it would provide a stepping-stone to LTE. It will support service continuity 

across heterogeneous networks, important for LTE operators that must simultaneously support 

GSM/GPRS/EDGE/UMTS/HSPA customers [18]. 

 

2.4. Summary 

For many years now, a true world cellular standard has been one of the industry’s goals. GSM 

dominated second generation (2G) technologies but there was still fragmentation with CDMA and 

TDMA. With the move to third generation (3G), the historical divide remained between GSM and 

CDMA. The opportunity has arisen for a global standard technology with the next step of 

technology evolution. Now, many operators have converged on the technology they believe will 

offer them and their customers the most benefits. That technology is Long Term Evolution. For 

the first time, all GSM and CDMA operators are walking towards global consensus. 

LTE assumes a full Internet Protocol (IP) network architecture and is designed to support voice in 

the packet domain. It also incorporates new radio access techniques, such as OFDM, SC-FDMA, 

MIMO, etc., to achieve an extremely high performance levels beyond what will be practical with 

CDMA approaches, particularly in larger channel bandwidths, offering full vehicular speed 

mobility. However, in the same way that 3G coexists with second generation (2G) systems in 

integrated networks, LTE systems will coexist with 3G and 2G systems. Multimode devices can 

function across LTE/3G or even LTE/3G/2G. 
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Then, we summarize the technical reports [5], [15] and [20] that contains detailed requirements 

and specifications for the following criteria: 

 

Table 2 - Key features of LTE Release 8 

User throughput 

OFDM 

technology in 

Downlink 

Robust against multipath interference. 

High affinity to advanced techniques, such as frequency 

domain channel-dependent scheduling. 

Multi-antenna schemes (1x1, 2x1, 2x2, 4x2, 4x4). 

Peak data rates 3 to 4 times Release 6 HSDPA (up to 100 

Mbps within 20 MHz downlink spectrum allocation for 

SISO systems 64QAM modulation). 

SC-FDMA 

technology in 

Uplink 

Low PAPR. 

User orthogonality in frequency domain. 

Multi-antenna schemes (1x1, 1x2). 

Peak data rates 2 to 3 times Release 6 HSUPA (up to 50 

Mbps within 20 MHz uplink spectrum allocation for SISO 

systems and QPSK modulation). 

Spectrum flexibility 

E-UTRA shall operate in spectrum allocations of different sizes, including 

support to scalable bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz in both the 

uplink and downlink. 

The system shall be able to support content delivery over an aggregation 

of resources including Radio Band Resources (as well as power, adaptive 

scheduling, etc.) in the same and different bands, in both uplink and 

downlink, and in both adjacent and non-adjacent channel arrangements. 

A “Radio Band Resource” is defined as all spectrum available to an 

operator. 

Spectrum efficiency 

Downlink 

In a loaded network, spectrum efficiency 

(bits/sec/Hz/site) is 3 to 4 times Release 6 HSDPA (5 

bps/Hz). 

Uplink 

In a loaded network, spectrum efficiency 

(bits/sec/Hz/site) is 2 to 3 times Release 6 HSUPA (2.5 

bps/Hz). 

User and Control plane 

latency 

Short transfer delay, up to 10 ms round-trip times between user 

equipment and the base station, and less than 5 ms in unload condition 

(i.e. single user with single data stream) for small IP packet. 

Short setup time, less than 100 ms transition times from inactive to 

active. 

Short handover latency and interruption time and short TTI. 
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Spectrum arrangement 
FDD and TDD within a single radio access technology (operation in paired 

and unpaired spectrum). 

Further enhanced Multimedia 

Broadcast Multicast Service 

(MBMS) 

Support for MBSFN (Multicast Broadcast Single Frequency Network) for 

efficient Multicast/Broadcasting using single frequency network by 

OFDM. 

Architecture 

Single E-UTRAN 

architecture 

eNodeB as the only E-UTRAN node. 

Smaller number of RAN interfaces: 

eNodeB » MME/SAE-Gateway (interface: S1) 

eNodeB »  eNodeB (interface: X2) 

Simple protocol 

architecture 

Shared channel based. 

Packet switch mode only with VoIP capability. 

The E-UTRAN architecture shall be packet based, although provision 

should be made to support systems supporting real-time and 

conversational class traffic. 

E-UTRAN architecture shall minimize the presence of "single points of 

failure". 

E-UTRAN architecture shall support an end-to-end QoS. 

Support of load sharing and policy management across different radio 

access technologies. 

Support of Self-Organising Network (SON) operation. 

Co-existence and Inter-

working with other 

technologies 

Co-existence in the same geographical area with legacy standards and co-

location with GERAN/UTRAN on adjacent channels. 

E-UTRAN terminals supporting also UTRAN and/or GERAN operation 

should be able to support measurement of, and handover from and to, 

both 3GPP UTRAN and 3GPP GERAN. 

The interruption time during a handover of real-time services between E-

UTRAN and UTRAN (or GERAN) should be less than 300 ms. 

Compatibility and inter-working with earlier 3GPP radio access 

technologies (e.g. GSM and HSPA). 

Inter-working with others radio access technologies (e.g. cdma2000). 

eNodeB capacity 
At least 200 users per cell should be supported in the active state for 

spectrum allocations up to 5 MHz. 

eNodeB Coverage 

Throughput, spectrum efficiency and mobility targets can be met for 5 

km cells, and with slight degradation for 30 km cells. Cells with a range up 

to 100 km are also supported with acceptable performance. 
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Mobility 

E-UTRAN is optimized with full performance for low mobile speed up to 

15 km/h. 

Higher mobile speed between 15 and 120 km/h support high 

performance with slight degradation. 

Mobility across the cellular network shall be maintained at speeds from 

120 km/h to 350 km/h (or even up to 500 km/h depending on the 

frequency band used). 

Complexity 
Minimize the number of options. 

No redundant mandatory features. 
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Chapter 3  

3. Multicarrier Systems 

Orthogonal Frequency Division Multiplexing (OFDM) is the multicarrier system used in LTE 

technology, which it aims achieve frequency diversity through the use of multicarrier modulation. 

OFDM systems transmit information data in many subcarriers, where subcarriers are orthogonal 

to each other, so that the spectrum efficiency may be enhanced. OFDM can be easily 

implemented by the IFFT (inverse fast Fourier transform) and FFT (fast Fourier Transform) process 

in digital domain, and has properties such as high-speed broadband transmission, robustness to 

multipath interference, frequency selective fading and high spectral efficiency. It is also worth 

mentioning that the OFDM modulation scheme can be used to make a multiple access 

techniques, resulting in Orthogonal Frequency Division Multiple Access (OFDMA) and Single-

Carrier Frequency Division Multiple Access (SC-FDMA). Figure 5 shows how a series symbols are 

mapped into time and frequency by the two different modulation schemes. 

 

 

Figure 5 - Comparation of how OFDMA and SC-FDMA transmit a sequence of data symbols [2] 

 

In this chapter, we will look into a novel commercial modulation system used in LTE, which aims 

transmit information data in many subcarriers. We begin with a thorough description over the 

OFDM modulation principles, in Section 3.1. Then, we continue with its adaptation to a multiple 
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access techniques, OFDMA and SC-FDMA, in Section 3.2 and 3.3, respectively. The reader that 

wants to broaden its knowledge with respect to these topics is referred to [1] and [21]. 

 

3.1. Orthogonal Frequency Division Multiplexing 

OFDM can be viewed as a form of Frequency Division Multiplexing (FDM) with the special 

property that each carrier is orthogonal with every other carrier, but it is different from FDM in 

several ways. First, FDM requires, typically, the existence of frequency guard bands between the 

frequencies, so that they do not interfere with each other. Unlike, OFDM allows the spectrum of 

each carrier is overlapped because as they are orthogonal and they not interfere with each other. 

Furthermore, the overall amount of required spectrum is reduced due to the overlapping of the 

carriers. 

In OFDM, a subcarrier spacing of 15 kHz is adopted, allowing be compatible with other radio 

access technologies and coverage larger areas of network with a single antenna. To minimize 

delays, the subframe duration is selected as short as 0.5 ms, corresponding to two slots of seven 

OFDM symbols. The cyclic prefix length of 4.67 µs is sufficient for handling the delay spread for 

most unicast scenarios, while only adding modest overhead. Very large cells with large amounts 

of time dispersion are handled by reducing the number of OFDM symbols in each slot by one in 

order to extend the cyclic prefix to 16.67 µs. Broadcast services are supported by transmitting the 

same information from multiple (synchronized) base stations. For the mobile terminal, the 

received signal from all base stations will appear as multipath propagation and thus implicitly be 

exploited by the OFDM receiver [17]. 

OFDM provide a substantial increase in spectral efficiency by exploiting channel variations in the 

time domain through link adaptation and channel dependent scheduling, as is done in current 

3G's systems, such as W-CDMA and HSPA. With the evolved radio access, this is taken one step 

further by adapting the transmission parameters not only in the time domain, but also in the 

frequency domain. Frequency domain adaptation is made possible through the use of OFDM and 

can achieve large performance gains in cases where the channel varies significantly over the 

system bandwidth. Thus, frequency domain adaptation becomes increasingly important with an 

increasing system bandwidth. Information about the channel quality, obtained through feedback 

from the terminals, is provided to the scheduler allocate to which user and dynamically selects an 

appropriate data rate for each chunk by varying the output power level, the channel coding rate, 

and/or the modulation scheme (BPSK, QPSK, 16-QAM and 64-QAM) [21]. 

Then, let's peel some aspects that we consider most important in OFDM. 
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3.1.1. Multicarrier Modulation 

In a single carrier modulation system, the data is sent serially over the channel by modulating one 

single carrier at a baud rate of � symbols per second. The data symbol period is ������� = 1 �⁄ . 

The basic idea of the multicarrier modulation is, nevertheless, that the available bandwidth, �, is 

divided into a number 
�  of sub-bands, commonly called subcarriers. As shown in Figure 6, each 

one of these subcarriers has a width of ∆� = � 
�⁄ . Instead of transmitting the data symbols in a 

serial way at a baud rate �, a multicarrier transmitter partitions the data stream into blocks of 
�  

data symbols and those are transmitted in parallel by modulating the 
�  subcarriers. The symbol 

duration for a multicarrier scheme is then ������� = 
� �⁄ . 

