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Abstract

In recent years M-quantile regression has been applied to small area estimation

(SAE) to obtain reliable and outlier robust estimators without recourse to strong

parametric assumptions. In this paper, after a review of M-quantile regression,

we cover several topics related to model specification and selection for M-quantile

regression that received little attention so far. Specifically, a pseudo-R2 goodness of

fit measure is proposed, along with likelihood ratio and Wald type tests for linear

hypotheses on the M-quantile regression parameters. A new estimator of the scale,

motivated by a parametric representation of the M-quantile regression estimation,

is also proposed. This parametric representation, that generalizes the Asymmetric

Laplace distribution, often associated to quantile regression can be exploited to

solve specific problems in M-quantile regression. For instance, when the Huber loss

function is adopted, it provides the basis for a data driven choice of the tuning

parameter. Finally a test to assess the presence of actual area heterogeneity in the

data is also proposed. The properties of the tests are theoretically studied and their

finite sample properties empirically assessed in Monte-Carlo simulations. The use

of the proposed methods is illustrated in a well-known real data application in SAE.

Keywords: Generalized Asymmetric Least Informative distribution; goodness-of-fit; like-

lihood ratio type test; loss function; robust regression

1 Introduction

In sample surveys, estimates of population descriptive quantities for a target variable Y

are usually needed both for the population as a whole and for subpopulations, known as

domains or areas. Provided that large enough domain-specific sample sizes are available,

statistical agencies can perform domain estimation by using the same design-based meth-

ods used for the estimation of population level quantities (direct estimation). In the case

of small domain sample sizes, direct estimation may lead to estimates with large sampling
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variability. When direct estimation is not reliable in all or most of the domains, there is

need to use small area estimation (SAE) techniques.

Area-level and unit-level linear mixed models have been studied in the literature to

obtain empirical best linear unbiased predictors (EBLUP) of small area means (Rao and

Molina , 2015). Empirical best estimation is useful for estimating the small area means

efficiently when normality holds, otherwise, its properties can be deteriorated by the

presence of outliers in the data. Consequently, it is of interest to see how robust survey

estimation can be adapted to small area estimation.

In recent years, Chambers and Tzavidis (2006) and Sinha and Rao (2009) addressed

the issue of outlier robustness in SAE proposing robust techniques that can be used to

down-weight any outliers when fitting the underlying model. Sinha and Rao (2009) ad-

dressed this issue from the perspective of linear mixed models. Chambers and Tzavidis

(2006) proposed to apply the M-quantile regression models to small area estimation with

the aim to obtain reliable and outlier robust estimators without recourse to parametric

assumptions for the residuals distribution. This approach involves weaker parametric

assumptions than the linear mixed model and is robust to outliers in the response vari-

able because of its use of M-estimation theory. A comparison of these two alternative

approaches can be found in Chambers et al. (2014a). The distinguishing features of the

approach by Chambers and Tzavidis (2006) include the protection that a careful choice of

a loss function ρ(·) offers against the effect of outliers and the characterization of domain

heterogeneity in terms of domain-specific M-quantiles. The M-quantiles can be viewed

as an alternative to random effects for measuring area-specific unobserved heterogeneity.

Whenever there is insufficient evidence of this heterogeneity, a prediction based on a sim-

pler linear regression model would be more efficient. A number of papers on M-quantile

regression that focus on theoretical developments (Tzavidis et al., 2010; Fabrizi et al.,

2012; Salvati et al., 2012; Bianchi and Salvati, 2015; Chambers et al., 2014a; Fabrizi et

al., 2014a; Tzavidis et al., 2016; Alfò et al., 2017), extensions to non-linear models (Pratesi

et al., 2009; Chambers et al., 2014b; Dreassi et al., 2014; Tzavidis et al., 2015; Chambers

et al., 2016) and various small area applications (Tzavidis et al., 2008; Pratesi et al., 2008;

Salvati et al., 2011; Tzavidis et al., 2012; Fabrizi et al., 2014b) has been published in re-

cent years. In view of this growing number of studies, in this paper we review M-quantile

linear regression with special focus on its application to small area estimation.We comple-

ment the review discussing model comparison and testing tools that received so far little

attention in literature.

In particular, for model specification, we propose likelihood ratio and Wald type tests

in line with those proposed by Koenker and Machado (1999) for quantile regression for

testing linear hypotheses on the vector of regression coefficients. These tests can be

used for variable selection and to define a pseudo-R2 goodness-of-fit measure. Second,

we propose a test based on M-quantile coefficients to assess the need of incorporating

area-specific heterogeneity in small area prediction. Third, we consider the parametric

distribution associated to a general loss ρτ (·), that we will call Generalized Asymmetric

Least Informative (GALI) distribution that relates to M-quantile regression in the same
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way that the normal distribution is associated with quadratic loss function and the Asym-

metric Laplace (AL) distribution in quantile regression (Yu and Moyeed, 2001): the log of

its density coincide with the loss function to be minimized to obtain the estimator of the

location parameter. In line with most of the applications we quoted, a special attention

will be devoted to the tilted version of the popular Huber loss function,

ρτ (u) = 2

{
(c|u| − c2/2)|τ − I(u ≤ 0)| |u| > c

u2/2|τ − I(u ≤ 0)| |u| ≤ c,
(1)

where I(·) is an indicator function, 0 < τ < 1 represents the quantile and c is a cutoff

constant. We note that if we set τ = 0.5, a well-defined distribution, the so-called Least

Informative (LI) distribution, is associated to this function (Huber, 1981, Section 4.5).

Further, we use the distribution associated to this loss function to propose an estimator

for the tuning constant c, using a method than can be generalized to other loss functions

involving tuning constants. This procedure could be very useful as a model selection

method because M-quantile regression allows us to trade robustness for efficiency by

properly tuning the constant c: robustness is increased as c decreases, while efficiency is

increased as c increases. We are fully aware of the limitations and pitfalls of inference

based on pseudo-likelihoods in quantile regression (Yang et al. , 2015) and for this reason

we are not going to treat the GALI as an actual likelihood for the data.

The paper is organized as follows. In Section 2 we review M-quantile regression and

introduce a new estimator for the scale parameter based on the GALI distribution. In

Section 3 we introduce the pseudo-R2 goodness-of-fit measure and likelihood ratio and

Wald type tests for linear hypotheses on the M-quantile regression parameters. Section 4

presents the review on how M-quantile regression can be applied to SAE problems. Section

5 presents the heuristic procedure for assessing the presence of specific-area effects. In

Section 6 we present simulation studies aimed at assessing the finite sample properties of

the proposed tests and estimators. In Section 7 we present the application of the methods

to real data. Finally, Section 8 concludes the paper with some final remarks.

2 M-quantile regression

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) represents a useful gen-

eralization of median regression whenever the interest is not limited to the estimation of

a location parameter at the centre of the conditional distribution of the target variable y

given a set of predictors x but extends to location parameters (quantiles) at other parts

of this conditional distribution. Similarly, expectile regression (Newey and Powell, 1987)

generalizes least squares regression at the centre of a distribution to estimation of loca-

tion parameters at other parts of the target conditional distribution namely, expectiles.

Breckling and Chambers (1988) introduce M-quantile regression that extends the ideas

of M-estimation (Huber, 1964; Huber and Ronchetti, 2009) to a different set of location

parameters of the target conditional distribution that lie between quantiles and expectiles.

M-quantiles aim at combining the robustness properties of quantiles with the efficiency
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properties of expectiles.

Given a random variable y with cdf F (y) and a (a.e.) continuously differentiable

convex loss function ρ(u), u ∈ R, we define the tilted version of the loss function as

ρτ (u) = |τ − I(u < 0)|ρ(u), (2)

with τ ∈ (0, 1). The τ -th M-quantile θτ is obtained as the minimizer of,∫
ρτ (y − θτ )F (dy). (3)

Depending on the choice of the loss function, M-quantiles may reduce to ordinary quantiles

(ρ(u) = |u|) and expectiles (ρ(u) = u2) while other choices are also possible (Dodge

and Jureckova, 2000). However, as it is well known, quantiles and expectiles should be

treated separately due to different properties of the corresponding influence functions. In

regression the argument in the loss functions is defined by standardized residuals u =

σ−1
τ (y − xTβτ ), where στ is a scale parameter for the residuals’ distribution.

