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Time series of daily mean temperature obtained from the European ClimateAssessment data set is analyzed
with respect to their extremal properties. A time-series clustering approach which combines Bayesian
methodology, extreme value theory and classification techniques is adopted for the analysis of the regional
variability of temperature extremes. The daily mean temperature records are clustered on the basis of their
corresponding predictive distributions for 25-, 50- and 100-year return values. The results of the cluster
analysis show a clear distinction between the highest altitude stations, for which the return values are lowest,
and the remaining stations. Furthermore, a clear distinction is also found between the northernmost stations
in Scandinavia and the stations in central and southern Europe. This spatial structure of the return period
distributions for 25-, 50- and 100-years seems to be consistent with projected changes in the variability
of temperature extremes over Europe pointing to a different behavior in central Europe than in northern
Europe and the Mediterranean area, possibly related to the effect of soil moisture and land-atmosphere
coupling.

Keywords: daily mean temperature series; cluster analysis; Bayesian inference; return values

1. Introduction

Extremes values of climate parameters can have profound societal impacts, affecting human
health, energy use, agriculture, water resources and ecosystems [24,28,38]. For example, in the
case of temperature, heat waves are associated with increasing mortality rates in human popula-
tions [2], the depletion of water resources [18,14], the reduction in vegetation growth [17,44] and
the increase in the number of forest fires [40].

Climate change is expected to affect extreme weather events. For example, heat waves are
expected to become longer, more intense and more frequent [3,4,30,35]. It is well known that even
a simple shift in the mean of a climate variable can have a considerable influence in the frequency
of occurrence of events considered as extreme in light of the historical record [41]. Furthermore,
the variability of extreme events in a warming world can differ from the variability in the mean,
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2794 M.G. Scotto et al.

due to changes in the shape of the probability density function of a climate parameter [19]. The
study of extreme values is therefore of particular relevance in a climate change context.

In this work, extreme value theory (hereafter EVT) is applied to the analysis of European daily
temperature records. The analysis of extreme values implies focussing on the tails of the data
distribution; therefore, it is preferable to characterize the tail of the distribution by means of EVT
than to fit a distribution to the complete data [9]. However, comparatively few studies [26,27]
have focussed on the EVT analysis of daily temperatures. Most studies addressed instead the
temporal evolution of universally accepted indices of temperature extremes either from historical
observations [1,16,21,29] or model data [8,37]. These indices usually represent return periods of
the order of some weeks, and therefore describe ‘moderate’extremes, since trends on more extreme
values would be computed from fewer data and therefore would be more difficult to detect [21].
The analysis of the temporal evolution of extreme temperatures indices showed significant trends
over Europe, particularly in extreme warm events [21,25,39].

The spatial distribution of extreme events is of both physical and practical interest, particularly
in the case of regional studies. Characterization of spatial extremes has become an important topic
of research in the last years [6,10,20].A common feature of the previous works, however, is that all
of them rely on a likelihood-based approach. Recently, Bayesian hierarchical models for spatial
extremes have been proposed. For example, Cooley et al. [11] introduced a Bayesian hierarchical
model in which locally the extreme rainfall is modeled by a one-dimensional EVT distribution
and the parameters of this distribution follow some spatial dependence model. Extensions of this
model have been recently proposed by Sang and Gelfand [33,34].

On the other hand, approaches for addressing spatial features of extreme temperatures often
consider each time series individually, summarizing the information for the region of interest in
terms of maps of individual features [7,21]. An alternative approach is to consider cluster analysis
for assessing the spatial distribution of temperature extremes [32]. In the present study, a Bayesian
extreme value analysis is combined with a time series clustering procedure for describing regional
extreme temperature variability over Europe.

The rest of the paper is organized as follows. Section 2 briefly introduces basic concepts
related to EVT and Bayesian methodology for extreme value models. Furthermore, the time
series clustering procedure is also described. In Section 3, an application of this approach for
clustering time series of daily mean temperature obtained from the European Climate Assessment
(hereafter ECA) data set based on long-term predictions of extreme values is presented. Finally,
some concluding remarks are given in Section 4.