 

 

Figure 6 - Subdivision of the bandwidth into Nc sub-bands (multicarrier transmission) 

 

One of the main advantages of using a multicarrier modulation is that inter-symbol interference 

(ISI) can be reduced when the number of subcarriers, 
�, increases. In a multipath fading channel, 

ISI can appear due to the fact that the time dispersion is significant when compared with the 

symbol period. If a single carrier modulation is used, a complex equalizer for compensating the 

channel distortion is needed. However, the multicarrier modulation simplifies the equalization 

into single multiplications in the frequency domain [21]. This issue will be discussed in more detail 

in Chapter 5. 

 

3.1.2. Orthogonality 

In order to assure a high spectral efficiency, the carrier waveform must be composed by overlap 

of several transmit spectra. Nevertheless, to enable a simple separation of these overlapping 

subcarriers at the receiver they need to be orthogonal. 
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Orthogonality is a property that allows the signals to be perfectly transmitted over a common 

channel and detected without interference. However, loss of orthogonality results in blurring 

between these information signals and degradation in communication. 

Set of functions are orthogonal to each other if they match the conditions in Equation 3.1. It 

means that if any two different functions within a set are multiplied and integrated over a symbol 

period, the result is zero for orthogonal functions. 

� �����. ��	����� = 	 ��				� = �0				� ≠ �!"#     (3.1) 

Each OFDM subcarrier has a sinc(x)
4
 frequency response. This is the result of the symbol time 

corresponding to the inverse of the carrier spacing. The sinc(x) shape has a narrow main lobe with 

many side lobes that decay slowly with the magnitude of the frequency difference away from the 

centre. Each carrier has a peak at its centre frequency and nulls evenly spaced with a frequency 

gap equal to the carrier spacing [21]. 

The orthogonal nature of the transmission is a result of the peak of each subcarrier corresponding 

to the nulls of all other subcarriers, as shown in Figure 7. 

 

Figure 7 - Spectrum of an OFDM signal 
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3.1.3. Cyclic Prefix 

Passing the signal through a time-dispersive channel causes ISI. In an OFDM system, a loss of the 

orthogonality appears due to ISI, resulting in inter-carrier interference (ICI). For a given system 

bandwidth the symbol rate for an OFDM signal is much lower than a single carrier transmission 

scheme. It is because the OFDM system bandwidth is broken up into 
�  subcarriers resulting in a 

symbol rate that is 
�  times lower. This low symbol rate makes OFDM naturally resistant to 

effects of ISI caused by multipath propagation. 

The multiple signals that appear due to the multipath propagation arrive at the receiver at 

different times, spreading the symbol boundaries and causing energy leakage between the OFDM 

symbols. Furthermore, in an OFDM signal the amplitude and phase of the subcarrier must remain 

constant over a period of the symbol in order to maintain the orthogonality of the subcarriers. If 

they are no constant, the spectral shape will not have nulls at the correct frequencies, resulting in 

ICI. 

In order to combat the effects of ISI on an OFDM signal, a guard period to the start of each symbol 

is added. This guard period, which is called the cyclic prefix (CP), is a copy of the last part of the 

OFDM symbol, thus extending the length of the symbol waveform [21]. Figure 8 shows the 

structure of an OFDM symbol.  

 

 

Figure 8 - Addition of the cyclic prefix to an OFDM signal 

 

The CP is prepended to the transmitted symbol and removed at the receiver before the 

demodulation. Then, the total length of the symbol can be written as 

������� = �$ + ��     (3.2) 

where ������� is the total length of the symbol in samples, �$ is the length of the guard period in 

samples, and �� is the size of the IFFT used to generate the OFDM signal, representing the useful 

symbol time. Note that, the CP duration is described in absolute terms (e.g. 16.67 μs for long CP) 
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and in terms of standard time units, ��, that is used throughout the LTE specification documents. 

For instance, it is defined as �� = 1 �1500 × 2048� = 32.55⁄ μs, which corresponds to the 30.72 

MHz sample clock for the 2048 point FFT used with the 20 MHz system bandwidth. 

Consequently, the benefit obtained for the addition of a cyclic prefix is twofold. First, it avoids ISI 

acting as a guard band between two successive symbols. Seconds, it converts the linear 

convolution with the channel impulse response into a cyclic convolution. However, the length of 

the cyclic prefix has to be chosen carefully. It should be, at least, as long as the significant part of 

the impulse response experienced by the transmitted signal, allowing some time for the transient 

signal to decay, and thus, avoiding ISI and ICI, and it should be as small as possible because the 

transmitted energy increases with its length, causing a loss in the SNR. Equation 3.3 gives the SNR 

loss due to the insertion of the CP. Moreover, the number of symbols per second that are 

transmitted per Hertz of bandwidth also decreases with the CP. The decreasing coefficient is 

expressed by .1 − �$ ��������⁄ 0. 

123
24�
����� = 56789:;59<76= = 56789:;56789:;>?@ A8A6BCD<;E = "6BCD<;"6BCD<;@"8FG�
����� = −10HFI?# J1 − "8"6BCD<;K	L�MN

!  (3.3) 

In other words, the system performance is 93.4% or 80% when it used short CP and long CP, 

respectively. 

�ℎFG�	�P	 → R�
����� = 4.69 + 66.674.69 + 66.67 − 4.69 = 1.0708V = 	�
�����@? = 11.0708 = 0.934	�93.4%�
! 

XFYI	�P	 → R�
����� = 16.67 + 66.6716.67 + 66.67 − 16.67 = 1.25V = 	�
�����@? = 11.25 = 0.8	�80%�
! 

 

3.1.4. Generic Frame Structure 

One element shared by the LTE DL and UL is the generic frame structure. In OFDM, users are 

allocated in a specific number of subcarriers for a predetermined amount of time. These are 

referred to as physical resource blocks (PRBs) in the LTE specifications. PRBs thus have both a time 

and frequency dimension. Allocation of PRBs is handled by a scheduling function at the 3GPP base 

station (eNodeB) and is the smallest element of resource allocation assigned by the base station 
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scheduler. Although it involves added complexity in terms of resource scheduling, it is vastly 

superior to packet-oriented approaches in terms of efficiency and latency [21].  

In order to adequately explain OFDM within the context of the LTE, the generic frame structure is 

used with FDD. Alternative frame structures are defined for use with TDD, however, this 

alternative frame structures is not considered in this work. 

As shown in Figure 9, LTE frames have duration of 10 ms and they are divided into 10 subframes 

of 1 ms in duration. Each subframe is further divided into two slots, each of 0.5 ms duration. As 

mentioned above section, slots consist of either 6 or 7 ODFM symbols, depending on whether 

long or short cyclic prefix is employed, respectively [24]. 

 

 

Figure 9 - LTE Generic Frame Structure (FDD frame structure) 

 

Let’s consider a specific LTE example. In the case of 1.25 MHz transmission bandwidth, the FFT 

size is 128. In other words, 128 samples are taken within the FFT period of 66.67 μs. Depending 

on the channel delay spread, either short or long CP is used. When short CP is used, a slot has 

seven consecutive OFDM symbols with CP duration of 4.67 μs �7 × 66.67 + 7 × 4.69	 ≈ 500	μs�. 
On the other hand, when long CP is used, a slot has six consecutive OFDM symbols with CP 

duration of 16.7 μs �6 × 66.67 + 6 × 16.67	 ≈ 500	μs�, as shown in Table 3. This is done to 

preserve slot timing of 0.5 ms. 
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Table 3 - OFDM Modulation Parameters of LTE Release 8 

Access Scheme 
Downlink OFDMA 

Uplink SC-FDMA 

Bandwidth [MHz] 1.4 3 5 10 15 20 

Number of available physical 

resource blocks (NRB) 
6 12 25 50 75 100 

Number of occupied subcarriers 72 180 300 600 900 1200 

IDFT(TX)/DFT(RX) size 128 256 512 1024 1536 2048 

Sampling frequency [MHz] 1.92 3.84 7.68 15.36 23.04 30.72 

Samples per slot 960 1920 3840 7680 11520 15360 

Minimum TTI 1 ms 

Subcarrier spacing 15 kHz 

Physical resource block 

bandwidth 
180 kHz 

Subcarrier period 66.67 μs 

Slot duration 0.5 ms 

OFDM symbols 

per slot 

(NSymbols) 

Short CP 7 symbols 

Long CP 
6 symbols 

3 symbols
5
 

Cyclic prefix 

length (NCP,l) 

[samples] 

Short CP 
160 (≈5.21 μs) for l = 0 

144 (≈4.69 μs) for l = 1, 2, …, 6 

Long CP 
512 (≈16.69 μs) for l = 0, 1, …, 5 

 1024 (≈33.33 μs)
5
 for l =0, 1, 2 

 Modulation BPSK, QPSK, 16QAM, 64QAM 

Spatial multiplexing 

Up to 4 layers for DL per UE 

Single layer for UL per UE 

MU-MIMO supported for DL and UL 

 

The total number of available subcarriers depends on the overall transmission bandwidth of the 

system. The LTE specifications define parameters for system bandwidths from 1.25 MHz to 20 

MHz. A PRB is defined as consisting of 12 consecutive subcarriers (180 kHz) for one slot (0.5 ms) in 

duration. The transmitted signal consists of 
[\ subcarriers with duration of 
]^_`	abcdefa. It 

can be represented by a resource grid as depicted in Figure 10. Each box within the grid 

represents a single subcarrier for one symbol period and is referred to as a resource element. 

                                                           
5
 Δf = 7.5 kHz (only in downlink) 
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Figure 10 - LTE Resource Grid 

  

In contrast to packet-oriented networks, LTE does not employ a PHY preamble to facilitate carrier 

offset estimate, channel estimation, timing synchronization etc. Instead, special reference signals 

are embedded in the PRBs, as shown in Figure 11. 
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Figure 11 - LTE reference symbols 

 

Reference signals are transmitted during the first and fifth OFDM symbols of each slot when the 

short CP is used and during the first and fourth OFDM symbols when the long CP is used [25]. In 

MIMO applications, there is a resource grid for each transmitting antenna, see Figure 12. 

 

 

Figure 12 - Reference symbols for dual antenna 
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3.1.5. The OFDM system model 

OFDM signals are typically generated digitally due to the difficulty in creating large banks of phase 

lock oscillators and receivers in the analog domain. Figure 13 shows the block diagram of an 

OFDM system. In the transmitter, the incoming data stream is grouped in blocks of Nc data 

symbols, which are the OFDM symbols, and can be represented by a vector g�. Next, an IFFT is 

performed on each data symbol block and a cyclic prefix of length 
$ is added. 

