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complete foraging trips from seven king penguins were 
recorded between April and October 2010. King penguins 
predominantly foraged on the highly productive Patago-
nian slope, to the north of the Falkland Islands [median 
foraging trip distance 213 km (SD = 215 km) and dura-
tion 12.8 days (SD = 14.7 days)]. Overlap in time spent 
in an area on consecutive foraging trips ranged between 2 
and 73 % (mean 27 %, SD = 22 %). Bearing during the 
outbound portion of foraging trips was typically highly 
repeatable for individual birds, but foraging trip duration 
and distance were not. Travel during the outbound phase 
of foraging trips was consistent with the direction of the 
northward-flowing Falkland Current that may act as a 
directional cue or facilitate rapid transit to foraging areas. 
Flexibility in foraging trip distances and durations may be 
a response to changes in resource availability and changes 
in the energetic requirements of adults and chicks over an 
extended breeding cycle.

Introduction

Foraging site fidelity (the return to a previously occupied 
foraging area) has profound consequences for individual 
fitness, population dynamics, ecological processes and 
the efficiency of species’ conservation measures (Brad-
shaw et al. 2004; Hillen et al. 2009; Piper 2011; Monsarrat 
et al. 2013; Wakefield et al. 2013; Augé et al. 2013; Van 
Beest et al. 2013). Accordingly, quantifying site fidelity has 
become increasingly important in animal movement and 
habitat selection studies (reviewed in Piper 2011). Foraging 
site fidelity is reported in a diverse range of taxa includ-
ing colonial breeding marine central place foragers, such as 
seals and seabirds (Irons 1998; Hedd et al. 2001;  Call et al. 
2008; Chilvers 2008; Baylis et al. 2011; Robinson et al. 
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2012; Harris et al. 2014). For these animals, foraging site 
fidelity during the breeding season is an optimal foraging 
strategy when prey resources are associated with spatially 
predictable ocean features such as ocean fronts (Weimer-
skirch 2007). This is because the distance and duration 
of foraging trips are restricted by the need to return to a 
central place and provision dependent offspring. However, 
marine central place foragers with extended provisioning 
periods (>6 mo) must also contend with seasonal changes 
in resource availability and distribution (Beauplet et al. 
2004; Womble and Sigler 2006; Baylis et al. 2008; Ville-
gas-Amtmann et al. 2012). Consequently, extreme faith-
fulness to a foraging area can lead to a mismatch between 
foraging effort and prey availability, implying that the 
degree of foraging site fidelity may not be consistent over 
time, but constitute a trade-off between diminishing returns 
and searching for new, potentially more profitable foraging 
regions.

During the breeding season, penguins are central place 
foragers with parents alternating shifts between foraging at 
sea and returning to incubate eggs or provision chicks. Pen-
guins typically have short breeding cycles (coinciding with 
the austral summer) and when freed from the constraints 
of provisioning offspring, most species undertake winter 
migrations, presumably an adaptation to reduce density-
dependent competition during seasonal changes in resource 
availability (Dingle and Drake 2007; Ratcliffe et al. 2014). 
However, king penguins (Aptenodytes patagonicus) are 
unique in that their breeding cycle takes over a year to 
complete (Le Bohec et al. 2007 and references therein). 
Therefore, king penguins are an ideal sub-antarctic seabird 
species to assess foraging site fidelity during winter, when 
resource abundance, availability and distribution may be 
less predictable than in summer.

King penguins have a circumpolar breeding distribu-
tion, with two sub-species currently recognised (king pen-
guins breeding in the South Atlantic Ocean (A. p. patago-
nicus) are separated from those breeding in the southern 
Indian and Pacific Oceans (A. p. hali)) (reviewed in Bost 
et al. 2013). However, irrespective of breeding location, 
during the austral summer, king penguins predominantly 
feed on myctophids and typically in association with the 
Antarctic Polar Front (APF), although the sub-antarctic 
front is also frequented (Cherel et al. 2002; Bost et al. 
2013). In comparison, during the austral winter, adults 
tend to undertake extended foraging trips to the mar-
ginal ice zone in response to reduced resource availabil-
ity in the Antarctic Polar Frontal Zone (the water masses 
between the sub-antarctic front to the north and the 
APF to the south) (Jouventin et al. 1993; Charrassin and 
Bost 2001; Bost et al. 2004). For example, at the Crozet 
Islands, maximum foraging trip distance and duration 
range from 406 ± 149 km, lasting 8 ± 3 days in summer, 

to 1,613 ± 388 km, lasting 77 ± 41 days in winter (see 
‘Appendix’; Charrassin and Bost 2001; Pütz 2002). The 
exception to long winter foraging trips is king penguins 
breeding at the Falkland Islands (south-west Atlantic 
Ocean), where winter foraging trip distance and duration 
are 727 ± 428 km and 30 ± 26 days, respectively (Pütz 
2002; ‘Appendix’).

The Falkland Islands are at the temperate boundary of 
the species range being the furthest king penguin breed-
ing colony from the APF and the only colony within 
close proximity to the Patagonian Shelf, the largest con-
tinental shelf in the Southern Ocean (Arkhipkin et al. 
2012). The highly productive Patagonian Shelf is domi-
nated by the cold-water Falkland Current between 55°S 
and 37°S, a northward-flowing current originating from 
the Antarctic Circumpolar Current (Peterson and Whit-
worth 1989; Acha et al. 2004). A previous study on king 
penguins at the Falkland Islands reported a shift in for-
aging regions, from the south of the Falkland Islands in 
autumn/early winter (including extended foraging trips 
beyond the APF to the marginal ice zone) to the north of 
the Falkland Islands by late winter/spring (on the Patago-
nian Shelf slope) (Pütz 2002). The comparatively short 
foraging trips of king penguins breeding at the Falkland 
Islands during the austral winter, combined with a shift 
in foraging regions (north vs. south), provide a unique 
opportunity to assess how foraging site fidelity and for-
aging flexibility are mediated in a central place forager, 
over a period when resources may be less predictable than 
summer (Pütz 2002; Rivas et al. 2006). Here, (1) we test 
for individual foraging site fidelity of king penguins dur-
ing the chick-rearing phase, (2) we explore whether a sub-
set of environmental variables can explain the amount of 
time penguins spend in a given area and (3) given that the 
regions oceanography is dominated by the Falkland Cur-
rent, we test for associations between current direction 
and penguin travel.

