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’ INTRODUCTION

Lung cancer is one of the most prevalent and fatal types of
cancer, with average 5-year survival rates lower than 15%,1,2

which is mainly due to the advanced stage at which lung tumors
are usually diagnosed. Indeed, when lung cancer is detected
before metastasizing to lymph nodes or distant sites, the 5-year
survival rates increase drastically to 60�80%, thus stressing the
importance of early diagnosis. However, the majority of patients
show no signs or symptoms during the initial phases of neoplastic
growth, hindering early detection and the possibility of curative
surgical treatment. Moreover, radiological tests, such as com-
puted tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET), which would allow
the detection of initial cancer lesions, are not suitable for
general screening of the population, mainly due to their high
costs. Therefore, new methods that can aid in the early detection
of lung cancer and contribute to improved prognosis are greatly
needed.

The search for metabolic markers of cancer in human tissues
and biofluids has been the focus of a number of metabonomic
studies in recent years.3,4 In particular, metabolic profiling of

blood plasma or serum has been increasingly used to unveil meta-
bolic alterations associated with different cancer types, such as
breast,5�7 kidney,8�10 liver,11�13 prostate,14�16 colorectal,17�20

oral,21,22 pancreatic,23,24 esophageal,25 and bone26 cancers. In the
case of lung cancer, only a few studies focusing on plasma or
serum metabolic profiling have been recently reported. Maeda
and co-workers proposed that the differences in the plasma amino
acid profiles between healthy controls and non-small-cell lung
cancer (NSCLC) patients, as assessed by targeted liquid chro-
matography coupled to mass spectrometry (LC�MS), could
potentially be useful for screening NSCLC.27 In another MS
study of specific compounds, namely, lysophosphatidylcholines
(lysoPC), abnormal levels of lysoPC isomers with different fatty
acyl positions were found in the plasma of lung cancer patients
compared to controls.28 Using a more global profiling approach,
Jordan and colleagues reported the NMR analysis of paired tissue
and serum samples from 14 subjects with two different lung
cancer histological types (adenocarcinoma and squamous cell
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ABSTRACT: In this work, the variations in the metabolic
profile of blood plasma from lung cancer patients and healthy
controls were investigated through NMR-based metabonomics,
to assess the potential of this approach for lung cancer screening
and diagnosis. PLS-DA modeling of CPMG spectra from
plasma, subjected to Monte Carlo Cross Validation, allowed
cancer patients to be discriminated from controls with sensi-
tivity and specificity levels of about 90%. Relatively lower HDL
and higher VLDL + LDL in the patients’ plasma, together with
increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine,
histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and
could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together
with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung
cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that
NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more
specific radiological tests, thus contributing to improved disease management.
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carcinoma), as well as of serum from 7 healthy individuals.29

This exploratory study, although involving a limited number of
samples, showed the potential of serum NMR metabonomics to
differentiate between the two lung cancer types, as well as be-
tween cancer patients and controls. In addition to cancer, plasma
metabolic profiling has also been applied to investigate other
lung disorders, namely, severe childhood pneumonia30 and
sepsis-induced acute lung injury (ALI),31 providing indication
that distinct systemic metabolic signatures seem to be associated
with different pulmonary pathologies.

Following our previous studies on tissues collected from sur-
gical specimens32,33 and on urine from lung cancer patients and
healthy subjects,34 the present work aims to determine if the
plasma metabolic composition reflects the presence of the dis-
ease and, thus, if nontargetedNMR-based profiling may be useful
in lung cancer screening. Hence, preoperative plasma samples
from patients with primary lung cancer (n = 85), not submitted
to radiation or chemotherapy treatment, were analyzed by 1H
NMR, together with samples from healthy controls (n = 78), and
their metabolic variations were assessed with the aid of multi-
variate statistical analysis. The discrimination ability between
cancer and control groups was evaluated in terms of sensitivity
and specificity levels through Monte Carlo Cross Validation
(MCCV) applied to the PLS-DA models, and the differences in
metabolite levels were further assessed through univariate analysis of
signal integrals. Moreover, possible correlations to histological type
and disease stage and the potentially confounding influence of
gender, age, and smoking habits were investigated and discussed.

’MATERIAL AND METHODS

Subjects
The characteristics of the subjects included in this study are

summarized in Table 1. A total of 85 patients with primary lung
cancer (30 female, 55 male, age range 30�85, average age 63)
and 78 healthy control subjects (40 female, 38 male, age range
22�60, average age 41) were included in this study, following