 

 

Figure 13 - Model of an OFDM system 

 

The received signal is, generally, the sum of a linear convolution with the discrete channel impulse 

response, ℎ�Y�, and an additive white Gaussian noise, n�n�. It has to be said that it is implicitly 

assumed that the channel fading is slow enough to consider it constant during one symbol, and 

both, transmitter and receiver, are perfectly synchronized. At the receiver, the cyclic prefix is 

removed, and then, the data symbol ij,� (frequency index l, OFDM symbol m) is obtained by 

performing the FFT operation. 

Moreover, the transmitted data symbols, gj,�, can be estimated from the received data symbols, ij,�, using a single tap equalizer. This estimated symbol can be obtained easily by dividing each 

received data symbol by its corresponding channel coefficient. In Chapter 5 we will examine four 

different equalizers with different performances in terms of bit error rate (BER). 
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3.2. Orthogonal Frequency Division Multiple Access 

OFDMA is the basic multiplexing scheme employed in the LTE downlink. Rather than using OFDM, 

we will now shift to the term OFDMA, which stands for Orthogonal Frequency Division Multiple 

Access. OFDMA is simply an elaboration of OFDM used by LTE and other systems that increases 

system flexibility by multiplexing multiple users onto the same subcarriers. This can benefit the 

efficient trunking of many low-rate users onto a shared channel as well as enable per-user 

frequency hopping to mitigate the effects of narrowband fading. OFDMA only differs from other 

systems such as UMB and WiMAX in details of the OFDM numerology (that is subcarrier spacing, 

symbol length, bandwidth, etc.). The basic time-frequency structure of the multiple access 

techniques of LTE are illustrated in Figure 14. 

 

Tim
e

Tim
e
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s

Figure 14 - Time-Frequency structure [17] 

 

3.2.1. Design 

OFDMA is distinguished from OFDM in small details. The major advantage of OFDMA regarding 

OFDM is its scalability of carriers, i.e., OFDMA can allocate a certain number of subcarriers for 

each user (FDM) and can use all carriers available whenever it needs. Through the TDM (Time 

Division Multiplexing) technique is assigning a variable time slot to each user to share resources of 

bandwidth. All these processes are managed by the scheduler. 

Nor can we fail to mention that OFDMA presents the same resistance to the damaging effects of 

multipath delay spread (fading) in the radio channel than OFDM. Without multipath protection, 

the symbols in the received signal can overlap in time, leading to inter-symbol interference (ISI). 

OFDMA systems are designed to use in multipath environments, ISI is avoided by inserting a guard 

period, known as the cyclic prefix (CP), between each transmitted data symbol. The CP is a copy of 

the end of the symbol inserted at the beginning. By sampling the received signal at the optimum 

time, the receiver can avoid all ISI caused by delay spread up to the length of the CP. The CP is 

chosen to be slightly longer than the longest expected delay spread in the radio channel. For the 
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cellular LTE system, the standard CP length has been set at 4.69 µs, enabling the system to cope 

with path delay variations up to about 1.4 km. Longer CP lengths are available for use in larger 

cells and for specialist multi-cell broadcast applications. This provides protection for up to 10 km 

delay spread but with a proportional reduction in the achievable data rates. Inserting a CP 

between every symbol reduces the data handling capacity of the system by the ratio of the CP to 

the symbol length. For LTE, the symbol length is 66.67 µs, which gives a small but significant 7% 

loss of capacity when using the standard CP (short CP) [21]. 

In OFDMA systems, the ideal symbol length is defined by the reciprocal of the subcarrier spacing 

and is chosen to be long compared to the expected delay spread. LTE has chosen 15 kHz 

subcarrier spacing, giving 66.67 µs for the symbol length. In a single-carrier system, the symbol 

length is closely related to the occupied bandwidth. For instance, GSM has 200 kHz channel 

spacing and a 270.833 ksps symbol rate, giving a 3.69 µs symbol length that is 18 times shorter 

than that of LTE. In contrast, W-CDMA has 5 MHz channel spacing and a 3.84 Msps symbol rate, 

producing a 0.26 µs symbol length, 256 times shorter than LTE. It would be impractical to insert a 

4.69 µs cycle prefix between such short symbols because capacity would drop by more than half 

with GSM and by a factor of 20 with W-CDMA. Systems that use short symbol lengths compared 

to the delay spread must rely on receiver-side channel equalizers to recover the original signal. So, 

the link between channel bandwidth and symbol length puts single-carrier systems at a 

disadvantage versus OFDMA when the channel bandwidths get wider. Consider a radio channel 

with 1 µs of delay spread, a 5 MHz single-carrier signal would experience approximately five 

symbols of ISI and a 20 MHz signal would experience approximately 20 symbols of ISI. The amount 

of ISI determines how hard the equalizer has to work and there exists a practical upper limit of 

about 5 MHz beyond which equalizer costs rise and performance drops off. 

Long Term Evolution is capable of transmitting 15 ksps in each 15 kHz subcarrier, giving to LTE a 

raw symbol rate of 18 Msps at its 20 MHz system bandwidth (1200 subcarriers). Using 64QAM, 

the most complex of the LTE modulation formats, in which one symbol represents six bits, the raw 

capacity is 108 Mbps �1200 × 15000 × 6 = 108	nMop� to downlink. Note that actual peak rates 

are derived by subtracting coding and control overheads and adding gains from features such as 

spatial multiplexing. This is the reason because 108 Mbps does not match the useful bandwidth. 

Other advantage over single-carrier systems is the ease with which it can adapt to frequency and 

phase distortions in the received signal, whether caused by transmitter impairments or radio-

channel imperfections. Transmitted and received signals are represented in the frequency domain 

by subcarrier phase and amplitude. By seeding the transmitted signal across the frequency 

domain with many reference signals of predetermined amplitude and phase, the receiver can 

easily correct for frequency-dependent signal distortions prior to demodulation. This correction is 

particularly necessary when using higher-order modulation formats (e.g. 16QAM, 64QAM) that 

are susceptible to erroneous symbol demodulation caused by even small errors in phase and 

amplitude. This ability to easily manipulate phase and frequency also lends itself to the processing 
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required for MIMO antenna techniques such as spatial multiplexing and beam forming. The 

required manipulations of signal phase and amplitude are much easier to implement in OFDMA 

systems than in single-carrier systems, which represent signals in the time domain.  

In conclusion, OFDMA is based on OFDM technology. The differences are present in the way 

resources are shared for bandwidth by multiple users and small details of the OFDM numerology. 

 

3.2.2. Disadvantages 

OFDMA has two big disadvantages when compared to single-carrier systems. First, as the number 

of subcarriers increases, the composite time-domain signal starts to look like Gaussian noise, 

which has a high peak-to-average power ratio (PAPR) that can cause problems for amplifiers. 

Allowing the peaks to distort is unacceptable because this causes spectral re-growth in the 

adjacent channels. Modifying an amplifier to avoid distortion often requires increases in cost, size 

and power consumption. There exist techniques to limit the peaks (e.g. clipping and tone 

reservation
6
) but all have limits and can consume significant processing power while degrading in-

channel signal quality. Other disadvantage, already cited but very important, is caused by tight 

spacing of subcarriers, with the goal to minimize the lost efficiency caused by inserting the CP, it is 

desirable to have very long symbols, which mean closely spaced subcarriers; however, apart from 

increasing the required processing, close subcarrier restart to lose their orthogonality 

(independence from each other) due to frequency errors. 

The following section presents the alternative specified for LTE UL, since OFDMA does not meet 

the requisites of the uplink. 

 

3.3. Single-Carrier Frequency Division Multiple 

Access 

The OFDMA signal consists of many subcarriers, where each one is optionally modulated with a 

high-order modulation scheme (e.g. 64 QAM). The signal, consisting of a high-order modulation 

combined with a large number of subcarriers, results in a high peak-to-average power ratio 

(PAPR). This high-order modulation scheme requires very accurate transmit signal generation. The 

high level of accuracy obliges the OFDMA radio frequency (RF) chain, specifically the power 

amplifier, to work out its linear zone, trading efficiency for accuracy [26]. 

                                                           
6
 Tone reservation is an advanced form of clipping in which the time-domain signal is shaped such that the error energy 

falls on specific, reserved in-channel frequencies, ensuring less distortion in the wanted part of the signal. 
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LTE uplink requirements differ from downlink requirements in several ways. OFDMA is considered 

power inefficient, however, it is tolerable in the case of DL transmission because the power 

amplifier is placed at the base station (eNodeB in 3GPP terminology). In the base-station, power is 

available and the extra complexity is shared over many mobile terminals. On the other hand, most 

of the mobile terminals are battery powered, and constrained to be of low cost to enable mass 

deployment. Thereby, the undesirable high PAPR of OFDMA led 3GPP to choose a different 

modulation format for the LTE UL. 3GPP specifications suggested a new hybrid modulation 

scheme that cleverly combines the low PAPR of single-carrier systems with robust resistance to 

multipath and flexible subcarrier frequency allocation offered by OFDMA called SC-FDMA. This 

eases the mobile terminal task of maintaining highly efficient signal transmission by its power 

amplifier, achieving this property without degradation in the system flexibility and performance.  

The use of SC-FDMA in LTE, however, is restricted to the uplink because a drawback observed for 

the SC-FDMA is an increase in complexity of both the receiver and transmitter. While the 

additional complexity added to the transmitter is considered as negligible, the increase in 

complexity of the receiver is larger considering the requirement of supporting multiple users in 

parallel [2]. 

In this section is described the whole structure of an SC-FDMA system, however it will be avoided 

the formal mathematical approach, unlike will be preferred several graphical comparisons of the 

differences between OFDMA and SC-FDMA. For a formal definition of SC-FDMA, it is needed look 

no further than [3], which gives the mathematical description of the time-domain representation 

of an SC-FDMA symbol. 

 

3.3.1. Design 

The uplink uses the same generic frame structure as the downlink, see Figure 9, as also uses the 

same subcarrier spacing of 15 kHz and PRB width (12 subcarriers). Downlink modulation 

parameters (including short and long CP length) are identical to the uplink parameters shown in 

Table 2. Not surprisingly, subcarrier modulation is, however, much different. Power consumption 

is a key consideration for UE terminals. 

The basic transmitter and receiver SC-FDMA architecture is very similar (nearly identical) to 

OFDMA, since that re-uses many OFDMA functional blocks. Thus, there is a significant degree of 

functional commonality between the uplink and downlink signal chains.  Multipath distortion is 

also handled in the same manner as in OFDMA systems (removal of CP, conversion to the 

frequency domain, then apply the channel correction on a subcarrier-by-subcarrier basis). 

Presenting the same degree of multipath protection with lower PAPR (by approximately 2 dB) due 
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to the underlying waveform is essentially single-carrier. Figure 15 shows the diagram of a basic 

SC-FDMA transmitter and receiver arrangement [26]. 

