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Abstract: The goal of this work is to study the influence of the contact force model, contact
geometry, and contact material properties on the dynamic response of a human knee joint model.
For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia,
and four non-linear spring elements that represent the main knee ligaments, is considered. The
contact force models used were the Hertz, the Hunt–Crossley, and the Lankarani–Nikravesh
approaches. Results obtained from computational simulations show that Hertz law is less suit-
able to describe the dynamic response of the cartilage contact, because this pure elastic model
does not account for the viscoelastic nature of the human articulations. Since knee can exhibit
conformal and non-conformal contact scenarios, three different geometrical configurations for
femur–tibia contact are considered, that is convex–convex sphere contact, convex–concave
sphere contact, and convex sphere–plane contact. The highest level of contact forces is obtained
for the case of convex–convex sphere contact. As far as the influence of the material contact
properties is concerned, the dynamic response of a healthy and natural knee is analysed and
compared with three pathological and two artificial knee models. The obtained results demon-
strate that the presence of the cartilage reduces significantly the knee contact forces.
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1 INTRODUCTION

It is known that in contact mechanics problems, the

evaluation of the contact pressures and stresses that

develop between the contacting bodies depends on

the constitutive law used. This law typically depends

on the material properties of the contacting surfaces

and on the contact distance, which determines

whether the bodies are in contact or not. In order to

compute the contact distance, the position, orienta-

tion, and contact geometry of potential contact

bodies have to be known. In short, three main ingre-

dients have to be considered to perform a dynamic

contact-impact analysis, namely the definition of the

contact geometry, the contact detection approach,

and the application of the constitutive contact force

law [1–3].

Analytical functions of regular shapes, such

as planes, spheres, ellipsoids, among others, are, in

general, the best choice to describe simple contact

geometries [4]. When the contact surfaces present

complex configurations, more sophisticated fitting
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approaches must be considered to obtain an accurate

surface representation [5, 6]. However, the advanced

fitting techniques take too much computational time,

which could penalize the global efficiency of the

method. This is the reason why some authors split

complex geometries using multiple regular shapes

[7, 8].

There are some collision detection methods devel-

oped for computer graphics applications such as axis-

aligned bounding box trees or oriented bounding box

trees that have been widely used to increase the per-

formance of contact detection algorithms [9–11].

These bounding volume hierarchies are refined

methods based on polygonal meshes and are avail-

able in software packages such as RAPID, I-COLLIDE,

V-COLLIDE, SOLID, and V-Clip. In general, these

approaches are computationally costly and can only

be applied to the case of convex contact geometries

[10]. The conformality of the contact geometries

plays a key role in the contact detection approach.

Recently, Choi et al. [11] developed a new collision

detection method called triangle soup average plane

contact [11], which is quite robust, efficient, and can

be applied to convex and concave geometries, with-

out the need of using any graphics hardware.

In a simple manner, it can be stated that the contact

force laws are functions on the distance between the

potential contact points and on the material proper-

ties [1–3, 12, 13]. Additionally, the contact materials

present a non-linear damping behaviour that should

be taken into account by the constitutive contact law

[1–3, 13]. Friction and lubrication effects are also

important phenomena that can significantly affect

the contact responses [14–16]. In applications, such

as wear analysis, the contact area and pressure distri-

bution have to be determined and, hence, a contact

law must be suitable to accommodate their demands

[17, 18]. Furthermore, some contact materials are

multilayer and, consequently, the contact law has to

be able to compute the stresses at the surface as well

as at the sub-surfaces. The computational efficiency

associated with the contact law is an important issue

in the context of multibody dynamics involving con-

tact-impact events, because besides the evaluation of

the contact forces themselves, in general, the contact

procedure also demands the computation of other

state variables, such as the indentation and the con-

tact velocity. Furthermore, the contact force law

should also contribute to a stable and efficient

numerical resolution of the equations of motion [3,

19].

In this article, the knee joint contact problem is

studied. This is a complex and an important contact

problem, in the measure that some of the most

common knee injuries and diseases, such as

osteoarthritis (OA), ligamentous rupture, and menis-

cal tear, can be significantly be affected by intensive

and abnormal contact interactions [20]. When initi-

ated, these pathologies induce anomalous and more

aggressive contact loads which results in non-physio-

logic gait patterns and local pain that could rapidly

lead to a knee arthroplasty, i.e. to a joint replacement.

This is a challenging topic since there is no a standard

non-invasive approach to measure in vivo knee loads,

which means that the knee contact patterns and pres-

sures have to be predicted by computational methods

[2]. Wismans [21] was one of the first researchers who

evaluated the knee contact forces. In this study, the

knee contact surfaces were modelled using polyno-

mial functions and the contact forces were evaluated

using a linear elastic contact model, considering a

non-conformal contact scenario. Moeinzadeh [22],

Engin and Tumer [23], and Ling et al. [24] developed

a dynamic two-dimensional model of the knee joint

based on similar assumptions. An analogous planar

model was developed by Abdel-Rahman and Hefzy

[25], which was later extended to three dimensions

in reference [26]. Hirokawa [27] applied the pure elas-

tic Hertz law to compute the contact forces at the

patellofemoral joint. Blankevoort et al. [28] intro-

duced a new concept of articular contact based on

the simplified theory of contact developed by Kalker

[29] for thin layers of isotropic and linear-elastic

material bonded to a rigid foundation. Blankevoort

and Huiskes [30] extended this work to the three-

dimensional (3D) case.

