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Futures hedging creates liquidity risk through marking to market. Liq-
uidity risk matters if interim losses on a futures position have to be
financed at a markup over the risk-free rate. This paper analyzes the
optimal risk management and production decisions of a firm facing joint
price and liquidity risk. It provides a rationale for the use options on
futures in imperfect capital markets. If liquidity risk materializes, the
firm sells options on futures in order to partly cover this liquidity need.
It is shown that liquidity risk reduces the optimal hedge ratio and that
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1 Introduction

Consider a producer exposed to output price risk. If price risk can be managed with

futures contracts, a full hedge ensures that the producer’s financial position at the

hedging horizon is almost risk-free. However, this is only true if the producing firm

can always accommodate the liquidity needs that may arise from the marking to

market of the futures position. Depending on the development of the futures price

over time, marking to market may lead to interim cash inflows and/or cash outflows

prior to the hedging horizon. Suppose that the producing firm faces a liquidity

constraint in the sense that there is no free cash at hand. If the original futures

position generates an interim loss, the producer will have to raise additional cash

in order to maintain the position. Usually, the borrowing rate is higher than the

interest rate applicable to any excess cash that might be generated by marking to

market. Hence, the producer faces liquidity risk: If the futures position creates an

intermediate loss, additional cash has to be raised which is costly. The producer

will anticipate the possibility of additional liquidity needs arising from the futures

position when deciding about the optimal hedging position in futures contracts. If

the producer can also trade options on futures, he might use these options to manage

the liquidity risk borne by the futures position. This will also affect the size of the

optimal futures position and the optimal production decision.

This paper analyzes the impact of joint price risk and liquidity risk on optimal

output and on the optimal positions in futures and in options on futures taken

by a risk-averse producing firm. Hedging price risk with futures contracts creates

liquidity risk through marking to market. Liquidity risks can be significant1: In the
1See Committee on Payments and Settlement Systems (1998). A prominent example for the

significance of liquidity risks is the case of Metallgesellschaft AG (MG). In 1993, a subsidiary
(Metallgesellschaft Refining & Marketing Inc.)took short positions in long-dated oil forward com-
mitments and long positions in oil futures contracts. A few months later, significant margin calls
from the futures positions created substantial liquidity needs that ultimately led to a severe crisis
of MG: In late 1993, the futures positions had to be closed causing a loss of more than a billion
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extreme case, the entire derivatives position has to be liquidated. In less extreme

cases, there is the opportunity cost of quickly raised cash. The firm modeled here

faces a liquidity constraint in the following sense: There is no free cash available

from within the firm, but the firm can borrow additional funds at a firm-specific

borrowing rate. In addition, the firm can trade options on futures. As the liquidity

risk is an asymmetric risk – it only materializes if the futures position creates an

interim cash outflow – options might be used to alleviate the impact of liquidity risk

on the firm’s financial position.

The paper employs a two-period framework where futures contracts maturing

at the end of the second period are traded at the beginning of each period. In

addition, one-period options on futures are traded at the beginning of every period.

The analytical results are as follows: If the derivatives position entered into in the

first period generates a loss by the end of this period, the firm will optimally sell

fairly priced call options on futures in order to generate funds to cover (part of) this

loss.2 As doing so changes the firm’s exposure to price risk, the futures position is

adjusted as well. If there is no loss by the end of the first period, no options position

will be taken and the firm fully hedges with futures contracts over the second period.

The numerical results show that the firm under-hedges in the first period as a result

of the existence of the liquidity constraint. They also indicate that options are not

used in the first period.

The impact of liquidity risk on futures hedging has been studied by Lien (2003),

Lien and Li (2003) Wong (2004a), Wong (2004b) and Wong and Xu (2006). Lien

(2003) shows that the initial futures position depends upon the firm’s ability to cope

with losses arising from marking to market. Wong (2004a) proves that the optimal

US Dollars as banks and major shareholders were not prepared to provide additional liquidity; the
CEO was replaced. See Culp and Miller (1995) and Mello and Parsons (1995), among others.

2Hence, the paper offers a justification of the hedging role of options on futures. Another
argument is provided by Lien and Wong (2002) who show that options on futures will be used if
there are multiple delivery specifications (delivery options) embedded in futures contracts.
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futures hedge is an underhedge if the firm is prudent in the sense of Kimball (1990;

1993). He also shows that production decreases if liquidity risk is introduced. Wong

(2004b) analyzes the hedging problem of a firm that can trade futures contracts

with two different maturities. All these papers focus on a particular type of liquidity

risk where the firm has to liquidate the entire futures position if the interim cash

outflow exceeds an exogenously given threshold.3 This assumption is isomorphic

to assuming that the cost of covering an interim loss caused by marking to market

equals the risk-free rate for an amount up to the level of the threshold and then

effectively jumps to infinity such that raising external cash beyond the threshold is

ruled out. In contrast, our model follows Korn (2004) by assuming that there is no

such borrowing threshold but that all borrowing has to be done at a firm-specific

borrowing rate depending on the firm’s credit standing. It seems more appropriate

for most firms to assume that there is no such extreme jump in the cost of raising

additional cash. As a consequence, the firm is able to maintain its futures position

even if the interim losses are significant.

The two papers that are closest to ours are Korn (2004) and Wong and Xu (2006).

Korn (2004) analyzes optimal forward hedging. His model is based on the assump-

tion that the firm will have to provide cash as collateral if the forward position has

a negative market value prior to the hedging horizon. Unlike our model, an interim

cash inflow from the forward position is not permitted in Korn’s (2004) model. More

importantly, Korn (2004) does not allow for options whereas our model does. To our

knowledge, Wong and Xu’s (2006) model is the first to incorporate options (on the

firm’s output) into the futures hedging problem. In their model, however, the firm

has to liquidate any derivatives position if the interim loss exceeds an exogenously

given threshold. Our model, in contrast, uses a more flexible approach by assuming
3The same applies to Deep’s (2002) model. Zhoo (1998) analyzes the implications of a closely

related assumption on futures pricing.
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a firm-specific borrowing rate that allows the firm to borrow larger amounts, though

always at a cost. In sum, the present paper’s contribution is to combine the joint

availability of options and futures contracts with the more flexible, less extreme ap-

proach to model liquidity risk that does not require an exogenously fixed borrowing

threshold.

