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GENERAL NOTIONS OF INDEXABILITY FOR QUEUEING
CONTROL AND ASSET MANAGEMENT

BY KEVIN D. GLAZEBROOK1, DAVID J. HODGE1 AND CHRIS KIRKBRIDE2

Lancaster University

We develop appropriately generalized notions of indexability for prob-
lems of dynamic resource allocation where the resource concerned may be
assigned more flexibility than is allowed, for example, in classical multi-
armed bandits. Most especially we have in mind the allocation of a divisible
resource (manpower, money, equipment) to a collection of objects (projects)
requiring it in cases where its over-concentration would usually be far from
optimal. The resulting project indices are functions of both a resource level
and a state. They have a simple interpretation as a fair charge for increasing
the resource available to the project from the specified resource level when
in the specified state. We illustrate ideas by reference to two model classes
which are of independent interest. In the first, a pool of servers is assigned
dynamically to a collection of service teams, each of which mans a service
station. We demonstrate indexability under a natural assumption that the ser-
vice rate delivered is increasing and concave in the team size. The second
model class is a generalization of the spinning plates model for the optimal
deployment of a divisible investment resource to a collection of reward gen-
erating assets. Asset indexability is established under appropriately drawn
laws of diminishing returns for resource deployment. For both model classes
numerical studies provide evidence that the proposed greedy index heuristic
performs strongly.

1. Introduction. A notable, now classical, contribution to the theory of dy-
namic resource allocation was the elucidation by Gittins [8, 9] of index-based so-
lutions to a large family of multi-armed bandit problems (MABs). This is a class
of models concerned with the sequential allocation of effort, to be thought of as a
single indivisible resource, to a collection of stochastic reward generating projects
(or bandits as they are sometimes called). Gittins demonstrated that optimal project
choices are those of highest index. There is no doubt that the idea that strongly per-
forming policies are determined by simple, interpretable calibrations (i.e., indices)
of decision options is an attractive and powerful one and offers crucial compu-
tational benefits. There is now substantial literature describing extensions to and
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reformulations of Gittins’ result. Some key contributions are cited in the recent
survey of Mahajan and Teneketzis [14].

Whittle [21] introduced a class of restless bandit problems (RBPs) as a means
of addressing a critical limitation of Gittins’ MABs, namely, that projects should
remain frozen while not in receipt of effort. In RBPs, projects may change state
while active or passive though according to different dynamics. However, this gen-
eralization is bought at great cost. In contrast to MABs, RBPs are almost certainly
intractable having been shown to be PSPACE-hard by Papadimitriou and Tsitsik-
lis [16]. Whittle [21] proposed an index heuristic for those RBPs which pass an
indexability test. This heuristic reduces to Gittins’ index policy in the MAB case.
Whittle’s index emerges from a Lagrangian relaxation of the original problem and
has an interpretation as a fair charge for the allocation of effort to a particular
project in a particular state. Weber and Weiss [20] established a form of asymptotic
optimality for Whittle’s heuristic under given conditions. More recently, several
studies have demonstrated the power of Whittle’s approach in a range of appli-
cation areas. These include the dynamic routing of customers for service [2, 10],
machine maintenance [13], asset management [11] and inventory routing [1].

The above classical models and associated theory are undeniably powerful when
applicable. However, the scope of their applicability is heavily constrained by the
very simple view the models take of the resource to be allocated. As indicated
above, in Gittins’ MAB model a single indivisible resource is allocated wholly
and exclusively to a single project at each decision epoch. In Whittle’s RBP for-
mulation, parallel server versions of this are allowed. Many applications, however,
call for the allocation of a divisible resource (e.g., money, manpower or equipment)
in situations where its over concentration would usually be far from optimal. This
is the case, for example, in the problem concerning the planning of new product
pharmaceutical research which was discussed by Gittins [9] and which provided
practical motivation for his pioneering contribution. This paper records the first
outcomes of a major research program whose goal is to develop a usable and ef-
fective index theory for such problems.

In Section 2 we present a general model for dynamic resource allocation. Both
Gittins’ MABs and Whittle’s RBPs may be recovered as special cases as may the
recent model of [12] which extends Gittins’ MABs such that bandit activation
consumes amounts of the available resource which may vary by bandit and state.
Our general model allows for resource to be applied at a range of levels to each
constituent project, subject to some overall constraint on the total rate at which re-
source is available. A notion of (full) indexability which generalizes that of Whittle
for RBPs is developed. Any project which is fully indexable has an index which
is a function both of a given resource level (a) and of a given state (x). The index
W(a,x) may be understood as a fair charge for raising the project’s resource level
above a when in state x. We discuss how to use such indices to develop heuristics
for dynamic resource allocation when all projects are fully indexable.
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In Sections 3 and 4 we use the ideas and methods of Section 2 to construct index
heuristics for the dynamic allocation of a divisible resource in the context of two
model classes which are of considerable interest in their own right. In Section 3
we deploy the framework of Section 2 to develop heuristics for the dynamic allo-
cation of a pool of S servers to K service stations (or customer classes) at which
queues may form. This model is able to capture situations where, for example,
each of K customer classes is served by a dedicated team of specialists. Addition-
ally, S higher level generalist servers are available for deployment across the cus-
tomer classes to supplement the specialist teams as demand dictates. Deployment
of ak generalists to customer class k enhances the local specialist team which then
delivers service collectively at rate μk(ak). An assumption that the service rate
functions μk are increasing and concave reflects a law of diminishing returns as
service teams grow. The problem of determining how the pool of generalists should
be deployed across the customer classes in response to queue length information
is formulated as a dynamic resource allocation problem of the kind discussed in
Section 2. The analysis which establishes full indexability in Section 3 markedly
adds to the queueing control literature in establishing monotonicity with respect to
service costs of optimal policies for a derived problem involving a single queue.
An algorithm is given for the computation of indices. A numerical study provides
evidence that a greedy index heuristic for allocating the common service pool is
close to optimal throughout a numerical study featuring nearly 10,000 two station
problems.

The model class studied in Section 4 generalizes the so-called spinning plates
model discussed by Glazebrook, Kirkbride and Ruiz-Hernandez [11]. It is a flex-
ible finite state model class in which a divisible investment resource is available
to drive improvements to the (reward) performance of K reward generating assets,
which in the absence of any such resource deployment will tend to deteriorate.
Positive investment both arrests an asset’s tendency to deteriorate and enhances
asset performance by enabling movement of the asset state toward those in which
its reward generating performance will be stronger. Full indexability for assets is
established under laws of diminishing returns as asset investment levels grow. This
considerably extends the work of Glazebrook, Kirkbride and Ruiz-Hernandez [11].
A numerical study which features 14,000 two asset problems testifies to the strong
performance of the greedy index heuristic in comparison to optimum and to com-
petitor policies. Conclusions and proposals for further work are discussed in Sec-
tion 5.

2. A model for dynamic resource allocation. We propose a semi-Markov
decision process (SMDP) formulation {(�k,Lk, ck, rk, qk),1 ≤ k ≤ K} of the
problem of dynamically allocating a resource to a collection of K stochas-
tic projects. This formulation includes Gittins’ MABs and Whittle’s RBPs as
special cases. In our SMDP project k is characterized by its (finite or count-
able) state space �k , its highest activation level Lk ∈ Z

+, cost rate function
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ck : {0,1, . . . ,Lk}×�k → R
+, resource consumption function rk : {0,1, . . . ,Lk}×

�k → R
+ and Markov transition law qk . The model is in continuous time. We use

xk, x
′
k ∈ �k for generic states of project k and x,x′ ∈×K

k=1 �k for generic states of
the process. In the SMDP an action a = (a1, a2, . . . , aK) must be taken at time 0
and after each (state) transition of the process. This specifies the resource level
ak ∈ {0,1, . . . ,Lk} to be applied to project k,1 ≤ k ≤ K . The choice ak = 0 in-
dicates that resource at a minimal level (usually none) is to be applied to k (k is
passive), while the choice ak = Lk indicates a maximal resource allocation. Re-
source level ak applied to project k when in state xk leads to a consumption of
resource at rate rk(ak, xk), with rk(·, xk) increasing ∀k, xk . In the major examples
discussed in the upcoming sections we will have rk(ak, xk) = ak ∀k, xk and the
resource level is identified with the resource consumed. When resource level ak is
applied to project k when in state xk , it incurs costs at rate ck(ak, xk). Both cost
and resource consumption rates are additive over projects. It will be convenient
to write c(a,x) = ∑

k ck(ak, xk) and r(a,x) = ∑
k rk(ak, xk). The set of admissible

actions in process state x is given by A(x) = {a; r(a,x) ≤ R} where R is the rate at
which resource is available to the system, assumed constant over time. We suppose

that A(x) �= φ,x ∈×K

k=1 �k . An admissible policy is a rule for taking admissible
actions.

Should action a be taken when the system is in state x, the system will remain
in state x for an amount of time which is exponentially distributed with rate

∑
x′∈×k �k

q(x′ | x,a) =
K∑

k=1

∑
x′
k∈�k

qk(x
′
k | xk, ak) ≤ Q < ∞ ∀x,a.

The transition following will be from state xk to state x′
k within project k with

probability

qk(x
′
k | xk, ak)

{ ∑
x′∈×k �k

q(x′ | x,a)

}−1

.

Hence the projects evolve independently, given the choice of action, with qk yield-
ing transition rates for project k. The goal of analysis is the determination of a
policy for resource allocation (a rule for taking admissible actions at all decision
epochs) which minimizes the average cost per unit time incurred over an infinite
horizon.