 

Figure 15 - Adjacent transmitter and receiver structure of the proposed UL SC-FDMA scheme 

 

The functional blocks in the transmit chain are: 

• Constellation mapping: Converts incoming bit stream to single carrier symbols (BPSK, 

QPSK, or 16QAM depending on channel conditions) and injects them into the serial to 

parallel converter; 

• Serial/parallel converter: Formats time domain SC symbols into blocks for input to FFT 

engine; 

• N-point DFT: Converts time domain SC symbol block into N discrete tones; 

• Subcarrier mapping: Maps DFT output tones to specified subcarriers for transmission. SC-

FDMA systems either use contiguous tones (adjacent) or uniformly spaced tones 
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(distributed). The trades between adjacent and distributed subcarrier mapping are 

discussed further below; 

• M-point IDFT: Converts mapped subcarriers back into time domain for transmission; 

• Cyclic prefix: Cyclic prefix is prepended to the composite SC-FDMA symbol to provide 

multipath immunity in the same manner as described for OFDM; 

• DAC/RF: Converts digital signal to analog and up convert to radio frequency (RF) for 

transmission. 

The input to the block diagram is a stream of bits, which are modeled onto a signal constellation 

points that can be BPSK, QPSK or 16QAM depending on channel quality (i.e., complex numbers 

representing symbols). However, rather than using symbols to directly modulate subcarriers (as is 

the case in OFDMA), uplink symbols are sequentially fed into a serial/parallel converter and then 

into an FFT module of 
"q points, as shown in Figure 15. This module is particular to SC-FDMA 

and it may be viewed as a pre-process to the large size IFFT.  The result at the output of the FFT 

block is a discrete frequency domain representation of the symbol sequence. From the Subcarrier 

Mapping stage and onwards, the signal flow is similar to a conventional OFDMA modulator, i.e. 

the discrete Fourier terms at the output of the FFT block are then mapped to subcarriers before 

being converted back into the time domain (IFFT). The IFFT module output is followed by a cyclic 

prefix insertion that completes the digital stage of the signal flow. The final stage in the flow 

converts the digital signal to an analog signal and up convert to radio frequency (RF) for 

transmission. It is interesting to note that while the SC-FDMA signal has a lower PAPR in the time 

domain, individual subcarrier amplitudes can actually vary more in the frequency domain than a 

comparable OFDM signal [24]. 

In the receive side chain, the process is essentially reversed. However, the receiver structure has 

an additional conventional functionality, such as channel-estimation and equalization. The 

receiver diagram assumes perfect timing and frequency synchronization for the sake of simplicity.  

As stated, the Subcarrier Mapping block controls the frequency allocation, however there are two 

principal modes of frequency resource allocation in 3GPP-LTE UL: adjacent allocation (A-FDMA) 

and distributed allocation (D-FDMA) [24][26]. A-FDMA is considered simpler to signal in terms of 

control signaling overhead. On the other hand, it suffers from a low level of frequency diversity. 

To gain frequency diversity, it is proposed to use a distributed scheme (D-FDMA). In this scheme 

the DFT stage output is evenly distributed over the entire (or a part of the entire) symbol BW, 

which is larger than the original signal BW. A special case of D-FDMA, in which the transmission 

occupies the entire BW, is usually termed as interleaved FDMA (I-FDMA). 

It should be observed that the DFT followed by IFFT in an A-FDMA setup operates as an efficient 

implementation to an interpolation filter. This may justify the reduced PAPR experienced in the 
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IFFT output; the signal remains in the symbol constellation space. A similar observation holds also 

for the D-FDMA and I-FDMA. 

Figure 16 illustrates the two modes of operation. The left hand side of Figure 2 presents a 

adjacent allocation where the transmitted signal occupies 
"q consecutive subcarriers. The right 

hand side of the figure presents a distributed allocation where 
"q inputs are evenly separated.  

 

 

Figure 16 - SC-FDMA Subcarriers can be mapped in either adjacent or distributed mode 

 

Adjacent mapping is characterized by low frequency diversity, higher BER and FER for narrowband 

users, time domain channel has larger power fluctuations, difficult to choose appropriate 

modulation and coding scheme due to rapid channel fluctuations and less accurate power control, 

low-rate user may block a high-rate (broadband) user from the channel, especially if channel 

dependent scheduling is used and channel estimation not degraded at low bandwidths. 

Interleaved mapping is characterized by larger frequency diversity, low-rate and high-rate users 

coexist peacefully, time domain channel has less power fluctuation, more stable modulation and 

coding control, more accurate power control, channel estimation becomes degraded for very 

large repetition factors and tighter frequency synchronization may be required. 
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Chapter 4 

4. MIMO spatial multiplexing 

Applying multiple antennas at both ends of a communication system can not only greatly improve 

the capacity and the throughput of a wireless link in flat fading but also in frequency selective 

fading channels, especially when the environment provides rich scattering. 

Multiple Input Multiple Output systems, also known as MIMO, have multi-element antenna arrays 

at both transmit and receive sides. High data rates are achieved when implementing such 

structures without increasing, neither the bandwidth nor the total transmission power. 

Additionally, the use of multiple antennas at both transmitter and receiver provides a diversity 

advantage, i.e. improvement in SNR and hence in BER at the receiver [27] [28]. 

This chapter begins with an introductory section where we introduce MIMO schemes and 

diversity gain. Then, we describe and develop a mathematical framework to model MIMO 

systems. Here we present the Alamouti concept. 

 

4.1. MIMO communications 

When communicating through a wireless channel, transmitted signals suffer from attenuation and 

fading due to multipath in the channel, thus making it difficult for the receiver to determine these 

signals. Diversity techniques take advantage of the multipath propagation characteristics to 

improve receiver sensitivity. MIMO systems utilize antenna diversity to obtain the mentioned 

improvement and hence combat fading. 

A MIMO system characterizes itself by using multiple antennas at both transmitter and receiver. 

However, if only multiple antennas are deployed at one end of the communication system, or 

both ends use a single antenna, the MIMO system changes into a SIMO, MISO or SISO system 

[29], as shown in Figure 17. In this way, when only multiple antennas are deployed at the receiver, 

the MIMO system reduces to a Single Input Multiple Output (SIMO) system. Similarly, when the 

system has only one receive antenna but multiple antennas at the transmitter side, the MIMO 

system reduces to a Multiple Input Single Output (MISO). Finally, when both, transmitter and 

receiver, use a single antenna, the MIMO system simplifies to a Single Input Single Output (SISO) 

system. 
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Figure 17 - MIMO schemes 

 

The main advantages of MIMO channels over traditional SISO channels are the array gain, the 

diversity gain, and the multiplexing gain. Array gain and diversity gain are not exclusive of MIMO 

channels and also exist in SIMO and MISO channels. Multiplexing gain, however, is a unique 

characteristic of MIMO channels [30]. Array gain is the improvement in SINR
7
 obtained by 

coherently combining the signals on multiple transmits or multiple receive dimensions and is 

easily characterized as a shift of the BER curve due to the gain in SINR. Diversity gain is the 

improvement in link reliability obtained by receiving replicas of the information signal through 

independently fading links, branches, or dimensions. It is characterized by a steepen slope of the 

BER curve in the low BER region or high SNR regime. 

The three major forms of diversity exploited in wireless communication systems are temporal, 

frequency, and spatial diversity. Transmit diversity is more difficult to exploit than receive 

diversity since special modulation and coding schemes are required, i.e. space-time coding, 

whereas receive diversity simply needs the multiple receive dimensions to fade independently 

without requiring any specific modulation or coding scheme. 

 

4.1.1. The MIMO channel model 

Assuming flat fading channels, the signal model for a MIMO channel composed by 
"  transmitting 

and 
rreceiving dimensions is 

s = tu + Y      (4.1) 

                                                           
7
 Signal to Interference-plus-Noise Ratio is defined as the ratio of signal power to the combined noise and 

interference power. 
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where u ∈ ℂxA×?is the transmitted data vector,  t ∈ ℂxy×xA  
is the channel matrix, s ∈ ℂxy×? is 

the received vector, and z ∈ ℂxy×? is the noise vector. This signal model represents a single 

transmission. Figure 18 depicts a MIMO scenario with 
"  transmit antennas and 
r receive 

antennas. The signals at the transmit antenna array are denoted by vector u = {p?, p|,⋯ , pxA~", 

and similarly, the signals at the receiver are s = {i?, i|, ⋯ , ixy~", where �∙�" denotes 

transposition, and	p� and i�are the signals at the m-�ℎ transmit antenna port and at the m-�ℎ 

receive antenna port, respectively. 
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Figure 18 - A MIMO channel model in a scattering environment. 

 

The MIMO radio channel describing the connection between transmitter and receiver can be 

expressed as 

t = � �?? �?| ⋯ �?xA�|? �|| ⋯ �|xA⋮ ⋮ ⋱ ⋮�xy? �xy| ⋯ �xyxA�    (4.2) 

where ��� is the complex transmission coefficient from antenna m at the transmitter to antenna Y at the receiver. Moreover, the path gains�����, are correlated depending on the propagation 

environment, the polarization of the antenna elements, and the spacing between them. 
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4.2. Space-Time Coding 

Space-time coding (STC) is an efficient approach to exploit the enormous diversity offered by the 

MIMO. It is used to obtain gains due to spatial diversity via multiple transmit and receive 

antennas. Moreover, a diversity gain proportional to the number of antennas at both transmit 

and receive sides can be achieved. One popular representation of these codes is the Alamouti 

scheme [31] for two transmit antennas. 

STC techniques are used to improve the performance of MIMO systems. Their central issue is the 

exploitation of multipath effects in order to achieve very high spectral efficiency. With this 

purpose, the principal aim of the space-time coding lies in the design of two-dimensional signal 

matrices to be transmitted during a specified time period on a number of antennas. Thus, it 

introduces redundancy in space through the addition of multiple antennas, and redundancy in 

time through channel coding, enabling us to exploit diversity in the spatial dimension, as well as a 

obtaining a coding gain. Therefore, the transmit diversity plays an integral role in the STC design. 

 

4.2.1. The Alamouti concept 

Alamouti [31] [32] introduced a very simple scheme of space-time block coding (STBC) allowing 

transmissions from two antennas with the same data rate as on a single antenna, but increasing 

the diversity at the receiver from one to two in a flat-fading channel. As shown in Figure 19, the 

Alamouti algorithm uses the space and the time domain to encode data, increasing the 

performance of the system by coding the signals over the different transmitter branches. Thus, 

the Alamouti code achieves diversity two with full data rate as it transmits two symbols in two 

time intervals. 
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Figure 19 - 2×1 Alamouti scheme. 