Methods

Study site and device deployment

The Falkland Islands are located approximately 600 km 
east of mainland South America (Fig. 1). Approximately 
720 pairs of king penguins breed at Volunteer Point 
(51.48°S, 57.83°W), the largest king penguin breeding 
colony at the Falkland Islands (Pistorius et al. 2012). The 
incubation period of king penguins breeding at Volunteer 
Point is 55 ± 2 days (based on only six pairs) (Otley et al. 
2007). Chicks typically hatch between January and early 
February and fledge 10–13 mo later (Otley et al. 2007). 
In April 2011, during crèche, eight king penguins were 
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captured after feeding their chick (to ensure that they were 
breeding penguins of comparable breeding stages) and fit-
ted with satellite tags (Sirtrack® Kiwisat 101’s) (Table 1). 
Satellite transmitters were hydro-dynamically streamlined 
and attached to the back feathers using Tesa® tape (4651) 
and cyanoacrylate glue (Loctite®401). Satellite tags were 
programmed to transmit every 45 s with a 12-h on/off duty 
cycle interval. Although satellite tags may increase for-
aging trip duration and have deleterious effects on forag-
ing efficiency (Wilson et al. 2004), we could not assess 
whether the attachment of the satellite tags influenced the 
foraging behaviour of king penguins, due to logistical con-
straints. However, a similar king penguin study reported 
that meal size and breeding failure were comparable 
between control and instrumented penguins (Cotté et al. 
2007). 

Processing location data

We pre-processed our Kalman-filtered ARGOS data 
by omitting Z class hits (for which the location pro-
cess failed) and filtered our data for erroneous locations 
using a maximum speed of 14 km/h (Cotté et al. 2007) 
and the ‘speed filter’ function in the R package ‘trip’ (R 
core team 2013; Sumner 2010). The filtered data were 
then processed using a continuous-time correlated random 
walk model, which predicted penguin locations at equally 

spaced points in time (hourly and including periods when 
the satellite tag was off) (R package ‘CRAWL’, Johnson 
et al. 2008). This permitted the calculation of time spent 
in a cell of a regular grid (0.1° × 0.1°) created in Arc-
Map (ESRI®ArcGIS v10.0™, ESRI, California, USA). 
Although a degree-based grid implies that cell area will 
vary depending on location, most foraging trips had a 
narrow range of latitude. A 0.1° × 0.1° grid was chosen 
because it has previously been used to calculate king pen-
guin time spent in area (Péron et al. 2012) and it approxi-
mates the resolution at which most habitat variables could 
be extracted (see below).

Time spent in an area

Longer residence time in foraging king penguins is 
associated with periods of intensive prey searching and 
a greater number of foraging dives (Péron et al. 2012). 
Hence, we used the time spent in an area as a proxy of 
foraging effort. To assess how environmental variables 
influenced the time spent in an area, we extracted sea 
surface temperature (SST; NASA JPL-L4UHfnd-GLOB-
MUR, 0.011° × 0.011°), sea surface height (SSH; AVISO 
Global DT-Ref Merged MSLA; 1° × 1°), eddy kinetic 
energy (EKE; NOAA OSCAR, 0.1/3° × 0.1/3°), signifi-
cant wave height (Wave; AVISO, 0.1° × 0.1°), mixed 
layer depth (MLD; HYCOM GLBa.08, 0.08° × 0.08°) 
and mixed layer pressure (MLP; mixed layer thick-
ness defined as the depth at which the temperature 
change from the surface temperature is 0.2 °C, HYCOM 
GLBa.08, 0.08° × 0.08°) using the R version of NOAA’s 
Xtractomatic data client (http://coastwatch.pfel.noaa.
gov/xtracto/) and MGET 0.8a49 (using ArcMap 10.0) 
(Roberts et al. 2010). We also extracted bathymetry 
(ETOPO 1 arc-min data set) and calculated bathymetric 
slope (Slope) using ArcMap. These broad-scale envi-
ronmental variables are proxies for ocean processes and 
features that influence the aggregation of prey (e.g. fronts 
and meso-scale ocean features) and typically influence 
penguin foraging behaviour (Péron et al. 2012). Environ-
mental variables were extracted at each location along 
a foraging route, and an average calculated for each 
0.1° × 0.1° grid cell.

Given that our data comprised multiple foraging 
trips from the same individuals and exploratory analy-
sis revealed nonlinear trends in residuals, we included a 
random effect of individual and trip within a generalised 
additive mixed model (GAMM) implemented using the R 
package mgcv (Wood 2006). Smooth terms were fitted to 
all predictor variables using penalised thin plate regression 
splines (Wood 2006). We log-transformed time spent in 
an area due to heterogeneity in model residuals. A Gauss-
ian distribution with an identity link function was used for 

Fig. 1  Repeat foraging trips for two king penguins that undertook 
extended foraging trips from the Falkland Islands during crèche in 
2011. The arrow bars indicate the bearing to maximum distance, 
while the red dots are the maximum distance to which bearing is 
measured. The dark blue portion of the king penguin foraging trip 
represents movement to the maximum distance, while light blue is 
the return portion of the foraging trip. The grey scale of 0 to −5000 
represents shaded-relief bathymetry (m), with the Patagonian Shelf 
being white (i.e. <200 m depth). APF: Antarctic Polar Front (source 
Orsi and Ryan 2001); FC: the eastern branch of the Falkland Current 
(source Arkhipkin et al. 2004)

http://coastwatch.pfel.noaa.gov/xtracto/
http://coastwatch.pfel.noaa.gov/xtracto/
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the response variable. The degree of colinearity between 
the covariates was tested using Pearson’s correlations and 
variance inflation factors (Zuur et al. 2010). Due to colin-
earity, we removed SST prior to analysis. Model selection 
was performed by removing the least significant term in the 
model. The most parsimonious model was associated with 
the lowest Akaike information criterion (AIC) value. Model 
validation followed Wood (2006) and included plotting 

the residuals against the fitted values and each covariate in 
the model, as well as residuals against covariates excluded 
from the final model.

Consistency in foraging trip characteristics

We also used the time spent in an area (0.1° × 0.1° grid) 
to calculate whether individuals returned to (and spent 

Table 1  Foraging trip characteristics of seven king penguins breeding at the Falkland Islands. Foraging trips are separated into months based on 
the start date

SI straightness index

ID Trip Duration (d) Max. distance (km) SI max. distance SI outbound phase Start date 2011 End date 2011