informed consent and protocol approval by the University
Hospitals of Coimbra. Final diagnosis and staging according to
the TNM (tumor, nodes and metastases) system were estab-
lished by the histopathological evaluation of surgical specimens.
According to the 2004 WHO Classification of Tumours,35 the
malignant epithelial tumors characterized included 37 adenocar-
cinomas, 18 epidermoid carcinomas, 11 carcinoids, 11 sarcoma-
toid carcinomas, 5 large cell carcinomas, 2 small cell carcinomas,
and 1 adenosquamous carcinoma. Regarding TNM staging, tumors
were further classified as stage I (n = 46), stage II (n = 23), and
stage III (n = 7). In all cases, the surrounding parenchyma tissue
presented histological characteristics of “smoking lung”, indicat-
ing exposure to cigarette smoking (although actual smoking
habits were not known). None of the patients had received radia-
tion or chemotherapy treatment or shared any common medica-
tion regimen, although intake of other medicines (e.g., analgesics,
antihypertensive drugs) could not be ruled out. Volunteers were
included in the control group on the basis of a physicians’ assess-
ment of their general health status (normal values in blood
plasma and urine standard clinical tests, as well as absence of
major illness or chronic medication). Among control subjects,
27 were smokers, 13 were ex-smokers (for more than 4 years),
and 38 never smoked. Each individual (either patient or healthy
volunteer) provided a blood sample after overnight fasting, to
minimize dietary influence, although there was no control over
previous food intake. Also, body mass index and nutritional status
were not known. Blood was collected into a sodium-heparin tube
and centrifuged (1500� g, 10 min) within amaximum of 30min.
Plasma aliquots of approximately 1 mL were then transferred
into sterile cryovials, frozen, and stored at �80 �C.

Sample Preparation
At the time of NMR analysis, plasma samples were thawed and

homogenized using a vortex mixer. Then 400 μL of saline solu-
tion (NaCl 0.9% in 10% D2O) was added to 200 μL of plasma.
After centrifugation (8000 rpm, 5 min), 550 μL of each sample
was transferred to 5 mm NMR tubes.

NMR Measurements
NMR spectra were acquired on a Bruker Avance DRX-500

spectrometer operating at 500.13 MHz for 1H observation, at
300 K. For each sample, three 1D experiments were acquired:
(a) standard 1H spectrum with water suppression (“noesypr1d”
in Bruker library, SW 10330.58 Hz, TD 32 K, relaxation delay 4 s,
mixing time 100 ms, 128 scans); (b) T2-edited (Carr-Purcell-
Meiboom-Gill, CPMG) 1H spectrum to allow better visualiza-
tion of low molecular weight metabolites (“cpmgpr” in Bruker
library, SW 10330.58 Hz, TD 32 K, relaxation delay 4 s, total
spin�echo time 64 ms, 256 scans); and (c) diffusion-edited
1H spectrum to select signals of bound or large molecules
(“ledbpgp2s1dpr” in Bruker library, SW 10330.58 Hz, TD 32 K,
relaxation delay 4 s, diffusion delay 100 ms, pulsed-field gradient
1ms, 128 scans). All 1D spectra were processed with a line broad-
ening of 0.3 Hz (standard and T2-edited) or 0.5 Hz (diffusion-
edited) and a zero filling factor of 2, manually phased and base-
line corrected. The chemical shifts were referenced internally
to the R-glucose signal at δ 5.23. 2D homonuclear (1H�1H
TOCSY and J-resolved) and heteronuclear (1H�13C HSQC)
spectra were also registered for selected samples to aid spectral
assignment, which was based on matching 1D and 2D data
to reference spectra in the BBIOREFCODE-2-0-0 database
(Bruker Biospin, Rheinstetten, Germany), as well as other
existing databases36 and literature reports.

Table 1. Characteristics of Patients and Controls

lung cancer patients healthy controls

no. of subjects 85 78

gender male 55 male 38

female 30 female 40

average age (range) 63 (30�85) 41 (22�60)

smoking habits a smokers 27

nonsmokers 38

ex-smokers 13

histopathology adenocarcinoma 37

epidermoid carcinoma 18

carcinoid 11

sarcomatoid carcinoma 11

large cell carcinoma 5

small cell carcinoma 2

adenosquamous carcinoma 1

TNM stage I 46

II 23

III 7
a In all cases, the surrounding parenchyma tissue presented histological
characteristics of “smoking lung”.
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Multivariate Statistical Analysis
Multivariate analysis was applied to a total of 163 spectra from

85 cancer samples and 78 control plasmas. For each experiment
type (standard 1D, CPMG, and diffusion-edited), data matrices
were built in Amix version 3.9 (Bruker BioSpin, Rheinstetten,
Germany) using all intensity values in the region δ 11 to �3 of
the spectra (full resolution data, 44419 variables), excluding the
subregion δ 5.15�4.5 to remove the variability arising from
water suppression. After normalization (by adjusting the total
area to unity), in order to minimize possible differences in con-
centration between samples, and scaling to unit variance, so that
all variables were given equal weight regardless of their absolute
value, Principal Component Analysis (PCA), Partial Least
Squares Discriminant Analysis (PLS-DA), and Orthogonal Pro-
jections to Latent Structures (OPLS-DA) were performed in
SIMCA-P11.5 (Umetrics, Ume�a, Sweden). A default 7-fold inter-
nal cross validation was employed, from which Q2 and R2 values
(representing, respectively, the predictive capability and the
explained variance) were extracted. PCA, used to detect intrinsic
clusters and outliers within the data set, was followed by (O)PLS-
DA to maximize class discrimination. OPLS-DA is an extension
of PLS-DA featuring an integrated Orthogonal Signal Correction
(OSC) filter to remove variability not relevant to class separation.37