2. Methods

2.1 Extreme value approach

EVT provides a very flexible approach for estimating the probabilities of future extremal air
temperatures given historical data. The celebrated Fisher–Tippett extreme value theorem states
that if the distribution of partial maxima of an independent and identically distributed sequence
of random variables with common (unknown) distribution F , say, Mn := max(X1, . . . , Xn),
properly normalized, converges to a non-degenerate limit distribution G, i.e.

lim
n→∞ P {a−1

n (Mn − bn) ≤ x} = G(x), (1)

for some constants an > 0 and bn ∈ R, then F is in the domain of attraction of G, and G must be
the generalized extreme value (GEV in short) distribution

G(x) = Gξ(x) := exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

, (2)
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Journal of Applied Statistics 2795

defined on {x : 1 + ξ(x − μ)/σ > 0} where −∞ < μ < ∞, σ > 0 and −∞ < ξ < ∞. It has
three parameters, μ, σ and ξ , denoting location, scale and shape parameters, respectively. The
shape parameter ξ , also called the tail index, determines the three extreme value types. Specifically,
when ξ takes negative values, positives values or when ξ = 0, interpreted by taking the limit of
Equation (2) as ξ → 0, the GEV distribution is the negative Weibull, the Fréchet or the Gumbel
distribution, respectively. The Fréchet domain of attraction embraces heavy-tailed distributions
with polynomially decaying tails. All d.f.’s belonging to the Weibull domain of attraction are
light-tailed with finite right endpoint. The intermediate case ξ = 0 is of particular interest since
this class includes distribution functions with very different tails, ranging from moderately heavy
(such as the lognormal distribution) to light (such as the Normal distribution) having finite right
endpoint or not.

A useful parameter of interest in many extreme value studies is the quantile xp for a specified
exceedance probability p, defined as

xp :=
⎧⎨
⎩μ − σ

ξ
{1 − (− log(1 − p))−ξ }, ξ �= 0

μ − σ log{− log(1 − p)}, ξ = 0

where G(xp) = 1 − p. Roughly speaking, xp is the return level that is associated with the return
period 1/p for small p, in units of, say, years, if the GEV corresponds to the annual maximum.

A typical application in EVT is the r-largest order statistic model which consists in fitting
the GEV distribution to the r-largest observations within a block, for example, a year. Note that
the case r = 1 correspond to the well-known annual maxima method. For the asymptotic argu-
ments to hold, the number of order statistics, r , used in each year must be chosen carefully since
small values of it will produce likelihood estimators with high variance, whereas large values
of r are likely to violate the asymptotic support for the model, leading to bias. In practice, it is
usual to select r as large as possible subject to adequate model diagnostics. The validity of the
models was checked through the application of graphical methods, in particular, the probabil-
ity plot, the quantile plot and the return level plot; for further details, see [31] and references
therein.

An alternative approach when dealing with extreme values is to consider a Bayesian approach.
Roughly speaking, Bayes’ theorem converts a prior distribution, say π(θ), for a parameter vector
θ := (θ1, . . . , θp), on the availability of historical data x := (x1, . . . , xn), into a posterior distri-
bution π(θ|x) ∝ L(x|θ)π(θ), where L(x|θ) denotes the likelihood for the historical data. The
prior expresses the degree of certainty concerning the situation before the data are taken. Hence,
Bayes’ theorem provides the means for updating our knowledge, expressed in terms of a probabil-
ity density function, in light of some new information similarly expressed. It is important to stress
the fact that the outcome of a Bayesian analysis is an entire distribution on θ, which represents
a considerable advantage over classical methods; rather than just a point estimate, we obtain a
complete probabilistic distribution on the parameter values. Point estimates can be easily obtained
by taking the mean or the median of the posterior distribution.

2.2 Clustering time series

A time-series clustering procedure based on long-term predictions of extreme values of temper-
ature records is applied in the present study to describe the regional temperature variability in
Europe. We only outline here the essential of the method referring the reader to the work of Scotto
et al. [36] and the references therein for a more detailed description.

