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The locus of innovation and economic growth has moved away from traditional industries such 

as automobiles and construction that derived their competitive advantage primarily from 

economies of scale and gains in productivity. Instead, mainly because of advances in 

information technology technological revolutions in knowledge intensive industries such as the 

life sciences, electronics, materials and energy conversion are the prime engines of economic 

growth in the last two decades.  The increased reliance on industries deriving gains from 

technological breakthroughs is often termed the rise of the “knowledge economy”. Formally, 

the knowledge economy “is an expression coined to describe trends in advanced economies 

towards greater dependence on knowledge, information and high skill levels, and the 

increasing need for ready access to all of these by the business and public sectors” (OECD, 

2005). 

As implied by the last part of the OECD definition above, academia and industry are 

major players in the knowledge economy. Universities increase the stock of useful knowledge, 

train skilled graduates, form networks and stimulate social interaction, increase the capacity of 

scientific and technological problem-solving, and create new firms through spin-offs or 

spillover effects (Salter & Martin, 2001). Indeed, a range of studies shows that knowledge 

created by academic institutions drives economic growth (Arundel & Geuna, 2004; Berman, 

1990; Etzkowitz, 1998; Etzkowitz & Leydesdorff, 2000; Hall, Link, & Scott, 2003; Mansfield, 

1998). Industry, composed of both large corporations and small and medium-sized enterprises 

(SMEs), create new knowledge, use academic knowledge as an input and ultimately transform 

new knowledge into products and services (Roberts, 2001).  

What may constrain the contribution of academia and industry in the knowledge 

economy is resource scarcity.1   Such resource scarcity is more pronounced for the two actors 

I focus on in this dissertation, emerging firms and academics.  

High-technology start-ups seek funding to fuel their research activities from outside 

sources, such as governmental subsidies, venture capital and business angels (Audretsch, 2003; 

Hellmann & Puri, 2002; Shane, 2012).  However, the uncertainty surrounding embryonic 

inventions as well as complex regulatory environments create information asymmetries 

between these firms and the potential financers which make investment decisions a thorny task 

(Sahlman, 1990). As a result, the level of investment for emerging firms is often below the 

social optimum. To illustrate the importance of funding to start-ups, Gartner, Starr, and Bhat 

(1999) find that a key reason start-ups fail is because they need resources that are far beyond 

                                                                        
1 This is not to imply that other barriers such as personal, organizational or regional characteristics (Madrid‐
Guijarro, Garcia, & Van Auken, 2009) do not present obstacles.  
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the capabilities of the entrepreneurs to raise and Audretsch, Weigand, and Weigand (2002) find 

that over half of the start-ups funded with SBIR2 funding would not have been launched without 

SBIR funding. 

Likewise, resource scarcity also restrains the productivity of academics. The public 

generally finances academic research as a means to encourage research that would otherwise 

be ignored (Cohen, Nelson, & Walsh, 2002; Nelson, 1959). Yet at the same time, there are 

many other public tasks competing for the same funding. These competing public tasks, such 

as healthcare or infrastructure, are much more visible to the public (Salter & Martin, 2001). It 

follows that fund acquisition is an important and difficult task for most academics (Etzkowitz, 

Webster, Gebhardt, & Terra, 2000). Yet, knowing where possible funding opportunities exist 

and being able to write competitive research proposals is a form of tacit knowledge that is not 

easily learned (Feinberg & Price, 2004; Stephan, Veugelers, & Wang, 2017). As a result, and 

similar to start-ups, academics who fail to acquire funding are less likely to survive in academia 

(Gerritsen, Plug, & Van der Wiel, 2013) which is illustrated in many examples of academics 

who are forced out of academia – sometimes even after decades of research - because they are 

unsuccessful in attracting funding (Rathi, 2017; Ruben, 2017; The Guardian, 2014).   

From the abovementioned, it becomes clear that resource acquisition is one of the main 

drivers for knowledge production in academics and start-ups alike and that the difficulty of 

resource acquisition is inversely correlated with the available knowledge, competence and 

experience the parties have in securing resources. This is problematic because funding is the 

lifeblood of science (Alberts, Kirschner, Tilghman, & Varmus, 2014) and without it knowledge 

production hinders (Rosenbloom, Ginther, Juhl, & Heppert, 2015). Thus, the aim of this 

dissertation is to investigate how start-up firms and researchers in the knowledge economy can 

acquire resources that allow them to innovate and advance science. 

Informed by the different norms between academia and industry, the starting point in 

my dissertation is that start-ups and academics may use different tools to secure resources.  

First, to improve their performance academic researchers rely heavily on experience 

and knowledge of academic peers in their department (Stigler, 2003). Collegial behavior 

manifested in help towards the generation of valuable ideas, feedback and criticism via formal 

or informal interactions is recognized as a key input for the advancement of one’s (academic) 

career (Laband & Tollison, 2000; Laband & Tollison, 2003). Therefore, in the first two essays 

in this dissertation we study how academics with little to no experience in attracting research 

                                                                        
2 Small Business Innovation Research program, a governmental funding program for scientists to launch high-

technology start-ups).  
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funding can learn from colleagues with specific knowledge on this subject. We then ask, what 

are the conditions that magnify the effects that result from knowledge transfer? We address 

these questions empirically and reveal evidence consistent with a causal link between increases 

in the funding record of academics who are inexperienced with raising funds and exposure to 

academics in their department with experience in acquiring funding.  

Second, start-ups look for ways to reduce information asymmetries. One way firms can 

reduce information asymmetries is to use signals that that can shine a light on the potential of 

the firm (Zhang & Wiersema, 2009). In fact, whenever information asymmetries are present, 

investors tend to rely on signals of this sort before they make investment decisions because 

separating high-quality start-ups from the ‘lemons’ is prohibitively difficult (Amit, Glosten, & 

Muller, 1990c; Davila, Foster, & Gupta, 2003). Indeed, a number of studies demonstrate that 

signals reduce information asymmetries and improve funding of start-ups (Baum & Silverman, 

2004; Cohen & Dean, 2005; Häussler, Harhoff, & Müller, 2012; Hsu, 2007; Janney & Folta, 

2003; Mann & Sager, 2007; Mishra, Heide, & Cort, 1998a; Spence, 1978). However, what is 

difficult to conclude from these empirical studies is what the dynamics are of the value that 

different signals carry. Is the value of signals equal to all high-technology firms looking for 

funding? To approach this question, in the last two essays of this dissertation, we study two 

factors that influence the level of information asymmetry between start-up and venture capital 

investor, namely, time and distance.   
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Chapter 2. The Value of Insiders: Evidence from 

the Effects of NSF Rotators on Early Career 

Scientists 3 

 

  

                                                                        
3 This chapter is based on:  

Hoenen, SJ., Kolympiris, C. (2018) The value of insiders: evidence from the effects of NSF rotators on early 

career scientists. Submitted to Review of Economics and Statistics, MIT Press Journals. 
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Introduction 

Access to superior human capital generates improvements in productivity via knowledge 

spillovers (Schultz, 1961). Indeed, within knowledge intensive sectors such as academia, 

performance, measured with impactful publications, is largely driven by access to scientists 

with insights gained from success and experience within academia (Azoulay, Graff Zivin, & 

Wang, 2010; Brogaard, Engelberg, & Parsons, 2014; Waldinger, 2010). We report novel 

evidence that highlights an alternative route: positive spillovers also result from access to 

academics with insights from temporary experience in government jobs. As an example think 

of Steven Chu, Professor of Physics at UC Berkeley, who served as the Secretary of Energy 

from 2009 until mid-2013 before returning to his academic home or Alexis Abramson, 

professor of mechanical and aerospace engineering at Case Western University who also spent 

two years as chief scientist at the US Department of Energy before her return to Case Western. 

Such employment spells infuse mobile academics with insider knowledge on the allocation of 

resources by the government, the main funder of research endeavors, and can prove valuable 

when transmitted to colleagues seeking ways to fuel their research capabilities and advance 

science.     

To study the impact of moves in government jobs we explore the link between research 

fund acquisition of early career scientists and exposure to so called rotators; academics who 

are seconded to the National Science Foundation (NSF) for typically two years before they 

return to their academic institution. During their tenure at the NSF, rotators, formally Program 

Directors, organize and run the peer review process from the very beginning until the very end 

while often exercising decision power. They become insiders at the NSF as they gain insights 

on how funding decisions are made, possess tacit knowledge on the potential funding directions 

and priorities of the agency, and ultimately they can discern a promising proposal. 4 

Departing from the extant literature on research fund acquisition, we focus on early 

career scientists (Arora & Gambardella, 2005; Feinberg & Price, 2004; Grimpe, 2012; Li, 

2017) because advances in science build on early career academics' progress (Oyer, 2006; 

Petersen, Jung, Yang, & Stanley, 2011) and because without funds, science stalls (Alberts et 

al., 2014; Rosenbloom et al., 2015).We find that rotators leverage their insights to transmit 

                                                                        

4 The literature on knowledge spillovers within academia has highlighted that context matters. For instance, while Borjas 

and Doran (2012) and Waldinger (2012) find negative and no spillover effects respectively for same department peers of star 

scientists, Waldinger (2010) and Azoulay et al. (2010) report positive spillovers for doctoral students and collaborators of 

star scientists. The fact that context matters suggests that it is difficult to extrapolate the results of Hoenen, Kolympiris, and 

Klein (2017), the only other study that analyzes spillovers from NSF rotators, here. Using different research design, methods 

and samples this latter work does not zoom in on those who are arguably in the highest need for funds: early career 

scientists, and does not shed light, as we do, on the dynamics of the potential effect rotators have on their colleagues. 
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knowledge to their early career colleagues on what to write, how to write and where to send a 

proposal. As a result, rotators have a causal impact on the funding acquisition records of new 

hires landing their first faculty position in their department. Newly hired assistant professors 

who join departments with a returning rotator raise almost twice the amount similar academics 

in similar departments without a rotator raise (approximately $200,000 more which is nearly 

half of the average first time grant from the NSF). These increases are due to rotator’s 

colleagues being more likely to secure medium size grants and are realized one and two years 

after exposure to the rotator.  

Our identification strategy is to compare the funding records of new hires landing their 

first faculty post in departments with and without a rotator; the latter belonging to our treatment 

group and the rest belonging to our control group(s). The major empirical challenge in this 

exercise is that superior human capital is not distributed randomly. Rather, endogenous sorting 

places individuals of high human capital next to each other (Kim, Morse, & Zingales, 2009; 

Waldinger, 2016). In our application, this would mean that the colleagues of rotators are more 

equipped than others in raising research funds in the first place. To circumvent this sorting 

issue we exploit two features of the rotation program and carefully construct three control 

groups. The first feature is that (timing of) entry into rotation is independent of the needs of 

colleagues to raise funds. Academics become rotators because they want to learn more about 

the NSF, not because they recognize emerging colleagues who need advice. The second feature 

is that the return to the home institution is also exogenous to the needs of colleagues to raise 

funds. The rotation duties have a fixed end date. Rotators do not return to their institutions 

because (or when) their colleagues need help. These two features of the program suggest that 

the allocation of colleagues to the treatment group is largely exogenous to their choices. But, 

three different sources of endogeneity may still allocate individuals to treatment and control 

groups non-randomly, which would constitute a threat to identification. We discuss these 

sources below. 

One, initial job placement can be endogenous with job candidates choosing to accept 

an offer from a department with a rotator because of her presence in that department and the 

associated ex-ante expectation of learning. Along the same lines, labor market conditions differ 

across years and can have strong impact on which job candidate lands where. We tackle these 

issues by exploiting time variation: we construct our first dataset including new hires joining 

the same department at different points in time when labor market conditions vary, the focal 

colleague had or not left for the NSF and had or not the rotation experience.  
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Two, if the academic labor market works efficiently the best candidates will land the 

best positions and the lesser candidates will land the lesser positions (Cole & Cole, 1973). If 

that holds, success in raising funds may be explained by this matching process with rotators 

belonging to the better departments. Similarly, difficult to capture heterogeneity among PhD 

holders may also explain initial job placements. We tackle these issues by crafting a second 

dataset that includes PhD holders (some landing a job in a department with a rotator and some 

without a rotator) who had the same PhD advisor, worked in the same science field and 

graduated about the same year (Kahn & MacGarvie, 2016). Given that advisor standing and 

graduating institution are the prime determinants of initial job placement (Miller, Click, & 

Cardinal, 2005; Terviö, 2011) it is no surprise that, as we show in Tables 2 and 3 below, new 

hires from the same advisor land their first faculty post in departments whose main difference 

is the presence of a rotator as they are generally of comparable status, academic productivity 

and research fund acquisition records.  Importantly, because selection into advisors is not 

random (Waldinger, 2010) and because PhD training is largely standardized within doctoral 

programs (hence both selection and treatment are nearly identical), these new hires are also 

similar to each other at the time of their first academic appointment in terms of age, gender, 

measured innate ability and the like. 

Three, university-wide policies, tenure track incentives, grant-writing support and other 

university-specific factors may boost incentives to become a rotator, shape the types of 

emerging scientists who decide to join a given university and ultimately explain increased grant 

acquisition rates. This may lead to erroneous conclusions about the impact of rotators as long 

as they are disproportionally employed at institutions that for the above mentioned reasons are 

more successful in research funding acquisitions than others. We tackle this issue by 

constructing our third dataset. This dataset holds university-wide factors constant and allows 

us to compare the funding records of new hires who joined the same university at 

approximately the same time but in different, yet comparable, departments having one main 

difference: some have a rotator as a faculty member and some do not.  

Our work is novel on two main fronts. First, we present causal evidence on gaining 

knowledge by insiders; academics who possess insights gained from experience outside 

academia. Two, we present detailed longitudinal information on early career scientists who are 

exposed to funding acquisition knowledge possessed by NSF rotators; an actor in the 

knowledge economy whose role is crucial (Li & Marrongelle, 2013) but who has received 

considerably less attention in the literature when compared to the scope and depth of studies 

on inventors, entrepreneurs, patent examiners and others  (e.g. Jensen & Thursby, 2001; 
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Lampe, 2012; Lemley & Sampat, 2012; Moser, Voena, & Waldinger, 2014; Toivanen & 

Väänänen, 2012). 

Despite the careful construction of the datasets to match new hires in the treatment and 

control departments in ways that can isolate the potential impact of rotators on funding 

acquisition records, remaining differences in training, ambitions, career goals and the like may 

still exist. As such, we include in the analysis a number of control variables meant to account 

for such factors. The variables include publication and citation records, research funding from 

sources other than the NSF as well as characteristics of the department the focal academic joins. 

Further, we perform a battery of robustness checks that allow us to test the sensitivity of our 

estimates to a number of potential modeling concerns including endogeneity and the way we 

specify our control groups to reduce heterogeneity among treatment and control groups. For 

instance, a) we use Coarsened Exact Matching to find similar academics to those that join 

departments with a rotator, b) we relax, sequentially, the “same graduation year” and the “same 

advisor” criteria from the factors we consider when specifying our control academics and c) 

we conduct a difference-in-difference analysis. By and large, these tests reinforce the stability 

of our estimates.  

To pinpoint with precision the mechanism via which the effects of rotators on new hires 

materializes we conduct numerous exercises we present in section VI that test alternative 

competing explanations including favoritism and peer effects. To highlight one, to put 

knowledge transfer under scrutiny we create a helpfulness index based on the intensity of thank 

you notes in PhD dissertations and we find that early career scientists in departments with the 

most helpful rotators raise 3 times more than early career scientists in departments with 

remaining rotators (Laband & Tollison, 2003; Oettl, 2012). Along the same lines, when we 

artificially place rotators to departments that in reality did not have a rotator, we do not find 

any association between the purported presence of a rotator in that department and the NSF 

grant acquisition of her colleagues. 

Our results have direct implications for the advancement of science, for the value of 

mentoring as a form of having access to superior human capital (Blau, Currie, Croson, & 

Ginther, 2010), for early career academics landing their first faculty post and aspire to succeed 

in science and for policy makers devising measures to allow such scientists to develop 

independent research programs (Kaiser, 2017). They are also relevant for university 

administrators who confront increasing financial pressures, for job market candidates 

contemplating which job offer to accept and for the organization of institutions and how they 

advance or hinder scientific progress (Furman & Stern, 2011).  
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The rotation program at the NSF and how rotators can induce 
changes in grant acquisition 

The National Science Foundation has an annual budget that exceeds 7.5 billion and funds 

approximately 12,000 proposals every year in all nonmedical scientific fields. These proposals 

support more than 360,000 scientists, teachers and students employed at close to 2,000 

institutions (NSF, 2017). The agency is structured hierarchically: its seven directorates, 

corresponding to different scientific fields, are split in divisions which are then split to 

programs. Program Directors (PDs), subject matter experts, run each program. They put 

together the review panels, they communicate, ex-ante and ex-post with submitters of funded 

and non-funded proposals, they review proposals even from programs and directorates outside 

their own, they make grant allocation decisions, they participate in panels outside their 

programs and provide input to central strategic planning not only within their program but also 

across programs and directorates (Li & Marrongelle, 2013). Overall, PDs are an integral part 

of the NSF and a key input to shaping the direction of science. 

Most PDs are permanent NSF employees. But, since the passage of the 

Intergovernmental Personnel Act in 1970 roughly 1 out of 3 PDs are academics who are 

seconded at the NSF temporarily (Mervis, 2016a). These academics, called rotators, infuse the 

agency with new viewpoints as they move to the NSF headquarters. They work full time for 

the NSF for up to 4 years (most commonly 2) while effectively pausing their academic duties 

as they are on loan from their university (Mervis, 2013). Indeed, from 2004 to 2014 alone 800 

rotators from around 400 academic institutions served at the NSF. Rotators are subject to strict 

restrictions during and even after their tenure at the NSF to avoid any conflicts of interest or 

favoritism (e.g. they cannot submit proposals or evaluate proposals of previous collaborators). 

As revealed during a handful of discussions we had with former rotators, the main 

reason academics enter the program is a desire to learn more about the NSF and to generally 

contribute to the direction of science.5 These drivers indeed explain why we do not identify 

specific trends among rotators: besides the fact that all had won grants from the agency in the 

past, they are employed at universities of varying size, status, location and they are of varying 

scholarly productivity, leadership activities, methodological approaches and the like. As 

mentioned above, the fact that the decision to join the rotation program is exogenous to the 

need of colleagues for help in raising funds alleviates concerns of endogeneity arising from the 

                                                                        
5 The blog entry of Dan Cosley, associate professor at Cornell University, about his rotation experience is a good example of 

why academics choose to work at the NSF and the types of insights they gain 

(http://blogs.cornell.edu/danco/2016/09/09/why-im-rotating-at-nsf/ )  

http://blogs.cornell.edu/danco/2016/09/09/why-im-rotating-at-nsf/
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potential entry into the NSF as a deliberate response to local early career faculty needing advise 

to raise funds. 

During their tenure at the NSF, rotators become insiders at the agency; they evaluate 

numerous proposals, they observe others’ performing similar tasks, they have hands-on 

knowledge of the largely unobserved factors that shape panel decision making (Bagues, Sylos-

Labini, & Zinovyeva, 2017) and they become aware of a) what the NSF prioritizes and b) the 

areas where the demand for promising proposals exceeds the supply. We expect these unique 

insights to allow rotators to recognize what a competitive proposal looks like. In turn, because 

knowledge sharing is stronger among individuals of the same group (department in our 

application) (Hargreaves Heap & Zizzo, 2009) this insider knowledge can spillover to rotators’ 

colleagues and create an advantage for them in that they possess knowledge that similar others 

to do not possess. Indeed, evidence on the effects of rotators on later stage academics without 

NSF grants ex-ante supports this expectation (Hoenen et al., 2017).   

Specifically for early career scientists, having access to an insider can be instrumental 

on three main fronts in securing grants. One, rotators can direct colleagues to research areas 

the NSF prioritizes and are difficult to detect. That is, they can provide hints on what the agency 

is keen to fund. Two, because grant writing is typically not the focus of doctoral training, 

rotators can fill the gap and assist with better presenting ideas and generally crafting proposals 

in ways that communicate the research in more appealing ways. The sheer number of proposals 

that the NSF receives suggests that communication and framing are important in allowing 

externals reviews and later on panel members to better appreciate the merits of a given 

proposal. Three, rotators can address the main obstacle when it comes to initiating a proposal: 

idea generation (Custer, Loepp, & Martin, 2000). Because rotators possess tacit knowledge on 

research themes that are more likely to receive funding, they can infuse their early career 

colleagues with research questions they can pursue. This process resembles academic 

mentoring, which typically pays off (Blau et al., 2010) and in which fund raising comes up 

regularly (Feldman, Arean, Marshall, Lovett, & O'Sullivan, 2010). 

Data Sources and Empirical Approach 

A. The Treatment Group 

To construct the datasets that trace the grant acquisition record of new hires in departments 

with and without a rotator over time we collect and merge new data from multiple sources. We 
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accessed the list of the 240 academics who served as rotators at the NSF under the 

Intergovernmental Personnel Act (IPA) from 2009 to 2011 via a Freedom of Information (FOI) 

request directed to the NSF.6 Following existing works relying on online data retrieval for 

academics (Amir & Knauff, 2008; Kim et al., 2009; Terviö, 2011), we then visited current and 

archived university websites from http://archive.org and combined this search with the career 

info in the Men and Women of Science database to identify faculty members who, as their first 

faculty position, were hired as assistant professors before, after and the year of the rotator’s 

return to her department. We were able to build comprehensive and detailed career histories 

for 80 rotators. We then examined the professional history of more than 3,200 seasoned and 

early stage academics belonging to these 80 departments with a rotator. Of these 3,200 

academics we identified 210 academics with comprehensive career history who as their first 

faculty post, joined 64 departments with a rotator between five years before and two years after 

the rotator returned from the NSF.  

Within the 210 academics in the treatment group we identify three cohorts: a) 55 

academics who joined when (or shortly after) the rotator returned from the NSF, b) 66 

academics who joined when the rotator was at the NSF and c) 89 academics who joined within 

two to five years before the rotator had left for the NSF. Having three cohorts helps us to 

surmount endogeneity and sample selection concerns. It helps us with endogeneity because 

from these cohorts we can eliminate nearly with absolute certainty the possibility that the new 

hires chose to join the department expecting to learn from a returning rotator for cohort (c): the 

academics who joined the department before the given scientist left for the NSF. With regards 

to sample selection, the rotation experience may correlate with increased ability to select job 

candidates with higher chances to attract research grants in the first place. If that was true, and 

if rotators participated in selection committees, then the treatment groups would be populated 

with new hires who, ex-ante, were better equipped to win grants. However, the issue cannot 

hold for cohort (b), those that joined when the returning rotator was at the NSF, and less likely 

to hold for cohort (a), those that joined at the time of the rotator’s return from the NSF. As 

such, these two cohorts allow us to address the potential for sample selection at hand.7   

                                                                        
6 As detailed in the next section, we track grant acquisition 5 years before the departure of the rotator and 5 

years after the return. As such, we focus on academics serving at the NSF between 2009 and 2011 mainly 

because the start of the ex-ante period (2004) is recent enough to source comprehensive data from online 

sources and the end of the ex-post period (2016) allows us to observe the ex-post period in its entirety. Along the 

same lines, the fact that we focus on early career academics allows us to collect and organize online data with 

increased accuracy as scientists of this cohort are generally more apt to keep their online profiles updated.  
7 What could constitute a threat to identification would be the case in which rotation improves the selection 

criteria and rotators advice on the selection of candidates informally while at the NSF or during short visits at 

http://archive.org/
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B. The First Control Group 

This first control group allows us to hold department effects fixed and is composed of 25 

academics in 14 departments in the sample who joined a department with a rotator but whose 

tenure at the department did not overlap with the tenure of the rotator. The lack of overlap 

results either because these academics left the focal department before the rotator returned from 

the NSF or, in a few cases, because when the rotator’s tenure at the NSF ended, she moved to 

a new university.8  

C. The Second Control Group 

The second control group addresses individual heterogeneity. Using data from the ProQuest 

Dissertations and Theses database we identified the PhD advisor of the new hires in 

departments with a rotator and the remaining PhD students whom she/he supervised as main 

advisor and graduated at the same year of the focal new hire, two years before and two years 

after. We focus on same-advisor graduates because a) initial job placement is largely explained 

by the advisor’s network and standing in the profession and the graduating department (Long, 

1978; Terviö, 2011), b) selection into advisors is not random (Waldinger, 2010) and c) doctoral 

training is largely standardized among PhD candidates of the same cohort. It follows that 

because graduates of the same advisor are similar both in the selection (into an advisor) phase 

and in the PhD training/treatment phase we expect this exercise to allow us to account for 

individual specific factors that can influence grant acquisition. Specifically, starting with the 

210 academics in the treatment group we constructed the professional history of nearly 600 

PhD graduates who had the same PhD advisor and graduated within two years of the focal 

academic’s graduation year. Removing those who either left academia, never landed an 

Assistant Professor position in the US, moved in an academic position outside the US or had 

no professional history online (CV, LinkedIn, etc.), we populate our second control group with 

105 same-advisor academics who landed their first faculty position in 100 different US 

departments without a rotator. 

