
Journal of Banking & Finance 34 (2010) 2678–2693

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints
Contents lists available at ScienceDirect

Journal of Banking & Finance

journal homepage: www.elsevier .com/locate / jbf
A multi-horizon comparison of density forecasts for the S&P 500 using index
returns and option prices

Mark B. Shackleton a, Stephen J. Taylor a,*, Peng Yu b

a Department of Accounting and Finance, Lancaster University, UK
b HSBC Bank, London, UK

a r t i c l e i n f o
Article history:
Received 8 October 2008
Accepted 11 May 2010
Available online 17 May 2010

JEL classification:
C14
C22
C53
G13

Keywords:
ARCH models
Density forecasts
Index options
Risk-neutral densities
Risk-transformations
0378-4266/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.jbankfin.2010.05.006

* Corresponding author. Tel.: +44 1524 593624; fax
E-mail addresses: m.shackleton@lancaster.ac.uk

@lancaster.ac.uk (S.J. Taylor), peng.yu@hsbcib.com (P
a b s t r a c t

We compare density forecasts of the S&P 500 index from 1991 to 2004, obtained from option prices and
daily and 5-min index returns. Risk-neutral densities are given by using option prices to estimate diffu-
sion and jump-diffusion processes which incorporate stochastic volatility. Three transformations are then
used to obtain real-world densities. These densities are compared with historical densities defined by
ARCH models. For horizons of two and four weeks the best forecasts are obtained from risk-transforma-
tions of the risk-neutral densities, while the historical forecasts are superior for the one-day horizon; our
ranking criterion is the out-of-sample likelihood of observed index levels. Mixtures of the real-world and
historical densities have higher likelihoods than both components for short forecast horizons.
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1. Introduction the one-day horizon and their performance is similar to option-
1 See, for example, Jackwerth and Rubinstein (1996), Melick and Thomas (1997),
Density predictions provide decision takers with more informa-
tion than forecasts of expected returns and volatilities. This addi-
tional information is essential for many risk management
activities. Central banks are prominent users of density predictions
for interest rates, exchange rates, stock indices and commodity
prices. They tend to prefer forward-looking densities obtained
from option prices to conditional densities calculated from histor-
ical time series. Our paper provides the first comparison of the pre-
dictive accuracy of historical and option-based density forecasts
across several forecast horizons.

As option forecasts of index volatility are often more accurate
than historical forecasts, even when these are based upon intraday
returns (Blair et al., 2001; Martens and Zein, 2004; Jiang and Tian,
2005), we might anticipate that a similar conclusion applies to den-
sity forecasts. We find, however, that our conclusions from compar-
ing real-world density forecasts obtained from option prices with
historical forecasts obtained from daily and intraday returns depend
upon the forecast horizon. Historical forecasts rank the highest for
ll rights reserved.
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(M.B. Shackleton), s.taylor

. Yu).
based forecasts for the one-week horizon. Option-based forecasts
are superior for horizons of two and four weeks. Furthermore,
weighted combinations of historical and option densities outper-
form densities obtained from only one of the two sources of price
information for the shortest horizons of one-day and one-week.

Option prices reflect competitive opinions about the risk-neu-
tral density of the underlying asset when the option contracts ex-
pire. Several empirical methods convert option prices into an
estimated risk-neutral density for one expiry date.1 The more diffi-
cult problem of estimating the implied risk-neutral dynamics, from
recent option prices for several expiry dates, has received much less
attention. The first comprehensive empirical study is the pricing and
hedging paper by Bakshi et al. (1997). They summarize daily esti-
mates of jump-diffusion parameters for the S&P 500 index from
1988 to 1991. Likewise, we estimate risk-neutral parameters from
S&P 500 futures prices on each day from 1990 to 2004 inclusive. It
is then easy to derive the risk-neutral density for any time horizon.2
Ait-Sahalia and Lo (1998), Bliss and Panigirtzoglou (2002) and Taylor (2005).
2 The local volatility models of Dupire (1994) and Derman and Kani (1994) also

provide risk-neutral densities for multiple horizons. However, their assumption that
volatility is a deterministic function of time and the underlying asset price is
counterfactual and it has been criticized by Dumas et al. (1998).

https://core.ac.uk/display/1552269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jbankfin.2010.05.006
mailto:m.shackleton@lancaster.ac.uk
mailto:s.taylor@lancaster.ac.uk
mailto:s.taylor@lancaster.ac.uk
mailto:peng.yu@hsbcib.com
http://dx.doi.org/10.1016/j.jbankfin.2010.05.006
http://www.sciencedirect.com/science/journal/03784266
http://www.elsevier.com/locate/jbf


M.B. Shackleton et al. / Journal of Banking & Finance 34 (2010) 2678–2693 2679
Transformations from risk-neutral to real-world3 densities have
been estimated in several recent papers, commencing with Bakshi
et al. (2003) and Bliss and Panigirtzoglou (2004), but for option ex-
piry dates alone. Our first contribution is to obtain real-world densi-
ties from option prices for general forecast horizons; we evaluate
forecasts for seven horizons that range from 1-day to 12-weeks.

All prior studies use full-sample datasets to estimate risk-trans-
formations. The real-world densities are then ex post, because each
density then depends on later asset prices. Our second contribution
is to present results for ex ante, real-world densities constructed
from the present and past prices for an asset and its options alone.4

There is a vast literature which compares volatility forecasts ob-
tained from historical asset prices and current option prices.5 In
contrast, we are only aware of two prior studies that make similar
comparisons for density forecasts, namely Anagnou-Basioudis et al.
(2005) and Liu et al. (2007) for small samples of forecasts for option
expiry dates. Our third contribution is to compare ARCH and option-
based forecasts for multiple horizons. These comparisons are the
first to include results for historical density forecasts obtained from
intraday returns.

Our methodology requires us to specify a risk-neutral process
for the underlying asset price, whose parameters can be estimated
rapidly from daily panels of option prices. An appropriate process
for a stock index must incorporate a stochastic volatility compo-
nent, whose increments are correlated with price increments.
The price dynamics of Heston (1993) satisfy all of our requirements
and they provide tractable formulae for densities and option prices,
based upon the inversion of characteristic functions.

Like all parsimonious price models, the Heston model has been
shown to be imperfect for pricing options.6 We also evaluate an af-
fine process that includes price jumps generated by a Poisson pro-
cess.7 We do not consider further jump processes for three
reasons: firstly, it is difficult to estimate the additional parameters
from daily panels of option prices; secondly, our transformations
from risk-neutral to real-world densities are able to systematically
improve mis-specified risk-neutral densities; and thirdly we find
that incorporating risk-neutral price jumps does not lead to im-
proved real-world densities.

It is possible that the sophistication of the Heston price dynam-
ics and its jump-diffusion extensions may be counterproductive if
the final goal is to produce real-world densities. Consequently, we
also investigate transformations of risk-neutral, lognormal
densities.

The positive risk premium for the aggregate equity market
shows that some transformation must be applied to risk-neutral
densities before appropriate, real-world, density forecasts can be
made. Bliss and Panigirtzoglou (2004) evaluate single-parameter,
utility transformations that can be motivated by a representa-
3 Like Liu et al. (2007), we prefer ‘real-world’ to alternative adjectives, such as
‘subjective’, ‘objective’, ‘statistical’, ‘empirical’, ‘physical’, ‘true’, ‘risk-adjusted’ and
‘historical’. We use ‘historical’ to refer to densities that are obtained from time series
of prices for the underlying asset.

4 Kostakis et al. (2009) provide ex ante comparisons for historical and real-world
densities in a recent paper about asset allocation.

5 Recent evaluations of forecasts obtained from implied volatilities include
Konstantinidi et al. (2008), Chalamandaris and Tsekrekos (2010), Taylor et al.
(2010) and Yu et al. (2010).

6 For example by Bakshi et al. (1997), Andersen et al. (2002), Pan (2002), Jones
(2003), Christoffersen et al. (2006) and Ait-Sahalia and Kimmel (2007). Also,
Christoffersen et al. (2008, in press) show that two volatility components fit option
prices more accurately than one component.

7 Special cases of the general affine jump-diffusions of Duffie et al. (2000) are
investigated in Bates (1996, 2000, 2006), Bakshi et al. (1997), Andersen et al. (2002),
Bollerslev and Zhou (2002), Pan (2002), Liu and Pan (2003), Eraker et al. (2003), Eraker
(2004), Broadie et al. (2007) and Medvedev and Scaillet (2007). Processes incorpo-
rating jumps that arrive at an infinite rate are covered by Carr and Wu (2004) and
Huang and Wu (2004).
tive-agent model. They find that ex post, real-world densities for
the S&P 500 and FTSE 100 indices are a significant improvement
upon their risk-neutral densities; Anagnou-Basioudis et al.
(2005), Kang and Kim (2006) and Liu et al. (2007) provide further
utility-based results for these markets. However, as empirical esti-
mates of implied risk aversion are incompatible with a standard
consumption-based framework (Jackwerth, 2000; Rosenberg and
Engle, 2002; Ziegler, 2007), standard utility transformations are
unlikely to provide completely satisfactory real-world densities.

Liu et al. (2007) estimate the two parameters of a more flexible
transformation, by maximizing the ex post likelihood of the index
levels on monthly, option expiry dates. We apply the same trans-
formation, but instead use ex ante parameters obtained separately
for each forecast horizon. We also provide the first analysis of two
further transformations: one assumes that affine (jump-) diffusion
price dynamics apply in the real world by incorporating appropri-
ate risk-premia, and the other applies a nonparametric calibration
function.