 

In the first time slot, transmit antennas ��? and ��| are sending symbols p� and p��?, 

respectively. In the next time slot, symbols -p��?∗  and p�∗  are sent, where �∙�∗ denotes complex 

conjugation. Each symbol is multiplied by a factor of a squared root of two in order to achieve a 

transmitted average power of one in each time step. Furthermore, it is supposed that the 

channel, which has transmission coefficients, ℎ?? and ℎ?|, remains constant and frequency flat 

over the two consecutive time steps. 

The received vector, r, is formed by stacking two consecutive received data samples in time, 

resulting in 

� = ?√| . �. � + z     (4.3) 

where � = LG�, G��?N"  represents the received vector, ℎ? represents the channel between the 

antenna ��? and receiving antenna, ℎ|  represents the channel between the antenna ��| and 

the same receiving antenna, i.e. � = Lℎ??, ℎ?|N" is the complex channel vector, � = Ln#, n?N" is 

the noise at the receiver, and S defines the STC: 

� = � p� p��?p��?∗ -p�∗ �     (4.4) 

The vector equation in Equation 4.3 can be read explicitly as 

G� = ?√| p�ℎ?? + ?√| p��?ℎ?| + Y#    (4.5) G��? = -?√| p��?∗ ℎ?? + ?√| p�∗ℎ?| + Y?    (4.6) 
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At the receiver, the vector y of the received signal is formed according to	s = LG#, G?∗N", which is 

equivalent to 

G� = ?√| p�ℎ?? + ?√| p��?ℎ?| + n#    (4.7) G��?∗ = ?√| p�ℎ?|∗ − ?√| p��?ℎ??∗ + n?∗     (4.8) 

These both equations can be rewritten in a matrix system as specified in Equation 4.9: 

� G�G��?∗ � = ?√| Jℎ?? ℎ?|ℎ?|∗ -ℎ??∗ K � p�p��?� + �n#n?∗�   (4.9) 

The short notation for this system is the following 

s = ?√|t�u + ��      (4.10) 

where z� represents the new noise vector obtained after the conjugation of the second equation, �� = Ln#, n?∗N". 

The resulting virtual (2 × 2) channel matrix, t�, is orthogonal, i.e. 

t��t� = t�t�� = ℎ|�|    (4.11) 

where �∙�� represents the hermitian operation, �| is the 2×2 identity matrix, and ℎ| is the power 

gain of the channel, with ℎ| = |ℎ??|| + |ℎ?|||. Due to this orthogonality, the Alamouti scheme 

decouples the MISO channel into two virtually independent channels with channel gain ℎ| and 

diversity � = 2. 

The mentioned channel gain is deduced from Equation 4.12, which specifies that transmitted 

symbols can be estimated at the receiver as the result of multiplying the received signals by the 

hermitian of the virtual channel matrix. After performing the corresponding operations it results 

in a signal with a gain of ℎ|  plus some modified noise. 

u� = t��s = ?√|ℎ|u +t����     (4.12) 
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4.2.2. Alamouti scheme with arbitrary number of receive antennas 

A system with two transmit antennas and an arbitrary number of receive antennas [33], as the 

one depicted in Figure 20, is analyzed next. The already explained steps are applied to each of the 

receive antennas, denoting the received signal in the first and second time slot as G# and G?, 

respectively. 
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Figure 20 - 2×NR Alamouti scheme 

 

Vectors �? = {ℎ??, ℎ?|, ⋯ , ℎ?xy~" and �| = {ℎ|?, ℎ||, ⋯ , ℎ|xy~" contain the channel 

coefficients corresponding to the transmission from antenna ��? and antenna ��| to every 

receive antenna, respectively. 

As in the previous section, the received vector is 

� i�i��?� = � G�G��?∗ � = ?√| Jℎ? ℎ|ℎ|∗ -ℎ?∗K � p�p��?� + �n#n?∗�   (4.13) 

where n# and n? are noise vectors, corresponding to the noise added in each receive branch. 

Following the same steps as in the 2×1 Alamouti scheme, the estimation of the transmitted 

symbols at the receiver is performed in Equation 4.14. Since the power gain of the channel is, in 

this case, ℎ| = ‖�?‖| + ‖�|‖|, it is possible to achieve a diversity order of 2
r.  

u� = t��s = ?√|ℎ|u +t����					     (4.14) 
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For a system with two receive antennas, ��? and ��|, and according to the above equations, the 

received signals would be �� = LG��1�, G��2�N".and ���? = LG��?�1�, G��?�2�N", where G��1� is 

the symbol received in antenna ��? at time slot �#, and G��?�1�, the symbol received at time slot �?. In the same way, G��2� and G��?�2� are the symbols received in antenna ��| during the two 

time slots. Therefore, the signal that is received at the end is s = LG�, G��?∗ N": 

� G�G��?∗ � = � G��1�G��2�G��?∗ �1�G��?∗ �2�� =
?√|�

ℎ?? ℎ|?ℎ?| ℎ||ℎ|?∗ -ℎ??∗ℎ||∗ -ℎ?|��
p�p��?� + �

η#�1�η#�2�η?∗�1�η?∗�2��   (4.15) 

In this case the power gain of the channel is ℎ| = ‖�?‖|| + ‖�|‖|| and a diversity order of 4 is 

achieved. 
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Chapter 5 

5. LTE Uplink Simulation 

Throughout this dissertation we have been introducing the main theoretical concepts of physical 

layer of LTE. In this chapter we report the entire implementation and validation work. We begin 

with a comprehensive description of the models implemented over the simulation platform used 

to simulate the uplink of LTE (SC-FDMA), in Section 5.1; Then, we describe the algorithms and 

mathematical models used to understand how the different equalizers improve data reception for 

different antennas schemes, in Section 5.2; and finally we analyzed the results of various 

scenarios in Section 5.3. All conclusions will be underpinned by practical results. 

 

5.1. Simulation platform of the SC-FDMA 

In this section we describe the SC-FDMA based system implemented. All the main theoretical 

background was explained in chapters 3 and 4, where we introduce the SC-FDMA structure and 

MIMO diversity, respectively. 

Figure 21 shows the implemented platform. It comprises several blocks: 

• Channels Generation’s block is responsible for generating the matrices that emulate the 

channel’s effect in frequency-domain to several users, i.e. the effect suffered by the radio 

signal when it is propagated through a medium wireless corresponding to each channel 

(H11, H12, H21 and H22); 

• Data Generation’s block has the simple task to generate arrays of random bits (0 and 1), 

in accordance with the number of users, the encoder and the modulation used to each 

simulation; 

• Coder’s block, as own name indicates, is in charge of encoding the data bits generated by 

the Data Generation’s block. Allowing to choose among three mode of operation: without 

coding, CTC encoder (turbo coding) and CC63 encoder (convolutional coding); 

• Data Modulation’s block converts incoming bit stream to single carrier symbols spatially 

allocated (digital modulation schemes available: BPSK, QPSK, 16QAM and 64QAM) and 

injects them SC-FDMA structure; 
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• SF Processing’s block formats time-domain symbols into blocks for input to FFT engine 

that converts time-domain single carrier symbol block into N discrete tones, i.e. performs 

Fast Fourier Transform with variable size of number of subcarriers. Finally, to emulate the 

spatial diversity antenna is performed space-time block coding (STBC). However, these 

schemes require that the channel remains constant over two OFDM transmission periods 

for Alamouti coding or even more if other codes are employed to achieve good 

performance. Such condition may be hard to uphold in multicarrier systems and therefore 

to overcome the time invariance limitation, an alternative is to send the code symbols on 

different subcarriers. In [34] an efficient implementation of space-frequency block coding 

(SFBC)is discussed for OFDM; 

• OFDM Framing’s blocks maps DFT output tones to specified subcarriers into SC-FDMA 

frame for each user, either in contiguous tones (adjacent mapping) or uniformly spaced 

tones (interleaved mapping). In practical terms to support multiple users, the frame of 

each user is sent in series because it would be impractical to implement a transmitter for 

each user, see Figure 22; 

• CFR’s blocks adds the respective channel’s effect for each SC-FDMA frame;  

• Add AWGN’s block adds additive white Gaussian noise (AWGN); 

• OFDM De-framing’s block unmaps the frame into a vector taking into account the 

operation mode (adjacent or interleaved mapping); 

• Equalizer’s block performs space frequency combining (SFC) and applies equalization’s 

algorithms (MMSEC, ZFC, EGC and MRC), aimed at lessening the channel’s effect, ISI and 

noise, and also performs the IFFT with the respective size converting mapped subcarriers 

back into time-domain; 

• Data Demodulation’s block converts incoming single carrier symbols spatially allocated 

into bits according to the modulation scheme used; 

• Channel Weighting’s block multiplies the equivalent channel for each bit when data is 

encoded; 

• Decoder’s block does the reverse process of Coder’s block extracting all data; 

• Checker’s block checks if the received bits correspond to the transmitted bits, and 

accounts error bits, error frames, received bits and runs. 

 



 

47 

 

Figure 21 - Simulation platform of the SC-FDMA 

 

User 1

User 2

User 8

1024 subcarriers

1024 subcarriers

1024 subcarriers

12 symbols

128 subcarriers

128 subcarriers

128 subcarriers

 

Figure 22 - SC-FDMA frames from all users in series 
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In parallel, we developed a simulation window, as shown in Figure 23, where we can set all 

simulation parameters. This window interacts with the platform and automatically activates all 

requirements necessary for simulation to simulation. This tool comes to facilitate the simulation 

of scenarios. 

 

 

Figure 23 - Simulation window 

 

Figure 24 illustrates the block diagram that represents all the functions proposed for the platform, 

analogous to the SC-FDMA structure presented in Chapter 3, allowing a better understanding 

about the developed platform. 
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Figure 24 - SC-FDMA Architecture 

 

In order to simplify the implementation, it was considered a fixed frame of 1024 subcarriers with 

a slot of 12 consecutive OFDM symbols. We also consider a constant number of 128 subcarriers 

per user, corresponding to a maximum of 8 users. In other words, the first three blocks of the 

diagram (Data Generation, Coder and Data Modulation), must be aligned to ensure that in each 

runs they’re generated 1536 symbols per user, independent of the encoder (CTC and CC63) and 

modulation (BPSK, QPSK, 16QAM and 64QAM). Table 4 displays all the configurable parameters 

featuring all the scenarios. 