Model robustness was assessed byMonte Carlo Cross Validation
(MCCV)38 with 500 iterations. In this procedure, the data were
divided into a calibration set comprising 60% of samples and a
validation set comprising the remaining 40% of samples. Then,
each iteration, with randomly changed composition of the calib-
ration and validation sets, performed internal cross validation of
the calibration set using seven blocks and prediction of class
membership for samples in the validation set. For each of the 500
randomly generated classification models, the number of Latent
Variables (LV), the Q2 (expressing the cross-validated explained
variability), and the classification rate (percentage of samples
correctly classified) were recovered. The selection of model com-
plexity was based on the most frequent list of model properties
that maximizes the classification rate (i.e., lower LV and higherQ2).
The sensitivity and the specificity of the model were then depicted
from the confusion matrix resulting from the 500MCCV iterations.
Further validation was performed by permutation tests, con-
sisting of randomly permuting class membership and running
500 MCCV iterations. The same multivariate statistical ap-
proach was applied to detect eventual correlations to histolo-
gical types and disease stages and to assess the influence of other
factors, such as gender, age, and smoking habits, by building
new models according to these classifiers and verifying their
discriminating power.

Quantitative Analysis of Variations in Selected Metabolites
Due to improved baseline and metabolite detection in the

CPMG spectra, these were chosen for quantitative measure-
ments by spectral integration, assuming that any reduction in
signal intensity due to relaxation effects would be consistent
across samples, thus not affecting the evaluation of relative
changes inmetabolite levels. Integrals of selected signals, normal-
ized to total spectral area (δ 11 to �3 excluding δ 5.15�4.5),
were compared between groups (e.g., control vs cancer), and the
statistical significance between average values was determined
using the two-sample t test or the nonparametric analogue
Wilcoxon rank sum test with continuity correction. The boxplot
representation was used to visualize the variation in the levels of
integrated compounds in control and cancer samples.

’RESULTS

Discrimination between Control and Lung Cancer Patients
The standard 1H 1D spectrum of plasma (Figure 1a) showed

broad resonances from proteins (e.g., albumin) and lipoproteins,
superimposed with narrow signals from low molecular weight
metabolites. By using a CPMG sequence, the broad protein enve-
lope was clearly attenuated, significantly improving the visibility
of metabolite signals, particularly in the low and high frequency
regions (Figure 1b). Assignedmetabolites included several amino
acids (e.g., valine, alanine, lysine, glutamine, tyrosine, histidine),
organic acids (e.g., lactate, acetate, acetoacetate, pyruvate, citrate,
formate), creatine, creatinine, methanol (confirmed by spiking
experiments), and glucose. The resonances from fatty acyl chain
protons in lipoproteins were also clearly visible in the CPMG
spectrum, although with attenuated intensities relative to the
standard 1D spectrum. On the other hand, the diffusion-edited

Figure 1. 500 MHz 1H NMR spectra of blood plasma from a lung
cancer patient: (a) standard 1D, (b) T2-edited (CPMG), (c) diffusion-
edited. The low-field region (δ 6�10) is vertically scaled 8 times relative
to the rest of the spectrum. Signal assignment: 1: cholesterol C18, 2:
lipid CH3, 3: isoleucine, 4: leucine, 5: valine, 6: lipid (CH2)n, 7: lactate, 8:
alanine, 9: lipid CH2CH2CO, 10: arginine, 11: lysine, 12: lipid
CH2CH2CdC, 13: acetate, 14: lipid CH2CHdCH, 15: NAC1, glyco-
protein N-acetyl group NHCOCH3, 16: NAC2, glycoprotein N-acetyl
group NHCOCH3, 17: glutamine, 18: lipid CH2CO, 19: unknown 2.27
ppm, 20: pyruvate, 21: citrate, 22: lipid CHdCHCH2CHdCH, 23:
albumin lysyl ε-CH2, 24: creatine, 25: unknown 3.10 ppm, 26: unknown
3.14 ppm, 27: phospholipids choline headgroup �N+(CH3)3, 28: glu-
cose, 29: methanol, 30: creatinine, 31: glyceryl of lipids CH2OCOR, 32:
glyceryl of lipids CHOCOR, 33: unsaturated lipid -CHdCH-, 34:
tyrosine, 35: histidine, 36: formate.
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spectrum (Figure 1c) showed the macromolecular profile com-
prising plasma proteins and lipids.

Visual inspection of average plasma spectra from control and
cancer subjects (Supplementary Figure S1) suggested differences
in their lipoprotein profiles and in the relative amount of some
metabolites (e.g., lactate, histidine). However, confirmation of
these and other subtle differences requires application of multi-
variate analysis. Figure 2 shows the scores scatter plots obtained
by PCA, PLS-DA, and OPLS-DA applied to the CPMG plasma
spectra. A trend for unsupervised separation between control
and cancer samples was found in the PC1 vs PC4 scores plot
(Figure 2a). PLS-DA maximized group separation (Figure 2b),
which was further improved along LV1 when OPLS-DA was
employed (Figure 2c).