All our density forecasting methods are described in Section 2.
We consider risk-neutral (Q) densities that are either lognormal
or provided by affine (jump-) diffusion price dynamics, real-world
(P) densities given by the three transformations of the Q-densities,
historical densities obtained from ARCH models that are estimated
from daily and intraday returns, and mixture densities that use all
of the information derived from historical and option prices. The
econometric methodology used to obtain ex ante parameters and
forecasts is presented in Section 3 and Appendix A. We also present
our criteria for making out-of-sample comparisons between the
various sets of density forecasts. The S&P 500 futures and options
price data are described in Section 4, followed by all the empirical
results in Section 5. Finally, Section 6 summarizes our conclusions.

2. Density forecasts

2.1. Risk-neutral densities

To obtain risk-neutral densities (RNDs) for all future times it is
necessary to specify the risk-neutral dynamics of the underlying
asset price. We consider three specifications for the futures price.
The first simply assumes that prices follow geometric Brownian
motion (GBM). All the RNDs are then lognormal. The second spec-
ifies a risk-neutral volatility process, while the third additionally
incorporates price jumps.

The stochastic volatility process of Heston (1993) is a natural
candidate because it has closed-form densities and theoretical op-
tion prices, whose implied volatilities display plausible ‘‘term
structure” and ‘‘smile” effects. The risk-neutral dynamics for the
futures price, pt after t years, incorporate the stochastic variance
Vt, which follows a square-root process:

dp=p ¼
ffiffiffiffi
V
p

dW1; ð1Þ
dV ¼ jðh� VÞdt þ n

ffiffiffiffi
V
p

dW2 ð2Þ

with correlation q between the increments of the two Wiener pro-
cesses. The special case of GBM, with constant volatility h, occurs
when V0 = h and n = 0.

It is well-known that adding a jump component to (1) enhances
the agreement between theoretical and observed option prices.
Following Bates (1996) and Bakshi et al. (1997), we also evaluate
the affine jump-diffusion defined by (2) and

dp=p ¼
ffiffiffiffi
V
p

dW1 þ ðeJ � 1ÞdN � k�lJdt ð3Þ

with Nt a Poisson process that has intensity k; the Poisson process is
independent of the bivariate Wiener process (W1,t, W2,t). The jump
events counted by Nt are matched with jumps of size Jt in log (pt),
that are normally distributed with mean lJ and variance r2

J ; the



8 For any random variable X, with c.d.f. F(X) for a stated measure, the random
variable U = F(X) has a uniform distribution for the same measure. This result enables
the correct specification of densities to be assessed empirically (Rosenblatt, 1952).
The observed value u of U = F (p ) is only a draw from a uniform distribution when
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average size of the proportional jumps in pt equals �lJ ¼
expðlJ þ 0:5r2

J Þ � 1.
Several futures contracts, with different expiry dates, are traded

at the same time. We suppose that their prices satisfy standard, no-
arbitrage, equations; these imply the same continuous-time pro-
cess and the same parameters are applicable to all contracts.

Heston (1993), Bakshi et al. (1997) and Duffie et al. (2000) pro-
vide analytic formulae for the characteristic function of log(pT),
conditional upon initial values p0 and V0. Our notation for this con-
ditional characteristic function is g(w) = EQ[exp(iw log (pT))], with
w a real number and Q the risk-neutral measure. The following
inversion formula then gives the risk-neutral density of pT, denoted
by fQ,T(x), for positive values of x:

fQ ;TðxÞ ¼
1
px

Z 1

0
Re½expð�iw logðxÞÞgðwÞ�dw: ð4Þ

A straightforward numerical integration is required for each value
of x. The fair price of a European call option, whose strike is K,
can be written as:

cðp0;KÞ ¼ e�rT p0P1ðp0;KÞ � KP2ðp0;KÞð Þ; ð5Þ

where r is the risk-free rate, P2(p0, K) is the risk-neutral probability
that the option expires in-the-money and P1(p0, K) is a probability
for the same event when a different measure is applied. Both
P1(p0, K) and P2(p0, K) are obtained from standard inversion formulae.

2.2. Real-world densities

A risk-neutral density should not be used to make statements
about real-world probabilities determined by a real-world mea-
sure P, because investors require a premium that compensates
them for price risk. It is possible that there are also volatility and
jump risk premia. Transformations from risk-neutral to real-world
densities rely on assumptions. These can be provided by specifying
risk-premia functions, or by a representative-agent model, or by
statistical calibration theory; Liu et al. (2007) show that there is
a simple mathematical relationship between the marginal utility
function of the representative agent and the statistical calibration
function. We prefer the additional flexibility provided by either
two or three risk-premium terms, or by a two-parameter calibra-
tion transformation, to the one-parameter utility transformations
of Bliss and Panigirtzoglou (2004). We also investigate a nonpara-
metric calibration transformation.

2.2.1. Risk-premia transformations
An affine real-world diffusion process is defined by including

linear drift terms in both the price and the variance equations,
thus:

dp=p ¼ g1Vdt þ
ffiffiffiffi
V
p

dfW 1;

dV ¼ ½g2V þ jðh� VÞ�dt þ n
ffiffiffiffi
V
p

dfW 2: ð6Þ

The assumption of linear functions for the risk premia ensures ana-
lytic formulae for the real-world, characteristic functions of future
prices. The inversion formula (4) then provides real-world densities
fP,T(x) that depend on the parameters g1 and g2. To define real-
world, jump-diffusion dynamics we additionally increase the mean
jump size by g3. Then

dp=p ¼ ðg1V � k�lJÞdt þ
ffiffiffiffi
V
p

dfW 1 þ ðeJ � 1ÞdN; Jt � NðlJ þ g3;r2
J Þ:
ð7Þ
T Q,T T

FQ,T(x) is correctly specified and the risk-neutral measure is identical to the real-world
measure.

9 Kling and Bessler (1989) and Diebold et al. (1999) have estimated nonparametric
calibration functions from real-world densities, respectively for Treasury bill and
foreign exchange rates.
2.2.2. Calibration transformations
At time 0, suppose fQ,T(x) and FQ,T(x), respectively, denote the

risk-neutral density and the cumulative distribution function
(c.d.f.) of the random variable pT, and then define UT = FQ,T(pT).8 Fol-
lowing Bunn (1984), Dawid (1984) and Diebold et al. (1999), let the
calibration function CT(u) be the real-world c.d.f. of the random var-
iable UT; our notation emphasizes that the calibration function de-
pends on the forecast horizon T. It is then well-known (see, for
example, Liu et al. (2007)) that the real-world c.d.f. of pT is

FP;TðxÞ ¼ CTðFQ ;TðxÞÞ: ð8Þ

Also, the real-world density of pT is given by

fP;TðxÞ ¼ fQ ;TðxÞcTðuÞ ð9Þ

with u = FQ,T(x) and with cT(u) representing the real-world density of
UT.

Our preferred parametric specification of the calibration func-
tion is the c.d.f. of the Beta distribution, applied by Liu et al.
(2007) and Wang (2009) and recommended by Fackler and King
(1990) in their innovative study of densities obtained from com-
modity option prices. The calibration density is then

cTðuÞ ¼ ua�1ð1� uÞb�1=Bða; bÞ; 0 6 u 6 1 ð10Þ

with B(a, b) = C(a)C(b)/C(a + b). There are two calibration parame-
ters, a and b, which depend on the horizon T. The special case
a = b = 1 defines a uniform distribution and then the risk-neutral
and real-world densities are identical. From (9), the real-world den-
sity is

fP;TðxÞ ¼
FQ ;TðxÞa�1ð1� FQ ;TðxÞÞb�1

Bða; bÞ fQ ;TðxÞ: ð11Þ

Alternatively, a nonparametric calibration function can be esti-
mated from a historical set of observations of the quantity
u = FQ,T(x), with x representing a typical observed value of the fu-
tures price pT. We calculate kernel estimates of CT(u) and cT(u),
using methods presented in Appendix A. These estimates, given
by (34) and (37), are substituted into (8) and (9) to provide further
real-world c.d.f.s and densities.9

2.3. Historical densities

By estimating ARCH models, the prices of the underlying asset
up to and including time t can be used to produce historical density
forecasts for the asset price at time t + 1. One period of time is de-
fined by a constant forecast horizon in this section, that may be
one-day, one-week or several weeks. The one-period returns are
rt = log(pt/pt�1); here pt�1 and pt are end-of-period futures prices
for the same contract.

A specific ARCH model uses price information It, known at the
end-of-period t, to produce a parametric density, fret(r|It), for the
next return, rt+1. The historical density for the next end-of-period
price, pt+1, is then:

f ðxjItÞ ¼ fretðrjItÞ=x ð12Þ

with r = log(x/pt). We describe four specifications for the historical
density fret(r|It).

The simplest credible ARCH model for a stock market index
is the GJR(1, 1) model of Glosten et al. (1993). The conditional
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variance ht is then an asymmetric function of returns. We define
the model as follows, with a constant conditional mean l:

rt � l ¼ h1=2
t zt ; zt � i:i:d: ð0;1Þ;

ht

Dt
¼ xþ ða1 þ a2dt�1Þe2

t�1 þ bht�1

Dt�1
; ð13Þ

dt�1 ¼ 1 if rt�1 < l; otherwise dt�1 ¼ 0:

The term Dt represents the number of trading days during period t,
so that the conditional variance is proportional to the amount of
trading time. Normal distributions for the i.i.d., standardized resid-
uals zt define our GJR model. As it is well-known that fat-tailed, con-
ditional distributions are preferable for daily horizons, we also
evaluate the GJR-t model defined by supposing the zt have a stan-
dardized t-distribution, with degrees-of-freedom m.10

Sums of squared intraday returns are superior to squared daily
returns as measures of realized volatility (Andersen and Bollerslev,
1998; Andersen et al., 2001) and these sums can be used to im-
prove volatility forecasts (Blair et al., 2001; Martens and Zein,
2004). Let Intrat represent the total of some set of squared intra-
period returns for period t. Then the Intra and Intra-t models are
here defined by the conditional variance equation:

ht

Dt
¼ xIntra þ

ðc1 þ c2dt�1ÞIntrat�1 þ bIntraht�1

Dt�1
ð14Þ

with, respectively, conditional normal distributions and conditional
t-distributions. As in (13), the multiplier of the most recent volatil-
ity measurement (Intrat�1) is an asymmetric function of the most
recent excess return (rt�1 � l).