To develop ideas and notation we use Ū for the set of deterministic, stationary,
Markov (DSM) and admissible policies determined by functions u with domain×K

k=1 �k which satisfy u(x) ∈ A(x) ∀x. Fix u ∈ Ū. We shall also use {X(t), t ≥ 0}
for the system state evolving over time and [u{X(t)}, t ≥ 0] for the corresponding
stochastic process of admissible actions taken by u. We write

C(u,x) = lim inf
t→∞

1

t

(∫ t

0
E

x
uc(u{X(s)},X(s)) ds

)
(1)
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for the average cost per unit time incurred under policy u over an infinite horizon
from initial state x. In (1) E

x
u denotes an expectation taken over realizations of the

system evolving under u from initial state x. We shall assume the existence of a
policy u ∈ Ū such that C(u,x) < ∞ ∀x and write Copt(x) for the minimized cost
rate, namely,

Copt(x) = inf
u∈Ū

C(u,x).(2)

We shall use the term optimal to denote a policy (assumed to exist) which achieves
the infimum in (2) uniformly over initial states. This applies both to the problem
in (2) and also to the derived optimization problems we shall discuss later in the
account. In the model classes featured in Sections 3 and 4 it will be the case that
the average costs in (1) and (2) are independent of x. Henceforth, for simplicity,
we shall suppress dependence on the initial state x in the notation.

We shall use

R(u) = lim inf
t→∞

1

t

(∫ t

0
Eur(u{X(s)},X(s)) ds

)
(3)

for the average rate at which resource is consumed under policy u. We also write

C(u) =
K∑

k=1

Ck(u), R(u) =
K∑

k=1

Rk(u)(4)

to give a disaggregation of the cost and resource consumption rates into the con-
tributions from individual projects.

In principle, the tools of dynamic programming (DP) are available to determine
optimal policies. See, for example, [17]. However, direct application of DP is com-
putationally infeasible other than for small problems (crucially, small K). Hence,
our primary interest lies in the development of heuristic policies which are close to
cost minimizing. To this end we relax the optimization problem in (2) by extend-
ing the class of policies from the DSM admissible class Ū to those DSM policies

u :×K

k=1 �k →×K

k=1{0,1, . . . ,Lk} which consume resource at an average rate
which is no greater than R. Hence, we write

Ćopt = inf
u

K∑
k=1

Ck(u),(5)

where in (5), the infimum is taken over the collection of DSM policies satisfying

K∑
k=1

Rk(u) ≤ R.(6)

We now relax the problem again by further extending the class of policies and by
incorporating the constraint (6) into the objective (5) in a Lagrangian fashion. We
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write

C(W) = inf
u

K∑
k=1

{Ck(u) + WRk(u)} − WR.(7)

In (7) the infimum is taken over the class of DSM policies u :×K

k=1 �k →
×K

k=1{0,1, . . . ,Lk} which allow, for each project k, a free choice of action from
the set {0,1, . . . ,Lk} at each decision epoch. It is clear that

C(W) ≤ Ćopt ≤ Copt, W ∈ R
+.

However, the Lagrangian relaxation of our optimization problem expressed by (7)
admits, on account both of the policy class involved and the nature of the objec-
tive, an additive project-based decomposition. Expressed differently, an optimal
policy for (7) operates optimal policies for the individual projects in parallel. In an
obvious notation we write

C(W) =
K∑

k=1

Ck(W) − WR,(8)

where

Ck(W) = inf
uk

{Ck(uk) + WRk(uk)}, 1 ≤ k ≤ K.(9)

The optimization problem in (9) concerns project k alone. We denote it P(k,W).
In its objective the Lagrange multiplier W plays the role of a charge per unit of
time and per unit of resource consumed. An optimal policy uk(W) for P(k,W)

minimizes an aggregate rate of project costs incurred and charges levied for re-
source consumed. Further, the policy u(W) which applies uk(W) to each project k,
achieves C(W) in (7) and hence provides a solution to the above Lagrangian re-
laxation. Note that in what follows we shall use the notation u(W,x), uk(W,xk)

to denote the action (resource consumption levels) chosen by DSM policies
u(W),uk(W) in states x, xk , respectively.

In order to develop natural project calibrations (or indices) which can facilitate
the construction of effective heuristics for our original problem (2), we seek opti-
mal policies for the problems {P(k,W),W ∈ R

+,1 ≤ k ≤ K} which are structured
as in Definition 1 below. We first require additional notation. Write

�k{uk(W), a} = {x ∈ �k;uk(W,x) ≤ a}, a ∈ {0,1, . . . ,Lk − 1},(10)

for the set of project k states for which policy uk(W) chooses to consume resource
at level a or below.

DEFINITION 1 (Full indexability). Project k is fully indexable if there exists a
family of DSM policies {uk(W),W ∈ R

+} such that uk(W) is optimal for P(k,W)

∀W and �k{uk(W), a} is nondecreasing in W for each a ∈ {0,1, . . . ,Lk − 1}.
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To summarize the requirements of Definition 1, a project k will be fully in-
dexable if the problem P(k,W) has an optimal policy which, for any given state,
consumes an amount of resource which is decreasing in the resource charge W .
Full indexability enables a calibration of the individual projects as described in
Definition 2.

DEFINITION 2 (Project indices). If project k is fully indexable as in Defini-
tion 1, a corresponding index function Wk : {0,1, . . . ,Lk −1}×�k → R

+ is given
by

Wk(a, x) = inf[W ;x ∈ �k{uk(W), a}].(11)

REMARK. The index Wk(a, x) can be thought of as a fair charge at project
k for raising the resource level from a to a + 1 in state x. Were a resource
charge less than Wk(a, x) to be levied, the consumption of the additional re-
source would be preferable, while if the resource charge were to be in excess
of the index, that would not be the case. We shall adopt the convention that the
index function is extended to Wk : {−1,0,1, . . . ,Lk} × �k → R

+ ∪ {∞} where
Wk(−1, x) = ∞,Wk(Lk, x) = 0 ∀x ∈ �k .

The following is a simple consequence of the above definitions. Its proof is
omitted.

LEMMA 1. If project k is fully indexable, the index Wk(a, x) is decreasing
in a, for fixed x.

Hence, under full indexability, the fair charge for raising the resource level for
project k in any state x from a to a + 1 is decreasing in the resource level a.

We now return to consideration of the Lagrangian relaxation in (7) and (8) and
suppose that all K projects are fully indexable with families of optimal policies

{uk(W),W ∈ R
+,1 ≤ k ≤ K}

structured as in Definition 1. Under full indexability, all of these policies have a
structure describable in terms of the index functions Wk,1 ≤ k ≤ K . Theorem 2
now follows.

THEOREM 2. Suppose that all K projects are fully indexable with extended
index functions Wk : {−1,0,1, . . . ,Lk} × �k → R

+ ∪ {∞}. The policy u(W) such
that

u(W,x) = a ⇐⇒ Wk(ak − 1, xk) > W ≥ Wk(ak, xk),

1 ≤ k ≤ K,x ∈×K

k=1 �k,

achieves C(W) ∀W ∈ R
+.



GENERAL NOTIONS OF INDEXABILITY 883

REMARK. According to Theorem 2, policy u(W) constructs actions (alloca-
tions of resource) in each system state by accumulating resource at each project un-
til the fair charge for adding further resource drops below the prevailing charge W .
This is strongly suggestive of how effective, interpretable heuristics for our origi-
nal dynamic resource allocation problem based on the above indices (fair charges)
may be constructed when all projects are fully indexable. A natural greedy index
heuristic constructs actions in every system state by increasing resource consump-
tion levels in decreasing order of the above station indices until the point is reached
when the resource constraint is violated by additional allocation of resource.

Formally the greedy index heuristic is structured as follows:

Greedy index heuristic. In state x the greedy index heuristic constructs an ac-
tion (allocation of resource) as follows:

Step 1. The initial allocation is 0 = {0,0, . . . ,0}. The current allocation is a =
{a1, a2, . . . , aK} with

∑
k rk(ak, xk) < R.

Step 2. Choose any k satisfying

Wk(ak, xk) = max
1≤j≤K

Wj(aj , xj ).

Step 3. If ek denotes a K-vector whose kth component is 1 with zeroes else-
where, the new deployment is a + ek if∑

l �=k

rl(al, xl) + rk(ak + 1, xk) ≤ R.(12)

If there is strict inequality in (12), return to Step 1 and repeat. Otherwise, stop and
declare a + ek to be the chosen action in x. If∑

l �=k

rl(al, xl) + rk(ak + 1, xk) > R,

stop and declare a to be the chosen action in x.

REMARK. We shall use Figure 1 to illustrate the construction of actions by
both the policy u(W) (as in Theorem 2) and the greedy index heuristic in a simple
problem with K = 2 in which both projects are fully indexable. Section 3 discusses
a class of models in which rk(ak, xk) = ak ∀k, xk and where all projects have state
space N and a common maximum resource level, L say, which is equal to R, the
total rate at which resource is available. Suppose now that L = R = 5 in such a
model and that the system state is x = (x1, x2) = (5,2). Figure 1 indicates values
of the appropriate project indices W1(a,5) and W2(a,2) for the range 0 ≤ a ≤ 4
together with the value of the Lagrange multiplier W .

The policy u(W) will make allocations of resource supported by those index
values which are above W . Hence from Figure 1, the choice of action in state
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FIG. 1. Index values for state x = (5,2).

x = (5,2) will be a = (2,4). This is an inadmissible action for the original problem
since the total resource rate allocated (6) exceeds that available (5). The greedy
heuristic makes allocations of resource supported by the five largest index values
(indicated by ∗ in Figure 1). Plainly, the action taken by the index heuristic is
a = (2,3). As the system state evolves under the operation of either policy, the
index values change as do the implied actions.