To better assess the predictive ability of the classification
models built for the three experiment types, Monte Carlo Cross

Validation (MCCV) was applied, as described in Material and
Methods. The results are summarized in Table 2 in terms of Q2

values, expressing the models’ predictive power, sensitivity (% of
cancer samples correctly classified � true positives), specificity
(% of control samples correctly classified � true negatives),
and the classification rate (total number of samples correctly
classified). Overall, the best results were obtained for the model
based on the CPMG spectra, with a medianQ2 of 0.64, sensitivity
and specificity levels of 91.5% and 89.2%, respectively, and a
90.4% classification rate. Further model validation relied on
permutation analysis, also employing 500MCCV iterations, with
randomly permuted class membership. The prediction results
obtained for the real (with true classes assigned) and the per-
muted models were plotted in the Receiver Operating Charac-
teristic (ROC) space (Figure 3a). While the real model showed
high sensitivity and specificity for most iterations, the permuted
model results fell along the diagonal of the ROC space, i.e., the
line of no discrimination. Also, the Q2 values were negative for
most permuted models (Figure 3b), and the classification rate
decreased to 49.4%, thus validating the predictive ability of the
real model.

To identify the variations responsible for class discrimination
and facilitate their interpretation, the OPLS-DA LV1 loadings
colored according to Variable Importance in Projection (VIP)
were carefully inspected, and when possible, the signals showing
high VIP values (>1.0) were assigned to specific compounds
(Figure 4). A major feature highlighted by these loadings was the
different proportion of the main lipoprotein subclasses in the
plasma samples of control and cancer subjects, as shown by the
splitting of the main fatty acyl chain resonances into positive and
negative loading signals. In particular, negative loadings were
found for broad resonances at δ 0.83, 1.23, and 5.26, whereas the
signals at δ 0.87, 1.27, and 5.30 showed positive loadings. On the
basis of the literature39�41 and the LC�NMR data collected in
our laboratory for other human plasma samples, these groups of
resonances correspond mainly to HDL and LDL + VLDL
lipoproteins, respectively, thus suggesting that the former were
decreased in cancer, whereas the latter were increased relative to
controls. Moreover, the negative loading signal for the δ 3.21
resonance, arising from methyl head groups of choline-contain-
ing phospholipids, further supports the assignment to HDL,
since phosphatidylcholine is known to be the most predominant
lipid in the HDL fraction.41 Also of note is the positive intensity
of the signals arising from the glyceryl backbone of lipids, with
clearly high VIP values in the loadings calculated from standard

Figure 2. Scores scatter plots (a) PC1 vs PC4, (b) LV1 vs LV2, (c) LV1
vs o-LV1 resulting from applying, respectively, PCA, PLS-DA (LV 2,
R2X 0.17, R2Y 0.73, Q2 0.57), and OPLS-DA (LV 1 + 1, R2X 0.17, R2Y
0.73, Q2 0.54) to the 1H CPMG NMR spectra of plasma from healthy
controls (]) and lung cancer patients ([).

Table 2. Average Prediction Results Obtained by MCCV
(500 Iterations) of PLS-DA Models Based on Standard 1D,
CPMG, and Diffusion-Edited Spectra of Plasma fromHealthy
Controls (n = 78) and Lung Cancer Patients (n = 85)a

median

Q2

sensitivity

(%)

specificity

(%)

classification

rate (%)

standard 1D 0.58 78.2 89.6 83.6

CPMG 0.64 91.5 89.2 90.4

diffusion-edited 0.62 83.9 89.4 86.5
a Sensitivity was calculated from the ratio of true positives (cancer
samples correctly predicted) to total number of modeled cancer spectra,
whereas specificity was determined from the ratio of true negatives
(control samples correctly predicted) to total number of modeled
control spectra.
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1D and diffusion-edited spectra (not shown), suggesting the total
amount of triglycerides to be higher in the plasma of cancer
patients.

In regard to small metabolites, the OPLS-DA loadings showed
clearly positive signals with high VIP values (>1.0) for lactate and
pyruvate, suggesting that these acids were increased in cancer
samples, and signals with negative intensity and high VIPs for
some amino acids (valine, alanine, lysine/arginine, glutamine,
tyrosine, and histidine), acetate, citrate, formate, glucose, and
methanol, suggesting their levels to be lower in the plasma of
cancer patients compared to controls. Moreover, a number of
other signals in the low and high frequency regions (indicated
with asterisks in Figure 4) seemed to be important for sample
discrimination, but in part due to their low intensities, their
identity remains unknown at this time, thus precluding further
interpretation of their variations.

To verify the variations highlighted by loadings inspection,
specific signals in the CPMG spectra have been integrated, and
the mean areas between control and cancer groups have been
compared. With the exception of the signals from lipoprotein
subclasses and lysine/arginine, which could not be integrated
because of severe spectral overlap, all other assigned signals
showing high VIP values were found to present statistically signi-
ficant differences (p-value <0.001) between control and cancer

plasma samples. Table 3 summarizes the discriminating metabo-
lites and their percentage variations in cancer samples relative to
control plasma. Supplementary Figures S2 and S3 show the boxplot
representations for the relative levels of these compounds.