67954 1 8.3 183 0.75 0.97 17-Apr 25-Apr

67954 2 47.3 492 0.53 0.96 06-May 22-Jun

67955 1 5.5 164 0.90 0.94 05-May 10-May

67955 2 48.7 950 0.54 0.58 12-May 29-Jun

67955 3 27.6 227 0.32 0.92 06-Jul 02-Aug

67955 4 26.6 631 0.70 0.84 15-Aug 10-Sep

67955 5 16.6 402 0.63 0.95 14-Sep 30-Sep

67955 6 16.6 505 0.76 0.87 03-Oct 19-Oct

67957 1 4.6 128 0.82 0.85 01-May 05-May

67957 2 9.2 165 0.55 0.68 06-May 15-May

67957 3 6.8 152 0.67 0.94 17-May 24-May

67957 4 13.2 163 0.40 0.92 27-May 09-Jun

67957 5 68.2 971 0.59 0.90 18-Jun 25-Aug

68032 1 11.7 198 0.84 0.87 12-Apr 23-Apr

68032 2 20.7 175 0.85 0.96 03-May 23-May

68034 1 8.1 169 0.81 0.96 07-Apr 15-Apr

68034 2 7.1 181 0.90 0.98 19-Apr 26-Apr

68034 3 7.4 197 0.81 0.92 30-Apr 07-May

68034 4 15.2 270 0.78 0.95 12-May 27-May

68034 5 10.0 173 0.85 0.95 04-Jun 14-Jun

68034 6 18.3 264 0.60 0.90 22-Jun 10-Jul

68048 1 12.9 250 0.56 0.90 02-May 15-May

68048 2 12.7 256 0.95 0.97 18-May 30-May

68048 3 22.3 221 0.35 0.95 08-Jun 30-Jun

680251 1 6.3 210 0.92 0.96 05-Apr 11-Apr

680251 2 6.3 210 0.88 0.93 13-Apr 19-Apr

680251 3 5.4 178 0.88 0.99 22-Apr 27-Apr

680251 4 9.1 225 0.58 0.92 02-May 11-May

680251 5 13.3 216 0.70 0.94 15-May 28-May

680251 6 26.3 334 0.42 0.76 10-Jun 06-Jul

Median 12.8 ± 14.7 213 ± 215 0.72 ± 0.18 0.93 ± 0.09

Mean 17.1 ± 14.7 295 ± 215 0.69 ± 0.18 0.90 ± 0.09

Min. 4.6 127.0 0.32 0.58

Max. 68.2 971.0 0.95 0.99

April 7.6 ± 2.1 191 ± 16 0.85 ± 0.06 0.95 ± 0.04

May 16.4 ± 14.7 277 ± 222 0.68 ± 0.17 0.89 ± 0.12

June 29.0 ± 22.7 393 ± 329 0.56 ± 0.20 0.89 ± 0.08
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time in) previously visited areas on the preceding forag-
ing trip. In addition to time spent in an area, consistency 
in foraging behaviour was measured using four variables 
describing movement: (1) foraging trip duration (h), (2) 
maximum distance from the colony (km), (3) bearing to 
furthest location from the colony and (4) departure bear-
ing (mean bearing during outbound portion of the forag-
ing trip). The outbound portion of each foraging trip was 
defined as the period of travel (limited to the maximum 
distance from the colony) where the running averages of 
five consecutive swimming speeds were higher than the 
mean swimming speed of the whole foraging trip (Cotté 
et al. 2007). To explore within versus between individual 
variance for trip distance and duration, we used linear 
mixed effects models with a restricted maximum likeli-
hood (REML), implemented using the R package ‘rptR’ 
(Nakagawa and Schielzeth 2010). Response variables were 
log-transformed to approximate a Gaussian error. In the 
case of bearing to furthest location, repeatability (R) was 
calculated using the equation (Lessells and Boag 1987), 
R =

S
2
A

(S2
+S

2
A)

 where

We used a circular ANOVA in the R package ‘circular’ 
to estimate mean square variance components for the bear-
ing to the furthest location (Patrick et al. 2014).

In addition, to assess whether king penguins travelled 
directly to foraging areas, we also calculated a straight-
ness index to (i) maximum distance (maximum distance/
total distance travelled) and (ii) a straightness index during 
the outbound phase of the foraging trip (maximum distance 

S
2

= Mean SquareBetween groups

S
2
A

= (Mean SquareBetween groups − Mean Squarewithin groups)/n0

n0 = coefficient related to the sample size per group

during outbound phase/total distance travelled during the 
outbound phase). A value of one represents the most direct 
route of travel (Benhamou 2004).

Association with current direction

We were also interested in testing whether the outbound 
portion of an individual’s foraging trip was associated with 
current direction, as previously reported at other breed-
ing locations (Cotté et al. 2007). Deviations in the bearing 
between penguin directions and underlying current direc-
tions (AVISO geostrophic current products derived from 
sea level anomalies and NOAA OSCAR products) were 
calculated. A bearing deviation from 0 to 90 and from 270 
to 360 indicated penguins travelled in a similar direction 
to the current, while a bearing deviation from 90 to 270 
indicated opposing directions (Cotté et al. 2007). To test 
for similarity between penguin and current direction, we 
calculated a circular–circular correlation in the R Package 
‘CircStats’. All values are presented as mean ±SD, unless 
otherwise stated.

Results

One satellite tag stopped transmitting 23 days into deploy-
ment and was excluded from analysis. For the remain-
ing seven penguins, a total of 7,080 at-sea locations were 
received during 30 complete foraging trips (two to six for-
aging trips for each bird) (Table 1). The maximum foraging 
trip distance and duration were on average 213 ± 215 km 
and 12.8 ± 14.7 days, respectively. Two penguins under-
took extended foraging trips of greater than 900 km from 
the colony (Table 1; Fig. 1). Twenty-nine of the 30 forag-
ing trips were associated with the Patagonian Shelf to the 
north-east of the Falkland Islands at some point during the 
foraging trip (Figs. 1, 2).

Fig. 2  Same as Fig. 1, but repeat foraging trips for the remaining five king penguins tracked at the Falkland Islands during crèche in 2011
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Time spent in an area

Over 80 % of all penguin time was spent on the continen-
tal slope to the north-east of the Falkland Islands (mean 
bathymetry of 314 ± 115 m). The most parsimonious model 
of time spent in an area contained the variable bathymetry 
and factor month (described below) (Table 2). Bathymetry 
had a positive effect on time spent in an area up to 400 m. 
Between 400 and 1,000 m, bathymetry had a negative effect 
on the time spent in an area, and for depths >1,000 m, the 
relationship between time spent in an area and bathymetry 
was constant, with large confidence intervals at the end of 
the smoother corresponding to few data points (Fig. 3). 
Although the relationship between bathymetry and king 
penguin time spent in an area was significant, it only 
explained a small proportion of the variance (7 %).

Consistency in foraging trip characteristics

Overlap in time spent in an area between consecutive forag-
ing trips was variable within and between individuals (mean 
25 ± 21 %, range 2–73 %) (Table 3). The mean distance and 
duration travelled increased between April and July (Table 1). 
The maximum distance individuals travelled from the col-
ony and the duration of foraging trips were not repeatable 

(R = 0.10 ± 0.14 and R = 0.01 ± 0.10, P > 0.05, respec-
tively). Bearing on the outbound portion of the trip was, 
however, highly repeatable (R = 0.96) and, to a lesser extent, 
bearing to maximum distance travelled (R = 0.31). The 
mean straightness index during the outbound phase of forag-
ing trips was high (0.90 ± 0.06), but the straightness index 
to maximum distance was variable, being higher in April 
(0.85 ± 0.06) when compared with other months (Table 1).

Association with current direction

Bearing deviations suggested that king penguins tended to 
swim in a similar direction as the current during the out-
bound phase of foraging trips (Fig. 4; circular correlation 
coefficient, r = 0.03, F = 1.32, P = 0.19). The mean cur-
rent speed during the outbound phase of penguin travel was 
0.14 ± 0.10 ms−1.