The paper is organized as follows: Section 2 presents the model. As a bench-

mark for comparison, Section 3 characterizes the optimal decisions in the absence of

liquidity risk. The main results of the paper are presented in Sections 4 and 5: The

optimal decisions taken in the second period are characterized analytically in Section

4. Numerical results including the decisions taken in the first period are presented

in Section 5. Section 6 concludes. All proofs are relegated to the Appendix.

2 The model

The firm under consideration produces a commodity that is sold at a random spot

price at a later date. Commodity price risk introduces uncertainty into the firm’s

cash flows. However, price risk can be managed with futures contracts and with

options on these futures contracts. The firm’s optimal hedging decisions are analyzed

in a simple dynamic setting with three dates, t = 0, 1, 2. Futures contracts are traded

at t = 0 and t = 1 and mature at t = 2. One-period call options on futures are

traded at t = 0 and t = 1. Positions in futures and options on futures will generally

lead to cash flows at all three dates.

The firm is assumed to operate under a liquidity constraint: There is no free cash

available in the firm. As a result, any net cash outflow forces the firm to borrow

at an interest rate above the risk-free rate.4 The markup over the risk-free rate is
4This implies that any gain on the spot position cannot be accessed directly or indirectly through

borrowing until t = 2. See Lien (2003) for a closely related assumption.
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denoted by ¿ ≥ 0. ¿ is time-invariant and independent of the value of the firm’s

position in the underlying commodity and its derivatives positions. Cash inflows

at t = 0 and t = 1 will be invested until the next date at the risk-free rate. For

simplicity, the risk-free rate is set equal to zero.

In the following, we describe the firm’s decisions and the resulting cash flows in

detail. At t = 0, three decisions have to be made. The first is on the amount to be

produced, denoted Q. The cost function C(Q) satisfies C(0) ≥ 0, C ′(Q) > 0 and

C ′′(Q) > 0. Costs C(Q) are accrued to t = 2. At t = 2, the firm’s output is sold in

a competitive market at a price S̃ that is risky.5 S̃ is distributed over support [S, S].

Producing an amount Q and selling it at t = 2 leads to a cash flow of S̃Q−C(Q) at

that date. Other activities of the firm are assumed to generate a deterministic cash

inflow of I at t = 2.

The second decision is on the size of futures position. This position is denoted by

X0 where X0 > 0 indicates a forward sale and X0 < 0 a forward purchase. Futures

contracts mature at t = 2 and are marked to market at t = 1. ft is the futures

price at time t. f̃1 is distributed over support [f1, f1]. The convergence property of

futures prices implies f̃2 = S̃. The futures market is assumed to be unbiased in each

period such that ft = Et[f̃t+1] for t = 0, 1 where Et[⋅] denotes the expected value

given the information at time t.6 Marking to market at t = 1 generates a cash flow

of X0[f0 − f̃1].7 At t = 2, the futures position expires and leads to a cash flow of

X0[f1 − S̃].

5Henceforth, random variables have a tilde (∼), their realizations do not. A star (∗) indicates
an optimized level.

6See Wong and Xu (2006) for a similar assumption.
7As Korn (2004) analyzes forward hedging in conjunction with the provision of collateral, his

model only takes cash outflows into consideration but cannot capture cash inflows at t = 1. The
model presented here, however, can analyze both types of cash flows.
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The third decision to be made at t = 0 relates to the position in call options

on futures, denoted Z0.8 At t = 0, there are call options available with maturity

t = 1 and strike price K0 at a premium of P0. Suppose that K0 = E0[f̃1].9 The

unbiasedness of the futures market implies K0 = f0. If Z0 > 0, the firm purchases

call options. Z0 < 0 denotes a short options position. Trading Z0 call options at

t = 0 generates an immediate cash flow of −Z0P0. If the holder exercises these call

options at time t = 1, he receives a long futures position with maturity t = 2 at the

then prevailing futures price f1. (This futures position has a market value of zero

at date t = 1. For simplicity, we assume that this futures position is immediately

offset in the market. Hence, this futures position will be no longer dealt with.) In

addition, he receives a cash payment of (f1−K0) upon exercise of the option. Hence,

options traded at t = 0 generate a cash flow of Z0max[f̃1 −K0, 0] at t = 1.

At date t = 1, two decisions have to be made. The first is whether to adjust the

futures position. This adjustment is denoted by X1. X1 > 0 denotes a short futures

position, acquired at the prevailing futures price f1. (X1 < 0 denotes a long futures

position.) At expiration of the futures contracts at t = 2, this adjustment leads to

a cash flow of X1[f1 − S̃].

The second decision to be made at t = 1 is on the size of the position in call

options maturing at t = 2. The premium of these options is P1, their strike price is

K1 = E1[S̃]. The unbiasedness of the futures market in the second period implies

K1 = f1 = E1[f̃2] = E1[S̃].10 Z1 > 0 denotes a long position in call options, Z1 < 0

a short position. Taking an options position at t = 1 generates an immediate cash

flow of −Z1P1 and a cash flow of Z1 max[S̃ − f1, 0] at t = 2.
8Due to put call parity, a put option on futures can be replicated using call options on futures

and futures contracts. See Hull (2006, Ch. 14), for example.
9See Chang and Wong (2003) for an assumption made in the same spirit.

10Due to convergence property of futures prices, it does not matter whether the options under
consideration here are options on futures contracts maturing at t = 2 or options on the underlying
itself. For any such options to make economic sense, we have to have S < f1 < S.
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In order to focus on the hedging role of options and futures contracts, the markets

for these derivatives are assumed to be jointly unbiased.11 Hence, option prices are

given by Pt = Et[max(f̃t+1 − ft, 0)] and futures prices are given by ft = Et[f̃t+1]

for t = 0, 1. In addition, it is assumed that the futures market is intertemporally

unbiased such that f0 = E0[S̃]. In biased markets, there will be speculative positions

in options and/or futures contracts which could be easily incorporated into the

model. However, the purpose of this paper is not to impose an ad hoc pricing

theory but to concentrate on the hedging role of futures and options.