Discrimination According to Histological Type and Stage
The possible correlation of plasma profiles to tumor histolo-

gical type was investigated. In a first approach, the four main
types, adenocarcinomas (n = 32), epidermoid carcinomas (n = 18),
carcinoids (n = 11), and sarcomatoid carcinomas (n = 11), were
considered together. However, no type-related clustering could
be observed in PCA, and PLS-DA produced no valid discrimina-
tion between the four classes considered. Then, pairwise model-
ing was performed, including two histological types at a time.
Interestingly, plasma samples from patients with carcinoid
and sarcomatoid tumors could be reasonably discriminated by
PLS-DA, especially when considering the diffusion-edited spec-
tra. Figure 5a and b show, respectively, the scores scatter plots
resulting from PLS-DA andOPLS-DAmodeling of these spectra,
where sample separation along LV1 was clear. The OPLS-DA
LV1 loadings (Figure 5c) suggested that the plasma from
carcinoid patients was characterized by relatively higher amounts
of HDL lipoproteins (as indicated by the chemical shifts of
negative red-colored loading signals), whereas the plasma from
patients with sarcomatoid carcinomas was richer in glycopro-
teins, indicated by signals at δ 2.03 and 2.07 (arising from
N-acetyl groups of N-acetylated carbohydrate side chains) and
at δ 3.3�4.1 (arising from carbohydrate ring protons).42 The
same metabolic differences were found when considering the
standard 1D spectra, whereas modeling of CPMG spectra pro-
duced no valid discrimination between the two histological types.
By MCCV with 500 iterations, PLS-DA of the diffusion-edited
spectra produced a moderate classification rate of 77.6%, with a
median Q2 value of 0.62. Clearly, more samples of each type are
needed to increase the robustness of this classification and
confirm the metabolic differences highlighted in this preliminary
analysis.

Regarding stage, when considering only the plasma samples
from patients with cancer at stages I (n = 46), II (n = 23), and III
(n = 7), excluding the control group, multivariate modeling
produced no valid discrimination between those classes, thus
suggesting a weak ability of plasma profile to predict disease
stage. However, each stage could be discriminated from the
control group, confirming the results obtained for the whole
data set. Most importantly, plasma from patients with stage I
cancer could still be differentiated from control plasma, with a
classification rate of 89.0% and a reasonable predictive ability,
expressed by a median Q2 value of 0.56. The PLS-DA model
specificity, as determined by MCCV, was 92.1%, whereas the
sensitivity decreased to 83.1%, expressing a higher false negative
rate (higher number of cancer samples misclassified as healthy)
compared to the model comprising all samples. If, on one hand,
this decrease in sensitivity may reflect the lower impact of stage I
tumors on plasma composition, the lower number of samples
included in the cancer class (n = 46 vs total n = 85) may also
account for this result. In fact, the OPLS-DA loadings explaining
the separation between control and stage I cancer samples
(Supplementary Figure S4) highlighted the same metabolic
differences as when including all the plasma samples in the
cancer class (regardless of stage), thus showing that these
differences were present in the plasma, right from the initial
phases of tumor development.

Figure 3. (a) Receiver Operating Characteristic (ROC) space, where
each point represents a prediction result (sensitivity and 1-specificity) of
the confusion matrices obtained from MCCV (500 iterations) of the
PLS-DA model based on 1H CPMG plasma spectra; (b) prediction
results in the original model (class membership correctly assigned); (�)
prediction results in the permuted model (class membership randomly
permuted). (b) Distribution of Q2 values obtained by MCCV (500
iterations) of the same PLS-DA models (original and permuted).
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Modeling of Other Possible Influencing Factors (Gender,
Age, Smoking Habits)

Although the metabolic composition of plasma is relatively
stable, a number of extrinsic and intrinsic factors may account for
some interindividual variability and influence the interpretation
of disease-related effects. Therefore, the contribution of some of
these factors, namely, gender, age, and smoking habits, to the
plasma profiles measured in this study were assessed by multi-
variate analysis of CPMG spectra (found to provide the best
discrimination between control and cancer samples).

Both control and cancer groups comprised a balanced number
of males and females, thus decreasing the probability of gender-
related bias. Indeed, when the PCA scores scatter plots corre-
sponding to all samples were colored according to gender, no
clear gender-related clustering was observed. Still, in order to
compare the discriminatory power of gender with that of the
disease itself, the data set has been modeled by PLS-DA (with
500 MCCV iterations) taking the gender as classifier. Much
lower Q2 value and classification rate were obtained for this
model (Table 4). These results show that the metabolic differences
arising from gender were not as important for sample discrimina-
tion as those related to the presence of the disease. Also, the

loadings explaining the separation between genders (Supplementary
Figure S5) revealed that the main differences between males
and females were in the lipoprotein profile (HDL increased
in females) and in the levels of creatine (increased in females,
p-value 9.48� 10�6) and creatinine (increased in males, p-value
6.15 � 10�12). Lactate and histidine signals also presented
relatively high VIP values, but the difference in their integrals
between the two genders did not reach statistical significance.
Therefore, with the exception of lipoproteins, which also varied
between control and cancer samples, distinct metabolites
accounted for gender- and disease-related effects.