Gill and O’Connor [31] and Chittajallu and Kohrt

[32] used four-bar linkages to model the knee joint,

where the tibia is the ground, the femur the coupler,

and the ligaments represented by the remaining links.

In these works, the interpenetration between the

contacting bodies is not allowed, and so, despite the

contact points are determined, the contact forces are

not evaluated. In sharp contrast, other researchers

applied advances techniques, such as finite element

(FE) methods, to compute the contact forces at the

knee joint [33–35]. Li et al. [36] performed a compar-

ative study, where the pressure distribution along the

contact surface of an articulating joint model was

analysed using different numerical and analytical

methods, namely the discrete rigid element method,

the FE method, a simplified elasticity solution, and a

modified Hertzian theory. Pandy et al. [37] developed

a complete knee joint model that accounts for contact

forces, together with the four ligaments and 13 mus-

cles. In this work, the interpenetration of the femur

and the tibia is by considering the modelling of the

cartilage as a thin, linear, and elastic layer assembled

in rigid bone, being the elastic foundation model used

to evaluate the contact forces [37].
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Zhu et al. [38] modelled the geometry of the tibio-

femoral joint as two elliptic curved surfaces and use

the Hertz elastic contact law to calculate the contact

stresses and pressures. Kwak et al. [39] represented

the knee articular surfaces by parametric surface

equations and applied the rigid foundation model

to compute the contact forces. Piazza and Delp [40]

presented a rigid body dynamic model of a total knee

replacement (TKR) by performing a step-up task. In

this model, the articulating surfaces of the femoral,

tibial, and patellar components are represented by 3D

polyhedral meshes and the contact detection is per-

formed using RAPID library. Piazza and Delp [40]

considered the knee contact problem as a linear com-

plementarity problem. Li et al. [41] studied the influ-

ence of the cartilage thickness and the cartilage

material properties on the contact pressures and

stresses using five FE models. Dhaler and Kahn [42]

applied basis functions to describe the geometry of

the articular surfaces and used a Hertzian contact

law to evaluate the patellofemoral contact forces.

Caruntu and Hefzy [43] updated the model published

by Abdel-Rahman and Hefzy [26] including the patel-

lofemoral joint. Instead of modelling the articular

surfaces as spheres and planes, Coons’ bicubic sur-

face patches are used. Bei and Fregly [44] developed a

3D dynamic model of the knee joint. The articular

surfaces are modelled using non-uniform rational

basis spline (NURBS) surfaces and the contact

forces are evaluated using elastic foundation model.

These authors also proposed two different contact

detection approaches, namely minimum distance

and ray firing, which can be combined to ensure an

accurate detection of the contact points, especially in

conformal contact scenarios [44]. Besier et al. [45]

and Fernandez and Hunter [46] used the FE method

to calculate contact stresses and strains at the patel-

lofemoral joint. Han et al. [47] proposed a 3D FE knee

model, where the articular cartilage is considered to

be biphasic: the solid phase is assumed to be linearly

elastic and incompressible, and the fluid phase is

taken as incompressible, non-viscous, and with

indentation-dependent permeability.

It is known that rigid body models with contact

based on elastic foundation theories require signifi-

cantly less computational time than corresponding

deformable FE methods. However, Halloran et al.

[48] affirm that potential differences in predicted

kinematics between these models were not well

understood and, so, that it was unclear if the esti-

mates of contact area and pressure are acceptable.

Thus, in their study, rigid elastic foundation and

deformable FE models of tibiofemoral contact were

developed and the predicted kinematics and contact

mechanics from both representations during gait

loading conditions compared using three different

implant designs [48]. Koo and Andriacchi [49] devel-

oped a comparative study to evaluate the influence of

the global functional loads and the local contact anat-

omy on articular cartilage thickness at the knee. In

this study, the articular surfaces are modelled as

two semi-ellipsoids and the medial/lateral contact

pressure ratio was calculated using elliptical

Hertzian contact stress theory. The results reported

by Koo and Andriacchi [49] revealed that contact

pressure is higher in the lateral than medial compart-

ments and cartilage thicker in the lateral than medial

compartments. Pérez-González et al. [19] realize that

different models have been used in the literature for

the simulation of surface contact in biomechanical

knee models; however, there is a lack of systematic

comparisons of the models applied to simulate a

common case, which will provide relevant informa-

tion about their accuracy and suitability for applica-

tion in models of the artificial knee. Therefore, these

authors performed a comparative study using the

Hertz model, the elastic foundation model, and the

FE model to evaluate the contact forces at an artificial

knee [19]. Lin et al. [50] presented a novel surrogate

modelling approach to perform computational effi-

cient 3D elastic contact analyses within the multi-

body dynamic simulations.

In the present planar work, a knee joint model is

presented and the influence of the contact model on

its dynamic response is assessed. In this comparative

study, not only the contact force law is evaluated, but

also the contact geometry and material properties are

used as variables. Hertz [51], Hunt and Crossley [52],

and Lankarani and Nikravesh [53] force models

are compared for equivalent contact conditions.