The remainder of this section focuses on the cash flows resulting from these

decisions. As the firm faces a liquidity constraint, negative cash flows at t = 0 and

t = 1 will have to be financed until the following date. At t = 0, the total cash flow

amounts to Á0 = −P0Z0. If Á0 is positive, the firm will invest the excess cash at the

risk-free rate until t = 1, generating a cash inflow of Á0 at t = 1. However, if Á0 is

negative, the liquidity constraint is binding such that the firm will have to borrow

at the markup ¿ and repay (1 + ¿)Á0 at t = 1.

At t = 1, there are cash flows from the marking to market of the existing futures

position X0, from the settlement of the existing options position Z0, from any new

position in options Z1, and from Á0. Their sum is given by12

Á̃1 = X0(f0 − f̃1) + Z0max[f̃1 − f0, 0]− P̃1Z1 − P0Z0 +min[Á0, 0]¿ . (1)

Any excess cash (Á1 > 0) will be invested until t = 2. If Á1 < 0, the firm is

liquidity constrained at t = 1 in which case it has to borrow until t = 2 and repay

(1 + ¿)Á1 at that date.

11Benninga and Oosterhof (2004) show that the representative agent does not necessarily have
to be risk neutral in order to ensure that the futures market is unbiased.

12Given the information at t = 0, the futures price as well as the premium and the strike price
of the second-period options are random variables, f̃1 and P̃1.

7



At t = 2, there are cash flows from producing and selling the output, from the

firm’s other activities, from the settlement of the options position Z1 and the futures

positions X0 and X1 as well as from Á1. They add up to

Á̃2 = S̃Q− C(Q) + I + (X0 +X1)(f̃1 − S̃) + Z1 max[S̃ − f̃1, 0]

+X0(f0 − f̃1) + Z0 max[f̃1 − f0, 0]

−P0Z0 − P̃1Z1 +min[Á0, 0]¿ +min[Á̃1, 0]¿ .

(2)

Substituting Á0 and Á1 into Á2 results in the firm’s total cash flow at date t = 2,

given the information at t = 0, denoted W (S̃, f̃1, P̃1):

W (S̃, f̃1, P̃1) = S̃Q− C(Q) + I + (X0 +X1)(f̃1 − S̃) + X0(f0 − f̃1)

+Z0max[f̃1 − f0, 0]− P0Z0 + Z1max[S̃ − f̃1, 0]− P̃1Z1

+ ¿ min[−P0Z0, 0] + ¿ min
[
X0(f0 − f̃1) + Z0max[f̃1 − f0, 0]

− P̃1Z1 − P0Z0 + ¿ min[−P0Z0, 0], 0
]
.

(3)

The decision maker is assumed to have preferences over the distribution of W̃ that

can be summarized by a utility function U(W ) that is at least twice continuously

differentiable and exhibits risk aversion, U ′(W ) > 0, U ′′(W ) < 0. In addition,

limW→0 U
′(W ) → +∞ and limW→+∞ U ′(W ) → 0. Hence, the decision problem is

given by

max
Q,X0,X1(f1),Z0,Z1(f1)

E0

[
U
(
W (S̃, f̃1, P̃1)

)]
s.t. (3) . (4)

Futures contracts are often written on underlyings where the production process

is subject to quantity risk, for example in agriculture. As quantity risk is not the

focus of this paper it might seem more appropriate to model a processor’s decision

problem where quantity risk is usually very small. However, this paper models a

producer in order to keep the analysis in line and therefore comparable with the

literature.
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3 Optimal decisions in the absence of liquidity risk

This paper focuses on the impact of a liquidity constraint on optimal decisions.

In order to establish a benchmark for comparison, this section analyzes the firm’s

decisions in the absence of such a constraint. Hence, we assume that ¿ = 0 through-

out this section. As follows directly from (3), the firm’s cash flow at t = 2 in this

benchmark case is given by

W̃ b = S̃Qb − C(Qb) + I + (Xb
0 +Xb

1)(f̃1 − S̃) + Xb
0(f0 − f̃1)

+Zb
0 max[f̃1 − f0, 0]− P0Z

b
0 + Zb

1 max[S̃ − f̃1, 0]− P̃1Z
b
1 .

(5)

In the absence of a liquidity constraint, any cash outflow from marking to market

can be met without incurring additional cost. Hence, marking to market has no

impact at all (as the risk-free interest rate is zero) and Holthausen’s (1979) results for

the related single-period problem still apply in the multi-period setting of the current

model: The firm fully hedges at t = 0 and production is determined independently

of the (joint) distribution of the risk(s) faced and the degree of risk aversion of the

decision maker (separation theorem). There is no role for options on futures, even

in the multi-period setting.13 The futures position is not adjusted at t = 1. This is

summarized in the following statement.

Proposition 1 Assume that there is no liquidity constraint. The firm fully hedges

its output with futures contracts at t = 0, Xb∗
0 = Qb∗. The futures position is not

adjusted at t = 1, Xb∗
1 = 0. No position in options is taken, Zb∗

0 = Zb∗
1 = 0. The

separation theorem holds.
13Battermann et al. (2000) derive a similar result for the single-period case. In a multi-period

framework, Lapan et al. (1991) show that there is no hedging role for options, given a certain type
of basis risk. Unlike the present paper, theirs focuses on options on the spot and does not allow
for marking to market.
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4 The impact of liquidity risk

We now assume that the firm is liquidity constrained such that any liquidity needs

have to be covered by borrowing at a markup over the risk-free rate of ¿ . Excess cash

is invested at the risk-free rate of zero. The firm’s optimization problem has to be

solved recursively. While the optimal decisions taken at t = 1 can be characterized

without imposing any further assumptions, the decisions at t = 0 can not. Therefore,

numerical solutions are presented in Section 5.

Consider the second-period problem where the decisions on Q, X0 and Z0 have

already been made. At t = 1, the realizations of the random variables f̃1 and P̃1 are

known. Against this background, the firm solves

max
X1(f1),Z1(f1)

E1

[
U
(
W (S̃, f1, P1)

)]
s.t. (3) . (6)

In order to simplify the notation, let · = Á1 + P1Z1 = X0(f0 − f1) + Z0 max[f1 −
f0, 0] − P0Z0 + ¿ min[−P0Z0, 0] denote the firm’s cash flow at t = 1, excluding the

cash flow generated from any options position taken at that date.

