

18 ^{ème} Congrès Français de Mécanique

Grenoble, 27-31 août 2007

Propagation et instabilité des chocs de porosité dans les suspensions liquide-solide

Christophe Sierra, Lounès Tadrist & René Occelli

Laboratoire de l'IUSTI (UMRS CNRS 6595) Technopôle de Château Gombert 5, rue Enrico Fermi 13453 Marseille Cedex 13 christophe.sierra@polytech.univ-mrs.fr

Résumé :

Nous proposons dans ce travail l'étude expérimentale du comportement dynamique d'une suspension fluidisée dans une situation 'hors d'équilibre' où se propage spontanément un choc de porosité. On met en évidence deux types de comportements distincts avec des caractéristiques associées que les modèles ne prédisent pas. De plus, sur la base d'une analyse à l'échelle du grain du phénomène de décompaction, nous proposons un ensemble de nombres adimensionnels qui expliquent qualitativement nos observations.

Abstract :

We propose in this work an experimental study of the dynamic behavior of fluidized suspensions submitted to an 'out-of-equilibrium' situtation where porosity shocks spontaneously propagate. We evidence two types of behaviors with proper characterstics which literature models do not predict. An analysis of the decompction dynamics at the grain scale leads us to propose non-dimensional parameters that explain our observations on qualitative grounds.

Mots-clefs :

fluidisation, instabilité, rhéologie

1 Introduction

La grande variété des comportements observés dans les suspensions fluidisées dépend à la fois des propriétés particulaires et du fluide porteur. Le choix des différents paramètres (densités, tailles des particules, viscosité) donne lieu à des interactions entre phases plus ou moins complexes qu'il est souvent difficile de modéliser précisément à toutes les échelles. Dans le cas des suspensions fluidisées non Browniennes, les caractéristiques des hétérogénéités spatiotemporelles de concentration provoquées par le caractère instable de ces écoulements ne sont pour l'instant décrites par aucune loi rhéologique universelle et ce malgré une littérature abondante. Dans ce contexte, il nous a semblé important de développer une approche expérimentale simple, où le système est suffisamment contraint et de manière maîtrisée pour n'avoir qu'une gamme restreinte de comportements dont l'analyse est plus aisée. Ainsi, sur la base d'un protocole utilisé par Wallis (1962), nous proposons une étude où nous mesurons la vitesse de propagation d'une discontinuité de porosité (front de décompaction - voir figure 1) pour une gamme étendue de propriétés particulaires. Le fluide utilisé est de l'eau, les tailles de particules vont de 290 μ m à 6 mm et leur densité de 1.2 à 8. Les objectifs de ce travail sont doubles. Tout d'abord, il s'agit là de compléter la base de données de mesures disponibles dans la littérature qui est, sur ce point particulier, peu conséquente et ancienne. De plus, ce travail met en évidence deux types de comportements distincts que les modèles théoriques existants ne prédisent pas. En effet, en fonction des particules utilisées, nous observons soit la propagation d'un front de décompaction plan à vitesse lente, soit la déstabilisation de ce dernier (qui devient tridimensionnel et instationnaire) associée à une augmentation brutale de la vitesse de propagation. Sur la base d'une analyse à l'échelle du grain du phénomène de décompaction, nous proposons un ensemble de nombres adimensionnels qui expliquent qualitativement nos observations.

2 Technique experimentale

Le dipositif expérimental est schématisé sur la figure 2. Il s'agit d'un tube cylindrique en plexiglas (diamètre interieur D = 6 cm) équipé de deux distributeurs poreux (6) à chaque extrémité. Leur rôle est de confiner les particules (9) et d'assurer une vitesse de fluidisation uniforme. Afin de faciliter l'étape de compaction au début de chaque expérience le tube est équipé d'un axe de rotation horizontal (7) en son milieu. Le fluide utilisé est de l'eau du robinet qui circulue dans un boucle fermée qui comprend un bac de stockage (1) et une pompe centrifuge (2). Deux vannes de régulation (5) ainsi que deux electro-vannes (4) sont utilisées pour régler les débits (minimum et maximum) et permuter entre les deux pour initier la décompaction du lit. La température de l'eau est contrôlée par un thermocouple (10) et les débits sont mesurées par un débitmètre à turbine (3) connecté à un analyseur de signaux. La décompaction est filmée à l'aide d'une caméra CCD monochrome (8) à 30 i/s. Les caractéristiques des particules utilisées sont dans le tableau 1.