Our starting point is a panel of T time series X := (X(1), . . . , X(T )) observed for, say n1, . . . , nT ,
time units, respectively, that is, X(i) := (X1,i , . . . , Xni,i) for i = 1, . . . , T . The implementation of
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2796 M.G. Scotto et al.

the method for clustering time series is carried out in three stages: first, the algorithm starts with
the estimation of the posterior predictive distributions for each time series, for 25-, 50-, and 100-
year return values by means of the approach described in Section 2.1. In order to accommodate
features often exhibited by temperature records such as trends or seasonality, the location and scale
parameters are allowed to vary in time (in this case, years). Specifically, the location and scale
parameters associated with the ith time series are modeled as μi(t) = β0,i + β1,i t . and σi(t) =
exp(γ0,i + γ1,i t), respectively, where the exponential function is used to ensure that the positivity
of σ is maintained for all values of t . On the other hand, we took a near-flat normal multivariate
distribution for θi := (β0,i , β1,i , γ0,i , γ1,i , ξi) as a prior distribution which reflects the absence
of external information. A Markov chain is generated (by means of the Metropolis–Hastings
algorithm) of length N = 10,000, (θ

(1)
i , . . . , θ

(N)
i ), with θ

(j)

i := (β
(j)

0,i , β
(j)

1,i , γ
(j)

0,i , γ
(j)

1,i , ξ
(j)

i ) for
j = 1, . . . , N , including a burn-in period of 5000 observations with target distribution π(θi |x)

being the initial values the maximum log-likelihood estimates obtained from the distribution of the
r-largest order statistic model. Furthermore, only every fifth iteration is stored in order to obtain an
independent and identically distributed sample. From the Markov Chain sequence (θ

(1)
i , . . . , θ

(n)
i ),

with n = 1000, a sample from the posterior predictive distribution of the return value x(i)
p , say,

x(i)
p := (x

(i)
p,1, x

(i)
p,2, . . . , x

(i)
p,n) can be generated as follows: let G−1(·|θi ) be the inverse of the

extreme value distribution in Equation (2) then x
(i)
p,j = G−1(1 − p|θ(j)

i ), for j = 1, . . . , n. Thus,
an estimate of F

x
(i)
p

(z|x) is given by

F̂
x

(i)
p

(z|x) := 1

n

n∑
j=1

I (x
(i)
p,j ≤ z), (3)

where I (·) represents the indicator function. Next, we compute the dissimilarity matrix D :=
(Dij ), j, i = 1, . . . , T . To this extend, an adequate metric between univariate distribution func-
tions is required. The choice of this metric should reflect the final goal of the clustering procedure
in the sense that the distance captures the discrepancies between predictive distributions of return
values. In this case, the weighted L2-Wasserstein distance between posterior predictive distri-
butions is adopted. This means that the distance between two time series, say, X(i) and X(j) is
defined as

Dij :=
∫ 1

0
(F−1

x
(i)
p

(y|x) − F−1
x

(j)
p

(y|x))2y(1 − y)dy, (4)

where F
x

(i)
p

(·|x) and F
x

(j)
p

(·|x) denote the posterior predictive distribution functions of the return

values of the ith and j th time series x(i)
p and x

(j)
p , respectively, with p = 1/m, corresponding to

a return period of m years. The distances Dij are estimated through the expression

D̂2
ij :=

h∑
�=1

(F̂−1
x

(i)
p

(s�|x)−, F̂−1
x

(j)
p

(s�|x))2s�(1 − s�), (5)

where s� := �/(h + 1), i.e. (s1, s2, . . . , sh) is a regular grid in the interval (0, 1). In the present
analysis, we considered h = 99. Notice that the expression in Equation (5) is a weighted sum of
the squared difference of the estimated percentiles of the returns for the ith series and j th series.
Finally, a dendrogram based on the application of classical cluster techniques to the dissimilarity
matrix is built and that gives us the different clusters formed by the predictive distributions for 25-,
50- and 100-year return values. In particular, agglomerative hierarchical methods with nearest
distance (single linkage), furthest distance (complete linkage) and unweighted average distance
(average linkage) are used as grouping criteria.

In the next section, the results obtained by applying the average linkage procedure are presented.
Similar conclusions are obtained using the other two methods.
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Journal of Applied Statistics 2797

3. Exploring the ECA data set

Time series of daily mean temperature were obtained from the ECA data set [22,23]. Blended
data were used in order to have records as complete as possible. Blending consists in infilling
gaps with observations from nearby stations (provided that they are within 25 km distance and
that height differences are less than 50 m). The data set is subject to quality control procedures,
but inhomogeneities can remain (e.g. due to changes in observation practices) and can influence
the analysis of extreme temperatures [42].