2.4. Mixture densities

Both ARCH and option-based densities may contain incremental
information at a general time t about the price at time t + T. Conse-
quently, we also evaluate the mixture (or combination) density:

fmix;TðxÞ ¼ afP;TðxÞ þ ð1� aÞfARCH;T ; 0 � a � 1: ð15Þ

One component of the mixture may outperform the other during
some periods and vice versa at other times. The mixture may then
be preferred to its components. We let past data determine appro-
priate weights, a and 1 � a, in (15).

As option traders know the historical price information, it is
possible that a = 1 is optimal if the transformations are able to
translate an ‘‘efficient” risk-neutral density into the best possible
real-world density. At the other extreme, a = 0 might occur if op-
tion prices contain no real-world information that is incremental
to the historical record of asset prices.

3. Empirical methods

3.1. Estimation of parameters

The densities are all parametric and evaluated out-of-sample.
We always use ex ante parameter values; all values required at
time t are estimated from prices available at time t.

The parameters of the risk-neutral processes for asset prices are
estimated at the end of each trading day. The estimated volatility
of the GBM process is provided by the simplest credible estimate,
namely the end-of-day, nearest-the-money implied volatility for
the nearest-to-expiry options. On day t, for the Heston process de-
fined by (1) and (2) we estimate the initial variance Vt, the three
10 We assume the density for zt is time-invariant. Variation in the density’s shape
might enhance density forecasts; see Jondeau and Rockinger (2003, 2009) who
provide evidence for time-varying conditional skewness and kurtosis in daily returns
for the S&P 500 index.
volatility parameters, jt, ht and nt, and the correlation qt between
the price and volatility differentials. Suppose Nt European, call11

option contracts are traded on day t, labeled by i = 1, . . . , Nt, with
strikes Kt,i, expiry times Tt,i and market prices ct,i; also, suppose pt,i

is the futures price for the asset after Tt,i years. Then the five Heston
Q-parameters are estimated by minimizing

XNt

i¼1

ðct;i � cðpt;i;Kt;i; Tt;i;Vt;jt; ht; nt ;qtÞÞ
2
; ð16Þ

with c(�) the Heston pricing formula, given by (5).12 Likewise, the
eight Q-parameters for the jump-diffusion process defined by (2)
and (3) are also estimated. These are maximum likelihood estimates
when the option pricing errors are Gaussian, independent and iden-
tically distributed.

The remaining parameters that appear in the real-world, histor-
ical and mixture densities are the price-of-risk parameters g1, g2

and g3, the calibration function parameters a and b, the ARCH
parameters x, a1, a2, b, xIntra, c1, c2 and bIntra, and the mixture
parameter a. As explained in Appendix A, all these parameters
are estimated ex ante by maximizing the log-likelihood function
of observed asset prices that are available when the forecasts are
made. Separate estimates are obtained for each forecast horizon
considered.

3.2. Evaluation of the density forecasts

Density forecasts can be assessed using a variety of criteria,
including several surveyed by Tay and Wallis (2000). Christoffer-
sen and Jacobs (2004) show that it is important to use the same cri-
terion for calibration and evaluation in their study of option
valuation. Our common criterion is the log-likelihood function,
previously used by Bao et al. (2007) and Liu et al. (2007) to com-
pare density forecasting methods applied to equity indices.

3.2.1. Likelihood criteria
For a fixed forecast horizon, suppose method m provides densi-

ties fm,t(x) at integer times i, . . . , j for the asset price at times
i + 1, . . . , j + 1. Our preferred method maximizes the out-of-sample,
log-likelihood of observed asset prices, defined for method m by:

Lm ¼
Xj

t¼i

logðfm;tðptþ1ÞÞ: ð17Þ

When some method M correctly specifies the real-world densities it
will have the highest expected log-likelihood, as the information
criterion of Kullback and Leibler (1951), namely

EP ½logðfM;tðptþ1Þ=fm;tðptþ1ÞÞ� ¼
Z 1

0
fM;tðxÞ logðfM;tðxÞ=fm;tðxÞÞdx;

ð18Þ

is positive whenever the densities fM,t and fm,t are continuous and
distinct. Consequently, EP[LM] > EP[Lm] for m – M and we may ex-
pect the sample value of LM to exceed that of Lm when the number
of forecasts made is sufficiently large. When none of the methods
correctly specifies the densities, maximizing Lm will select the
method whose densities are nearest to the true densities according
to the information criterion (Bao et al., 2007).

The evidence for one method relative to a set of alternatives can
be stated as a Bayesian probability. Assuming that one of K meth-
11 As explained in Section 4.3, the put prices in our database are converted to
equivalent European call prices, using put-call parity, and are then included in (16).

12 Christoffersen and Jacobs (2004, p. 316) conclude that (16) is a ‘‘good general-
purpose loss function in option valuation applications”. It is preferred in the study of
S&P 500 dynamics by Christoffersen et al. (2006).
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ods is correct, and selecting an uninformative prior distribution,
the posterior probability that method m is correct equals

pm ¼ expðLmÞ
XK

k¼1

expðLkÞ
,

: ð19Þ

The out-of-sample, log-likelihood is a special case of the
weighted log-likelihood criterion used by Amisano and Giacomini
(2007) to test for differences between the accuracy of competing
forecasts. The null hypothesis that two methods m and n have
equal expected log-likelihood can be tested by using the time ser-
ies average of the log-likelihood differences:

dt ¼ logðfm;tðptþ1ÞÞ � logðfn;tðptþ1ÞÞ; i � t � j: ð20Þ

We find only minor dependence within a typical time series {dt} and
consequently compare the AG test statistic,

AG ¼ ðj� iþ 1Þ0:5�d=sd ¼ ðj� iþ 1Þ�0:5ðLm � LnÞ=sd ð21Þ

with a standard normal distribution; here �d and sd are the average
and the standard deviation of the terms dt.

3.2.2. Diagnostic criteria
We also evaluate diagnostic tests that use a time series of ob-

served cumulative probabilities to assess the adequacy of a set of
forecasts, as recommended by Diebold et al. (1998).13 For a general
method m these probabilities are defined by

utþ1 ¼
Z ptþ1

0
fm;tðxÞdx; i � t � j: ð22Þ

We check whether or not the values of u are consistent with i.i.d.
observations from the uniform distribution between zero and
one.14 Firstly, the Kolmogorov–Smirnov (KS) test is used, which re-
lies on the maximum difference between the sample and theoretical
cumulative functions. The sample c.d.f. of {ui+1, . . . , uj+1}, evaluated
at u, is the proportion of outcomes less than or equal to u, i.e.:

eCðuÞ ¼ 1
j� iþ 1

Xjþ1

t¼iþ1

Sðu� utÞ ð23Þ

with S(x) = 1 if x P 0, and S(x) = 0 if x < 0. The test statistic is then

KS ¼ sup
0�u�1

jeCðuÞ � uj: ð24Þ

Secondly, we apply the test of Berkowitz (2001) to the numbers
yt defined by U(yt) = ut, with U(�) the c.d.f. of the standard normal
distribution. This test assesses whether or not the values of y are
consistent with the null hypothesis of i.i.d. observations from a
standard normal distribution. The alternative hypothesis for the
test is a stationary, Gaussian, AR(1) process with no restrictions
on the mean, variance and autoregressive parameters. The test is
decided by comparing a likelihood-ratio statistic (LR3) with v2

3;
LR3 equals 2(L1 � L0), with L0 and L1 the maximum log-likelihoods
of {yi+1, . . . , yj+1}, respectively, for the null and alternative
hypotheses.

4. Data

Density forecasts are evaluated for S&P 500 index futures con-
tracts. We investigate forecasts for the futures price, rather than
13 Interesting recent examples are Bliss and Panigirtzoglou (2004), Hong et al.
(2004), Anagnou-Basioudis et al. (2005), Christoffersen and Mazzotta (2005), Hong
and Li (2005), Liu et al. (2007) and Wang (2009).

14 The null hypothesis is that the set of density forecasts is correctly specified. The
more general hypothesis that the forecasts are from a correct parametric specification
can only be assessed if the tests are revised to take account of parameter estimation
error. This is difficult when the forecasts are defined ex ante using option prices.
the spot index, because contemporaneous, settlement prices are
available for futures and options contracts.15 A second advantage
of working with futures is that the dividend payments on the index
stocks are irrelevant.
4.1. Futures prices

Settlement prices and intraday prices for S&P 500 futures con-
tracts are studied from 28 April 1982 until 31 December 2004,
respectively, provided by the CME and Price-Data.com. Each return
is calculated from the nearest-to-maturity contract, except on the
final trading days and on the Thursdays that precede them when
the next contract is used.

The realized variances are calculated from 5-min returns. This
frequency provides a satisfactory trade-off between maximizing
the accuracy of volatility estimates and minimizing the bias attrib-
utable to microstructure effects (Bandi and Russell, 2006). As the
futures are traded from 08:30 to 15:15 at the CME, we use 81 intra-
day returns for each day. The realized variance for day t is the sum
of the squares of the 5-min returns rt,i:

Intrat ¼
X81

i¼1

r2
t;i: ð25Þ
4.2. Interest rates

Three-month, six-month and one-year Treasury bill rates are
converted to continuously compounded rates. The risk-free rate r
used in an option pricing formula is the three-month rate for op-
tion lives up to three months, otherwise the rate is given by linear
interpolation.
4.3. Option prices

We study the settlement prices of options on S&P 500 futures
for 15 years, from 2 January 1990 to 31 December 2004. We con-
sider prices for all option-on-futures contracts that expire on the
same Friday as their underlying futures contracts, after excluding
contracts having seven or less calendar days until expiry.