If · < 0, the firm’s optimal decisions onX0 and Z0, combined with the realization

of the futures price f̃1, generate a cash outflow. Hence, the liquidity constraint is

binding. As (1) shows, any other cash flow at t = 1 can only be generated by

taking a position in options on futures. If no options position is taken, the firm has

to borrow ∣·∣ until t = 2. The firm can reduce the size of the loan by shortening

options. Intuitively, we would expect options on futures to play a role whenever

· < 0.

Alternatively, if · ≥ 0, the decisions taken at t = 0 and the realization of f̃1 do

not create a cash outflow. In other words, the liquidity constraint is not binding.

Intuition suggests that the firm’s optimal decisions at t = 1 are the same as in the
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absence of liquidity risk (Proposition 1). In particular, we expect no hedging role

for options, Z∗
1 = 0, if the liquidity constraint is not binding. The following result

confirms both presumptions.

Proposition 2 If the liquidity constraint in the second period is binding, · < 0,

the firm optimally sells options on futures, Z∗
1 < 0, and chooses an underhedging

position in futures over the second period, X∗
1 < Q∗ −X∗

0 . The optimal derivatives

position ensures that ∂W ∗/∂S > 0 for S ∈ [S, f1] and ∂W ∗/∂S < 0 for S ∈ (f1, S].

If the liquidity constraint in the second period is not binding, · ≥ 0, the firm

does not take an options position at t = 1 at all, Z∗
1 = 0, and adjusts the futures

position for the second period to a full hedge, X∗
1 = Q∗ −X∗

0 .

The first part of Proposition 2 proves that the existence of liquidity risk estab-

lishes a hedging role for options on futures. If the liquidity constraint at t = 1 is

binding, · < 0, the firm optimally sells options on futures and under-hedges with

futures contracts. This implies that a risk-free position (as given by Z1 = 0 and

X1 = Q−X0) is not optimal given · < 0. The rationale behind this result is based

on a cost argument and a risk argument.

Consider the cost argument first. As · < 0, the firm has to borrow the amount

∣·∣ which is costly. A short position in options on futures generates a cash inflow

of ∣P1Z1∣. This cash inflow reduces the amount that is ultimately borrowed from

t = 1 until t = 2 and therefore reduces the borrowing costs associated with the loss

generated by the derivatives portfolio during the first period.14

14Selling options on futures, combined with a long position in futures contracts, is (almost)
identical to borrowing at the risk-free rate. See Hull (2006, Ch. 14). Therefore, assuming that
the firm can trade options at a price of P1 allows the firm to indirectly borrow at the risk-free
rate. This is not inconsistent with the assumption that the firm, if borrowing directly, has to pay
a markup for two reasons: Ordinary lenders often times are less well-informed about a borrowers
derivatives portfolio compared to exchanges that closely monitor each market participants position.
This is in line with the fact that exchanges are able to classify market participants into hedgers
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Next, consider the risk argument. Selling call options on futures creates an

additional exposure to S̃: If S exceeds the strike price f1, the options will be exercised

against the firm such that there is a cash outflow at t = 2. In other words, W ∗ is no

longer linear but only piecewise linear with a kink at S = f1. The slope of the first

linear part depends on the futures position only, the slope of the second depends on

the options position as well. As Proposition 2 claims, the optimal futures position is

an underhedge. Consequently, ∂W ∗/∂S > 0 for S ∈ [S, f1]. The size of the options

position is such that ∂W ∗/∂S < 0 for S ∈ (f1, S]. In other words, W ∗ is inversely V-

shaped in S. This minimizes risk as measured by the variability of marginal utility,

given that ∂W ∗/∂S is kinked.

In sum, given the need to raise costly external funds, · < 0, the firm is willing to

take some S̃-risk in order to benefit from a reduction in the amount to be borrowed.

The second part of Proposition 2 shows that options on futures are redundant

for hedging purposes if and only if the firm does not realize any losses on its hedging

position by the end of the first period. In this case, the firm fully hedges over the

second period using futures contracts only.15 Its total cash flow at t = 2 simplifies

to f1(Q−X0)−C(Q)+ I +Z0max[f1− f0, 0]−P0Z0+ f0X0 which is deterministic.

and non-hedgers; hedgers have to provide (significantly) lower initial margins. The second reason
for why the firm can (effectively) trade at P1 is that the exchange can use the futures position as
a collateral for the firm’s options position, guaranteeing that the firm will be able to deliver if the
options are exercised.

15This is in line with the result derived by Wong and Xu (2006) for another type of liquidity
constraint.
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5 Numerical results

The numerical results are based on the following assumptions: The futures price

follows a multiplicative random walk with f̃t = µ̃tft−1 where Et−1[µ̃t] = 1 and the µ̃t

are i.i.d., t = 1, 2. In particular, we assume that µ̃t follows a three-point distribution

where µt is either u, 1 or d, u > 1 > d > 0.16 We also assume that f0 = 1, u = 1.25,

d = 0.8, prob(u) = 4/15 and prob(d) = 1/3 such that E0[f̃1] = E0[S̃] = 1 and

the one-period volatility of the futures return is ¾2 = 0.03. The decision maker is

assumed to have a power utility function with constant relative risk aversion of ®.

Subsections 5.1 and 5.2 focus on the optimal futures and options positions and

their comparative statics with respect to risk aversion and price volatility assuming

that the firm’s output is exogenously given.

Other simulations clearly indicate a negative relation between the markup rate

¿ and optimal output Q∗. This illustrates the well-known result that introducing

an additional risk (here in the form of liquidity risk) decreases production if the ad-

ditional risk cannot be perfectly hedged.17 In order to save space, these simulations

are not presented here.

5.1 Optimal hedging decisions

The firm’s output is exogenously fixed at Q = 100 such that all futures positions

can be easily interpreted as percentage hedge ratios. The deterministic payment I

is set equal to total production costs, C(Q) = I. Relative risk aversion is 2. Table I

presents the optimal values for X0, X1, Z0 and Z1 for different levels of the markup
16The assumption of a multiplicative random walk has no significance for the results. We use

a multiplicative random walk as this implies a constant volatility of the futures return. Chang
and Wong (2003) and Lien and Li (2003) use an additive random walk over several periods. In a
two-period framework similar to ours, Wong (2004a, 2004b) and Wong and Xu (2006) assume an
additive relation over the second period .