Stations in western Europe with data from at least January 1901 to December 2007 were selected
from the ECA blended data set (note that clustering based on long-term prediction requires time
series data ending at the same time). Furthermore, only time series for which the % of missing
values is smaller than 2% were considered in the study. Details are displayed in Figure 1 and
Table 1.

The method approach described in Section 2 is applied to obtain clusters of the air temperature
observations on the basis of 25-, 50- and 100-year return values. Table 2 summarizes the results
of the Bayesian analysis, including the r-largest order statistic and the estimates (i.e. mean of the
marginal posterior distributions) of the location (μ), scale (σ ) and shape (ξ ) parameters of the GEV
distribution, with the location and scale parameters assumed to evolve in time as μ(t) = β0 + β1t

and σ(t) = exp(γ0 + γ1t), respectively.
A closer look at Table 2 reveals that only in Halle, Leipzig, Kyiv, Salzburg and Osijek (HAL, LEI,

KYI, SAL and OSI), the assumption of no linear trend in the location parameter is tenable at any
conventional level of significance. All stations except Stockholm (STO) and Bremen (BRE) show
a positive slope (β1), indicating an increasing trend in the location parameter. Furthermore, for St
Petersburg, Hamburg, Bremen and Bologna (STP, HAM, BRE and BOL), the estimated values
of γ1 indicate non-constant variance. Moreover, note that for all locations the posterior mean for
ξ (which plays a key role in determining the tail behavior of the data set underlying distribution)
is negative, clearly indicating that a bounded upper tail distribution may be a reasonable choice
to fit the data sets corresponding to these locations. A negative value for the shape parameter
ξ was also found for daily maximum temperature by Nogaj et al. [26] and Parey [27]. At this
point, it is important to remind that an immediate advantage of the Bayesian approach is the fact
that the entire posterior density of the parameters is constructed, so that the degree of estimation

Figure 1. Map showing the location of the analyzed air temperature records. The station numbers are as in
Table 1.
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2798 M.G. Scotto et al.

Table 1. Summary of the analyzed air temperature records.

Station (abbreviation) Longitude Latitude % missing values Height (m)

1 ST. PETERSBURG (STP) 30.3 59.97 0.08 3
2 STOCKHOLM (STO) 18.05 59.35 0 44
3 VESTERVIG (VES) 8.32 56.77 0.04 18
4 KOEBENHAVN (KOE) 12.53 55.68 0.06 9
5 HAMMER ODDE FYR (HOF) 14.78 55.3 0.58 11
6 HAMBURG (HAM) 10.25 53.48 0.75 35
7 DUBLIN (DUB) 353.68 53.35 0.01 49
8 BREMEN (BRE) 8.78 53.05 0.98 5
9 BERLIN (BER) 13.3 52.45 1.51 58

10 POTSDAM (POT) 13.07 52.38 1.51 81
11 DE BILT (DEB) 5.18 52.1 0.05 2
12 HALLE (HAL) 11.98 51.48 0.04 104
13 LEIPZIG (LEI) 12.23 51.43 0 141
14 KYIV (KYI) 30.53 50.4 0.39 166
15 FRANKFURT (FRE) 8.67 50.12 0.27 112
16 BAMBERG (BAM) 10.88 49.88 1.56 239
17 PARIS (PAR) 2.33 48.82 0.01 75
18 STUTTGART (STU) 9.22 48.72 0.33 401
19 KREMSMUENSTER (KRE) 14.13 48.05 0.12 383
20 SALZBURG (SAL) 13 47.8 1.89 437
21 HOHENPEISSENBERG (HOH) 11.02 47.8 1.68 977
22 ZUERICH (ZUE) 8.57 47.38 0.21 556
23 SAENTIS (SAE) 9.35 47.25 0.25 2490
24 GRAZ (GRA) 15.45 47.08 0.52 366
25 SONNBLICK (SON) 12.95 47.05 0.08 3106
26 GENEVE (GEN) 6.13 46.25 0.26 405
27 LJUBLJANA BEZIGRAD (LJU) 14.52 46.05 1.1 299
28 LUGANO (LUG) 8.97 46 0.25 273
29 ZAGREB-GRIC (ZAG) 15.97 45.82 0.07 156
30 OSIJEK (OSI) 18.63 45.53 0.82 88
31 BOLOGNA (BOL) 11.25 44.48 0.15 53
32 LISBOA (LIS) 350.85 38.72 0.05 77

uncertainty can be quantified. As an illustrative example, we display in Figure 2 the posterior
density estimates of ξ in Bamberg (BAM).