D. The Third Control Group 

The third control group accounts for university specific initiatives that can promote entry into 

administration roles outside the university, grant funding sessions and tenure track criteria that 

                                                                        

their institution. If that was true, the hires around the time of rotation and return from it would be different from 

other candidates. This is not what we observe. 
8 The relatively small size of the first control group is consistent with the tenure track system in the US where 

(in) voluntary departures from a given department are not generally common before the end of the tenure clock. 
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can explain differences in raising funds across different institutions. Retrieving data from 

university websites and the Men and Women of Science database, we populate this third control 

group with academics who started their first faculty position as assistant professors at the 

rotator’s university but in a different, yet comparable, department the same year, two years 

before and two years after the rotator returned from the NSF. We find similar departments as 

follows. First, the department must belong to the same larger division or school as the 

department with a rotator. For instance, when the department of the rotator is an Engineering 

department we limit the search to other departments in the School of Engineering. Second, the 

control department must be in adjacent intellectual space to the department with a rotator. 

Following up on the previous example, if the treatment department is Industrial Engineering, 

within the School of Engineering we choose the department of Civil Engineering and not, for 

instance, the department of Chemical Engineering.  Typically, the title of the department was 

sufficient to identify similar departments. When not, we chose departments whose faculty 

members publish in the same journals the faculty members of the rotator departments publish. 

These selection criteria yield 60 academics from 24 departments in the same university as the 

department with a rotator who were hired into their first position any time between two years 

before and two years after the focal academic joined the focal department.  

Once the list of names belonging to the treatment and the three control groups was 

finalized we extracted data from the abovementioned sources, from the bibliographic database 

SCOPUS and from the NSF grant retrieval website to build a full career history for the 

academics we study. Leveraging the career history we construct variables describing NSF 

acquisition records, tenure at the institution, research productivity, yearly academic position 

and so on.  

E. Baseline Estimation 

We employ an OLS estimator where the dependent variable is the inflation adjusted amount of 

research funds from the NSF raised in a given year by a given new hire belonging to either a 

treatment or a control group. These amounts reflect new grant(s) with the focal academic being 

the Principal Investigator and not continuations or extensions of existing grants.  

Each observation is a person year starting from the year the focal academic joined a 

given department as her first faculty post in an assistant professor position and ending up to 

five years after the return of the rotator to the department.9  On average, we track the yearly 

                                                                        
9 Only 8 of the 210 academics in the treatment group overlapped with the rotator after her return for less than 5 

years. 
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grant acquisition rate for each academic in the treatment group for 8.7 years (up to five of which 

are after the return from rotation) and for each academic in the three control groups for 7.7 

years. Therefore, in line with the importance of early career academics raising research funds 

early on, we follow them the years leading to the tenure clock running out. To test whether 

rotators induce changes in the NSF grant acquisition record of their early career colleagues we 

include variables that take the value of 1 when the focal academic was in the department of the 

rotator the year the rotator returned from the NSF (Treatment 0), the first year since the rotator 

returned from the NSF (Treatment 1) and in a similar fashion up until the fifth year the rotator 

returned from the NSF (Treatment 5).10 The person-year set up and the associated Treatment 0 

to 5 variables allow us to test the treatment effect of the rotators on their colleagues with 

precision as we can uncover the duration of the effect and its magnitude over time.   

We conduct the analysis on three different datasets. Each dataset includes the treatment 

group and then, respectively, the first, the second and the third control group. 

F. Control Variables 

As Tables 1 to 3 below demonstrate, by and large, academics in the treatment and control 

groups are similar to each other and they belong to similar departments. These similarities 

suggest that any differences in the grant acquisition records between academics in treatment 

and control groups ex-post can be attributed to the rotator. Still, additional differences may 

exist. As such, we include a number of control variables in the analysis to account for such 

differences.  

Difficult to quantify or observe factors at the department level may also induce changes 

in future fund acquisition. These can include visiting faculty who can transmit knowledge on 

fund-acquisition or shocks such as increased teaching load at time t that can limit the capacity 

to submit research proposals in time t+1,2, 3 and the like. We control for such effects by adding 

the variables Rotator Department -1 up to Rotator Department-5 in the analysis. The variables 

take the value of 1 when the person-year observations refer to academics who joined a 

department from which a rotator originated from one to five years before the rotator’s return 

from the NSF. To illustrate, if the person-year observations refer to academics who, for 

instance, joined the focal department two years before the return of the rotator, Rotator 

Department – 1 and Rotator Department - 2 assume positive values while Rotator Department 

-3, -4 and -5 assume the value of 0. To account for potential learning effects during post-

                                                                        

10 We opt to use the 5 year window as it matches the typical application submission time for the common 6 year tenure 

clock for most junior faculty.  
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graduate studies we include the variable PostDoc which measures the number of years the focal 

new hire was employed in a post-doctoral position before assuming a faculty post. The 

variables Assistant Professor and Associate Professor also account for experience and take the 

value of 1 for person years the focal academic has an Assistant Professor and Associate 

Professor position respectively, and 0 otherwise (the base category is Professor and is 

composed of 9 scientists who became professors within our time window). We include the 

dummy variable Male for male academics to account for gender differences in grant 

acquisition. The time-varying variable H-index (lagged by one year) measures the H-5 citation 

index of the academic in question and controls for the influence of one’s existing track record 

on grant acquisition.  The availability of research funds in previous years or from different 

sources may condition one’s NSF funding record in a given year. As such, we include in the 

analysis the variable External Funding which measures the funding amounts from sources 

different than NSF and the variable Previous NSF which measures the sum of NSF funding 

raised by the focal academic in the 5 years preceding the focal person-year observation.   

Further, we incorporate in the analysis explanatory variables reflecting potential 

influences from the host institution. We include a) the time-varying variable (Ranking) which 

measures the ranking quartile of the focal university to account for potential status effects 

afforded to academics in higher ranked universities and b) the time-varying Faculty NSF 

variable which measures the sum of NSF funds raised by existing faculty members in the 

rotator’s department before the rotator’s return from the NSF to account for learning how to 

raise NSF funds from existing faculty members other than the rotator.  Finally, we include 

science field and year fixed effects to control a) for differences across scientific fields in the 

propensity and need to raise funds from the NSF and b) for differences in funding cycles at the 

agency. 

G. Descriptive Statistics  

In this section we provide evidence suggesting that our research design allows us to isolate the 

effect of the rotator as the academics in the treatment and control groups are similar before the 

return of the rotator and start their Assistant Professor positions in similar departments. We 

also provide a description of the rotators and explain that the rotators we employ for the analysis 

are representative of the population of rotators.  

In Table 1 we present selected statistics for the academics in the treatment and the 3 

control groups. At the start of their faculty post, between 2003 and 2015 (2012 for those in the 

treatment group), academics in the four groups were similar in many respects including 
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experience, gender distribution, publication records and, importantly, previous funding from 

the NSF. For instance, 75 percent of scientists in the treatment group had a first author 

publication before their graduation (following Kahn and MacGarvie (2016) our measure of 

innate ability), had an H-index of 1.92 and had raised, on average, $28,000 from the NSF as a 

Principal Investigator when they started their first faculty post. The average corresponding 

figures for the scientists in the 3 control groups were 70 percent, 2.17 and $27,000. As well, 

when the rotator was at the NSF, the funding records across scientists in the four groups were 

similar. Where we do observe a significant difference is on the total amount raised from the 

NSF in the five years following the return of the rotator (and the equivalent time period for 

those in control groups). Academics in the treatment groups raise, on average, close to 

$500,000 while academics in the three control groups raise half of that amount, $250,000. If, 

as we discuss below in more detail, we can attribute this difference to the rotator, then the effect 

is substantial. Not only rotators double the amount a given early stage academic raises from 

the NSF, they are also responsible for roughly half of the first major grant an emerging scientist 

raises from the agency: based on NSF data we find that the average inflation adjusted NSF 

grant across directorates from 2006 to 2016 for first time Principal Investigators is $439,000.  

But, what could explain the difference in funding records among academics in the 

treatment and control groups is heterogeneity in the universities and departments the sample 

scientists belong to. Tables 2 and 3 suggest this is not the case. Departments with a rotator raise 

$1.1 Million per year from the NSF the period preceding the rotator’s return from the NSF 

(Table 2). Departments without a rotator raise $1.2 Million.  Similarly, the status and research 

productivity indicators in Table 3 paint a similar picture: 55 percent of the universities with a 

rotator are members of the prestigious Association of American Universities. The 

corresponding percentage for universities without a rotator is 50 percent. Along the same lines, 

23 percent of the departments with a rotator are in the first quartile in the science field specific 

Shanghai ranking while 26 percent of the departments without a rotator belong to the same 

quartile. All in all, we do not observe significant differences in terms of funding records and 

status/productivity indicators between the departments with and without a rotator.  

Table 4 describes the rotators in the sample. They are typically mid-career academics 

with success in raising funds from the NSF and with varying publication and citation records.  

Not shown in the table, the descriptive statistics of the rotators in the sample are similar to the 

descriptive statistics of the population of rotators who served at the NSF.
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Table 1. Selected statistics for the academics in the treatment and control groups. 

  Treatment group 1st control group 

  

210 academics who, as their first faculty post, joined a 

department with a rotator between the 5 years before 

and 2 years after the rotator returned. 

25 academics who, as their first faculty post, joined a 

department with a rotator  but did not overlap with the 

rotator 

  
Average 

Standard 

Deviation 
Min Max Average 

Standard 

Deviation 
Min Max 

Previous NSF funding when the focal academics starts her 

first faculty post ($m) 
0.028 0.115 0.000 0.761 0.045 0.201 0.000 0.120 

Average yearly NSF funding from the start of the faculty 

post until the rotator's return from the NSF ($m) 
0.015 0.049 0.000 0.349 0.014 0.108 0.238 0.000 

Total NSF funding in the 5 years following the rotator's 

return from the NSF ($m) 
0.494 0.730 0.000 3.420 0.253 0.540 0.000 2.253 

Male 0.714 0.453 0.000 1.000 0.683 0.720 0.458 0.000 

Years as a Post-Doc 2.181 2.006 0.000 10.000 2.320 1.600 0.000 5.000 

H-index at the time the focal academic starts her first 

faculty post 
1.921 2.147 0.000 10.000 2.339 2.556 0.000 9.000 

Average Non - NSF Funding per year until the focal 

academics starts her first faculty post  ($m) 
0.006 0.054 0.000 0.750 0.002 0.010 0.000 0.050 

Career age (Years between PhD graduation and starting her 

first faculty post) 2.683 1.962 0.000 10.000 2.817 2.400 2.021 
0.000 

First author publication before PhD graduation 0.751 0.433 0.000 1.000 0.654 0.478 0.000 1.000 

For the Treatment group the Rotator Department and Treatment variables take the value of 1 as follows: RotatorDepartment-5: 40 RotatorDepartment-4: 56, 

RotatorDepartment-3: 65, RotatorDepartment-2: 86, RotatorDepartment-1: 199, Treatment 0: 214 Treatment 1: 206, Treatment 2: 204, Treatment 3: 204, Treatment 4: 202, 

Treatment 5: 200 
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Table 1 continued. Selected statistics for the academics in the treatment and control groups.  

  2nd control group 3rd control group 

  

105 academics who, as their first faculty post, joined 

departments without a rotator and had the same 

advisor and similar graduation year as academics who 

joined departments with a rotator 

60 academics who, as their first faculty post, joined a 

department without a rotator in the rotator's 

university in a similar department 

  
Average 

Standard 

Deviation 
Min Max Average 

Standard 

Deviation 
Min Max 

Previous NSF funding when the focal academics starts her 

first faculty post ($m) 
0.003 0.019 0.000 0.150 0.034 0.181 0.000 1.270 

Average yearly NSF funding from the start of the faculty 

post until the rotator's return from the NSF ($m) 
0.014 0.058 0.000 0.401 0.007 0.038 0.000 0.260 

Total NSF funding in the 5 years following the rotator's 

return from the NSF ($m) 
0.261 0.717 0.000 5.689 0.238 0.395 0.000 1.675 

Male 0.683 0.468 0.000 1.000 0.733 0.446 0.000 1.000 

Years as a Post-Doc 2.308 2.252 0.000 9.000 2.650 1.830 0.000 8.000 

H-index at the time the focal academic starts her first 

faculty post 
1.587 2.032 0.000 8.000 2.600 2.294 0.000 7.000 

Average Non - NSF Funding per year until the focal 

academics starts her first faculty post  ($m) 
0.001 0.006 0.000 0.065 0.001 0.003 0.000 0.015 

Career age (Years between PhD graduation and starting her 

first faculty post) 
2.817 2.550 0.000 11.000 3.017 2.221 0.000 8.000 

First author publication before PhD graduation 0.654 0.478 0.000 1.000 0.783 0.415 0.000 1.000 

For the Treatment group the Rotator Department and Treatment variables take the value of 1 as follows: RotatorDepartment-5: 40 RotatorDepartment-4: 56, 

RotatorDepartment-3: 65, RotatorDepartment-2: 86, RotatorDepartment-1: 199, Treatment 0: 214 Treatment 1: 206, Treatment 2: 204, Treatment 3: 204, Treatment 4: 202, 

Treatment 5: 200 
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Table 2. Departments with and without a rotator raise similar amounts from the NSF. 

Average yearly department NSF funding the five year preceding the rotator’s return from the NSF 

  Total Per faculty member 

Department with a returning rotator  $             1,111,788   $                  34,903  

Department without a returning rotator  $             1,220,669   $                  33,467  
 

 

Table 3. Departments with and without a rotator are of similar status and research productivity. 

  

  

Departments with a 

rotator 

Departments 

without a rotator 

Member of the Association of American University  55% 50% 

Field specific Shanghai ranking the year the rotator 

return from the NSF 

First quartile 23% 26% 

Second quartile 17% 15% 

 

 

Table 4. Descriptive statistics of the 64 sample rotators who ended their rotation between 2009 and 2011 

  Mean Std. Dev. Min Max 

Years in rotation 1.625 0.951 1.000 5.000 

Male 0.730 0.447 0.000 1.000 

Career age at start of rotation 21.500 8.214 8.000 31.000 

Publications (5 years ex-ante) 11.627 11.697 0.000 42.000 

Citations per paper (5 years ex-ante) 15.667 27.48 0.000 108.08 

NSF funding (5 years ex-ante) $643,205 1,747,756 $0.000  $ 13,086,007 
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Main Results 

Table 5 presents the baseline estimates. We cluster the standard errors at the at the department 

level. This choice is predicated on the finding that, as in our case, when the treatment is at the 

department level but the unit of analysis is at the individual level, the estimation needs to employ 

a White/Huber heteroscedasticity correction for the standard errors (Bertrand, Duflo, & 

Mullainathan, 2004).  Inference, as we find in unreported results, remains nearly identical when 

we cluster the errors at the scientist level to account for the fact that each scientist enters the 

analysis more than once. 

In Model 1 we use the sample that includes the academics in the treatment group and the 

academics in the first control group. The coefficients of the Treatment 1 and Treatment 2 variables 

(also plotted in Figure 1) suggest that rotators induce positive and economically meaningful 

changes in the funding acquisition of their early stage colleagues. The Treatment 3 coefficient is 

also statistically significant. But, we interpret such evidence as suggestive because the significance 

does not hold across specifications, both for the baseline estimates and for selected robustness 

checks. Overlapping with the rotator one and two years after her return from the NSF leads to an 

increase in funding that exceeds $200,000. To put this in perspective, as shown in Table 1 above, 

academics in the treatment groups raise $500,000 in the 5 years following the return of the rotator 

while in the corresponding period academics in the control groups raise $251,000. At the same 

time, the average first time grant from the NSF across directorates is $439,000. As such, given the 

Treatment 1 and Treatment 2 estimates, it appears that the rotator treatment effect nearly doubles 

the fund acquisition record of early career scientists and is responsible for close to half of one’s 

first grant from the agency. Interestingly, the gains from the rotator are stronger in the first two 

years of overlapping (when, roughly, the tenure track clock is about to run out) and do not extend 

beyond that time period. As we demonstrate in section VII, the main reason we expect this finding 

to hold is that within the 5 year window we study the increased workload following the award of 

a grant limits new grant application submissions in the following years.  A complementary 

explanation, which we do not rule out, is that the value of the knowledge the rotator transmits to 

her colleagues decays with time as the agency evolves, changes priorities and the like.  

In Model 2 we conduct the analysis using the academics on the treatment group and the 

academics in the second control group. Similar to the results in Model 1, the Treatment 1 and 
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Treatment 2 estimates indicate that indeed overlap with a rotator is beneficial to research funding 

even after accounting for individual-specific heterogeneity. The reduced magnitude of the 

Treatment 1 and Treatment 2 coefficients in model 2 when compared to the Model 1 coefficients 

implies that individual-specific factors matter for fund acquisition.  

In Model 3 we employ the sample composed of the treatment group and the third control 

group. The results are qualitatively similar to the results in Model 1 and Model 2.  The Treatment 

1 and Treatment 2 estimates suggest that rotators induce increases in the NSF funding records of 

their early career colleagues.  
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Table 5. OLS Baseline Estimates. Dependent Variable is NSF funding in million. 

 MODEL 1  

Treatment Group & 

1st Control Group 

MODEL 2  

Treatment Group & 

2nd Control Group 

MODEL 3  

Treatment Group & 

3rd Control Group 

RotatorDepartment t-5 -0.014 -0.010 -0.003 

 (0.015) (0.010) (0.012) 

RotatorDepartment t-4 0.059 0.079 0.099 

 (0.040) (0.045) (0.055) 

RotatorDepartment t-3 -0.010 0.002 0.019 

 (0.018) (0.018) (0.017) 

RotatorDepartment t-2 0.007 0.005 0.029 

 (0.027) (0.028) (0.027) 

RotatorDepartment t-1 0.007 -0.003 0.010 

 (0.023) (0.020) (0.021) 

Treatment 0 0.034 0.037 0.040 

 (0.021) (0.019) (0.022) 

Treatment 1 0.092*** 0.058** 0.070** 

 (0.032) (0.026) (0.027) 

Treatment 2 0.113*** 0.061** 0.088*** 

 (0.036) (0.026) (0.024) 

Treatment 3 0.072** 0.034 0.042** 

 (0.035) (0.018) (0.019) 

Treatment 4 0.030 0.007 0.005 

 (0.037) (0.020) (0.024) 

Treatment 5 -0.000 -0.001 -0.004 

 (0.033) (0.025) (0.026) 

PostDoc -0.003 -0.003 -0.003 

 (0.002) (0.002) (0.002) 

Assistant Professor 0.017 0.025** 0.011 

 (0.016) (0.012) (0.013) 

Associate Professor 0.009 0.008 -0.007 

 (0.015) (0.012) (0.013) 

Male -0.001 0.013 0.010 

 (0.011) (0.009) (0.009) 

H-index -0.000 0.001 0.000 

 (0.001) (0.001) (0.001) 

External Funding ($m) 0.355 0.381** 0.341 

 (0.186) (0.181) (0.187) 

Previous NSF ($m) 0.113*** 0.098*** 0.122*** 

 (0.017) (0.015) (0.017) 

Ranking -0.007** -0.007** -0.007** 

 (0.003) (0.003) (0.003) 

Faculty NSF ($m) 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) 

Constant 0.039 0.035 -0.004 

 (0.022) (0.023) (0.019) 

Science field FE YES YES YES 

Year FE YES YES YES 

Observations 2,152 2,642 2,319 

R-squared 0.170 0.156 0.179 

R-squared adjusted 0.155 0.144 0.166 

Number of Departments 65 158 80 

Robust standard errors in parentheses clustered at the department level 

*** p<0.01, ** p<0.05 
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With regards to control variables, we find that academics with previous NSF funding, 

in higher ranked universities, perhaps due to the availability of internal grant writing support 

or status effects, raise more from the NSF. We also document a suggestive positive relationship 

between non-NSF grants and NSF funding. Importantly, the Rotator Department minus 1 to 5 

variables are not statistically significant indicating that what drives the estimates is the overlap 

with the rotator after her NSF experience and not unobservable factors that took place in the 

ex-ante period and can influence funding in the ex-post period.  

Robustness of the Results 

To measure the potential rotator effect we include in the analysis, as a subgroup of the 210 

academics in the treatment group, 55 new hires who joined a department with a rotator after 

the rotator returned from the NSF. This modeling choice may plague the estimates if these 55 

new hires chose to join the focal department because of the presence of the rotator among the 

faculty and the expected knowledge transfer from her. To test whether such potential 

endogeneity indeed biases our estimates in test 1 in Table 6 we omit these new hires from the 

analysis (showing only the results with the first control group for ease of presentation). The 

results are qualitative similar to the baseline estimates suggesting that this source of potential 

endogeneity does not influence our analysis. 
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We reduce heterogeneity at the scientist level in the second control group based on the 

expectation that same advisor and graduation year academics who joined departments without 

a rotator are similar to academics who joined departments with a rotator. In robustness checks 

2 and 3 (Table 6) we reduce heterogeneity by identifying similar academics via alternative 

means. First, we relax the “same graduation year” criterion and run the regression on a sample 

that includes a) academics who joined departments with a rotator and b) academics who joined 

a department without a rotator, had the same advisor and graduated 3 to 10 years before the 

focal academic. Second, we relax the “same advisor” criterion under the idea that the more 

similar academics might not have the same advisor. Specifically, after we create a pool with 

all the academics who joined departments without a rotator we identify similar academics from 

a different advisor using Coarsened Exact Matching11 and include these similar academics in 

the sample we analyze together with the treatment group academics. The results are qualitative 

similar to the baseline estimates and our conclusions remain intact. 

  

                                                                        
11 We used the following matching criteria:  PhD granting university ranking, H-Index at the time of joining the 

focal department and having at least one first authored publication before PhD graduation. 
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Table 6. Omit from the treatment group new hires who join the rotator department after the rotator has 

returned + Relax same advisor and graduation year criteria   

 Test 1 

Omit hires who 

joined 

the department after 

the rotator returned 

Test 2 

Add academics with the same 

advisor who graduated 3 to 10 years 

before the focal academic who 

joined a department with a rotator 

Test 3 

Use Coarsened Exact 

Matching to populate 

the control group 

VARIABLES 

RotatorDepartment t-5 -0.010 0.008 -0.009 

 (0.015) (0.012) (0.069) 

RotatorDepartment t-4 0.067 0.081** 0.046 

 (0.041) (0.038) (0.054) 

RotatorDepartment t-3 -0.000 -0.005 0.023 

 (0.020) (0.019) (0.047) 

RotatorDepartment t-2 0.007 0.003 0.036 

 (0.029) (0.023) (0.036) 

RotatorDepartment t-1 0.007 -0.022 0.003 

 (0.025) (0.022) (0.027) 

Treatment 0 0.032 0.025 0.054** 

 (0.024) (0.018) (0.023) 

Treatment 1 0.098*** 0.055** 0.064*** 

 (0.037) (0.026) (0.021) 

Treatment 2 0.119** 0.072*** 0.060*** 

 (0.045) (0.024) (0.020) 

Treatment 3 0.084** 0.039** 0.026 

 (0.042) (0.017) (0.020) 

Treatment 4 0.033 0.006 0.003 

 (0.042) (0.020) (0.019) 

Treatment 5 -0.010 0.004 0.001 

 (0.046) (0.024) (0.019) 

PostDoc -0.003 -0.003 -0.004 

 (0.003) (0.002) (0.003) 

Assistant Professor 0.010 0.030*** 0.013 

 (0.017) (0.010) (0.019) 

Associate Professor 0.006 0.016 -0.008 

 (0.015) (0.011) (0.021) 

Male 0.002 0.012 0.004 

 (0.014) (0.008) (0.010) 

H-index -0.000 0.001 0.001 

 (0.001) (0.001) (0.001) 

External Funding ($m) 0.395** 0.338 -0.038 

 (0.176) (0.186) (0.055) 

Previous NSF ($m) 0.111*** 0.096*** 0.104*** 

 (0.018) (0.013) (0.009) 

Ranking -0.006 -0.006** -0.005 

 (0.003) (0.002) (0.003) 

Faculty NSF ($m) 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) 

Constant 0.034 -0.019 -0.022 

 (0.022) (0.015) (0.045) 

Science field FE YES YES YES 

Year FE YES YES YES 

Observations 1,800 3,181 2,654 

R-squared 0.197 0.138 0.094 

R-squared adjusted 0.179 0.127 0.0813 

Number of Departments 180 193 66 

Robust standard errors in parentheses clustered at the department level  

*** p<0.01, ** p<0.05 
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Along the same lines, if unobserved factors in raising funds are not captured by our 

research design to compare new hires from the same university, advisor and graduation year – 

if for instance inherent ability in raising funds is not distributed normally among the population 

- it would be difficult to interpret our estimates as causal. Indeed, in test 4 in Table 7 we employ 

a difference-in-difference specification under which early career scientists from different 

universities, advisor and graduation year enter the analysis either in treatment or control groups. 