17See, for example, Broll et al. (1995) and Viaene and Zilcha (1998).
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rate ¿ .18 The benchmark case of ¿ = 0 (Proposition 1) is given in the first row.

markup decision decision taken at t = 1
rate per taken at t = 0 given f1 > f0 given f1 ≤ f0
period ¿ X∗

0 Z∗
0 · X∗

1 Z∗
1 X∗

1 Z∗
1

0.00 100.0 0.0 -25.0 0.0 0.0 0.0 0.0
0.01 98.4 0.0 -24.6 -3.4 -9.0 1.6 0.0
0.02 96.7 0.0 -24.2 -6.8 -18.2 3.3 0.0
0.03 95.2 0.0 -23.8 -10.5 -27.5 4.8 0.0
0.04 93.6 0.0 -23.4 -14.1 -36.9 6.4 0.0
0.05 92.1 0.0 -23.0 -17.9 -46.4 7.9 0.0
0.06 90.7 0.0 -22.7 -21.8 -56.0 9.3 0.0
0.07 89.3 0.0 -22.3 -25.8 -65.8 10.7 0.0
0.08 87.7 0.0 -21.9 -29.9 -75.8 12.3 0.0
0.09 86.5 0.0 -21.6 -34.2 -85.9 13.5 0.0
0.10 85.2 0.0 -21.3 -38.6 -96.1 14.8 0.0

Table I: Optimal hedging positions for different levels of markup rate

The first column shows by how much the borrowing rate exceeds the risk-free

rate. The next two columns present the optimal hedging decisions made at t = 0.

The remaining columns show the optimal decisions taken at t = 1, conditional on

whether the liquidity constraint is binding (in which case f1 > f0 and · < 0) or not.

Consider the decisions taken at t = 1 first. For f1 > f0, the optimal derivatives

position taken at t = 0 generates a cash outflow such that · < 0 (column 4); the

liquidity constraint is binding. Columns 5 and 6 show that the firm sells options on

futures, Z∗
1 < 0, and reduces its futures position, X∗

1 < 0. For f1 ≤ f0, the optimal

derivatives position taken at t = 0 generates a non-negative cash flow at t = 1,

· ≥ 0.19 The last two columns illustrate Proposition 2 as X∗
0 +X∗

1 = Q = 100 and
18The credit spread for firms with investment grade ratings was well below 2% in the US (King

and Khang, 2005; Yua, 2005; Campbell and Taksler, 2003; Duffee, 1998). However for firms
with lower credit ratings, spreads were considerably higher. Using a sample of bonds issued by
corporations from 15 different countries, Gabbi and Sironi (2002) indicates that bonds with a
Standard & Poor’s rating of B have an average spread of 5.95%, where bonds with CCC rating
have an average spread of 9.05%. More recently, credit spreads have widened significantly in the
wake of the subprime crisis.

19The values for · given that f1 ≤ f0 are not shown in Table I.
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Z∗
1 = 0.

To be more specific, focus on the case where ¿ = 5%. At t = 1, the cash flow of

the firm depends on the realization of f1 and any options position taken at this date.

Given X∗
0 = 92.1 and Z∗

0 = 0, we have · = 18.4 if f1 < f0 and · = 0 if f1 = f0.

In both cases, no liquidity need arises at t = 1 and the firm adjusts the futures

position to a full hedge (Proposition 2). However, when f1 > f0, a liquidity need

arises as · = X∗
0 (f0 − f1) = −23.0. In order to generate cash, the firm sells options,

Z∗
1 = −46.4, and reduces the amount to be borrowed by the amount of the options

premium, −P1Z
∗
1 = 3.9. This options position generates an additional exposure

to S̃. To manage this risk, the firm adjusts the position in futures downwards,

X∗
1 = −17.9.

Next, consider the decisions taken at t = 0. Table I shows that the firm optimally

under-hedges with futures contracts at t = 0 if ¿ > 0. The optimal futures position,

X∗
0 , decreases in the markup rate. For example, a firm facing a markup of 5% above

the risk-free rate only hedges 92.1% of its output at t = 0 with futures contracts.

The economic intuition behind this result is the following: On the one hand, risk

aversion creates an incentive to reduce the exposure to price risk. At X0 = Q, this

price risk is completely hedged. On the other hand, any futures position taken at

t = 0 exposes the firm to liquidity risk: If the futures price f1 is such that the futures

position generates a cash outflow at t = 1, the firm will have to borrow. Borrowing

is more costly the higher ¿ . Given f1 > f0, the firm has to borrow more the higher

the position in futures taken at t = 0. As Table I shows, the optimal futures position

is a compromise between managing price risk and reducing the exposure to liquidity

risk: As ¿ increases, liquidity risk becomes more pronounced such that the firm

reduces its exposure to this risk by choosing a smaller optimal futures position.

Column 3 indicates that the firm does not take any position in options on futures
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at t = 0. This might seem surprising as the liquidity risk materializes in exactly

those states in which options generate a cash inflow. Consequently, one would have

expected the firm to buy call options already at t = 0 as a means to generate

additional cash at t = 1 in those states, i.e. to hedge against the liquidity risk using

options. As ¿ increases, the borrowing costs incurred from t = 1 to t = 2 grow

such that the incentive to buy options at t = 0 in order to create a cash inflow at

t = 1 increases as well. However, the firm is not only liquidity constrained at t = 1

but also liquidity constrained at t = 0. Any long options position taken at t = 0

will have to be financed through borrowing at ¿ until at least t = 1. This can be

interpreted as the cost of buying options at t = 0. Both the benefit and the cost

increase in ¿ . Our result indicates that the benefits are exactly outweighed by the

cost such that the net effect of an increase in ¿ on Z∗
0 is zero. Consequently, no

options position is taken at t = 0.

This finding is not in line with Wong and Xu (2006) who show that, given their

type of liquidity constraint, the firm should buy call options at t = 0. However,

their model is based on the assumption that there is a liquidity constraint at t = 1

but no such constraint at t = 0. In other words, there are no (additional) costs of

buying fairly priced options at t = 0 in their model but only benefits. Hence, it is

not surprising that options will be used at t = 0 in their framework but not in the

model discussed here.
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5.2 Comparative statics

This subsection focuses on the effects of changes in volatility and risk aversion.