Call and put settlement prices for the same strike and expiry
date theoretically contain the same information. Either the call or
the put will be out-of-the-money (OTM), except for the rare occa-
sions when both are at-the-money (ATM). We choose to use the
information provided by the prices of OTM and ATM options alone,
because the in-the-money contracts are less actively traded and
have higher early exercise premia.

The option contracts are American. We obtain equivalent Euro-
pean option prices from the American prices which have the same
implied volatility when the pricing formulae are those of Black
(1976) and Barone-Adesi and Whaley (1987). The early exercise
premia are small for OTM options and hence only very small errors
can be created by applying these formulae. Finally, the put-call
parity equation is used to obtain equivalent European call prices
from the European OTM put prices.

We study 435,100 option prices for the 3777 trading days from
1990 to 2004. The average number of prices used per day is 115,
made up of 45 OTM calls and 70 OTM puts. The number of different
expiry dates available on any day is 2, 3 or 4 and their average is
3.1. Table 1 summarizes the quantity, the moneyness and the
time-to-expiry of the contracts that provide the observed prices.
15 Option prices for S&P 500 futures have been studied in related research by Bates
(2000, 2006), Bliss and Panigirtzoglou (2004), Jones (2006) and Broadie et al. (2007).



Table 1
Summary statistics for the S&P 500 futures option dataset. Information about the numbers of daily settlement prices for out-of-the-money (OTM) options on S&P 500 futures,
from 1990 to 2004. Moneyness is defined by the futures price p divided by the strike price K.

Total number Average options per day Max number per day Min number per day

Calls 171,383 45 157 8
Puts 263,717 70 173 8
Overall 435,100 115 255 29
Number of cross-sections 3.1 4 2

Moneyness/maturity p/K <1 Month Between 1 and 6 months >6 Months Subtotal
Deep OTM put >1.10 10,800 89,779 39,879 140,458

(2.48%) (20.63%) (9.17%) (32.28%)
OTM put 1.03–1.10 8743 52,427 23,964 85,134

(2.01%) (12.05%) (5.51%) (19.57%)
Near the money 0.97–1.03 7720 47,325 20,206 75,251

(1.77%) (10.88%) (4.64%) (17.30%)
OTM call 0.90–0.97 6881 45,519 19,178 71,578

(1.58%) (10.46%) (4.41%) (16.45%)
Deep OTM call <0.90 2483 42,253 17,943 62,679

(0.57%) (9.71%) (4.12%) (14.41%)
Subtotal 36,627 277,303 121,170 435,100

(8.42%) (63.73%) (27.85%) (100%)
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4.4. Volatility comparisons

The intraday volatility measure excludes the price variation
from the market’s close until the market reopens. From 1990 until
2004, the average of the daily realized variances (0.93 � 10�4)
equals 80% of the variance of the daily returns (1.17 � 10�4). The
options imply higher levels of variance: the average of the squares
of the implied volatilities obtained from the nearest-to-the-money
options that are nearest-to-expiry, stated in daily units
(1.32 � 10�4), is 113% of the variance of the daily returns. Con-
verted to annualized, standard deviations, these average measures
of variance are 15.3% for Intra, 17.2% for daily returns and 18.3% for
near-the-money options. The higher level for risk-neutral volatility
is to be expected, because empirical evidence for a negative risk
premium for the volatility of US equity indices has been docu-
mented in several papers.16

5. Empirical results for density forecasts

Density forecasts are evaluated from January 1991 until Decem-
ber 2004 inclusive. The option prices during 1990 are only used to
contribute to the ex ante information that is required to estimate
the transformations from risk-neutral to real-world densities.

The density forecasts are made for seven horizons: one trading
day and one, two, four, six, eight and 12 weeks. The first forecast
for each horizon is made on Wednesday, 3 January 1990. The fore-
casts for the multi-day horizons do not overlap and they are all
made on Wednesdays. The forecast density at time t for time
t + T always refers to the first futures contract that matures at least
one calendar day after time t + T.

5.1. Illustrative density plots

Fig. 1 illustrates the one-day-ahead densities, calculated from the
information available on 30 December 2004. Fig. 1a shows the four
historical densities; the conditional t-densities have higher peaks
and fatter tails than the conditional normal densities. Figs. 1b and
1c, respectively, show how the risk-transformations change the
shapes of the lognormal and the Heston risk-neutral densities. The
labels P1, P2 and P3 for the real-world densities, respectively, refer
to the parametric calibration, the nonparametric calibration and
the risk-premium transformations. Each transformation increases
16 For example, in Jackwerth and Rubinstein (1996), Chernov and Ghysels (2000),
Pan (2002), Bakshi and Kapadia (2003), Jones (2003) and Bollerslev et al. (in press).
the peak of the density and decreases the probability of a large price
change, consistent with the real-world density having a lower stan-
dard deviation than the risk-neutral density. Illustrative densities
for the longer horizon of four weeks, calculated on 17 November
2004, are shown on Fig. 2a–c. The real-world standard deviations
are again less than the risk-neutral levels.

5.2. Historical densities

The parameters of the one-day-ahead, ARCH densities have
been estimated from daily and intraday returns that commence
on 4 January 1988. Referring to (13), the averages of the ex ante,
GJR parameter estimates, used in the densities from 1991 onwards,
include a1 = 0.032, a2 = 0.043 and b = 0.913. For the more credible
GJR-t specification, with degrees-of-freedom m, the averages in-
clude m = 4.70, a1 = 0.009, a2 = 0.046 and b = 0.960. The correspond-
ing averages for the Intra-t specification, given by (14), are m = 5.03,
c1 = 0.039, c2 = 0.157 and bIntra = 0.893.

The ARCH densities for the one-week and longer periods are
estimated from prices that commence on 28 April 1982. All the
averages for the degrees-of-freedom parameter imply a high level
of excess kurtosis in the conditional distributions. The averages of m
are 6.20 and 7.52 for the one-week returns, respectively, for GJR-t
and Intra-t, and they are 4.95 and 4.55 for the longest return period
of 12 weeks.

5.3. Risk-neutral parameters

Table 2 presents our summary statistics for risk-neutral param-
eters estimated each day from 1990 to 2004. One set of statistics is
given for Heston’s diffusion process, with the risk-neutral, price
dynamics given by:

dp=p ¼
ffiffiffiffi
V
p

dW1 and dV ¼ jðh� VÞdt þ n
ffiffiffiffi
V
p

dW2 ð26Þ

and with correlation q between the two Wiener processes. The sec-
ond set of statistics are for the affine jump-diffusion dynamics de-
fined by (3), which adds Gaussian price jumps in log(pt) that have
intensity k, mean lJ and standard deviation rJ. The median esti-
mates in Table 2 are generally similar to risk-neutral estimates in
previous research.

Our risk-neutral parameters minimize the mean of the squared
errors (MSE) for each day’s option prices. The median MSE for the
eight-parameter jump-diffusion process equals 69% of the median
MSE for the five-parameter pure-diffusion process. This reduction
in the MSE occurs when the median estimate of k is 0.47 jumps
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Fig. 1. (a) One-day ahead density forecasts obtained from ARCH models on December 30th, 2004. (b) One-day ahead density forecasts obtained from lognormal densities on
December 30th, 2004. (c) One-day ahead density forecasts obtained from Heston’s model on December 30th, 2004.
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per annum and the median estimate of lJ reduces the asset price
by 6%. Our average risk-neutral estimate of k is 0.69 which is sim-
ilar to the estimates between 0.5 and 0.8 in Eraker (2004), obtained
from index and option prices for an earlier period, while the higher
value of 1.5 in Eraker et al. (2003) has been estimated from index
returns between 1980 and 1999.17

Each time series of MSE values has a median which is much
lower than the standard deviation, which indicates that the distri-
17 The time-varying, real-world estimates of k in Santa-Clara and Yan (2010) are
similar. Their mean and standard deviation, from 1996 to 2002, are 0.795 and 0.714,
while our statistics are 0.693 and 0.715.
bution of MSE contains some extreme values. A positively skewed
distribution is also noted for j, k and rJ.

The stochastic variance Vt reverts towards h. Our median esti-
mate for the pure-diffusion process is 0.0452, equivalent to a vol-
atility of 21.3%. The median estimate for the jump-diffusion
process is lower, at 0.0347, because some of the total variation in
prices is then attributed to the jump component. The rate of rever-
sion towards h is determined by j. Our median estimates of j are
4.15 (without jumps) and 3.09 (with jumps); the ‘‘half-life” param-
eter of the variance process is then between two and three months.

The kurtosis of returns is primarily controlled by the ‘‘volatility
of volatility” parameter n. Estimates obtained solely from option
prices, such as our median values of 0.79 (without jumps) and
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Fig. 2. (a) Four-week ahead density forecasts obtained from ARCH models on November 17th, 2004. (b) Four-week ahead density forecasts obtained from lognormal densities
on November 17th, 2004. (c) Four-week ahead density forecasts obtained from Heston’s model on November 17th, 2004.
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0.64 (with jumps) and the 0.74 of Bates (2000), are much higher
than those that are obtained from asset prices alone. A typical
real-world estimate is 0.22, reported in Eraker (2004), while Ait-
Sahalia and Kimmel (2007) obtain 0.48 from a bivariate time series
model for price and volatility indices.
Our median estimates of the correlation q are �0.66 (without
jumps) and �0.68 (with jumps). They are similar to the average,
risk-neutral estimate of �0.64 in Bakshi et al. (1997), which is far
more negative than their estimate of �0.28 obtained from time
series of asset returns and changes in implied volatilities.