A common feature of the posterior distributions associated with the shape parameter, for all the
32 stations, is that the probability of non-negative values for ξ is negligible clearly indicating that
a bounded upper tail distribution may be a reasonable choice to fit the data sets corresponding to
these locations. A bounded upper tail distribution is not only reasonable from the statistical point
of view but also from a physical perspective, in the sense that thermodynamic considerations lead
to a upper limit to Earth’s air temperature.

Some considerations of practical order are required at this point. In order to generate a sample
(x

(i)
p,t,0, . . . , x

(i)
p,t,n) from the posterior predictive distribution of the return value x

(i)
p,t for 25-, 50-

and 100-years, associated with the ith time series (i = 1, . . . , 32), we proceed as follows: first,
from the Markov Chain sequence (θ

(1)
i , . . . , θ

(n)
i ) calculate the values μi,j (t) = β

(j)

0,i + β
(j)

1,i t
∗ and

σi,j (t) = exp(γ
(j)

0,i + γ
(j)

1,i t∗), for j = 1, . . . , n, being t∗ = (t − 1954)/53 with t = 2032, 2057

and 2107 corresponding to p = 0.04, 0.02 and 0.01, respectively. Second, compute x
(i)
p,t,j :=

μi,j (t) − σi,j (t) log{− log(1 − p)} if ξ
(j)

i ≈ 0, or

x
(i)
p,t,j := μi,j (t) − σi,j (t)

ξ
(j)

i

{1 − (− log(1 − p))−ξ
(j)

i },

otherwise.
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Table 2. r-Largest order statistics, parameters estimates and posterior standard deviations (in parentheses).

Location r β̂0 β̂1 γ̂0 γ̂1 ξ̂

STP 7 25.46 (0.08) 0.73 (0.18) 0.25 (0.02) 0.29 (0.06) −0.38 (0.05)
STO 6 23.23 (0.07) −1.13 (0.23) 0.29 (0.02) 0.13 (0.06) −0.31 (0.04)
VES 5 22.18 (0.10) 1.94 (0.31) 0.35 (0.02) 0.06 (0.09) −0.27 (0.06)
KOE 5 23.28 (0.08) 1.66 (0.28) 0.19 (0.02) 0.15 (0.09) −0.29 (0.07)
HOF 5 22.26 (0.09) 1.56 (0.31) 0.32 (0.02) 0.26 (0.09) −0.19 (0.03)
HAM 7 24.85 (0.09) 1.32 (0.30) 0.30 (0.02) 0.47 (0.07) −0.32 (0.06)
DUB 9 19.90 (0.06) 0.94 (0.21) −0.09 (0.02) −0.09 (0.07) −0.22 (0.04)
BRE 8 25.80 (0.09) −0.76 (0.31) 0.35 (0.02) −0.42 (0.08) −0.42 (0.07)
BER 7 25.96 (0.08) 0.68 (0.29) 0.15 (0.02) 0.14 (0.08) −0.31 (0.08)
POT 5 25.82 (0.09) 1.39 (0.32) 0.25 (0.02) 0.17 (0.09) −0.31 (0.03)
DEB 5 24.21 (0.11) 1.14 (0.36) 0.31 (0.03) −0.09 (0.11) −0.30 (0.05)
HAL 7 26.14 (0.09) 0.10 (0.38) 0.23 (0.02) 0.03 (0.09) −0.29 (0.02)
LEI 6 26.21 (0.10) 0.51 (0.38) 0.26 (0.02) 0.13 (0.10) −0.31 (0.06)
KYI 7 26.84 (0.09) 0.17 (0.32) 0.23 (0.03) 0.06 (0.08) −0.25 (0.07)
FRE 5 26.25 (0.09) 1.81 (0.27) 0.24 (0.03) 0.17 (0.09) −0.24 (0.04)
BAM 5 24.93 (0.10) 1.18 (0.37) 0.27 (0.04) 0.07 (0.12) −0.16 (0.03)
PAR 7 27.00 (0.11) 2.18 (0.32) 0.37 (0.03) 0.19 (0.08) −0.23 (0.08)
STU 7 25.11 (0.10) 1.00 (0.30) 0.23 (0.03) −0.04 (0.10) −0.23 (0.05)
KRE 7 24.40 (0.07) 0.65 (0.21) 0.10 (0.03) −0.11 (0.07) −0.24 (0.05)
SAL 8 26.28 (0.08) 0.23 (0.17) 0.21 (0.02) −0.17 (0.07) −0.45 (0.06)
HOH 9 23.27 (0.10) 1.62 (0.31) 0.26 (0.03) 0.06 (0.07) −0.23 (0.05)
ZUE 7 24.63 (0.08) 1.31 (0.29) 0.10 (0.04) 0.04 (0.10) −0.26 (0.03)
SAE 7 13.43 (0.10) 1.90 (0.38) 0.24 (0.03) −0.03 (0.10) −0.25 (0.06)
GRA 7 24.91 (0.07) 3.00 (0.25) 0.02 (0.03) 0.06 (0.09) −0.20 (0.05)
SON 5 8.19 (0.08) 2.37 (0.25) 0.09 (0.03) −0.13 (0.09) −0.23 (0.06)
GEN 7 25.80 (0.09) 0.91 (0.32) 0.19 (0.03) 0.01 (0.09) −0.23 (0.05)
LJU 5 25.75 (0.10) 2.41 (0.29) 0.12 (0.03) 0.06 (0.12) −0.19 (0.02)
LUG 7 26.18 (0.07) 0.76 (0.23) −0.08 (0.03) −0.08 (0.09) −0.23 (0.07)
ZAG 7 27.93 (0.07) 0.56 (0.21) 0.10 (0.02) −0.04 (0.07) −0.23 (0.04)
OSI 7 28.01 (0.08) 0.07 (0.28) 0.10 (0.03) −0.15 (0.10) −0.26 (0.08)
BOL 5 30.43 (0.06) 0.46 (0.18) 0.10 (0.02) −0.20 (0.07) −0.26 (0.04)
LIS 5 29.71 (0.10) 1.17 (0.33) 0.27 (0.03) 0.20 (0.11) −0.24 (0.08)