Those who joined a department with a returning rotator before her return from the NSF belong 

to the treatment group and those who joined departments without a rotator are the control group. 

The dependent variable is the average NSF funds raised by the focal individual in the three 

years before the return of the rotator (ex-ante period) or of the three years after the return of 

the rotator to the department (ex-post period). The allocation of scientists to treatment and 

control groups should be quasi-random as we do not expect the majority of academics who 

joined a department with a rotator before her return to choose to do so because of her presence. 

Indeed, we include a variable that measures the number of years in the focal department to 

account for potential selection effects. The statistically significant positive interaction of the 

ex-post and treatment group variables is in line with the argument that we are unraveling causal 

effects.12 

  

                                                                        
12 We have also tested for the influence of outlier observations and found no evidence that they impact the 

estimates materially. 
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Table 7. Robustness Check 4. Difference-in-difference estimation. 

Variable                                Coefficient 

After 0.032 

 (0.022) 

Treatment -0.010 

 (0.020) 

After * Treatment 0.070** 

 (0.030) 

PostDoc -0.010** 

 (0.005) 

Assistant Professor 0.018 

 (0.024) 

Associate Professor -0.015 

 (0.036) 

Male -0.004 

 (0.022) 

H-index 0.002 

 (0.001) 

External Funding ($m) 0.012 

 (0.048) 

Previous NSF ($m)  0.296*** 

 (0.108) 

Ranking -0.009 

 (0.006) 

Faculty NSF ($m) 0.000 

 (0.001) 

Constant 0.121** 

 (0.061) 

Science field FE YES 

Year FE YES 

Observations 426 

R-squared 0.185 

R-Squared Adjusted 0.132 

Number of Departments 141 

Robust standard errors in parentheses clustered at the department level 

*** p<0.01, ** p<0.05 

 

The Mechanism Driving the Results 

In this section we explore whether the findings we reveal are driven by favoritism, knowledge 

transfer from the rotator or other means. When applicable, we present only the estimates using 

the first control group for brevity as we expect this control group to more closely approximate 

the counterfactual. The results, available upon request, are qualitatively similar when 

employing the remaining two control groups. 

In the first two tests we put the knowledge transfer mechanism under scrutiny. The first 

test starts with the premise that if the mechanism underpinning the results is knowledge transfer 

from the rotator including tips on how to frame a proposal and to which program to submit, 

then we would expect more helpful rotators to induce more pronounced changes in the funding 
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acquisitions of their emerging colleagues. Similar to Laband and Tollison (2003) and Oettl 

(2012) and based on the intensity of the thank-you notes in acknowledgements in Ph.D. 

dissertations supervised by each rotator, we construct a helpfulness index using the sentiment 

analysis algorithm of Rinker (2013) and the Hu and Liu (2004) weighted sentiment dictionary. 

Higher values of the index correspond to more helpful rotators. Indeed, early career scientists 

in departments with rotators in the top 10 percentile of the helpfulness score raise, on average, 

$1,135,346 in the 5 years following the return of the rotator. The corresponding figure for early 

career scientists in remaining departments is $683,721. The t-test comparing the two figures is 

statistically significant at the 5 percent level.   

For the second test on whether knowledge transfer is the mechanism, we follow 

Brogaard et al. (2014), in Table 8, to include “false” rotator appointments. We conduct two 

exercises. In the first one, within departments with a rotator, we randomly pick a year between 

2006 and 2011 which we define as the year the rotator supposedly came back from the NSF. 

Accordingly, for this exercise the Treatment variables are by design false (except when the 

random return year overlaps with the true return year). In the second exercise, we artificially 

treat the same advisor and graduation year academics who in reality overlapped with a rotator 

as landing a job in a department without a rotator. Equivalently, we treat the same advisor and 

graduation year academics who did not overlap with a rotator in reality as if they did. For both 

exercises, if knowledge transmission is the causal mechanism, the Treatment variables should 

be statistically insignificant. This is what we find. 
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Table 8. False rotator appointments.  

 
Random appointment  

of rotator’s return 

Random appointment of  

rotator department 

RotatorDepartment t-5  -0.022 -0.002 

 (0.018) (0.025) 

RotatorDepartment t-4 0.016 0.292 

 (0.031) (0.265) 

RotatorDepartment t-3 0.020 -0.071** 

 (0.035) (0.032) 

RotatorDepartment t-2 -0.013 0.062 

 (0.020) (0.064) 

RotatorDepartment t-1 -0.001 0.024 

 (0.022) (0.033) 

Treatment 0 0.027 -0.023 

 (0.027) (0.029) 

Treatment 1 0.007 -0.031 

 (0.026) (0.039) 

Treatment 2 -0.006 -0.013 

 (0.023) (0.026) 

Treatment 3 0.039 -0.013 

 (0.031) (0.020) 

Treatment 4 0.032 -0.007 

 (0.030) (0.014) 

Treatment 5 -0.042** 0.001 

 (0.020) (0.021) 

PostDoc -0.003 -0.002 

 (0.002) (0.002) 

Assistant Professor 0.021 0.033*** 

 (0.017) (0.011) 

Associate Professor 0.012 0.016 

 (0.013) (0.013) 

Male -0.001 0.012 

 (0.011) (0.008) 

H-index -0.000 0.001 

 (0.001) (0.001) 

External Funding ($m) 0.360 0.388** 

 (0.184) (0.183) 

Previous NSF ($m) 0.113*** 0.099*** 

 (0.016) (0.015) 

Ranking -0.007** -0.007** 

 (0.003) (0.003) 

Faculty NSF ($m) 0.000 0.000 

 (0.000) (0.000) 

Constant 0.039 0.035 

 (0.021) (0.022) 

Science field FE YES YES 

Year FE YES YES 

Observations 2,152 2,642 

R-squared 0.170 0.176 

R-squared adjusted 0.155 0.141 

Number of Departments 65 158 

Robust standard errors in parentheses clustered at the department level 

*** p<0.01, ** p<0.05, * p<0.1 
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While the tests above indicate that knowledge transfer from the rotator, the estimates 

could also be driven by knowledge transfer from co-authors or co-investigators who had 

success in raising funds from the NSF. To test for such potential mechanisms we conduct two 

tests.  In the first test in Table 9 we omit from the analysis scientists whose more recent frequent 

co-authors experienced improvement in their ex-post NSF funding record. Specifically, we 

omit from the analysis academics whose at least 1 of the 3 most frequent co-authors gained 

more NSF funding in the previous three years than the sample average. In the second test we 

omit from the analysis scientists whose co-investigator in the focal grant had recent success 

with the NSF. That is, after a focal academic’s Co-I is awarded an NSF grant as PI, all 

subsequent person-year observations of this focal academic are omitted.  The results from both 

tests suggest that neither co-authors nor co-investigator account for the findings we reveal. 

Another mechanism consistent with the results would be favoritism. Presence of a 

former rotator in a given department may induce increased visibility of the department. This 

visibility may cause favoritism for the applications submitted by the rotator’s colleagues (if, 

for instance, successor rotators are more lenient towards the returned rotator’s colleagues). We 

conducted several tests that lead us to discount such possibility.  First, under favoritism we 

would expect to observe growth in funding among those colleagues that have an established 

funding record with the NSF. In unreported results, we find that this does not hold. Second, 

under favoritism the grants of rotator’s colleagues would be of lower quality than other NSF 

grants. Table 10 demonstrates that the number of publications and citations coming out of 

rotator colleagues’ grants are not statistically different than the number of publications and 

citations coming out of 2009 to 2011 grants awarded to investigators that do not belong to 

departments with a rotator. Third, though this was not part of our research design, none of the 

academics we analyze submitted a funded proposal in the ex-post period jointly with the rotator 

and, four, none of the rotators co-authored a publication with the sample academics ex-ante or 

ex-post, which addresses the possibility of “ghost” co-authorship in the funded proposals.  
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Table 9. Testing knowledge transfer from co-authors and co-investigators who had success in raising 

funds from the NSF.  

 Omit co-authors Omit co-investigators 

RotatorDepartment t-5 -0.031 -0.025 

 (0.016) (0.014) 

RotatorDepartment t-4 0.021 0.024 

 (0.028) (0.026) 

RotatorDepartment t-3 -0.019 -0.005 

 (0.020) (0.017) 

RotatorDepartment t-2 -0.015 -0.009 

 (0.032) (0.030) 

RotatorDepartment t-1 -0.013 -0.016 

 (0.020) (0.019) 

Treatment 0 0.028 0.028 

 (0.020) (0.018) 

Treatment 1 0.090** 0.067*** 

 (0.044) (0.025) 

Treatment 2 0.135*** 0.081** 

 (0.034) (0.033) 

Treatment 3 0.039 0.046 

 (0.031) (0.032) 

Treatment 4 0.007 0.016 

 (0.032) (0.026) 

Treatment 5 -0.015 0.021 

 (0.035) (0.016) 

PostDoc -0.003 -0.002 

 (0.003) (0.002) 

Assistant Professor 0.018 0.017 

 (0.017) (0.015) 

Associate Professor 0.005 0.009 

 (0.017) (0.015) 

Male -0.001 -0.011 

 (0.012) (0.012) 

H-index -0.000 -0.000 

 (0.001) (0.001) 

External Funding ($m) -0.070** -0.031 

 (0.034) (0.029) 

Previous NSF ($m) 0.113*** 0.131*** 

 (0.015) (0.024) 

Ranking -0.002 -0.005 

 (0.003) (0.003) 

Faculty NSF ($m) 0.000 0.000 

 (0.000) (0.000) 

Constant 0.025 0.001 

 (0.026) (0.017) 

Science field FE YES YES 

Year FE YES YES 

Observations 1,784 1,843 

R-squared 0.112 0.100 

R-squared adjusted 0.0930 0.0808 

Number of Departments 65 65 

Robust standard errors in parentheses clustered at department level 

*** p<0.01, ** p<0.05 
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Table 10.  Grants of scientists in treatment and control groups yield similar outcomes 

  

2009 to 2011 grants of scientists in 

departments with a rotator 
  

2009 to 2011 grants of scientists in 

departments without a rotator     

Variable   Mean   Standard Deviation       Mean   Standard Deviation   

Two-sides  

t-test 

Publications   6.385   0.854       6.667   1.375   0.859 

Citations   322.517   83.296       281.462   112.260   0.781 
 

The results could also be driven by scientists in the treatment departments working on 

“hot topics” which typically attract more funds. To test for such possibility we conducted the 

following exercise. First, we counted the number of articles in the SCOPUS database that 

include in their list of keywords the 3 most occurring keywords for articles published in 2010 

by all 400 academics in the sample. Then, we counted the number of articles in SCOPUS that 

5 years later, in 2014 included the same keywords. On average, the number of articles that 

include in their list of keywords the 284 unique keywords from articles published by scientists 

in departments without a rotator increased by 27.7 percent. The corresponding increase for the 

470 unique keywords from articles of scientists in departments with a rotator was 23.7 percent. 

The t-test comparing these two numbers was 0.8734 and it was statistically insignificant. 

Accordingly, academics in departments with and without a rotator appear to work on topics 

that increase in popularity in parallel.   

Similarly, the fact that the NSF picks a given scientist to be a rotator may indicate that 

the scientist’s research area is gaining traction and her department is more active in that area 

when compared to other departments. The following lead us to discount this as a likely driver 

of the findings: a) as shown above the control and treatment departments are similar to each 

other and their research topics grow in a similar fashion in popularity, b) the analysis includes 

fixed effects for science field and c) rotators, are rarely headhunted by the NSF – they are 

typically self-nominated and decide to apply for a rotator position mostly because they want to 

learn more about the NSF and contribute to the growth of science. 

Supplementary analysis 

In this section we elucidate further the driver of our findings by exploring whether the estimates 

are driven by an increase in the applications submitted by the rotator’s colleagues upon her 

return or whether the applications submitted are of higher quality or/and are better targeted and 

as such they are more likely to be successful. Because the NSF does not release rejected 
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applications we cannot address the question directly. However, two empirical exercises we 

describe below suggest that the driver, for the largest part, is not an increased number of 

applications but an improvement in the quality of the submitted applications.  

One, in unreported results we econometrically find that rotators do not have an effect 

on the number of awarded grants. If more applications correlate with more awarded grants, this 

finding implies that the rotator effect stems from direction, feedback and the like on better, 

more carefully targeted proposals.  Two, as shown in Table 11, the probability of winning a 

grant is significantly higher for academics in the treatment group when compared to academics 

in the first control group. This is supportive of our expectation because better, more carefully 

targeted proposals should be more likely to be funded. The magnitude of the effects is also 

informative. The increase in probability for those in the treatment group is considerable for 

small to medium size grants (84 and 73 percent more likely for grants above $50,000 and 

$250,000 respectively), wanes for larger grants (23 percent for grants above $500,000) and is 

non-existent for grants above 1 million. This finding is consistent with the $200,000 difference 

in fund acquisition between academics in the treatment and control groups we report in the 

baseline estimates.  

In the last set of supplementary analyses we inform the mechanism driving the results 

by shedding light on why we observe an effect in Treatment 1 and Treatment 2 but not in later 

treatment years.  We consider two main potential explanations. One, in line with the above 

discussion that an increase in the number of applications to the NSF does not drive the results, 

it is possible that once the focal academic raises a grant in say treatment year 2, she devotes 

time in conducting the research of that grant instead of submitting additional grant applications. 

To test this proposition we start with the premise that more grants correlate with more 

applications. Then, in Table 12 we limit the analysis to the top 3 directorates in terms of the 

number of grants awarded from 2006 to 2016 (i.e. engineering, computer science, math and 

physics), hence the need for a continuous flow of grants is larger. If the lack of applications 

following the award of a grant is driving the results then among fields of this kind we would 

expect an effect in the later Treatment years. This is not what we observe. Two, it is possible 

that the rotator effect wanes over time in that the insights and knowledge that a rotator gains 

are not updated as NSF progresses, likely changes focus and priorities etc. The figures of Table 

13 do not dismiss such possibility. The longer the rotator has been away from the NSF, the less 

new hires in their first year of overlap with the rotator gain. To illustrate, if the rotator returned 

at year t, hires who joined the department at t-1 and at t, hence interacted with the rotator when 
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the NSF experience is recent, raise, on average, $135,467 and $130,252 at t and t+1 

respectively. On the other hand, those who joined the department in t+1 raise $70,144 in t+2.  

All in all, the tests we devise to understand why we do not observe an effect past 

Treatment 2 imply that 2 forces are at play: a) increased workload after the award of a grant 

which limits the number of new applications and b) diminishing applicability of the insights 

the rotator conveys as the NSF changes over time. Empirically, we cannot separate the two 

mainly because the NSF does not provide access to rejected applications and it is prohibitively 

difficult to measure with accuracy whether the relevance of the rotator’s insights indeed 

diminishes over time. Anecdotally, our discussion with a handful of rotators, suggest that the 

decrease in the number of applications is the stronger of the two forces but we do expect 

knowledge decay from the rotator to also play a role.     
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Table 11. Change in probability of securing an NSF grant after the rotator returns. 

  

Grant larger than 

$50,000 

Grant larger than 

$250,000 

Grant larger than 

$500,000 

Grant larger than 

$1,000,000 

Year of rotator return 0.167 ** 0.157 ** 0.05   -0.007   

1 year after rotator return 0.214 *** 0.198 *** 0.116 *** 0.018   

2 years after rotator return 0.235 ** 0.226 *** 0.109 *** 0.010   

3 years after rotator return 0.224 ** 0.145 ** 0.007   -0.005   

4 years after rotator return 0.096   0.035   0.012   -0.003   

5 years after rotator return 0.062   0.038   0.003   -0.004   

The change in probability is calculated after holding all other variables at their means   
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Table 12. Limit the analysis to the top 3 directorates in terms of the number of grants awarded from 2005 

to 2016.  

 
Treatment Group & 

1st Control Group 

RotatorDepartment t-5 -0.028 

 (0.026) 

RotatorDepartment t-4 0.019 

 (0.044) 

RotatorDepartment t-3 0.013 

 (0.025) 

RotatorDepartment t-2 0.049 

 (0.036) 

RotatorDepartment t-1 -0.015 

 (0.036) 

Treatment 0 0.029 

 (0.041) 

Treatment 1 0.139** 

 (0.059) 

Treatment 2 0.175** 

 (0.075) 

Treatment 3 0.118 

 (0.106) 

Treatment 4 0.089 

 (0.091) 

Treatment 5 -0.023 

 (0.049) 

PostDoc -0.009*** 

 (0.002) 

Assistant Professor 0.029 

 (0.030) 

Associate Professor 0.001 

 (0.029) 

Male -0.006 

 (0.025) 

H-index -0.000 

 (0.001) 

External Funding ($m) -0.073 

 (0.074) 

Previous NSF ($m) 0.113*** 

 (0.021) 

Ranking -0.012** 

 (0.006) 

Faculty NSF ($m) -0.000 

 (0.000) 

Constant 0.097** 

 (0.043) 

Science field FE YES 

Year FE YES 

Observations 893 

R-squared 0.132 

R-squared adjusted 0.096 

Number of Departments 27 

Robust standard errors in parentheses clustered at the department level 

*** p<0.01, ** p<0.05 
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Table 13. The longer the rotator has been away from the NSF, the less new hires in their first year of 

overlap with the rotator gain. 

  

Average NSF funding acquired during first three years 

of overlap with rotator after return from NSF  

Variable Tr0 Tr1 Tr2 Tr3 Tr4 

Joined 1 year before the rotator returned $135,467 $262,451 $217,168   

Joined the same year the rotator returned $11,349 $130,252 $130,834   

Joined 1 year after the rotator returned 
 $28,518 $70,144 $61,849  

Joined 2 years after the rotator returned     $36,058 $24,383 $78,931 

 

Conclusions 

We reveal evidence consistent with a causal link between increases in the NSF funding record 

of newly hired assistant professors and exposure to academics in their department who return 

from their tenure at the National Science Foundation as Program Directors (rotators). Tracking 

the grant acquisition of early stage academics since their first faculty position we find that 

within a 5 year period newly hired assistant professors who join departments with a returning 

rotator raise almost twice the amount of research grants similar academics in similar 

departments without a rotator raise (approximately $200,000 more which is nearly half of the 

average first time grant from the NSF). These increases are due to rotator’s colleagues being 

more likely to secure medium size grants and are realized one and two years after exposure to 

the rotator; precisely, then, when early career scientists are at the utmost need for raising 

research funds that can help them build independent long term research programs and advance 

science.  Via a variety of empirical tests we trace the origins of these improvements to 

knowledge transfer from the rotator to her colleagues on what to write, how to write and where 

to send a proposal. 

 Overall, our research highlights that insiders, individuals with insights of an 

organization type different than the one they are permanently employed, can generate positive 

spillovers for their colleagues. These findings speak directly to the literature analyzing the 

effects of access to high human capital in academia (Azoulay et al., 2010; Borjas & Doran, 

2012; Borjas & Doran, 2015; Waldinger, 2010, 2012; Waldinger, 2016) by adding novel 

evidence on gains from high human capital with insights from experience outside academia. 

The work is also relevant for the literatures on success in science (Kahn & MacGarvie, 2016; 

Kelchtermans & Veugelers, 2013) and academic mentoring (Blau et al., 2010). More broadly, 

the results are informative for the academic labor market. Rotators with recent experience at 

the NSF appear equipped to set one career’s off by inducing significant changes in early fund 
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acquisition. As such, presence of a rotator in a given department may be a decisive factor when 

choosing among job offers. 

Our research is timely and has policy implications. Because science advances when 

early career scientists build independent careers it is imperative to explore ways they can gain 

access to resources. Indeed, the difficulties this cohort of academics face in securing resources 

is concerning (Poirazi, 2017), and it may impede scientific progress and harm overall social 

welfare (Alberts et al., 2014; Nature_Editorial, 2016). Policy makers have started to react 

mostly by altering the institutional environment so that it betters the chances of early career 

scientists raising research funds (Kaiser, 2017). Here, we demonstrate that tapping into existing 

knowledge held by colleagues’ human capital might also be a complementary, less resource-

intensive strategy with immediate results which addresses one of the main obstacles early 

career academics face: lack of experience and insights that put them at a disadvantage as they 

often compete for the same grants with high status scientists having established funding and 

publication records.   

Along the same lines, the paper speaks directly to the design of the rotation program. 

Under the premise that home universities gain from the rotation program a recent policy 

mandates that they cover part of the rotation program bill (Mervis, 2016a). Here, while we do 

not fully measure the benefits and the costs of the program, we do nevertheless find that home 

institutions realize gains from returning rotators.  

Our analysis, albeit careful, has caveats which render it incomplete and hence subject 

to improvements. First, we follow previous contributions (e.g Kahn & MacGarvie, 2016) to 

construct one of our control groups by matching on observable characteristics such as having 

the same PhD advisor. Success in raising funds may be driven by unobservable factors which 

we cannot account for. Our expectation, however, is that the unobserved factors correlate, at 

least to some degree, with the observables. The difference-in-difference analysis we conducted 

as a robustness check supports this expectation. Second, we focus on early career scientists 

who land their first faculty position in the US. But, not all PhD holders follow such a career 

trajectory (Sauermann & Roach, 2016). Accordingly, our analysis is conditional on early career 

scientists having secured a faculty position in a US research intensive university. We do not 

see this as a major concern per se because our focus is not on who lands a US faculty post in 

the first place as we compare only similar emerging scientists who followed an academic career 

in similar institutional environments. Third, the analysis focuses on the US and as such the 

results may not generalize directly to other countries as the rotation setting is unique to the 

NSF. This uniqueness of the rotation program at the NSF together with our estimates makes 
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one wonder whether other funding agencies in the US and elsewhere would benefit from a 

similar setting. This is so because the diffusion of knowledge we document is likely predicated 

on the design of the NSF to include external academics in its grant review process not only as 

reviewers but also, and perhaps more importantly, in more central roles as decision makers.  
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Chapter 3. Learning by Seconding: Evidence 

from NSF rotators 13 

 

 

  

                                                                        
13 This chapter is based on:  

Hoenen, SJ., Kolympiris, C., Klein, P. (2018) Learning by Seconding: Evidence from NSF Rotators. Under 

revision at Organization Science. 



46 

 

  



47 

 

Introduction 

Knowledge acquisition is a key source of competitive advantage. How do organizations acquire 

knowledge? Arrow (1971) provided a classic answer: individuals and groups become more 

efficient with experience—they learn by doing (see also Romer, 1990; Young, 1991). 

Organizations develop capabilities over time (Penrose, 1959) as individuals learn and share 

that knowledge with colleagues. Tacit knowledge diffuses easily among employees of the same 

organization because they tend to have strong ties, have similar characteristics, and, as such, 

share a common social identity (Kane, Argote, & Levine, 2005). However, internal knowledge 

diffusion can be uneven (Dahlander, O'Mahony, & Gann, 2016) and, because knowledge is 

gained on the job from insiders, it is difficult to incorporate new, non-overlapping knowledge 

into the organization (Molina‐Morales & Martínez‐Fernández, 2009).  

New knowledge is critical for organizational growth and improvement (Inkpen & 

Tsang, 2005), and organizations may acquire it by hiring workers from organizations already 

possessing the relevant knowledge, the phenomenon of learning by hiring (Jain, 2016; Slavova, 

Fosfuri, & De Castro, 2016). As Simon (1991: 125) notes, an organization learns not only “by 

the learning of its members,” but “by ingesting new members with knowledge the organization 

didn’t previously have.” New employees bring reputations, network ties, and tacit knowledge 

acquired from previous work experience. These employees may also model certain behaviors, 

including ways of learning, that help current employees learn faster and better (March, 1991; 

Slavova et al., 2016). However, new employees typically lack (social) ties with existing 

employees, are often dissimilar to them, and may appear as outsiders, hindering the transfer of 

tacit knowledge (Gruenfeld, Martorana, & Fan, 2000; Hargreaves Heap & Zizzo, 2009a; 

Inkpen & Tsang, 2005; Phelps, Heidl, & Wadhwa, 2012), a potential drawback of learning by 

hiring (Agrawal, McHale, & Oettl, 2017; Szulanski, 2000).  