Consider an increase in the volatility of the futures price: As proven in Proposition 1,

in the absence of liquidity risk the firm optimally fully hedges with futures contracts

irrespective of the distribution of the spot price S̃; options are not used. However,

when the firm is liquidity constrained, price volatility matters: Given that there is

a cash outflow at t = 1, its expected value increases in volatility. Taken in isolation,

this makes futures hedging over the first period less attractive. At the same time,

higher volatility implies higher potential hedging benefits over both periods, making

futures hedging more attractive. Hence, the impact of price volatility on the optimal

futures position is not clear a priori.
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Figure 1: The effect of price volatility on X∗
0
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Figure 1 shows the optimal futures position taken at t = 0, X∗
0 , for various

combinations of the markup rate ¿ and the volatility of the futures price f̃1.20 Figure

1 indicates that the optimal futures position taken at t = 0 increases in volatility

over the whole range of markup rates. It also shows that this increase is more

pronounced for higher values of ¿ .21 Therefore, Figure 1 indicates that the more

pronounced hedging benefit outweighs the larger liquidity risk, given an increase in

volatility.
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Figure 2: The effect of price volatility on X∗
1 and Z∗

1 for · < 0

Figure 2 illustrates the impact of price volatility on the hedging decisions taken

at t = 1, X∗
1 and Z∗

1 , given that the liquidity constraint is binding, · < 0. It indicates

that the firm sells less options on futures as volatility increases. It also indicates

that the downward adjustment of the futures position decreases in volatility as well.
20Changes in volatility are modeled as changes in u and d = 1/u, accompanied by an appropriate

adjustment in prob(d) in order to ensure that ft = Et[f̃t+1]. prob(u) remains constant at 4/15.
Relative risk aversion equals 2. The optimal options position remains unchanged at Z∗

0 = 0.
21These results are in line with those derived by Korn (2004) for a different set of assumptions

including the absence of options on futures. The fact that they are not in line with Deep’s (2002)
result is caused by the difference in the modeling of the liquidity constraint.
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Again, these effects are more pronounced for larger values of ¿ .

The impact of changes in risk aversion is briefly illustrated in Table II, assuming

a markup rate of 5%.22

relative decision decision taken at t = 1
risk taken at t = 0 given f1 > f0 given f1 ≤ f0

aversion ® X∗
0 Z∗

0 · X∗
1 Z∗

1 X∗
1 Z∗

1

1.00 86.8 0.0 -21.7 -39.4 -94.7 13.2 0.0
1.50 90.4 0.0 -22.6 -25.0 -62.2 9.6 0.0
2.00 92.1 0.0 -23.0 -17.9 -46.4 7.9 0.0
2.50 93.2 0.0 -23.3 -13.7 -36.9 6.8 0.0
3.00 93.9 0.0 -23.5 -11.0 -30.7 6.1 0.0
3.50 94.4 0.0 -23.6 -9.0 -26.3 5.6 0.0
4.00 94.7 0.0 -23.7 -7.4 -22.9 5.3 0.0

Table II: Optimal hedging position for different degrees of relative risk aversion

The first column indicates the degree of relative risk aversion. (Otherwise, Table

II has the same structure as Table I.) It shows that the optimal futures position

taken at t = 0 increases moderately in risk aversion. This reflects the fact that the

hedging benefits are valued more highly when the decision maker exhibits higher

risk aversion. If the liquidity constraint is binding at t = 1, the firm reduces its

short position in options on futures as risk aversion increases. It also reduces the

number of futures contracts sold. Hence, a firm with higher risk aversion is willing

to accept higher borrowing costs in order to reduce the additional exposure to price

risk created by selling options. Table II indicates that the effect of an increase in

risk aversion on X∗
1 and, in particular, on Z∗

1 can be significant.

22Gollier (2001, Ch. 2) argues for levels of relative risk aversion between unity and four.
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6 Conclusions

This paper analyzes the impact of liquidity risk on the optimal production and risk

management decisions of a risk-averse firm that can manage price risk with futures

contracts and options on these futures. Liquidity risk created by marking to market

as well as the use of options might create cash flows prior to the hedging horizon.

Our results show that liquidity risk lowers the optimal futures hedge ratio in

the first period. It also reduces production. The optimal futures position is a

compromise between two conflicting objectives: The first is to reduce the exposure

to price risk, the second is to avoid the cost created by liquidity risk. No options

position is taken in the first period. If liquidity risk materializes prior to the hedging

horizon, the firm optimally sells options at the beginning of the second period and

adjusts its futures position in order to cope with the additional exposure created by

the options position. If liquidity risk does not materialize, the problem in the second

period is isomorphic to the standard hedging model such that the firm adjusts the

futures position to a full hedge.

The comparative statics results are straightforward: The optimal hedge ratio in

the first period decreases in the markup rate and increases in risk aversion and price

volatility. The optimal options position in the second period changes inversely.

In contrast to the results obtained by Wong and Xu (2006), our paper shows

that there is no hedging role for options in the first period but in the second. This

difference arises because Wong and Xu (2006) assume a different type of liquidity

constraint in which the entire derivatives position has to be liquidated if the interim

cash outflow created by marking to market exceeds a certain threshold. In such a

framework, there can only be a hedging role for options in the first period. In the

present paper, options can also be used in the second period which, as the numerical
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results show, is optimal to do if liquidity risk materializes. Hence, the present paper

also shows how sensitive the optimal use of options depends on the setup of the

model.
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Appendix

Proof of Proposition 1

The optimization problem has to be solved recursively. At t = 1, the firm decides

upon Xb
1 and Zb

1, given f1, P1, Qb∗, Xb∗
0 and Zb∗

0 . As the derivatives markets are

jointly unbiased, the first-order conditions for Xb∗
1 and Zb∗

1 can be written as

E1

[
U ′(W̃ b∗) (f1 − S̃)

]
= −cov1

(
U ′(W̃ b∗), S̃

)
= 0 ∀f1 , (7)

E1

[
U ′(W̃ b∗) (max[S̃ − f1, 0]− P1)

]

= cov1
(
U ′(W̃ b∗),max[S̃ − f1, 0]

)
= 0 ∀f1.