Let y be a random variable and x a p-dimensional random vector with first component

x1 = 1. The observed data {(xi, yi), i = 1, . . . , n} is assumed to be a random sample of

size n drawn from the population; thus (xi, yi) are independent and identically distributed

random variables. Assuming a linear model, for any τ ∈ (0, 1), the M-quantile (hereafter,

MQ) of order τ of yi given xi is defined by

MQτ (yi|xi) = xTi βτ , (4)

where βτ ∈ Θ ⊂ Rp is the solution to

min
β∈Θ

E

[
ρτ

(
yi − xTi β

στ

)]
, (5)

and στ is a scale parameter that characterizes the distribution of ετi = yi − xTi βτ . The

linear specification in (4) can be alternatively written as

yi = xTi βτ + ετi,

where {ετi} is a sequence of independent and identically distributed errors with unknown

distribution function Fτ satisfying, by definition, MQτ (ετi|xi) = 0. The estimator of the

MQ regression coefficients (Breckling and Chambers, 1988) is defined as

β̂τ = argmin
n∑
i=1

ρτ

(
yi − xTi β

σ̂τ

)
, (6)

where σ̂τ is a consistent estimator of στ . Since ρ is (a.e.) continuously differentiable and

convex, the vector β̂τ can equivalently be obtained as the solution of the following system
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of equations
n∑
i=1

ψτ

(
yi − xTi β

σ̂τ

)
xi = 0, (7)

where ψτ (u) = dρτ (u)/du = |τ − I(u < 0)|ψ(u), with ψ(u) = dρ(u)/du. An iterative

method is needed here to obtain a solution, like an iteratively re-weighted least squares

algorithm or the Newton-Raphson algorithm.

Regarding the scale parameter στ , it may generally be defined by an implicit relation

of the form

E
[
χ

(
ετi
στ

)]
= 0, (8)

where the expectation is taken with respect to the distribution of ετi. In MQ regression, a

typical choice for χ is χ(u) = sgn(|u−Med(u)|−1), which leads to the scaled population

median absolute deviation στ =
Med{|ετ−ξ1/2,τ |}

q
, ξ1/2,τ = Med(Fτ (ετ )), q = Φ−1(3/4) =

0.6745, with Φ denoting the distribution function of the standard normal distribution.

The corresponding estimator is the scaled sample median absolute deviation (MAD)

σ̂τ =
Med{|ε̂τ −Med(ε̂τ )|}

q
, (9)

where ε̂τ = (ε̂τ1, . . . , ε̂τn), ε̂τi = yi − xTi β̂τ .

The asymptotic theory for MQ regression with i.i.d. errors and fixed regressors can

be derived from the results in Huber (1973), as pointed out in Breckling and Chambers

(1988). Bianchi and Salvati (2015) show the consistency and the asymptotic normality of

the estimator of βτ and the consistency of its asymptotic variance estimator,

V̂ ar(β̂τ ) = (n− p)−1nŴ−1
τ ĜτŴ

−1
τ (10)

where

Ŵτ = (nσ̂τ )
−1

n∑
i=1

ψ̂′τixix
T
i ,

Ĝτ = n−1

n∑
i=1

ψ̂2
τixix

T
i ,

with ψ̂′τi := ψ′τ (ε̂iτ/σ̂τ ), ψ̂τi = ψτ (ε̂iτ/σ̂τ ) in case of stochastic regressors and in the

presence of heteroskedasticity.

2.1 A likelihood perspective for M-quantiles: the Generalized

Asymmetric Least Informative distribution

Yu and Moyeed (2001) show the relationship between the loss function for quantile regres-

sion and the maximization of a likelihood function formed by combining independently

distributed Asymmetric Laplace densities. In this Section we show a similar relationship

for MQ regression models.
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Given a loss function ρτ , we can define the GALI random variable with density function

fτ (y;µτ , στ ) =
1

στBτ

exp

{
−ρτ

(
y − µτ
στ

)}
, −∞ < y < +∞. (11)

where Bτ =
∫ +∞
−∞

1
στ
exp

{
−ρτ

(
y−µτ
στ

)}
dy < +∞ and µτ and στ are location and scale

parameters. We note that µτ coincides with the τ th MQ of the distribution; in fact µτ

can be obtained as the solution of∫ +∞

−∞
ψτ

(y − µτ
στ

)
fτ (y;µτ , στ )dy = 0,

that defines the MQ of the distribution.

For linear MQ regression, that is when µτ = µτi = xTi βτ , the estimators of the

unknown regression parameters βτ and the scale στ may be obtained by maximizing the

log-likelihood function:

lτ (y) = −n log στ − n logBτ −
n∑
i=1

ρτ

(yi − xTi βτ
στ

)
. (12)

The estimating equations for the regression coefficients βτ are the same as those of equa-

tion (7). The estimating equation for στ is

− n

στ
+

1

σ2
τ

n∑
i=1

ψτ

(yi − xTi βτ
στ

)
(yi − xTi βτ ) = 0, (13)

and its solution defines a new estimator for στ alternative to (9). With respect to (8) in

this case χ(u) = −uψτ (u)− 1 and the parameter is defined as the solution of

E

[
−ετiψτ

(
ετi
στ

)]
= στ .

This choice is in line with what Koenker and Machado (1999) and Yu and Zhang (2005)

propose for quantile regression, considering the maximum likelihood estimator under the

asymmetric Laplace distribution.

Solving equations (7) and (13) requires an iterative algorithm. The steps of this

algorithm are as follows:

1. For specified τ define initial estimates β̂
(0)

τ and σ̂
(0)
τ .

2. At each iteration t calculate w
(t−1)
τi = ψτ (u

(t−1)
τi )/u

(t−1)
τi with u

(t−1)
τi = (yi−xTi β̂

(t−1)

τ )/σ̂
(t−1)
τ .

3. Compute the new weighted least squares estimates from

β̂
(t)

τ =
{ n∑

i=1

(w
(t−1)
τi xix

T
i )
}−1{ n∑

i=1

(yiw
(t−1)
τi xi)

}
. (14)
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4. Compute the new estimate of σ̂τ by

σ̂(t)
τ =

{
n−1

n∑
i=1

w
(t−1)
τi (yi − xTi β̂

(t−1)

τ )2
}1/2

. (15)

5. Repeat steps 2-4 until convergence. Convergence is achieved when the difference

between the estimated model parameters obtained from two successive iterations is

less than a small pre-specified value.

The consistency of the scale estimators (MAD and MLE) can be proved by standard

theory of M-estimators (Wooldridge, 2010), assuming that (8) has a unique solution.

If ρτ (·) is the Huber loss function defined in (1) the normalizing constant is given by

Bτ =

√
π

τ

[
Φ(c
√

2τ)− 1/2
]

+

√
π

1− τ

[
Φ(c
√

2(1− τ))− 1/2
]

+
1

2cτ
exp{−c2τ}+

1

2c(1− τ)
exp{−c2(1− τ)}, (16)

where τ ∈ (0, 1) and Φ is the cumulative distribution function of the standard Normal

distribution. In this case we call (11) the Asymmetric Least Informative (ALI) distribu-

tion. This distribution is essentially a modified standard normal distribution with heavier

tails (when y > c). For τ = 0.5, this distribution was derived by Huber (1981, Section

4.5) as the one minimizing the Fisher information in the ε-contaminated neighborhood of

the normal distribution. Formulae for the cumulative distribution function and moments

of the ALI distribution (τ ∈ (0, 1)) are in the Appendix A.

The ALI distribution depends on the tuning constant c. In M-regression, the tuning

constant is defined by the data analyst such that the M-estimate has a specified asymptotic

efficiency (generally 95%) under normality (Huber, 1981). Alternatively, Wang et al.

(2007) propose a data-driven method, based on efficiency arguments.

In this paper, we propose to interpret c as a parameter of the density fτ and estimate

βτ , στ and c by maximizing the log-likelihood function (12). For estimating the tuning

constant there is no closed form. In this case the compass search algorithm or the Nelder-

Mead (Griva et al., 2008) can be used. The final estimating procedure works by adding

to the proposed iterative algorithm the new step 4′ below:

4′ Given β̂
(t)

τ and σ̂
(t)
τ maximize the log-likelihood function (12) with respect to c using

the compass search algorithm (Bottai et al., 2015) or the Nelder-Mead algorithm.

An R function that implements an iterative algorithm for estimating the parameters is

available from the authors.

The idea of estimating the tuning constant using likelihood equations can be applied

to other loss functions as well whenever they include an additional parameter or tuning

constant.
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3 Goodness-of-fit and likelihood ratio type tests in

M-quantile regression

In this section we present a pseudo-R2 goodness-of-fit statistic for MQ regression and

likelihood ratio and Wald type tests for linear hypotheses on the regression parameters.

The asymptotic theory for β̂τ has been developed according to standard M-estimation

theory, as in Gourieroux and Monfort (1989) and Wooldridge (2010).

3.1 A goodness-of-fit measure

For a given quantile, the introduction of the pseudo-R2 is motivated by the need for

a measure analogous to the ordinary R2 used in least squares regression. Since this

goodness-of-fit statistic will be quantile-dependent, it is also useful to study its variation

across quantiles. We start by partitioning MQ regression as follows,

MQτ (yi|xi) = xTi1β1τ + xTi2β2τ , (17)

where βτ = (βT1τ ,β
T
2τ )

T , β1τ is a (p− k)× 1 vector and β2τ is a k× 1 (0 < k < p) vector.