	Designation	$ ho_s$ (kg/m ³)	d (μ m)	D/d	ε_{mf}	n	u_t (m/s)
Plastique	set A	1425	5000	12	0.487	2.59	0.159
Verre	set B	2533	6000	10	0.471	2.27	0.281
	set C	2533	5000	12	0.451	2.02	0.247
	set D	2533	4000	15	0.446	2.44	0.295
	set E	2533	3000	20	0.456	2.55	0.246
	set F	2533	2000	30	0.450	2.77	0.197
	set G	2533	1500	40	0.430	2.76	0.171
	set H	2533	512.5	117	0.450	5.04	0.097
Silicate de zircone	set I	3800	1100	54.5	0.453	3.27	0.209
	set J	3800	700	85.7	0.446	3.63	0.154
	set K	3800	300	200	0.442	4.15	0.075
Acier	set L	7960	1000	60	0.446	2.71	0.239
Bronze	set M	8420	755	79.5	0.439	3.37	0.319
	set N	8420	290	207	0.431	4.13	0.124

TAB. 1 – Caractéristiques des particules. ε_{mf} est la porosité du lit seuil de fluidisation juste avant la décompaction, u_t est la vitesse terminale d'une particule isolée et n l'exposant de Richarson-Zaki (Richardson & Zaki, 1954)

Une expérience type commence par la compaction des particules sur le distributeur du haut en augmentant la vitesse du fluide au delà de γu_{mf} ($1.4 < \gamma < 3$) et en retournant le lit. Ensuite, le débit est brusquement réduit au minumum de fluidisation u_{mf} à l'aide des électro-vannes. A chaque expérience, un film est enregistré et post-traitée avec ImageJ (Abramoff *et al.*, 2004). On extrait les niveaux de gris le long d'une génératrice du tube et on construit un diagramme spatio-temporel. Dans ce dernier, le contraste entre les particules statiques et celles qui chutent crée une ligne démarcation dont la pente permet de calculer la vitesse du front de décompaction c_d .

3 Résultats expérimentaux

Au cours des expériences, nous avons observé deux types de comportements. Pour les particules les plus grosses (du set A à G), le front reste plan i.e. pendant la décompaction les particules tombent couches par couches, et son interface est aisément repérable à l'oeil nu (voir illustration sur la figure 3). Pour les particules plus petites (set H à N), le front de décompaction qui est plan au tout début de l'expérience, se déstabilise très vite au cours de sa propagation et présente un aspect instationnaire et turbulent. Ce comportement est observé pour une large gamme de densité. Sur la figure 4, nous comparons les valeurs expérimentales de c_d avec le seul modèle quantitatif de la litérature (Foscolo & Gibilaro, 1984; Gibilaro et al., 1989) où la vitesse du front de décompaction est donnée par $c_{d,1} = (3.2\tilde{g}d\phi_{mf})^{1/2}$ avec $\tilde{g} = g(1 - \rho_f/\rho_s)$, d le diamètre des particules et ϕ_{mf} la compacité du lit au minimum de fluidisation. Ce graphique montre que le modèle prédit assez bien la vitesse de décompaction quand le régime est 3D (cercles noirs) alors qu'il la surestime nettement (presque deux fois) quand le front reste 1D (cercles blancs). Ceci montre que la dynamique du front est très fortement conditionnée par sa structure en cours de décompaction. Ce comportement particulier avait était évoqué par Wallis (1962) mais la très grande dispersion de ses mesures ne lui avait pas permis de mettre en évidence la corrélation entre le comportement du front et sa vitesse. Sur une seconde figure (fig. 5), nous comparons cette fois nos mesures avec la vitesse de l'onde cinématique (Kynch, 1952) $c_k = n u_t \phi_{mf} (1 - \phi_{mf})^{n-1}$. Pour les fronts avec une décompaction 1D, leur vitesse correspond plutôt bien à c_k malgré une légère sur-estimation pour les particules les plus grosses. Ceci est assez naturel dans la mesure où c_k représente la vitesse de propagation d'une perturbation de porosité pour des particules sans inertie. D'un autre côté, les particules présentant un front de décompaction 3D, ce dernier se propage avec une vitesse bien supérieure à celle de l'onde cinématique i.e. $\approx c_{d,1}$.

Ainsi, nous voyons que la vitesse du front est très fortement dépendante de sa structure spatiotemporelle. Les vitesses de propagation associées à chacun des de deux modes correspondent aux deux vitesses caractéristiques en fluidisation : celle de l'onde cinématique c_k et celle de l'onde dynamique (au moins telle que définie par (Foscolo & Gibilaro (1984); Gibilaro *et al.* (1989)). La signification physique de cette dernière fait débat (voir Batchelor (1988)) mais une discussion de ce problème sort du cadre de ce travail.