Discussion

Our study revealed that king penguins typically foraged 
within a narrow range of bearings on successive foraging 

Fig. 3  Smoothed partial residual plots of bathymetry, the only signif-
icant smooth term derived from our generalised additive mixed model 
(GAMM)

Table 2  Proportion of overlap (0.1° × 0.1° grid cell) in time spent in an area between consecutive king penguin foraging trips

PTT FT1&2 overlap (%) FT2&3 overlap (%) FT3&4 overlap (%) FT4&5 overlap (%) FT5&6 overlap (%)

67954 10

67955 24 4 21 2 2

67957 14 21 65 25

68032 14

68034 52 65 47 10 73

68048 25 25

680251 12 15 8 19 13

Fig. 4  Frequencies of bearing deviations between current direction 
and king penguin locations during the outbound portion of foraging 
trips. Similar travel to the current direction is represented as 270° to 
90°, while opposing travel to current direction is represented as 90° 
to 270°
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trips and travelled directly to the Patagonian Shelf slope, 
a region associated with a shelf-break front and enhanced 
levels of primary productivity (Franco et al. 2008). Despite 
consistency in foraging trip bearings and direct travel to 
the spatially predictable Patagonian Shelf slope, the envi-
ronmental variables in our models (that included bathym-
etry) were weak predictors of king penguin time spent in 
an area, and overlap in time spent in an area on consecutive 
foraging trips was variable. Overall, foraging trip distance 
and duration increased between April and July and forag-
ing routes became more tortuous (although these indices 
were variable both between and within individuals). This 
may reflect flexible foraging strategies or search behav-
iours that improved the chance of prey encounters once 
king penguins had reached the Patagonian Shelf slope. 
Progressively longer foraging trips over the course of the 
chick-rearing period is widely reported among seabirds 
and is typically a consequence of declining resources or 
a response to intrinsic factors (e.g. changes in the dietary 
requirements of adults and chicks, or improved chick fast-
ing capability) (Charrassin et al. 1998; Mori and Boyd 
2004; Ronconi and Burger 2008; Montevecchi et al. 2009; 
Vaillant et al. 2013).

Penguin 67955 (Fig. 1) was unique because of the lim-
ited overlap between consecutive foraging trips compared 
with all other king penguins tracked. This may reflect 
sexual differences in foraging strategies (e.g. Vaillant et al. 
2013) and highlights one caveat of our study—we did not 
determine the sex of the penguins tracked. The consist-
ency in foraging trip bearings for the remaining six pen-
guins studied is remarkable considering the displacement 

king penguins are likely to encounter en route (e.g. due to 
wind and waves) and given navigation in the open ocean 
must rely on cues other than local topography. Although 
poorly understood, seabird navigation integrates olfac-
tory cues, bearing and distance orientation and complex 
spatial memory-based strategies (Nevitt et al. 2004; Bing-
man and Cheng 2005; Trathan et al. 2008; Gagliardo et al. 
2013). In our study, travel during the outbound phase of 
foraging trips was also consistent with the direction of the 
northward-flowing Falkland Current, as previously reported 
for sympatric breeding Rockhopper penguins (Eudyptes c. 
chrysocome) and Magellanic penguins (Spheniscus magel-
lanicus) (Pütz et al. 2002, 2003). The Falkland Current may 
act as a directional cue or facilitate rapid transit to forag-
ing areas. However, the average current speed encountered 
by king penguins was below the average speed reported 
for the Falkland Current (0.4–0.5 m/s−1), indicating king 
penguins travelled peripherally to the main current flow 
(Peterson 1992). Hence, the degree to which the Falkland 
Current facilitates king penguin navigation and movement 
remains unclear. Given the directional fidelity observed, it 
is also plausible that king penguins remember the direction 
to foraging areas and use this knowledge on subsequent 
foraging trips, as proposed for fur seals and other seabird 
species (Bonadonna et al. 2001; Hamer et al. 2001; Bay-
lis et al. 2011; Regular et al. 2013; Patrick et al. 2014). 
While we cannot link spatial memory to fitness, it is often 
presumed that long-lived animals benefit from familiarity 
with resources because familiarity facilitates direct travel to 
foraging areas that may reduce the energetic costs of travel 
(Bradshaw et al. 2004; Piper 2011; Fagan et al. 2013).

Table 3  To assess how environmental variables influenced the amount of time penguins spent in an area, we implemented generalised additive 
mixed models (GAMMs), using id and trip as random effects

The global models contain all environmental variables. Other models denote the interaction term that is removed from the global model and the 
change in AIC this produced. Model selection is based on AIC. The final model (model 10) contained the smooth term bathymetry and the factor 
month

MLD mixed layer depth, EKE eddy kinetic energy, Wind wind speed, Slope bathymetric slope, Wave significant wave height, MLP mixed layer 
pressure, SSH sea surface height

Competing models Significance of smooth terms in model 10

Model Random effects Factors Df AIC Δ AIC Variable edf F p value

(1) Global ID – 16 7,010.174 90.255 Bathymetry 8.9 32.9 <0.001

(2) Global ID|Trip – 18 6,941.737 21.818

(3) Global ID|Trip Month 22 6,936.623 16.704

(4)-s(MLD) ID|Trip Month 20 6,932.357 12.438

(5)-s(EKE) ID|Trip Month 18 6,929.126 9.207

(6) -s(Wind) ID|Trip Month 16 6,925.503 5.584

(7) -s(Slope) ID|Trip Month 14 6,922.666 2.747

(8) -s(SSH) ID|Trip Month 13 6,921.621 1.702

(9) -s(MLP) ID|Trip Month 12 6,921.201 1.282

(10) -s(Wave) ID|Trip Month 10 6,919.919 0
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Table 4  Published data on king penguin foraging trip distances and durations over autumn and winter

C Crozet Islands, H Heard Island, P Possession Islands, FI Falkland Islands

Breeding location Foraging trip duration (d) Max. foraging trip distance from colony (km) Source

C 53 1,816 Pütz (2002)

C 59 1,603

C 126 1,974

C 19 725

C 89 1,883

C 118 2,239

C – 1,608 Charrasin and Bost (2001)

C – 1,856

C – 1,475

C – 1,495

C – 1,842 Bost et al. (2004)

C – 1,856

C – 1,650

C – 1,984

C – 1,475

C – 1,419

C – 1,138

C – 1,487

C – 865

C – 1,495

C – 1,667

H – 2,330 Moore et al. (1999)

H – 1,220

MEAN 77 ± 39 1,632 ± 411

FI 24 1,398 Pütz (2002)