We are interested in testing the null hypothesis:

H0 : β2τ = 0. (18)

Let β̂τ denote the MQ estimator of the full model and let β̃τ = (β̃
T

1τ ,0
T )T denote the

MQ estimator under the null hypothesis specified in (18).

A relative goodness-of-fit measure comparing the full to the reduced MQ regression

model is defined as

R2
ρ(τ) = 1−

∑n
i=1 ρτ

(
yi−xTi β̂τ

σ̂τ

)
∑n

i=1 ρτ

(
yi−xTi β̃τ

σ̂τ

) . (19)

When the reduced model includes only the intercept, this measure is the natural analog

of the usual R2 goodness-of-fit measure used in mean regression. It varies between 0 and

1 and it represents a measure of goodness-of-fit for a specified τ .

To explore the behaviour of the index R2
ρ(τ) introduced in this section we use a range

of artificial data as in Koenker and Machado (1999). We consider a simple bivariate

regression settings under three different scenarios with n = 100:

• Gaussian noise: the data are generated with yi iid standard normal distribution an

independent of x. The value of xi are generated as iid N(5, 1).

• Gaussian location shift: the data are generated according the model

yi = xi + εi

with εi iid N(0, 1), xi iid N(5, 1).
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Figure 1: The figure shows three different scenarios and their associated R2
ρ(τ). The

top row presents the data and in solid font the M-quantile model lines fitted at τ =
(0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99). The second row depicts the values of R2

ρ(τ) at dif-
ferent quantiles.

• Gaussian scale shift: a heteroskedastic version of the regression model is given by

yi =
(
xi +

1

4
x2
i

)
εi

with εi iid N(0, 1/100), xi iid N(3, 1).

Figure 3.1 illustrates in the top row of the panels the M-quantile model lines fitted at

τ = (0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99). The bottom row of the figure shows the values

of R2
ρ(τ) at different values of τ . As we expected, under Gaussian noise, the values of R2

ρ(τ)

are nearly 0 over the entire range τ ∈ (0, 1). Under the Gaussian location shift scenario the

values of R2
ρ(τ) show a flat relationship between y and x for each τ . This indicates that all

the conditional M-quantiles are equally successfull in reducing variability (Koenker and

Machado, 1999). In the case of heterosketasiticity (scenario 3) the conditional median

and the conditional median are equal. For the other values of τ there is a clear benefit

from the quantile form of the conditional M-quantile specification.

3.2 Hypothesis testing

For testing the null hypothesis (18), the following theorem presents the distribution of

the likelihood ratio statistic when the residuals follow a general distribution. This leads

to a likelihood ratio type test. In the following, let

V̂ (τ) =
n∑
i=1

ρτ

(
yi − xTi β̂τ

στ

)
, Ṽ (τ) =

n∑
i=1

ρτ

(
yi − xTi β̃τ

στ

)
.
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Consider the following regularity conditions:

(C1) Θ compact set in Rp;

(C2) ρ is (a.e.) twice continuously differentiable;

(C3) | supβτ∈Θ ρ
(
yi−xTi βτ

στ

)
| < h(xi, yi) and | supβτ∈Θ ψ

′
(
yi−xTi βτ

στ

)
xix

T
i | < g(xi, yi), with

h and g are P -integrable functions;

(C4) E
[
xix

T
i ψ
′((yi − xTi β)/στ )

]
is uniformly nonsingular for β ∈ Θ.

(C5) the errors ετi are independent of xi.

Assumption (C3) guarantees the applicability of the Uniform Law of Large Numbers.

In case of the Huber loss function, (C3) is satisfied provided E|xi|2 < +∞ and E|yi| <
+∞. Assumption (C5) is required for the validity of the generalized information equality.

This would hold also if the xi’s are fixed regressors. The information equality is needed

for the validity of the likelihood ratio type test. It can be relaxed for the Wald test.

Theorem 1. Provided conditions (C1)-(C5) are satisfied under the null hypothesis H0

−2
Eψ′τi
Eψ2

τi

(V̂ (τ)− Ṽ (τ))
d−→ χ2

k, (20)

where ψ′τi = ψ′τ (ετi/στ ), ψτi = ψτ (ετi/στ ).

Proof. Using a second order Taylor expansion

2[Ṽ (τ)− V̂ (τ)] =
√
n(β̃τ − β̂τ )T (Ψτ/στ )

√
n(β̃τ − β̂τ ) + op(1), (21)

where, by using (C4), Ψτ = σ−1
τ E(ψ′τi)E(xix

T
i ). Theorem 1 in Bianchi and Salvati (2015)

ensures that
√
n(β̂τ − βτ ) = Ψ−1

τ n−1/2

n∑
i=1

ψτixi + op(1). (22)

Similarly, a standard mean value expansion (under H0) gives

n−1/2

n∑
i=1

ψ̃τixi = n−1/2

n∑
i=1

ψτixi −Ψτ

√
n(β̃τ − βτ ) + op(1),

where ψ̃τi = ψτ (ε̃τi/στ ), ε̃τi = yi − xTi β̃τ . Hence,

√
n(β̃τ − βτ ) = Ψ−1

τ n−1/2

[
−

n∑
i=1

ψ̃τixi +
n∑
i=1

ψτixi

]
+ op(1). (23)

Substituting (22) and (23) into (21), we obtain

2[Ṽ (τ)− V̂ (τ)] =

(
n−1/2

n∑
i=1

ψ̃τixi

)T (
E(ψ′τi)E(xix

T
i )
)−1

(
n−1/2

n∑
i=1

ψ̃τixi

)
+ op(1).
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Following Wooldridge (2010), we introduce the k × p full rank matrix R = [0 : Ik] and

write H0 as Rβτ = 0. Since R
√
n(β̃τ − βτ ) = 0, it can be proved (multiplying equation

(23) by RΨ−1
τ ) that

RΨ−1
τ n−1/2

n∑
i=1

ψ̃τixi
d−→ N(0,RΣτR

T ),

where

Στ = σ2
τ

Eψ2
τi

Eψ′τi
E
[
xix

T
i

]−1
, (24)

so that(
n−1/2

n∑
i=1

ψ̃τixi

)T

Ψ−1
τ RT

(
RΣτR

T
)−1

RΨ−1
τ

(
n−1/2

n∑
i=1

ψ̃τixi

)
d−→ χ2

k.

The previous expression can be simplified to(
n−1/2

n∑
i=1

ψ̃τixi

)T (
E(ψ2

τi)E(xix
T
i )
)−1

(
n−1/2

n∑
i=1

ψ̃τixi

)
d−→ χ2

k

and therefore we have that

2
Eψ′τi
Eψ2

τi

[Ṽ (τ)− V̂ (τ)]

=

(
n−1/2

n∑
i=1

ψ̃τixi

)T(
E(ψ2

τi)E(xix
T
i )
)−1

(
n−1/2

n∑
i=1

ψ̃τixi

)
+ op(1)

d−→ χ2
k. (25)

A hypothesis test for H0 is obtained by substituting the unknown quantities in (20)

with consistent estimators leading to,

−2
(n− p)−1

∑n
i=1 ψ̂

′
τi

n−1
∑n

i=1 ψ̂
2
τi

[
n∑
i=1

ρτ

(
yi − xTi β̂τ

σ̂τ

)
−

n∑
i=1

ρτ

(
yi − xTi β̃τ

σ̂τ

)]
, (26)

where ψ̂′τi and ψ̂τi have been previously defined and the nuisance parameter στ is estimated

under the full model. This is to ensure that the test statistic is nonnegative. Even though

the asymptotic distribution of (26) is not exactly asymptotically χ2
k, simulations show

that χ2
k is still a good approximation for it (see Section 6.2). This is due to the fact that

the contribution of the estimation of σ to the asymptotic variance is negligible, as it was

noticed in Bianchi and Salvati (2015). The same approach was adopted in Schrader and

Hettmansperger (1980). This test is more commonly known as likelihood ratio (LR) type

test since the density of the ετi does not have to correspond to the loss function. Notice

also that the proposed test can be easily extended to test more general linear hypotheses

for example, H0 : Rβτ = r, where R is a k × p full rank matrix and r is a k × 1 vector.

Similar results for M-regression estimators are provided by Schrader and Hettmansperger
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(1980) in the case of fixed regressors, and for quantile regression with fixed regressors by

Koenker and Machado (1999).