(8)

Due to the concavity of the problem, the solution is unique. Substituting the

Xb
1 = Qb−Xb

0 and Zb
1 = 0 as a candidate solution into the firm’s cash flow definition

yields

W̃ b = S̃Qb − C(Qb) + I + (Xb
0 +Qb −Xb

0)(f1 − S̃) +Xb
0(f0 − f1)

−P0Z
b
0 + Zb

0 max[f1 − f0, 0]

= f1Q
b − C(Qb) + I +Xb

0(f0 − f1) + Zb
0 max[f1 − f0, 0]− P0Z

b
0 ∀f1.

(9)

As this is a deterministic amount, conditions (7) and (8) are satisfied. Hence, the

firm’s optimal derivatives position at t = 1 is given by Xb∗
1 = Qb −Xb

0 and Zb∗
1 = 0.

The first period problem is given by maxQb,Xb
0 ,Z

b
0
E0[U(W̃ b(Xb∗

1 , Zb∗
1 ))]. Again

using the unbiasedness of the derivatives markets, the first-order conditions for Xb∗
0

and Zb∗
0 reduce to

−cov0
(
f̃1, U

′(W̃ b∗)
)
= 0, (10)

cov0
(
max[f̃1 − f0, 0], U

′(W̃ b∗)
)
= 0. (11)

Substituting (10) into the first-order condition for Qb∗, given by

E0

[
f̃1 − C ′(Qb∗)

]
E0

[
U ′(W̃ b∗)

]
+ cov0

(
f̃1, U

′(W̃ b∗)
)
= 0 , (12)
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and dividing by E0[U
′(W̃ b,∗)] > 0 directly leads to E0[f̃1] = f0 = C ′(Qb,∗). If C ′−1(⋅)

denotes the inverse of the firm’s marginal cost function, we have Qb,∗ = C ′−1(f0).

Consider the vector (Xb
0, Z

b
0, Q

b∗) = (Qb∗, 0, C ′−1(f0)) as a candidate solution.

Using the same logic as above, it is straightforward to show that the firm’s profits

at t = 0 are deterministic such that conditions (10) and (11) are satisfied. As the

first period problem is concave as well, its unique solution is given by Xb∗
0 = Qb∗ =

C ′−1(f0) and Zb∗
0 = 0. As the optimal production decision is neither affected by the

firm’s degree of risk aversion nor by its assessment of the joint distribution of f̃1 and

S̃, separation holds. □

Proof of Proposition 2

The proof is based on ruling out combinations of positions in futures and options on

futures as being incompatible with the first-order conditions. The proof proceeds as

follows: In part (a), we use the first-order condition for X∗
1 in (13) to rule out all

possible combinations except three. In part (b), we deal with these three cases by

using the first-order condition for Z∗
1 in addition. Part (b) also briefly analyzes the

case of · ≥ 0. Parts (c) and (d) deal with the case of · < 0. Between these parts,

we will present and prove a lemma that will be used in part (d).

(a) Given f1, P1, Q∗, X∗
0 and Z∗

0 , the firm solves the problem in (6). Due to

the concavity of this problem, its solution is unique. As the derivatives markets are

jointly unbiased, the first-order condition for X∗
1 is given by

E1

[
U ′(W̃ ∗) (f1 − S̃)

]
= −cov1

(
U ′(W̃ ∗), S̃

)
= 0 ∀f1 . (13)

Condition (13) holds if and only if either W ∗ is a constant for all S or there is

at least one interval of S in which W ∗ increases in S, ∂W ∗/∂S > 0, and at least

one other interval of S in which it decreases in S, ∂W ∗/∂S < 0 as U ′′(⋅) < 0. The
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definition of W in (3) implies

∂W

∂S
=

⎧
⎨
⎩

Q−X0 −X1 + Z1 for S > f1 ,

Q−X0 −X1 for S ≤ f1 .
(14)

(14) shows that the sign of ∂W ∗/∂S is the same within each of the intervals

[S, f1] and (f1, S]. Hence, if the sign of ∂W ∗/∂S is to change in S, it has to be

positive in one of these intervals and negative in the other.

Next, we use condition (13) to show by contradiction that certain combinations

of positions in futures and options on futures cannot be optimal. Firstly, suppose

that X∗
1 > Q∗ −X∗

0 and Z∗
1 ≤ 0. This implies ∂W ∗/∂S < 0 for all S. It therefore

contradicts (13). Secondly, suppose that X∗
1 < Q∗ − X∗

0 and Z∗
1 ≥ 0. It follows

directly from (14) that ∂W ∗/∂S > 0 for all S. Again, this raises a contradiction to

(13). Thirdly, suppose that X∗
1 = Q∗ −X∗

0 and that Z∗
1 > [<] 0. (14) implies that

∂W ∗/∂S = 0 for S ∈ [S, f1] and positive [negative] otherwise. Hence, condition (13)

is violated.

(b) It has been shown so far that the only combinations that do not contradict

(13) are those where X1 > [=][<]Q−X0 and Z1 > [=][<] 0 at the same time. These

cases will be analyzed next, using the first-order condition for Z∗
1 as well. The exact

form of this condition depends on the value of min[·− P1Z1, 0] at the optimum. If

min[·− P1Z
∗
1 , 0] = 0, the first-order condition is given by

E1

[
U ′(W̃ ∗)

(
max[S̃ − f1, 0]− P1

)]

= cov1
(
U ′(W̃ ∗),max[S̃ − f1, 0]

)
= 0 ,

(15)

using the unbiasedness of the derivatives markets. Unbiasedness also implies that

the first-order condition for Z∗
1 , given min[·− P1Z

∗
1 , 0] = ·− P1Z

∗
1 , is

E1

[
U ′(W̃ ∗)

(
max[S̃ − f1, 0]− (1 + ¿)P1

)]

= cov1
(
U ′(W̃ ∗),max[S̃ − f1, 0]

)
− ¿P1 E1

[
U ′(W̃ ∗)

]
= 0 .

(16)
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Let us look at cases now. Assume that · ≥ 0 and suppose that X∗
1 = Q∗ −X∗

0

and Z∗
1 = 0. It follows that condition (15) applies. As ∂W ∗/∂S = 0 for all S in

this case, W ∗ is a constant such that conditions (13) and (15) are both met and the

vector (X∗
1 , Z

∗
1) = (Q∗ −X∗

0 , 0) characterizes the unique optimum, given · ≥ 0.