Fort de ce résultat original, une question intéressante est de savoir si l'on est capable de distinguer a priori les particules qui ont tendance à produire l'une ou l'autre des dynamiques observées. C'est l'objet de la section suivante.

4 Analyse dimensionelle de la décompaction et discussion

Les paramètres sans dimension qui gouvernent le processus de décompaction peuvent être déduits de l'analyse des évènements élémentaires à l'échelle de la particule. En effet, de manière idéalisée, la propagation d'un front de décompaction n'est rien d'autre que la chute successive des particules soumises à leur poid et à la traînée du fluide. A l'équilibre à l'intérieur du lit, les particules se trouvent à l'arrivée du front dans une situation où la gravité domine sur la traînée à cause d'une porosité locale réduite (Campos & de Caravalho, 1992). A partir de l'équation de la dynamique pour une particule, il est alors possible de déduire les nombres caractéristiques contrôlant la décompaction.

$$\rho_s \frac{\pi d^3}{6} \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}t} = C_D \frac{\pi d^2}{8} \rho_f |\mathbf{u} - \mathbf{w}| (\mathbf{u} - \mathbf{w}) + \frac{\pi d^3}{6} (\rho_s - \rho_f) \mathbf{g}$$
(1)

avec $C_D = C_{D_0} f(\varepsilon)$ le coefficient de traînée d'une particule isolée corrigé par $f(\varepsilon)$ une fonction de la porosité locale qui prend en compte la présence des autres particules (Crowe *et al.*, 1998).

Cette analyse est inspirée du travail de Courrech Du Pont *et al.* (2003) sur la dynamique des avalanches sous-marines. A partir de l'équation (1) il est possible de définir trois temps caractéristiques importants : τ_{ff} le temps de chute libre (en absence de frottement) d'une particule sur la distance d'un diamètre *d* (choisi comme échelle de longueur), τ_i un temps inertiel et τ_v un temps visqueux (fonctions du régime d'écoulement autour des particules). Les rapports croisés de ces temps caractéristiques donne trois nombres sans dimensions qui, en fonction de leur valeur relative, indique le type de dynamique à l'échelle particulaire. Tout d'abord un nombre de Reynolds défini par Re $= \tau_v/\tau_i$ qui renseigne sur le caractère visqueux ou inertiel de la traînée du fluide, puis un nombre de Stokes St $= \tau_v/\tau_{ff}$ qui compare l'inertie des particules aux effets visqueux et le troisième $r = \tau_i/\tau_{ff} = \text{St}/\text{Re}$ qui correspond à un ratio de densité particule/fluide. Ces nombres sont définis par,

$$St = \frac{1}{18} \sqrt{\frac{\rho_s \Delta \rho g d^3}{2f^2 \mu_f^2}}, Re = \sqrt{\frac{8\rho_f \Delta \rho g d^3}{3f \mu_f^2}}, r = \frac{1}{24\sqrt{3f}} \left(\frac{\rho_s}{\rho_f}\right)^{1/2}$$
(2)

Les différents comportements possibles sont consignés dans le tableau 2.

	Petit St	Grand St			
Petit r	régime dépendant de Re	régime inertiel			
Grand r	régime visqueux	régime de chute libre			

TAB. 2 – Régimes de décompaction pour une particule unique. L'analyse originelle est de Courrech Du Pont *et al.* (2003).

Le régime de chute libre est caractéristique des lits fluidisés gaz-solide. Pour les suspensions liquide-solide considérées dans ce travail, il est vraisemblable que la plage de caractéristiques particulaire est assez large pour couvrir les régimes visqueux et inertiels. De manière qualitative nous avons utiliser cette analyse locale pour essayer de classifier les systèmes particulaires de nos expériences. Pour calculer différents nombre adimensionnels nous avons utilisés les paramètre expérimentaux (diamètre, densité, porosité et viscosité) et $f(\varepsilon) = \varepsilon_{mf}^{-3.7}$ (Wen & Yu, 1966).