Table 2
Summary statistics for the daily estimates of the risk-neutral parameters. Estimates are summarized for the risk-neutral dynamics dp=p ¼

ffiffiffiffi
V
p

dW1 þ ðeJ � 1ÞdN � k�lJdt and
dV ¼ jðh� VÞdt þ n

ffiffiffiffi
V
p

dW2, with dW1dW2 = qdt. The Poisson process Nt has intensity k, and is independent of the bivariate Wiener process (W1,t, W2,t). The jumps Jt in log(pt) are
normally distributed with mean lJ and variance r2

J .

Parameter Median no jumps Median with jumps Mean no jumps Mean with jumps Standard deviation
No jumps

Standard deviation
With jumpsffiffiffiffiffiffi

V0
p

0.1787 0.1651 0.1898 0.1877 0.0741 0.0694
j 4.1528 3.0920 4.9292 3.8748 3.6598 3.2930
h 0.0452 0.0347 0.0505 0.0421 0.0273 0.0381
n 0.7925 0.6400 0.9296 0.6977 0.5160 0.3731
q �0.6624 �0.6795 �0.6590 �0.6788 0.0875 0.1181
k 0.4746 0.6930 0.7147
lJ �0.0630 �0.1019 0.1609
rJ 0.0385 0.0875 0.1059
MSE 0.0472 0.0327 0.1621 0.1072 0.3126 0.2052

The parameters are estimated each day from 1990 to 2004, from the out-of-the-money options on S&P 500 futures, by minimizing the mean squared error (MSE) of the fitted
option prices. V0 is the contemporaneous variance when the option prices are recorded. The constraint j 6 36 is applied, but only required when jumps are excluded by
setting k ¼ 0.

18 The implied risk transformations cannot be reconciled with a representative
agent model, because the estimates of b comprehensively fail to satisfy the constraint
b < 1 for all horizons; see Liu et al. (2007). Ziegler (2007) provides a detailed
theoretical analysis of several potential explanations of this empirical conclusion.

19 Consequently, all our transformations from risk-neutral to real-world densities
can be reinterpreted as methods that jointly estimate risk premia and remove the
systematic overpricing of option contracts.
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We find that the jump-diffusion specifications do not yield
more successful real-world densities than the simpler pure-diffu-
sion specifications. Consequently, we initially focus on the pure-
diffusion methods and defer our comparisons with the jump-diffu-
sion methods until Section 5.9.

5.4. Cumulative probabilities from risk-neutral densities

A set of one-day-ahead RNDs provides cumulative distribution
functions FQ,t(x) that can be evaluated at the next futures prices,
pt+1, to define observed probabilities ut+1 = FQ,t(pt+1). As expected,
these probabilities are incompatible with a uniform distribution.

The sample c.d.f. eCðuÞ calculated from a time series {ut+1} is de-
fined by (23). We show the differences between sample and uni-
form probabilities, eCðuÞ � u, as the dark curve on Fig. 3 for the
Heston RNDs. It is seen that there are too few outcomes for u near
to either zero or one; only 5.7% of the observed u-values are below
0.1 and only 6.6% of them are above 0.9. The maximum value of
jeCðuÞ � uj equals 6.6%; this value of the KS statistic rejects the null
hypothesis of a uniform distribution at the 0.01% level. The differ-
ences for the lognormal RNDs are similar.

The shape of the deviation curve is primarily explained by the
risk-neutral, standard deviations being higher, on average, than
the historical standard deviations. Consequently, the risk-neutral
probabilities of large price changes exceed the real-world
probabilities.

5.5. Calibration transformations

A nonparametric estimate of the real-world density of the prob-
abilities ut+1 is provided by the empirical calibration density stated
in (37). This estimated density, ĉðuÞ, is shown by the light curve on
Fig. 4 for the one-day-ahead Heston case using the data from 1991
to 2004.

The time series averages of the ex ante estimates for the para-
metric calibration transformation applied to the one-day-ahead,
risk-neutral Heston densities are a = 1.434 and b = 1.412. The cor-
responding calibration density, (10), is plotted as the dark curve
on Fig. 4. The parametric and nonparametric calibration densities
are similar, except near the end points of the distribution. The ex
ante estimates of a and b vary between 1.3 and 1.6 and nearly al-
ways have a > b. The corresponding ex ante estimates for the
risk-neutral lognormal densities are between 1.15 and 1.40 and
their time series averages are 1.280 and 1.247.

The calibration methodology is intended to produce real-world
densities whose observed probabilities ut+1 are uniformly distrib-
uted. After applying the parametric and nonparametric transfor-
mations, the one-day-ahead deviations eCðuÞ � u estimated ex
ante from all the data are shown as light curves on Fig. 3. These
deviations are much nearer to zero than those for the risk-neutral
densities, particularly for the nonparametric transformation.

Similar results and conclusions are obtained for the one-week-
ahead densities. The time series averages of the Heston-estimates
of a and b are 1.424 and 1.409, respectively. For horizons of two
or more weeks, the average Heston-estimate of a is between 1.45
and 1.58, and it is always more than the average estimate of b
which ranges from 1.30 to 1.43.18
5.6. Risk-premia transformations

The third transformation of the Heston RNDs into real-world
densities changes the drift rates of the price and the volatility.
The risk premia coefficients g1 and g2 in the bivariate diffusion
(6) have been estimated for each of the seven horizons. These esti-
mates should be similar across horizons if the assumed risk-neu-
tral and real-world dynamics are correct. The seven estimates of
g1 (the return risk premium per unit variance) are indeed similar,
including 2.41, 2.25 and 2.86 for the one-day, one-week and two-
weeks horizons estimated from the entire sample from 1991 to
2004. All the full-period estimates of g2 (the variance risk premium
per unit of variance) provide further evidence for a negative vola-
tility premium. The estimates, however, are approximately propor-
tional to the reciprocal of the forecast horizon, varying from �197
for the one-day horizon to �4.2 for the 12-week horizon. This
empirical effect is consistent with the real-world variance at time
t being systematically lower than the estimated initial level Vt of
the stochastic process for the risk-neutral variance.19

With g1 > 0 and g2 < 0, the risk-premia transformation ensures
that the means and the standard deviations of the real-world den-
sities are, respectively, above and below their risk-neutral counter-
parts. For the one-day horizon, Fig. 3 confirms that the risk-premia
transformation reduces the magnitudes of the deviations eCðuÞ � u.
It can be seen that the deviations for the risk-premium and the
parametric calibration transformations are similar.

A risk-premium transformation of the lognormal RNDs has also
been investigated. Only the single risk parameter g1 is then avail-
able, which improves the means but not the standard deviations
of the densities. Consequently, the transformation only changes
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the log-likelihoods by minor amounts and so the results are not
reported.

5.7. Likelihood comparisons

Table 3 summarizes the log-likelihoods of the futures prices
from January 1991 until December 2004, for 13 ex ante density
forecasting methods. These log-likelihoods are given for non-over-
lapping forecasts, made for seven horizons that range from one-
day to 12 weeks. We define the benchmark log-likelihoods as the
values for the simplest historical method, namely the GJR densities.
Table 3 shows the log-likelihood values in excess of the benchmark
levels, for all other methods.

5.7.1. Historical methods
Initially consider the log-likelihoods of the four historical meth-

ods described in Section 2.3. These values are always higher for
conditional t-densities than for the matched conditional normal
densities. They are also always higher for densities obtained from
high-frequency returns than for the matched densities obtained
from one-period returns. Consequently, the best of the four meth-
ods is the Intra-t method for all seven horizons. From (19), this best
historical method has a posterior probability above 0.9999 for each
of the two shortest horizons and between 0.88 and 0.95 for each of
the five longer horizons; the total probability for the Intra and In-
tra-t methods exceeds 0.999 for all horizons of six or less weeks.

At the shortest horizon of one-day, incorporating non-normality
adds more to the log-likelihood than incorporating intraday price
information. The relative contributions of non-normality and intra-
day prices are similar when the horizon is either one or two weeks,
while intraday prices contribute more when the horizon is either
four or six weeks.

Applying a calibration transformation to the Intra-t densities
improves some log-likelihood values. Table 3 shows that one



Table 3
Log-likelihoods for sets of density forecasts. The numbers tabulated are the log-likelihoods of the GJR density forecasts and the log-likelihoods of the other sets of forecasts in
excess of the GJR benchmark values. The letter Q refers to risk-neutral densities. The risk transformation P1 refers to the parametric calibration transformation, P2 to the
nonparametric calibration transformation, and P3 to the risk-premia transformation, respectively, defined by (11), (36) and (6). The number in each row shown in bold font
indicates the highest ranked method for the corresponding horizon.

Forecast
horizon

Number
of obs.

