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Abstract. In this study, methodologies were developed in statistical time series models, such as multivariate state-space
models, to be applied to water quality variables in a river basin. In the modelling process it is considered a latent variable that
allows incorporating a structural component, such as seasonality, in a dynamic way and a change-point detection method is
applied to the structural component in order to identify possible changes in the water quality variables in consideration.
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Introduction

This study focuses on a rather extended data set relative to the River Ave basin in Northwest Portugal and consists
mainly of monthly measurements of physical-chemical and microbiological variables in a network of water quality
monitoring sites and of monthly precipitation in an udometric network of meteorological monitoring sites. The
methodology is applied to dissolved oxygen concentrations levels (DO) (mg/l) in 8 monitoring sites in the River
Ave basin over a 12-year period (1998-2009). The proposed methodology starts by using a multivariate statistical
approach–cluster analysis–to classify the water quality monitoring sites into homogeneous space-time groups based
on the DO quality variable which was selected and considered relevant to characterize the water quality. A hydro-
meteorological factor is constructed, by using ordinary Kriging method for each quality monitoring site (totalling 8
sites) based on the analysis of the space-time behaviour of the precipitation (monthly total) observed in a udometric
network constituted by a total of 19 meteorological sites located in the geographical area of the River Ave basin. For
each cluster, a linear state-space model was fitted to modelling the DO concentration quality variable by taking into
account the seasonal variation throughout the year and the estimated hydro-meteorological factor. By means of the
Kalman filter algorithm ([3]), are obtained filtered predictions of states which allow separating the DO evolution in
both hydro-meteorological conditions and structural or endogenous components. The separation of these two sources
that contribute to DO concentration allows evaluating the existence of any change-point in time considering only the
endogenous component evolution. For this, it is applied a change-point detection procedure of maximum type in order
to assess if, by excluding the hydro-meteorological factor, there is a change-point in DO concentration possibly due to
large investments in infrastructure or to government inspections. There is a huge literature on change-point detection
in climate or environmental settings. For instance, [7] makes a review of this topic for models with independent
and identically distributed (IID) errors and [6] develops a test for undocumented change-points for periodic and
autocorrelated time series. Nevertheless, the present work considers basic statistical tests by applying maximum type
statistics because they have been considered useful and cover a large set of situations, ([5]).

Cluster analysis

Hierarchical agglomerative CA was performed on the raw data set by means of Ward’s method. It used a dissimilarity
measure that corresponds to the average of this distance over all months t where there is observed value of the DO
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FIGURE 1. The limits of the hydrological basins as defined by the water quality monitoring sites (WMS).

quality variable with measurements in the two sites i and j, i.e.

di j =
1

#Mi j
∑

t∈Mi j

∣∣xit − x jt
∣∣ , i, j = 1, . . . ,8,

where Mi j is the set of all months with DO measured in both sites i and j. By using Ward’s method, two well-
differentiated clusters were observed and the results confirm previous knowledge about the effluents discharge accord-
ing to the economic activities located along the River Ave basin. Also, the effects of these discharges in the water
quality vary according to natural and geographical/economical reasons. Cluster I is composed by the monitoring sites
CANT, TAI, GOL, FER, and VSA. There is a set of locations which have the best water quality indicators (the highest
values obtained from the DO concentration), including sites situated upstream the Rivers Ave and Vizela (CANT cor-
responds to the source of River Ave). In Cluster II, comprised of the three monitoring sites RAV, STI, and PTR located
in the River Ave near the most polluted area of the Ponte Trofa and Santo Tirso Municipalities, there is a growing ur-
ban population and a high concentration of industrial activity, and it is also where the Ave receives similarly polluted
waters from its adjacent rivers (Selho and Vizela), and, consequently, these sites present the worst water quality.

The hydro-meteorological factor

For each water monitoring site, the monthly mean area precipitation was computed in its influence region based on
the average point prediction by using Kriging stochastic methodology. In this context, the influence regions of each
water monitoring site were defined by the INAG (Portuguese Institute of Water) technicians and they are corroborated
by the region’s topography and the land’s drainage dynamics. Figure 1 shows the River Ave hydrological basin with
its influence areas delineated. The precipitation amount of the sub-basin Ai associated to the water monitoring site
i in month t is estimated by p∗(i)t = Ẑt(Ai)× ai, where ai is the sub-basin’s area in Km2. For re-scale purposes, it
is considered the proportional value p(i)t = p∗(i)t × 10−3. In order to construct a hydro-meteorological factor with
a stronger linear correlation to the response variable (DO concentration), after an exploratory analysis the hydro-
meteorological factor h(i)t is defined as the logarithm of a linear combination of the covariates p(i)t−1 and p(i)t−2, as

follows h(i)t = log
(

0.7 p(i)t−1 +0.3 p(i)t−2

)
.

The linear state-space model

In order to accommodate the temporal correlation structure, linear state-space (LSS) models are considered as
follows. Suppose there are measures of the water quality variable classified in k clusters of sample sites where cluster
i has ki water monitoring sites, with i = 1,2, ..,k. The state-space model for cluster i is:

Yt = [ht |st ]βββ t + et (1)
βββ t = µµµ +ΦΦΦ

(
βββ t−1−µµµ

)
+ εεε t (2)



TABLE 1. Parameters estimates of linear state-space models for Clusters I and II.