The major challenge to implementation of the above program for heuristic con-
struction is the identification of optimal policies for the problems

{P(k,W),1 ≤ k ≤ K,W ∈ R
+},

which meet the requirements of Definition 1. In Sections 3 and 4 we are able to
achieve this in the context of two model classes for which we are able to establish
an appropriate form of full indexability. For the Section 3 problem, we also give
an algorithm for index computation. For both model classes we proceed to assess
the performance of the greedy index heuristic in extensive numerical studies.

REMARK. We recover Whittle’s RBPs [21] by making the choices rk(ak ,
xk) = ak,Lk = 1,1 ≤ k ≤ K and R < K in the above. Hence there are just two
modes of activation (active, passive) of each project, with R projects to be made
active at each epoch. For this special case the above greedy index heuristic is pre-
cisely the index heuristic proposed by Whittle. If we make the further choice R = 1
and impose the requirement that projects can only change state under the active ac-
tion, we then recover Gittins’ MAB [8] and its associated (optimal) index policy.

3. The optimal allocation of a pool of servers. We illustrate the above ideas
by considering a set-up in which service is provided at K service stations. These
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stations could represent distinct geographical locations or facilities dedicated to
the service of a particular class of customer. Customers arrive at the stations in K

independent Poisson streams, with λk the rate for station k. A pool of S servers is
available to support service at the K stations. Should a servers from the pool be
allocated to station k at any point, the resulting exponential service rate is μk(a).
Note that there may be a local team of servers permanently stationed at k (i.e., in
addition to any allocated from the pool) in which case we will have μk(0) > 0.
Please note also that we shall suppose that all servers (whether permanently based
at a location or allocated there from the common pool) offer service as a team,
namely, that they act in concert as a single server. The goal of analysis is the
determination of a policy for deploying the common service pool in response to
queue length information to minimize some linear measure of holding cost rate for
the system incurred over an infinite horizon.

More formally, the system state at time t is n(t) = {n1(t), n2(t), . . . , nK(t)}
where nk(t) is the number of customers at service station k (including any in ser-
vice) at t . We shall on occasion refer to nk(t) as the head count at station k at
time t . This system state is observed continuously. The decision epochs for the
system are time zero and the times at which the system state changes. At each de-
cision epoch, some action a = (a1, a2, . . . , aK) is taken, where ak ∈ N,1 ≤ k ≤ K ,
and

∑
k ak ≤ S. Action a denotes the deployment of ak servers from the central

pool to service station k,1 ≤ k ≤ K . Should action a be taken in state n then an
exponentially distributed amount of time with rate

� = ∑
k

{λk + μk(ak)I (nk > 0)}(13)

will elapse before a change of state. In (13) I is an indicator function. The next
state of the system will be n + ek with probability λk/� and will be n − ek with
probability μk(ak)I (nk > 0)/�,1 ≤ k ≤ K .

A DSM admissible policy is given by a map u : NK → �, where

� =
{

a;ak ∈ N,1 ≤ k ≤ K, and
∑
k

ak ≤ S

}
(14)

and is a rule for choosing admissible actions as a function of the current system
state. The cost associated with policy u is given by

C(u) = ∑
k

hkNk(u),(15)

where the hk are positive weights (holding cost rates) and Nk(u) is the time average
number of customers at station k under policy u. The optimization problem of
interest is given by

Copt = inf
u∈Ū

C(u),(16)
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where in (16) the infimum is over the set Ū of DSM admissible policies.
We pause to note that this problem does indeed belong to the class of dynamic

resource allocation problems described in the preceding section. We make the
choices ck(ak, nk) = hknk, rk(ak, nk) = ak,Lk = S,1 ≤ k ≤ K , with the transition
rates qk(n

′
k | nk, ak) satisfying

qk(nk + 1 | nk, ak) = λk,

qk(nk − 1 | nk, ak) = μk(ak)I (nk > 0),

for all choices of k,nk and ak . They are otherwise zero. One thing which is special
about this problem is that it is possible to utilize all of the resource which is on
offer all of the time. It is plainly optimal to do so. Hence, in (14), we can restrict
admissible actions to those which deploy all servers from the pool.

Before proceeding to develop appropriate notions of full indexability/indices,
we describe assumptions we shall make about our service rate functions μk(·). In
Assumption 1 we use the notation

�x� = min{y;y ∈ Z
+ and y > x}, x ∈ R

+.

ASSUMPTION 1. There exist functions μ̃k : R+ → R
+ which are strictly in-

creasing, twice differentiable and strictly concave, satisfying

μ̃k(a) = μk(a), a ∈ [0, S] ∩ N,(17)

and
K∑

k=1

�μ̃−1
k (λk)� < S.(18)

From (17) the functions μ̃k,1 ≤ k ≤ K , are smooth extrapolations of the service
rates on the integers in the range [0, S]. The properties of these functions reflect
the fact that, while an increase in the size of the team at a station results in a higher
service rate, the marginal benefit of adding an additional member diminishes as
the team size grows. Requirement (18) guarantees the existence of stable policies
under which all queue lengths remain finite.

REMARK. It is the assumption of strict concavity of the service rate functions
at each station which stimulates an active approach to the distribution of the pool of
servers around the stations and which makes this an interesting problem. Had we
assumed, for example, that the service rates were all convex in the team size, then
[18] shows that in an optimal policy the service pool would always be allocated
en bloc and we are driven back to the “single server” world of the simple bandit
models. This result is intuitively obvious, as observed by Richard Serfozo to Sobel:
“the fastest rate is also the cheapest.” Indeed, the resulting service control problem
has a well-known solution in the form of the so-called cμ-rule. (See [3].)
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We are able to develop a Lagrangian relaxation of the problem in (15) and (16)
as in the preceding section. As in the analysis of Section 2 up to (8), such a relax-
ation yields K optimization problems P(k,W), one for each station, which here
take the form

Ck(W) = inf
uk

{hkNk(uk) + WSk(uk)},(19)

where in (19), the infimum is over the class of DSM policies uk : N → {0,1, . . . , S}
which can deploy any number of servers (up to S) at station k at each epoch,
Nk(uk) is the time average head count and Sk(uk) the time average number of
servers deployed at k under policy uk . The optimization problem in (19) concerns
station k alone and seeks to choose, at each station k decision epoch and in re-
sponse to queue length information for station k, the number of servers (from the S

available) to be deployed there. The goal is to make such choices to minimize costs
which are an aggregate of those incurred through customers waiting [hkNk(uk)]
and charges imposed for the provision of service [WSk(uk)]. Note that Lagrange
multiplier W here has an economic interpretation as the charge imposed per server
per unit of time.

We now wish to develop index heuristics for our service allocation problem by
developing station indices of the form described in the preceding section. These
flow from the property of full indexability defined with respect to solutions to the
problems P(k,W),1 ≤ k ≤ K , and described in Definition 1. However, full in-
dexability is a property of individual stations and hence we now focus on a single
station and drop the station identifier k until further notice. For clarity, the single
station problem P(W) is formulated as an SMDP as follows:

1. The state of the system at time t ∈ R
+ is n(t), the number of customers (head

count) at the station. New customers arrive at the station according to a Poisson
process of rate λ.

2. Decision epochs occur at time 0 and whenever there is a change of state. At
each such epoch an action from the set A ≡ {0,1, . . . , S} is chosen. Should
action a ∈ A be chosen at time t at which point n(t) = n > 0 then costs will
be incurred from t at rate hn + Wa and the first event following t will occur
at time t + X where X ∼ exp[λ + μ(a)]. With probabilities λ[λ + μ(a)]−1

and μ(a)[λ + μ(a)]−1 the event will be, respectively, an arrival or a service
completion.

3. The goal of analysis will be the determination of a stationary policy to minimize
the average cost rate incurred over an infinite horizon. Trivially, optimal policies
offer no service (a = 0) when the system is empty [n(t) = 0].
The quest for full indexability is greatly simplified in this case by the existence

of optimal policies for P(W) for which the choice of number of servers is increas-
ing in the current head count. We call such policies monotone. This conclusion
follows from Theorem 4 in Stidham and Weber [19], which applies to a queueing
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system with state space N and Poisson arrivals with an objective which combines
a holding cost which is both increasing in the state and unbounded, with action
costs which are nonnegative and increasing in the resource level. All of these re-
quirements hold in P(W). Stidham and Weber’s analysis first considers the prob-
lem of choosing a policy to minimize the expected cost incurred in moving the
system from a general initial state to the empty state (their Theorem 2) and then
deploys arguments from renewal theory to demonstrate that such a policy will also
minimize long run average costs (their Section 1.3). We state our conclusion as
Proposition 3.

PROPOSITION 3 (Stidham and Weber). There exists a monotone policy which
is optimal for P(W).

The problem of establishing monotonicity with respect to queue size of optimal
policies for service control problems for queues with Poisson input is not new. In
addition to Stidham and Weber [19], see [4–7, 15]. While such monotonicity is
helpful in establishing full indexability and in the subsequent computation of index
functions, it is not the key to proving the latter. This is rather the demonstration
(to which we now proceed in Section 3.1) that optimal policies for P(W) are
monotone in W . Proving this significantly extends the literature on service control
problems for M/M/1 queues.

3.1. Stations are fully indexable. In light of Proposition 3 we can recast and
simplify the requirements of full indexability expressed in Definition 1. Let u(W)

be an optimal policy for P(W) which is monotone. It follows that for all choices
of W ∈ R

+ and 0 ≤ a ≤ S − 1,

�{u(W), a} ≡ {n ∈ N;u(W,n) ≤ a} = {0,1, . . . ,N(a,W)}
for some N(a,W) ∈ N ∪ {∞}. We now have the following:

DEFINITION 3 (Full indexability). The station will be fully indexable if there
exists a family of DSM policies {u(W),W ∈ R

+} for which (i) u(W) is monotone
and optimal for P(W) ∀W ∈ R

+ and (ii) the corresponding N(a,W) is increasing
in W,∀a ∈ {0,1, . . . , S − 1}.