Regarding the contact geometry, since the tibial

plateaus do not exhibit the same conformality in

both knee compartments, three contact scenarios

are tested, namely convex–convex contact, convex–

concave contact, and convex sphere–plane contact.

In order to examine healthy, pathological, and

artificial knee response to the same contact loads,

the contact material properties and surfaces thick-

ness are also considered as variables. Numerical sim-

ulations are performed using a computational code

called MUBODYNA developed under the framework

of multibody system (MBS) methodologies [54, 55] to

perform efficient dynamic analysis of general MBS

systems [56, 57].

2 KNEE CONTACT MODELLING

This section deals with the fundamental issues of the

mathematical human knee model used in this study,

which has been developed under the framework of
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MBS methodologies [2]. The knee model is composed

by two rigid bodies, the tibia and the femur, which

describe a general planar motion in the sagittal plane.

The femur is considered to be stationary, while the

tibia does not have any kinematic constraint. The

tibia is connected to the femur by four knee liga-

ments, namely the anterior cruciate (AC) ligament,

the posterior cruciate (PC) ligament, the medial col-

lateral (MC) ligament, and the lateral collateral (LC)

ligament. These ligaments are modelled as non-linear

spring elements. The following force–elongation

mathematical relation is utilized for each ligament

[21]

Fl ¼
kl ll � l0

l

� �2
if ll 4 l0

l

0 if ll � l0
l

(
ð1Þ

where kl is the ligament stiffness and ll and l0
l the

current and the unstrained lengths of the ligaments,

respectively.

Figure 1 shows two bodies i and j that represent the

tibia and femur, respectively. Body-fixed coordinate

systems �� are attached to each body, while XY -coor-

dinate frame represents the global coordinate system.

The origin of the femur coordinate system is located

at the intercondylar notch and is coincident with the

global coordinate axis. The origin of the tibia coordi-

nate system is located at the centre of mass of the

tibia, with the local �-axes directed proximally and

�-axes directed posteriorly. The absolute rotation

angles of the local coordinate systems of bodies i

and j are denoted by �i and �j , respectively. The

Cartesian coordinates of centres of mass and inertia

properties of the femur and tibia used in this study

correspond to a male subject of weight 76 kg and

height 1.8 m [2].

The unstrained lengths of the four ligaments are

adopted from the Moeinzadeh’s [22] work. The initial

position of the tibia at 54.79� of knee flexion is elected

because it corresponds to a particular position where

the ligaments are in a relatively relaxed condition,

and therefore the knee contact forces can be

neglected. The local coordinates of the ligament

insertion points, as well as their physical properties

(unstrained length and stiffness) are listed in Table 1.

Since the knee kinematics is not prescribed, a force

constraint has to be included to the system in order to

avoid the separation of the tibia due gravitational

action. Thus, an external force is applied at the

centre of mass of the tibia directed proximally, as

illustrated in Fig. 1. The aim of this force is to promote

the tibiofemoral contact and also to provide the knee

motion on the anterior–posterior direction, from an

initial position of 54.79� of flexion to a final position of

0� of extension. The hyperextension scenario has not

been taken into account in the computational simu-

lations, although it is important to mention that, in

general, 1–3� of hyperextension is anatomically toler-

able, beyond which joint failure becomes unavoid-

able. The external applied force, Fe, is expressed as

Fe ¼ Ae
�4:73 t

td

� �2

sin
�t

td

� �
ð2Þ

which is an exponentially decaying sinusoidal pulsed

function with a duration td and an amplitude A [22].

The same type of applied external force has been used

in computational simulations of other biomechanical

models, such as in modelling and simulation of the

force of the quadricep muscle group in knee exten-

sion and of human head neck studies [22, 26, 58].

2.1 Mathematical contact force models

In a broad sense, the different methods to solve the

contact-impact problem in multibody dynamics are

either continuous or discontinuous approaches.

Within the continuous approach, the methods

PC

LC

MC

AC

X

Y

(1)

O1 ξ1

η1

(2)

O2

η2
ξ2

Body (1) – Femur               Body (2) – Tibia

PC – Posterior cruciate AC – Anterior cruciate

MC – Medial collateral     LC – Lateral collateral

α=54.79º

Fe(t)

0.2016m

0
.1

7
4
9

m

Fig. 1 Initial configuration of the multibody knee joint
model

Table 1 Local coordinates of the insertion points and

physical properties of the ligaments [21, 22]

Ligament AC PC MC LC

�l
f (m) �0.0330 �0.0190 �0.0230 �0.0250
�l

f (m) �0.0170 �0.0140 �0.0140 �0.0190
�l

t (m) 0.2130 0.2100 0.1630 0.1780
�l

t (m) �0.0090 0.0350 0.0080 0.0250
l0
l (m) 0.0438 0.0332 0.0784 0.0562

kl (kN/m2) 35 000 30 000 15 000 15 000
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commonly used are the continuous force models and