An alternative to the LR-type test is to use a Wald type test. The test statistic is

derived by using Theorem 1 in Bianchi and Salvati (2015). Let R = [0 : Ik]. It follows

that under H0

n(Rβ̂τ )
T [RΣτR]−1(Rβ̂τ )

d−→ χ2
k,

where Στ is defined in (24). Replacing Στ with a consistent estimator

Σ̂τ = σ̂2
τ

(n− p)−1
∑n

i=1 ψ̂
2
τi

n−1
∑n

i=1 ψ̂
′
τi

[
n∑
i=1

xix
T
i

]−1

,

the statistic

W ≡ n(Rβ̂τ )
T [RΣ̂τR]−1(Rβ̂τ )

follows asymptotically a χ2 distribution. A major difference between the LR-type test and

the Wald type test is that the latter can be made robust to the presence of heteroskedas-

ticity by using a robust estimator of the covariance matrix in place of Σ̂τ .

4 An overview of M-quantile models for small area

estimation

In this section we review the use of M-quantile regression in SAE. Let us suppose that

a population is divided into D non-overlapping small areas of size Nj, j = 1, ..., D, so

that
∑D

j=1Nj = N . Suppose that a sample of size nj > 0 is drawn from each small

area. For simplicity of exposition, we do not consider the case nj = 0, although the

theory can be easily extended to it. In what follows we assume that unit record data

are available at small area level. For the sampled units in the population this records

consists of indicators of small area affiliation, values yi of the variable of interest, values

xij of a p× 1 vector of individual level covariates. For the non-sampled population units

we do not know the values of yi. Let’s introduce a second subscript in our notation for

indicating the hierarchical nature of the data, {(xij, yij), i = 1, . . . , nj; j = 1, . . . , D}. We

also assume that sampling is non-informative for the small area distribution of yi given

xij, allowing us to use population level models with the sample data.

The papers by Chambers and Tzavidis (2006) and Aragon et al. (2005) were the first to

introduce the idea of measuring heterogeneity in the data via M-quantiles. In particular,

Chambers and Tzavidis (2006) characterize the variability across the population of interest

by introducing the idea of MQ-coefficients. At the population level the MQ-coefficient

for a unit within a small area is defined as the value τij such that MQτij(yij|xij) = yij.

If a hierarchical structure does explain part of the variability, after accounting for the

effect of covariates, units within small area are expected to have similar MQ-coefficients.

Chambers and Tzavidis (2006) propose to characterize each small area j by the average

of the MQ-coefficients of the units that belong to that small area. The small area-specific

12



MQ-coefficient, denoted by τj, identifies the most characteristic MQ regression line for

that small area. We can think of this in the context of linear mixed models as the group-

specific regression line that is distinguished from population-average line by the random

effect. The aim is to use this data to predict various area specific quantities, including

(but not only) the area j mean mj of y. When (4) holds, and βτ is a sufficiently smooth

function of τ , Chambers and Tzavidis (2006) suggest a predictor of mj of the form:

m̂MQ
j = N−1

j

{∑
i∈sj

yij +
∑
i∈rj

xTijβ̂τ̂j

}
, (27)

where we use indices s and r to denote sample and non-sample quantities, respectively.

Thus, the set sj contains the nj indices of the units drawn from the population and the

set rj contains the Nj − nj indices of the non-sampled units in small area j. Here, τ̂j is

an estimate of the average value of the MQ-coefficients of the units in area j. The case

of nj = 0, mentioned above, can be easily dealt with by using a synthetic M-quantile

predictor, which is obtained by setting τ̂j = 0.5 (m̂
MQ/SY N
j ). Chambers et al. (2014a)

defined such method as robust projective since it projects sample non-outlier (i.e. working

model) behaviour onto the non-sampled part of the survey population.

Chambers et al. (2014a) proposed methods to address a representative outlier (Cham-

bers , 1986), i.e. a sample outlier that is potentially drawn from a group of population

outliers and hence cannot be unit weighted in estimation. This method allows for contri-

butions from representative sample outliers and it is defined as robust predictive methods

since it attempts to predict the contribution of the population outliers to the population

quantity of interest. A bias-corrected version of estimator (27) is given by

m̂MQ−BC
j = N−1

j

{∑
i∈sj

yij +
∑
i∈rj

xTijβ̂τ̂j +
Nj − nj
nj

∑
i∈sj

ωMQ
ij φ

{yij − xTijβ̂τ̂j

ωMQ
ij

}}
, (28)

where ωMQ
ij is a robust estimator of the scale of the residual yij − xTijβ̂τ̂j in area j. We

replace the robust influence function ψ used to define β̂τ̂j above by one that is still

bounded, but more accommodating of sample outliers, i.e. such that |ψ| ≤ |φ|. Its

purpose is to define an adjustment for the bias caused by the fact that the first two terms

on the right hand side of (28) treat sample outliers as not representative. See for details

Chambers et al. (2014a). If the tuning constant in the φ function tends to infinity, the

predictor (28) becomes a Chambers and Dunstan estimator (Tzavidis et al., 2010).

Two different analytic methods of Mean Squared Error (MSE) estimation for M-

quantile-based robust predictors of small area means under the robust-projective and

robust-predictive approaches have been proposed in the literature. Both are developed

on the assumption that the working model for inference conditions on the realized val-

ues of the area effects, and so the proposed MSE estimators are conditional estimators.

Chambers et al. (2011) define a pseudo-linearization estimator of the conditional MSE of

predictor (27) they label as CCT estimator. Chambers et al. (2014a) use first-order ap-

proximations to the variances of solutions of estimating equations to develop conditional
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MSE estimators for predictors (27) and (28) (labelled as CST). The MSE estimator for

predictor (28) is based on the approximation

mse(m̂MQ−BC
j ) =

(
1− nj

Nj

)2[
{x̄rj−x̄sj}T V̂ (β̂τ̂j){x̄rj−x̄sj}+V̂ (ērj)+

1

n2
j

∑
i∈sj

{
ωMQ
ij φ

{yij − xTijβ̂τ̂j

ωMQ
ij

}}2]
,

(29)

where V̂ (β̂τ̂j) is the estimated variance of the fitted M-quantile regression coefficients at

τ = τ̂j, V̂ (ērj) = (Nj − nj)−1(n − 1)−1
∑

k

∑
i∈sk(yki − xTkiβ̂τ̂k)

2 and x̄rj, x̄rs denote the

vectors of average values of xij for the Ni − ni non-sampled units and the ni of sampled

units, respectively, in area i. The results of the simulation experiments in Chambers et

al. (2014a) show that the CST has lower bias than the estimator CCT and is also more

stable for both predictors (27) and (28).

Several methodological developments on M-quantile regression in small area estima-

tion have been made in recent years. Here a brief review of the most important papers

in this field. Fabrizi et al. (2012) consider two problems relevant to practical small area

applications. They propose a solution to guarantee the benchmarking property of small

area estimators. The procedure is consistent with the M-quantile regression framework,

thus it is theoretically more interesting than a simple ratio adjustment. The second prob-

lem is the correction of the under/over-shrinkage of small area estimators. The authors

note that the M-quantile small area estimators may under-shrink (under normality) or

over-shrink (when the distribution of actual small area parameters is skewed). In line

with most literature, notions of under- and over-shrinkage are defined in terms of vari-

ance calculated over the ensemble of small area parameters. This may not be robust to

the presence of outlying areas, but the method of Fabrizi et al. (2012) can be readily

extended to other descriptions of the variability of the ensemble of area parameters.

Fabrizi et al. (2014a) adopt a model-assisted approach for developing design-consistent

(weighted) M-quantile small area estimators. The authors assume a working linear M-

quantile model and consider only properties with respect to the randomization distribution

induced by the sample design. Fabrizi et al. (2014a) note that for the estimation of small

area means and totals, the weighted M-quantile based estimators may be expressed in

GREG form and can therefore be easily interpreted.

Salvati et al. (2012) incorporate the spatial information in small area predictors based

on M-quantile models via Geographically Weighted Regression (GWR). In particular, the

authors specify an M-quantile GWR model that is a local model for the M-quantiles of

the conditional distribution of the outcome variable given the covariates. This model is

then used to define a bias-robust predictor of the small area characteristic of interest that

also accounts for spatial association in the data. Another approach to take into account

spatial information in small area M-quantile predictors is by using a semiparametric M-

quantile regression model as proposed by Pratesi et al. (2008). In this case the response

variable depends on the geographical position of the observations through an unknown

smooth bivariate function estimated by low-rank thin plate splines. The performance of

the non-parametric specification of the conditional M-quantile of y given the covariates
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has been investigated in Salvati et al. (2011). From the simulation results, the semipara-

metric M-quantile models in small area estimation appear to be a useful tool when the

functional form of the relationship between the variable of interest and the covariates is

left unspecified and the data are characterized by complex patterns of spatial dependence.