To summarize the requirements of Definition 3, a station will be fully indexable
if the service charge problem P(W) has a monotone optimal policy for which the
number of servers deployed is decreasing in the service charge W for any given
head count. Full indexability enables a calibration of the individual stations as
described in Definition 4.

DEFINITION 4 (Station indices). If the station is fully indexable, the corre-
sponding index function W : {0,1, . . . , S − 1} × N → R

+ is given by

W(a,n) = inf{W ;n ≤ N(a,W)}.(20)
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In light of Proposition 3 above, Lemma 1 may be extended as follows in this
case:

LEMMA 4. If the station is fully indexable, the index W(a,n) is (i) decreasing
in a for fixed n and (ii) increasing in n for fixed a.

Please note that optimal policies for P(W) will be unchanged if all cost rates
(both holding costs and service charges) are divided by W > 0 throughout. When
we do that, we see that increasing W is equivalent to decreasing the holding cost
rate h in problems for which the service charge rate is fixed. This being so, we de-
velop the following convenient reformulation of the definition of full indexability
above: refer to the problem obtained by setting W = 1 in the above [namely P(1)]
as Q(h) to emphasize dependence on the holding cost parameter h. Hence, Q(h)

is the problem given by

Ĉ(h) = inf
u

{hN(u) + S(u)}.
From Proposition 3 we are able to assert the existence of optimal policies for Q(h)

which are monotone. The following is trivially equivalent to Definition 3 above.

DEFINITION 5 (Full indexability—alternative definition). The station will be
fully indexable if there exists a family of DSM policies {u(h),h ∈ R

+} such that,
(i) u(h) is optimal for Q(h) ∀h ∈ R

+; (ii) each u(h) is monotone with

�{u(h), a} = {0,1, . . . ,M(a,h)},
where M(a,h) is deceasing in h ∀a ∈ {0,1, . . . , S − 1}.

To summarize, to achieve full indexability, instead of requiring (according to
Definition 3) that the optimal service level decreases with the service charge W (for
a fixed value of the holding cost rate h), we now equivalently require it to increase
with the holding cost rate h (for fixed service charge W = 1). This reformulation
of full indexability which focuses attention on the holding cost element of the
objective yields a more accessible account.

We begin this part of our analysis by noting that it is easy to establish that any
optimal policy u(h) for Q(h) must be such that μ{u(h,n)} > 0, n ≥ 1. It follows
that the head count process is ergodic under its operation. We uniformize station
evolution by rescaling time such that

λ + μ(S) = 1.

Under this uniformization, the DP optimality equations for the problem Q(h) are
as follows:

λv(h,n) = hn + λv(h,n + 1)
(21)

+ min
a

{a − μ(a)[v(h,n) − v(h,n − 1)]} − γ (h), n ≥ 1,
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where the minimum in (21) is over the range 0 ≤ a ≤ S. Note that in (21) the
quantity γ (h) is the minimized cost rate for Q(h) with v(h, ·) the corresponding
bias function, where v(h,0) = 0. If we write Ĉ(h,n, t) for the minimum total
cost incurred in Q(h) during [0, t) when n(0) = n, then we have Ĉ(h,n, t) ∼
tγ (h) + v(h,n).

Action a is optimal for Q(h) in state n if and only if it achieves the minimum
in (21). To proceed further, we write 	v(h,n) ≡ v(h,n) − v(h,n − 1), n ≥ 1, and
	v(h,0) = 0. Hence (21) now becomes

−λ	v(h,n + 1) = hn + min
a

{a − μ(a)	v(h,n)} − γ (h), n ≥ 0.(22)

We note in passing that it is trivial to deduce from the inductive specification of
	v(h, ·) given by the optimality equations, that the quantities {	v(h,n), n ≥ 1}
are well defined, including in the event that there are several optimal policies
for Q(h). The following is an immediate consequence of (22).

LEMMA 5. A DSM policy u is optimal for Q(h) if and only if

	v(h,n)
[
μ

(
u(n) + 1

) − μ(u(n))
]

(23)
≤ 1 ≤ 	v(h,n)

[
μ(u(n)) − μ

(
u(n) − 1

)]
, n ≥ 1,

where μ(S + 1) = μ(S) in (23).

Please note that if a policy u is such that the inequalities in (23) are all strict
then it is uniquely optimal and so must be monotone by Proposition 3. Should the
left-hand inequality be satisfied as an equation for some n with u(n) < S, then both
u(n) and u(n) + 1 are optimal choices of action in state n. To develop the analysis
further we need information regarding the quantities 	v(h,n) when viewed as
functions of h.

LEMMA 6. The function 	v(·, n) is continuous ∀n ≥ 1.

PROOF. It is trivial to establish that the average cost rate γ (h) is continuous
in h. Observe from (22) that

	v(h,1) = λ−1γ (h)

and hence 	v(·,1) is continuous. From (22) we also note that it is straightforward
to establish that, if 	v(·, n) is continuous, then so must be 	v(·, n + 1), n ≥ 1.
The result follows by an induction argument. �

Now use u(h) to denote any DSM policy which is optimal for Q(h). We use
T [u(h), n] for the expected time until the system is first emptied under u(h) given
that n(0) = n. We also use C[u(h), n] for the expected cost incurred under u(h)

from time 0 when n(0) = n until the system first empties.
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LEMMA 7. ∀h > 0,

	v(h,n) ≥ {
T (u(h), n) − T

(
u(h), n − 1

)}{hn − γ (h)} → ∞, n → ∞.

PROOF. A standard argument, based on the fact that the system evolving under
u(h) regenerates upon every entry into the empty state, yields the conclusion that

v(h,n) = C(u(h), n) − γ (h)T (u(h), n), n ≥ 1,(24)

from which we immediately infer that

	v(h,n) = {
C(u(h), n) − C

(
u(h), n − 1

)}
(25)

− γ (h)
{
T (u(h), n) − T

(
u(h), n − 1

)}
, n ≥ 1.

Consider now the system evolving under u(h) from time 0 when its state is
n until it enters state n − 1 for the first time. The expected time taken is plainly
T [u(h), n] − T [u(h), n − 1] and the holding cost rate incurred through this period
is bounded below by hn. If we write the mean integrated head count divided by
T [u(h), n] − T [u(h), n − 1] as χ [u(h), n] ≥ n and the mean total service cost
divided by T [u(h), n] − T [u(h), n − 1] as ψ[u(h), n] ≥ 1 we infer that

C(u(h), n) − C
(
u(h), n − 1

)
= {hχ(u(h), n) + ψ(u(h), n)}{T (u(h), n) − T

(
u(h), n − 1

)}
(26)

≥ hn
{
T (u(h), n) − T

(
u(h), n − 1

)}
, n ≥ 1.

The inequality in the lemma follows immediately from (25) and (26). To justify the
divergence claim, we simply observe that an assumed permanent utilization of the
maximum service rate μ(S) implies that {μ(S) − λ}−1 is a uniform lower bound
on T [u(h), n] − T [u(h), n − 1], n ≥ 1. The proof is complete. �

Before proceeding, we observe from (25) and (26) and the definitions of the
quantities concerned that we may write

	v(h,n) = [h{χ(u(h), n) − α(u(h))χ(u(h),1)}
+ {ψ(u(h), n) − α(u(h))ψ(u(h),1)}](27)

× {
T (u(h), n) − T

(
u(h), n − 1

)}
, n ≥ 1,

where

α(u(h)) = T (u(h),1)[T (u(h),1) + λ−1]−1.

Note that it is straightforward to establish that

χ(u(h), n) ≥ χ(u(h),1) > α(u(h))χ(u(h),1), n ≥ 1.(28)

The following is an immediate consequence of (23) and Lemma 7.
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LEMMA 8. ∀h > 0,∃Nh < ∞ such that u(h,n) = S,n ≥ Nh, for all choices
of u(h).

We are now in a position to prove full indexability. The key fact to establish is
that 	v(h,n) is increasing in h for each n ≥ 1. Full indexability will then follow
trivially from (23).

THEOREM 9 (Full indexability). (i) The function 	v(·, n) is increasing
∀n ≥ 1; (ii) the station is fully indexable.

PROOF. Fix h0 > 0. There are two possibilities. Either there exists a monotone
policy u(h0) which is uniquely optimal for Q(h0) (case 1) or not (case 2). Under
case 1, invoking the preceding lemma we may assert the existence of Nh0 < ∞
such that (23) is satisfied in the form

	v(h0, n)
[
μ

(
u(h0, n) + 1

) − μ(u(h0, n))
]

< 1 < 	v(h0, n)
[
μ(u(h0, n)) − μ

(
u(h0, n) − 1

)]
,

(29)
1 ≤ n ≤ Nh0 − 1,

1 < 	v(h0,Nh0)[μ(S) − μ(S − 1)].
Since 	v(·, n) is continuous for n ≥ 1, it must follow that ∃ε > 0 with the prop-
erty that the inequalities in (29) are satisfied with h replacing h0 for all h in the
range h0 ≤ h < h0 + ε. We infer from (23) that monotone policy u(h0) is uniquely
optimal for Q(h),h ∈ (h0, h0 + ε). If we now consider the expression in (27) with
α,χ,T computed with respect to policy u(h0), it follows easily that 	v(h,n) is
increasing and linear in h over the range h0 ≤ h < h0 + ε.