the unilateral constraint methodology, based on the

complementarity formulation [1, 3]. The continuous

contact force models, also known as penalty or com-

pliant approaches, represent the forces arising from

collisions and assume that the forces and deforma-

tions vary in a continuous manner. In these methods,

when contact between the bodies is detected, a con-

tact force perpendicular to the plane of collision is

applied. The penalty formulations can be understood

as if each contact region of the colliding bodies is cov-

ered with some spring–damper elements scattered

over their surfaces. Alternatively, the complementarity

formulations resolve the contact dynamics problem

using the unilateral constraints to compute contact

impulses or forces to prevent penetration from occur-

ring. Thus, when contact is detected, a kinematic

constraint is introduced in the system’s equations of

motion, that is maintained while the reaction forces

are compressive, and removed when the impacting

bodies rebound from contact [1, 3]. As far as the dis-

continuous approach is concerned, it is assumed that

the impact occurs instantaneously and the resolution

of the equations of motion is halted at the time of

impact. Then, a momentum balance is performed to

calculate the post-impact velocities of the bodies

involved in the contact. The resolution is then

resumed with the updated velocities until the next

impact occurs. In the discontinuous method, the

dynamic analysis of the system is divided into two

intervals, before and after impact. The discontinuous

approach is relatively efficient, but the unknown dura-

tion of the impact limits its application because for

long contacts, the system configuration can change

significantly.

The continuous contact force models have been

gaining significant importance in the context of

MBSs with contacts; thanks to their computational

simplicity and efficiency. In particular, the contact

forces developed at the knee joint have been evalu-

ated using compliant approaches [19, 44]. In this

study, three different continuous contact force

models are used to evaluate the normal contact

forces developed at the knee joint, namely the Hertz

contact law, the Hunt and Crossley model, and

Lankarani and Nikravesh formulation. The Hertz

law is a very popular and well-known contact force

model that relies on the elasticity theory principles

and considers five general assumptions: (a) the con-

tact area is elliptical, (b) each body is approximated

by an elastic half-space loaded over the plane ellipti-

cal contact area, (c) the size of the contact area must

be small compared to the size of each body and to the

radii of curvature of the surfaces, (d) the strains are

sufficiently small for linear elasticity to be valid, and

(e) the contact is frictionless [59, 60]. The Hertz con-

tact law relates the contact force with a non-linear

power function of deformation and can be explicitly

written in the following form

FN ¼ K �n ð3Þ

where FN is the normal contact force, K the general-

ized stiffness parameter, and � the relative indenta-

tion. The exponent n is typically equal to 1.5. In turn,

the generalized stiffness parameter depends on the

geometric and material properties of the contacting

bodies. For convex–convex sphere contacts, convex–

concave sphere contacts, and convex sphere–plane

contacts, the generalized stiffness parameter can be

evaluated as, respectively

K ¼
4

3
1��2

f

Ef
þ

1��2
t

Et

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf Rt

Rf þ Rt

s
ð4Þ

K ¼
4

3
1��2

f

Ef
þ

1��2
t

Et

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rf Rt

Rf � Rt

s
ð5Þ

K ¼
4

3
1��2

f

Ef
þ

1��2
t

Et

� � ffiffiffiffiffi
Rf

p
ð6Þ

where �f and �t are the Poisson’s ratios of femur

and tibia, Ef and Et the Young’s moduli of femur and

tibia, and Rf and Rt the radii of femur and tibia,

respectively.

The Hertz contact law is a purely elastic model in

nature and it does not include any energy dissipation

associated with the contact process. In fact, the

energy transferred and dissipated in a contact event

are quite complex phenomena that have motivated

some researchers to extend the Hertz theory in

order to accommodate the loss of energy during con-

tact events. Hunt and Crossley [52] and Lankarani

and Nikravesh [53] are among the few authors who

extended the Hertz law to include some energy loss

due to internal damping. They wrote the normal con-

tact force as

FN ¼ K �n þD _� ð7Þ

where the first term corresponds to the elastic force

and the second term the energy dissipated during the

contact. In equation (7), the quantity D is the damp-

ing coefficient and _� the relative normal contact

velocity. The damping coefficient can be written as

D ¼ ��n ð8Þ

In turn, the hysteresis factor � has different expres-

sions for Hunt–Crossley and Lankarani–Nikravesh

models, which can be expressed as, respectively
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� ¼
3K 1� crð Þ

2 _�0
ð9Þ

� ¼
3K 1� c2

r

� �
4 _�0

ð10Þ

in which cr represents the restitution coefficient

and _�0 the initial relative normal contact velocity,

having the remaining parameters with the same

meaning as described above.

2.2 Knee contact geometrical conformality

The human knee joint presents a complex geometry

that can be described with some accuracy using

sophisticated mathematical representations such as

NURBS surfaces [44]. However, due to its simplicity

and efficiency, in this study, the articular geometry of

the knee joint is modelled using analytical functions

of regular shapes, such as planes and spheres.

Despite the contact geometry has been simplified,

the original conformality of the articular knee sur-

faces is kept, because this factor plays a role of para-

mount importance in the knee contact problem,

particularly in what concerns with the contact detec-

tion process. For instance, Fig. 2 depicts two bodies,

wherein the location of the centres of mass is the

same. In the case of Fig. 2(a), the bodies are not in

contact due to their conformal contact nature. In

sharp contrast, in Fig. 2(b), the bodies are in contact

and have a relative indentation, �, since the contact is

non-conformal.

According to Koo and Andriacchi [49], the femoral

condyles present convex curvatures in medial and lat-

eral compartments and the tibial plateaus have con-

cave curvatures in medial compartment and convex

curvature in lateral compartment. Based on these

observations, three contact scenarios for the knee

joint are considered, as illustrated in Fig. 3.