We propose an alternative mechanism for acquiring and incorporating new knowledge 

without the need to overcome social barriers, what we call learning by seconding. Secondment 

is the practice of sending employees of one organization to short-term assignments in another 

to learn new practices and procedures, establish new ties, and bring these back to the sending 

organization (Beyer & Hannah, 2002). Secondment is common among technology companies, 

law firms, consulting firms, and government agencies. Examples include the US Council of 

Economic Advisers, composed of academics on short-term leaves from universities, the 

SEMATECH consortium of scientists in semiconductor firms and the US government (Beyer 
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& Hannah, 2002), and the Royal Academy of Engineering’s Industrial Secondment scheme in 

the UK.  

We combine insights from the literatures of knowledge transfer, employee mobility and 

social identity to theorize that learning by seconding can be a promising mechanism by which 

organizations can acquire valuable knowledge, network, and similar resources from other 

organizations. Seconded employees are insiders (the main advantage of learning by doing and 

what learning by hiring lacks) who can infuse the home organization with new, non-

overlapping knowledge (the main advantage of learning by hiring and what learning by doing 

lacks).  

As an employee of the home organization, seconded individuals have ties with non-

seconded employees that allow tacit knowledge to transfer within an organization, share similar 

knowledge bases and a common identity (Reagans, Singh, & Krishnan, 2015; Tortoriello, 

Reagans, & McEvily, 2012). At the same time, unlike learning by doing, secondments allow 

the focal individual to fuel her knowledge depository with new knowledge which does not 

overlap with the knowledge of the non-seconded employees. As such, insiders can influx new, 

non-overlapping knowledge to the organization.  Along the same lines, seconded employees 

are “boundary spanners”-individuals with ties to multiple organizations (the sending and the 

receiving organization).  

Prior work has established that the presence of boundary spanners increases 

organizational productivity, partly through effective knowledge transfer (Ancona & Caldwell, 

1992; Tortoriello et al., 2012; Tushman & Katz, 1980). To our knowledge, however, no one 

has looked systematically at the knowledge flows that can result from secondments. We ask 

the questions, do secondments facilitate knowledge transfer and, if so, what are the 

mechanisms?  

To study secondments we exploit the rotation program at the National Science 

Foundation (NSF). Under the rotation program, in place since 1970, NSF employs academics, 

called rotators, who step out of their academic institution for typically 1 to 2 years to lead the 

review process and exercise decision makings at the agency as Program Directors (PDs). After 

their secondment these scientists return to their academic homes armed with experience and 

unique knowledge of the NSF. As a rotator put it during one of our interviews, “I came back 

knowing how funding decisions were made, and the various ways the institution works. There’s 

so much more that goes into how they’re balancing decisions. Knowing this really helped in 

mentoring junior but also senior faculty.”  
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Besides being a fertile template to study secondments, the rotation program is important 

in itself. Knowledge flows in and out of government agencies such as the NSF are particularly 

relevant for scientific research, both at the societal and individual level (Feldman, Desrochers, 

& Bercovitz, 2014; Stephan, 2012) . Existing studies of government’s role in science focus 

mainly on direct funding (Diamond Jr, 1999; Lichtenberg, 1987; Muscio, Quaglione, & 

Vallanti, 2013). However, as with other sectors such as energy, transportation, and financial 

services in which government plays a large role, there are many channels other than direct 

funding for government action to benefit particular organizations, regions, or industries. 

Knowledge flows through public-private partnerships are one example (Kivleniece & Quelin, 

2012). Seconding academics to government agencies, as the NSF rotator program is doing, 

represents a not-yet-studied example. 

Following convention, we infer knowledge transfer from changes in output which we 

measure with increases in NSF funding for rotator’s colleagues and for comparable academics 

(Argote & Ingram, 2000). A key means of acquiring new resources such as research funding is 

through knowledge transfer from new mobile colleagues (Slavova et al., 2016). Mobility in 

this sense includes not only moving between universities (Slavova et al., 2016) but also taking 

temporary editorial positions (Brogaard et al., 2014) 14, the (forced) move of academics from 

one country to another (Borjas & Doran, 2012a; Waldinger, 2010; Waldinger, 2012a), and 

academic inbreeding where PhD graduates of a focal university are employed as faculty 

members in the same academic institution without being employed elsewhere in the meantime 

(Horta, Veloso, & Grediaga, 2010). However, we know surprisingly little about the effects of 

scientist mobility outside academia such as employment spells in industry or government 

secondments. These moves are increasingly popular (Geuna, 2015) and could prove important 

in generating knowledge flows towards colleagues as they can equip the focal mobile academic 

with unique knowledge and insights from outside her core profession, and hence difficult to 

                                                                        
14 Brogaard et al. (2014) examine journal editor rotations, in which an academic takes a temporary position as a 

journal editor in addition to regular professorial duties. Unlike NSF rotators, journal editors are not seconded; 

i.e., they a) typically serve longer terms, b) remain working full-time at their home institutions, and c) do not 

interact face-to-face with other editorial staff located away from the home institution. Brogaard et al. (2014) 

look at knowledge flows between editors and their current colleagues during the editor rotation (and find a 

strong effect—the colleagues publish much more in the editor’s journal and the papers are high quality, 

suggesting knowledge transfer rather than favoritism). We look at knowledge transfer between NSF rotators and 

former colleagues after they return from rotation. Another relevant literature deals with international 

assignments of employees among subsidiaries of the same multinational corporation (e.g. Criscuolo, 2005; 

Lyles & Salk, 1996); because these are internal transfers, however, they do not address non-overlapping 

knowledge acquisition which is central to our work. Several papers analyze how academics with industry ties 

impact their colleagues (Bercovitz & Feldman, 2008; Stuart & Ding, 2006) but do not examine changes in the 

ability to attract research resources and, unlike our interest, do not study academics who pause their home 

university duties even temporarily.     
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acquire when mobility is bound to academic circles. And a colleague returning from a stint at 

a peer or a complementary organization is likely to be viewed as a particularly accessible source 

of new knowledge.  

Our research design takes advantage of the fact that academics within disciplines but 

across universities are trained in similar ways, have common experiences, and work on similar 

problems. For this reason, we can compare an NSF rotator’s colleagues with academics in the 

same fields at other universities who do not have a returning rotator in their academic units. As 

such, our identification strategy features a difference-in-difference estimation in which the 

dependent variable is the amount of NSF funding for each scientist in academic units (what 

most universities call departments) with and without a returning rotator. By carefully matching 

the characteristics of academics with rotator colleagues to those without, we can estimate a 

treatment effect of bringing an NSF officer back from rotation. Moreover, because rotators 

typically return to their previous academic institution (hence the decision to return is largely 

independent to the existing colleagues needing help), we address the endogeneity problem that 

typically plagues cross-sectional studies of employee mobility (Singh & Agrawal, 2011).  

The results suggest that secondments do result in knowledge transfer. We find that 

scientists exposed to their seconded colleague raise considerably more research funding from 

the NSF when compared to similar scientists in similar academic units who did not have a 

rotator as a colleague in the ex-post period. Using additional empirical tests and a series of 

interviews, we trace these improvements in funding records to knowledge transfer from the 

rotator. We identify three main mechanisms: rotators a) help generate ideas by directing 

colleagues to areas with significant funding opportunities (i.e. focusing), b) assist with framing 

proposals in ways they are appealing to reviewers and c) provide processual knowledge by 

clarifying the instructions and the process of submitting a proposal (i.e. formatting). As with 

other forms of secondments, acquiring new knowledge that can be transferred back to the 

originating institution is the main gain of rotation. As such, we expect the three mechanisms 

for the case at hand to be representative of the more general mechanism of knowledge transfer 

that underpins secondments. 

Our work makes two main contributions. First, we contribute to the literature on 

knowledge transfer between and within organizations by means of worker mobility. Departing 

from the current literature we highlight that secondments can address some of the shortcomings 

of learning by doing and learning hiring while retaining their advantages. Specifically in the 

context of academic researchers, prior work has shown that scientists who move within 

academia bring benefits to their colleagues (Borjas & Doran, 2012a; Brogaard et al., 2014; 
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Horta et al., 2010; Slavova et al., 2016). By examining secondments, we believe we are the 

first to study the effects of temporary moves outside academia, then back to the home 

institution. This is important as it allows for a better understanding of the origins of knowledge 

acquisition.  

Second, we contribute to the literature on inter and intra organization employee 

mobility (Almeida & Kogut, 1999; Argote, Ingram, Levine, & Moreland, 2000; Singh & 

Agrawal, 2011; Song, Almeida, & Wu, 2003; Summers, Humphrey, & Ferris, 2012; Tambe & 

Hitt, 2013). By analyzing a hybrid case in which the rotator works outside her institution, and 

partly outside of her profession, and then moves back to the original institution, we offer new 

evidence on how employee mobility outside one’s core profession can induce gains for 

colleagues that never moved. Specifically, the knowledge and insights rotators gain during their 

temporary assignments are different than those gained via moves within academia, because the 

rotators are exposed to complementary, but not overlapping, knowledge bases while on 

secondment. More generally, we address the lack of work in the knowledge literature at the 

micro level (Foss, Husted, & Michailova, 2010).  

Setting: the NSF Rotation Program  

The National Science Foundation supports research in all nonmedical sciences. Each of the 

seven directorates focuses on a different scientific field: biological sciences, computer and 

information science, engineering, geosciences, mathematical and physical sciences, social, 

behavioral, and economic sciences, and education and human resources. The grant process is 

supervised by Program Directors (PDs), subject-matter experts who oversee the review 

process. Program directors coordinate with the approximately 40,000 external experts who 

review proposals, as well as reviewing proposals themselves, chairing review panels, managing 

program budgets, exercising discretion in making funding decisions, communicating with other 

PDs, providing formal and informal feedback to applicants, communicating decisions, 

attending internal and external NSF meetings, and generally navigating the daily internal 

workings of the NSF (Gorman, 2011; Mccullough, 1994; Muller‐Parker, 2007; Stephan, 2012).    

To encourage cross-fertilization, maintain quality control, and increase coordination, 

PDs also sit in panels in directorates other than their own. As such, they are aware of funding 

opportunities and the state of scientific progress across directorates. Indeed, during our 

interviews rotators consistently reported that they spent a substantial amount of their time at 
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NSF on discussing broad issues about various scientific disciplines and how NSF can 

contribute towards scientific progress.    

Since the 1970 passage of the Intergovernmental Personnel Act the NSF has employed 

academics, called rotators, on loan from their academic institution (rarely from industry) as 

PDs. These seconded academics serve up to 4 years (typically 1 or 2), working along with 

permanent NSF PDs (Mervis, 2013). Rotators join the NSF to participate in a rigorous and 

unbiased review system while bringing in fresh ideas and perspectives to the permanent staff 

(e.g Duce et al., 2012). Most rotators have previous experience with the NSF, as grant 

recipients, reviewers, and panel members, and this sparked their interest in the rotation 

program. Our interview subjects reported a desire to learn more about the NSF and its internal 

operations, as well as a more general aim of having an impact on the profession, shaping the 

direction of science, and exercising professional leadership.  

In 2016, rotators comprised 28% of the agency’s scientific workforce (Mervis, 2016a). 

During their secondments rotators cannot submit a proposal to the NSF, are subject to 

restrictions when applying for non-NSF funding, cannot review or process proposals of recent 

collaborators, and in general are subject to strict rules even after their tenures at NSF are over. 

These restrictions are designed to avoid conflicts of interests and minimize any chances of 

favoritism in the review process. From 2004 to 2014 the NSF employed nearly 800 rotators 

from around 400 academic institutions, mostly as PDs. As we discuss later in the paper rotators 

come from nearly every academic discipline, have diverse backgrounds, vary in their scholarly 

records, work at small and big universities of different rankings and status, come from every 

state, and are of different age and gender.   

Literature and Hypotheses 

The transfer of knowledge from one unit of an organization to another is a key input to 

improvements in organizational performance (Chang, Gong, & Peng, 2012). But, the process 

of knowledge transfer is challenging and often fails (Szulanski, 2000). Its success hinges, in 

large part, on the properties of the knowledge to be transferred and on the relationship between 

the sender and the recipient of knowledge (Simon, 1991). Specifically, tacit knowledge is more 

difficult to be transferred than codified knowledge while similarity and strong social ties 

between the sender and the receiver of knowledge facilitate knowledge transfer (Phelps et al., 

2012).   
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Not surprisingly, learning by doing is a primary means of diffusing knowledge within 

organizations: as individuals learn, they are interacting regularly with local colleagues, 

facilitating the flow of tacit knowledge. Strong ties between group members foster a common 

social identity in which fellow employees, as insiders, are seen as trustworthy and prone to 

reciprocity and hence more influential than outsiders (Gruenfeld et al., 2000; Zahra & George, 

2002). For sourcing tacit knowledge, people tend to rely on those with unique experiences and 

insights (Gray & Meister, 2004) but, because knowledge search processes are often confined 

locally, co-workers possessing unique knowledge often become the key knowledge source 

(Borgatti & Cross, 2003; Singh, 2005; Stuart & Podolny, 1996). For these reasons, knowledge 

transfer among individuals in the same group or subunit is typically more effective than that 

between individuals in different groups or subunits (Cohen & Levinthal, 1990; Tortoriello et 

al., 2012)   

However, while learning by doing facilitates the transfer of tacit knowledge, it is less 

useful for bringing new, non-overlapping knowledge to the organization. Because new 

knowledge drives performance improvements (Inkpen & Tsang, 2005), organizations often 

hire workers from outside (Rosenkopf & Almeida, 2003). This provides workers of the 

recipient organization the opportunity to integrate outside knowledge to their current context 

(Allen, 1977), reposition their search processes (Tzabbar, 2009), and develop new capabilities 

that improve performance (Jain, 2016). Because knowledge is embedded in individuals and 

individuals often rely on others’ experience to learn (Levitt & March, 1988), individuals who 

move from one context to another can act as knowledge conduits (Argote & Ingram, 2000). 

However, as noted above, new hires lack social ties with incumbents, are often dissimilar, and 

therefore do not typically share a common social identity with existing employees, hindering 

the absorption of new tacit knowledge. Indeed, Agrawal et al. (2017) find that hiring a star 

employee does not bring noticeable benefits to incumbents. Organizations thus face a trade-off 

between encouraging internal collaboration, where individuals have a greater ability to learn 

(from sharing a common social identity), and encouraging external collaboration, where 

individuals have a greater chance to acquire new, non-overlapping knowledge.  

 One way to mitigate this trade-off is outward mobility, the practice of sending 

employees to other organizations while remaining in contact with their former colleagues. 

Losing valuable employees is generally costly, but does provide potential access to the new 

firm’s knowledge and capabilities, as the outwardly mobile employees will tend to pass 

information back to their previous coworkers. Importantly, this knowledge is likely to diffuse 

within the organization because its source is a former insider with ties to other employees 
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sharing a common social identity. Looking at the fashion industry which—like academia—

thrives on novelty and creativity, Godart, Shipilov, and Claes (2014) show that moderate levels 

of outward mobility are associated with higher levels of creativity inside the sending 

organization. Wang (2015) finds that skilled immigrants returning to their countries transfer 

organizational practices to the countries of origin.  

We argue that secondments represent an even more valuable form of outward mobility 

because the movement is temporary. The seconded employee goes to the new organization, 

acquires new knowledge, and then returns for daily, face-to-face interaction with her former 

colleagues.15 The NSF rotation program provides an ideal setting for studying the effects of 

secondments on the sending organization. Specifically, we expect returning rotators to improve 

their colleagues’ ability to secure research funding by transferring to them tacit knowledge 

about the funding process that can address their lack of experience and judgment (Borgatti & 

Cross, 2003). Specifically, former rotators can provide a) hints on research areas NSF is keen 

on funding (what we term focusing), b) help with framing research proposals in ways that are 

appealing to reviewers and c) tacit knowledge about the grant process (what we term 

formatting). Hence having a rotator as a colleague should encourage more submissions while 

also improving the quality of submitted proposals, thus leading to increased funding. 

Developing a successful NSF proposal is not easy. As described by Custer et al. (2000), 

the most frequent challenge is conceptualization and visioning of the project, followed by 

coordination with collaborators, help from the home institution, budget development, and 

understanding of NSF guidelines and expectations. Rotators can exploit their NSF experience 

and address all these challenges. Because rotators have hands-on experience with numerous 

proposals and applicants from different institutions, they can transmit tacit knowledge on 

designing and producing a successful application (Muller‐Parker, 2007). Indeed, as mentioned 

above, providing leadership is a prime reason for a given academic to become a rotator. We 

expect this motivation to prompt rotators to be particularly interested in helping their colleagues 

upon returning.  

As an example of focusing, one rotator explained to us that rotators “demystify NSF . . 

. and generally open the door to opportunities that are outside one’s radar.” Another told us he 

“learned valuable lessons about how NSF communicates intentions about funding priorities.”  

                                                                        
15 Importantly, while ties between employees ameliorate competitive concerns about sharing knowledge, moves 

between competing groups within the same organization may exacerbate such concerns (Kachra and White 

2008). Secondments are plausibly advantageous in that instance as well because the seconded employee does 

not move from a competing unit within an organization into another. 
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Referring to the mechanism of framing, another rotator said: “I talked to many colleagues, even 

when they were outside my field, on general aspects regarding what makes a strong proposal 

at the NSF.” Another described framing and formatting: “People would show me proposals, 

say “can you tell me what you think? I would say ‘well, maybe you should aim it a little 

different or maybe you should pick a different program’. I also gave some talks and alerted 

people to particular programs.”  

Faculty with a rotator colleague can increase their odds of getting funding both by 

writing better proposals and by submitting more proposals. Indeed, obtaining funding is the 

most frequent topic of discussion in mentoring relationships (Feldman et al., 2010), and such 

mentoring tends to pays of in terms of increasing funding success rates (Blau et al., 2010). 

While the relationship and transmission of knowledge from rotators to colleagues is not 

necessarily a mentor-mentee relationship, there are parallels and as such the abovementioned 

results strengthen our theoretical expectations. Thus, we advance the following hypothesis:  

 

Hypothesis 1. Faculty members in academic units with a seconded returning rotator 

will improve their NSF grant acquisition record after the rotator returns from the NSF, 

compared to similar academics without a rotator colleague. 

 

We expect the relational properties between the sender and the recipient of knowledge 

about NSF grants to influence the effect of the rotator on the funding records of colleagues 

(Argote & Ingram, 2000; Singh & Agrawal, 2011). Relational properties should influence how 

various colleagues of a returning rotator perceive the rotator’s experience, accessibility, and 

specialized expertise. 

As noted above, strong ties between the sender and the receiver improve the transfer of 

tacit knowledge (Levin & Cross, 2004; Simonin, 1999). Moreover, strong ties are more likely 

to develop when the two parties interact over time, as longer relationships help form social 

cohesion and a common social identity (Kane et al., 2005). Individuals with longer tenure at 

an organization are more deeply embedded and tend to develop better communication channels 

with colleagues (Gruenfeld, Mannix, Williams, & Neale, 1996; McFadyen & Cannella, 2004; 

Paruchuri, Nerkar, & Hambrick, 2006). Those with longer tenure in an institution are also more 

familiar with organizational routines and practices (Gruenfeld et al., 1996). In sum, individuals 

with longer tenure are more likely to be approached for advice that is focused to the focal 

environment because they share a common identity with their colleagues, have developed 
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communication channels with them, and are a priori expected to provide content-specific 

feedback. This leads to the following hypothesis:  

 

Hypothesis 2a. The effect of the seconded rotator on the grant acquisition record of her 

colleagues is positively moderated by her tenure in her academic unit.   

 

A second relational property that should influence knowledge transfer between the 

rotator and her colleagues is similarity. Even within an academic field there is substantial 

variation in the specific topics and problems researchers study, the theories and methods they 

consider appropriate, the journals and communities in which they disseminate their work, and 

so on (Cole & Cole, 1972). Researchers also differ by scientific skill and research productivity: 

those who are highly productive and whose work is influential will enjoy a strong scholarly 

reputation, while others will be less well established in their specific fields or in the profession 

as a whole. Both similarity in the specific knowledge base and similarity in research 

productivity or impact should affect the quantity and quality of knowledge transfer.  

As noted above, knowledge transfer is costly both for sender and receiver. The sender 

must devote time and effort to helping the recipient to understand (Reagans & McEvily, 2003), 

and the recipient must integrate the new knowledge into his knowledge depository. When these 

costs are lower, senders are more likely to invest time in transmitting knowledge and recipients 

are more likely to approach senders for help. Importantly, a common knowledge base makes 

knowledge transfer easier (Black, Carlile, & Repenning, 2004; Reagans & McEvily, 2003), so 

we expect the effectiveness of knowledge transfer between rotators and their academic 

colleagues to be greater among those working on similar research topics and potentially using 

similar methods. 

Similarity in scientific productivity, influence, and reputation between sender and 

receiver can also lower the cost of knowledge transfer. More productive individuals have more 

and newer knowledge and, hence, have more to transmit (Azoulay et al., 2010; Chan, Li, & 

Pierce, 2014; Lacetera, Cockburn, & Henderson, 2004; Mas & Moretti, 2009). Accordingly, 

they are more likely to be approached for help. But, they respond differently to different 

requests (Thomas-Hunt, Ogden, & Neale, 2003). Highly accomplished researchers are more 

likely to connect with other scholars with similar research experience, impact, and reputation 

who can assimilate the new knowledge (Black et al., 2004; Salomon & Martin, 2008). This 

implies that knowledge transfer is facilitated by the sender and receiver being similar in 

research productivity. 
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 Subsequently, we advance the following two hypotheses: 

 

Hypothesis 2b. The effect of the seconded rotator on the grant acquisition record of a 

colleague is positively moderated by similarity in knowledge between the rotator and the 

colleague. 

Hypothesis 2c. The effect of the seconded rotator on the grant acquisition record of a 

colleague is positively moderated by similarity in research productivity between the rotator 

and the colleague. 

 

Research Design and Estimation 

We use a difference-in-differences research design in which the dependent variable is the 

inflation-adjusted sum of funds raised by each scientist before and after having a rotator as a 

colleague. We match “treated” academics with a rotator colleague to similar academics without 

one. We find matches because academics are not randomly assigned to academic units with 

and without a rotator colleague. The ex-post period is the 5 years after the rotator returns to her 

academic unit and, equivalently, the ex-ante period is the 5 years before the rotator started her 

tenure at NSF.  

The research design offers two main advantages. First, selection into rotation is 

independent of the need of one’s colleagues for mentoring on how to raise funds. As already 

discussed, most academics become rotators because their prior experience at the NSF—serving 

in discussion panels and communication with the NSF—prompted them to want to learn more 

about the NSF and its internal operations, not because ex-ante they recognize colleagues that 

need assistance with grant acquisition. Two, where rotators go after the NSF is also 

independent to existing colleagues. Almost all rotators return to the school where they 

previously worked. The fact that the return decision is exogenous to the treatment group is 

important: if the movement of labor to new organizations is endogenous to the anticipated 

effects of that new labor on existing labor, it is hard to estimate a treatment effect of mobility 

(Singh & Agrawal, 2011). 

To make sure the results measure knowledge transfer rather than reciprocal learning 

(Manski, 1993), we include only academics who in the ex-ante period had no funds from the 

NSF. These faculty members have limited (or no) experience in attracting grants and this 

implies that a) they are less likely to share insights specific to NSF funding with each other and 
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b) they are more likely to gain from the rotator’s advice as faculty with established funding 

records may be of less need (or even desire) for additional help (Laband & Tollison, 2000). 

Accordingly, focusing on this cohort of scientists we expect to be able to unravel the potential 

effects that rotators may have on the ability of their colleagues to attract research resources.   

To build our control sample we use Coarsened Exact Matching (CEM), a multivariate 

technique that matches on covariate values not exactly, but based on different strata built on 

the joint distribution of the matching variables.16 CEM features a number of desirable statistical 

properties including the reduction of model dependence, estimation error, and bias (Iacus, 

King, & Porro, 2011). In our case, CEM allows us to address heterogeneity at both the level of 

the individual scientist and the level of her academic unit. We also address heterogeneity at the 

university level (without using CEM). We build different samples which address different 

forms of heterogeneity. Specifically, in matching scheme 1 we focus on reducing heterogeneity 

at the academic unit level, identifying academic units in different universities similar to the 

academic unit of the rotator based on overlap on science field, faculty size, and average H-

index across faculty members ex-ante.17 We then populate the sample we analyze with a) the 

faculty members in the academic unit with a rotator without NSF funding in the ex-ante period 

and b) the faculty members in the matched academic units that have also not attracted funds 

from NSF ex-ante.  