Now consider case 2. Use ϒ(h0) to denote the collection of DSM policies
which are optimal for Q(h0). From the preceding lemma and invoking the strict
concavity of μ(·), we infer that ϒ(h0) must be finite. Further, the continuity of
	v(·, n), n ≥ 1, together with (23) implies the existence of δ > 0 such that Q(h)

must be optimized by a member of ϒ(h0) for h in the range h0 ≤ h < h0 + δ.
Suppose that u ∈ ϒ(h0) optimizes Q(h) for some h ∈ (h0, h0 + δ). It then follows
from (27) that

	v(h,n) = [h{χ(u,n) − α(u)χ(u,1)} + {ψ(u,n) − α(u)ψ(u,1)}]
(30)

× {T (u,n) − T (u,n − 1)}, n ≥ 1,

where in (30), α(u),χ(u, ·),ψ(u, ·) and T (u, ·) denote quantities computed with
respect to policy u. Hence from (30), it follows that for each n ≥ 1, 	v(·, n) lies
on one of a finite collection of straight lines with positive gradient [one for each
u ∈ ϒ(h0)] throughout the range h0 ≤ h < h0 + δ. However, the continuity of
	v(·, n) implies that it must in fact lie on just one of those lines throughout that
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range. It follows that 	v(h,n) is increasing linear in h over the range h0 ≤ h <

h0 + δ. We conclude from the above consideration of cases 1 and 2 that, for each
n ≥ 1,	v(·, n) is continuous with a positive right gradient at each h > 0 and is
thus increasing. This concludes the proof of part (i).

For part (ii), we first take the analysis of part (i), case 2, a little further. Since for
the chosen δ > 0,	v(h,n) is strictly increasing through [h0, h0 + δ) for all n ≥ 1,
the only policy which can remain optimal throughout this range must satisfy con-
ditions of the form (29). This policy must be maximal (i.e., must assign maximal
service levels) among those policies in ϒ(h0) and will be uniquely optimal for
h ∈ (h0, h0 + δ) and hence monotone.

From the above discussion, we can infer the following: fix any h0 > 0 and
choose the maximal optimal policy for Q(h0). This policy is monotone. Call it
u(h0). Define h1 by

h1 = inf{h > h0;u(h0) is not optimal for Q(h)}.
By the above argument h1 > h0 and u(h0) is strictly optimal for Q(h),h ∈
(h0, h1). Further, if h1 < ∞, u(h0) is optimal for Q(h1), but not uniquely so. We
use u(h1) for the maximal DSM policy which is optimal for Q(h1). Policy u(h1)

is monotone such that

u(h1, ·) > u(h0, ·),(31)

where (31) means

u(h1, n) ≥ u(h0, n), n ≥ 1,

with strict inequality for at least one n. In this way we can develop a sequence
h0 < h1 < h2 < · · · < hN < ∞ and corresponding monotone policies u(hr),0 ≤
r ≤ N , such that:

1. u(hr) is optimal for Q(h),h ∈ [hr, hr+1],0 ≤ r ≤ N − 1;
2. u(hr+1, ·) > u(hr, ·),0 ≤ r ≤ N − 1;
3. u(hN) is optimal for Q(h),h ∈ [hN,∞) and is such that u(hN,n) = S,n ≥ 1.

Since the choice of h0 was arbitrary, indexability follows trivially from 1–3. This
completes the proof of part (ii) and of the theorem. �

3.2. Computation of station indices. In the proof of Theorem 9 we constructed
an ascending set of h-values, each of which signaled a change of optimal policy
for Q(h). In this construction the initial h0 was arbitrary. In our discussion of index
computation, we shall continue initially to operate in h-space [i.e., to consider
solutions to the optimization problems Q(h)], but will construct a descending set
of h-values, labeled j1, j2, . . . each of which will also signal a change of optimal
policy. We do this because such a set is straightforward to initialize, with j1 the
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supremum of those h for which the policy [hereafter labeled u(j0)] which applies
the maximal number of servers S whenever the queue is nonempty is not optimal
for Q(h). Because of our ability to restrict to monotone policies, it is clear that both
u(j0) and the policy u(j1) (which applies S −1 servers when the queue length is 1,
but which otherwise applies S servers) are optimal for Q(j1). By direct calculation
of the average cost rates for these policies it is straightforward to verify that

j1 = {μ(S) − λ}
{

1

μ(S) − μ(S − 1)
− S

μ(S)

}
.

We now give an algorithm for producing the sequence {jm,m ≥ 1} and the
monotone policies {u(jm),m ≥ 0} such that u(jm) is strictly optimal for Q(h)

in the range jm+1 < h < jm. Note that we take j0 = ∞. In the algorithm we utilize
the characterization of optimal policies for Q(h) given in Lemma 5 together with
the formula for 	v(h,n) given following the proof of Lemma 7.

Algorithm for index computation.
Step 0. Let m = 1. The positive real j1 and the policy u(j1) are as above. The

positive integer N1 is given by

N1 = min{n;u(j1, n) = S} = 2.

Step 1. The positive real jm, the policy u(jm) and the positive integer Nm given
by

Nm = min{n;u(jm,n) = S}
are specified. Determine (Am

n ,Bm
n ;1 ≤ n ≤ Nm) given by

Am
n = {χ(u(jm), n) − α(u(jm))χ(u(jm),1)}{T (u(jm), n) − T

(
u(jm), n − 1

)}
and

Bm
n = {ψ(u(jm), n) − α(u(jm))ψ(u(jm),1)}{T (u(jm), n) − T

(
u(jm), n − 1

)}
.

Step 2. Let jm+1 be the maximal h satisfying

{Am
n h + Bm

n }{μ(u(jm,n)) − μ
(
u(jm,n) − 1

)} = 1

for some n in the range 1 ≤ n ≤ Nm. Let nm be an n-value achieving the equality.
Step 3. Define the policy u(jm+1) by

u(jm+1, n) = u(jm,n) − I (n = nm), n ≥ 0,

where I is an indicator. Determine Nm+1 and the (Am+1
n ,Bm+1

n ;1 ≤ n ≤ Nm+1)

as in Step 1.
Step 4. If jm+1 ≤ 0, stop. Otherwise return to Step 2.
It is now straightforward to recover the station indices (as given in Definition 2)

from the quantities calculated by the above algorithm. Note, as previously, that
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optimal policies for P(W) and Q(h/W) coincide. In order to compute the station
index W(a,n), determine from the above algorithm the value jm satisfying

u(jm,n) = a + 1 and u(jm+1, n) = a.

We then infer that

W(a,n) = h

jm+1
.

3.3. Numerical study. Extensive numerical investigations have been con-
ducted on the performance of the greedy index heuristic as a policy for the queue-
ing control problems described above. We shall now present some of our results as
Examples 1 and 2.

EXAMPLE 1. All Example 1 problems concern the dynamic allocation of a
pool of twenty-five servers (S = 25) to two service stations (K = 2). Service rate
functions have the form

μk(a) = a(a + νk)
−1μk, k = 1,2.(32)

In all, 4950 problems were generated at random, consisting of 99 sets of 50
problems. For each problem the parameters λ1, λ2,μ1,μ2, ν1, ν2 were chosen by
sampling independently from uniform distributions. Full details may be found at
http://www.lums.lancs.ac.uk/files/onlinesup.pdf.

For each of the 4950 problems generated, indices were developed using the al-
gorithm given in Section 3.2. Time average holding cost rates for the greedy index
heuristic and an optimal policy were computed using DP value iteration and the
percentage cost rate excess of the index heuristic over the optimum was recorded.
Order statistics (minimum, lower quartile, median, upper quartile, maximum) of
the percentage cost rate excess over optimum of the index heuristic are given in
Table 2 for the 4950 problems overall, together with those for two of the prob-
lem sets (G7, J7) for which the heuristic performed relatively less well. For ease
of reference, Table 1 gives details of the uniform distributions used to generate

TABLE 1
Choices of the parameters λ1, λ2,μ1 and μ2 (G,J ) and ν1, ν2 (7) and η1, η2 (14) which give

challenging problem sets for Examples 1 and 2

G J 7 14

λ1 ∈ [0.8,1.1) λ1 ∈ [0.8,1.1) ν1 ∈ [5.0,10.0) η1 ∈ [0.07,0.125)

λ2 ∈ [1.6,2.2) λ2 ∈ [1.6,2.2) ν2 ∈ [0.5,2.0) η2 ∈ [0.2,0.3)

μ1 ∈ [1.5,1.8) μ1 ∈ [1.5,1.8)

μ2 ∈ [3.0,3.6) μ2 ∈ [4.4,5.0)

http://www.lums.lancs.ac.uk/files/onlinesup.pdf
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TABLE 2
The percentage cost rate excess over optimum of (i) the greedy index heuristic for all 4950

Example 1 problems, (ii) for problem sets G7 and J7 and (iii) for the best static allocation policy

Overall G7 J7 Static

MIN 0.0000 0.0416 0.0263 1.7837
LQ 0.0001 0.0745 0.0558 5.6978
MED 0.0021 0.0964 0.1021 8.1880
UQ 0.0186 0.1670 0.1433 10.9678
MAX 0.2910 0.2910 0.2422 22.1868

N 4950 50 50 4950

these challenging problem sets. Additionally, in Table 2 under the head “Static”
are recorded the order statistics for the percentage cost rate excess over optimum
for the best static policy which makes a fixed allocation of servers to stations for
all time. These latter values give an indication of the potential value of designing
a dynamic policy for these resource allocation problems.

The greedy index heuristic performs outstandingly well with a worst case sub-
optimality of 0.2910% for one of the problems generated as part of the problem
set G7. Inspection of the results for G7 and J7 show that the performance of the
index policy is excellent even in problems for which the stochastic dynamics of
the two stations are very different. Perusal of the results for individual problems
suggests that the benefits of designing a dynamic policy tend to be greatest when
the greedy index heuristic performs relatively less well. For one particular problem
not recorded in Table 2 for which the greedy index heuristic had a cost rate excess
over optimal of 0.8801% that of the best static policy was 48.9693%.

EXAMPLE 2. All Example 2 problems concern the dynamic allocation of a
pool of twenty-five servers (S = 25) to two service stations (K = 2). Service rate
functions have the form

μk(a) = (
1 − exp(−aηk)

)
μk, k = 1,2.