In the first contact scenario, represented in Fig.

3(a), both the femoral condyle and the tibial plateau

are fitted to convex spheres. This scenario corre-

sponds to the conformality of the knee at lateral com-

partment. In the second contact scenario, which

corresponds to the knee medial compartment, the

femoral condyle assumes a convex spherical config-

uration, and the tibial plateau is modelled as a con-

cave sphere, as shown in Fig. 3(b). The last contact

scenario, illustrated in Fig. 3(c), describes the con-

formality of the knee at the intercondylar notch. In

this case, the femur exhibits a convex spherical shape

and the tibia is considered a flat surface. The values of

the adopted radii for femur and tibia as well as the

contact stiffness for each contact scenario are listed

in Table 2 [49, 62].

Since three distinct geometrical models are consid-

ered, different methodologies to deal with the contact

detection have to be applied. Figure 4 shows a sche-

matic representation of each contact scenario, where

some scalar and vector information necessary for the

contact detection algorithm are pointed out.

In what concerns to the convex–convex sphere

model and the convex–concave sphere model of

Figs 4(a) and (b), the first step consists of determining

the vector d that connects the centres of the two con-

tact spheres. The vector d for the convex–convex

sphere model and the convex–concave sphere

model is, respectively, expressed as

d ¼ r
Cj

j � rCi

i ð11Þ

d ¼ rCi

i � r
Cj

j ð12Þ

where rCi

i and r
Cj

j are the global coordinate vectors of

centre points Ci and Cj . For both models, the magni-

tude of the vector d can be computed as
Fig. 2 Schematic representation of two contact sce-

narios: (a) conformal and (b) non-conformal

Fig. 3 Images of knee magnetic resonance imaging: (a) lateral, (b) medial, and (c) intercondylar
views (adapted from reference [61])
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d ¼
ffiffiffiffiffiffiffiffiffi
dT d

p
ð13Þ

To check if the bodies are in contact or not, it is

necessary to evaluate the indentation condition. For

the contact type in which the femoral condyle and the

tibial plateau are considered as convex spheres (Fig.

4(a)), the indentation condition is expressed as

� ¼
0 if d 4Ri

Ri þ Rj

� �
� d if d � Ri þ Rj

� �	
ð14Þ

For the contact between a spherical convex femoral

condyle and a spherical concave tibial plateau (Fig.

4(b)), the indentation condition is given by

� ¼
0 if d 5 Rj � Ri

� �
d � Rj � Ri

� �
if d � Rj � Ri

� �
(

ð15Þ

Regarding the contact between a spherical femoral

condyle and a planar tibial plateau (Fig. 4(c)), the first

step of contact detection procedure consists of eval-

uation of the minimal distance between the bodies.

Thus, since the location of the points Aj, Bj, and Ci is

known, the vectors AC and AB can be defined and its

dot product calculated by

AC � AB ¼ ACxABx þ ACy ABy ð16Þ

AC � AB ¼ ACk k � ABk k � cos 	A ð17Þ

Based on equations (16) and (17), it is possible to

compute the angle between the two vectors, 	A, which

helps in the calculation of the distance d between the

plane and the centre of the sphere

d ¼ ACk k � sin 	A ð18Þ

The last step is to check if the bodies are in contact

by evaluating the indentation � by

� ¼
0 if d 4Ri

Ri � d if d � Ri

	
ð19Þ

2.3 Knee contact material properties

The mechanical properties of the materials that com-

pose the contacting bodies play a crucial role on the

dynamic response of the knee model, because they

directly affect the magnitude of the contact forces, the

amount of energy dissipated during the contact and,

consequently, the motion of the bodies.

The contact material between the femur and the

tibia, in a healthy natural knee articulation, is com-

posed by a hyaline cartilage layer with approximated

4.15 mm of thickness (2.45 mm on distal femur and

1.70 mm on proximal tibia [61, 62]). However, in sev-

eral cases, the subject can present a knee pathology

that significantly changes the contact material

Table 2 Femur (Rf) and tibia (Rt) radii as well as the

contact stiffness parameter (K) used in each

contact scenario, namely convex–convex

spheres, convex–concave spheres, and convex

sphere–plane [49, 61]

Convex–convex
spheres

Convex–concave
spheres

Convex
sphere–plane

Rf (mm) 26.40 30.40 30.40
Rt (mm) 36.02 75.00 1

K (N/m1.5) 27 50 403 58 79 434 32 60 513
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Fig. 4 Schematic representation of the different contact scenarios: (a) convex–convex spheres, (b)
convex–concave spheres, and (c) convex sphere–plane
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properties. For example, OA is the most common

cause of musculoskeletal pain and disability at the

knee joint. In a simple way, OA can be defined as

mechanically induced cartilage loss [63, 64], which

is characterized by a decrease in cartilage volume

and thickness that could ultimately lead to the expo-

sition of the underlying bone. Nevertheless, OA dis-

eases may be initiated by multiple factors, not only

mechanical factors, but also biological, genetic, devel-

opmental, metabolic, and traumatic [64]. The knee

OA entails not only cartilage loss, but also bony remo-

delling, with capsular stretching and weakness of the

muscles that surround the knee joint. Localized areas

of cartilage loss may lead to further cartilage loss by

increasing the focal stress across the joint. With a large

enough area of cartilage loss or with bony remodel-

ling, the joint becomes tilted, and the malalignment

develops, which is the most powerful risk factor for

structural deterioration of the joint [64, 65].