Table 4 - Configurable Parameters 

Modulation BPSK or QPSK or 16QAM or 64 QAM 

Number of users 1 – 8 (full load) 

Number of FFT tones 16 or 32 or 64 or 128 

Channel profile AWGN or ITU pedestrian channel model B 

Channel coder Off or CTC or CC63 

Interleaver processing On or Off 

Equalizer’s algorithms MRC or EGC or ZFC or MMSEC 

MIMO schemes 1×1 or 1×2 or 2×2 
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5.2. Mathematical analysis 

In this section we derive the expressions of the several multiple antennas techniques 

characteristic of the LTE UL: SISO, SIMO and MIMO. As also we present all the equalizers 

considered in this work. 

5.2.1. SISO 

Let’s start with the simplest system, where both terminals are equipped with single antenna, as 

shown in Figure 25. 

 

 

Figure 25 - SISO scheme (1×1) 
 

Considering a row vector of X symbols, � = L�?, … , ��N, the transmitted signal in the frequency-

domain, u, is given by 

u�?×� = ��?×� .  ��×�      (5.1) 

where   represents the square matrix X × X of the Discrete Fourier Transform (DFT). 

Posteriorly, the received signal, s, is given by  

s�?×� = u�?×� . t��×� + z�?×�     (5.2) 

where t represents the square matrix X × X of the complex flat-fading channels coefficients over X subcarriers, and z means the additive white Gaussian noise (AWGN), with zero mean and 

variance ¡|. 

After replacing equation 5.1 in 5.2, we can write 

s�?×� = ��?×� .  .t¢�×� + z�?×�     (5.3) 
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Upon receipt the signal is necessary estimate the transmitted symbols, which requires channel 

equalization, i.e., we need to remove or minimize the channel’s effect and the noise. Therefore, 

the estimated symbols, �£, after the IFFT operation are given by 

�£�?×� = s�?×� . ¤.  �¥¦§�×�      (5.4) 

where ¤ and  � represents the square matrix X × X of the equalizer coefficients and the inverse 

Discrete Fourier Transform coefficients (IDFT), respectively. Note that  .  � = �� , where ��  

represents the identity matrix of size X × X. 

Replacing equations 5.3 in 5.4, we can write 

�£�?×� = ��?×� .  .t. ¤.  �¥¨̈ ¦¨̈ §�×� + z�?×� . ¤.  �¥¦§�×�     (5.5) 

From equation 5.5 we can conclude that the data symbol vector is perfectly estimated at the 

receiver if  .t. ¤.  � = �, i.e., only if the effects of the channel are full eliminated, otherwise a 

given data symbol suffer from interference of others. Thus, the equalizer plays an important role 

on the system performance. 

So, the soft estimation of a generic data symbol � is given by 

�£� = �� . ©� . t. ¤. ©��¥¨̈ ¨¦¨̈ ¨§ª«��¬«­	®�$�¯� + ∑ �j. ©j . t. ¤. ©��±j²?,			j³�¥¨̈ ¨̈ ¨̈ ¨¦¨̈ ¨̈ ¨̈ ¨§´®´ + z.¤. ©��¥̈ ¦̈ §x���«   (5.6) 

where ©� represents the �-�ℎ row of matrix  . It is clear that the equalizer is intended to reduce 

the effect of ISI and noise. Ideally, the negative effects of ISI and Gaussian noise are completely 

cancelled by the equalizer. However, no equalizer presents an ideal behaviour. In conclusion, the 

received signal consists by the desired signal, inter-symbols interference and noise. The purpose 

of the equalizer is to minimize the effect of the last two. 

In the SC-FDMA systems can be used four different types of single user equalizers: Maximum 

Ratio Combine (MRC), Equal Gain Combining (EGC), Zero Forcing Combining (ZFC) and Minimum 

Mean Square Error Combining (MMSEC). The equalization coefficients are defined as I�,���� , where � 
is the �-�ℎ transmit antenna, � is the �-�ℎ data symbol and Y is the Y-�ℎ subcarrier equalization. 
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1. Maximum Ratio Combining 

MRC equalization aims to maximize the instantaneous SNR at the receiver’s front end. The 

equalizer coefficients are obtained simply from the complex conjugate of the frequency response 

of the channel. Under the MRC criterion, the equalization weights are 

I�,���� = ℎ�,�∗      (5.7) 

2. Equal Gain Combining 

In order to arrive all the subcarriers at the receiver in phase, phase equalization can be performed 

at the transmitter in the form of EGC. This scheme compensates only the phase rotation caused 

by the channel. Under the EGC criterion, the coefficients are given by 

I�,���� = µ¶,9∗|µ¶,9|     (5.8) 

This technique is less complex, since it only requires the phase information of the channel 

coefficients. What makes it particularly interesting in the DL, since the mobile only needs estimate 

the phase of the channel. 

3. Zero Forcing Combining 

The equalizer constructed under the ZFC criterion represents the inverse of the channel’s 

frequency response. For the �˗�ℎ transmit antenna and the �˗�ℎ data symbol, the equalizer 

coefficients are obtained using the ZFC, simply flipping the channel 

I�,���� = µ¶,9∗¸µ¶,9¸¹     (5.9) 

This scheme restores the orthogonality among different users, forcing the ISI to zero. However, a 

major drawback of this scheme is that it amplifies noise especially for the channel coefficients 

with low amplitude. 

4. Minimum Mean Square Error Combining 

In this scheme, the coefficients are obtained by minimizing the mean squared error between the 

transmitted signal before OFDM modulation and signal to the equalizer on each subcarrier. 

I�,���� = µ¶,9∗¸µ¶,9¸¹�º¹     (5.10) 

It is easy to verify that to ¡| → ∞ the MMSE equalizer is identical to the ZFC. As we shall see in 

section 5.3, this equalization algorithm will be that which it presents the best results. 
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5.2.2. SIMO 

The second scenario is the SIMO scheme with an antenna on the side of the transmitter and two 

antennas at the receiver, as shown in Figure 26. 

 

 

Figure 26 - SIMO scheme (1×2) 

 

Once again considering a row vector of X symbols, � = L�?, … , ��N, the transmitted signal in the 

frequency-domain, u, is given by 

u�?×� = ��?×� .  ��×�        (5.11) 

where   represents the square matrix X × X of the Discrete Fourier Transform (DFT). 

Since the transmitted signal in frequency-domain is u = Lp?, … , p�N, the received signal for each 

antenna, s? and s|, is given by equations  

s?¼?×� = u�?×� . t??½�×� + z?¼?×�          (5.12) 

s|¼
?×�

= u�
?×�

. t?|½
�×�

+ z|¼
?×�

          (5.13) 

where t?? and t?| represent the channel’s effect for transmitted channel 1 and channel 2. The 

same way, z? and z| represent the noise to respective channel. 

After replacing equation 5.11 in equations 5.12 and 5.13, we can write 

s?¼
?×�

= ��
?×�

.  . t??¥¦§
�×�

+ z?¼
?×�

          (5.14) 

s|¼
?×�

= ��
?×�

.  . t?|¥¦§
�×�

+ z|¼
?×�

          (5.15) 
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Thereby, the estimated signal from each receiving antenna, �£? and �£|, is given by 

�£?¼?×� = s?¼?×� . ¤?.  �¥¦§�×�           (5.16) 

�£|¼?×� = s|¼?×� . ¤|.  �¥¦§�×�           (5.17) 

where ¤ and  � represent the square matrix X × X of the equalizer coefficients and the inverse 

Discrete Fourier Transform coefficients (IDFT), respectively. Note that  .  � = �� , where ��  

represents the identity matrix of size X × X. 

Replacing equations 5.14 in 5.16 and 5.15 in 5.17, we can write 

�£?¼?×� = ��?×� .  .t??. ¤?.  �¥¨̈ ¨¦¨̈ ¨§�×� + z�?×� . ¤?.  �¥¦§�×�     (5.18) 

�£|¼?×� = ��?×� .  .t?|. ¤|.  �¥¨̈ ¨¦¨̈ ¨§�×� + z�?×� . ¤|.  �¥¦§�×�     (5.19) 

By analogy with the previous scheme, we can write 

�£?,� = ��. ©�. t11 . ¤1. ©�¾¥¨̈¨̈ ¦¨̈¨̈ §¿Àp�GÀ�	��IYÁH
+ ∑ �l . ©l . t11 . ¤1 . ©�¾Âl=1,			l≠�¥¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ §Ã�Ã

+ z1. ¤1 . ©�¾¥¨¦¨§
F�pÀ
  (5.20) 

�£|,� = ��. ©�. t12 . ¤2. ©�¾¥¨̈¨̈ ¦¨̈¨̈ §¿Àp�GÀ�	��IYÁH
+ ∑ �l . ©l. t12 . ¤2 . ©�¾Âl=1,			l≠�¥¨̈ ¨̈ ¨¨¦¨̈ ¨̈ ¨̈ §Ã�Ã

+ z2. ¤2 . ©�¾¥¨¦¨§
F�pÀ
  (5.21) 

Since the MISO system, composed of a transmitting antenna and two receiving antennas (1×2), is 

equivalent to the sum of signals from two SISO systems with equivalents channels to t?Ä and t?|. Thereby, the estimated signal at the receiver is given by 

�£� = �£?,� + �£|,�    (5.22) 

�£� = �� . ©� . �t??. ¤? +t?|. ¤|�. ©��¥¨¨¨¨¨¨¨¨¦¨¨¨¨¨¨¨¨§ª«��¬«­	®�$�¯� + Å �j. ©j . �t??. ¤? +t?|. ¤|�. ©��±
j²?,			j³�¥¨¨¨¨¨¨¨¨¨¨¨¦¨¨¨¨¨¨¨¨¨¨¨§´®´

	
+z?. ¤?. ©�� +	z|. ¤|. ©��¥¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ §x���«              (5.23) 

where ©�  represents the �-�ℎ row of matrix  . Similar to the previous scheme, the data symbol 

vector is perfectly estimated at the receiver if ∑ �j . ©± . �t??. ¤? +t?|. ¤|�. ©��±j²?,			j³� = 0 and z?. ¤?. ©�� +	z|. ¤|. ©�� = 0. Although these conditions not represent any real case, we can 

reduce more efficiently ISI and noise when compared to a for SISO system. 
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Table 5 shows the different equalizers used in this case. The equalization coefficients are defined 

as I�,���� , where � is the �-�ℎ transmit receive antenna, � is the �-�ℎ data symbol and Y is the Y-�ℎ 

subcarrier equalization as in SISO scheme and the equivalent channel is equal to ℎ = ¸ℎ??,�¸| +¸ℎ?|,�¸|. 