Other details are similar to those of Example 1. Again, 4950 problems were gen-
erated at random in 99 sets of 50. For each problem the parameters λ1, λ2,μ1,μ2,
η1, η2 were chosen by sampling independently from uniform distributions. While
Table 1 gives details of the distributions used for some of the more challenging
problems (G14, J14), full details may be found at http://www.lums.lancs.ac.uk/
files/onlinesup.pdf.

For each of the 4950 problems generated, the percentage cost rate excess of the
greedy index heuristic over the optimum was computed. The overall results are

http://www.lums.lancs.ac.uk/files/onlinesup.pdf
http://www.lums.lancs.ac.uk/files/onlinesup.pdf
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TABLE 3
The percentage cost rate excess over optimum of (i) the greedy index heuristic for all 4950

Example 2 problems, (ii) for problem sets G14 and J14 and (iii) for the best static allocation policy

Overall G14 J14 Static

MIN 0.0000 0.0803 0.0279 2.2079
LQ 0.0024 0.1473 0.1100 7.0473
MED 0.0087 0.2164 0.1495 10.2092
UQ 0.0372 0.4289 0.2509 14.4034
MAX 0.8469 0.8469 0.5905 26.5599

N 4950 50 50 4950

presented in Table 3 along with those for problem sets G14 and J14 and for the
best static policy. Similar comments apply as for Example 1.

4. Spinning plates: Optimal investment in a collection of reward generat-
ing assets. As a further illustration of the applicability of the methodology of
Section 2, we now give a brief account of a setup in which a collection of K re-
ward generating assets is maintained using a divisible investment resource. Each
asset k evolves on its (finite) state space {0,1, . . . ,Ak} with higher-valued states
being those in which the reward performance of the asset is stronger. In the ab-
sence of investment, assets tend to deteriorate toward lower-valued states. Positive
investment both arrests the asset’s tendency to deteriorate and enhances asset per-
formance by enabling upward movement of the asset state. Investment decisions
will often need to strike a balance between maintaining the performance of highly
performing assets and improving the performance of poorly performing ones. Our
model class represents a significant generalization of the spinning plates model of
asset management discussed by Glazebrook, Kirkbride and Ruiz-Hernandez [11]
to the case of a divisible resource.

Formally, the system state at time t is n(t) = {n1(t), n2(t), . . . , nK(t)}, where
nk(t) is the state of asset k at t . The system state is observed continuously with
decision epochs at time zero and at subsequent times at which the system state
changes. An admissible action is a vector a = (a1, a2, . . . , aK), with ak identified
with the rate at which investment resource is applied to asset k, where ak ∈ N,1 ≤
k ≤ K , and

∑
k ak ≤ R. Note that R is the rate at which investment resource is

available to the system.
Functions λk : {0,1, . . . ,R} × {0,1, . . . ,Ak − 1} → R

+ and μk : {0,1, . . . ,R}
×{1,2, . . . ,Ak} → R

+ are used in the specification of the transition law of asset k

as follows:

qk(nk + 1 | nk, ak) = λk(ak, nk)I (nk < Ak)
(33)

(Investment enhances asset performance)
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and

qk(nk − 1 | nk, ak) = μk(ak, nk)I (nk > 0)
(34)

(Investment arrests asset deterioration).

All other transition rates for asset k are zero. We shall assume that λk(·, nk) is
strictly increasing and strictly concave ∀nk ∈ {0,1, . . . ,Ak − 1} and that μk(·, nk)

is strictly decreasing and strictly convex ∀nk ∈ {1,2, . . . ,Ak}. These conditions
describe laws of diminishing returns as the level of investment to an asset increases,
regardless of its state. It would be natural in many application contexts to further
assume that each λk(ak, ·) is decreasing and each μk(ak, ·) is increasing ∀ak ∈
{0,1, . . . ,R}, namely, that when an asset is in a higher-valued state, improvements
take longer to achieve but asset deterioration occurs more rapidly. Our theoretical
results do not require these latter conditions to hold, though they will feature in the
problems analyzed in our numerical study. Finally, in state n, each asset k earns
returns at rate dk(nk), where dk : {0,1, . . . ,Ak} → R

+ is increasing. The dynamic
resource allocation problem of interest is expressed as

Dopt = sup
u∈Ū

∑
k

Dk(u),(35)

while in (35), Ū is the set of DSM and admissible policies and Dk(u) is the reward
rate earned by asset k under policy u.

4.1. Assets are fully indexable. Following a version of the development of
Section 2 which focuses on reward maximization instead of cost minimization,
we develop a Lagrangian relaxation of (35) which yields K single asset problems
P(k,W),1 ≤ k ≤ K , of the form

sup
uk

{Dk(uk) − WRk(uk)}.(36)

In (36), the supremum is over the class of DSM policies uk : {0,1, . . . ,Ak} →
{0,1, . . . ,R} which can apply any resource level at asset k. Further, Dk(uk) is the
asset k return rate under policy uk , while Rk(uk) is the rate of resource consumed.
Full indexability of project k requires the existence of optimal policies for (36)
which, in every state, apply a resource rate to the asset which is decreasing in the
resource charge W . In discussing full indexability, we now drop the asset subscript
k and use P(W) for the single asset problem

sup
u

{D(u) − WR(u)}.(37)

Following the approach of Section 3.1 we introduce the problem Q(h), defined by

sup
u

{hD(u) − R(u)}(38)
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and argue that full indexability will be established by the existence of optimal
policies for (38) which, in every state, choose resource levels which are increasing
in the reward multiplier h.

In order to develop the DP optimality equations for Q(h) we uniformize asset
evolution by rescaling time such that

max
0≤n≤A

{λ(R,n) + μ(0, n)} = 1.(39)

Under the rescaling in (39), we use γ (h) for the maximal reward rate for Q(h)

and v(h, ·) for the corresponding bias function. The optimality equations may be
written

0 = −γ (h) + hd(n)

+ max
a

[−a + λ(a,n)	v(h,n + 1)I (n < A)

(40)
− μ(a,n)	v(h,n)I (n > 0)],

0 ≤ n ≤ A.

In (40), we take 	v(h,n) ≡ v(h,n) − v(h,n − 1),1 ≤ n ≤ A, and the maximiza-
tion is over 0 ≤ a ≤ R. Lemma 10 uses (40) to give a characterization of optimal
policies for Q(h).

LEMMA 10. A DSM policy u is optimal for Q(h) if and only if

	v(h,n + 1)I (n < A)
[
λ
(
u(n) + 1, n

) − λ(u(n), n)
]

+ 	v(h,n)I (n > 0)
[
μ(u(n), n) − μ

(
u(n) + 1, n

)]
≤ 1 ≤ 	v(h,n + 1)I (n < A)

[
λ(u(n), n) − λ

(
u(n) − 1, n

)]
(41)

+ 	v(h,n)I (n > 0)
[
μ

(
u(n) − 1, n

) − μ(u(n), n)
]
,

0 ≤ n ≤ A,

where in (41) we take λ(R + 1, ·) ≡ λ(R, ·), λ(−1, ·) ≡ −∞,μ(R + 1, ·) ≡
μ(R, ·),μ(−1, ·) ≡ ∞.

REMARK. One important point of difference between our generalized spin-
ning plates model and the queueing models of Section 3 is that the existence of op-
timal policies for Q(h) which are monotone in state is no longer guaranteed, even
for assets for which the transition rates are state monotone for any fixed resource
level. Indeed, counter-examples are easy to find. The following asset appeared in
the very first of 2000 randomly generated problems contributing to Table 5, which
appears later in Section 4.2 as part of an extensive numerical investigation into the
performance of the greedy index heuristic.

We make the following asset choices: R = 5,A = 10

λ(a,n) = a(a + φ)−1, 0 ≤ a ≤ 5,0 ≤ n ≤ 9,



900 K. D. GLAZEBROOK, D. J. HODGE AND C. KIRKBRIDE

TABLE 4
Values of optimal actions (resource levels) for Q(h) for seven h-values and all states 0

(leftmost entry) to 10 (rightmost entry)

3 4 4 4 3 3 2 2 2 1 0 h = 7.37491
2 4 4 4 3 3 2 2 2 1 0 h = 7.07632
2 4 4 3 3 3 2 2 2 1 0 h = 5.32243
2 4 3 3 3 3 2 2 2 1 0 h = 5.21572
2 3 3 3 3 3 2 2 2 1 0 h = 4.98366
2 3 3 3 3 2 2 2 2 1 0 h = 3.84063
1 3 3 3 3 2 2 2 2 1 0 h = 3.48775

and

μ(a,n) = φ(a + φ)−1η, 0 ≤ a ≤ 5,1 ≤ n ≤ 10,

where φ = 1.30738 and η = 1.16393. Further, the return for the asset is given by
d(n) = n(n+1)−1. In Table 4, find values of u(h,n),0 ≤ n ≤ 10, for seven distinct
values of h, where u(h, ·) is an optimal policy for Q(h). Note that for the six open
h-intervals whose endpoints are the successive h values given in Table 4, the policy
which sits alongside the value of h which is the lower endpoint is uniquely optimal
throughout the interval. At no value of h in the range (3.48775,7.37491) is there
an optimal policy for Q(h) which is monotone in state. Please note that the values
in Table 4 are consistent with the asset’s full indexability in that optimal actions
for any given state are everywhere increasing in h over the range considered.