Therefore, in OA severe stage, the contact material

started to be composed by the subchondral bone,

whose mechanical behaviour is quite different from

the cartilage. In a similar way, for patients with oste-

oporosis (OP), which is characterized by the lose of

bone mechanical properties [66], the material prop-

erties can vary significantly. Thus, in order to examine

how a healthy, a pathologic, and an artificial knee joint

response is affected by the intrinsic material proper-

ties, different situations are considered. In particular,

six different contact material conditions are utilized,

namely one for the healthy knee model, three for

pathologic knee models, and two for artificial knee

models, as Table 3 summarizes. The mechanical

properties necessary to characterize the different con-

tact materials are listed in Table 4.

As mentioned above, OA initiation and its progres-

sion can have multiple precursors, such as mechanic,

biologic, and genetic, among others. Since it is extre-

mely difficult to develop a pathologic knee model that

accounts for all these factors, a simplified model is

developed. In this model, only the cartilage loss effect

mechanically induced is considered, being the remain-

ing OA factors neglected. To model the cartilage loss, a

reduction on the original thickness of the cartilage

layer is made. This reduction is considered propor-

tional to the percent of OA severity. In order to simulate

a pathologic knee which had lost 90 per cent of the

original cartilage layer (90 per cent OA knee), some

modelling adjustments have to be done. Therefore,

the double-layer model is implemented. For the sake

of simplicity, the first layer is modelled as a layer with

uniform thickness that is located along the geometrical

profile. Hence, the contact detection algorithm did not

require any change and the contact law has to be

adapted to the double-layer concept, according to

FN ¼
F1 if � � h1

F max
1 þ F2 if �4h1

	
ð20Þ

where FN is the total normal contact force, F1 and

F max
1 the normal contact force resultant from a partial

or total indentation of the thickness of the first con-

tact layer, and F2 the normal contact force at the

second contact layer that is null when the relative

indentation is smaller than or equal to the thickness

of the first layer. For instance, for Hertz contact law,

equation (20) can be written as

FN ¼
K1�

n if � � h1

K1hn
1 þ K2 �� h1ð Þ

n if �4h1

	
ð21Þ

where K1 and K2 represent the generalized stiffness

parameters of first and second contact layers, respec-

tively, having the remaining parameters with the

same meaning as described above.

Table 3 Femur and tibia contact materials considered for each knee contact model studied

Knee Femur material Tibia material Stiffness (N/m1.5)

Healthy (SL) Hyaline cartilage Hyaline cartilage 3.26 E�06
90 per cent OA (DL) Hyaline cartilage Hyaline cartilage 3.26 E�06

Normal bone Normal bone 2.36 E�09
90 per cent OAþOP (DL) Hyaline cartilage Hyaline cartilage 3.26 E�06

Osteoporotic bone Osteoporotic bone 1.65 E�09
100 per cent OAþOP (SL) Osteoporotic bone Osteoporotic bone 1.65 E�09
Ti–UHMWPE (SL) Titanium UHMWPE 2.34 E�08
Ti–Ti (SL) Titanium Titanium 1.50 E�10

Two models include a double-contact layer (DL), being the remaining models composed by a single-contact layer (SL). The acronyms OA and
OP indicate the diseases osteoarthritis and osteoporosis, respectively. The 90 per cent OA knee corresponds to a knee which had lost 90 per
cent of the original cartilage layer.

Table 4 Mechanical properties of the contact mat-

erials: Young’s modulus (E) and Poisson’s

ratio (n)

Material E ðMPaÞ �

Hyaline cartilage [67] 24 0.38
Normal bone [67] 17 200 0.39
Osteoporotic bone [66] 12 000 0.39
Titanium [68] 1 13 800 0.34
UHMWPE [68] 800 0.46
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3 RESULTS AND DISCUSSION

In this section, results obtained from computational

simulations of the mathematical multibody knee pre-

sented in section 2 are used to analyse and compare

the effect of the different variables on the knee

dynamic response. The simulations are performed

for a duration of 0.4 s of with a time step equal to

1 E�4 s. With the purpose to have a term of compar-

ison, the knee model corresponding to spherical fem-

oral condyle and flat tibial plateau, coated by hyaline

cartilage, is used as reference model, being the con-

tact forces evaluated by employing the Hertz contact

law.

Since the main purpose of this research study is to

perform a comparative study on the influence of the

main contact factors that can affect the dynamic

behaviour of the multibody knee model presented,

the three parameters considered are the contact

force model, contact geometric configuration, and

material properties of the contacting surfaces. In

this context, the system dynamic response is quanti-

fied by the plots of the indention and contact forces.

Other important issues, such as muscles and liga-

ments actions are out of the scope of this study, inter-

ested readers can refer to references [2] and [37].