In matching scheme 2 we use the same matching criteria but match at the individual 

level, such that members of the same academic unit with a rotator could be matched with 

scientists belonging to different academic units. For example, assume that the University of 

Maryland (with a rotator) has professors X, Y, and Z without NSF funding in the ex-ante 

period. Each professor, in this hypothetical scenario, has a single match; professor X’s match 

                                                                        
16 Following Iacus, King, and Porro (2008) our estimation weights the observations according to the size of the 

stratum they belong. This is required when, as in our application, the number of control and treatment 

observations within a stratum are not equal (Blackwell, Iacus, King, & Porro, 2009; Iacus et al., 2008). But 

weighting does not allow us to cluster the standard errors at the observation level. Given that each scientist 

enters the analysis twice (one in the ex-ante period and one in the ex-post period) in unreported results we also 

run the regressions with clustered standard errors at the scientist level without weighting. The results are 

qualitatively similar to the baseline estimates.   
17 We expect these factors to influence the accumulation of funds for a given academic as, for instance, some 

science fields tend to attract more research funds than others. As robustness checks, shown in a later section, we 

match on different characteristics and find qualitatively similar estimates. On a more technical note, as Singh 

and Agrawal (2011) explain, with CEM a trade-off must be made between the similarity of the matched sample 

and the number of observations that are matched. CEM divides variables in bins within certain ranges and then 

populates the bins with observations that fall within these ranges. Matching observations on variables divided in 

more bins creates smaller samples that are more similar in the chosen characteristics. The opposite, larger bins, 

match more observations that are then on average less similar to each other. For matching schemes 1, 2 and 3, 

we were stricter on science field and H-index by enforcing that every science field gets its own bin and dividing 

the H-index in 12 bins covering 0 to 75 in increments of 6.81. We determine the FacultySize bin boundaries at 

30 and 60, effectively creating three bins that represent small, medium and large sized academic units. 



59 

 

is at the University of Illinois, professor Y’s at the University of Wisconsin, and professor Z’s 

at the University of Florida. Under the individual matching scheme, the matched scientists from 

Illinois, Wisconsin, and Florida enter the analysis as controls for the three faculty members at 

Maryland.  

Matching scheme 3 combines schemes 1 and 2 to reduce individual-level and academic-

unit-level heterogeneity simultaneously. Similar to matching scheme 1, the first step in 

matching scheme 3 is to identify comparable academic units based on science field, average 

H-index, and faculty size. Within those units, we then match at the individual academic level. 

Importantly, the pool of potential controls for a focal faculty member belonging to a rotator 

group is bound to the faculty members of the matching academic unit revealed in the first step. 

For instance, if the first stage matching reveals that the with-rotator biochemistry department 

at the University of Iowa is similar to the without-rotator biochemistry department at the 

University of Missouri, then the analysis will include as controls only those academics at 

Missouri who do not have NSF funds and are close matches to academics without NSF funding 

ex-ante in Iowa. If no match is found among the academics in Missouri (or in Missouri and say 

the University of Illinois if the latter is also identified as a match to Iowa), then the treatment 

group academics from Iowa are not included in the analysis.   

Finally, in matching scheme 4 we address heterogeneity at the university level (without 

using CEM) to account for institution-specific incentives, norms, and other factors that can a) 

condition one’s fund raising record and b) potentially prompt a given academic to become a 

rotator. We select controls who are employed at the rotator’s university but in a different 

academic unit. To choose this unit we imposed two criteria. First, the academic unit must be in 

the same, immediately larger division or school as the treatment unit. Typically, the 

immediately larger division was, say, the School of Engineering or the School of Public Policy. 

In few cases, there were subdivisions within these Schools; there we choose controls from those 

subdivisions. Two, the control unit must be in a broadly similar scientific field to the treatment 

unit. For example the treatment unit is Industrial Engineering, we choose controls from Civil 

Engineering and not, say, Chemical Engineering.  

To identify rotators we first posed a Freedom of Information (FOI) request to the NSF 

asking for rotator names and affiliations across all agency directorates from 2004 to 2014. We 

limit our analysis to academics who served as NSF rotators from 2004 to 2009 so that we can 

observe changes in funding for their colleagues 5 years before and 5 years after rotation. Next, 

we visited the website of each rotator’s academic unit and sourced the list of faculty members 

including the rotator. For every faculty member we a) collected data from the latest version of 



60 

 

her CV, LinkedIn, and other sources, b) downloaded from the bibliographic database SCOPUS 

a list of her publications over time including co-authors, citations, keywords, and the like and 

c) recorded her accumulation of NSF funds using data provided online by the NSF.  

Using this information we built a profile of each scientist with a rotator colleague 

describing her tenure at her institution, research productivity, co-authors, and so on. We sum 

these profiles to build the profile of each rotator’s academic unit. To build the profile of 

potential control groups we repeat the steps described above for academic units ranked one 

position higher and one position lower than the rotator’s academic unit in the science-field-

specific Shanghai ranking.18 Whenever insufficient information was available for these units 

(usually occurring when the majority of academics in the unit did not maintain an updated 

professional history online), we moved to academic units two or three ranking positions up and 

down. We opted for this “one up, one down” approach under the premise that academic units 

in similar rankings are, at least in broad strokes, comparable to each other. As a final step, the 

pool of potential matches upon which we implement CEM contains a) the academics collected 

via the “one up, one down approach” and b) the scientists belonging to academic units in the 

rotator’s university which we identified as comparable to the rotator’s academic unit. For 

example, assume that the without-rotator Materials Science and Engineering Department at 

Cornell University is identified as a match to the with-rotator Physics Department also at 

Cornell University. When creating the pool for potential matches for academic units with a 

returning rotator at, say, Carnegie Mellon and Harvard then the Materials Science Department 

at Cornell University enters the pool.19   

To test H1 we interact the variable Rotator Group which takes the value of 1 for 

scientists belonging to academic units with a rotator and the variable Ex-Post which takes the 

value of 1 for observations corresponding to the ex-post period and 0 otherwise. In support of 

H1 we expect a positive sign for the Ex-Post * Rotator Group interaction. Following Meyer 

                                                                        
18 For instance, the Texas A&M University’s Department of Mathematics, had a rotator returning in 2007. On 

the Academic Ranking of World Universities, in the field of Natural Sciences and Mathematics in 2007, Texas 

A&M had a ranking of 43. For this year Georgia Institute of Technology was ranked 42 in Natural Sciences and 

Mathematics and University of California, Davis was ranked 44. Accordingly, we populate the pool of controls 

for the Texas A&M Department of Mathematics with academics in the Departments of Mathematics at Georgia 

Institute of Technology and the University of California, Davis. 
19 For the example at hand, the fact that we match on science field ensures that the without rotator Materials 

Science Department at Cornell University is matched only with Material Science Departments hosting a rotator 

in other universities.  Relatedly, the pool of potential control scientists does not include academics who could 

benefit from a rotator directly: none of the potential control scientists had co-authored a publication with the 

rotator in the past and none had worked in institutions where the focal rotator had worked before her present 

academic post. This holds because most rotators had worked only for one university and had collaborated 

primarily with academics who had won grants themselves. 



61 

 

(1995) we test the moderating effects under H2a, H2b, and H2c using three-way interactions 

of the Ex-Post * Rotator Group interaction and variables we construct to measure tenure and 

similarity.  

We measure tenure (Tenure) in the institution as the number of years the rotator has 

been employed at the focal university. We capture knowledge similarity (Knowledge 

Similarity) by recording the number of top-10 keywords of the rotator’s ex-ante articles that 

are also among the top-10 keywords of her focal colleague’s ex-ante articles. We opt for the 

ex-ante articles expecting relationships between colleagues that strengthen knowledge transfer 

to develop over time. But, because keywords change only slightly over the time period we 

study we obtain nearly identical estimates when constructing the variable using ex-post articles. 

We measure similarity of research productivity (Productivity Similarity) using the absolute 

value of the difference between the H5-index of the rotator and the H5-index of the focal 

colleague. The H5-index is a measure of scientific productivity: in the last 5 years, a scientist 

with an index of h has published h papers, each of which has been cited in other articles h times 

or more.   

In support of H2a, H2b, and H2c we expect positive signs for the three-way interactions 

Ex-Post * Rotator Group * Tenure, Ex-Post * Rotator Group * Knowledge Similarity, and Ex-

Post * Rotator Group * Productivity Similarity. For scientists in the control groups we use the 

values of the moderators corresponding to academics we estimate to be similar to the rotators. 

To capture variation in the moderators that is shared among academics in treatment and control 

groups, and among all observations in the ex-post period, we also include in the analysis 

interactions between Rotator Group and the moderators and between Ex-Post and the 

moderators.    

In testing our hypotheses we also include explanatory variables that can affect an 

academic’s ability to get NSF funds. To account for the possibility that other funding crowds 

out NSF funds we measure the amount of non-NSF funds raised in the ex-post period by the 

focal scientist (OtherFunds). We also incorporate a dummy variable taking the value 1 if the 

academic had attracted funds from the NSF before the ex-ante period (NSFBefore). To account 

for potential effects of career experience on NSF funding we measure the elapsed years from 

the receipt of an academic’s PhD until the start of the ex-post period (Years). Along the same 

lines, we include a variable that takes the value of 1 if the focal scientist is assistant professor 

at the start of the ex-post period, 2 if she is associate professor, and 3 if she is full professor 

(Position). Serving in an administrative position may take up time that could be spent in writing 

grant proposals, so we include a dummy indicator (Administrator) that takes the value of 1 for 
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academics who are department heads, PhD studies coordinators, and similar positions at the 

start of the ex-post period. We also include controls for gender (Male), scholarly output 

(Publications), and cumulative citations (Citations). The latter two variables are time varying 

as they assume different values for the ex-ante and ex-post period when the publications and 

citations record of the focal academic has changed.20 

Academics with extended professional networks may benefit more strongly than others 

by having a rotator colleague as they have access to larger pool of knowledge and relationships. 

To account for such effects we include a time-varying variable that counts the number of unique 

co-authors across time for each focal scientist (Coauthors). Scientists in higher-ranked 

universities may be offered more institutional support when crafting their proposals and may 

receive a status effect from the NSF, so we include the Shanghai ranking quartile of each 

academic’s university on a given year and field of science (UniversityQuartile). The size of 

one’s academic unit may also influence the growth of NSF funds as smaller groups may reflect 

more intense knowledge flows among faculty members due to elevated familiarity, whereas in 

larger academic unit the pool of potential knowledge sources is typically larger. We include 

the number of faculty members in the academic unit (FacultySize) to control for these effects. 

Finally, we include year- and science-field-fixed effects to account for changes in funding 

trends across years and across scientific fields. 

Data 

To guide the selection of the rotators’ academic units we started with the 778 scientists who 

served as rotators under the Intergovernmental Personnel Act (IPA) program from 2004 to 

2014. To fully measure the potential changes in funding for rotators’ colleagues in the ex-post 

period we focused on the 203 scientists who worked at the agency from 2004 to 2009 and for 

a period of up to 2 years (which is the most common length of stay).21 Using the 

abovementioned data sources we were able to source comprehensive information and build full 

professional histories for 50 rotators.  

                                                                        
20 These variables are time-varying which ameliorates concerns of endogeneity arising from the fact that 

Citations and Publications are used to construct the Productivity Similarity variable. Still, when we omit the 

variables from the analysis, we reach identical conclusions to the baseline estimates. 
21 352 academics served as rotators under IPA from 2004 to 2009 with 203 serving up to two years (the 

minimum stay for this cohort was 8 months). To illustrate why we limit the search to these 203 scientists, for the 

rotators whose tenure at the agency lasted 4 years we would have to eliminate those that started rotation in 2007, 

2008 and 2009 as the ex-post period ends after 2016. 
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We then searched for professional histories of more than 14,000 scientists belonging to 

a) the 50 academic units with a rotator, b) the approximately 150 academic units ranked one to 

three positions higher and one to three positions lower than the academic unit with a rotator, 

and c) the approximately 100 academic units in the same university of the academic unit with 

a rotator. We succeeded for about a third of these, 5,120, employed at 89 universities reflecting 

37 units with a rotator and 160 units without a rotator.22 Subsequently, we manually read more 

than 5,000 CVs and went through more than 3,000 LinkedIn pages, 12,000 university and 

laboratory websites, and 2,000 personal websites. Following this search, we identified 1,515 

faculty members in academic units with and without a rotator who met the following criteria: 

a) their available information was updated and comprehensive enough to build a full 

professional history (including for instance the PhD graduation date and information on present 

position), and b) they were in the same academic unit both in the ex-ante and in the ex-post 

period. For these 1,515 academics, who compose our original sample, we then downloaded 

their more than 110,000 articles included in SCOPUS (including different versions of the first 

name and searching by university) which were cited by close to 3,000,000 articles to build the 

Publications, Citations, Knowledge Similarity, Productivity Similarity, and Coauthors 

variables. 

The distance statistic L1 shows that using CEM has given us control and treatment 

observations that are more comparable to the original sample than those collected with the one-

up, one-down approach. Specifically, the L1 distance between the treatment and control group 

decreased from 0.754 to 0.629 for matching scheme 1, from 0.641 to 0.619 for matching 

scheme 2 and from 0.830 to 0.796 for matching scheme 3. Table 1 offers an additional way to 

check the ex-ante comparability of academics in the treatment and control groups. It compares 

the treatment and control scientists under matching scheme 3, the most restrictive as it 

addresses heterogeneity both at the scientist and at the academic unit level (descriptive statistics 

of samples formed with remaining matching schemes are similar).  

Overall, we observe only small differences among the academics in the control and 

treatment groups. These differences are, for the most part, not statistically significant. For 

instance, the size of the academic unit for treatment and control groups is on average 33.67 and 

                                                                        
22 The main reason we could not collect data on the colleagues of 13 rotators was that these scientists were 

employed at academic units that did not include professional histories on their websites. Importantly, we did not 

identify significant differences in terms of publication and citation records, NSF funding, age, position, and 

gender among the 37 academics we use for the analysis and a) the remaining rotators who also served at the 

NSF during the same period (2004 to 2009) and b) the 778 rotators included in the list coming out of the FOI 

request. 
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33.12 respectively, the number of publications and citations are nearly identical, and so is the 

presence of females, the tenure of the rotator, and all remaining variables. In sum, the scientists 

in the control and treatment groups are observationally identical ex-ante. Where we do observe 

significant differences is on the accumulation of NSF funds ex-post. Supporting our 

expectations, academics in groups with a rotator raise on average $201,505 after the rotator 

returns to her academic unit while academics in groups without a rotator raise on average 

$69,169 during the same period. Note that these sums reflect new grant(s) raised ex-post and 

not continuations or extensions of existing grants. 

 

Table 1. Descriptive statistics of scientists in rotator and control academic units. 

  Matching using scheme 3 (match on academic unit and scientist) 
   

Variable 
# of 

scientists 
Mean 

Standard 

Deviation 
 # of 

scientists 
Mean 

Standard 

Deviation 
 

Two-

sides  

t-test 

NSF funding (ex-ante) 
 

101 - -  330 - -   
 

NSF funding (ex-post) 
 

101 $201,505 $71,322  330 $69,168 $14,092  -2.84 *** 

Knowledge Similarity 
 

101 0.22 0.61  330 0.49 1.41  1.97 ** 

Productivity Similarity 
 

101 48.01 105.65  330 57.59 99.17  1.60 
 

Tenure 
 

101 17.41 7.72  330 18.81 9.61  1.81 
 

OtherFunds 
 

101 0.15 0.36  330 0.16 0.37  -0.05 
 

NSFBefore 
 

101 0.44 0.50  330 0.36 0.48  -1.81 
 

Years 
 

101 22.65 9.35  330 22.22 9.31  -0.30 
 

Position 
 

101 2.82 0.55  330 2.69 0.56  -2.77 *** 

Administrator 
 

101 0.37 0.49  330 0.35 0.48  -1.39 
 

Male 
 

101 0.87 0.34  330 0.86 0.35  -0.22 
 

Publications 
 

101 15.48 15.24  330 15.60 15.68  -0.21 
 

Citations 
 

101 26.51 34.14  330 25.54 35.89  0.34 
 

Coauthors 
 

101 1.35 0.85  330 1.47 1.16  0.31 
 

UniversityQuartile 
 

101 2.44 1.08  330 2.32 1.05  -1.27 
 

FacultySize 
 

101 33.67 18.51  330 33.12 13.87  -0.57 
 

** Significant at 5%. *** Significant at 1%. 
       

 

As shown in Table 2, the sample includes rotators from all 7 NSF directorates (and 1 

rotator from the office of the Director) with the number of rotators from each directorate being 

roughly proportional to the funding amounts the focal directorate awards over time. For 

instance, 21.6 percent of the sample rotators are employed at the Directorate for Mathematical 

and Physical Sciences, while over the time period we study this directorate awarded 21 percent 

of all NSF grants. Note that this proportionality is also reflected in the funding amount received 

from each Directorate among the sample academics. Compared to their colleagues (including 
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those with NSF funding ex-ante) rotators have similar characteristics such as having received 

their PhD training from institutions of similar ranking but they differ in two main respects. 

First, in the ex-ante period their publication and citation records are below those of their 

colleagues (e.g. 8.59 versus 23.18 articles). Interestingly, the corresponding figures before the 

ex-ante period are comparable between rotators and their colleagues, with the rotators having 

somewhat more articles (i.e. 39.97 versus 32.47).  
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Table 2. Characteristics of the 37 rotators that enter the analysis and their 247 colleagues. 

Variable Rotator averages 
Rotator colleagues 

averages 

NSF funding as PI (5 years ex-ante) $714,180.00 $302,485.00 

NSF funding as PI (5 years ex-post) $583,357.00 $293,288.00 

Years 23.43 21.05 

Male 0.70 0.87 

Position 2.92 2.74 

Publications (all years before ex-ante) 39.97 32.47 

Publications (5 years ex-ante) 8.59 23.18 

Publications (5 years ex-post) 20.08 29.95 

Citations (all years before ex-ante) 27.00 43.00 

Citations (5 years ex-ante) 17.59 22.31 

Citations (5 years ex-post) 25.73 34.14 

Coauthors (all years before ex-ante) 1.24 1.08 

Coauthors (5 years ex-ante) 3.13 1.50 

Coauthors (5 years ex-post) 1.24 1.08 

Administrator 0.27 0.38 

Ph.D. from Ivy League 0.08 0.11 

Ph.D. from Association of American Universities 0.78 0.71 

9 rotators were employed in the Biological Sciences Directorate, 3 in the Computer and Information Science and 

Engineering Directorate, 4 in the Education and Human Resources Directorate, 5 in the Engineering Directorate, 

4 in the Geosciences Directorate, 8 in the Mathematical and Physical Sciences Directorate, 1 in the Office of the 

Director and 3 in the Social, Behaviour and Economic Sciences Directorate. 
 

Taken together, these comparisons suggest that rotators, on average, publish less than 

they usually do just before joining the NSF. On the other hand, their funding from the NSF is 

considerably higher than the NSF accumulation of their colleagues both in the ex-ante period 

and before. Therefore, as expected, rotators are typically more successful in raising NSF funds 

than their colleagues. Similarly, as Table 3 demonstrates, NSF rotators are similar to those we 

identify as “could-be” rotators. For instance, for both cohorts the elapsed time since PhD 

graduation until the start of the rotation has been 21 years and they are mostly men with H-

indices around 9.23 In line with the discussion above, the main difference is that the NSF 

funding records of rotators are higher than the funding records of those academics we have 

identified as comparable to rotators. As shown in robustness test 7 in Table 8 (below), this 

difference does not impact our estimates in any material way. Not shown in Table 3, the rotators 

(and the scientists that match them) are employed at both private and public universities of 

different size and prestige and from nearly every state. In general, we do not identify trends in 

terms of the type of institution that rotators come from.  

 

  

                                                                        
23 The majority of our academics are in the natural sciences, where multiple postdocs are common. On average, 

having 21 years of experience post PhD corresponds to about 13 years since holding a faculty position (i.e., 

running one’s own lab). Our average faculty member is thus tenured, and about 20% had received NSF funding 

before the ex-ante period (five years before a colleague becomes a rotator). During the ex-ante period, when (by 

construction) none had NSF funding, most had funding from other sources. 
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Table 3. Ex-ante characteristics of rotators and academics we identified as 'could-be' rotators. 

 
  37 rotators    148 could-be rotators     

Variable   Mean  
 Standard 

Deviation  
  Mean  

 Standard 

Deviation  
  Two sides t-test  

NSF funding as PI (ex-ante)   $714,180  $1,044,847   $436,283   $1,115,223          2.44   **  

H5-Index                8.59                5.69                8.44               8.61          0.10   

Years              23.43                8.55              23.69               8.61         -0.16   

Male                 0.70                0.46                 0.75                0.43         -0.62   

Position                2.92                0.60                2.85               0.67          0.58   

Publications (all years before 

 ex-ante)  
            39.97              23.49              25.94             31.39          2.54   **  

Publications               8.59               5.69             17.16            22.92         -2.25   **  

Citations         17.59         15.39        28.01      35.09         -1.76   

Coauthors                  3.13                1.88                  1.92             1.75           3.37   ***  

** Significant at 5%. *** Significant at 1%. 
 

 

Figure 1 plots the average yearly ex-ante and ex-post funding for rotator colleagues 

versus scientists employed in the academic units we collected via the one-up, one-down 

approach. It zooms in on the 431 scientists that did not have NSF grants ex-ante (making up 

our sample), identified using matching scheme 3. While the two groups are similar ex-ante (by 

design), we observe large changes in the ex-post period. Figure 1 shows that scientists in the 

treatment group increase their average funding at a substantially higher rate than scientists in 

academic units without a rotator. The increase materializes in year 2 and in year 3 after the 

return of the rotator with year 3 being the pick of the increase.  
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The timing of this increase fits a recurring theme that came up during our interviews: 

namely, that the rotators helped their colleagues put together their NSF applications in the 

second and third funding round after their return to their academic unit. In other words, as 

expected, the rotator effect is pronounced after the rotator has transmitted knowledge for about 

a year to her colleagues. In line with the interview findings, the decline in funding we observe 

after year 3 is likely driven by the fact that the majority of academics who were awarded grants 

in years 2 and 3 did not submit additional applications in years 3 and 4, as they were still 

working from the earlier grants. Overall, the figure strengthens our expectation of an impact 

from rotators to their colleagues.   

Analysis and Results 

Table 4 presents the baseline estimates using matching scheme 3, the one we expect to better 

capture the counterfactual as it is the most restrictive. The results are qualitatively similar when 

using the other matching schemes. We present 5 specifications. Specification 1 tests the main 

effect under H1. Then we include separately the moderators we hypothesize in H2a, H2b, and 

H2c in specifications 2, 3, and 4. Specification 5 is the full specification including all 

moderators.    

We find strong support for H1 as shown in specification 1. We also fail to reject H2a 

and H2b while we find only partial support for H2c. The control variables are not statistically 

significant and do not change the main results when included, likely because of the matching 

procedures we have followed which, by design, minimize the differences between control and 

treatment groups.  
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Table 4. Baseline Estimates under matching scheme 3 (specify as control scientists those that are similar to 

scientists in the rotator academic unit and belong to academic units that are similar to the academic unit of 

the rotator). The dependent variable is the sum of funds raised from NSF in the ex-post period.   

 Specification  

1 

Specification 

2 

Specification 

3 

Specification 

4 

Specification  

5  

Ex-Post 61,215.83*** 46,076.37 58,341.34** 59,184.90** 39,775.60 

 (23,385.57) (50,700.08) (24,153.16) (25,589.33) (51,907.56) 

Rotator Group -164.24 -22,669.17 145.46 2571.75 -25,889.81 

 (33,420.29) (82,256.64) (35,038.00) (37,026.15) (82,026.47) 

Ex-Post * Rotator Group 138,366.83*** -72,739.79 95,064.97 167,193.10*** -71,533.25 

 (46,871.95) (112,825.91) (49,440.90) (52,642.87) (112,786.37) 

Tenure  -1,131.83   -1,255.12 

  (1,758.97)   (1,749.44) 

Ex-Post * Tenure  824.84   934.05 

  (2,362.40)   (2,346.22) 

Tenure * Rotator Group  1,157.72   1,394.94 

  (4,249.59)   (4,283.18) 

Tenure * Ex-Post * 

Rotator group 
 12,196.76**   12,484.45** 

  (5,790.87)   (5,884.43) 

Knowledge Similarity   -712.30  -437.25 

   (13,566.48)  (13,515.37) 

Knowledge Similarity * Ex-

Post 
  9,734.49  10,121.41 

   (18,777.92)  (18,710.96) 

Knowledge Similarity * 

Rotator Group 
  -3,632.05  624.47 

   (49,597.33)  (49,700.36) 

Knowledge Similarity * 

Ex-Post * Rotator Group 
  237,768.11***  222,621.14*** 

   (78,549.25)  (78,799.12) 

Productivity Similarity    18.67 38.05 

    (141.66) (140.14) 

Productivity Similarity * 

Ex-Post 
   15.12 -0.26 

    (152.02) (150.38) 

Productivity Similarity * 

Rotator Group 
   -54.49 -27.44 

    (310.06) (309.82) 

Productivity Similarity * 

Ex-Post * Rotator Group 
   -689.29 -1,117.43** 

    (521.79) (525.84) 

Constant 72,524.20 86,816.42 62,442.90 -72,664.21 78,799.10 

 (98,343.94) (104,360.36) (97,906.03) (124,621.59) (103,940.76) 

Controls included YES YES YES YES YES 

Year FE included YES YES YES YES YES 

Science field FE included YES YES YES YES YES 

Observations 862 862 862 862 862 

Adjusted R2 0.048 0.056 0.054 0.047 0.066 

F-test  2.67 2.71 2.65 2.41 2.59 

Standard errors in parentheses 

*** p<0.01, ** p<0.05 
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Regarding H1, the Ex-Post * Rotator Group interaction in specification 1 provides 

strong support for our theoretical expectation that rotators induce funding improvements for 

their colleagues. The order of the effect is $138,367. This figure is significant as it demonstrates 

that rotators have an effect that is economically meaningful: rotator’s colleagues with no NSF 

funding in the ex-ante period raise close to $140,000 more than similar scientists in similar 

academic units who do not have a rotator as a colleague in the ex-post period. Given that this 

increase is attributed to the rotator and not to personal characteristics, time-variant factors, or 

other reasons we conclude that the gains arising from knowledge transfer are material. To put 

the figure in perspective, as shown in Table 1, we note that in the ex-post period academics 

without NSF funding ex-ante belonging to groups without a rotator, raised, on average, $69,168 

from the NSF. These $69,168 can be attributed to a host of factors such as personal 

improvements and increased effort but they cannot, by definition, be attributed to the rotator. 