We now consider the state process {n(t), t ≥ 0} of a single asset evolving under
some fixed DSM policy u for Q(h). We shall write γ (u,h) for the reward rate
earned under policy u and v(u,h, ·) for the corresponding bias function. Recall
our earlier notational choices: if u(h) is optimal for Q(h) then γ (u(h),h) ≡ γ (h)

and v(u(h),h, ·) ≡ v(h, ·).
Suppose now that n(0) = n ∈ [1,A]. We define the stopping times τ(u,m | n)

by

τ(u,m | n) = inf{t > 0;n(t) = m}, 0 ≤ m < n ≤ A,

to be the first time after time 0 at which the asset state enters m when policy u is
applied throughout. We use

D(u,h,n) = hE

[∫ τ(u,0|n)

0
d{n(t)}dt

]
− E

[∫ τ(u,0|n)

0
u{n(t)}dt

]
(42)

≡ hχ(u,n) − ψ(u,n), 1 ≤ n ≤ A,(43)

for the expected reward (net of resource charges) earned by the asset evolving
under policy u during [0, τ (u,0 | n)) and

T (u,n) = E{τ(u,0 | n)}, 1 ≤ n ≤ A.(44)
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As in the proof of Lemma 7 we can use standard renewal arguments to infer that

v(u,h,n) = D(u,h,n) − γ (u,h)T (u,n), 1 ≤ n ≤ A,(45)

and hence that

	v(u,h,n) = {D(u,h,n) − D(u,h,n − 1)}
(46)

− γ (u,h){T (u,n) − T (u,n − 1)}, 1 ≤ n ≤ A.

We now observe that taking n = 1 in (42)–(44) yields

γ (u,h) = [hχ(u,1) − ψ(u,1) + {hd(0) − u(0)}{λ(u(0),0)}−1]
(47)

× [T (u,1) + {λ(u(0),0)}−1]−1.

Using (47) in (46) we observe that, for any fixed u,n where 1 ≤ n ≤ A,	v(u,h,n)

is affine in h with h-gradient proportional to

χ(u,n) − χ(u,n − 1)

T (u,n) − T (u,n − 1)
− χ(u,1) + d(0){λ(u(0),0)}−1

T (u,1) + {λ(u(0),0)}−1

= E[∫ τ(u,n−1|n)
0 d{n(t)}dt]
E{τ(u,n − 1 | n)} − E[∫ τ(u,0|1)

0 d{n(t)}dt] + d(0){λ(u(0),0)}−1

E{τ(u,0 | 1)} + {λ(u(0),0)}−1

≥ E[∫ τ(u,n−1|n)
0 d{n(t)}dt]
E{τ(u,n − 1 | n)} − E[∫ τ(u,0|1)

0 d{n(t)}dt]
E{τ(u,0 | 1)} , 1 ≤ n ≤ A,

which is easily seen to be positive since the return rate d(·) is increasing in the
state. We infer that 	v(u, ·, n) is increasing for any fixed u,n where 1 ≤ n ≤ A.
It must, therefore, follow that 	v(·, n) is increasing over any h-interval for which
there exists some fixed policy u(h) which is strictly optimal for Q(h).

We can now deploy arguments along the lines of those in the proof of Theorem 9
to infer Theorem 11(i). Please note that Theorem 11(ii) follows straightforward
from Theorem 11(i) together with Lemma 10 and the conditions on the transi-
tion rates enunciated after (34). This result generalizes Theorem 1 of Glazebrook,
Kirkbride and Ruiz-Hernandez [11] to the divisible resource case.

THEOREM 11 (Full indexability). (i) The functions 	v(·, n) are increasing
∀n,1 ≤ n ≤ A; (ii) the asset is fully indexable.

We apply an algorithm similar to that in Section 3.2 to infer the sequence of
optimal policies as h decreases from some large value for which the optimal policy
uses maximal resource R in every state below A. Indices are now not in general
monotone in state.

4.2. Numerical study. We proceed to assess the quality of the greedy in-
dex heuristic through a study of 14,000 randomly generated two asset problems
(K = 2) in which resource is available to the assets in integer amounts up to a
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maximum of 5 or 10 (R = 5 or 10). All assets studied evolve over the state space
{0,1, . . . ,10} while the transition rates for each asset k are assumed to be multi-
plicatively separable such that

λk(ak, nk) = ak(ak + φk)
−1ξk(nk), 0 ≤ ak ≤ R,0 ≤ nk ≤ 9,(48)

and

μk(ak, nk) = φk(ak + φk)
−1ηk(nk), 0 ≤ ak ≤ R,1 ≤ nk ≤ 10,(49)

with φk a positive constant. In all 14,000 problems the φk will be obtained by
sampling from the uniform distribution on [0.75,5.00]. The assets are assumed
always to have a common return function, denoted d : {0,1, . . . ,10} → R

+, which
is increasing.

In all problems we compare the performance of three heuristic policies for re-
source allocation. These are the greedy index policy (Index), the optimal static pol-
icy (Static) and a myopic policy (Myopic) which in every system state n = (n1, n2)

chooses an action a = (a1, a2) to maximize the rate at which the return rate from
the assets increases, namely,

max
a

2∑
k=1

[λk(ak, nk)I (nk < 10){d(nk + 1) − d(nk)}

+ μk(ak, nk)I (nk > 0){d(nk − 1) − d(nk)}].
For each problem instance, the return rate achieved under each heuristic is com-
pared to optimum and reported as a percentage suboptimality. All computations
utilize DP value iteration. The problems are generated in seven groups with 2000
problems in each group. For each group of problems and each heuristic the 2000
percentage suboptimalities are summarized using order statistics, as was done in
Section 3.3. The results are presented in Tables 5–8. The problem details now fol-
low.

TABLE 5
The percentage return rate below optimum of (i) the greedy
index heuristic, (ii) the best static allocation policy and (iii)
a myopic policy for 2000 problems with state independent

transition rates. See text for details

Index Static Myopic

MIN 0.0000 0.0719 0.0027
LQ 0.1482 3.7812 4.7774
MED 0.6752 6.1724 16.7270
UQ 1.0751 7.4822 26.5042
MAX 1.9082 13.6966 39.3193

N 2000 2000 2000
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TABLE 6
The percentage return rate below optimum of (i) the greedy

index heuristic, (ii) the best static allocation policy and
(iii) a myopic policy for 2000 problems with state

dependent transition rates. See text for details

Index Static Myopic

MIN 0.0000 0.0305 2.2993
LQ 0.0000 0.0695 6.7075
MED 0.0001 0.1179 13.0721
UQ 0.0008 0.1888 17.9062
MAX 0.9685 1.0340 23.0439

N 2000 2000 2000

The results in Table 5 concern a very simple model in which the transition rates
are state independent. We take ξk(·) ≡ 1, k = 1,2, while the ηk(·) also are constant,
with values obtained by sampling from the uniform distribution on [0.75,1.25].
Resource is available to the assets at total rate R = 5 throughout. In all cases, asset
return rates are increasing concave in the asset state and given by

d(n) = n(n + 1)−1, 0 ≤ n ≤ 10.

These asset management problems prove challenging and the myopic proposal
performs poorly in Table 5, being consistently outperformed by both Index and
Static. Over the 2000 problems sampled, the percentage suboptimality of Index is
roughly uniformly distributed on the interval [0.0,1.9], while that for Static is also
roughly uniform, but across the considerably wider range [0.0,13.7].

TABLE 7
The percentage return rate below optimum of (i) the greedy

index heuristic, (ii) the best static allocation policy and
(iii) a myopic policy for 2000 problems with state
independent transition rates. See text for details

Index Static Myopic

MIN 0.0000 0.1830 1.2736
LQ 0.0000 0.3275 1.7252
MED 0.0001 0.3817 1.9311
UQ 0.0012 0.4652 2.5708
MAX 0.0095 0.7310 16.1912

N 2000 2000 2000
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TABLE 8
The percentage return rate below optimum of (i) the greedy index heuristic, (ii) the best static

allocation policy and (iii) a myopic policy for 8000 problems with state
dependent transition rates. See text for details

Index Static Myopic Index Static Myopic

(a) αk ∼ U [1.05,1.20] (b) αk ∼ U [1.20,1.35]
MIN 0.0000 0.0187 1.2278 0.0000 0.0987 1.1529
LQ 0.2446 4.7749 2.4854 0.0556 8.3715 2.6063
MED 0.6471 10.9720 4.5413 0.5215 14.7471 4.9759
UQ 2.6301 17.0301 7.0980 2.0182 21.1644 8.8432
MAX 10.8450 28.0785 22.3554 9.5897 31.7000 22.5440

N 2000 2000 2000 2000 2000 2000

(c) αk ∼ U [1.35,1.50] (d) αk ∼ U [1.50,1.65]
MIN 0.0000 0.3388 1.1130 0.0000 0.9814 0.9718
LQ 0.0122 11.2186 2.8107 0.0034 14.3835 3.6829
MED 0.2554 17.4297 5.9093 0.1743 21.1017 7.6089
UQ 1.7601 24.0923 10.6612 1.6311 27.6231 13.4215
MAX 8.0043 33.8457 22.7322 6.4821 36.3746 24.4466

N 2000 2000 2000 2000 2000 2000

For the next group of problems we set R = 10 and introduce state dependence
into the transition rates. In (48) and (49) we take

ξk(nk) = {11αk − (nk + 1)αk }(nk + 1)−αk+1, 0 ≤ nk ≤ 9,(50)

and

ηk(nk) = nk, 1 ≤ nk ≤ 10,(51)

where in (50) and (51), αk > 1 is a positive constant. The choices in (50), (51)
feature in the numerical study undertaken by Glazebrook, Kirkbride and Ruiz-
Hernandez [11] of their much simpler spinning plates model. The function ξk in
(50) is decreasing and convex over the range 0 ≤ nk ≤ 9. The degree of curvature
of the function and the value of ξk(0) both increase with the value of αk . For
the problems featured in Table 6, we obtain the αk by sampling from the uniform
distribution on [1.05,1.50]. Here the models are such that achieving improvements
to asset performance is increasingly difficult for higher states. This effect will be
most marked when αk is close to the top of its range. Finally, our choice of asset
return rate is

d(n) =
⎧⎨
⎩

0, 0 ≤ n ≤ 4,
(n − 4)/5, 5 ≤ n ≤ 8,
1, n = 9,10.