Figure 2. Marginal posterior distribution for the shape parameter ξ in Bamberg (BAM).

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

A
] 

at
 0

2:
40

 2
1 

O
ct

ob
er

 2
01

1 



2800 M.G. Scotto et al.

Table 3. Bayesian estimates for the return values of 25, 50 and 100 years.

Return values

25 50 100

STP 29.66 (0.34) 30.13 (0.39) 30.69 (0.45)
STO 25.13 (0.20) 25.21 (0.22) 25.93 (0.31)
VES 25.10 (0.24) 25.52 (0.27) 26.14 (0.34)
KOE 26.96 (0.11) 27.48 (0.14) 28.27 (0.18)
HOF 28.60 (0.63) 29.83 (0.82) 31.69 (1.23)
HAM 31.26 (0.57) 32.09 (0.65) 31.89 (0.59)
DUB 23.10 (0.26) 23.58 (0.31) 24.19 (0.40)
BRE 26.58 (0.42) 26.61 (0.50) 27.10 (0.79)
BER 28.54 (0.36) 28.87 (0.42) 29.30 (0.52)
POT 29.10 (0.40) 29.55 (0.46) 30.23 (0.60)
DEB 28.40 (0.45) 29.00 (0.53) 29.80 (0.70)
HAL 28.76 (0.15) 29.08 (0.21) 29.33 (0.30)
LEI 28.36 (0.13) 29.16 (0.15) 29.40 (0.19)
KYI 29.62 (0.14) 29.98 (0.15) 30.28 (0.17)
FRE 31.74 (0.42) 32.54 (0.50) 33.71 (0.62)
BAM 29.60 (0.48) 30.35 (0.56) 31.28 (0.72)
PAR 32.95 (0.42) 33.91 (0.50) 35.30 (0.69)
STU 29.23 (0.39) 29.87 (0.45) 30.69 (0.59)
KRE 27.61 (0.27) 28.06 (0.31) 28.59 (0.40)
SAL 28.00 (0.14) 28.08 (0.17) 28.22 (0.20)
HOH 28.12 (0.37) 28.85 (0.43) 29.85 (0.55)
ZUE 28.63 (0.38) 29.24 (0.45) 30.10 (0.60)
SAE 18.56 (0.48) 19.37 (0.57) 20.56 (0.74)
GRA 30.86 (0.33) 31.83 (0.38) 33.37 (0.49)
SON 13.51 (0.31) 14.34 (0.36) 15.62 (0.47)
GEN 29.67 (0.41) 30.26 (0.48) 31.02 (0.63)
LJU 31.44 (0.36) 32.41 (0.43) 33.96 (0.56)
LUG 29.22 (0.30) 29.68 (0.35) 30.29 (0.49)
ZAG 31.07 (0.25) 31.52 (0.29) 32.00 (0.36)
OSI 30.41 (0.10) 30.72 (0.12) 30.98 (0.17)
BOL 33.33 (0.21) 33.69 (0.25) 34.06 (0.29)
LIS 34.08 (0.41) 34.73 (0.51) 35.62 (0.64)