FI 27 1,122

FI 55 1,186

FI 4 260

FI 7 374

FI 4 224

FI 11 281

FI 10 386

FI 9 247

FI 48 1,187

FI 26 981

FI 15 509

FI 17 485

FI 86 1,265

FI 33 233

FI 30 772

FI 54 784

FI 97 1,547

FI 34 903

FI 20 669

FI 11 459

MEAN (FI) 30 ± 26 727 ± 428



107Mar Biol (2015) 162:99–110 

1 3

How animals maximise their fitness by optimising time 
spent foraging in different areas is a fundamental question 
in optimal foraging theory (Charnov 1976). Patchily dis-
tributed prey is scale dependant (Weimerskirch 2007). At 
spatial scales of tens to hundreds of kilometres, features 
such as shelf breaks concentrate zooplankton, fish and 
squid (Weimerskirch et al. 2007; Nordstrom et al. 2013). 
Consumers should aggregate in the most predictable or 
profitable regions of prey availability (Stephens and Krebs 
1986; Benoit-Bird et al. 2013). Accordingly, king penguins 
predominantly foraged in the region of the shelf slope 
because prey is presumably more predictable (temporally 
persistent) and foraging efficiency may be higher com-
pared with other regions (e.g. Arkhipkin et al. 2012). This 
hypothesis is compelling because the energy budget rule 
predicts that when energy returns are above a threshold, 
animals should be risk averse and select the least variable 
option (in this case, the shelf slope) to minimise the risk of 
starvation (Stephens and Krebs 1986; Hurly 2003). In addi-
tion, site fidelity to the shelf slope could reflect the accessi-
bility of foraging habitats (e.g. Watanuki et al. 2003; Wake-
field et al. 2011). Specifically, the central place foraging 
constraint imposed during winter (despite being relaxed by 
increased fasting capacity of chicks) implies foraging habi-
tats are not equally accessible to king penguins (i.e. APF, 
Patagonian Shelf, marginal ice zone). King penguins may 
optimise foraging at the Patagonian shelf slope because the 
costs of travel (time and energy) offset the gains of mov-
ing to other, more profitable regions (Matthiopoulos 2003; 
Trathan et al. 2008). This could explain why only two king 
penguins undertook extended foraging trips, when at other 
breeding locations, extended foraging trips over winter are 
common (Jouventin et al. 1993; Charrassin and Bost 2001; 
Bost et al. 2004).

The comparatively short winter foraging trips under-
taken by king penguins breeding at the Falkland Islands 
presumably confers an advantage over conspecifics at 
other breeding locations (Jouventin et al. 1993; Charrassin 
and Bost 2001; Bost et al. 2004). Specifically, king pen-
guins breeding at the Falkland Islands should expend less 
energy reaching foraging grounds and have the capacity 
to allocate more resources to chicks over winter by feed-
ing chicks more often. Although we did not weigh chicks 
during the study, previous studies at the Falkland Islands 
report that chicks retain body mass for longer over winter 
when compared with other breeding locations (Otley et al. 
2007). Therefore, the comparatively short foraging trip 
durations over winter should yield higher breeding suc-
cess as previously proposed (Pütz 2002). However, over 
the past 40 years, the number of breeding pairs at the Falk-
land Islands has only increased to around 700 pairs (Pisto-
rius et al. 2012). In contrast, the number of king penguins 
breeding at Macquarie Island increased (recovery from 

exploitation) from 3,400 to 218,000 breeding pairs between 
1930 and 1980, while the number of breeding pairs at St 
Andrews Bay, South Georgia, increased from 700 in 1928 
to now in excess of 150,000 breeding pairs (Rounsevell 
and Copson 1982; Trathan et al. 2008). It is unlikely that 
access to favourable habitat limits population growth at the 
Falkland Islands, given the expanse and productivity of the 
Patagonian Shelf slope and the proximity of the Falkland 
Islands to the shelf slope. The dive depth of king penguins 
breeding at the Falkland Islands is also comparable to that 
reported at other breeding colonies, suggesting the verti-
cal accessibility of prey is similar to other sites (Charrassin 
et al. 1998; Pütz and Cherel 2005). Given that the Falkland 
Islands are at the edge of the king penguin breeding range, 
population growth may be impeded by marginal breeding 
habitat (e.g. temperate may be warmer but also wetter) that 
could result in high chick mortality, as previously reported 
during some winters (Pistorius et al. 2012).

Finally, we found no evidence to support a shift in for-
aging habitat between early and late winter, as previously 
described (Pütz 2002). In our study, king penguin forag-
ing trips during winter were shorter in distance and dura-
tion when compared with Pütz (2002) (average 295 ± 215 
vs. 727 ± 428 km, and 17 ± 15 vs. 30 ± 26 days, respec-
tively). Discrepancies could reflect inter-annual vari-
ability in resource availability and distribution, implying 
the degree of foraging site fidelity may also vary inter-
annually. However, differences in the maximum distances 
reported are accentuated by differences in the accuracy of 
biologging devices used (geolocators used by Pütz (2002) 
are typically associated with large location errors when 
compared to satellite tags) (Phillips et al. 2004; Costa et al. 
2010). Inter-annual variability in foraging habitat and site 
fidelity could be resolved by combining trophic markers 
such as stable isotopes with inter-annual tracking studies.

Acknowledgments Research was undertaken with support from the 
World Wildlife Fund. We thank C. Dockrill for securing funding, S. 
Adlard, S. Crofts and M. Reeves for assisting with field work and J. 
Cheek for granting access to Volunteer Point. We are grateful to three 
anonymous reviewers that improved earlier drafts of the manuscript. 
Research was conducted under the Falkland Islands Government 
research permit R18/2011.

Appendix

See Table 4.

References

Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts 
at the continental shelves of austral South America. J Mar Syst 
44:83–105. doi:10.1016/j.jmarsys.2003.09.005

http://dx.doi.org/10.1016/j.jmarsys.2003.09.005


108 Mar Biol (2015) 162:99–110

1 3

Arkhipkin AI, Middleton DAE, Sirota AM, Grzebielec R (2004) 
The effect of Falkland Current inflows on offshore ontoge-
netic migrations of the squid Loligo gahi on the southern shelf 
of the Falkland Islands. Estuar Coast Shelf Sci 60:11–22. 
doi:10.1016/j.ecss.2003.11.016

Arkhipkin AI, Brickle P, Laptikhovsky V, Winter A (2012) Din-
ing hall at sea: feeding migrations of nektonic predators 
to the eastern Patagonian Shelf. J Fish Biol 81:882–902. 
doi:10.1111/j.1095-8649.2012.03359.x

Augé AA, Chilvers BL, Moore AB, Davis LS (2013) Importance of 
studying foraging site fidelity for spatial conservation measures 
in a mobile predator. Anim Conserv. doi:10.1111/acv.12056

Baylis AMM, Page B, Goldsworthy SD (2008) Effect of seasonal 
changes in upwelling activity on the foraging locations of a wide-
ranging central-place forager, the New Zealand fur seal. Can J 
Zool 86:774–789. doi:10.1139/Z08-055

Baylis AMM, Page B, McKenzie J, Goldsworthy SD (2011) Indi-
vidual foraging site fidelity in lactating New Zealand fur seals: 
Continental shelf versus oceanic habitats. Mar Mamm Sci. 
doi:10.1111/j.1748-7692.2011.00487.x