La figure 6 montre dans le plan (St,r) la localisation de nos expériences. La ligne grisée indique la frontière entre les régimes 1D (cercles blancs) et 3D (cercles noirs) qui correspond à un Reynolds critique $\operatorname{Re}_c \simeq 84$. Cette séparation permet effectivement de classer les différents systèmes de particules : un régime 3D pour les particules à petit St et 1D pour les particules à grand St. D'un point de vu qualitatif cette séparation est assez intuitive. Quand une particule au passage du front de décompaction quitte le lit, son mouvement induit des perturbations de l'écoulement autour d'elle qui sont susceptibles d'influencer ses voisines. Les particules à petit St à cause de leur faible inertie sont très sensibles aux mouvement de leurs voisines ainsi, on s'attend dans ce cas à obtenir une dynamique de type collective avec de forte interaction hydrodynamiques entre elles. Cette image corresond aux observations expérimentales où les particules chutent par paquets avec une dynamique corrélé (apparition de tourbillons) ce qui donne l'apparence d'un front de décompaction instable et fluctuant. A l'opposé les particules avec un grand St sont assez insensibles aux perturbations de l'écoulement autour d'elle et donc se comporte de manière individuelle : elle chutent couches par couches sans trop interagir entre elles et avec le reste de celles en amont du choc.

5 Conclusion et perspective

Les chocs de porosité ont été imaginé par Wallis (1962) comme un moyen simple de tester la rhéologie des écoulements à phase dispersée tels les suspensiosn fluidisées. La mesure de leur vitesse de décompaction est un paramètre clé qui contient de nombreuses informations sur la rhéologie de la phase particulaire. Dans ce but, le présent travail a permis tout d'abord de fournir de nouvelles mesures expérimentales permettant de renfocer une litérature peu abondante. Ensuite, nous avons également pu mettre en évidence deux régimes de décompaction différents caractérisés chacun par des vitesses de décompaction qui correspondent aux cas asymptotiques des ondes cinématiques et dynamiques. Une analyse dimensionelle a permis de définir trois nombres sans dimensions qui caractérisent et différencient qualitativement ces deux régimes. Cependant, cela n'explique pas l'existence d'une transition comportementale brusque pour une Reynolds critique particulier. On s'attendrait plutôt à une transition graduelle d'un régime à l'autre (à St croissant par exemple) mais les expériences montre une dichotomie franche. Des expériences sont en cours pour éclaircir l'effet du confinement sur la stabilité des chocs.

Références

- ABRAMOFF, M., MAGELHAES, P. & RAM, S. 2004 Image processing with imagej. *Biophoto*nics International **11** (7), 36–42.
- BATCHELOR, G. K. 1988 A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 193, 75–110.
- CAMPOS, J. B. L. M. & DE CARAVALHO, J. R. F. G. 1992 Drag force on the particles at the upstream end of a packed bed and the stability of the roof of bubbles in fluidised beds. *Chem. Eng. Sci.* **47** (15/16), 4057–4062.
- COURRECH DU PONT, S., GONDRET, P., PERRIN, B. & RABAUD, M. 2003 Granular Avalanches in Fluids. *Physical Review Letters* **90** (4).
- CROWE, C., SOMMERFELD, M. & TSUJI, Y. 1998 Multiphase flows with droplets and particles. CRC Press.
- FOSCOLO, P. U. & GIBILARO, L. G. 1984 A fully predictive criterion for the transition between particulate and aggregate fluidisation. *Chem. Eng. Sci.* **39**, 1667–1675.
- GIBILARO, L., FELICE, R. D. & FOSCOLO, P. 1989 The experimental determination of onedimensional wave velocities in liquid fluidized beds. *Chem. Eng. Sci.* 44, 101.
- KYNCH, G. J. 1952 A theory of sedimentation. Trans. Faraday Soc. 48, 66–76.
- RICHARDSON, J. F. & ZAKI, W. N. 1954 Sedimentation and fluidization : part i. *Trans. Inst. Chem. Engnrs* **32**, 35–53.
- WALLIS, G. B. 1962 One-dimensional waves in two-component flow (with particular reference to the stability of fluidized beds). UKAEA Report AEEW-R162.
- WEN, C. Y. & YU, Y. H. 1966 A generalised method for predicting minimum fluidization velocity. *AIChe Journal* **12**, 610.

FIG. 1 – Schéma de principe de l'expérience proposée par Wallis (1962). ϕ_{rlp} est la porosité de l'empilement aléatoire lâche (random loose packing), elle est égale à la compacité au seuil de fluidisation ϕ_{mf} .

fluid injection

FIG. 3 – Schématisation des deux différents modes de décompaction.

FIG. 5 – c_k versus c_d .

Grenoble, 27-31 août 2007

FIG. 2 – Schéma du dispositif expérimental.

FIG. $4 - c_{d,1}$ (Single Phase Model - SPM) versus c_d . Les lignes en pointillés correspondent à un intervalle de confiance de $\pm 20\%$.

FIG. 6 – Localisation de nos expériences dans le plan (St,r). La ligne grise correspond au Reynolds critique $Re_c \simeq 84$.