 

Table 5 - Equalizers used in SIMO scheme 

Maximum Ratio Combining 

I?,���� = ℎ??,�∗  

I|,���� = ℎ?|,�∗  

Equal Gain Combining 

I?,���� = ℎ??,�∗¸ℎ??,�¸ 
I|,���� = ℎ?|,�∗¸ℎ?|,�¸ 

Zero Forcing Combining 

I?,���� = ℎ??,�∗¸ℎ??,�¸| + ¸ℎ?|,�¸| 

I|,���� = ℎ?|,�∗
¸ℎ??,�¸| + ¸ℎ?|,�¸| 

Minimum Mean Square Error Combining 

I?,���� = ℎ??,�∗¸ℎ??,�¸| + ¸ℎ?|,�¸| + ¡| 

I|,���� = ℎ?|,�∗¸ℎ??,�¸| + ¸ℎ?|,�¸| + ¡| 
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5.2.3. MIMO 

In this case, we considered the simplest MIMO scheme with two antennas in both ends, as is 

shown in Figure 27. In the beginning, we start to analyze the signal received by one of the 

antennas, corresponding to a MISO system, because the received signal is the result of the sum of 

the signals received in both antennas. 

 

 

Figure 27 - MIMO scheme (2×2) 

 

Assuming that we send X symbols, � = L�?, … , ��N, the transmitted signal in the frequency-

domain, u, is given by 

u�?×� = ��?×� .  ��×�        (5.24) 

where   represents the square matrix X × X of the Discrete Fourier Transform (DFT). 

Since the transmitted signal in frequency domain is u = Lp?, … , p�N, we must bear in mind that the 

same symbols are sent by two different antennas. To perform the diversity gain introduced by 

MISO schemes was used Alamouti approach, see Table 6. In the first time slot, the transmit 

antennas 1 e 2 are sending symbols p� and -p��?∗ . In the next time slot are sent the symbols p��? 

and p�∗ , respectively. 

 

Table 6 - Alamouti 

 Transmitting antenna 1 Transmitting antenna 2 

n sn -sn+1
* 

n+1 sn+1 sn
* 
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Considering that the channels are constant over two adjacent subcarriers (ℎ?,� 	= ℎ?,��? and ℎ|,� = ℎ|,��? ), the received signal of two adjacent subcarriers, Y and Y + 1, are given by 

s = � i� 	= p�. ℎ?,� − p��?∗ . ℎ|,� + Y�i��? = p��?. ℎ?,�∗ + p�∗ . ℎ|,�∗ + Y��? !   (5.25) 

where ℎ?,� and ℎ|,� represent the channel’s effect for transmitted channel 1 and channel 2. The 

same way, Y�and Y��? represent the noise to respective channel. 

Afterwards, the equalized signal for an arbitrary pair of adjacent subcarriers Y and Y + 1, using 

the space frequency combining processing, is given by 

�� = Æ Ĝ� = i�. I?,� + i��?∗ . I|,�∗Ĝ��? = −i�∗. I|,�∗ . +i��?. I?,� !    (5.26) 

Replacing equations 5.25 in the equation 5.26, we can write 

��� = p�. ℎ?,�. I?,� − p��?∗ . ℎ|,�. I?,� + Y�. I?,�	+p��?∗ . ℎ?,�∗ . I|,�∗ + ��. ℎ|,�∗ . I|,�∗ + Y��?∗ . I|,�∗               (5. 27) 

After some mathematical manipulations, we can rewrite the previous equation 

Ĝ� = p�. .ℎ?,�. I?,� + ℎ|,�∗ . I|,�∗ 0¥¨̈ ¨̈ ¨̈ ¨¦¨̈ ¨̈ ¨̈ ¨§ª«��¬«­	®����� + p��?∗ . .ℎ?,�∗ . I|,�∗ − ℎ|,�. I?,�0¥¨̈ ¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ ¨̈ §´È´ 	
+ .Y�. I?,� + Y��?∗ . I|,�∗ 0¥¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ §x���«       (5. 28) 

From equation 5.28 we can see that choosing the appropriate equalizer coefficients the inter 

carrier interference (ICI) is completely eliminated. Only using the EGC equalizer coefficients 

defined in Table 7 the term ICI is not fully removed. 

After the IFFT operation, and using the same analogy of the other systems, the decision soft 

estimate of a generic data symbol � can be written as 

�£� = u� . ©� . �t?. ¤? +t|∗ . ¤|∗�. ©��¥¨̈ ¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ ¨̈ §ª«��¬«­	®����� 	
+		∑ uj. ©j . �t?. ¤? +t|∗ . ¤|∗�. ©��±j²?,			j³�¥¨̈ ¨¨̈ ¨̈ ¨̈ ¨¨¦¨̈ ¨̈ ¨̈ ¨¨̈ ¨̈ §´®´ + 
F�pÀ  (5. 29) 
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As the received signal in the MIMO system is the sum of the received signal at each antenna, the 

expression that represents the equalized signal is equivalent to 

�£��|×|� = �£��?� + �£��|�     (5. 30) 

�£��|×|� = �� . ©� . �t?. ¤? +t|∗ . ¤|∗ +tÉ. ¤É +tÊ∗ . ¤Ê∗�. ©��¥¨̈ ¨̈ ¨¨̈ ¨̈ ¨̈ ¨̈ ¨¦¨̈ ¨̈ ¨¨̈ ¨̈ ¨̈ ¨̈ ¨§ª«��¬«­	®����� 	
+∑ �j∗ . ©j∗ . �t?. ¤? +t|∗ . ¤|∗ +tÉ. ¤É +tÊ∗ . ¤Ê∗�. ©��±j²?,			j³�¥¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¦¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ §´®´ + 
F�pÀ (5. 31) 

Table 7 shows the different equalizers used in this case. The equalization coefficients are defined 

as I�,���� , where � is the �-�ℎ transmit receive antenna, � is the �-�ℎ data symbol and Y is the Y-�ℎ 

subcarrier equalization as in SISO scheme and the equivalent channel is equal to ℎ = ¸ℎ??,�¸| +¸ℎ?|,�¸| + ¸ℎ|?,�¸| + ¸ℎ||,�¸|. 

 

Table 7 - Equalizers used in MIMO scheme 

Maximum Ratio Combining 

I?,���� = ℎ??,�∗  

I|,���� = ℎ|?,�∗  

IÉ,���� = ℎ?|,�∗  

IÊ,���� = ℎ||,�∗  

Equal Gain Combining 

I?,���� = ℎ??,�∗¸ℎ??,�¸ 
I|,���� = ℎ|?,�∗¸ℎ|?,�¸ 
IÉ,���� = ℎÉ,�∗¸ℎ?|,�¸ 
IÊ,���� = ℎÊ,�∗¸ℎ||,�¸ 
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Zero Forcing Combining 

I?,���� = ℎ??,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| 

I|,���� = ℎ|?,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| 

IÉ,���� = ℎ?|,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| 

IÊ,���� = ℎ||,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| 

Minimum Mean Square Error Combining 

I?,���� = ℎ??,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| + ¡| 

I|,���� = ℎ|?,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| + ¡| 

IÉ,���� = ℎ?|,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| + ¡| 

IÊ,���� = ℎ||,�∗
¸ℎ??,�¸| + ¸ℎ|?,�¸| + ¸ℎ?|,�¸| + ¸ℎ||,�¸| + ¡| 

 

5.3. Numerical results 

In this section, we present and discuss the main simulation results obtained for the discussed 

system. To evaluate the performance of the proposed MIMO SFBC SC-FDMA system with pre-

processing mapping, we use the ITU pedestrian Rayleigh fading channel model B. We extended 

these time model to space-time, assuming that the distance between antenna elements is far 

apart to assume independent channels for each antenna, i.e., we assume independent fading 

processes at both sides. The channel is considered to be flat at least between two sub-carriers 

and is kept fixed over an OFDM symbol duration, but varies from OFDM to OFDM symbol. It is 

assumed that the receiver and transmitter have perfect knowledge of the channel. The channel 

coding scheme is the turbo-code defined in current LTE standard [4] with a coding rate of 1/3, 

combined with a puncturing process and an interleaver to have an overall coding rate of 3/2. The 

main system parameters are summarized in Table 8. 
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Table 8 - Main simulation parameters 

Number of Carriers 1024 subcarriers 

Number of Carriers per user 128 subcarriers 

Frame Length 12 symbols 

Total OFDM symbols duration TOFDM = 66.67 μs 

Carrier Frequency 2GHz 

Maximum Channel delay 2.47 μs 

Number of paths 7 

UT Velocity 10 Km/h 

Modulation QPSK 

Number of users 1 user 

Channel profile ITU pedestrian channel model B 

Modulation QPSK 

 

The configurable parameters used in the simulations are summarized in Table 9. Each simulation 

is a combination of these parameters performing all scenarios. The results are presented in terms 

of average bit error rate (BER) as function of Eb/N0, i.e, the receiver energy per bit over the noise 

power spectral density without channel coding. 

 

Table 9 - Configurable Parameters 

Number of FFT tones 16 or 32 or 64 or 128 

Channel coder Off or CTC 

Interleaver processing On or Off 

Equalizer’s algorithms MRC or EGC or ZFC or MMSEC 

MIMO schemes 1×1 or 1×2 or 2×2 

 

5.3.1. Schemes comparison without channel coding 

The performance of the proposed scenarios is evaluated without channel coding. Figure 28, 29 

and 30 show the performance results of the SFBC SC-FDMA approach for 1×1, 1×2 and 2×2 

schemes with FFT size of 16 subcarriers and adjacent mapping, using MRC, EGC, ZFC and MMSEC 

equalizers. 

We observe that the MMSEC outperforms the MRC, EGC, ZFC schemes, since the MMSEC can 

eliminate the ISI more efficiently. Nevertheless, ZFC has approximately the same performance 

than the MMSE for SIMO and MIMO cases. This performance is achieved without estimating the 

noise variance at the UT, contrary to the MMSEC, thus decreasing the UT complexity. On the 
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other hand ,we obtained a reduction of approximately 4 dB (for a BER target of 1.0e-3) of the ZFC 

against MMSEC in the SISO case. In conclusion, as we increase the spatial diversity (SISO to SIMO 

and SIMO to MIMO), MMSEC and ZFC converge to the same performance.  EGC and MRC have 

much worse results when compared with the previous equalizers, since saturate too early, 

although EGC presents better results. 

When comparing the various schemes of antennas, the increased spatial diversity improves the 

results. For instance, from SISO to SIMO case, we obtained a gain of approxiamtely 12 dB (for a 

BER target of 1.0e-3). 