(52)

Here state 9 is the minimum for an asset to generate returns at maximal rate. Fur-
ther, should an asset deteriorate to the point that its state is 4 or less it is incapable
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of generating any returns. In contrast to the problems featured in Table 5, this re-
turn is nonconcave in state.

Please find the results for this group of 2000 problems in Table 6. In Table 7
we consider a slightly modified set of such problems for which R = 5 and the
downward transition rates are given by

ηk(nk) = 0.5nk, 1 ≤ nk ≤ 10.

The problems featured in Tables 6 and 7 prove relatively unchallenging to
both Index and Static, in part because of the highly discrepant upward transi-
tion rates obtained from distinct αk . If we tame this feature by rescaling the func-
tions ξk (after αk has been chosen) such that ξk(0) is a fixed amount (here taken
to be 12) then the problems become very much more difficult and the perfor-
mance of Static can become quite poor. Table 8 features 8000 such problems.
The subtables correspond to distinct ranges for the sampled αk . In Table 8(a)–
8(d) we have αk ∼ U [1.05,1.20], αk ∼ U [1.20,1.35], αk ∼ U [1.35,1.50] and
αk ∼ U [1.50,1.65], respectively. Problem details are otherwise as for Table 6.
From Table 8, the relatively poor performance of both Static and Myopic makes
it clear that these are difficult problems for which dynamic policies, which take
adequate account of the future impact of current decisions, really are needed. The
greedy index heuristic delivers a readily understood proposal which continues to
perform robustly even in this very challenging problem environment. It is espe-
cially effective for the problems with larger sampled αk in which it is most difficult
to maintain assets in strongly performing states.

5. Conclusions and proposals for further work. The paper has described
radical extensions to index theory which facilitate the analysis of dynamic resource
allocation problems in which a single key resource may be assigned more flexibly
than is allowed in classical bandit models. The resulting greedy index heuristic has
been shown to perform strongly for a range of models which relate to applications,
inter alia, in queueing control and asset management which are of independent
interest.

Without doubt, the primary obstacle to general implementation of the approach
described concerns the requirement to establish full indexability. This is that opti-
mal solutions to the single project problems P(k,W),1 ≤ k ≤ K , derived from
a Lagrangian relaxation of the original problem, exhibit a property of assign-
ing diminishing levels of resource uniformly over project states as the resource
charge W increases. While we have been able to demonstrate this for the models
of Sections 3 and 4, it presents a formidable challenge in many problems. We pro-
pose to develop our approach further by exploring the quality of index heuristics
derived from strongly performing (though possibly not optimal) policies for the
P(k,W),1 ≤ k ≤ K , which have the above structural property required to create
indices.



906 K. D. GLAZEBROOK, D. J. HODGE AND C. KIRKBRIDE

Acknowledgment. We gratefully acknowledge the helpful comments of an
anonymous referee for challenging us to strengthen the paper.

REFERENCES

[1] ARCHIBALD, T. W., BLACK, D. P. and GLAZEBROOK, K. D. (2009). Indexability and in-
dex heuristics for a simple class of inventory routing problems. Oper. Res. 57 314–326.
MR2555573

[2] ARGON, N. T., DING, L., GLAZEBROOK, K. D. and ZIYA, S. (2009). Dynamic routing of
customers with general delay costs in a multiserver queuing sysem. Probab. Engrg. In-
form. Sci. 23 175–203. MR2480086

[3] COX, D. R. and SMITH, W. L. (1961). Queues. Methuen, London. MR0133178
[4] CRABILL, T. B. (1972). Optimal control of a service facility with variable exponential service

times and constant arrival rate. Management Sci. 18 560–566. MR0317434
[5] DOSHI, B. T. (1978). Optimal control of the service rate in an M/G/1 queueing system. Adv.

in Appl. Probab. 10 682–701. MR0499221
[6] GALLISCH, E. (1979). On monotone optimal policies in a queueing model of (M/G/1)

type with controllable service time distribution. Adv. in Appl. Probab. 11 870–887.
MR0544200

[7] GEORGE, J. M. and HARRISON, J. M. (2001). Dynamic control of a queue with adjustable
service rate. Oper. Res. 49 720–731. MR1860424

[8] GITTINS, J. C. (1979). Bandit processes and dynamic allocation indices (with discussion).
J. Roy. Statist. Soc. Ser. B 41 148–177. MR0547241

[9] GITTINS, J. C. (1989). Multi-Armed Bandit Allocation Indices. Wiley, Chichester. MR0996417
[10] GLAZEBROOK, K. D. and KIRKBRIDE, C. (2007). Dynamic routing to heterogeneous collec-

tions of unreliable servers. Queueing Syst. 55 9–25. MR2293563
[11] GLAZEBROOK, K. D., KIRKBRIDE, C. and RUIZ-HERNANDEZ, D. (2006). Spinning plates

and squad systems: Policies for bi-directional restless bandits. Adv. in Appl. Probab. 38
95–115. MR2213966

[12] GLAZEBROOK, K. D. and MINTY, R. (2009). A generalized Gittins index for a class of
multiarmed bandits with general resource requirements. Math. Oper. Res. 34 26–44.
MR2542987

[13] GLAZEBROOK, K. D., MITCHELL, H. M. and ANSELL, P. S. (2005). Index policies for the
maintenance of a collection of machines by a set of repairmen. European J. Oper. Res.
165 267–284. MR2121966

[14] MAHAJAN, A. and TENEKETZIS, D. (2007). Multi-armed bandit problems. In Founda-
tions and Applications of Sensor Management (A. Hero, D. Castanon, D. Cochran and
K. Kastella, eds.) 121–151. Springer, New York.

[15] MITCHELL, B. (1973). Optimal service-rate selection in an M/G/1 queue. SIAM J. Appl.
Math. 24 19–35. MR0326863

[16] PAPADIMITRIOU, C. H. and TSITSIKLIS, J. N. (1999). The complexity of optimal queuing
network control. Math. Oper. Res. 24 293–305. MR1853877

[17] PUTERMAN, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York. MR1270015

[18] SOBEL, M. (1982). The optimality of full-service policies. Oper. Res. 30 636–649.
[19] STIDHAM JR., S. and WEBER, R. R. (1989). Monotonic and insensitive optimal policies for

control of queues with undiscounted costs. Oper. Res. 37 611–625. MR1006813
[20] WEBER, R. R. and WEISS, G. (1990). On an index policy for restless bandits. J. Appl. Probab.

27 637–648. [Addendum: Adv. Appl. Probab. 23 (1991) 429–430.] MR1067028

http://www.ams.org/mathscinet-getitem?mr=2555573
http://www.ams.org/mathscinet-getitem?mr=2480086
http://www.ams.org/mathscinet-getitem?mr=0133178
http://www.ams.org/mathscinet-getitem?mr=0317434
http://www.ams.org/mathscinet-getitem?mr=0499221
http://www.ams.org/mathscinet-getitem?mr=0544200
http://www.ams.org/mathscinet-getitem?mr=1860424
http://www.ams.org/mathscinet-getitem?mr=0547241
http://www.ams.org/mathscinet-getitem?mr=0996417
http://www.ams.org/mathscinet-getitem?mr=2293563
http://www.ams.org/mathscinet-getitem?mr=2213966
http://www.ams.org/mathscinet-getitem?mr=2542987
http://www.ams.org/mathscinet-getitem?mr=2121966
http://www.ams.org/mathscinet-getitem?mr=0326863
http://www.ams.org/mathscinet-getitem?mr=1853877
http://www.ams.org/mathscinet-getitem?mr=1270015
http://www.ams.org/mathscinet-getitem?mr=1006813
http://www.ams.org/mathscinet-getitem?mr=1067028


GENERAL NOTIONS OF INDEXABILITY 907

[21] WHITTLE, P. (1988). Restless bandits: Activity allocation in a changing world. J. Appl. Probab.
25A 287–298. A celebration of applied probability. MR0974588

K. D. GLAZEBROOK

DEPARTMENT OF MATHEMATICS AND STATISTICS

AND

DEPARTMENT OF MANAGEMENT SCIENCE

LANCASTER UNIVERSITY

LA1 4YF
UNITED KINGDOM

E-MAIL: k.glazebrook@lancaster.ac.uk
URL: http://www.lums.lancs.ac.uk/profiles/kevin-glazebrook/

D. J. HODGE

SCHOOL OF MATHEMATICAL SCIENCES

UNIVERSITY OF NOTTINGHAM

NG7 2RD
UNITED KINGDOM

E-MAIL: david.hodge@nottingham.ac.uk

C. KIRKBRIDE

DEPARTMENT OF MANAGEMENT SCIENCE

LANCASTER UNIVERSITY MANAGEMENT SCHOOL

LA1 4YX
UNITED KINGDOM

E-MAIL: c.kirkbride@lancaster.ac.uk

http://www.ams.org/mathscinet-getitem?mr=0974588
mailto:k.glazebrook@lancaster.ac.uk
http://www.lums.lancs.ac.uk/profiles/kevin-glazebrook/
mailto:david.hodge@nottingham.ac.uk
mailto:c.kirkbride@lancaster.ac.uk

	Introduction
	A model for dynamic resource allocation
	Greedy index heuristic

	The optimal allocation of a pool of servers
	Stations are fully indexable
	Computation of station indices
	Algorithm for index computation

	Numerical study

	Spinning plates: Optimal investment in a collection of reward generating assets
	Assets are fully indexable
	Numerical study

	Conclusions and proposals for further work
	Acknowledgment
	References
	Author's Addresses