Beauplet G, Dubroca L, Guinet C et al (2004) Foraging ecology of 
subantarctic fur seals Arctocephalus tropicalis breeding on 
Amsterdam Island: seasonal changes in relation to maternal char-
acteristics and pup growth. Mar Ecol Prog Ser 273:211–225. doi:
10.3354/meps273211

Benhamou S (2004) How to reliably estimate the tortuosity of an ani-
mal’s path: straightness, sinuosity, or fractal dimension? J Theor 
Biol 229:209–220. doi:10.1016/j.jtbi.2004.03.016

Benoit-Bird K, Battaile B, Nordstrom C, Trites A (2013) Forag-
ing behavior of northern fur seals closely matches the hierar-
chical patch scales of prey. Mar Ecol Prog Ser 479:283–302. 
doi:10.3354/meps10209

Bingman VP, Cheng K (2005) Mechanisms of animal global naviga-
tion: comparative perspectives and enduring challenges. Ethol 
Ecol Evol 17:295–318. doi:10.1080/08927014.2005.9522584

Bonadonna F, Lea M, Dehorter O, Guinet C (2001) Foraging ground 
fidelity and route-choice tactics of a marine predator: the Antarc-
tic fur seal Arctocephalus gazella. Mar Ecol Prog Ser 223:287–
297. doi:10.3354/meps223287

Bost C-A, Charrassin JB, Clerquin Y, Maho Y Le (2004) Exploita-
tion of distant marginal ice zones by king penguins during winter. 
Mar Ecol Prog Ser 283:293–297

Bost CA, Delord K, Barbraud C et al (2013) King Penguin. In: García 
Borboroglu PG, Boersma PD (eds) Penguins—Natural History 
and Conservation. University of Washington Press, Seattle U.S.A, 
pp 7–21

Bradshaw C, Hindell M, Sumner M, Michael K (2004) Loyalty pays: 
potential life history consequences of fidelity to marine foraging 
regions by southern elephant seals. Anim Behav 68:1349–1360. 
doi:10.1016/j.anbehav.2003.12.013

Call K, Ream R, Johnson D et al (2008) Foraging route tactics and 
site fidelity of adult female northern fur seal (Callorhinus ursi-
nus) around the Pribilof Islands. Deep Sea Res Part II Top Stud 
Oceanogr 55:1883–1896. doi:10.1016/j.dsr2.2008.04.022

Charnov EL (1976) Optimal foraging, the marginal value theorem. 
Theor Popul Biol 9:129–136

Charrassin J, Bost C-A (2001) Utilisation of the oceanic habitat by 
king penguins over the annual cycle. Mar Ecol Prog Ser 221:285–
298. doi:10.3354/meps221285

Charrassin J-B, Bost C-A, Pütz K et al (1998) Foraging strategies of 
incubating and brooding king penguins Aptenodytes patagonicus. 
Oecologia 114:194–201. doi:10.1007/s004420050436

Cherel Y, Pütz K, Hobson K (2002) Summer diet of king penguins 
(Aptenodytes patagonicus) at the Falkland Islands, south-
ern Atlantic Ocean. Polar Biol 25:898–906. doi:10.1007/
s00300-002-0419-2

Chilvers BL (2008) Foraging site fidelity of lactating New Zealand sea 
lions. J Zool 276:28–36. doi:10.1111/j.1469-7998.2008.00463.x

Costa DP, Robinson PW, Arnould JPY et al (2010) Accuracy of 
ARGOS locations of Pinnipeds at-sea estimated using Fastloc 
GPS. PLoS One 5:e8677. doi:10.1371/journal.pone.0008677

Cotté C, Park Y, Guinet C, Bost C (2007) Movements of foraging king 
penguins through marine mesoscale eddies. Proc R Soc B Biol 
Sci 274:2385–2391. doi:10.1098/rspb.2007.0775

Dingle H, Drake VA (2007) What is migration? Bioscience 57:113. 
doi:10.1641/B570206

Fagan WF, Lewis MA, Auger-Méthé M et al (2013) Spatial memory 
and animal movement. Ecol Lett. doi:10.1111/ele.12165

Franco BC, Piola AR, Rivas AL et al (2008) Multiple thermal fronts 
near the Patagonian shelf break. Geophys Res Lett 35:L02607. 
doi:10.1029/2007GL032066

Gagliardo A, Bried J, Lambardi P et al (2013) Oceanic navigation in 
Cory’s shearwaters: evidence for a crucial role of olfactory cues 
for homing after displacement. J Exp Biol 216:2798–2805. doi: 
10.1242/jeb.085738

Hamer K, Phillips R, Hill J et al (2001) Contrasting foraging strate-
gies of gannets Morus bassanus at two North Atlantic colonies: 
foraging trip duration and foraging area fidelity. Mar Ecol Prog 
Ser 224:283–290. doi:10.3354/meps224283

Harris S, Raya Rey A, Zavalaga C, Quintana F (2014) Strong tem-
poral consistency in the individual foraging behaviour of 
Imperial Shags Phalacrocorax atriceps. Ibis 156:523–533. 
doi:10.1111/ibi.12159   

Hedd A, Gales R, Brothers N (2001) Foraging strategies of shy alba-
tross Thalassarche cauta breeding at Albatross Island, Tasma-
nia, Australia. Mar Ecol Prog Ser 224:267–282. doi:10.3354/m
eps224267

Hillen J, Kiefer A, Veith M (2009) Foraging site fidelity 
shapes the spatial organisation of a population of female 
western barbastelle bats. Biol Conserv 142:817–823. 
doi:10.1016/j.biocon.2008.12.017

Hurly AT (2003) The twin threshold model: risk-intermediate forag-
ing by rufous hummingbirds, Selasphorus rufus. Anim Behav 
66:751–761. doi:10.1006/anbe.2003.2278

Irons DB (1998) Foraging area fidelity of individual seabirds in 
relation to tidal cycles and flock feeding. Ecology 79:647. 
doi:10.2307/176960

Johnson D, London J, Lea M, Durban J (2008) Continuous-time cor-
related random walk model for animal telemetry data. Ecology 
89:1208–1215

Jouventin P, Capdeville D, Cuenot-chaillet F, Boiteau C (1993) 
Exploitation of pelagic resources by a non-flying seabird: satellite 
tracking of the king penguin throughout the breeding cycle. Mar 
Ecol Prog Ser 106:11–19

Le Bohec C, Gauthier-Clerc M, Grémillet D et al (2007) Pop-
ulation dynamics in a long-lived seabird: i. Impact of 
breeding activity on survival and breeding probability in 
unbanded king penguins. J Anim Ecol 76:1149–1160. 
doi:10.1111/j.1365-2656.2007.01268.x

Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a com-
mon mistake. Auk 104:116–121

Matthiopoulos J (2003) The use of space by animals as a func-
tion of accessibility and preference. Ecol Modell 159:239–268. 
doi:10.1016/S0304-3800(02)00293-4

Monsarrat S, Benhamou S, Sarrazin F et al (2013) How predict-
ability of feeding patches affects home range and foraging habi-
tat selection in avian social scavengers? PLoS One 8:e53077. 
doi:10.1371/journal.pone.0053077