Also, we can observe that in MIMO case, the performance of the MRC pesents much better 

results than EGC because as it uses Alamouti, the EGC can not eliminate the interference between 

the two coded subcarriers, unlike the other equalizers including the MRC. 

 

Figure 28 – Performance of equalization’s algorithms without channel coding 
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Figure 29 - Performance of equalization’s algorithms without channel coding 

 

 

Figure 30 - Performance of equalization’s algorithms without channel coding 
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Figure 31 and 32 show the performance results of the SFBC SC-FDMA approach for 1×1 and 1×2 

schemes with FFT size of 16 subcarriers and interleaved mapping, using MRC, EGC, ZFC and 

MMSEC equalizers. 

From these figures we can observe that the SISO and MIMO case have a similar behaviour with 

their counterparts with adjacent mapping, see Figures 28 and 29. However, that behavior is visible 

for lower values of Eb/N0, for instance, we obtained a gain of approximately 8 dB (BER target of 

1.0e-3) for SISO scheme and 4 dB (BER target of 1.0e-3) for SIMO scheme using MMSEC 

equalization. The reason behind this behavior is due to the decorrelation between the sub-

channels that a given data symbol is transmitted, increasing thus the frequency diversity.  When 

compared the same scenarios with different mapping mode, see Figures 28 and 30, ZFC has the 

same performance for SISO scheme, although it shows slight improvement in the BER curve for 

SIMO. Unlike the previously mentioned equalizers, we conclude that the uncorrelated carriers 

decrease the performance of MRC and EGC equalizer, because they cannot reduce efficiently the 

ISI. 

 

Figure 31 - Performance of equalization’s algorithms without channel coding 
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Figure 32 - Performance of equalization’s algorithms without channel coding 

 

Figures 33, 34 and 35 show the performance of the same schemes presented in previous Figures 

28, 29 and 30, respectively, with the difference that the results were obtained using the referred 

FFT size of 128 subcarriers. From these figure we also can observe that the MMSEC outperform 

both ZFC, EGC and MRC, as well as increase the spatial diversity, the pair MRC and EGC and the 

pair ZFC and MMSEC converge to similar performance, separately. 

Aditionally, the results are better for MMSEC when compared with the results for FFT size of 16 

subcarriers because the frequency diversity is greater when we increase the number of carriers 

for each data symbol. Quantifying the gain introduced by the equalizer MMSEC, verifies that for a 

BER of 10e-3, the gain of this scenario compared to the same scenario with an FFT size of 16 

subcarriers for SISO, SIMO and MIMO schemes is about 5 dB , 2 dB and 1 dB, respectively. 

It was also found similar performance in both cases for ZFC, although the results are much worse 

for MRC and EGC. 
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Figure 33 - Performance of equalization’s algorithms without channel coding 

 

 

Figure 34 - Performance of equalization’s algorithms without channel coding 
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Figure 35 - Performance of equalization’s algorithms without channel coding 

 

Figures 36 and 37 show the performance of the same schemes presented in previous Figures 31 
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Figure 36 - Performance of equalization’s algorithms without channel coding 

 

 

Figure 37 - Performance of equalization’s algorithms without channel coding 
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5.3.2. Schemes comparison with channel coding 

Then, the performance of the proposed scenarios is evaluated, considering typical pedestrian 

scenario and channel turbo coding based on LTE specifications, Convolutional Turbo Code (CTC). 

Figure 38 and 39 show the performance results of the SFBC SC-FDMA approach for 1×1 and 1×2 

schemes with FFT size of 16 subcarriers, adjacent mapping and channel codding, using MRC, EGC, 

ZFC and MMSEC equalizers. 

As expected, the channel coding provides results far superior performance compared with the 

corresponding scenario without channel coding. However, in the SISO scheme we see that the ZFC 

equalizer presents the worst performance of all equalizers. This behavior is justified by the fact 

that beyond ZFC to mitigate ISI, will greatly amplify the noise. 

Another interesting aspect can be seen in the MIMO case, as it uses Alamouti, the EGC can not 

eliminate the interference between the coded symbols, unlike the other equalizers including the 

MRC. 

 

Figure 38 - Performance of equalization’s algorithms with channel coding 
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Figure 39 - Performance of equalization’s algorithms with channel coding 

 

 

Figure 40 - Performance of equalization’s algorithms with channel coding 
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In this case, Figure 41 and 42 show the performance results of the SFBC SC-FDMA approach for 

1×1 and 1×2 schemes with FFT size of 16 subcarriers, interleaved mapping and channel codding, 

using MRC, EGC, ZFC and MMSEC equalizers. 

There is a increase of efficient when we perform interleaved mapping, and once again, we 

observe that ZFC has poor performance when compared with others equalizers, presenting a 

serious disadvantage in real implementations because the schemes for the uplink antennas are 

most often in SISO and SIMO. 

In the same scenario but without channel coding, we also observed a noticeable increase in 

efficiency, see Figures 31 and 32, the gain of this scenario for MMSE in SISO and SIMO schemes is 

about 5 dB and 2,5 dB, respectively, for a BER of 10e-3. 

 

Figure 41 - Performance of equalization’s algorithms with channel coding 
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Figure 42 - Performance of equalization’s algorithms with channel coding 

 

Figure 43, 44 and 44 show the performance results of the SFBC SC-FDMA approach for 1×1, 1×2 

and 2×2 schemes with FFT size of 128 subcarriers, adjacent mapping and channel codding, using 

MRC, EGC, ZFC and MMSEC equalizers. 
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and MIMO. 

 

-2 -1 0 1 2 3 4 5 6 7 8
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0 (dB)

B
E

R

Parameters: SIMO system / FFT size of 16 subcarriers / With interleaver / CTC encoder

 

 

MMSEC

ZFC
EGC

MRC



 

72 

 

Figure 43 - Performance of equalization’s algorithms with channel coding 

 

 

Figure 44 - Performance of equalization’s algorithms with channel coding 
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Figure 45 - Performance of equalization’s algorithms with channel coding 

 

Figure 46 and 47 show the performance results of the SFBC SC-FDMA approach for 1×1 and 1×2 

schemes with FFT size of 128 subcarriers, interleaved mapping and channel codding, using MRC, 

EGC, ZFC and MMSEC equalizers. 

In conclusion, these scenarios for SISO and SIMO schemes present the same behaviour than the 

equivalent scenario with FFT size of 16 subcarriers with a slightly lower performance. 
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Figure 46 - Performance of equalization’s algorithms with channel coding 

 

 

Figure 47 - Performance of equalization’s algorithms with channel coding 
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Chapter 6 

6. Conclusion 

The wireless communication systems experienced major developments in the last three decades, 

marking each one a different generation. Since a simple communication via analog to the digital 

transmission with high transmission rates, long distance and fidelity, several new techniques and 

technologies have been implemented. This development was described in detail in Chapter 2 of 

this dissertation, presenting some concepts on the mobile communication systems as well as do 

an overview of the main features of LTE. In Chapter 2 we studied signal processing techniques 

specified in LTE, which help to achieve better results in terms of spectral efficiency of the system. 

The multicarrier techniques such as OFDM, allow to achieve high spectral gains. Other techniques 

such as OFDMA and SC-FDMA are also been described, since they are the key strategies in 

improving system performance. Then, in Chapter 3 was introduced the concept of multiple 

antennas in transmitter and receiver elements of the transmission. It has been shown that the use 

of systems that include multiple antennas will help achieve gains in these crucial systems, 

including the introduction of techniques for spatial diversity. 

The goal of this practical work based on the simulation of wireless communications systems is 

analyze some strategies specified in LTE UL that improve the efficient of the transmission in terms 

of bit error rate. Thus, through the Simulink ™ tool of the Matlab ™ program were implemented 

chains of virtual SC-FDMA MIMO systems to several scenarios. In fact, the concept of spatial 

diversity and equalization are the basis of this study, so that the Chapter 5 was devoted to these 

issues. This chapter introduces the platform, and specifies the different techniques of spatial 

diversity (single input single output, single input multiple output and multiple input multiple 

output) and equalization (maximum ratio combining, equal gain combining, zero forcing 

combining and minimum mean square error combining) that were used in remaining work. It 

were created scenarios for the various antennas schemes where were simulated the various 

equalizers. 

The analysis of results shows that the MMSEC equalizer is generally better than the ZFC, EGC and 

MRC. In the limit, ZFC presents the same performance than MMSEC for specific scenarios with 

large spatial diversity (1×2 and 2×2) and adjacent subcarriers highly correlated (with adjacent 

mapping and FFT size equal to 16 subcarriers). For these scenarios, the equalizer ZFC becomes 

advantageous because it is less complex and cheaper since they do not need to estimate the noise 

variance. Further, it was also observed that in general the MRC equalizer has the worst results in 

terms of bit error rate. However for very similar scenarios with high spatial diversity (2×2) and 

adjacent carriers highly correlated (with adjacent mapping and FFT size equal to 16 subcarriers), 
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MRC has better performance than EGC because as MIMO schemes uses Alamouti, the EGC can 

not eliminate the interference between symbols, unlike the other equalizers including the MRC.  

Summarizing, the increased spatial diversity (1×1 to 1×2 and 1×2 to 2×2) and uncorrelated 

subcarriers carriers (interleaved mapping) allow to achieve significant improvements in critical 

mobile communication systems, especially for small values Eb/N0. 

As expected for scenarios with channel coding, we conclude that all results are significantly more 

efficient than its counterpart without channel coding. However, it is also observed that the 

equalizer ZFC has underperformed for the EGC or even the MRC. The reason behind this 

phenomenon is due to the amplification of noise by the ZFC equalizer when we consider the 

schemes 1×1 and 1×2. For 2×2 scheme with channel coding, EGC equalizer provide even lower 

results as previously stated. 

Finally it was concluded that the use of spatial diversity and equalization techniques becomes 

quite useful when we want to use the spectrum more efficiently reaching higher data rates. 

 

6.1. Future Work 

In this thesis only single user/symbol equalizers were analyzed. It would be interesting simulate 

multi-user based equalizers to explicitly remove all the ISI, and compare the performance and 

complexity against the ones discussed in this work. 

The results were obtained by assuming perfect knowledge of the channel at the base station. In 

practical systems the channel is estimated with errors, so it would be useful study how these 

errors impact on the system performance. For it is convenient to create a functional block with 

the function to estimate the effect of the various radio channels, similar to what happens in 

reality, as well as extend the spatial diversity systems for four antennas on both sides. 
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