Cluster µµµ ΦΦΦ ΣΣΣεεε σ2
e

I ht -0.73 0.53 0.01 1.23 -0.09 CANT FER TAI GOL VSA
st 1.04 1.01 0.53 -0.09 0.01 0.46 0.91 0.36 0.26 0.86

II ht 0.02 0.27 -1.45 0.34 0.02 RAV STI PTR
st 1.01 -0.03 0.21 0.02 0.01 1.07 1.37 0.57

where the measurement equation, Eq. 1, relates the observable water quality variable Yt = [ Y1,t Y2,t · · · Yki,t ]′

in the ki sites in cluster i with the vector of unobservable variables, βββ t = [ βh,t βs,t ]′, called states. The ki × 2
matrix At = [ht |st ] is a matrix of known values and accommodates the hydro-meteorological factor and the seasonal
component, respectively. Thus, matrices ht and st are column matrices with the form ht = [ h1,t h2,t · · · hki,t ]′

and st = 1kist . For simplification, the seasonal coefficients are taken by the mean of the monthly averages of water
quality variable inside each cluster. The error term et is a white noise ki×1 vector, called the measurement error, with
a covariance matrix ΣΣΣe, which may be a diagonal covariance matrix ΣΣΣe = diag{σ2

1 ,σ
2
2 , · · · ,σ2

ki
}, for simplification. The

state process {βββ t} follows a stationary VAR(1) according to Eq. 2, the state equation, with a mean given by the 2×1
vector µµµ . To secure the stationarity of the state equation, it is assumed that the eigenvalues of the autoregressive matrix
ΦΦΦ are inside the unit circle and that εεε t is a white noise vector with covariance matrix E(εεεεεε ′) = ΣΣΣεεε . Furthermore,
the noises et and εεε t are serially uncorrelated, i.e., E(etεεε

′
r) = 0 for all t and r. The vector of unknown parameters

ΘΘΘ = {µµµ,ΦΦΦ,ΣΣΣe,ΣΣΣεεε} must be estimated from the data. Parameters are estimated by distribution-free estimators based
on the generalized method of moments, as a generalization of [2], and they are presented in Table 1. Considering
the parameters estimates previously obtained, the recursive equations of the Kalman filter are performed and filtered
predictions of βh,t and βs,t are computed at each time t for Cluster I and II. These values are represented in Figure 3.

Change-point detection

In order to discover a sudden change in the behaviour of the structural component, based on the calibrations factors
of seasonality, a basic statistical test applying maximum type statistics to detect a change in location is performed.
Not considering the hydro-meteorological impact in DO concentration, and if there are no structural changes in the
water quality sources, it is expected that the calibration factor βs,t has no changes over time in its mean. It is applied
a statistical test to the filtered predictions of βs,t|t by taking into account that βs,1|1,βs,2|2, ...,βs,140|140 are an AR(1)
process. [1] shows that when random variables X1, X2, ..., Xn are not independent but form an ARMA sequence then the
asymptotic critical values of the test statistics considering independence have to be multiplied by

√
2π f (0)/γ , where

γ = varXt and f (·) denote the special density of the corresponding ARMA process. Especially for an AR(1) sequence,
the critical values should be multiplied by

[
(1+ρ)(1−ρ)−1

]1/2 where ρ is the first autoregressive coefficient, ([4]).
Briefly, it is exposed the test of maximum type

H0: βs,t|t are an AR(1) sequence normally distributed variables according to the same N(µ,σ2)
vs
H1: there is a time point k ∈ {1, ...,n−1} such that βs,1|1, ...,βs,k|k are distributed according to N(µ1,σ

2)
and βs,k+1|k+1, ...,βs,n|n are distributed according to N(µ2,σ

2).
Supposing σ2 is unknown, then the test statistic T (n) is the maximum of the absolute values of two sample t-test

statistics

T (n) = max
1≤k<n

|Tk|= max
1≤k<n

√
(n− k)k

n

∣∣∣β s,k|k−β
∗
s,k|k

∣∣∣ 1
sk

where

β s,k|k =
1
k

k

∑
i=1

β s,i|i, β
∗
s,k|k =

1
n− k

n

∑
i=k+1

β s,i|i and sk =

√√√√ 1
n−2

[
k

∑
i=1

(
βs,i|i−β s,k|k

)2
+

n

∑
i=k+1

(
βs,i|i−β

∗
s,k|k

)2
]
.

The null hypothesis can be rejected if the statistic T (n) is greater than the critical value. The exact distribution
of T (n) for IID sequence is so complex and was derived by [8], but was able to calculate the critical values only
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FIGURE 2. Statistics {T (n)} corresponding to βs,t|t processes for Clusters I and II.
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FIGURE 3. Representations of βs,t|t and its means before and after change-point detected, for each cluster.

for the number of observations n less than 10. Alternatively, approximate critical values can be computed by other
methods, namely, the Bonferroni inequality, simulation or the asymptotic distribution. The present work uses critical
values obtained by simulation achieved in [4], where more details can be obtained about approximation methods of
the critical values. Statistics values {T (n)} were computed considering the sequences of βs,t|t for each Cluster I and II
and they are plotted in Figure 2. Based on [4], the interpolated value to n = 140 is 3.172. In order to obtain 5% critical
values, the value 3.172 is multiplied by

[
(1+ ρ̂)(1− ρ̂)−1

]1/2, where ρ̂ is obtained in Table 1. Thus, 5% critical values
for Clusters I and II are 5.691 and 3.913, respectively. In the case of Cluster I, the maximum of the statistics {T (n)}
occurred for k = 85, i.e. in May 2005, and was 6.505. For Cluster II, T (n) = 4.218 and occurs for k = 120, i.e. in
April 2008. Both values are greater then 5% critical values, so, in both cases, the null hypothesis is rejected at the 0.05
significance level. Having detecting the changes, the question may arise if there is some other change in addition to the
two ones detected. In order to confirm this, the test was separately applied to the series before the change-point and to
the series after the change, but the test did not discover inhomogeneities in the series. Figure 3 shows the averages for
each part of the series considering change-points detected.
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