GJR GJR-t Intra Intra-t Risk-transformed
Intra-t

Log
normal

Risk-transformed
lognormal

Heston Risk-transformed Heston

P1 P2 Q P1 P2 Q P1 P2 P3

Data
source

Daily
returns

Daily
returns

Intraday
returns

Intraday
returns

Intraday
returns

Intraday
returns

Options Options Options Options Options Options Options

1 Day 3520 �11951.2 91.4 56.4 135.9 134.0 140.8 27.0 73.5 100.9 �2.4 103.9 127.4 93.7
1 Week 711 �2961.9 13.5 16.1 34.8 36.7 38.4 17.0 32.8 36.5 18.5 41.5 35.2 40.6
2 Weeks 351 �1574.0 10.4 16.2 18.5 16.6 18.0 13.6 27.8 26.4 14.8 26.9 22.4 25.8
4 Weeks 176 �853.6 4.1 10.9 13.2 11.9 9.6 12.5 13.4 15.8 16.0 20.3 20.2 23.2
6 Weeks 115 �596.9 5.7 14.0 16.4 13.1 17.6 16.0 17.1 16.9 19.6 16.3 18.7 20.3
8 Weeks 86 �446.1 1.5 2.6 5.8 4.3 2.8 4.9 9.4 9.3 6.7 7.8 7.5 7.5
12 Weeks 58 �310.2 5.2 3.7 7.4 5.1 5.7 5.6 6.9 6.8 9.8 8.5 9.1 7.6
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transformation provides an improvement for the one-day horizon
and that both transformations improve the one-week ahead densi-
ties. However, the transformations provide inferior log-likelihoods
for longer horizons.

5.7.2. Ten univariate methods
Comparisons are now made between 10 methods, which define

three sets of historical densities and seven sets of option-based
densities. The historical densities are referred to as Intra-t, Intra-
t-P1 and Intra-t-P2. We refer to the RNDs as the lognormal-Q and
the Heston-Q densities. The real-world densities are labeled log-
normal-P1, lognormal-P2, Heston-P1, Heston-P2 and Heston-P3;
P1, P2 and P3 are, respectively, the parametric calibration, the non-
parametric calibration, and the risk-premia transformations, de-
fined by (11), (36) and (6).

5.7.3. One-day horizon
The ranked log-likelihoods, in excess of the benchmark value,

are: Intra-t-P2 141, Intra-t 136, Intra-t-P1 134, Heston-P2 127, Hes-
ton-P1 104, lognormal-P2 101, Heston-P3 94, lognormal-P1 73,
lognormal-Q 27 and Heston-Q -2. These numbers are summarized
in five remarks.

First, the Intra-t densities obtained from high-frequency returns
have high log-likelihoods compared with the option-based densi-
ties. Second, the nonparametric risk transformation P2 is superior
to the parametric transformation P1, with the differences, respec-
tively, equal to 6.8, 23.5 and 27.4 for the Intra, Heston and lognor-
mal cases. Third, the Heston P-densities have higher log-
likelihoods than the lognormal P-densities, the differences being
30.4 for P1 and 27.5 for P2. Fourth, the risk-premia transformation
P3 ranks behind the statistical transformations P1 and P2 for the
Heston densities. Finally, as expected the Q-densities are far infe-
rior to their related P-densities.

The posterior probability of the Intra-t-P2 method equals 0.992,
although four of the AG test statistics are insignificant at the 5% le-
vel when this method is compared with the nine alternatives: AG
equals 0.74, 0.99, 1.94 and 0.94, respectively, for tests against the
Intra-t, Intra-t-P1, Heston-P1 and Heston-P2 methods.20

5.7.4. Horizons from 1 to 4 weeks
The best method depends on the horizon, being Intra-P2 for one

day, Heston-P1 for one week, lognormal-P1 for two weeks and Hes-
20 The AG test produces the same conclusions and similar test values when a
Newey-West adjustment is made to the estimated variance of �d. The four insignificant
values change to 0.73, 0.98, 1.95 and 0.93 when ten autocorrelations are used. The
first-lag autocorrelations range from �0.054 to 0.010 for the 45 time series of
differences calculated from the log-likelihoods of the 10 univariate methods.
ton-P3 for four weeks. The absence of a uniformly best method re-
flects the similarity of the log-likelihoods for the five option-based,
P-densities, for all but the one-day horizon.

Each set of option P-densities always outperforms the corre-
sponding set of Q-densities. We note that the option P-densities
are superior to the Intra-t densities for 8 of the 15 possible compar-
isons when the horizon is one week. In contrast, all the option P-
densities are superior to all the Intra-t densities for the two-week
and the four-week horizons. For the one-week horizon, the average
excess log-likelihood for the three sets of Intra-t densities is 36.6
and the average for the five sets of option P-densities is 37.3. The
corresponding comparisons are 17.7 versus 25.9 for two weeks
and 11.6 versus 18.6 for four weeks.

The total posterior probability for the Heston methods equals
0.957, 0.305 and 0.999, respectively, for the one, two and four-
week horizons. The corresponding totals for the lognormal meth-
ods are 0.005, 0.695 and 0.001, and for the Intra-t methods they
equal 0.038, 0.000 and 0.000. The AG test concludes that the best
method for the one-week horizon is only significantly better than
two of the other nine methods (namely the Q-methods) at the 5%
level; the best method is better than four methods, at the 5% level,
for the two and four-week horizons.21
5.7.5. Horizons from 6 to 12 weeks
The differences between the log-likelihoods of the various

methods decrease as the horizon increases, primarily because the
numbers of non-overlapping forecasts decrease. The best methods
for the longer horizons are Heston-P3 for six weeks, lognormal-P1
for eight weeks and Heston-Q for 12 weeks, while the worst is
either Intra-t-P1 or Intra-t-P2. The differences between the best
and the worst methods are 7.2, 6.6 and 4.1 for these horizons.

The total posterior probability for the Heston methods now
equals 0.907, 0.226 and 0.888, respectively, for the six, eight and
12-week horizons. The totals for the lognormal methods are
0.046, 0.761 and 0.057, and for the Intra-t methods they are
0.047, 0.014 and 0.055.
5.7.6. Mixtures
We now consider the log-likelihoods for mixtures defined by a

fraction a of an option-based density added to a fraction 1 � a of
the Intra-t density. Table 4 shows the mixture log-likelihoods
and the time series averages of the ex ante estimates of a.22
21 The Newey-West adjustment to the test changes only 1 of these 27 test results.
22 The log-likelihoods attained by setting a = 0.5 are often near those obtained by ex

ante selection of a. Averages are notably inferior, however, when Q-densities
contribute to the mixture and the horizon is short.



Table 4
Log-likelihoods for mixtures of historical densities and option-based densities. Each log-likelihood is the value in excess of the GJR benchmark given in Table 3. The mixture
densities are a fraction a of the option-based density plus a fraction 1 � a of the Intra-t density. a is estimated ex ante. The risk transformation P1 refers to the parametric
calibration transformation, P2 to the nonparametric calibration transformation, and P3 to the risk-premia transformation, respectively, defined by (11), (36) and (6) and applied to
risk-neutral densities denoted by Q.

Forecast
horizon

Intra-t
only

Intra-t combined with

Lognormal Heston

Q Average
a (%)

P1 Average
a (%)

P2 Average
a (%)

Q Average
a (%)

P1 Average
a (%)

P2 Average
a (%)

P3 Average
a (%)

1 Day 135.9 147.7 17 150.8 35 142.0 31 151.2 17 159.8 38 149.9 48 159.5 34
1 Week 34.8 33.5 21 36.6 60 38.3 60 34.0 32 42.5 62 38.2 51 42.2 64
2 Weeks 18.5 18.9 23 27.1 83 24.9 71 20.4 33 28.0 68 24.8 53 27.8 71
4 Weeks 13.2 14.1 11 13.6 49 15.1 49 15.7 70 20.1 83 19.8 83 23.0 89
6 Weeks 16.4 19.1 48 16.7 76 17.7 56 19.8 53 18.6 47 18.7 51 20.2 77
8 Weeks 5.8 6.1 33 8.8 82 8.0 60 6.7 49 8.1 58 6.7 44 8.2 58
12 Weeks 7.4 7.4 9 9.5 72 7.2 40 6.6 31 9.5 72 8.8 65 8.9 68

Table 5
Results from the Kolmogorov–Smirnov test. The tabulated numbers are the p-values for the Kolmogorov–Smirnov test of the null hypothesis that the variables ut have a uniform
distribution. The risk transformation P1 refers to the parametric calibration transformation, P2 to the nonparametric calibration transformation, and P3 to the risk-premia
transformation, respectively, defined by (11), (36) and (6) and applied to risk-neutral densities denoted by Q.

Forecast
horizon

Number of
obs.

GJR
(%)

GJR-t
(%)

Intra
(%)

Intra-t
(%)

Risk-
transformed
Intra-t (%)

Log normal
(%)

Risk-
transformed
lognormal (%)

Heston
(%)

Risk-transformed
Heston (%)

P1 P2 Q P1 P2 Q P1 P2 P3

1 Day 3520 0.00 0.75 0.00 15.19 8.55 87.42 0.00 0.06 87.56 0.00 0.32 46.72 0.01
1 Week 711 0.36 25.09 0.11 12.73 2.15 39.95 0.04 1.14 74.35 0.60 96.08 78.80 67.58
2 Weeks 351 13.36 76.69 0.73 89.15 13.11 63.64 0.03 21.60 67.63 3.52 92.71 66.42 78.16
4 Weeks 176 13.09 82.55 0.14 64.28 16.24 63.78 0.04 0.67 24.86 7.75 82.81 49.13 69.38
6 Weeks 115 94.00 83.30 4.97 42.91 3.81 29.25 1.57 14.28 18.18 54.23 84.58 80.00 41.38
8 Weeks 86 59.42 72.82 2.42 77.81 38.37 88.08 1.40 48.79 98.95 9.90 84.75 99.45 51.56
12 Weeks 58 85.19 89.06 0.31 69.28 35.18 63.81 0.18 21.62 61.28 31.29 90.03 91.03 85.18

Table 6
Berkowitz test values and parameter estimates. The null hypothesis that the variables yt = U�1(ut) are i.i.d with a standard normal distribution is tested against the alternative of
an AR(1), Gaussian process. The tabulated numbers are the test statistic LR3 and the estimates of the AR and variance parameters.