Still, as our estimates reveal the rotator effect leads to an increase that is twice as large as the 

increase from all the other potential contributing factors combined. 

The estimates in specifications 2 and 5 provide support for H2a.  The main rotator effect 

becomes stronger when the rotator has a longer tenure in her academic unit: the Tenure*Ex-

Post*Rotator Group variable is statistically significant, while the Ex-Post*Rotator Group 

interaction term ceases to be. Indeed, a one-unit increase in the tenure variable corresponds to 

an increase of the main rotator effect of around $13,000. This is consistent with Dahlander and 

McFarland (2013) who found that even when not working together (i.e. no co-authorship in 

our case), same-academic-unit colleagues are exposed to each other (and hence can learn from 

each other). We also fail to reject H2b. When the rotator shares similar knowledge with her 

colleague the main effect becomes stronger: in specifications 3 and 5 the interaction of the 

main effect and the Knowledge Similarity variable is positive while the level term of the main 

effect is no longer statistically significant. On the other hand, based on specifications 4 and 5 

we find only partial support for H2c; Productivity Similarity has a moderating effect on the 

impact of the rotator only in specification 5. This likely reflects the fact that researchers with 

high research productivity, even while unsuccessful in previous grant applications, have 

accumulated enough knowledge and expertise to be successful going forward, even without the 

assistance of the rotator.  

To make sure our quantitative findings are reasonable we conducted a series of 

telephone interviews in 2016 with 10 rotators and 15 academics (10 without NSF funding ex-

ante and 5 with funding) employed in academic units with a rotator. The interviews lasted 

between 15 and 30 minutes. To select these rotators and rotator colleagues we randomly 
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selected rotators who served at the agency between 2009 and 2012 so that they would all have 

recent experience and recollection with the NSF and with the ex-post period. The interviews 

focused on three main themes: 1) the rotator’s experience with the NSF prior to becoming a 

rotator, her reason for applying to the position and her thoughts on who becomes a rotator, 2) 

the experience of being a rotator and her position within the NSF, and 3) how returning to the 

home institution has affected her and her faculty.  

As mentioned above, prior experience with the agency lead academics to apply so that 

they could learn more about the NSF’s internal operations. This is particularly relevant because 

it ameliorates any endogeneity concerns in the empirical analysis as it demonstrates that 

selection into a rotation position is exogenous to local colleagues needing help in raising funds. 

It also informs the managerial implications of our work with regards to the value of 

secondments versus different forms of knowledge transfer from an external organization such 

as membership in external committees and government task forces. The scientists at hand had 

experience with the NSF previously largely by participating in the selection process as an 

external reviewer. But, such experience did not translate to gains for colleagues. Instead, the 

secondment in the NSF boosted the colleagues’ ability to secure research funding.  

All rotators indicated that upon returning to their home institutions, they tried to make 

their colleagues more knowledgeable about the NSF. Some consulted with the heads of their 

academic units to identify colleagues working on the NSF’s priority issues who could benefit 

from mentoring. Others assisted faculty members with exploring less-known NSF funding 

possibilities. Such assistance came from open seminars but also, and more frequently, via one-

on-one meetings.  

When interviewing rotator colleagues, we refrained from mentioning the rotator but 

after asking about experience with NSF, we asked if they had ever received help from 

colleagues with NSF applications. All 5 interviewees who had NSF funds ex-ante said they did 

not receive substantial help from the rotator ex-post because they did not need it. The 10 

interviewees without NSF funds ex-ante identified the rotator as providing valuable assistance 

in six cases (where, in line with the empirical estimates, there was an overlap in the research 

topics between the rotator and the focal colleagues). The interviewees mentioned several ways 

rotators helped them including feedback and direction towards certain funding opportunities. 

The following is representative of the type of knowledge rotators transfer “[The rotator] 

organized a day for us to informally talk about opportunities and proposals. He would read the 

documents we were working on and gave feedback on what could be improved…. [The rotator 

helped] when trying to figure out what the NSF actually wants to have in a proposal.” 
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Testing the Mechanism and Examining Alternative Explanations 

The baseline estimates reported above could reflect not only knowledge transfer, but also 

political influence—that is, the returning rotator could privately lobby NSF officials on the part 

of a local colleague, or NSF officials could have an unconscious bias in favor of a former 

rotator’s colleagues. To see if our baseline estimates reflect knowledge transfer rather than 

influence or bias, we leverage the fact that a few rotators moved to a new academic institution 

after their tenure at NSF. For those cases, the ex-ante and the ex-post colleagues are different. 

As such, under the premise that rotators act as conduits of knowledge transfer, any 

improvements in funding should occur only to the ex-post colleagues. Test 1 compares the 

funding records of the rotator’s new and old colleagues. Given the small sample size and the 

fact that the ex-ante and ex-post academic units are not necessarily comparable, we present just 

descriptive statistics. As seen in Table 5, the new colleagues nearly doubled their average NSF 

funding from around $55,000 before having a rotator colleague to about $102,000 after. 

However, the average NSF funding records of the rotator’s former academic colleagues 

remained unchanged, from $108,500 to $107,502. In other words, if rotators are using their 

NSF connections to help their colleagues, they are not helping the colleagues they worked with 

before they went to NSF.24  

  

                                                                        
24 We interpret these results with caution as we cannot rule out the case that this handful of rotators changed 

employment because they did not have strong ties with their former colleagues in the first place or otherwise are 

different from the other rotators. 
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Table 5. Test 1. Comparing ex-ante and ex-post NSF funding for new and old colleagues of rotators who 

after rotation changed employment. 

Variable 
Colleagues in original academic 

institution  
 Colleagues in new academic 

institution  

Average NSF funding ex-ante  $                   108,500     $                                 54,577  

Average NSF funding ex-post  $                   107,502    $                               101,747  

Number of academics                              443                                            952  

 

If the presence of a rotator in the group in the ex-post period coincides with an overall 

increased focus towards NSF as a funding source at the rotator’s academic unit, increased 

funding records may not reflect learning from the rotator but learning from other faculty 

members with success in raising funds from the agency. Because the academics we study did 

not raise NSF funds in the ex-ante period, it is hard to imagine that such learning occur 

previously. Accordingly, the main route such learning could materialize is if those with existing 

records gained additional NSF knowledge from the rotator, which then, in turn, they 

transmitted to colleagues with non-existing funding records. To test whether colleagues with 

existing records gained from the presence of rotators, we conduct the baseline analysis 

including in the sample only faculty members with one or more NSF grants in the ex-ante 

period.25 The results, presented as test 2 in Table 6 (which for ease of exposition reports only 

the variables that test the hypotheses) do not show improvements for those academics, as the 

Ex-Post * Rotator Group interaction is not statistically significant (The inflated size of the 

coefficients is due to 9 scientists who pulled the regression line upwards as their ex-ante 

accumulation of NSF grants was in the order of 10 million and above.) Hence, it is unlikely 

that learning from colleagues with existing funding records, present in the same academic unit 

both in the ex-ante and in the ex-post period, is driving our findings.

                                                                        
25 Similarly, improvements in the funding record of those academics without NSF funding ex-ante, may also be 

initiated by the rotator but the full effect is completed once the new recipients of knowledge share their new 

knowledge with each other. If that holds, the empirical estimates would be attributed to the rotator only 

partially. In unreported exercises we conducted we did not find support for such mechanism.    
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Table 6. Testing alternative possible mechanisms. 

 
Test 2 - Include in the sample only 

colleagues with NSF grants ex-ante 

Test 3 - Omit from the sample rotator 

colleagues whose co-authors raised 

grants from the NSF recently 

Test 4 - Omit from the sample rotator 

colleagues whose Co-Investigators 

raised grants from the NSF recently 

 
Specification without 

moderators 

Specification 

with 

moderators 

Specification without 

moderators 

Specification 

with 

moderators 

Specification 

without moderators 

Specification 

with 

moderators 

Ex-Post * Rotator Group 803,339.52   541,029.73 112,107.48** -75,767.78 126,356.20*** -29,953.28 

(568,323.44) (926,502.34) (48,806.95) (128,751.72) (46,295.84) (112,560.82) 

Tenure * Ex-Post * Rotator group  -27,562.35  12,852.64**  13,878.78** 

 (43,114.01)  (6,798.28)  (5,990.363) 

Knowledge Similarity * Ex-Post * 

Rotator Group 

 1,034,679.23  297,046.56**  106,147.42 

 (588,026.63)  (92,428.66)  (86,055.48) 

Productivity Similarity * Ex-Post * 

Rotator Group 

 -998.03  -1,033.40  -1,191.93** 

 (6,116.29)  (672.55)  (521.81) 

Level terms and two-way interactions YES YES YES YES YES YES 

Control variables YES YES YES YES YES YES 

Year fixed effects included YES YES YES YES YES YES 

Science field fixed effects included YES YES YES YES YES YES 

Observations 627 627 725 725 834 834 

F-test 2.04*** 5.21*** 2.05*** 2.57*** 2.27*** 1.85*** 

Adj. R2 0.041 0.051 0.049 0.076 0.038 0.039 

Standard errors in parentheses 

*** p<0.01, ** p<0.05 
 

 

Table 7. Test 5. Ex-post outcomes of all 2009 NSF awards granted to academics in rotator and control academic units. 

 
Grants of scientists in academic units with a rotator  Grants of scientists in academic units without a rotator 

  

Variable  Mean   Standard Deviation     Mean   Standard Deviation    Two-sides t-test 

Publications            6.04             0.76               6.83             0.75               0.68  

Citations          95.17           18.74             96.55           15.26               0.06  



76  

 

Similarly, if the rotator’s return to her academic unit coincides with rotator colleagues’ co-

authors or co-investigators having recent success with NSF funding, then our results might be 

driven by the co-authors or the co-investigators of the rotator colleagues, not the rotator. To test 

this we omit from the analysis scientists whose more recent frequent co-authors or co-investigators 

experienced significant improvement in their ex-post NSF funding record. Specifically, we omit 

from the analysis academics whose at least 1 of the 10 most frequent ex-post co-authors or co-

investigators raised more than $200,000 from the NSF ex-post while their ex-ante NSF grant 

accumulation was below $10,000. The results from this test, presented as tests 3 and 4 in Table 6, 

are similar to the baseline estimates. As such, these results suggest that the NSF funding increases 

we reveal are not driven by learning from co-authors or co-investigators.26  

Because we study increases in funding that take place when the rotator is not in charge of 

decision making at the NSF and because of the rigorous review system at the agency, we do not 

expect favoritism to influence our estimates directly. However, it is likely that the rotator’s tenure 

at NSF induces increased visibility of her academic unit. This visibility may cause favoritism for 

the applications submitted by the rotator’s colleagues.  

We conducted several tests that lead us to discount such a possibility. First, under 

favoritism we would expect to observe growth in funding among those colleagues that have an 

established funding record with NSF. As discussed above, we do not find this. Second, under 

favoritism the grants of rotator’s colleagues would be of lower quality than other NSF grants. 

Measuring quality with publications and citations and exploiting the Google Scholar option to look 

up grant numbers and link them to publications, we use awards in 2009 across directorates as our 

template. Test 4 in Table 7 demonstrates that the number of publications and citations coming out 

of rotator colleagues’ 2009 grants are not statistically different than the number of publications 

and citations coming out of 2009 grants awarded to investigators that do not belong to rotator 

groups and we collected via the one-up, one-down approach. Third, though this was not part of 

our research design, none of the academics we analyze submitted a funded proposal in the ex-post 

period jointly with the rotator and, four, none of the rotators co-authored a publication with the 

sample academics neither ex-ante not ex-post, which addresses the possibility of “ghost” co-

                                                                        
26 The potential influence of the co-investigators is non-existent for the large majority of the sample grants as 80 

percent of them do not have a co-investigator. Moreover, we do not find statistically significant differences in the 

funding levels when breaking down the grants by the number of co-investigators except for 5 grants with 8 co-

investigators. 
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authorship in the funded proposals. Overall, none of our tests suggest that favoritism explains the 

increase in funding for rotator’s colleagues even indirectly.27  

The increase in funding we document may be driven by four main mechanisms: a) an 

increase in the number of applications submitted by a given academic, b) applications for larger 

grants c) work on different proposals that would have worked otherwise and d) submissions of 

better/more targeted proposals which are more likely to succeed. Because NSF does not provide 

data on rejected applications on an individual basis we cannot address this directly. But, our 

interviews did not support mechanism (a). Both rotators and rotator colleagues stressed to us that 

the amount of time needed to put together a proposal, and the fact that proposals demonstrating 

ongoing work related to the proposed project have higher chances of success, discourage the 

submission of multiple applications. Many rotators hinted that most faculty members they 

interacted with had tried raising funds from the NSF in the past. Said one: “I don’t think I had 

much influence on quantity. Because people were already putting out as much proposals as they 

could manage, so there wasn’t too much room for improvement in that sense.” In unreported results 

we also find econometrically that rotators do not have an effect on the number of awarded grants. 

Under the premise that more applications correlate with more awarded grants, this reinforces our 

conclusion that an increase in application does not drive the results. If option (b) above, an increase 

in the size of grants, is the mechanism at hand: then on average, the grants in our sample would be 

larger than the population of grants NSF has awarded from 2001 to 2015, in an analysis not 

disclosed here, we find that this is not the case. While distinguishing quality improvements from 

project/topic selection is inherently challenging, the fact that the ex-ante and ex-post keywords of 

articles published by the focal academics overlap almost perfectly (see discussion above referring 

to the construction of the Knowledge Similarity variable) discounts option (c) above, a switch in 

topics, as the driver of the results because the scientists appear to be working on similar topics in 

the two time periods. Therefore, in line with the insights from the interviews we conducted and 

the mechanisms we expect to be at play as captured by the moderators, the effect of the rotator we 

document appears to stem from direction, feedback and the like on better, more targeted proposals. 

As one rotator put it, “…if somebody has submitted their proposal a couple of times and they’ve 

                                                                        
27  In additional tests (not reported here), we compared the popularity of the keywords in articles authored by 

academics in treatment and control groups to check whether the former group works on “hot topics” which typically 

attract more funds. We did not find evidence of this effect. 
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been unsuccessful, I can call them up and sort of say ‘Why don’t you show me your reviews and 

see what they’re telling you.”  

Speaking mostly to the managerial implications and the generalizability of our work, we 

also conducted a number of tests to better understand the conditions in which learning by 

seconding can be more valuable. We first split the sample according to the duration of the 

secondment to assess whether the length of the secondment influences knowledge transfer. Indeed, 

longer tenure at the NSF appears to equip the rotator with more knowledge she can transmit back 

to her colleagues. Then, we investigated whether the nature of the project impacts the value of 

secondments to the home organization. Specifically, we limited the analysis to a) scientific fields 

where rejection rates are higher, b) scientific fields that evolve faster and c) scientific fields 

requiring multidisciplinary approaches. Grant acquisition is potentially more challenging in such 

fields, hence one would expect the insights of a rotator to matter more. Indeed, the effect of the 

rotator in cases (b) and (c) above is larger than the rotator effect in the baseline estimates (but not 

for case (a)). As such, the nature of the project at hand needs to enter the decision making process 

once a given organization considers seconding one or more of its employees. 
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Table 8. Testing the robustness of the baseline estimates 

 (1) 1 (2) 1 

 
No 

Moderators 

With 

moderators 

No 

Moderators 

With 

moderators 

Ex-Post * Rotator Group 133,213.20*** -57,081.46 111,862.63*** -90,655.29 

 (45,854.91) (97,881.46) (38,096.03) (88,622.06) 

Tenure * Ex-Post * Rotator Group  10,507.94**  13,208.62*** 

  (5,032.77)  (4,674.49) 

Knowledge Similarity * Ex-Post * Rotator 

Group 
 

221,666.00*** 

(72,511.73) 
 

200,405.03*** 

(72,808.04) 

Productivity Similarity * Ex-Post * Rotator 

Group 
 

-634.10** 

(310.95) 
 

-888.54** 

(360.93) 

Level terms and two-way interactions YES YES YES YES 

Control variables YES YES YES YES 

Year fixed effects YES YES YES YES 

Science field fixed effects YES YES YES YES 

Observations 1,148 1,148 1,188 1,188 

Adj. R2 0.047 0.065 0.070 0.092 

F 2.69*** 3.01*** 4.41*** 4.15*** 
1 (1) Adding additional observations from archive.org, (2) academic units matched on departmental NSF funding 

and individual publications. 

** Significant at 5%. *** Significant at 1%. Standard errors in parentheses. 

 

Table 8 Continued. Testing the robustness of the baseline estimates 

 (3) 1 (4) 1 

 
No 

Moderators 

With 

moderators 

No 

Moderators 

With 

moderators 

Ex-Post * Rotator Group 143,860.02*** -35,434.54 107,032.60*** -33,308.99 

 (33,530.84) (77,900.36) (33,284.88) (78,754.69) 

Tenure * Ex-Post * Rotator Group  10,718.93***  7,550.95 

  (4,129.08)  (3,898.09) 

Knowledge Similarity * Ex-Post * Rotator 

Group 

 220,197.14***  235665.63*** 

 (60,506.08)  (63,324.90) 

Productivity Similarity * Ex-Post * Rotator 

Group 
 

-653.35** 

(273.85) 
 

-505.27 

(276.67) 

Level terms and two-way interactions YES YES YES YES 

Control variables YES YES YES YES 

Year fixed effects YES YES YES YES 

Science field fixed effects YES YES YES YES 

Observations 1,155 1,155 1,438 1,438 

Adj. R2 0.063 0.096 0.051 0.071 

F 4.11*** 4.30*** 3.96*** 3.90*** 
1 (3) academic units matched on science field and university, (4) Using all academics (without NSF funding ex-ante) 

as controls without implementing CEM. 

** Significant at 5%. *** Significant at 1%. Standard errors in parentheses. 
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Table 8 Continued. Testing the robustness of the baseline estimates 

 (5) 1 (6) 1 

 No Moderators 
With 

moderators 

No 

Moderators 

With 

moderators 

Ex-Post * Rotator Group 93,708.35*** -80,341.14 120,546.43** -68,310.90 

 (34,678.24) (89,377.12) (46,697.82) (119,775.44) 

Tenure * Ex-Post * Rotator Group  11,244.17**  9,834.10 

  (4,741.38)  (5,776.02) 

Knowledge Similarity * Ex-Post * Rotator 

Group 

 228,600.45***  185,193.62** 

 (70,048.38)  (76,315.53) 

Productivity Similarity * Ex-Post * Rotator 

Group 

 -667.72**  -446.72 

 (315.24)  (377.89) 

Level terms and two-way interactions YES YES YES YES 

Control variables YES YES YES YES 

Year fixed effects YES YES YES YES 

Science field fixed effects YES YES YES YES 

Observations 1,378 1,378 736 736 

Adj. R2 0.064 0.085 0.047 0.060 

F 4.79*** 3.92*** 2.38*** 2.24*** 
1 (5) Using all academics (without NSF funding ex-ante) in academic units ranked one position higher and one 

position lower than the rotator academic unit as controls, (6) controls chosen based on matched rotator 

characteristics. 

** Significant at 5%. *** Significant at 1%. Standard errors in parentheses. 
 

Table 8 Continued. Testing the robustness of the baseline estimates 

 (7) 1 

 No Moderators With moderators 

Ex-Post * Rotator Group 162,584.60*** -71,950.57 

 (52,950.21) (126,841.83) 

Tenure * Ex-Post * Rotator Group  13,161.13** 

  (6,626.85) 

Knowledge Similarity * Ex-Post * Rotator Group  280,277.84*** 

  (89,775.23) 

Productivity Similarity * Ex-Post * Rotator Group  -1,065.40 

  (568.43) 

Level terms and two-way interactions YES YES 

Control variables YES YES 

Year fixed effects YES YES 

Science field fixed effects YES YES 

Observations 716 716 

Adj. R2 0.054 0.077 

F 2.57*** 2.63*** 
1 (7) omit from the sample rotators (and their matching groups) whose funding records exceed 2 million dollars. 

** Significant at 5%. *** Significant at 1%. Standard errors in parentheses. 
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Robustness Checks 

Table 8 presents several specifications that test the robustness of the baseline estimates. For ease 

of exposition we report only the variables that test the hypotheses. To identify faculty members 

who were in the same academic unit at least 5 years before rotation and 5 years after we relied 

mainly on the current version of university websites. This could result in missing data as rotator 

colleagues who left the unit after the rotator returned, but before we collected the information, 

were likely removed from the unit’s website. We checked this using archival data from the internet 

archive (http://archive.org), which preserves obsolete versions of websites, for all 197 academic 

units in our sample.28 As shown in test 1 in Table 8, the results from this analysis are similar to the 

results in the baseline estimates. As such, we conclude that the potential truncation of the data does 

not come at any material expense.   

To reduce the heterogeneity among control and treatment groups we have used CEM for 

academic units outside the rotator’s university and we have found similar academic units in the 

same university. In robustness checks 2 to 7 in Table 8 we test the findings under alternative ways 

to reduce heterogeneity. In one approach, used in test 2, we alter the individual-level criteria used 

as an input to matching scheme 3 to a) the number of ex-ante publications and citations for a given 

scientist, b) the average number of coauthors one has, as a measure of team orientation, and c) 

funding level of her academic unit ex-ante as measure of inclination to submit grants driven by 

peer effects. Two, in test 3, we use the academic unit level science field and university quartile as 

matching criteria. Three, in test 4, we use as controls all academics we have collected data for (and 

have no NSF funding ex-ante) without implementing CEM. Four, in test 5, we use as controls the 

scientists belonging to the academics units ranked one position higher and one position lower than 

the academic unit with a rotator. Five, in test 6, instead of matching on faculty characteristics to 

create the control groups we match solely on rotator characteristics. That is, we first find academics 

that are similar to rotators based on age, gender, previous NSF funding, and h-index. Then, we 

                                                                        
28 In total, we retrieved 1,253 faculty members from 123 academic units who left their unit between the fifth year 

after rotation and 2016. For 35 academic units of the original 197 there was no archived faculty webpage and for 39 

there was no change in the faculty members list.  Additionally, for almost half of the 123 academic units a proximate 

period (between 6 and 18 months after the fifth year of rotation) was selected as there was no archived version 

closer to the required date. Of these 1,253 leaving scientists, 229 from 89 academic units had online accessible work 

history and matched our selection criteria. An issue with accessing archived faculty webpages is the inconsistency 

between what is reported in CVs and other online sources, which are generally difficult to source for older dates, and 

what is shown in, often outdated, websites. Relatedly, similar to Ge, Huang, and Png (2016) we do not find evidence 

that only the most productive scientists maintain updated online CVs, LinkedIn pages, and the like. 

http://archive.org/
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include as controls, scientists in their academic units. This exercise relaxes the strict requirements 

in our baseline estimates under scheme 3 in which we need to identify with precision similar 

academics in similar academic units and within them discover “could-be rotators”. By and large, 

the results we obtain are qualitatively similar to the results of the baseline estimates and as such, 

they further demonstrate the robustness of our findings.29  

As shown in Table 3 above, the rotators and those academics who match rotators resemble 

each other in many respects such as having served administrative roles. But, rotators have, on 

average, higher NSF funding records when compared to the matched group. This difference may 

bias the estimates of the moderators if rotators and potential rotators are not meaningfully 

comparable. To test the robustness of our estimates to this potential bias we conducted the analysis 

using a more comparable set of rotators and potential rotators in terms of funding records. That is, 

in test 7 in Table 8 we run the baseline specification after we omit from the sample, rotators (and 

their matching groups) whose funding records exceed 2 million dollars. Once we do so, the average 

funding records between the two cohorts are more similar: on average, rotators raised $544,558 

ex-ante while the corresponding figure for potential rotators is $436,283 (see Table 3). The results 

remain qualitative similar to the baseline estimates and our conclusions remain intact.  