In regard to the variability relating to age, this study had an
important limitation, which was the large difference in the age
distributions of control and cancer groups. This age difference
was due, on the one hand, to the greater prevalence of lung cancer
on older subjects and, on the other hand, to the difficulty in find-
ing healthy volunteers of more advanced ages. To address this
problem and assess the potentially confounding influence of age
on the discrimination between controls and patients, the follow-
ing strategy has been followed: First, the PCA scores scatter plots
corresponding to the whole data set (n = 163) were colored
according to five age ranges (e40, 41�50, 51�60, 61�70, g71).

Figure 4. OPLS-DA LV1 loadings plot colored as a function of VIP. Assignment of main signals is indicated (unassigned signals with high VIP are
marked with an asterisk).
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No age-dependent clustering or trend was observed in any of the
PC scores plots (not shown). Then, a subgroup of subjects with

ages between 41 and 60 (n = 72) was considered, to include a
balanced number of controls (n = 41, average age 49 ( 5) and
patients (n = 31, average age 54 ( 5). Compared to the whole
data set (n= 163), the discrimination between control and cancer
samples degraded when this age subgroup was considered, as
evaluated by the lower predictive ability (median Q2 0.45) and
classification rate (81.6%) of the resulting model (Table 4). On
the other hand, when the classifier was age, attributing different
classes to subjects in the age ranges 41�50 and 51�60, the
PLS-DA model showed no predictive power at all, with
negative Q2 and low classification rate (Table 4). Therefore,
in the subgroup considered, the presence of the disease was
confirmed to have a more important influence in the plasma
profiles than the subject’s age.

In respect to the influence of smoking habits, the heteroge-
neous nature of the control group, comprising smokers (n = 27),
nonsmokers (n = 38), and former smokers (n = 13), is expected
to reduce possible bias in the discrimination between controls
and cancer patients (the pulmonary parenchyma tissue of which
presented histological patterns of “smoking lung”). Still, in order
to better assess the potentially confounding influence of cigarette
smoke, subgroups of control subjects, defined according to their
smoking habits, have beenmodeled by PLS-DA together with the
cancer class. The statistical results obtained are presented in
Table 4. When only smokers were included in the control group

Table 3. Main Metabolites Contributing to the Discrimina-
tion between Plasma of Lung Cancer Patients and of Healthy
Subjects

metabolite δ 1H (ppm)

% average change

(relative to controls)a p-value

acetate 1.91 �16.7( 3.1 2.81� 10�8

alanine 1.47 �12.81( 2.4 3.37� 10�8

citrate 2.52 �11.0( 4.3 1.36� 10�4

formate 8.45 �30.5( 9.2 3.66� 10�5

glucose 3.52 �11.2( 2.6 8.46� 10�6

glutamine 2.44 �20.2( 2.9 1.04� 10�12

histidine 7.04 �26.6( 2.8 2.20� 10�16

lactate 4.11 18.8( 4.0 3.51� 10�5

methanol 3.35 �33.8 ( 4.2 6.66� 10�16

pyruvate 2.36 16.7( 3.6 1.84� 10�5

tyrosine 7.18 �10.8( 3.0 2.14� 10�4

valine 1.03 �14.4( 2.7 5.04� 10�8

aAverage changes determined by spectral integration of the signal specified
in the second column. P-values computed by comparison of mean integrals
between the two groups, as described in Material and Methods.

Figure 5. (a) LV1 vs LV2 scores scatter plot resulting from applying PLS-DA to the diffusion-edited spectra of plasma from patients with carcinoid
(n = 11) and sarcomatoid tumors (n = 11) (LV 2, R2X 0.35, R2Y 0.86,Q2 0.54). (b) LV1 vs o-LV1 scores scatter plot resulting from applying OPLS-DA
to the same data (LV 1 + 1, R2X 0.35, R2Y 0.86, Q2 0.37). (c) OPLS-DA LV1 loadings plot colored as a function of VIP.
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(n = 27), a lower predictive power resulted (Q2 0.47) and the
specificity decreased drastically to 51.8%, meaning that more
false positives (controls misclassified as cancer patients) arose
from the model. Still, the overall classification rate remained
relatively high (85.9%). On the other hand, when only non-
smokers were included in the control group (n = 38), class
discrimination was not improved relative to taking all controls
regardless of their smoking habits. Q2 was close to 0.5 and the
classification rate remained at about 90%.Moreover, the loadings
profiles resulting from these models (not shown) were identical
to those explaining the discrimination between control and can-
cer samples in the total model. To further assess the specific im-
pact of smoke on the plasma profiles, control samples, divided
into smokers and nonsmokers, have also been taken for PLS-DA
modeling. As shown in Table 4, a negative median Q2 and low
classification rate (55.8%) were obtained, clearly showing that
the plasma profiles from healthy nonsmokers could not be
discriminated from those of control smokers, thus hindering
any further speculation about putative plasmametabolites related
to smoking habits.