Finally, the M-quantile approach to small area prediction has been extended to discrete

responses. In particular, Tzavidis et al. (2015) proposed a small area predictor based on

a new semiparametric M-quantile model for counts that extends the ideas of Cantoni and

Ronchetti (2001) and Chambers and Tzavidis (2006). This predictor can be viewed as an

outlier robust alternative to the more commonly used conditional expectation predictor

for counts that is based on a Poisson Generalised Linear Mixed Models with Gaussian

random effects. Chambers et al. (2014b) introduce a semi-parametric approach to eco-

logical regression for disease mapping, based on modelling the regression M-quantiles of

a negative binomial variable. The method is robust to outliers in the model covariates,

including those due to measurement error, and can account for both spatial heterogeneity

and spatial clustering. Chambers et al. (2016) extend the M-quantile approach to small

area estimation for counts (Tzavidis et al., 2015; Chambers et al., 2014b) to the case

where the response is binary. Modelling the M-quantiles of a binary outcome presents

more challenges than modelling the M-quantiles of a count outcome. A detailed account of

these challenges is provided in the paper. With the proposed approach random effects are

avoided and between-area variation in the response is characterized by variation in area-

specific values of M-quantile indices. Furthermore, outlier robust inference is achieved in

the presence of both misclassification and measurement error.

5 A test to assess the presence of area-specific effects

In this section we present a LR-type test for the presence of unobserved heterogeneity

(clustering). The proposed test has a similar aim to that of a hypothesis test for the strict

positiveness of variance components in the case of a linear mixed (random) effects model.

Testing for the presence of significant clustering is a well known problem in literature

(Greven et al., 2008; Crainiceanu and Ruppert, 2004; Datta et al., 2011). Clustering can

exist either because of the design used to collect the data (i.e. use of a multi-stage cluster

design) or because of natural structures that exist in the population (i.e. pupils nested

within schools or individuals nested within households). The discussion in this section

will pay special attention to the existence of area-effects in small area estimation.

Our aim is to test for the presence of significant area/cluster effects by proposing a

testing procedure for the cluster-specific M-quantile coefficients τj.

Differently from Chambers and Tzavidis (2006), in the present work we define the

MQ-coefficients τ = (τ1, . . . , τd)
T by adopting an approach that is explicitly based on the

loss function. Within group j, τj is defined to be the one that uniquely solves

min
τ
E

[
ρ

(
yij − xTijβτ

σ

)
|j

]
.
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Intuitively, τj is defined as the MQ for which the regression plane identified by βτj is

closest to observations from group j, according to the metrics of ρ(·). Note that ρ(·) is

the untilted loss function, i.e. ρ0.5(·), so the scale σ coincides with σ0.5. The use of the

untilted loss function is motivated by the search of the regression plane that best fits the

units in a specific sub-group of the population. Testing for the presence of clustering is

equivalent to testing whether the group-specific MQ-coefficients are all equal, that is,

H0 : τj = 0.5 ∀j = 1, . . . , d

HA : τj 6= 0.5 for at least one j.

Of course τ = 0.5 represents the global minimizer when considering all groups j = 1, . . . , p.

A natural estimator τ̂j for τj is obtained by solving

min
τ

nj∑
i=1

ρ

(
yij − xTijβ̂τ

σ̂

)
,

where σ̂ is an estimator of σ such as the one obtained solving (13) for τ = 0.5. Since ρ

is a positive function, the problem may be rewritten as follows. The vector of estimated

MQ-coefficients τ̂ = (τ̂1, . . . , τ̂d)
T is obtained as the solution of

min
(τ1,...,τd)

d∑
j=1

nj∑
i=1

ρ

(
yij − xTijβ̂τj

σ̂

)
. (30)

Assuming that conditions (C1)-(C5) are satisfied and that βτ is differentiable in τ

with ∂2βτ/∂τ
2 = 0 (i.e. βτ linear in τ), it may be shown that under H0

−2
Eψ′ij
Eψ2

ij

[
d∑
j=1

nj∑
i=1

ρ

(
yij − xTijβτ̂j

σ

)
−

d∑
j=1

nj∑
i=1

ρ

(
yij − xTijβ0.5

σ

)]
d−→ χ2

d−1 (31)

where ψ′ij = ψ′(ε0.5ij/σ), ψij = ψ(ε0.5ij/σ) and ε0.5ij = (yij − xTijβ0.5). For a sketch of the

proof, see Appendix B. By simulation (Section 6.3), we show that by substituting the

unknown parameters in (31), the asymptotic distribution is still well approximated by a

χ2
d−1 distribution. Hence, a hypothesis test may be based on

−2
(n− p)−1

∑
ij ψ̂

′
ij

n−1
∑

ij ψ̂
2
ij

[
d∑
j=1

nj∑
i=1

ρ

(
yij − xTijβ̂τ̂j

σ̂

)
−

d∑
j=1

nj∑
i=1

ρ

(
yij − xTijβ̂0.5

σ̂

)]
,

where ψ̂′ij = ψ′(ε̂0.5ij/σ̂), ψ̂ij = ψ(ε̂0.5ij/σ̂) ε̂0.5ij = (yij − xTijβ̂0.5), and βτ̂j and β0.5 are

replaced by the corresponding consistent estimators.

The proposed test can assist the decision to include or not cluster effects in the model.

We note that the asymptotic result holds if nj → +∞ for each j = 1, . . . , d. Even though

the test is asymptotically valid when the sample size within each group tends to infinity,

we empirically show in Section 6 that it provides reasonable results in the small area
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estimation context as well. In Section 6 we explore the validity of this asymptotic result

for different scenarios of the group-specific sample sizes.

The test we propose has a different aim to that of specification tests such as that

recently proposed by Parente and Silva (2013) as we are not testing the assumptions

needed for the estimation of βτ but whether units belonging to the same cluster are

characterized by similar quantile coefficients, which is useful in prediction.

6 Simulation study

In this section we present results from three simulation studies used to investigate the

method for selecting the tuning constant c proposed in Section 2.1, the finite sample

properties of the tests proposed in Section 3 and the test statistic used for testing the

presence of clustering in Section 5. Since these tests can be useful in small area estimation

we generate data under linear mixed (random) effects models that incorporate area specific

variation. The results for the Wald type test are not reported because they are very similar

to the likelihood ratio type test. However, they are available to the prospective reader

from the authors.

6.1 Choosing the tuning constant

In this Section we present results from a simulation study that is used to evaluate the

estimation of the tuning constant c under the ALI distribution as proposed in Section

2.1. At each iteration of the algorithm the equations for βτ , στ , c are re-evaluated until

convergence. The data is generated under the following mixed (random) effects model,

yij = β0 + β1xij + ui + εij, i = 1, . . . , nj, j = 1, . . . , d, (32)

where β0 = 1, β1 = 2, x follows a Uniform distribution (0, 5), d = 100, nj = 5 (n = 500).

The error terms of the mixed model, ui and εij, are generated by using different parametric

assumptions; the random effects ui are generated from a Normal distribution with mean

0 and σ2
u = 1 and ε are drawn from different error distributions,

1. Gaussian with mean 0, variance 1;

2. t-student with 3 degrees of freedom (t3);

3. Contaminated Normal with ε ∼ (1− γ)N(0, 1) + γN(0, 25) where γ is an indepen-

dently generated Bernoulli random variable with Pr(γ = 1) = 0.1, i.e. the individ-

ual errors are independent draws from a mixture of two normal distributions, with

90% on average drawn from a well-behaved N(0, 1) distribution and 10% on average

drawn from an outlier N(0, 25) distribution;

4. Cauchy with location 0 and scale 1.

As in the previous section, the residuals are rescaled so their variance is equal to 1

and the value of intraclass correlation under different scenarios is always approximately
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Figure 2: The distribution of the values of the tuning constant over Monte-Carlo samples
and different settings for the error distribution at τ = 0.25, 0.50, 0.75 and d = 100. The
horizontal dashed line represents the choice of c = 1.345.

equal to 0.3. Figure 2 shows the distribution, over 10000 Monte-Carlo samples of the

estimated tuning constants for the four scenarios at τ = 0.25, 0.5, 0.75. The horizontal

dashed line represents the usual choice of c = 1.345. Under the Gaussian setting, the

values of the tuning constants are clearly larger than the value 1.345 (the conventional

value used in MQ regression) at each τ . The estimated value of the tuning constant

suggests that using a robust estimator in this case is not justified as one would expect

under the assumptions we made in scenario 1. In contrast, the values of the estimated

tuning constant are smaller than 1.345 in the contaminated and Cauchy scenarios. For

instance, in the case of the contaminated scenario, the median value of the estimated

tuning constant at τ = 0.5 is 0.794. In the case of the Cauchy scenario the median

value of the estimated tuning constant, at each quantile, degenerates to 0 because the

Cauchy distribution has heavier tails than the exponential distributions and it should be

truncated as the level of influential units becomes higher. For the t-student scenario the

median value of the estimated tuning constant is 1.27 at τ = 0.5 and it becomes higher

than 1.345 (about 2.0) at τ = 0.25, 0.75.