Montevecchi W, Benvenuti S, Garthe S et al (2009) Flexible forag-
ing tactics by a large opportunistic seabird preying on for-
age- and large pelagic fishes. Mar Ecol Prog Ser 385:295–306. 
doi:10.3354/meps08006

http://dx.doi.org/10.1016/j.ecss.2003.11.016
http://dx.doi.org/10.1111/j.1095-8649.2012.03359.x
http://dx.doi.org/10.1111/acv.12056
http://dx.doi.org/10.1139/Z08-055
http://dx.doi.org/10.1111/j.1748-7692.2011.00487.x
http://dx.doi.org/10.3354/meps273211
http://dx.doi.org/10.1016/j.jtbi.2004.03.016
http://dx.doi.org/10.3354/meps10209
http://dx.doi.org/10.1080/08927014.2005.9522584
http://dx.doi.org/10.3354/meps223287
http://dx.doi.org/10.1016/j.anbehav.2003.12.013
http://dx.doi.org/10.1016/j.dsr2.2008.04.022
http://dx.doi.org/10.3354/meps221285
http://dx.doi.org/10.1007/s004420050436
http://dx.doi.org/10.1007/s00300-002-0419-2
http://dx.doi.org/10.1007/s00300-002-0419-2
http://dx.doi.org/10.1111/j.1469-7998.2008.00463.x
http://dx.doi.org/10.1371/journal.pone.0008677
http://dx.doi.org/10.1098/rspb.2007.0775
http://dx.doi.org/10.1641/B570206
http://dx.doi.org/10.1111/ele.12165
http://dx.doi.org/10.1029/2007GL032066
http://dx.doi.org/10.1242/jeb.085738
http://dx.doi.org/10.3354/meps224283
http://dx.doi.org/10.1111/ibi.12159
http://dx.doi.org/10.3354/meps224267
http://dx.doi.org/10.3354/meps224267
http://dx.doi.org/10.1016/j.biocon.2008.12.017
http://dx.doi.org/10.1006/anbe.2003.2278
http://dx.doi.org/10.2307/176960
http://dx.doi.org/10.1111/j.1365-2656.2007.01268.x
http://dx.doi.org/10.1016/S0304-3800(02)00293-4
http://dx.doi.org/10.1371/journal.pone.0053077
http://dx.doi.org/10.3354/meps08006


109Mar Biol (2015) 162:99–110 

1 3

Moore GJ, Wienecke B, Robertson G (1999) Seasonal change in for-
aging areas and dive depths of breeding king penguins at Heard 
Island. Polar Biol 21:376–384. doi:10.1007/s003000050376

Mori Y, Boyd I (2004) The behavioral basis for nonlinear functional 
responses and optimal foraging in Antarctic fur seals. Ecology 
85:398–410

Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-
Gaussian data: a practical guide for biologists. Biol Rev Camb 
Philos Soc 85:935–956. doi:10.1111/j.1469-185X.2010.00141.x

Nevitt G, Reid K, Trathan P (2004) Testing olfactory foraging strate-
gies in an Antarctic seabird assemblage. J Exp Biol 207:3537–
3544. doi:10.1242/jeb.01198

Nordstrom CA, Battaile BC, Cotte C, Trites AW (2013) Foraging 
habitats of lactating northern fur seals are structured by ther-
mocline depths and submesoscale fronts in the eastern Ber-
ing Sea. Deep Sea Res Part II Top Stud Oceanogr 88:78–96. 
doi:10.1016/j.dsr2.2012.07.010

Orsi, A. and Ryan, U. (2001) Locations of the various fronts in the 
southern ocean, Australian Antarctic Data Centre–CAASM Meta-
data (updated 2006)

Otley H, Clausen AP, Christie D et al (2007) Breeding patterns of king 
penguins on the Falkland Islands. Emu 107:156. doi:10.1071/
MU06027

Patrick SC, Bearhop S, Grémillet D et al (2014) Individual dif-
ferences in searching behaviour and spatial foraging consist-
ency in a central place marine predator. Oikos 123:33–40. 
doi:10.1111/j.1600-0706.2013.00406.x

Péron C, Weimerskirch H, Bost C-A (2012) Projected poleward shift 
of king penguins’ (Aptenodytes patagonicus) foraging range 
at the Crozet Islands, southern Indian Ocean. Proc Biol Sci 
279:2515–2523. doi:10.1098/rspb.2011.2705 

Peterson RG (1992) The boundary currents in the western Argentine 
Basin. Deep Sea Res Part A 39(3–4):623–644

Peterson RG, Whitworth III T (1989) The subantarctic and polar 
fronts in relation to deep water masses through the southwestern 
Atlantic. J Geophys Res 94:10817–10838. doi:10.1029/JC094iC
08p10817

Phillips R, Silk J, Croxall JP et al (2004) Accuracy of geolocation 
estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272. 
doi:10.3354/meps266265

Piper WH (2011) Making habitat selection more “familiar”: a 
review. Behav Ecol Sociobiol 65:1329–1351. doi:10.1007/
s00265-011-1195-1

Pistorius PA, Baylis AMM, Crofts S, Pütz K (2012) Population 
development and historical occurrence of king penguins at 
the Falkland Islands. Antarct Sci 24:435–440. doi:10.1017/
S0954102012000302

Pütz K (2002) Spatial and temporal variability in the foraging areas of 
breeding king penguins. Condor 104:528–538. 

Pütz K, Cherel Y (2005) The diving behaviour of brooding king 
penguins (Aptenodytes patagonicus) from the Falkland Islands: 
variation in dive profiles and synchronous underwater swim-
ming provide new insights into their foraging strategies. Mar Biol 
147:281–290. doi:10.1007/s00227-005-1577-x

Pütz K, Ingham RJ, Smith JG (2002) Foraging movements of Magel-
lanic penguins Spheniscus magellanicus during the breeding sea-
son in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 
12:75–87

Pütz K, Smith JG, Ingham RJ, Luthi BH (2003) Satellite tracking of 
male rockhopper penguins Eudyptes chrysocome during the incu-
bation period at the Falkland Islands. J Avian Biol 2:139–144

Ratcliffe N, Crofts S, Brown R et al (2014) Love thy neighbour or 
opposites attract? Patterns of spatial segregation and association 
among crested penguin populations during winter. J Biogeogr. 
doi:10.1111/jbi.12279

Regular PM, Hedd A, Montevecchi WA (2013) Must marine preda-
tors always follow scaling laws? Memory guides the foraging 
decisions of a pursuit-diving seabird. Anim Behav 86:545–552. 
doi:10.1016/j.anbehav.2013.06.008

Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability 
in satellite-measured surface chlorophyll in the Patagonian Shelf. 
Cont Shelf Res 26:703–720. doi:10.1016/j.csr.2006.01.013

Roberts JJ, Best BD, Dunn DC et al (2010) Marine geospatial ecology 
tools: an integrated framework for ecological geoprocessing with 
ArcGIS, Python, R, MATLAB, and C++. Environ Model Softw 
25:1197–1207. doi:10.1016/j.envsoft.2010.03.029