’DISCUSSION

An important feature accounting for the discrimination be-
tween control and cancer samples was the difference in the
relative amounts of the major lipoprotein subclasses: HDL was
lower in the plasma of patients, whereas LDL + VLDL and total
triglycerides were increased relative to healthy subjects. These
results agree with previous studies reporting significant altera-
tions in the serum lipoprotein profile in a variety of hematological
and solid tumors, including lung cancer,43,44 and thus are
probably not specific to this type of cancer. In particular, low
HDL was found to be the most discriminating factor in a study
comparing over 500 patients with various types of solid tumors
and over 900 age- and gender-matched healthy controls.44 Other
commonly observed alterations comprise the increase in trigly-
cerides, also apparent in our study, and the reduction in LDL.
This latter alteration, however, could not be observed in the
present work as the contribution of LDL could not be evaluated
separately from that of VLDL due to spectral overlap.

Although the biochemical origin of these changes is not well
understood, it is possible that they relate to increased uptake of
circulating lipoproteins to supply the necessary cholesterol for
membrane build-up by fast-growing tumor cells. In fact, we
have observed a trend for lipids to be increased in lung tumoral
tissue (relative to noninvolved pulmonary parenchyma),32,33 and
although this increase could have multiple sources, including

tissue necrosis, its possible relation with the observed changes in
the plasma lipoprotein profile should not be ruled out. The poor
nutritional status generally associated with cancer has also been
reported to account for the reduction in HDL and LDL levels.45

However, although the nutritional status has not been assessed in
the present study, the increased levels of plasma triglycerides in
cancer patients suggests that this was not a dominant factor. In
fact, previous studies have made a similar observation and con-
cluded that the nutritional status did not entirely explain the
disturbances in lipoprotein composition.43 Moreover, cardiovas-
cular and inflammatory diseases have been ruled out as main
causes for these disturbances by Muntoni et al.,44 who suggested
that the lipoprotein profile may have significance in the diagnosis
and prognosis of solid tumors.

The plasma NMR profile of healthy subjects and cancer
patients also differed in the relative amounts of a number of
small molecules. Lactate was found to be increased and glucose
was found to be decreased in the plasma of cancer patients,
most likely reflecting the well-known increased glycolytic
activity of tumor cells (the Warburg effect), as confirmed by
metabolic profiling of lung tissues.32,33,46 Indeed, the standard
measurement of glucose in serum samples from 300 fasted
patients with a variety of cancer types also showed a significant
reduction of glucose levels relative to the same number of
gender- and age-matched controls.44 Consistently with this en-
hanced glycolysis and as previously reported for leukemia,47 kidney,8

liver,12 and colorectal18 cancers, the glycolytic product pyruvate was
found to be increased. Together with the observed reduced level of
citrate, these results suggest a decreased Krebs cycle, in agreement
with the commonly observed mitochondrial dysfunction in
cancer.48,49

The levels of a number of amino acids (alanine, glutamine,
valine, tyrosine, and histidine) were found to be significantly de-
creased in the plasma of cancer patients relative to healthy
controls. In contrast with these results, Maeda and coauthors27

have recently reported significantly higher concentrations
(p-value e0.001) of alanine, tyrosine, and several other amino
acids (proline, glycine, isoleucine, phenylalanine, ornithine, and
lysine) in the plasma of lung cancer patients and no significant
difference for glutamine or valine, whereas histidine was the only
amino acid found at lower concentrations than in controls.
Although this discrepancy is intriguing, several aspects may account
for it, such as the different genetic background and dietary/
lifestyle habits of European subjects (enrolled in our study)
and Japanese subjects (enrolled in the other work). Moreover,
disease stage may also have an influence, since the plasma
free amino acid profile has been shown to vary with cancer

Table 4. Prediction Results Obtained by MCCV (500 Iterations) of PLS-DA Models Based on CPMG Plasma Spectraa

median Q2 sensitivity (%) specificity (%) classification rate (%)

control (78) vs cancer (85) 0.64 91.5 89.2 90.4

male (93) vs female (70) 0.36 63.2 76.6 70.9

control (41) vs cancer (31), age 41�60 0.45 70.4 90.2 81.6

age 41�50 (33) vs 51�60 (39) �0.095 60.3 52.7 56.8

control smokers (27) vs cancer (85) 0.47 96.7 51.8 85.9

control nonsmokers (38) vs cancer (85) 0.47 94.7 80.0 90.2

control nonsmokers (38) vs control smokers (27) �0.072 36.5 69.6 55.8
aData for the following classes: control vs cancer; male vs female; control vs cancer (sub-group of subjects in the 41�60 age range); age 41-50 vs 51-60;
control vs cancer varying the composition of the control group according to smoking habits; control nonsmokers vs control smokers. Sample numbers
for each class are presented within brackets in the first column.
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progression.50 Whereas in Maeda’s study nearly half of the
patients had cancer at advanced stage (III or IV), the large
majority of our patients were at more initial stages (I or II).
Considering other literature reports, plasma levels of alanine
(and, in fact, of several gluconeogenic amino acids) have been
found to be decreased in various cancer types,50 including lung
cancer,51,52 most probably due to its increased utilization as
a major gluconeogenic precursor, to meet the high glucose
uptake and demand by tumor cells. Additionally, the decrease
in glutamine found, for instance, in the plasma of renal,8,9

pancreatic,23 and other cancer patients50 has been associated
with increased glutaminolysis to help sustain the Krebs cycle and
energy regeneration and to provide precursors for nucleic acid
synthesis. Overall, as reviewed by Lai et al.,50 despite the different
specific amino acids varying for different cancer types and some
inconsistencies between reports on the same cancer type,
the large majority of studies reported decreased levels of most
plasma free amino acids (PFAA) in cancer compared to healthy
controls. Moreover, it has been shown that, whereas at advanced
stages the altered PFAA is strongly correlated to malnutrition
and cancer-associated weight loss,53 the amino acid imbalance
also occurs at early stages in nonmalnourished and noncachetic
patients.54