Discussion and Conclusion 

We draw on the knowledge transfer, employee mobility, and social identity literatures to suggest 

that organizations can acquire knowledge as a means of competitive advantage by learning by 

seconding.  

                                                                        
29 We observe a few deviations from the baseline estimates in the moderators. We have also checked the assumption 

of the parallel trend behind the difference-in-difference estimation (Angrist & Pischke, 2008). Following previous 

works (e.g. David, 2003) we construct a model where the dependent variable is NSF fund acquisition per year, and 

include dummy variables for the ex-ante and the ex-post years in the difference-in-differences estimation (excluding 

the treatment year). The interaction terms between the ex-ante year dummies and the treatment unit indicator are not 

statistically significant, which supports the parallel trends assumption. Relatedly, within a 5 year period (the time 

frame we employ for the analysis) the incentives to fundraising across institutions may change. This would 

constitute a threat in the analysis as long as there is an interaction between the group and time period so that changes 

in incentives, institutional norms and other factors may not influence all groups in the same way. The general 

homogeneity of the universities and departments in the analysis suggests that this is not an acute concern. Indeed, 

when we limit our time frame to 2 years, our conclusions remain intact which implies that such potential interaction 

does not influence our estimation.   
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To study secondments we exploit the rotation program at the National Science Foundation. 

Under the rotation program the agency employees, full time, academic scientists for a period of 

usually 2 years to lead its review process. After we recognize that temporary tenure at the NSF 

equips seconded scientists with unique knowledge we reveal potentially causal evidence that 

rotator’s colleagues with no NSF funding in the ex-ante period raise close to $140,000 more than 

scientists who do not have a rotator as a colleague in the ex-post period. A battery of empirical 

exercises as well as interviews with rotators and their colleagues suggest that knowledge transfer 

and not rent seeking from the side of the rotator is the mechanism behind the effects we reveal. 

Rotators ignite opportunity recognition, assist with framing proposals and provide processual 

knowledge (i.e. focusing, framing, formatting). We expect mechanisms of this kind to underpin 

most secondments because one of the main gains of rotation is the acquisition of new knowledge 

for the seconded employee.  

What do these conclusions mean for academic research, for policy as well as for practice? 

First, they add to the knowledge transfer literature. We provide evidence that organizations can 

learn not only by learning by doing and learning by hiring but also by learning by seconding. We 

also highlight that contrary to the mechanisms of learning by hiring and learning by doing, learning 

by seconding is more likely to be effective when the knowledge depositories between the sender 

and the recipient of knowledge are distant. The evidence we provide is far from conclusive and in 

fact we expect follow up works to study secondments in more depth. What are the potential 

drawbacks of secondments? Is learning by seconding a substitute or complement to learning by 

hiring and learning by doing? These are only some of the inquires our research brings up.  

Second, our results speak directly to the literature on the organization of institutions and 

how they advance or hinder scientific progress (Furman & Stern, 2011a) as they imply that the 

design of NSF to employ temporarily but full time university scientists underpins the diffusion of 

knowledge. It is likely that the knowledge transfer we document here would not have materialized 

with that magnitude had the review process at the agency been designed in a way that did not 

include temporary employment of external academics in decision making roles. Therefore, a 

straightforward implication for our analysis is inquiring whether the NSF design has a differential 

impact than the design of other agencies which employ academics mainly as reviewers. 

 Third, we touch upon the literature on science mobility by showing that moves outside 

academia matter. Our results imply that for academics temporary moves outside their core 
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academic duties to serve central roles in different types of institutions can afford benefits to the 

focal academic’s colleagues.  

Fourth, we highlight the rotation program as a fertile template for studies on the 

advancement of science, peer effects, knowledge transfer and diffusion, networking, and other 

topics. We know how scientists, inventors, entrepreneurs, patent examiners and other actors in the 

knowledge economy affect the rate that science, innovation and entrepreneurship advances. We 

contend that the centrality of rotators in the knowledge economy (Li & Marrongelle, 2013) calls 

for more scholarly attention to this actor as well. As such, we bring rotators to the forefront in this 

paper. 

For management practice and organizations in general, the implications of our research are 

straightforward: secondments may be a worthwhile endeavor when seeking to infuse a given 

organization with new knowledge especially in areas of elevated competition in hopes of 

improvements in productivity, output and the like. Of course, secondments can be expensive but 

our analysis suggests that different forms of engagement with an external organization such as 

membership in external committees do not bring the benefits that secondments do. Rotators were 

acting as reviewers in selection panels before rotation but their colleagues realized gains in 

research fund acquisition only after rotation. In fact, we also find that longer rotation periods have 

stronger effects on knowledge transfer. As well, our study is informative for scientists seeking to 

raise funds as grant acquisitions records are becoming increasingly more central for tenure 

decisions, gaining academic status, research performance and overall career progression. More 

generally, our research implies that competition for talent may not be the most effective means to 

boost productivity for a given organization. Competition for employees with unique knowledge 

may pay off because these sorts of employees can bring about significant multiplier effects as the 

benefits from such cohort appear to spill over to other employees.  

Specifically for academia, and keeping in mind that most rotators have had a limited 

number of career moves, if any, an alternative means for universities to create spill-over effects 

via scientists with unique experience is to promote NSF rotation within existing faculty members. 

Still, as it also became clear during our interviews, rotation, for the largest part, comes at the 

expense of one’s own, at least short term, research productivity. Therefore, universities must 

balance the sorts of benefits we document with the decline in academic productivity that rotation 

tends to entail.  
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For policy, our estimates are timely because of the increasing concerns that the expenses 

of the rotation program should not be covered solely by public funds provided to NSF (Mervis, 

2016b). Indeed, a recent policy mandates home universities to bear part of the costs (Mervis, 

2016a). The basic argument from policy makers is that rotators bring benefits to their home 

institutions. While our exercise is not meant to provide a cost-benefit analysis, we do document 

that such benefits in fact exist.  

We close by noting that going more deeply into the qualitative approach for the present 

work could have yielded more insights. These insights could identify with accuracy what type of 

knowledge rotators convey, when, to whom and how, under which circumstances and so on. We 

conducted the interviews mainly as a means to better understand the context and to inform our 

findings. Had we extended the scope of questions and the number of interviewees, we would likely 

have addressed the questions above in depth. Because our goal here was first to test at a large scale 

whether secondments indeed transfer knowledge, measure such effect and reveal its origins we 

leave such refinements for future work.  We also note that had the NSF provided access to rejected 

applications we could directly test what all of our qualitative and quantitative evidence tells us: 

the effects we reveal are driven by submitting better/more targeted proposals.     

 

 

 



86 

 

  



87 

 

 

Chapter 4. The Diminishing Signaling Value of 

Patents between Early Rounds of Venture Capital 

Financing30 

 

 

                                                                        
30 This chapter is based on:  

Hoenen, SJ., Kolympiris C., Schoenmakers W, Kalaitzandonakes N. (2014), The diminishing signaling value of 

patents between early rounds of venture capital financing, Research Policy, Volume 43, Issue 6  

 



88 

 

  



89 

 

 

Introduction 

Patents reflect improvements in innovation and can contribute to the performance of firms and 

their market value (Bloom & Van Reenen, 2002; Griliches, 1981; Hall, 2004; Hall, Jaffe, & 

Trajtenberg, 2005).  The linkage between patents and firm performance has been attributed 

largely to monopolistic market rights and future technology options, protection from 

competitors, and improvements in the negotiating position of patent holders with partners, 

investors and remaining stakeholders  (Blind, Edler, Frietsch, & Schmoch, 2006; Gans, Hsu, & 

Stern, 2002; Giuri et al., 2007; Harabi, 1995; Helmers & Rogers, 2011; Levitas & Chi, 2010; 

Silverman & Baum, 2002; Teece, 2000).31   

A relatively less studied linkage between patents and firm growth is the value of patents 

as signals and situations where external investors, such as venture capital firms (VCFs), are 

attracted to firms with patents.  Indeed, there are good theoretical reasons to expect such 

relationship (Graham, Merges, Samuelson, & Sichelman, 2009; Heeley, Matusik, & Jain, 2007; 

Long, 2002).  For instance, in knowledge intensive industries, the value of emerging firms that 

seek external finance can be difficult to assess because such firms often lack a track record and 

they are confronted with technical, scientific and regulatory challenges that are either unknown 

ex ante or difficult to manage ex post (Harhoff, 2011). Ownership of patents, however, can 

signal the potential of a firm to external investors through possible future developments with 

commercial value (Hagedoorn, Link, & Vonortas, 2000; Heeley et al., 2007).  Further, because 

patents confer monopolistic market rights, which can then lead to sustainable competitive 

advantage, investors may place a market value on these rights, and consequently invest in the 

firm that possesses them.   

To corroborate such theoretical expectations a handful of empirical studies has documented 

that patents attract prominent VCFs, prompt VCFs to invest faster and generally increase the 

amounts invested in firms that own them (Audretsch, Bönte, & Mahagaonkar, 2012; Cao & Hsu, 

2011; Conti, Thursby, & Rothaermel, 2013; Engel & Keilbach, 2007; Häussler, Harhoff, & Müller, 

                                                                        
31 On a macro level, patents have been associated with increasing national economic growth and the development 

and diffusion of knowledge (Blind & Jungmittag, 2008; Shapiro & Hassett, 2005). 
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2009; Hsu & Ziedonis, 2013; Mann & Sager, 2007). 32 In this literature, only few studies tease out 

the signalling function of patents from the economic function (Cao & Hsu, 2011; Hsu & Ziedonis, 

2013).  Further, in this body of work the effect of patents on venture capital attraction has mostly 

been studied as a snap shot in time by focusing, for instance, on the amount of venture capital 

raised by a target firm over a certain period. As a result, what is largely unknown is whether the 

signalling value of patents in attracting VCFs diminishes over time as investors and target firms 

become more acquainted with each other. This question is the point of departure for the present 

study which contributes to a scant literature that deals with the dynamics of patent signals.33 

To form our theoretical expectations we reflect upon the main arguments regarding the 

relationship between patents and venture capital attraction.  These arguments focus, in large part, 

on the reduction of information asymmetries between VCFs and target firms.  But, if such 

asymmetries lessen as VCFs and target firms become more familiar with each other over time, 

then the value of patents as a signal should also decrease. To study this proposition we leverage 

the tendency of VCFs to invest in target firms through sequential rounds of financing.  Through 

such rounds, VCFs provide funds to a particular firm after it has met certain milestones that relate, 

mainly, to technical progress (Gompers, 1995). This sequential structure of VC investments allows 

us to detect patterns that would otherwise not be apparent.  More specifically, each additional 

round of financing can reduce the information asymmetries between VCFs and the target firm 

because VCFs gather new information about the firm through monitoring, management and other 

forms of hands-on involvement with the firms they invest in (Gompers, 1995; Ruhnka & Young, 

1987; Wang & Zhou, 2004). Accordingly, the effect of patents on attracting venture capital via a 

signalling process should diminish through sequential rounds of financing.  

To test our theoretical expectations we employ a rich dataset that measures patent activity 

(granted patents and number of patent applications) from firm birth to the first round of financing 

and then again from the first round of financing to the second round for more than 580 U.S.-based 

dedicated biotechnology firms (DBFs) that received funds from VCFs from 2001 to 2011. We 

focus our attention on the first two rounds of financing because in these rounds information 

asymmetries between investors and target firms are expected to be more pronounced.  Therefore, 

                                                                        
32 There is also evidence linking patents to successful Initial Public Offerings (e.g. Cockburn & MacGarvie, 2009; 

Heeley et al., 2007).  
33 The present study is also informative for the stream of literature investigating whether venture capital promotes or 

follows innovation (Hirukawa & Ueda, 2011; Ueda & Hirukawa, 2008). 
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by concentrating on these rounds we can detect the impact of information asymmetries on the 

effectiveness of patent activity as a signal. We focus on biotechnology because it is a knowledge 

intensive industry in which information asymmetries between investors and firms are expected to 

be significant. Hence, patents as signals could be relevant in this industry (Higgins, Stephan, & 

Thursby, 2011; Janney & Folta, 2003). Furthermore, patents are popular among biotechnology 

firms (Fligstein, 1996) and existing evidence suggests that compared to other high technology 

industries, investors weight patents more heavily in biotechnology when they make investments 

decisions (Sichelman & Graham, 2010) perhaps because of the strong link between innovation and 

patents in that industry (Arundel & Kabla, 1998). Biotechnology is also an industry that receives 

large amounts of (staged) venture capital investments reflecting the risky nature of the industry as 

well as the potential for high returns (Baum & Silverman, 2004; Gompers & Lerner, 2001).  

Together, these industry characteristics suggest that if patent activity serves as a signal for 

investors whose value diminishes over time, evidence of such dynamics should be apparent across 

biotechnology firms.  

For our empirical analysis, we construct models that associate patent activity before and 

after a round of financing with the amount invested to each firm and we control for regional and 

VCF-specific characteristics that could influence the level of investment. To separate the function 

of patents as a signal from their economic value potential, both of which can attract investors and 

capital, we account for the differential (economic) quality of patents.  We also control for the firm 

growth stage funds are directed to as well as for the reputation of the investors, both of which can 

influence the amount of capital invested in a firm. To isolate the strength of patents as a signal 

from other signals firms can employ we include relevant control variables, such as the presence of 

distinguished scientists on the board of directors.  

Our interest in the value of patents as signalling mechanism for capital investments in small 

firms and specifically on whether such value diminishes over time is motivated by more than 

academic curiosity.  Answers to these questions have important policy implications.  The number 

of patents and patent applications have increased substantially over the years (Kim & Marschke, 

2004; Kortum & Lerner, 1999) and so have the costs associated with processing patents. Such 

issues have prompted questions about the effectiveness of the current patent system and especially 

with regard to the degree that it puts smaller firms in a disadvantage and thus potentially hinders 

innovation (Bessen & Meurer, 2008; Jaffe & Lerner, 2004). Assessing whether patents increase 
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private sector investments in small firms and whether such increase is affected by the familiarity 

between VCFs and target firms, needs to be taken into account when policy makers and other 

stakeholders consider the effectiveness of the current patent system.  

We proceed with the rest of the paper as follows:  In section 2 we review the literature on 

the functions of VCFs and how patents can act as signals and form our hypotheses.  In sections 3 

and 4 we present our methodology and data.  In section 5 we present our results and we conclude 

in section 6. 

How patents can act as signals to investors 

In their most common form of arrangement, venture capital firms pool capital from institutional 

investors such as pension funds and university endowments.  VCFs, in turn, use these capital pools 

to make investments and tie their compensation to the returns of those investments.  Because the 

VCFs manage a rather small share of the funds maintained by institutional investors, the risk 

exposure of each institutional investor is relatively limited.  Accordingly, VCFs can afford to 

invest in risky ventures that have the potential to yield returns above 25 percent per year so that 

they maximize their compensation as well as the compensation of the institutional investors (Zider, 

1998). 

A popular investment target for VCFs is young firms in high technology areas such as 

biotechnology.  These firms offer investors a potential for high returns (Carpenter & Petersen, 

2002) but also high risk as they grapple with highly complex scientific problems associated long 

research cycles and challenging legal environments (DiMasi & Grabowski, 2007; Häussler & 

Zademach, 2007).  Because of such conditions and because of their young age, firms in such 

sectors may find it difficult to generate current cash flows or establish a record of future cash flows.  

Accordingly, even when firms in such sectors fully understand their potential, they might still find 

it difficult to convey it to VCFs. This creates a mismatch in the information possessed by firms 

and that possessed by VCFs.  As a result, the relationship between VCFs and target firms before 

an investment takes place is commonly prone to information asymmetries (Cumming, 2005; 

Sahlman, 1990).  

To overcome such information asymmetries, firms seeking capital often use signals that 

partly substitute for the lack of an established record and can portray their potential (Busenitz, Fiet, 
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& Moesel, 2005; Certo, Daily, & Dalton, 2001; Podolny, 1993, 2010; Zhang & Wiersema, 2009). 

In fact, whenever information asymmetries are present, VCFs tend to rely on signals of this sort 

before they make investment decisions (Amit, Glosten, & Muller, 1990a; Higgins & Gulati, 2006) 

because separating, a priori, high-quality start-ups from firms with less potential can be difficult 

(Davila et al., 2003). Along these lines, a number of studies demonstrate that, in general, signals 

can reduce information asymmetries (e.g. Cohen & Dean, 2005; Gimmon & Levie, 2010; Higgins 

et al., 2011; Hsu, 2007; Janney & Folta, 2003; Mishra, Heide, & Cort, 1998). 

The next relevant question then is whether patents can effectively act as such a signal.  

Strong signals are observable and costly to imitate (Cohen & Dean, 2005; Spence, 1973).  

Additionally, signals which are governed by strong institutions and hence conform to certain 

institutional standards tend to increase in value (Janney & Folta, 2003).  This holds largely because 

conformity reduces variation across signals and can thus limit the impact that the subjectivity of 

the receiver can have on the valuation of the signal (Fischer & Reuber, 2007; Perkins & Hendry, 

2005).  Patents would therefore appear to meet the requirements for a valuable signal because they 

are easily observable, costly to acquire (Graham et al., 2009) and are governed strictly. For firms 

in knowledge intensive industries where information asymmetries are typically strong (Chaddad 

& Reuer, 2009), patents may have increased value for investment decisions (Sichelman & Graham, 

2010) because they relate to invention and innovation which in turn can lead to commercial gains 

(Acs, Anselin, & Varga, 2002; Arundel & Kabla, 1998; Griliches, 1998).  

Empirical evidence on whether patents actually serve a signalling function that augments 

the accumulation of capital for a given firm is scarce as it amounts, as far as we are aware, to two 

contributions.34  The first study is by Cao and Hsu (2011) who find that startups with patents were 

more likely to issue an IPO; the authors demonstrate the signalling function of patents by 

empirically controlling for a number of remaining factors that can lead to the issuance of an IPO 

(e.g. growth options of a given firm and technological uncertainty). Nevertheless, Cao and Hsu 

                                                                        
34The scarcity of research can largely be credited to the inherent difficulties of attributing positive associations of 

patent activity measures and capital investments solely to signaling. In particular, while some studies report that 

larger patent portfolios associate with enhanced performance metrics such as the issuance of an IPO and the growth 

of external financing for a given firm whether such relationships emanate from the signaling value of patents or 

from the economic value of patents is not entirely clear (Audretsch et al., 2012; Conti et al., 2013; Engel & 

Keilbach, 2007; Mann & Sager, 2007). A quote from Conti et al. (2013) describes the issue with precision: ...we 

cannot empirically separate the signaling value of patents from their productive contribution..”. Finally, note that 

while Häussler et al. (2009) provide evidence of patents serving as signals, they do not study the accumulation of 

funds and as such it is difficult to extrapolate their findings to our case.  
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(2011) focus on the impact of patents on the occurrence of an IPO without investigating the impact 

of patents on intermediary financial milestones a company needs to go through before it issues an 

IPO.  Accordingly, whether patents had a stronger effect in the early financial performance of the 

firm when compared to the later financial performance as measured by the IPO was not part of the 

analysis. The second relevant study we identified, by Hsu and Ziedonis (2013) is the most 

informative with respect to the potential dynamics in the signalling contribution of patents. In their 

analysis of firm valuations, the authors find that patents are more effective in attracting prominent 

investors and boosting firm valuations during early investment rounds, which is a finding that 

supports the expectation that patents act as a signal whose value diminishes over time.35  

In sum, the evidence on whether the signalling value of patents wanes once investors have 

a better insight into the value of the firms they injected capital is particularly thin. Hence, it is 

difficult to infer whether and how the value of patents as signal diminishes once the quality of the 

firm is assessed more closely by investors.  

To answer this question we refer to the literature that examines how VCFs reduce 

information asymmetries once they have invested in a firm.  The starting point of this literature is 

the basic insight that information asymmetries lead to agency problems (Fama, 1980; Jensen & 

Meckling, 1976).  A major task of VCFs is therefore to reduce agency problems of this sort.  A 

typical mechanism that VCFs use for this purpose is to provide funds in rounds of financing 

(Neher, 1999; Wang & Zhou, 2004).  Under this mechanism, target firms receive funds of a 

particular round conditional on having received funds in a previous round (and have met certain 

milestones).  Between rounds, VCFs become actively involved in the day-to-day operations of the 

target firm via consulting and monitoring (Gorman & Sahlman, 1989; Rosenstein, Bruno, Bygrave, 

& Taylor, 1993).  In doing so, VCFs follow the progress of the firms they invest in, evaluate their 

prospects and generally get more acquainted with their activities and potential.  It follows that 

                                                                        
35 In particular, in their analysis of firm valuations, the authors include a dummy variable that takes the value of 1 if 

the valuation refers to the first or second round of investment and report a positive coefficient for the interaction 

term of this variable with the patent activity variable; implying thus that patent activity is more effective in boosting 

firm valuation for early investment rounds. Besides differences in sample size (370 versus 530 firms), period of 

analysis (1975 to 1999 versus 2001 to 2011), industry focus (semiconductor versus biotechnology) and different 

measures of patent activity (patent stocks versus applications and granted patents) a fundamental distinction of our 

work is that we are interested in the  transition of the signal value of a patent after the first round of investment has 

been completed, where we expect information asymmetries between firms and VCFs to greatly diminish.  

Accordingly, we treat investments in round 1 and round 2 as separate and we do not aggregate them in a composite 

“early rounds” measure. As a result, we study the dynamics of the signaling value of patents between early rounds of 

financing while Hsu and Ziedonis (2013) focus on the dynamics between early and later stage financing. 
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information asymmetries between VCFs and target firms should decrease under these conditions.  

In environments with reduced information asymmetries the value of signals tends to decrease 

(Gulati & Higgins, 2003; Higgins & Gulati, 2006).  By extension, once a VCF is familiar with the 

target firm, the effectiveness of patents as signals for attracting additional funds is therefore 

expected to be limited.   

More specifically, it may be reasonable to expect that patents, through signalling effects, 

can augment the amounts of venture capital raised by firms in their first round of financing.  

Patents, however, should not be expected to have a significant signalling effect on the amount 

raised in the second round of financing because the, initially, hidden quality of the firm should 

now be more apparent to the VCF.  Indeed, insofar patents are a quality signal, those acquired after 

the first round should not materially influence the amount of funds raised in the second round.36  

We expect this to hold because if the unobserved quality of the firm is, in large part, revealed to 

the VCF, the need for additional signals lessens.37  Taken together, the foregoing discussion leads 

to the following hypotheses: 

 

Hypothesis 1: Patent activity before the first round of financing acts as a signal that 

increases the amount of funds raised in the first round of financing. 

Hypothesis 2: Patent activity before the second round of financing does not act as a signal 

that increases the amount of funds raised in the second round of financing. 

 

To illustrate our theoretical expectations, Figure 1 presents the dynamic nature of the 

interaction between VCFs and target firms. This interaction underpins the diminishing signalling 

value of patent activity and forms the basis of our hypotheses.  In the next section, we explain how 

we go about testing empirically our hypotheses.  

                                                                        
36 Note that if the quality of the firm changes after the first round, patents after the first round can again act as a 

quality signal primarily for new investors.  For investors that participated in the first round we expect the day to day 

interactions with the firm to alleviate their need for additional signals.  For our sample the large majority of firms 

received funds from the same sole investor and very few firms received funds from a different set of investors 

between rounds. As such, we expect our main hypotheses to hold for the vast majority of cases at hand.  
37 Following the same line of reasoning, if patents are valued by VCFs primarily for their implied discounted rents, 

patents after the first round should be expected to increase the amount of funds for the second round as well. 
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Figure 1. Theoretical Framework  

The signalling effect of intellectual property owned by emerging high technology firms on the attraction of 

external capital 
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Methods and Procedures 

To empirically test our hypotheses that the signalling value of patents will tend to decline as capital 

investment in small firms proceeds in sequential rounds, we need to associate the patent activity 

of a firm with the incremental amount of venture capital it attracts while information asymmetries 

between investors and the firm diminish over time. We operationalize patent activity with the 

number of granted patents a firm has received and the number of patent applications it has filled. 

To test whether the effectiveness of patent activity as a signal declines as a result of reduced 

information asymmetries we build two empirical models. In the first, the sum of venture capital 

funds raised by a given firm in the first round of financing when information asymmetries are 

expected to be stronger is regressed on patent activity.  In the second model, the sum of venture 

capital funds raised by a given firm during the second round of financing at which time information 

asymmetries are expected to decline, is again regressed on patent activity measures. The dependent 

variable in each model is the natural log of the total amount of VC funding raised by a given 

biotechnology firm in round 1 (model 1) or round 2 (model 2). We present the right-hand side 

variables below.   