Forecast horizon GJR GJR-t Intra Intra-t Risk-transformed
Intra-t

Log normal Risk-transformed
lognormal

Heston Risk-transformed
Heston

P1 P2 Q P1 P2 Q P1 P2 P3

1 Day AR 0.00 �0.01 0.00 �0.01 �0.01 �0.01 0.00 0.00 0.00 0.00 0.00 �0.01 0.00
Variance 0.93 1.07 0.90 1.02 1.05 0.99 0.79 1.04 1.00 0.68 1.04 1.02 1.02
LR3 9.78* 8.44* 19.84* 1.89 4.52 0.84 96.82* 2.58 0.09 241.46* 3.72 1.02 0.64

1 Week AR �0.11 �0.12 �0.10 �0.11 �0.11 �0.11 �0.10 �0.10 �0.09 �0.09 �0.09 �0.10 �0.08
Variance 0.78 0.88 0.71 0.83 1.04 0.97 0.71 0.97 0.93 0.65 0.98 0.94 0.94
LR3 26.57* 13.93* 43.35* 19.06* 10.00* 9.15* 46.13* 8.51* 8.27* 61.63* 6.14 8.50* 5.52

2 weeks AR �0.03 �0.05 �0.03 �0.05 �0.04 �0.04 �0.02 �0.02 �0.01 �0.01 �0.01 0.00 0.00
Variance 0.86 1.01 0.78 0.90 1.12 1.02 0.63 0.99 0.91 0.63 1.02 0.94 1.02
LR3 3.90 0.89 13.07* 2.85 4.35 1.72 35.95* 0.94 2.11 32.32* 0.34 1.39 0.33

4 Weeks AR 0.00 �0.01 0.05 0.02 0.02 0.02 0.04 0.04 0.04 0.06 0.05 0.05 0.08
Variance 0.77 0.92 0.81 0.90 1.10 0.97 0.63 0.99 0.90 0.74 1.00 0.92 1.00
LR3 6.04 0.98 6.54 1.74 1.16 0.36 19.61* 0.93 1.43 7.39 0.71 1.41 1.29

6 Weeks AR �0.22 �0.17 �0.01 �0.15 �0.12 �0.12 �0.14 �0.11 �0.10 �0.10 �0.09 �0.07 �0.03
Variance 0.93 1.09 1.01 1.13 1.34 1.08 0.71 1.17 1.05 0.77 1.11 1.07 1.22
LR3 6.03 4.19 3.32 3.83 7.93 2.42 11.63* 3.81 1.89 6.48 1.89 1.74 2.50

8 Weeks AR 0.02 0.06 0.09 0.07 0.08 0.09 0.14 0.16 0.18 0.11 0.18 0.18 0.22
Variance 0.85 1.24 0.76 0.90 1.13 0.96 0.54 0.94 0.79 0.74 0.93 0.80 0.91
LR3 1.65 2.90 6.16 1.01 1.50 0.90 18.36* 2.39 4.35 5.63 2.71 4.40 4.36

12 Weeks AR �0.08 �0.04 0.04 0.02 0.03 0.04 0.06 0.08 0.11 0.09 0.10 0.15 0.19
Variance 1.40 1.07 0.90 0.93 1.29 1.03 0.59 1.12 0.93 0.75 1.04 0.98 1.16
LR3 4.41 0.46 4.45 0.40 2.54 0.40 10.95* 1.06 0.82 4.92 0.90 1.62 3.18

* Indicate that the null is rejected at the 5% level, when LR3 > 7.81.
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Each mixture of an option-based P-density and the correspond-
ing Intra-t density has a higher log-likelihood than both the P-den-
sity and the Intra-t density components for the one-day and one-
week horizons. However, for horizons of two or more weeks each



Table 7
The impact of a jump component upon the log-likelihood values. The tabulated
numbers are the differences between ex ante log-likelihoods for sets of jump-diffusion
densities and the corresponding sets of pure-diffusion densities. Positive numbers
indicate that the jump-diffusion specification has a higher log-likelihood. The letter Q
refers to risk-neutral densities. The risk transformation P1 refers to the parametric
calibration transformation, P2 to the nonparametric calibration transformation, and
P3 to the risk-premia transformation.

Forecast horizon Q P1 P2 P3

1 Day 60.9 �4.8 �8.5 �7.6
1 Week 12.6 2.8 2.6 �1.4
2 Weeks 4.4 0.0 �0.2 �2.9
4 Weeks 1.1 0.2 �0.8 �3.5
6 Weeks �0.5 �0.5 �3.7 �2.1
8 Weeks 0.2 0.2 0.0 �0.1
12 Weeks 1.2 �1.0 �1.2 �1.3
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set of P-densities has a log-likelihood near to that of its mixture
while the mixture log-likelihoods are almost always higher than
the respective values for the Intra-t densities.

For the one-day horizon, the excess log-likelihoods of the mix-
tures range from 142 to 160 and all exceed the best univariate re-
sult, which is 141 for the Intra-t-P2 densities. Combining Intra-t
with either Heston-P1 or Heston-P3 gives the best results. The total
Bayesian probability of these mixtures equals 0.9998, when the
methods considered are Intra-t, 7 option-based methods and the
seven mixture methods. The AG test rejects the null hypothesis
of no difference between one component of a mixture and the mix-
ture of Intra-t and an option-based method for 13 of the 14 possi-
ble comparisons (at the 5% significance level).

As the forecast horizon increases, first the average weight given
to the five sets of P-densities increases, being 37%, 59%, 69% and
71% for the one-day, one-week, two-week and four-week horizons.
Second, the total Bayesian probability for the mixtures decreases,
from 100% to 77%, 61% and 45%. Third, the AG test values decrease;
beyond the one-day horizon, none of these values reject the null
hypothesis (at the 5% level) that a real-world, option-based meth-
od has the same expected log-likelihood as its mixture with the In-
tra-t method.
23 Risk-neutral jumps improve the specification of risk-neutral densities and
subsequent transformations to real-world densities will both incorporate risk
preferences and help to remove any remaining mis-specification of the RNDs. In
contrast, each of the three transformations applied directly to Heston RNDs achieves a
similar result in a single step. These transformations appear to use past prices to
efficiently learn about systematic differences between risk-neutral and real-world
densities.
5.8. Diagnostic tests

The KS statistic tests the null hypothesis that a set of densities
are correctly specified, but it assumes the cumulative probabilities
ut are independent random variables. Table 5 lists the p-values for
the KS test for the 13 ex ante density forecasting methods, for each
of the seven horizons. As the null is rejected at the a-level when-
ever p < a, it is found that 27 of the 91 test values reject the null
hypothesis at the 5% level. Nineteen of the 27 rejections occur for
densities which might be expected to be mis-specified, namely
the RNDs and the ARCH densities that are conditionally normal.

It is noteworthy that the Intra-t densities and the P2-densities
obtained by applying the nonparametric transformation to the In-
tra-t densities and the RNDs have the most satisfactory p-values:
19 of the 28 p-values exceed 50% and their minimum is 18%. The
Heston-P1 and Heston-P3 densities also have satisfactory p-values
beyond the one-day horizon.

A good specification of the tails may be more important than a
good overall fit for some purposes. Tail comparisons are made by
calculating the maximum of jeCðuÞ � uj for the regions 0 6 u 6 b
and 1 � b 6 u 6 1. With b equal to 0.025, 0.05 or 0.1, the Intra-t-
P2, lognormal-P2 and Heston-P2 methods generally outrank the
others. For all six tail regions, each of these P2-methods is always
in the top five for the one-day and one-week horizons.

The LR3 statistic of Berkowitz (2001) tests the null hypothesis
that the observations yt = U�1(ut) are i.i.d. from a standard normal
distribution against the alternative that they are from a Gaussian,
AR(1) process with no restrictions on the mean, variance and auto-
regressive parameters. Table 6 contains the values of LR3 and the
MLEs of the variance and autoregressive parameters for the 13
density forecasting methods, by horizon.

The MLEs of the AR parameter are all between�0.012 and 0.005
for the sets of one-day forecasts, so they provide no evidence to
doubt that the time series {ut} contain independent observations.
The MLEs for the one-week forecasts are, however, all between
�0.12 and �0.08 and they all reject the null hypothesis that the
AR parameter is zero at the 5% level. There is no significant evi-
dence of time-series dependence for longer horizons.

The MLEs of the variance parameter are usually near one, as re-
quired for correctly specified densities. The low estimates for the
RNDs, such as the 0.68 and the 0.79 for the one-day ahead Hes-
ton-Q and lognormal-Q forecasts, are a direct consequence of his-
torical volatility being lower (on average) than risk-neutral
volatility.

The null distribution of LR3 is v2
3 and thus a test value is signif-

icant at the 5% level if it exceeds 7.81. Table 6 shows that the null is
always rejected for the lognormal-Q densities at the 5% level. For
the other methods, the null is rejected at the 5% level for various
sets of one-day, one-week and two-week forecasts; there are no
rejections for the longer horizons, which may reflect low power
when few forecasts are evaluated. The only methods whose densi-
ties always pass the LR3-test at the 5% level are the Heston-P1 and
Heston-P3 methods. With only one exception, all the significant
values of LR3 can be explained by assuming risk neutrality, or by
assuming the conditional shape of a historical density is normal
or by the negative estimates of the AR parameter for the one-week
horizon.
5.9. Comparisons between diffusion and jump-diffusion methods

The robustness of the empirical evidence presented so far for
the option-based densities can be assessed by comparing the Hes-
ton (H) densities derived from (1) and (2) with the jump-diffusion
(JD) densities derived from (2) and (3). Four sets of JD-densities are
compared with the corresponding four Heston sets, for each hori-
zon. The same labels Q, P1, P2 and P3 are used for the JD sets. An
extra risk premium parameter is estimated for the JD-P3 densities;
for the one-day horizon, the average estimated size of the jumps in
log(pt) increases from �10% for the JD-Q densities to �5% for the
JD-P3 densities.