In applications a unique c should be chosen; it can be the optimal one at 0.5 or chosen

taking into consideration also optimal values at other quantiles.
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6.2 Likelihood Ratio type test

For evaluating the LR and Wald type tests for linear hypotheses on the MQ regression

parameters, data is generated under the following mixed (random) effects model,

yij = β0 + β1xij1 + β2xij2 + β3xij3 + ui + εij, i = 1, . . . , nj, j = 1, . . . , d, (33)

where j indexes the areas (clusters) and i units within areas. The regression coefficients are

set as follows: β0 = 0, β1 = 0.5 and β2, β3 vary pairwise from 0 to 1, i.e. (β2, β3) = (0, 0),

(β2, β3) = (0.25, 0.25), (β2, β3) = (0.5, 0.5) and (β2, β3) = (1, 1). The values of x1, x2 and

x3 are drawn from a Normal distribution with mean 5, 3 and 2, respectively and variance

equal to 1. The number of small areas is set equal to d = 20, 100 and sample size in each

small area nj = 5, so we consider two different overall sample sizes: n = 100, 500. The

error terms of the mixed model, ui and εij, are generated by using different parametric

assumptions. Three settings for generating εi are considered,

1. Gaussian with mean 0, variance 1;

2. t-student distribution with 3 degrees of freedom (t3);

3. Chi-squared errors with 2 degrees of freedom (χ2(2)).

T-students and Chi-squared random variables are re-scaled so to have variance equal to

1; in the case of chi-squared we substract the mean to generate zero-meaned residuals.

The random effects are generated from a Normal distribution with mean 0 and σ2
u = 0.43.

This entails that for all the scenarios the value of intraclass correlation is approximately

equal to 0.3. These choices define a 4 × 3 × 2 design of simulations. Each scenario is

independently simulated T = 10000 times. MQ regression is fitted at τ = 0.5, 0.75, 0.90

by using the Huber influence function with c = 1.345 for t-student and Chi-squared errors,

c = 100 for Gaussian errors and the maximum likelihood estimator (15) based on ALI

as the estimator of στ . Setting c equal to 1.345 gives reasonably high efficiency under

normality and protects against outliers when the Gaussian assumption is violated (Huber,

1981). For the Gaussian scenario the resistance against outliers is not necessary and a

large value for the tuning constant is preferred.

The results for the LR-type test for the null hypothesis

H0 : β2τ = β3τ = 0

at the significance level α = 0.10, 0.05, 0.01 are presented in Table 1. In all cases when

β2 = β3 = 0 and the null hypothesis is true, the Type I error is very close to the nominal

α, with small deviations in the case of τ = 0.9 in the t3 and χ2(2) scenarios with d = 20

(n = 100) where the test turns out to be slightly conservative. For the Gaussian scenario,

the power of the test tends to 1 as soon as the values of β2 and β3 increase, i.e. the null

hypothesis is rejected for both sample sizes. In case of departures from normality, for

example under the t3 scenario, the value of the power of the test tends to 1 at τ = 0.5 and

0.75 once the β2, β3 = 0.25 especially for d = 100 (n = 500). At τ = 0.9 the likelihood
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ratio type test performs well as regression coefficients increase (as soon as β2, β3 = 0.5).

Under the Chi-squared setting the test at τ = 0.75, 0.90 appears to have lower power

in rejecting the null hypothesis especially for the scenario with d = 20. Results for this

scenario improve as the number of groups, d, and the values of the regression parameters

(β2, β3) increase.

6.3 Testing for the presence of clustering

In this section we present an empirical evaluation of the properties of the test used for the

hypothesis of the presence of clustering and we show how this test can be useful in small

area estimation context. For these simulations, data is generated under model (32). Two

scenarios for the number of groups, d, are used, d = 20 and d = 100 and three scenarios for

the within group samples size, nj = 5, nj = 20 and nj = 50. The error terms of the mixed

model, ui and εij, are generated by using different parametric assumptions. In particular,

the random effects are generated from a Normal distribution with mean 0 and different

scenarios for the level 2 variance components σ2
u = 0, 1, 2.5, 7.5. For σ2

u = 0, data is

generated under the null hypothesis of no clustering. For the values of σ2
u other than 0

we start introducing clustering in the simulated data. Individual effects are generated

according to Normal distribution with mean 0 and variance 5. When σ2
u = 0, i.e. under

the null hypothesis, we empirically study the Type I error by using the proposed test.

For all other scenarios of σ2
u 6= 0 we study the power of the proposed test. Each scenario

is independently simulated T = 10000 times.

In this Monte-Carlo simulation, MQ regression is fitted by using the Huber influence

function with c = 100 and the maximum likelihood estimator for the scale (15) under the

ALI distribution. Table 2 reports the results of the simulation experiment. The Table

shows the values of the intraclass correlation, r = σ2
u/(σ

2
u+σ2

ε), the Type I error and power

of the proposed test statistic for α = 0.01, 0.05, 0.10. To start with, we note that under

the null hypothesis the Type I error is very close to the nominal value of α. As the value

of σ2
u increases the power of the test increases too. The power increases more sharply for

larger within cluster sample sizes. The number of clusters also seems to impact on the

power of the test. The power of the test increases fairly sharply when we have a larger

number of clusters even if each cluster consists of a small number of units. Under the null

hypothesis we have also computed the empirical expected value and variance of the test

statistic. We expect that, under the χ2
d−1 asymptotic approximation, the expected value

of the test statistic will be equal to d−1 and the variance equal to 2×(d−1). Results from

the simulation studies confirm that the χ2
d−1 is a good approximation to the distribution

of this test statistic. Finally, we have run a simulation where the individual effects are

generated according to t-student with 3 degrees of freedom and the MQ regression is fitted

by using the Huber influence function with c = 1.345. Also in this case under the null

hypothesis the Type I error is very close to the nominal value of α and power of the test

increases as the value of σ2
u increases. The detailed results are available to the interested

reader from the authors.

The test can be used in small area estimation framework to detect the presence of area
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Table 1: Type I error and power of the proposed likelihood ratio type test under Gaussian,
t3 and χ2(2) distributions at τ = 0.50, 0.75, 0.90 with β2, β3 varying pairwise from 0 to
1, α = 0.10, 0.05, 0.01 and d = 8, 20, 100 with nj = 5.

d α Gaussian, c = 100 t3, c = 1.345 χ2(2), c = 1.345
τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.50 τ = 0.75 τ = 0.90

(β2, β3) = (0, 0)

8
0.10 0.117 0.132 0.181 0.119 0.143 0.322 0.120 0.159 0.355
0.05 0.066 0.079 0.117 0.067 0.087 0.232 0.069 0.096 0.268
0.01 0.018 0.021 0.044 0.017 0.028 0.128 0.017 0.029 0.150

20
0.10 0.110 0.114 0.133 0.103 0.114 0.147 0.109 0.120 0.181
0.05 0.059 0.062 0.075 0.050 0.063 0.089 0.057 0.064 0.112
0.01 0.012 0.015 0.021 0.012 0.016 0.030 0.012 0.016 0.049

100
0.10 0.101 0.105 0.109 0.102 0.108 0.122 0.103 0.106 0.126
0.05 0.052 0.058 0.058 0.052 0.053 0.063 0.050 0.055 0.069
0.01 0.010 0.011 0.012 0.013 0.012 0.017 0.010 0.011 0.018

(β2, β3) = (0.25, 0.25)

8
0.10 0.392 0.394 0.400 0.547 0.491 0.490 0.353 0.248 0.188
0.05 0.283 0.282 0.301 0.430 0.380 0.401 0.251 0.166 0.102
0.01 0.130 0.135 0.159 0.229 0.205 0.156 0.104 0.068 0.073

20
0.10 0.574 0.547 0.481 0.681 0.605 0.457 0.497 0.313 0.273
0.05 0.453 0.430 0.371 0.566 0.488 0.357 0.375 0.215 0.191
0.01 0.245 0.225 0.192 0.337 0.267 0.191 0.184 0.088 0.082

100
0.10 1.000 0.999 0.964 1.000 0.996 0.909 0.984 0.823 0.395
0.05 0.991 0.998 0.934 0.998 0.991 0.846 0.967 0.728 0.282
0.01 0.962 0.989 0.914 0.991 0.968 0.671 0.903 0.498 0.128

(β2, β3) = (0.50, 0.50)

8
0.10 0.849 0.827 0.774 0.952 0.900 0.761 0.779 0.498 0.437
0.05 0.776 0.746 0.694 0.919 0.846 0.692 0.689 0.391 0.397
0.01 0.580 0.554 0.516 0.807 0.702 0.546 0.485 0.212 0.200

20
0.10 0.978 0.962 0.920 0.993 0.982 0.852 0.944 0.729 0.449
0.05 0.960 0.941 0.873 0.987 0.961 0.784 0.905 0.619 0.352
0.01 0.883 0.841 0.729 0.953 0.890 0.619 0.774 0.400 0.196

100
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.872
0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795
0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.590

(β2, β3) = (1, 1)

8
0.10 1.000 1.000 0.995 1.000 0.998 0.973 0.994 0.906 0.731
0.05 1.000 1.000 0.991 1.000 0.997 0.958 0.990 0.854 0.657
0.01 0.995 0.991 0.968 0.998 0.991 0.916 0.966 0.708 0.501

20
0.10 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.996 0.841
0.05 1.000 1.000 1.000 1.000 1.000 0.996 1.000 0.990 0.767
0.01 1.000 1.000 1.000 1.000 1.000 0.985 1.000 0.965 0.604

100
0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2: Type I error and power of the proposed test statistic for clustering under Gaussian
distribution with r varying between 0 and 0.6, α = 0.10, 0.05, 0.01, d = 8, 20, 100 and
nj = 5, 20, 50.