3.1 Influence of the contact force model

With the intention to assess the influence of the con-

tact force model on the dynamic response of the

multibody knee joint model, several computational

simulations are performed using three different con-

stitutive contact laws, namely the Hertz contact law,

Hunt–Crossley model, and Lankarani–Nikravesh for-

mulation. For the case of dissipative force models, the

value of the coefficient of restitution of the hyaline

cartilage is equal to 0.616 [69]. The dynamic behav-

iour of the knee joint model is quantified by plotting

the values of the indentation and the magnitude of

the contact force developed during contact, as illus-

trated in Figs 5 and 6, respectively.

Figure 5 shows the evolution of the indentation for

the different contact force models, from which it can

be observed that the use of Hertz contact law pro-

duces higher indentations. This fact is logical because

the Hertz law is a pure elastic force model that does

not account for any energy dissipation during the

contact process. This observation is also visible in

the diagram of Fig. 6, where the curve for the Hertz

law does not present any hysteresis loop, meaning

that the energy stored during the loading phase is

exactly the same that is restored during the unloading

phase. In turn, form the dissipative contact force

models, Hunt and Crossley, and Lankarani and

Nikravesh models, exhibit similar response, being

the indentation evolution smoother over the dynamic

simulation, as depicted in Fig. 5. The observation is
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clearly associated with the hysteresis loop that occurs

for these two models, as it is shown in the plots of Fig.

6(a) relative to the first impact. Figure 6(a) illustrates

the dissipative nature of the elastic force models

where the complete loading and unloading phases

are quite visible. Furthermore, it should be high-

lighted that the continuous contact scenario plotted

in Fig. 6(b) does not present a closed loop, since the

contacts are not complete, meaning that the unload-

ing phase does not occur totally. This situation is also

quite visible in the plots of Fig. 5.

3.2 Influence of the contact geometrical
conformality

In order to study the influence of the geometrical

conformality of the contact bodies on the dynamic

behaviour of the knee joint, several computational

simulations are carried out using the three contact

geometrical approaches described in section 2.2,

namely convex–convex sphere model, convex–con-

cave sphere model, and convex sphere–plane

model. Similar to the case presented in the previous

section, the dynamic response of the knee joint model

is quantified by studying the indentation (Fig. 7) and

contact force (Fig. 8) plots.

By analysing Fig. 7, it can be observed that the con-

formality of the contact bodies has a significant influ-

ence on the global contact results, namely in terms of

indentation and, ultimately, on the contact force.

Figure 7 shows that the convex–concave sphere

model exhibits the highest level of indentation. This

observation is explained by the dynamic nature of the

formulation used in this study, in which the contact

force is an explicit function of the system configura-

tion and the contact properties. In particular, the

higher radius of the medial femur (Rf¼ 30.4 mm)

compared with the radius of the lateral femur

(Rf¼ 22.0 mm) also contributes for this result. This

outcome is also visible in the plots of Fig. 8, where

the highest and the lowest contact forces correspond

to the convex–concave sphere and convex–convex

sphere models, respectively. These results can be

used to understand the major incidence of OA at

the medial compartment of the knee joint, which

exhibits a conformal contact scenario in the ante-

rior–posterior direction [49]. This idea is supported

by this fact that the multibody knee model has been

simulated for similar conditions. However, the

dynamic behaviour of the actual knee can be affected

by the presence of the surrounding structures, such as

the menisci and muscle, which play an important role

in the progression of the OA.

3.3 Influence of the contact material properties

In the simulations performed in this section, the

influence of six contact material interfaces on the

knee joint dynamics is analysed. Because the contact

material properties vary, some simplifications are

made with the purpose to keep the analysis simple.

Thus, the Hertz law is the only contact force model

considered, being the contact materials modelled

with non-linear elastic behaviour. Furthermore, in

the simulations performed, the viscoelastic proper-

ties of the hyaline cartilage and the ultra-high molec-

ular weight polyethylene (UHMWPE), in particular

the stress relaxation, are not taken into account.

The obtained results are organized in two groups:

the knee models with cartilage (healthy knee, 90 per

cent OA knee and 90 per cent OAþOP knee) and the

knee models without cartilage (100 per cent OAþOP
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knee, Ti–UHMWPE prosthesis, and Ti–Ti prosthesis).

Figure 9 depicts the results of the three knee models

for the following cartilage properties: the healthy

knee, the 90 per cent OA knee, and the 90 per cent

OAþOP knee. From the analysis of the plots of Fig. 9,

it can be drawn that the knee joint models exhibit the

same response for indentation up to 0.415 mm, which

corresponds to a 10 per cent of the original thickness

of the hyaline cartilage. Nevertheless, when the

indentation is greater than 0.415 mm, the contact

forces developed at the pathological knees signifi-

cantly increase. This situation is clearly associated

with the contact material, changing from cartilage

to bone, being the latter a stiffer material. Analysing

the two pathological knees, it can be concluded that

they present similar behaviour. Although it can be

observed that, for the same indentation, the 90 per

cent OA knee produces higher normal contact forces

when compared to the 90 per cent OAþOP knee case.

This outcome, also reported by Dickenson et al. [66], is

reasonable since the OP is a metabolic disease charac-

terized by a general reduction in bone mass, which

results in a lower stiffness and, consequently, reduces

the level of the normal contact forces [66]. Figure 10

includes the results for the knee joint modelled without

cartilage, namely the 100 per cent OAþOP knee, the

Ti–UHMWPE prosthesis, and the Ti–Ti prosthesis. By

comparing the plots of Figs 9 and 10, it can be drawn

that the absence of cartilage leads to higher contact

forces even with smaller indentations. This observation

highlights the key role played by the cartilage as shock

absorber and load spreader.