Note: Posterior standard deviations in parenthesis.

Table 3 presents predictive return values estimates (i.e. mean of the predictive distributions) for
25-, 50- and 100-years, including posterior standard deviations. Return values can be interpreted
as the daily mean temperature value that is expected to be exceeded on average once every return
period, or with probability 1/(return period) in any given year.

For a spatial interpretation of the estimated return levels, time-series clustering is applied as
described in Section 2. The results of the clustering procedure are illustrated by a tree diagram
usually referred to as dendrogram, which represents the arrangement of the clusters produced
by hierarchical agglomerative clustering. In Figures 3–5, dendrograms based on average linkage
obtained for 25-, 50- and 100-year horizons are displayed. The vertical axis represents the distance
at which two clusters are joined.

As previously mentioned, the results obtained by the three clustering approaches are in general
similar, particularly for the complete and average linkage methods. The largest distance between
stations distinguishes a cluster with Saentis (SAE) and Sonnblick (SON) from the remaining
locations. These are the highest altitude stations at 2490 and 3106 m, respectively, with the lowest
25-year return values. The second largest distance discriminates mainly the northern stations
with maritime climate or on the continental-maritime boundary (STO, VES, KOE, BRE, DUB)
from the remaining stations in central and southern Europe. Within this large remaining cluster
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Figure 3. Dendrogram for 25-year return values based on the average linkage method.

Figure 4. Dendrogram for 50-year return values based on the average linkage method.
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Figure 5. Dendrogram for 100-year return values based on the average linkage method.

of European stations, there is a further discrimination between roughly northern and southern
stations, with a further distinction between the south-eastern stations and the more western (Paris,
Bologna and Lisbon) locations.

4. Conclusions

In this work, a Bayesian extreme value analysis has been carried out for deriving the distributions
of return period from long series of daily mean temperature over Europe. The extreme value
analysis has been further combined with a time-series clustering procedure in order to obtain a
description of the relationship between return values at different sites. One of the clear advantages
of the approach applied in this work is that clustering is performed on the distribution of return
values rather than on the return values themselves, enabling a more complete description of
temperature extremes and corresponding uncertainties.

At most stations, the location parameter of the data distribution exhibits a statistically significant
increasing (linear) trend. Trends in temperature extremes over Europe are thought to be associated
with changes in large-scale circulation and corresponding weather patterns [12,13,43] and likely
also to changes in snow cover extent over Europe [5].

Clustering of the estimated distributions of return values yields clusters of stations reflecting
spatial consistency over Europe at regional scales. The analysis identifies the highest altitude
stations (Saentis and Sonnblick) as the most different from the remaining group of stations in terms
of the distribution of return periods. A clear distinction is also found between the northernmost
stations in Scandinavia, and the stations in central and southern Europe. This spatial structure of
the return period distributions seems to be consistent with projected changes in the variability
of temperature extremes over Europe pointing to a different behavior in central Europe than in
northern Europe and the Mediterranean area, possibly related to the effect of soil moisture and
land–atmosphere coupling [15].
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Statistical approaches dealing with the complete data distribution, such as the Bayesian extreme
value analysis applied in the present study, are particularly appealing for the analysis of climate
time series, considering the importance of changes in variability rather than in the mean, specially
in the context of temperature extremes and climate change. Further extensions of the present work
would include the analysis of data outputs from regional climate models using the the Bayesian
methodology described in this study.
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