(c) It remains to find the optimal positions for · < 0. Suppose (X∗
1 , Z

∗
1) =

(Q∗ − X∗
0 , 0). In this case, condition (16) applies. W ∗ is a constant such that the

covariances in (13) and (16) are zero, but the second summand in (16) is positive

since ¿ , P1, U ′(⋅) > 0. Hence, condition (16) is violated such that this vector cannot

be optimal for · < 0.

The remainder of the proof rules out that X1 > Q∗ −X∗
0 and Z1 > 0 is optimal

such that the X∗
1 < Q∗ −X∗

0 and Z∗
1 < 0 is the optimal decision for · < 0. Before

proceeding, we state and prove a lemma that will be used later in part (d).

Lemma 1 If ∂W ∗/∂S < 0 for S ∈ [S, f1] and ∂W ∗/∂S > 0 for S ∈ (f1, S]
23, there

exist two distinct points, S1 ∈ (S, f1) and S2 ∈ (f1, S), such that U ′(W ∗(S)) ≥
E1[U

′(W ∗(S̃))] for all S ∈ [S1, S2] and U ′(W ∗(S)) < E1[U
′(W ∗(S̃))] for all S ∈

[S, S1) ∪ (S2, S], where the equality holds at S = S1 and S = S2 only.

Proof of Lemma 1: U ′′(⋅) < 0 implies that U ′(W ∗(S)) is strictly increasing for all

S ∈ [S, f1] and strictly decreasing for all S ∈ (f1, S]. In other words, U ′(W ∗(S))

attains a unique maximum at f1. Since E1[U
′(W ∗(S̃))] is the expected value of

U ′(W ∗(S)), there must exist at least one and at most two distinct points in (S, S)

at which U ′(W ∗(S)) = E1[U
′(W ∗(S̃))]. In the following, it will be shown that a

contradiction arises if there is only one such point.

Suppose first that U ′(W ∗(S)) ≥ E[U ′(W ∗(S̃))]. Hence, a unique point Ŝ ∈
(f1, S) has to exist such that U ′(W ∗(S)) > E1[U

′(W ∗(S̃))] for all S ∈ (S, Ŝ) and
23Using (13) and (14), this condition directly implies X∗

1 > Q∗ −X∗
0 and Z∗

1 > 0.
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U ′(W ∗(S)) < E1[U
′(W ∗(S̃))] for all S ∈ (Ŝ, S]. This implies

S∫

S

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃))

]}(
S − Ŝ

)
dH(S) < 0 (17)

where H(S) is the distribution function of S̃, given the realization of f̃1. As the

left-hand side of inequality (17) equals cov1(U ′(W̃ ∗), S̃), the inequality contradicts

the first-order condition for X∗
1 in (13).

Now suppose that U ′(W ∗(S)) ≥ E1[U
′(W ∗(S̃))]. There has to be a unique

point Š ∈ (S, f1) such that U ′(W ∗(S)) < E1[U
′(W ∗(S̃))] for all S ∈ [S, Š) and

U ′(W ∗(S)) > E1[U
′(W ∗(S̃))] for all S ∈ (Š, S). It follows that

S∫

S

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃)

]}(
S − Š

)
dH(S) > 0 , (18)

again raising a contradiction to the first-order condition in (13). Hence, both

U ′(W ∗(S)) and U ′(W ∗(S)) are strictly smaller than E1[U
′(W ∗(S̃))] such that there

are two points where U ′(W ∗(S)) = E1[U
′(W ∗(S̃))]. □

(d) Now, we resume the proof of Proposition 2. Suppose that X∗
1 > Q∗ − X∗

0

and Z∗
1 > 0 such that ∂W ∗/∂S changes its sign as required by (13). Let A =

E1[U
′(W ∗(S̃))∣S̃ < f1] and B = E1[U

′(W ∗(S̃))∣S̃ > f1]
24, where E1[⋅∣⋅] is the condi-

tional expectation operator with respect to H(S). There are two mutually exclusive

cases: (i) A > B and (ii) A ≤ B. Consider case (i) first. Notice that

24E1[U
′(W ∗(S̃)] = AH(f1) +B (1−H(f1)) by definition.
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cov1(U ′(W ∗(S̃)),max(S̃ − f1, 0)

=
S∫
f1

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃))

]}(
S − S2

)
dH(S)

+
S∫
f1

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃))

]}(
S2 − f1

)
dH(S) .

(19)

It follows from Lemma 1 that the first term in (19) is negative. The second term

in (19) is equal to (B −A) (S2 − f1)H(f1) (1−H(f1)). As A > B, S2 > f1 and 0 <

H(f1) < 1, this term is negative as well. Hence, cov1(U ′(W ∗(S̃)),max(S̃−f1, 0)) < 0

in case (i).

Now, consider case (ii). As S̃ − f1 = max(S̃ − f1, 0)−max(f1 − S̃, 0), condition

(13) implies

cov1
(
U ′(W ∗(S̃)),max(S̃ − f1, 0)

)

= cov1
(
U ′(W ∗(S̃)),max(f1 − S̃, 0)

)

=
f1∫
S

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃))

]}(
S1 − S

)
dH(S)

+
f1∫
S

{
U ′(W ∗(S))− E1

[
U ′(W ∗(S̃))

]}(
f1 − S1

)
dH(S) .

(20)

Lemma 1 implies that the first term in (20) is negative. The second term in

(20) equals (A−B) (f1 − S1)H(f1) (1−H(f1)) which is non-positive since A ≤ B,

S1 < f1 and 0 < H(f1) < 1. Hence, cov1(U ′(W ∗(S̃)),max(S̃ − f1, 0)) is negative in

case (ii) as well.

This raises a contradiction to the optimality of X∗
1 > Q∗ − X∗

0 and Z∗
1 > 0 as

the first-order condition for Z∗
1 requires cov1(U ′(W ∗(S̃)),max(S̃ − f1, 0)) to be zero

in the case of (15) or to be positive in the case of (16). Hence, the optimal decision

for · < 0 is given by X∗
1 < Q∗ −X∗

0 and Z∗
1 < 0. □
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