As far as the artificial knee models are concerned, it

should be noticed that the Ti–UHMWPE prosthesis

(Fig. 10) presents a dynamic response closer to the

case of the healthy knee (Fig. 9). Hence, it can be

expected that the Ti–UHMWPE prosthesis would

have a higher performance than the Ti–Ti prosthesis.

This result supports the idea that the UHMWPE is the

preferred choice by the surgeons, since there are no

currently acceptable alternatives, clinically proven,

able to overcome its performance as bearing material

in knee [68].

Figures 11 and 12 illustrate the tibia contact point

trajectories from the knee models with cartilage and

without cartilage, respectively. By comparing plot of

the healthy knee (Fig. 11) with those obtained for the

knee models without cartilage (Fig. 12), it can be con-

cluded that the evolution of the tibia contact point

trajectory is clearly affected by the properties of the

contact materials.

At this stage, it is important to note that the results

reported here, for the case in which the knee is mod-

elled as Ti–UHMWPE prosthesis, are corroborated by
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those published by Pérez-González et al. [19]. In the

investigations carried out by Pérez-González et al.,

the Hertz law was used to evaluate the contact

forces, as it is case of presented in this section.

4 CONCLUDING REMARKS

In this study, the influence of the contact model on

the dynamic response of the human knee joint has

been studied. The three contact parameters consid-

ered are: (a) the constitutive contact force law, (b) the

geometrical description of the contacting bodies, and

(c) the material properties of the contact pair.

As far as the contact force model is concerned, it was

observed that the dissipative contact force laws, namely

Hunt–Crossley and Lankarani–Nikravesh models, are

more appropriate than the pure Hertz law to describe

the dynamic response of the knee joint. These models,

besides to express the non-linear behaviour of cartilage,

also take into account its viscoelastic nature, which pro-

vides shock absorption and, consequently, the energy

dissipation during the impact [12].

The results obtained for different contact geome-

tries show that the knee medial compartment, which

has a conformal configuration, presents higher con-

tact forces when compared with the knee lateral com-

partment. This observation can, in some measure,

explain the major incidence of OA in the knee

medial compartment [49]. Nonetheless, it should be

highlighted that other relevant parameters, neglected

in the present model, may also contribute to the

knee OA evolution, such as menisci and muscles.

In addition, the general gait parameters (stride

length, cadence, etc.) and daily activities, such as

labour tasks and sport practice, can also influence

the knee joint dynamic response [70].

In order to assess the influence of the contact mate-

rial properties on the dynamic response of the multi-

body knee joint model, a healthy knee model was

compared to three different pathologic cases and

two artificial knee models. The results showed that

the cartilage reduces the contact force experienced

by the models without cartilage, and extends the

period of contact. This cartilage role is of paramount

importance during walking, since the ground reac-

tion force typically rises to a peak after heel strikes

and during this phase, loads across the knee joint

have been calculated to be about three times the

body weight [70]. Moreover, the computational sim-

ulations showed that the presence of OP does not

change the level of contact forces at the OA knee

model, meaning that this disease does not contribute

to the OA progression. Regarding the artificial knees,

the results showed that Ti–UHMWPE prosthesis exhi-

bits higher performance when compared to the Ti–Ti

solution, which supports the idea of the surgeons in

excluding the metal–metal interface for the TKRs [68].
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APPENDIX

Notation

A amplitude of the external applied force

Aj , Bj border points of the contact plane j

AB vector that connects the point Aj to the point

Bj

AC vector that connects the point Aj to the point

Ci

cr restitution coefficient

Ci,j centre of a sphere i, j

d magnitude of distance vector

d distance vector

D damping coefficient

Ef Young’s modulus of the femur contact

material

Et Young’s modulus of the tibia contact material

Fe external applied force at the centre of mass of

the tibia

Fl knee ligament force

FN normal contact force

F1 normal contact force resultant from a partial

indentation of the thickness of the first con-

tact layer

F2 normal contact force at the second contact

layer

F max
1 normal contact force resultant from a total

indentation of the thickness of the first con-

tact layer

h1 thickness of the first contact layer

i, j pair of contact bodies

kl knee ligament stiffness

K generalized stiffness parameter

K1 generalized stiffness parameter of first con-

tact layer

K2 generalized stiffness parameter of second

contact layer

ll knee ligament current length

l0
l knee ligament unstrained length

n non-linearity exponent

rCi

i global coordinate vector of centre point Ci

r
Cj

j global coordinate vector of centre point Cj

Ri,j radius of body i, j

t time variable

td time duration

XY global coordinate system

� relative indentation
_� relative normal indentation velocity
_�0 initial relative normal indentation velocity

	A angle between vectors AC and AB

�f Poisson’s ratio of the femur contact material

�t Poisson’s ratio of the tibia contact material

�� body-fixed coordinate system

�i rotation angle of the �� body-fixed frame of

body i relative to the XY global axes

�j rotation angle of the �� body-fixed frame of

body j relative to the XY global axes

� hysteresis factor
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