Table 7 shows the differences D between the ex ante log-likeli-
hoods of sets of JD-densities and their corresponding sets of H-den-
sities. The risk-neutral densities are significantly improved by
including the jump component, for the three shortest horizons.
The values of D for the one-day, one-week and two-weeks horizons
equal 60.9, 12.6 and 4.4, and the respective AG test statistics are
5.64, 4.01 and 1.99.

In contrast, there is no evidence that estimating a jump compo-
nent improves the option-based, real-world densities. All three dif-
ferences D are negative for the one-day comparisons.23 There are
only four positive real-world values of D in Table 7, 15 values are
negative and 2 are reported as 0.0. None of the real-world, AG test
statistics is significant at the 5% level and the diagnostic test statis-
tics are generally similar for the Heston and JD-densities.
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Further differences D have been calculated for mixtures of the
Intra-t and option-based densities. The one-day difference is only
3.4 (AG = 1.50) for the mixtures of Intra-t and risk-neutral densi-
ties, compared with 61 in Table 7, because more than 80% of these
mixture weights are allocated to the Intra-t densities. The real-
world, one-day differences are all between �2 and �1. The differ-
ences for the one-week and longer horizons are similar to the
numbers in Table 7 and they are all insignificant at the 5% level.
6. Conclusions

Hitherto, most option-based density estimation methods have
only provided results within a risk-neutral context and most meth-
ods have required the forecast horizon to coincide with an option
expiry date. In contrast, we are the first to show it is possible to
construct informative, ex ante, real-world densities for many fore-
cast horizons by using currently available price information.

Our most important conclusions for the S&P 500 index depend
upon the forecast horizon. For the one-day horizon, ARCH densi-
ties obtained from 5-min returns are more informative than
densities obtained from option prices but the most informative
densities are provided by mixtures of historical and option-based
methods. We say the mixture densities are the most informative
because they rank highest according to the out-of-sample likeli-
hood criterion. At the one-week horizon, the mixture densities
continue to outrank historical and option-based methods but
now historical methods have likelihoods similar to those of op-
tion-based methods.

For the two-week and four-week horizons we find strong evi-
dence that three transformations of risk-neutral densities, esti-
mated from index levels, option prices and Heston’s pricing
formula, all provide real-world densities that are more informative
than the historical densities estimated from ARCH models. At even
longer horizons, up to 12 weeks, the empirical evidence continues
to favor option-based methods.24 Furthermore, mixture densities
are not preferable to option-based densities when the horizon is at
least two weeks. Neither are real-world densities based upon
jump-diffusion processes superior to those that are estimated from
pure-diffusion dynamics.

Jiang and Tian (2005) have shown that the information content
of option prices is higher than that of daily and intraday index val-
ues when forecasting the volatility of the S&P 500 index over hori-
zons from one to six months. Our study shows that the same
conclusion applies to ex ante density forecasts of the S&P 500 index
when the forecast horizon is two or more weeks, but it does not
hold for shorter horizons. We attribute the superior performance
of option-based forecasts over medium-term horizons to the for-
ward-looking property of option prices. As we only use prices for
option contracts that have eight or more days until expiry, the
one-day and one-week-ahead risk-neutral densities are always
extrapolations which are not supported by competitive trading.
This partially explains why the best historical densities are rela-
tively more successful than the real-world densities for the two
shortest horizons. Furthermore, we conjecture that the historical
density is superior for the shortest horizon of one-day because
an accurate forecast of tomorrow’s volatility can be obtained from
high-frequency returns summarized by daily measures of realized
volatility.

We have described three transformations of the risk-neutral
densities that produce real-world densities. For our data, these
real-world densities always outrank the risk-neutral densities for
horizons between one-day and four-weeks inclusive. The nonpara-
24 The ARCH specifications may be mis-specified and it is thus possible that other
ARCH specifications might provide more informative densities.
metric calibration transformation produces the best diagnostic test
results and it also enhances the historical densities for the two
shortest horizons.

Risk managers, central bankers and other users of density fore-
casts for equity indices should not rely on risk-neutral densities ex-
tracted from option prices. They can instead obtain more accurate
densities by applying a risk transformation to risk-neutral densi-
ties. Our empirical evidence shows that it is reasonable to seek fur-
ther improvements for short horizons by mixing the transformed
option-based densities with historical densities which utilize the
information provided by high-frequency returns.
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Appendix A. Estimation methods

We, respectively, denote the five diffusion and the eight jump-
diffusion risk-neutral parameters estimates obtained from option
prices at the end-of-day t by Ht and HJ

t . Here we show how risk
parameters, other relevant parameters and the nonparametric cal-
ibration density are estimated within a diffusion framework. The
same methods are also used to estimate parameters in a jump-dif-
fusion framework by replacing Ht by HJ

t and, when appropriate,
estimating the additional jump risk parameter.
A.1. Parametric estimation methods

The risk-premium parameters in (6), namely g1 and g2, are esti-
mated separately for each forecast horizon. Each horizon defines a
set of non-overlapping time periods. For a specific set, at the end-
of-period s corresponding to day ns, we can evaluate the real-world
density fP;s;Tðxjg1;g2;Hns Þ for the asset price T years later, at the
end-of-period s + 1. The ex ante maximum likelihood estimates
(MLEs) of g2 and g2 at time nt are given by maximizing the log-like-
lihood of the observed asset prices ps at the ends of periods
s = 1, 2, . . . , t. Thus we maximize:

log Lðp1; . . . ;pt jg1;g2Þ ¼
Xt�1

s¼0

logðfP;s;Tðpsþ1jg1;g2;Hns ÞÞ: ð27Þ

In the same way, the parameters of the parametric calibration
function (10), namely a and b, are also estimated separately for
each forecast horizon. The risk-neutral density fQ ;s;TðxjHns Þ and its
c.d.f are used to evaluate the real-world density fP;s;Tðxja; b;Hns Þ gi-
ven by (11). The ex ante MLEs of a and b at time nt are given by
maximizing:
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log Lðp1; . . . ; ptja; bÞ ¼
Xt�1

s¼0

logðfP;s;Tðpsþ1ja; b;Hns ÞÞ: ð28Þ

The ARCH densities for one-period returns, specified by (13) and
(14), have the general form fret(rs+1|Is, #), that depends on a param-
eter vector # and a set Is of historical returns. The MLE at time t is
the vector #̂t that maximizes the log-likelihood of all the returns
since some earlier time s (assumed to precede the first available
option prices):

log Lðrs; . . . ; r1; . . . ; rtj#Þ ¼
Xt�1

s¼s�1

log fretðrsþ1jIs; #Þð Þ: ð29Þ

From (12), the ex ante density of the next end-of-period price, pt+1, is
then given by

fARCH;tðxjIt ; #̂tÞ ¼ fretðrjIt ; #̂tÞ=x with r ¼ logðx=ptÞ: ð30Þ

Similarly, the MLE of the mixture parameter a, that determines
the weights given to option-based and historical densities in (15),
can be obtained by maximizing an appropriate log-likelihood func-
tion. We use a two-step method. The first step provides estimates
of all the parameters except a. Then, at time nt we will know the
observed values of the components of the mixture, for example

we know ~f P;s ¼ fP;s;T psþ1jâs; b̂s;Hns

� �
and ~f A;s ¼ fARCH;s psþ1 Is; #̂s

��� ��
for

times 0 6 s < t. The MLE of a at time nt is given by the number ât

that maximizes

log Lðp1;p2; . . . ;ptjaÞ ¼
Xt�1

s¼0

log a~f P;s þ ð1� aÞ~f A;s

� �
: ð31Þ

The ex ante mixture density for pt+1 is then

ât fP;t;Tðxjât ; b̂t;Hnt Þ þ ð1� âtÞfARCH;tðxjIt; #̂tÞ: ð32Þ
A.2. Nonparametric estimation methods

The nonparametric calibration function is re-estimated at the
end of each period t. The observed futures prices define a set of t
cumulative, risk-neutral probabilities, usþ1 ¼ FQ ;s;Tðpsþ1jHns Þ; 0 �
s � t � 1. We assume these observations are i.i.d. with c.d.f. given
by the calibration function CT(u).

Let u(�) and U(�), respectively, denote the density and the c.d.f.
of the standard normal distribution. We transform the observa-
tions ui to new variables yi = U�1(ui) and then fit a nonparametric,
kernel c.d.f. to the set {y1, y2, . . . , yt}. We use a normal kernel, with
bandwidth B, and so obtain the kernel density and c.d.f., respec-
tively, as

ĥTðyÞ ¼
1
tB

Xt

i¼1

/
y� yi

B

� �
and bHTðyÞ ¼

1
t

Xt

i¼1

U
y� yi

B

� �
: ð33Þ

The bandwidth B in (16) should decrease as t increases. We have
used the standard formula of Silverman (1986), B = 0.9ry/t0.2, with
ry the standard deviation of the terms yi.

The empirical calibration function is then

bC TðuÞ ¼ bHTðU�1ðuÞÞ: ð34Þ

From (8), the real-world c.d.f. for the next observed futures price
becomes

FP;TðxÞ ¼ bCTðFQ ;TðxÞÞ: ð35Þ

Also, with u = FQ,T(x) and y = U�1(u), the real-world density is

fP;TðxÞ ¼
d
dx
bHTðyÞ ¼

dy
dx

dbHTðyÞ
dy

¼ du
dx

dy
du

ĥTðyÞ ¼
fQ ;TðxÞĥTðyÞ

/ðyÞ : ð36Þ
Finally, the nonparametric calibration density is

ĉTðuÞ ¼ ĥTðyÞ=/ðyÞ: ð37Þ
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