Robinson PW, Costa DP, Crocker DE et al (2012) Foraging behav-
ior and success of a mesopelagic predator in the northeast Pacific 
Ocean: insights from a data-rich species, the northern elephant 
seal. PLoS One 7:e36728. doi:10.1371/journal.pone.0036728

Ronconi R, Burger A (2008) Limited foraging flexibility: increased 
foraging effort by a marine predator does not buffer against scarce 
prey. Mar Ecol Prog Ser 366:245–258. doi:10.3354/meps07529

Rounsevell DE, Copson GR (1982) Growth rate and recovery of a 
king penguin, Aptenodytes patagonicus, population after exploi-
tation. Wildl Res 9(3):519–525. doi:10.1071/WR9820519

Stephens DW, Krebs JR (1986) Foraging theory. Princeton University 
Press, Princeton

Sumner M (2010) trip:Spatial analysis of animal track data. R pack-
age version 1.1-6. http://CRAN.R-project.org/package=trip

R Core Team (2013) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. URL http://www.R-project.org/

Trathan PN, Bishop C, Maclean G et al (2008) Linear tracks and 
restricted temperature ranges characterise penguin foraging path-
ways. Mar Ecol Prog Ser 370:285–294. doi:10.3354/meps07638

Vaillant M, Bohec C, Prud’Homme O et al (2013) How age and 
sex drive the foraging behaviour in the king penguin. Mar Biol 
160:1147–1156. doi:10.1007/s00227-013-2167-y

van Beest FM, Vander Wal E, Stronen AV et al (2013) Temporal vari-
ation in site fidelity: scale-dependent effects of forage abundance 
and predation risk in a non-migratory large herbivore. Oecologia 
173:409–420. doi:10.1007/s00442-013-2647-2

Villegas-Amtmann S, Atkinson S, Paras-Garcia A, Costa DP (2012) 
Seasonal variation in blood and muscle oxygen stores attributed 
to diving behavior, environmental temperature and pregnancy in a 
marine predator, the California sea lion. Comp Biochem Physiol A 
Mol Integr Physiol 162:413–420. doi:10.1016/j.cbpa.2012.04.019

Wakefield ED, Phillips RA, Trathan PN, Arata J, Gales R, Huin N, 
Robertson G, Waugh SM, Weimerskirch H, Matthiopoulos J 
(2011) Habitat preference, accessibility, and competition limit the 
global distribution of breeding Black-browed Albatrosses. Ecol 
Monogr 81:141–167. doi:10.1890/09-0763.1

Wakefield ED, Bodey TW, Bearhop S, et al (2013) Space Partition-
ing Without Territoriality in Gannets. Science (80-). doi: 10.1126/
science.1236077

Watanuki Y, Takahashi A, Sato K (2003) Feeding area speciali-
zation of chick-rearing Adélie Penguins Pygoscelis ade-
liae in a fast sea-ice area. Ibis (Lond 1859) 145:558–564. 
doi:10.1046/j.1474-919X.2003.00165.x

Weimerskirch H (2007) Are seabirds foraging for unpredictable 
resources? Deep Sea Res Part II Top Stud Oceanogr 54:211–223. 
doi:10.1016/j.dsr2.2006.11.013

Weimerskirch H, Pinaud D, Pawlowski F, Bost C-A (2007) Does 
prey capture induce area-restricted search? A fine-scale study 
using GPS in a marine predator, the wandering albatross. Am Nat 
170:734–743. doi:10.1086/522059

Wilson RP, Kreye JM, Lucke K, Urquhart H (2004) Antennae on 
transmitters on penguins: balancing energy budgets on the high 
wire. J Exp Biol 207:2649–2662. doi:10.1242/jeb.01067

http://dx.doi.org/10.1007/s003000050376
http://dx.doi.org/10.1111/j.1469-185X.2010.00141.x
http://dx.doi.org/10.1242/jeb.01198
http://dx.doi.org/10.1016/j.dsr2.2012.07.010
http://dx.doi.org/10.1071/MU06027
http://dx.doi.org/10.1071/MU06027
http://dx.doi.org/10.1111/j.1600-0706.2013.00406.x
http://dx.doi.org/10.1098/rspb.2011.2705
http://dx.doi.org/10.1029/JC094iC08p10817
http://dx.doi.org/10.1029/JC094iC08p10817
http://dx.doi.org/10.3354/meps266265
http://dx.doi.org/10.1007/s00265-011-1195-1
http://dx.doi.org/10.1007/s00265-011-1195-1
http://dx.doi.org/10.1017/S0954102012000302
http://dx.doi.org/10.1017/S0954102012000302
http://dx.doi.org/10.1007/s00227-005-1577-x
http://dx.doi.org/10.1111/jbi.12279
http://dx.doi.org/10.1016/j.anbehav.2013.06.008
http://dx.doi.org/10.1016/j.csr.2006.01.013
http://dx.doi.org/10.1016/j.envsoft.2010.03.029
http://dx.doi.org/10.1371/journal.pone.0036728
http://dx.doi.org/10.3354/meps07529
http://dx.doi.org/10.1071/WR9820519
http://CRAN.R-project.org/package=trip
http://www.R-project.org/
http://dx.doi.org/10.3354/meps07638
http://dx.doi.org/10.1007/s00227-013-2167-y
http://dx.doi.org/10.1007/s00442-013-2647-2
http://dx.doi.org/10.1016/j.cbpa.2012.04.019
http://dx.doi.org/10.1890/09-0763.1
http://dx.doi.org/10.1126/science.1236077
http://dx.doi.org/10.1126/science.1236077
http://dx.doi.org/10.1046/j.1474-919X.2003.00165.x
http://dx.doi.org/10.1016/j.dsr2.2006.11.013
http://dx.doi.org/10.1086/522059
http://dx.doi.org/10.1242/jeb.01067


110 Mar Biol (2015) 162:99–110

1 3

Womble J, Sigler M (2006) Seasonal availability of abundant, energy-
rich prey influences the abundance and diet of a marine preda-
tor, the Steller sea lion Eumetopias jubatus. Mar Ecol Prog Ser 
325:281–293. doi:10.3354/meps325281 

Wood SN (2006) Generalized additive models: an introduction with 
R. Chapman Hall/CRC, Boca Raton, FL

Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data explora-
tion to avoid common statistical problems. Methods Ecol Evol 
1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

http://dx.doi.org/10.3354/meps325281
http://dx.doi.org/10.1111/j.2041-210X.2009.00001.x

	Winter foraging site fidelity of king penguins breeding at the Falkland Islands
	Abstract 
	Introduction
	Methods
	Study site and device deployment
	Processing location data
	Time spent in an area
	Consistency in foraging trip characteristics
	Association with current direction

	Results
	Time spent in an area
	Consistency in foraging trip characteristics
	Association with current direction

	Discussion
	Acknowledgments 
	References