α d = 8 d = 20 d = 100
nj = 5 nj = 20 nj = 50 nj = 5 nj = 20 nj = 50 nj = 5 nj = 20 nj = 50

r = 0
0.10 0.114 0.085 0.103 0.141 0.104 0.099 0.120 0.089 0.103
0.05 0.062 0.035 0.048 0.075 0.059 0.047 0.060 0.036 0.042
0.01 0.008 0.007 0.014 0.015 0.012 0.008 0.018 0.009 0.009

r = 0.16
0.10 0.413 0.910 0.991 0.702 0.999 1.000 0.983 1.000 1.000
0.05 0.213 0.875 0.985 0.565 0.998 1.000 0.969 1.000 1.000
0.01 0.118 0.765 0.971 0.325 0.992 1.000 0.906 1.000 1.000

r = 0.33
0.10 0.707 0.983 0.998 0.954 1.000 1.000 1.000 1.000 1.000
0.05 0.572 0.981 0.998 0.904 1.000 1.000 1.000 1.000 1.000
0.01 0.330 0.955 0.995 0.763 1.000 1.000 1.000 1.000 1.000

r = 0.60
0.10 0.933 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
0.05 0.881 0.999 1.000 0.998 1.000 1.000 1.000 1.000 1.000
0.01 0.720 0.995 1.000 0.989 1.000 1.000 1.000 1.000 1.000

effects. If the test rejects H0 it means that there is unobserved heterogeneity between

areas and predictor (27) can be used to estimate the small area mean. Otherwise, if H0

is not rejected, the synthetic estimator can be used for predicting the small area quantity

because, in the case of absence of unobserved heterogeneity between areas, it guarantees

less variability and bias than estimator (27). To evaluate the performance of the synthetic

predictor and the MQ predictor (27) the absolute relative bias (ARB) and the relative

root mean squared error (RRMSE) of estimates of the mean value in each small area are

computed. Table 3 reports the average values over areas of these indices for nj = 5, 20, 50

and d = 100. The results for d = 20 are not reported because these are very similar to

those for d = 100, but are available from from the authors upon request. Table 3 shows

that the average ARB and RRMSE of the synthetic predictor increase as the intraclass

correlation increases. The average values of ARB and RRMSE for estimator (27) remain

constant at different values of r given the sample size. From the results in Table 3 it

is apparent that when the assumption of significant between area heterogeneity is not

rejected, the synthetic estimator offers the best performance. On the other hand, as soon

as the intraclass correlation increases the predictor (27) performs best. Thus the LR-

type test for the presence of clustering can drive the choice of the M-quantile predictor in

small area estimation. The increase in the RRMSE when incorporating the area effect into

prediction unnecessarily has been documented by other authors (see Datta et al., 2011).

Our work extends these results to the case of small area estimation based on M-quantile

regression.

22



Table 3: Values of the average ARB and average RRMSE over small areas for synthetic
and (27) predictors under Gaussian distribution with r varying between 0 and 0.6, d = 100
and nj = 5, 20, 50. Values are expressed as percentages.

Predictor nj = 5 nj = 20 nj = 50
ARB RRMSE ARB RRMSE ARB RRMSE

r = 0

m̂MQ
j 11.07 13.62 5.66 7.04 3.55 4.45

m̂
MQ/SY N
j 1.39 1.74 0.99 1.24 0.86 1.08

r = 0.16

m̂MQ
j 10.63 13.25 5.44 6.82 3.45 4.33

m̂
MQ/SY N
j 11.41 14.29 11.20 14.02 10.84 13.58

r = 0.33

m̂MQ
j 10.54 13.20 5.60 7.10 3.73 4.87

m̂
MQ/SY N
j 17.96 22.50 17.67 22.13 17.12 21.44

r = 0.60

m̂MQ
j 11.71 15.10 7.17 10.40 5.46 8.91

m̂
MQ/SY N
j 31.07 38.92 30.59 38.31 29.65 37.13

7 Application

In this Section we use a dataset well-known in the small area estimation literature for

illustrating the proposed model fit, selection and diagnostic criteria. Battese et al. (1988)

analyse survey and satellite data for corn and soybean production for 12 counties in North

Central Iowa. The dataset comes from the June 1978 Enumerative Survey, consists of 37

observations and includes information on the number of segments in each county, the

number of hectares of corn and soybeans for each sample segment, the number of pixels

classified by the LANDSAT satellite as corn and soybeans for each sample segment, and

the mean number of pixels per segment in each county classified as corn and soybeans.

These data were used by Battese et al. (1988) to predict the hectares of corn and soybean

by county. We use this dataset to compute the tuning constant c (Huber loss function

is going to adopted), the R2 goodness-of-fit measure, the LR-type test for specifying

the explanatory variables to be included in MQ regression, and the likelihood ratio type

test for the presence of actual area heterogeneity. County specific random effects were

introduced by Battese et al. (1988) to improve prediction, so we would like to use our

methodology to test whether there is significant between county variation in the MQ-

coefficients, something that would justify the inclusion of county specific quantiles.

The response variable y is the number of hectares of corn and soybeans and the model

includes two fixed effects, x1 and x2 that represent the number of pixels classified by the

LANDSAT satellite as corn and soybeans respectively for each sample segment. Battese

et al. (1988) use the following two-level linear mixed model where i denotes the counties

and j denotes the segments:

yij = β0 + β1x1ij + β2x2ij + ui + eij.

A random effect ui is specified at the county level. This model will be used for

benchmarking our results. Diagnostic for this model is reported in other papers (see for

23



0.2 0.4 0.6 0.8

5
10

15
20

25

tau

sc
al
e

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tau

R
-s
qu
ar
ed

Figure 3: Left plot shows the values of the estimated scale at different value of τ for corn
(�) and soybean (×). Right plot presents the R-squared at different value of τ for corn
(solid line) and soybean (dashed line).

example Sinha and Rao, 2009). They indicate that for the soybean variable normality

of u and e approximately holds. For the corn variable, on the other hand, there is an

influential outlier in the Hardin county.

We present results for MQ regression at τ = 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95. We

further compare our results at τ = 0.5 to model diagnostics from the linear mixed model

used by Battese et al. (1988). For the analysis of the corn outcome, the estimate of the

tuning constant c using the GALI pseudo-likelihood at τ = 0.5 is equal to 1.94, a relatively

low value, consistent with the presence of the outlier identified in diagnostic analysis. For

the soybean variable the tuning constant c estimate at τ = 0.5 is 7.85. This value suggests

that there are no issues with contamination. Using c = 1.345, that represents a typical

choice in the applications of the Huber loss function, or the value we chose for corn, would

increase the robustness unnecessarily at the cost of lower efficiency. Similar conclusions

hold for other values of τ .