In addition to the above-mentioned metabolite changes, we
found reduced levels of acetate, formate, and methanol in the
plasma of lung cancer patients compared to controls. Acetate is
an end product of lipid metabolism, and its decrease may reflect a
reduced lipid catabolism in order to sustain accelerated cell proli-
feration. This has also been observed in the plasma of renal cell
carcinoma patients9 and in tumor lung tissues compared to
normal pulmonary parenchyma.32,33 Endogenous methanol has
been previously reported in the blood plasma of healthy indivi-
duals,55 but we found no previous record of its variation (or that
of formate) in cancer patients. Actually, no explanation for the
decreases in the levels of these two metabolites is proposed at
this stage.

The influence of possible confounders, namely, gender, age,
and smoking habits, on the discrimination between control and
cancer samples has also been assessed. Gender was found to
have a much lower discriminatory power than the disease, and
the few gender-related metabolic differences encountered were
in accordance with previously reported differences between
males and females, namely, the relative abundance of lipopro-
teins subclasses56,57 and the levels of creatine and creatinine.36

In regard to age, it was found to have a much smaller influence
on the plasma composition than the disease, in line with the
results reported by others for different cancer types, such as
leukemia47 or esophageal cancer.25 However, possible bias
arising from the disparate age distributions in controls (ages
22�60) and cancer subjects (ages 30�85) could not be ruled
out, since the discrimination between these classes was found
to be worse for a subgroup of subjects with more closely
matched ages. Therefore, in the continuity of this work, a larger
number of samples from older healthy individuals must be
collected in order to improve age-matching between controls
and patients and further assess the influence of age on sample
discrimination.

Regarding the potentially confounding influence of smoking
habits, a drastic decrease in model specificity was observed
when only healthy smokers were included in the control group.
However, the much smaller number of samples (n = 27) in this
new control group could also account for this poorer predictive

ability. Indeed, if smoking was a major factor in control vs
cancer discrimination, one would expect this discrimination to
be enhanced when only nonsmokers were included in the
control group and this was clearly not the case. Moreover,
the metabolic features discriminating cancer from control
subjects were the same irrespectively of the latter being smokers
or not.

In regard to other possible confounders, although we tried to
minimize the dietary influence by collecting all samples after
overnight fasting, it cannot be completely excluded, as the meta-
bolism of some food constituents can affect blood composition
many hours after intake. However, as neither patients nor healthy
subjects were under any controlled or standardized diet, it is
unlikely that diet would account for specific differentiating effects
between the two groups. Future studies should however entail
the assessment of body mass index or the occurrence of weight
loss or malnutrition in the patients group, as these might
influence the metabolic variations, as discussed above for lipo-
proteins and amino acids.

’CONCLUSIONS

This work has shown that NMR-based metabonomics of
blood plasma is able to differentiate patients with primary lung
cancer from healthy subjects with high sensitivity and specificity.
Despite the expected interindividual metabolic variability and
possible confounders (age, smoking habits, and other un-
controlled factors such as differences in body mass index), the
results revealed consistent metabolic alterations in the plasma of
lung cancer patients that are plausible within current knowledge
of cancer metabolism. Indeed, our previous studies on lung tumor
and noninvolved adjacent tissues pointed to changes in pathways
common to those unveiled here, involving mainly glucose utili-
zation, lipid metabolism, and the metabolism of free amino
acids.32,33 It should also be noted that although alterations in
these pathways have been reported for other cancer types, the
particular set of metabolites found to be affected in this study
(and their quantitative variations) may express a specific signa-
ture for lung cancer. Indeed, the possibility to simultaneously
detect changes in multiple non-predefined metabolites constitu-
tes an important advantage of metabonomics over conventional
biochemical methods that assess individual compounds in a tar-
geted manner. Together with the good discrimination achieved
by NMR profiling of urine samples,34 this work further supports
the premise that lung cancer impacts systemic metabolism, thus
opening new possibilities in terms of minimally invasive diag-
nostic methods. A particularly promising result in this respect
was that the metabolic differences accounting for the discrimina-
tion between control and cancer groups were detectable right
from stage I of the disease. Hence, the next step to determine the
real clinical applicability of the NMR-based metabonomics ap-
proach will consist of testing the predictive ability of the con-
structed model on a new truly independent set of samples
(collected from different subjects in another time frame). If this
proves successful, a foreseen practical application for this work,
which may contribute to improved lung cancer management,
consists of using NMR metabolic profiling of blood plasma to
identify subjects with higher probability of having asymptomatic
lung cancer, within the general population or subgroups at
increased risk (e.g., chronic smokers), in order to proceed with
more advanced and specific radiological tests.
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