Estimates of the scale parameter στ obtained with the GALI-based method are shown

in Figure 3. We note that these are sensitive to the M-quantile being considered and

exhibit an inverted u-shape: for quantiles far from 0.5 the proportion of residuals for

which |u| > c is larger and this reduces their average size. When τ is close to 0.5 the

estimates we obtain are close to those obtained by using the MAD estimator (9). On the

contrary, MAD estimates are larger for quantiles far from 0.5 compared to those obtained

in the central part of the distribution. This can be due to the fact that the scaling

constant q in (9) should be quantile-adjusted. Looking at the R2 model fit criterion we

note that for the corn outcome this increases as τ increases (see Figure 3 solid line). For

the soybean outcome there appears to be an almost constant high value of R2 at all values

of τ (see Figure 3 dashed line). Overall, for both outcomes there appears to be a moderate

to strong linear relationship between the outcome and the explanatory variables at the

different values of τ .
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H0 : (β1, β2) = 0 H0 : β2 = 0
τ LR Test p-value LR Test p-value
0.05 21.4 0.000 1.4 0.4935
0.10 23.8 0.000 0.3 0.8350
0.25 38.4 0.000 0.0 0.9996
0.50 68.3 0.000 0.4 0.7855
0.75 105.1 0.000 0.6 0.7376
0.90 97.1 0.000 0.1 0.9534
0.95 65.8 0.000 0.0 0.9959

Table 4: LR-type test for the model specification of the corn outcome, H0 : (β1, β2) = 0
and H0 : β2 = 0

The LR-type tests results for the corn outcome are presented in Table 4 and for the

soybean outcome in Table 5. When testing jointly the significance of x1 and x2, the

tests suggest that these covariates are significant for explaining the variability in both

outcomes. For the corn outcome the tests show that after controlling for the number of

pixels classified by the LANDSAT satellite as corn (x1), the number of pixels classified

by the LANDSAT satellite as soybean (x2) is not significant. Similarly, for the soybean

outcome after controlling for the number of pixels classified by the LANDSAT satellite

as soybean (x2), the number of pixels classified by the LANDSAT satellite as corn (x1)

is not significant. Hence, the model specification can be simplified by dropping the non-

significant terms. The same conlcusions can be obtained by using the Wald-type test. For

validating these results at τ = 0.5, we run the same analysis under the two-level linear

mixed model used by Battese et al. (1988). For the corn outcome after controlling for x1,

the p-value for including x2 is equal to 0.6315 indicating that x2 can be dropped from the

model. For the corn outcome after controlling for x2, the p-value for including x1 is equal

to 0.6049 indicating that x1 can be dropped from the model.

We turn our attention to testing the significance of the between county variability. The

two scatter plots in Figure 4 show the relationship between the predicted county random

effects computed with the mixed model and the MQ county coefficients computed with

the MQ model for the corn outcome (scatter plot (a)) and the soybean outcome (scatter

plot (b)). For both outcomes the two measures of county effects are well correlated. For

testing the significance of the county MQ coefficients we use the proposed LR-type test.

For the corn outcome the value of the test statistic is 17.152 and the corresponding p-

value= 0.103. We have also conducted the hypothesis test for the presence of significant

between county variation by using the linear mixed model. For testing the null hypothesis

of a zero between county variation we compute the conditional-AIC (cAIC) value (Vaida

and Blanchard , 2005) and compare this to the AIC value for a linear regression model

without random effects. The cAIC for the linear mixed model is 327.5109 and the AIC

for the linear regression model is 327.4116. This indicates that the linear model without

random effects fits almost as well as the more complex model that includes random effects.

Hence, random effects may not be needed in the analysis of the corn outcome.

For the soybean outcome the value of the LR-type test for the presence of clustering

is 26.791 and the corresponding p-value= 0.0049. As in the case of the corn outcome,
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Figure 4: Scatter plots for the relationship between the predicted county random effects
(computed with the mixed model) and the MQ county coefficients (computed with the
MQ model) for the corn outcome (a) and for the soybean outcome (b).

H0 : (β1, β2) = 0 H0 : β1 = 0
τ LR Test p-value LR Test p-value
0.05 195.7 0.000 2.6 0.2696
0.10 146.6 0.000 1.2 0.5496
0.25 116.0 0.000 0.3 0.8557
0.50 91.8 0.000 0.0 0.9972
0.75 66.7 0.000 0.4 0.8129
0.90 61.9 0.000 1.2 0.5380
0.95 65.3 0.000 01.6 0.4532

Table 5: LR-type test for the model specification of the soybean outcome, H0 : (β1, β2) = 0
and H0 : β1 = 0

we have also conducted the hypothesis test for the presence of significant between county

variation by using the linear mixed model. The cAIC for the linear mixed model is

311.8459 and the AIC for the linear regression model is 333.8107. This indicates that the

linear model with county random effects fits better than the simpler model that ignores

the random effects.

8 Final remarks

In this paper we have reviewed the M-quantile regression model and its application to

SAE. We have also extended the available toolkit for inference in M-quantile regression.

For given τ we have proposed a pseudo-R2 goodness-of-fit measure, a likelihood ratio and

Wald type tests for testing linear hypotheses on the M-quantile regression parameters.

The cluster-specific M-quantile coefficients have been used for proposing a test for

the presence of clustering in the data. The set of tests we present in the paper can be

applied in small area estimation framework to validate the M-quantile models used for

prediction. For a large class of continuously differentiable convex functions we showed the
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relationship between the loss function used in M-quantile regression and the maximization

of a likelihood function formed by combining independently distributed GALI densities.

Using this parametrization, we further propose an estimator of the scale parameter and a

data-driven tuning constant to be used in the loss function. For each test the asymptotic

theory has been developed involving recent works on inference by Wooldridge (2010) and

Bianchi and Salvati (2015).

The simulation results for studying the finite sample properties of the model-fit criteria

and the tests show that the Type I error of the LR-type test and the clustering test is very

close to the nominal level α. For both tests, the results also indicate that the power tends

to 1 as the values of the regression coefficients and the interclass correlation coefficient

increase. In the simulation experiments we have also investigated the behaviour of the

method proposed for estimating the tuning constant in the Huber loss function. The

tuning constant derived by using the likelihood method is able to reflect different levels

of contamination in the data.
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A Properties of the ALI

In this appendix we provide some more properties for special case of the GALI distribution

when the ρ(·) is given by (1), that is the ALI we introduced in section 2.1. Suppose that U

is a random variable with the standard ALI density (µτ = 0, στ = 1), then its cumulative

distribution function is written as

F (u) =



1
2c(1−τ)Bτ

exp{[2cu+ c2](1− τ)} u 6 −c
1
Bτ

{
1

2c(1−τ)
e−c

2(1−τ) +
√

π
1−τ

[
Φ(u

√
2(1− τ))− Φ(−c

√
2(1− τ))

]}
−c < u 6 0

1
Bτ

{
1

2c(1−τ)
e−c

2(1−τ) +
√

π
1−τ

[
Φ(c
√

2(1− τ))− 1/2
]

+
√

π
τ

[
Φ(u
√

2τ)− 1/2
]}

0 < u 6 c

1
Bτ

{
1

2cτ
e−c

2τ − 1
2cτ
exp{−2τcu+ c2τ}

}
u > c

.

For obtaining the expected value and the variance of U , the moment generating func-

tion is computed and it can be written as:

Mτ (t) =
1

Bτ [2c(1− τ) + t]
exp{−c2(1− τ)− ct}

+
exp{ t2

4(1−τ)
}

Bτ

√
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[
Φ

(
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)
− Φ

(
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)]
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(
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2τ
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− 1

Bτ (t− 2cτ)
exp{−c2τ + ct},

for −2c(1− τ) < t < 2cτ .

The first moment then is

E(U) = − 1

4Bτc2(1− τ)2
exp{−c2(1− τ)}+

1

4Bτc2τ 2
exp{−c2τ}+

1− 2τ
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and the variance is

V ar(U) =
1
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 .
These formulae may be easily generalized to the location and scale case. They can be

used to obtain method of moments estimates of c and στ to be used as initial values when

minimizing (12) when ρτ (·) is the Huber loss function, in line with Yu and Zhang (2005).

The computations for obtaining the moment generating function, the expected value and

the variance of U are not reported in the paper, but they are available from the authors

upon request.
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B Sketch of the proof of equation (31)

Under the assumptions of the theorem, convergence of τ̂j to τj is verified by using

standard Taylor linearization techniques. For the asymptotic distribution of the test

statistic, let Q(τ ) =
∑d

j=1

∑nj
i=1 ρ

(
yij−xTijβτj

σ

)
, s(τ ) =

{
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nj
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σ

)}d
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,
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σ
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, and n = (n1, . . . , nd)

T . Let A0 = diag{aj} and

B0 = diag{bj} with
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∂τ 2
j

(
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.

Under H0, a mean value expansion yields

0 = s(τ̂ ) = s(0.5) +
√

n · (τ̂ − 0.5) + op(1),

implying
√

n ·(τ̂ −0.5)
d−→ N(0,A−1

0 B0A
−1
0 ), as nj → +∞, j = 1, . . . , d, where · denotes

the Hadamard product.

Then

Q(0.5)−Q(τ̂ ) =
1

2
(τ̂ − 0.5)TH(τ̇ )(τ̂ − 0.5)

=
1

2
[
√

n · (τ̂ − 0.5)]TA0[
√

n · (τ̂ − 0.5)] + op(1),

where τ̇ is a value between τ̂ and 0.5. Hence

2[Q(0.5)−Q(τ̂ )]
Eψ′ij
Eψ2

ij

= [
√

n · (τ̂ − 0.5)]T [A−1
0 B0A

−1
0 ]−1[

√
n · (τ̂ − 0.5)] + op(1).

Intuitively, for reasons of symmetry, if τj = 0.5 for j = 1, . . . , d− 1, also τd = 0.5 (as the

global minimizer is τ = 0.5). The same relationship needs to hold for the corresponding

estimators τ̂j’s. So the previous expression may be reparametrized leading to a χ2
d−1

asymptotic distribution.

32