We include patent activity as an explanatory variable in both models. We separate the 

number of granted patents from the number of submitted applications because their signalling 

values might differ in subtle but important ways (Gans, Hsu, & Stern, 2008; Popp, Juhl, & Johnson, 

2004).  For instance, preparing a patent application is a lengthy and time consuming process which 

entails the presentation of complex technical issues in a structured format (Häussler et al., 2009).   

Further, during the correspondence of the applicant with the patent office, the applicant may be 

prompted to fine-tune the application, become familiar with more strands of relevant research and 

generally be exposed to situations that can mature the company and help it develop.  In fact, mainly 

because of the harmonized strict requirements that a firm needs to comply with for all of its patent 

applications, it is conceivable that the patent acquisition process is subject to a learning curve.  In 

turn, emerging firms that have applied for a number of patents may be learning more by being 

more often involved in the patent acquisition process.38  Accordingly, the number of patent 

                                                                        
38 As noted, our expectation on the signaling value of applications emanate from a learning-by-doing process and a 

fine-tuning process. The measure of applications we use (number of applications submitted) is consistent with both 

processes. It captures the learning-by-doing effects because it measures the intensity a given firm applies for patents. 

It captures the fine-tuning process because a. the length of time it takes from an application to be granted at the 

USPTO is extensive (Mabey Jr, 2010), on average two and a half years for our sample patents, and b. between 85 to 
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applications may have a signalling value in that investors may view firms developing further rather 

than sitting idle.39  In contrast, granted patents may signal that firms are well down the path of the 

learning curve.  It is therefore of interest to test whether the pull on capital is sensitive to the 

different potential signalling value offered by granted patents and experience with patent 

applications. Indeed empirical evidence indicates that patent applications may have a stronger 

signalling effect than patents in attracting venture capital faster and at larger volume (Baum & 

Silverman, 2004; Häussler et al., 2009). For all these reasons, we consider these two forms of 

patent activity separately in our models.   

For the first round of financing we measure the number of patents and patent applications 

from firm birth until the date of financing and expect positive signs for the corresponding 

coefficients. Such signs would indicate that patent activity acts as a signal and increases the level 

of venture capital funds invested in the focal firm (PatentApp_1 and PatentGrant_1). For the 

second round of financing we maintain our measures of patent activity we use in the first 

specification and we also add two independent variables that measure the number of granted 

patents and patent applications filled from the date of the first round of investment until the date 

of the second round of investment (PatentApp_2 and PatentGrant_2).40   As discussed in section 

                                                                        

90 percent of applications turn to patents at the USPTO (Quillen & Webster, 2001). As such, the more applications a 

firm submits the more exposed it becomes to fine-tuning procedures because chances are that before the applications 

become patents there is extensive communication between the firm and the patent authorities.    
39 While empirical evidence on the drivers of signaling value of the intensity a given firm submits patent 

applications is scarce, personal correspondence of the authors with Dutch and US-based VCFs attends to this 

argument. This correspondence also indicated that potential differences in the economic value between applications 

and granted patents (e.g. applications but not granted patents are open to revisions that could create uncertainty for 

competitors) does not typically weigh in heavily in investment decisions particularly for VCFs with expertise and 

experience to approximate beforehand the granted claims of a given application.    
40 To avoid double-counting PatentApp_1 measures only the number of applications that were not granted patent 

rights before the first round (for the round 1 regression) or between the first and the second round (for the round 2 

regression); that is we exclude applications whose grant we include in the PatentGrant_1 and PatentGrant_2 

variable.  As a consequence, the PatentApp_1 variable for a given firm can be different across regressions: if an 

application was applied for before round 1 and it was granted between round 1 and round 2, it is included in the 

PatentApp_1 variable in the round 1 regression but not in the PatentApp_1 variable in the round 2 regression. 

Overall, the scheme we employ to construct our patent activity variables could materially truncate the PatentApp_1 

variable insofar as a. the elapsed time between the founding of the firm and the receipt of first round funds was 

extended or b. the elapsed time between financing rounds was extended. But, as we show in Tables 1a and 1b and 

explain in footnote 25: a. on average, our sample firms received their first round of financing almost 30 months 

(2.54 years) after their birth and b. the average elapsed time between rounds in our sample is 13 months. Both of 

those figures are below (or closely approaching) the average 30 months that elapsed between the application and the 

grant date at the USPTO for the patents in our sample.  It follows that from either source of potential truncation, the 

truncation is minimal.  To illustrate, only 17 applications whose patent pendency time was below 13 months were 

omitted from PatentApp_1 because they were included in PatentGrant_2.  Including these applications in the 

analysis yields qualitatively similar results. 
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2, PatentApp_1 and PatentGrant_1 are included in the analysis of the second round in order to test 

whether patent activity indeed serves a signalling function; if it conveys a quality signal, then 

PatentApp_1 and PatentGrant_1 should have explanatory power for the funds raised in the first 

round of financing but not for the second.  Along the same lines, under the premise that patent 

activity serves a signalling function, PatentApp_2 and PatentGrant_2 should not augment the 

amount of funds raised in round 2. If other potential advantages conferred by patents, such as 

discounted rents, are the prime reasons for the attraction of VCFs to patents, then PatentApp_2 

and PatentGrant_2 should have significant explanatory power in the amount of funds raised in 

round 2.  Therefore, in line with our hypotheses, we expect the patent activity before the second 

round of investment to have a diminished influence on the level of venture capital funds received 

by the focal firm in the second round.  

In order to most effectively evaluate whether patents act as a signal that can attract venture 

capital funds, we need to account for the differential economic value of patents as VCFs will tend 

to invest in firms with the highest quality of intellectual property and greater future value.  That 

is, we need to tease out the (economic) value of the patent itself from its signalling value.  To do 

so, we follow previous literature (Gambardella, Harhoff, & Verspagen, 2008; Harhoff, Scherer, & 

Vopel, 2003; Häussler et al., 2009; Trajtenberg, 1990) and we approximate patent economic value 

with a variable that measures the average number of times a patent has been cited by other patents 

(i.e. forward citations) (PatentCiteYear_1) 41. Higher citation levels imply superior scientific 

significance or applicability and are taken to indicate higher quality patents. Indeed, Fischer and 

                                                                        
41 Our choice to use forward citations as a proxy for patent economic value is based on strong empirical evidence. 

For instance, recent results suggest that forward citations are reliable predictors of the auction price of patents 

(Fischer and Leidinger (2013); Sneed and Johnson (2009)). Because in patent auctions the bidders buy only the 

patent and not the seller firm (or any other type of institutions that holds the patents) this setting is as close as one 

can get to reliably approximate the economic value of patents. Nevertheless, the small number of studies that have 

provided these estimates may cast some doubt about their generalizability. Towards this end, an important 

observation is that the patent value estimates from Fischer and Leidinger (2013) and Sneed and Johnson (2009) are 

well within the range of patent value estimates reported previously from studies that do not use patent auction data 

(e.g. Trajtenberg (1990)) and as such they may be measuring both the economic and the signaling value of a given 

patent. The observation that the patent value estimates from the auction and the non-auction studies are within range 

is important because a. it implies that even in the non-auction settings what is captured is, for the most part, 

economic patent value and b. given that forward citations explain a significant part of the patent value derived by 

non-auction settings (Trajtenberg (1990)), it significantly extends the empirical evidence demonstrating that forward 

citations capture economic patent value. Finally, in alternative approaches to estimate the economic value of a given 

patent (i.e. by asking investors the price they would sell their patent had they known its value a priori) the evidence, 

again, shows that forward citations are the most reliable proxy (Gambardella et al., 2008).  Importantly, as 

robustness check in section 5.2 we present models in which we employ different measures of patent economic value 

(patent family size) and reach similar conclusions to our baseline models.   
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Leidinger (2013) and Sneed and Johnson (2009) when they correlate the auction price of patents -

-- a direct measure of patent economic value --- with the number of forward citations reveal that 

forward citations are closely associated with the economic value of patents.  In the specification 

of the second round, besides PatentCiteYear_1 we also include a similar variable that measures 

the forward citations of patents granted from the date of the first round until the date of the second 

round (PatentCiteYear_2).42  We expect patents of higher economic value to attract greater 

amounts of funds in both investment rounds. 

The patent activity of a focal firm before the first round of financing is by definition 

unaffected by the involvement of VCFs in the firm. But, the patent activity before the second round 

of investment can be influenced by managerial advice under the consulting role that VCFs assume 

once they invest in a firm.  That is, if patent activity after the first round is influenced by the 

involvement of VCFs in the firm, the empirical model of round 2 could suffer from specification 

bias.  To account for it, in the specification of the second round we include in  the lagged dependent 

variable in level form (i.e. the dependent variable in the first specification, in level form, which is 

the total amount invested in the first round of investment – VCF_Investment_1) (Baum & 

Silverman, 2004; Jacobson, 1990).43 Given that conditional on the receipt of funds, the amount per 

round generally increases with more advanced rounds (Gompers, 1995), we expect a positive sign 

for this variable.   

In return for their investment, VCFs become part owners of the target firm.  The size of the 

amount they invest in order to become part owners depends heavily on two factors: i) the valuation 

of the firm ex ante and ii) the percentage of equity they receive.  It follows that we need to account 

for both of those factors but finding direct measures for such factors is empirically challenging. 

As such, we use two indicators that can approximate the conceptual variables. Specifically, for 

both rounds we construct round-specific variables that assume increasing values for investments 

                                                                        
42 Note that the number of forward citations is not a measure that is fully observable by the VCFs when they invest 

in the firm because VCFs are able to observe only the citations that have been received by the time they invest. 

Further, more recent patents tend to receive fewer citations compared to older patents mainly due to the effective 

time a patent may need until it becomes visible. To account for this observation we divide the average number of 

forward citations for the patents of a given firm by the age of the patent measured in years (citations are measured 

up to early summer of 2012). Then, we average out the average number of forward citations per firm patent. 
43 Lagged dependent variables are generally more meaningful in panel data structures.  While lagged dependent 

variables in cross sectional data, like in our application, are less regular, they have been used previously (see 

Hochberg, Ljungqvist, & Lu, 2007 for an example).  Nevertheless, in order to test for the empirical relevance of the 

lagged dependent variable included in our models, in unreported models the estimates from specifications that do 

not include the lagged variable are largely in line with the main results presented in Table 3 and imply that the 

inclusion of the lagged dependent variable does not greatly influence our empirical estimates.  
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directed towards later stages of firm growth (GrowthStage_1 and GrowthStage_2).44  Generally, 

the valuation of firms, ex ante, increases with the stage of firm growth (Cumming & Dai, 2011) 

and in this respect these indicators should approximate firm valuation.  Importantly, early and later 

stage investments by VCFs are also typically associated with different equity shares (Beaton, 2010; 

Kaplan & Strömberg, 2003).  As such, the GrowthStage indicators should be correlated with the 

amount of equity secured by VCFs. Given the increased valuation that accompanies firms at later 

stages of firm growth, we expect a positive sign for the variable at hand.  We also construct another 

indicator to approximate the fraction of equity VCFs receive in exchange for their investments 

which is based on the finding that VCFs with stronger reputation typically receive larger equity  

than investors with weaker reputation for the similar investment (Hsu, 2004).  As such, we include 

in both specifications a variable that reflects the Lee et al. (2011) reputation score of the highest 

ranked funding VCF of the first round of financing (VCFreputation_1).45 

To account for additional signals used by emerging firms that tend to leverage the 

reputation and previous business history of the team around the firm (Arvanitis & Stucki, 2012; 

Audretsch & Stephan, 1996; Bonardo, Paleari, & Vismara, 2011; Certo, 2003a; Elitzur & Gavious, 

2003; Gompers, Kovner, Lerner, & Scharfstein, 2010; Lee, 2001; Shane, 2000) in both 

specifications we include a variable that takes the value of 1 if one of the founders of the focal firm 

is a preeminent member of the academic community46 and/or has started a firm previously 

(FounderSignal).  Along the same lines, once the venture capital investment has been made, the 

reputation of the investors can also act as a signal since successful investors are presumed to 

possess skills that allow them to effectively identify firms with economic potential (Casamatta & 

Haritchabalet, 2007; Sorenson & Stuart, 2001).  By extension, we expect the abovementioned 

variable VCFreputation_1 in the specification of the second round to also capture effects of this 

kind. In line with the discussion in section 2, we expect FounderSignal to influence the total 

                                                                        
44 Venture capital investments are directed towards different phases of firm growth, with each phase associated with 

different degrees of risk exposure and potential returns to the investor (Flynn & Forman, 2001). Seed stage funds are 

typically small amounts directed primarily towards proving a concept. Early stage funds are directed mainly towards 

product development. Funds directed towards the expansion stage are used, in large part, to boost market entry or 

strengthen R&D (Jeng & Wells, 2000). There are also funds directed towards later stage financing, such as buy-outs 

or acquisitions. 
45 As we explain in section 4, in our dataset the investors of round 1 and round 2 are largely the same.  As a result, to 

avoid double-counting, in the specification of the second round we include only the reputation score of the round 1 

investors and not the round 2 investors. Nevertheless, even when the reputation of the round 2 investors is included 

in the analysis, the results remain nearly identical to the baseline estimates. 
46 We code an academic founder as eminent if she holds a distinguished and/or named professorship and/or is a 

member of the Academy of Sciences and/or has won a Nobel Prize.  
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amount invested in the first round of financing and this effect to die off for the second round. For 

VCFreputation_1 we expect it to be positively related with the total venture capital amount raised 

in the second round of financing. 

In addition to the signalling effect that funding VCFs can have, their availability of funds 

can also influence the growth of venture capital funds invested in a given firm. Because such 

availability is often largely determined by the number of investors that spread the risks of their 

investments (i.e. by the syndication size)  (Lockett & Wright, 2001) as well as by the capital 

available to the investors (Gupta & Sapienza, 1992; Tian, 2011)  we include two variables that 

measure the number of investors per round as well as their average size in both specifications and 

expect positive signs for both coefficients (SyndicateInvestors1, SyndicateInvestors2, 

SyndicateSize1, SyndicateSize2).  Since in syndicates of VCFs the most proximate VCF is usually 

the most heavily involved in the day-to-day operation of the target firm (Ferrary, 2010), the last 

variable we include in the empirical models that relates to the funding VCFs is the distance 

between the most proximate funding VCF and the target firm (DistanceClosestVCF). Spatial 

proximity between target firms and investors typically eases the monitoring functions of VCFs 

(Sorenson & Stuart, 2001; Zook, 2005) and can lead to higher investments (Tian, 2011).  We 

therefore expect a negative sign for the coefficient of this variable.  

Because agglomeration externalities (e.g. knowledge spillovers and network effects) from 

different types of organizations often positively influence the performance of high technology 

firms (Coenen, Moodysson, & Asheim, 2004; Döring & Schnellenbach, 2006; Gittelman, 2007; 

Kolympiris & Kalaitzandonakes, 2013a, 2013b; Kolympiris, Kalaitzandonakes, & Miller, 2011) 

we include in both specifications variables that account for such potential influences. The first 

variable measures the number of universities that perform biotechnology related research and are 

located in the same MSA as the focal firm (UniversitiesInMSA) and we expect a positive sign 

(Abel & Deitz, 2012; Anselin, Varga, & Acs, 2000; Varga, 2000).   As well, we account for 

potential proximity effects from the presence of VCFs and over-performing DBFs in the vicinity 

(Beaudry & Breschi, 2003; Gompers, 1995; Shane & Cable, 2002). Following Kolympiris et al. 

(2011) for each round of financing we construct corresponding variables that measure the density 

of VCFs and the number of patents granted to biotechnology firms before the focal financing round 

in 0 to 10 and 10 to 20 miles from the origin firm respectively (VCFarea_0010_1, 

VCFarea_1020_1, VCFarea_0010_2, VCFarea_1020_2, PATENTarea_0010_1, 
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PATENTarea_1020_1, PATENTarea_0010_2, PATENTarea_1020_2). We expect positive signs 

for the corresponding coefficients.  

We also measure the age of the focal firm at the round of financing (Age1, Age2).  We do 

not form strong priors with regard to the direction the age of firms can move the amount of funds 

received because VCFs may evaluate positively older firms due to higher experience and survival 

but they may also view negatively older firms that have not received previous financing. To 

incorporate in the analysis year-to-year variations such as “hot IPO market” periods (Lowry & 

Schwert, 2002)47 that can encourage or discourage venture capital investments at an aggregate 

level we include in our empirical models a set of year dummies that match with the year in which 

the investment took place.   

With respect to estimation techniques, we employ White’s standard errors because the 

heteroskedasticity tests we conduct (seen in Tables 2 and 3) show evidence of heteroskedasticity.  

We also test for the possibility that some of the errors in our models might be correlated. This may 

hold largely because there are often regional factors that are difficult to observe and which can 

affect the performance of all firms in a region or the capital investments they attract.  For instance, 

such factors may include state subsidies and technical assistance for the development and financing 

of high technology firms and other such activities.48  Factors of this sort can therefore cause DBFs 

of a given state to overperform or underperform jointly.  If such influences do exist, the assumption 

of independence across observations for firms in the same state may be violated (Nichols & 

Schaffer, 2007; Stimson, 1985).  To address this possibility we estimate both specifications with 

standard errors of firms in the same state modeled as correlated (i.e. clustered at the state level). 

                                                                        
47 On top of the variables described in this section, we further tested the influence of a number of moderation and 

interaction terms (e.g. the influence of the founder signal on the impact of the firm growth stage variables as a 

means to control for possible cofounding effects on the valuation of firms by VCFs).  These variables did not 

improve significantly the statistical fit of the empirical models and they were generally not statistically strong.  As 

such, we omit them from the analysis.  However, we maintain in the analysis one of the interaction terms we tested 

for; the interaction between PatentGrant_1 and UniversitiesInMSA in large part because we consider it particularly 

relevant from a theoretical perspective in that it tests whether the knowledge generation of nearby universities 

influences the impact of the signaling value of patents. 
48 Additional factors may refer to attitudes towards risky investments or the efficacy of consulting organizations 

(e.g. the Larta Institute or Foresight S&T) that can assist firms in improving their performance. Such features can 

expand beyond the geographic boundaries of 10 or 20 miles, which is the geographic boundary for the variables we 

employ to describe the regional environment. Largely because of the qualitative nature of those features, 

representing them through associated variables is a task with mounting difficulties and as such we opt for clustering 

the standard errors at the state level to control for their potential effects.  The analysis with the clustered standard 

errors is conducted by estimates produced with generalized estimating equations which is a method of calculating 

the standard errors by first estimating the variability within the defined cluster (in our application the state) and then 

sums across all clusters (Zorn, 2006).  
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Data Sources and Presentation 

To perform our empirical analyses, we began by measuring all venture capital investments toward 

dedicated biotechnology firms (DBFs) from 2001 up to 2011 using Thomson Reuter’s SDC 

Platinum Database (SDC).49 We also sourced from SDC the address and founding date of each 

DBF, the amount invested per round, the firm growth stage each investment was directed to, the 

date of financing round, the investors per round as well as their address and previous investments.  

We used this information to construct our dependent variables (USD_R1 and USD_R2) and Age1, 

Age2, SyndicateInvestors1, SyndicateInvestors2, SyndicateSize1, SyndicateSize2, 

DistanceClosestVCF, VCFarea_0010_1, VCFarea_1020_1, VCFarea_0010_2, 

VCFarea_1020_2, GrowthStage_1, GrowthStage_2.  For DistanceClosestVCF, 

VCFarea_0010_1, VCFarea_1020_1, VCFarea_0010_2, VCFarea_1020_2 we needed to 

calculate the distance between the target firm and investors and the density of VCFs in a region.50 

To do so, we converted the addresses of target firms and VCFs to coordinates at 

http://batchgeo.com.  Subsequently, we plugged these coordinates in the distance formula51 we 

employ and constructed the corresponding variables.  

For our variables PatentApp_1, PatentGrant_1, PatentApp_2, PatentGrant_2 we used 

Google Patents ® which indexes granted patents and patent applications from the United States 

Patent and Trademark Office (USPTO).52 We searched for every granted patent and patent 

application where the focal firm was listed as the applicant/assignee.53 Using the application and 

                                                                        
49 We focus on this time period because for this period the number of patents and patent applications are available 

from the United States Patent and Trademark Office (USPTO). Before November 29, 2000 there was no formal 

obligation for the publication of patent applications from the USPTO. To test the sensitiveness of our empirical 

estimates to having only observations after 2001 in section 5.2 we present models that include venture capital 

investments that took place since 1974. In these models we include only the number of granted patents as our 

measure of patent activity. These results are qualitatively equivalent to the results presented in Tables 2 and 3. 
50 The density of VCFs did not include the funding VCFs of the focal firm. 
51 We employed the general formula of the spherical law of cosines which corrects for Earth’s spherical shape: 

Distance12 = ar cos(sin(lat1).sin(lat2)+cos(lat1).cos(lat2).cos(long2−long1)) ×3963 
52 See http://www.uspto.gov/news/pr/2010/10_22.jsp for an official USPTO press release regarding its cooperation 

with Google Patents ®. In particular, under this agreement USPTO provided all of its patent documents to Google 

largely because the latter has the technical capacity to provide patent data in bulk. Compared to other popular 

databases often used in the literature such as Patstat and the NBER database, since the data source is identical 

(USPTO), the information provided is in large part comparable. For our purposes, the main advantage of Google 

Patents ® was the ease of retrieving patent counts and applications by using slightly different names of each 

company without having to search within one file but rather by connecting to the Google Patents® interface. 
53 In a number of cases the name of the applicant/assignee differed across patents as, for instance, “inc.” was missing 

or it was replaced by “inc”. To ensure that the validity of our measure was not prone to such issues we double-

checked the number of patents using a number of variations of the name of each firm.   

http://batchgeo.com/
http://www.uspto.gov/news/pr/2010/10_22.jsp
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granted date we allocated patent activity between rounds. To construct PatentCiteYear_r1and 

PatentCiteYear_r2 we employed Google Patents ® and counted the number of times each of the 

patents in our dataset was cited by other patents.  Then, for each firm we calculated the average 

number of citations across all granted patents of the firm.  As noted in footnote 12, to account for 

the tendency of older patents to be cited more heavily, we divided the average number of forward 

citations for the patents of a given firm by the difference (in years) between early summer of 2012 

(when the variable was constructed) and the date that the patent was granted. 

To collect biographical information for the academic founders we visited the website of 

each firm and complemented this search with academic founders’ biographies provided at their 

personal websites. Using these sources, firms whose founder(s) had started a firm previously 

and/or held a distinguished and/or named professorship and/or were a member of the Academy of 

Sciences and/or had won a Nobel Prize took the value of 1 in the FounderSignal dummy variable.  

To build VCFreputation_1 we first consulted the yearly reputation rankings of VCFs 

maintained at http://www.timothypollock.com/vc_reputation.htm (Lee et al., 2011). DBFs whose 

funding VCFs at the time of the financing round were not ranked, were coded as 0. DBFs whose 

highest ranked VCF was also the highest ranked of all VCFs were coded as 1. To illustrate how 

we calculated our reputation indicator we provide here an example for which the highest rated 

VCF was ranked as 250th in the year in question. To construct our index we first divide 250 by 

1000 (the total number of ranked VCFs) which yields 0.25 and then we subtract 0.25 from 1 to 

have 0.75, which is the value of the VCFreputation_1 variable for this hypothetical example.  

Along the same lines, if the highest rated VCF was ranked 150th, the value of the VCFreputation_1 

variable would be 0.85. And so on.      

To construct UniversitiesInMSA we used the list of recipient institutions of biotechnology-

related research grants maintained at the website of the National Institutes of Health. We 

complemented this list with comparable listings from the Association of University Technology 

Managers and the Chronicles of Higher Education. All three sources had information on the main 

address of each institution and whenever information was missing we visited the website of each 

institution to collect the address. The addresses were then assigned to MSAs using the zip code-to 

MSA list provided by the U.S. Bureau of Economic Analysis.   

Finally, to build PATENTarea_0010_1, PATENTarea_1020_1, PATENTarea_0010_2, 

and PATENTarea_1020_2 we first visited Google Patents ® to measure the yearly total number 

http://www.timothypollock.com/vc_reputation.htm
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of patents assigned to each DBF.  Then, we summed over the patents that were granted before each 

round of financing to DBFs within 0 to 10 and 10 to 20 miles from the origin DBF (using the 

coordinates and the distance formula previously described). 
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Table 1a. Descriptive Statistics of Selected Variables Used in the Empirical Models for the First Round of Financing     

Variable code OBS MEAN MEDIAN MODE STD. DEV MIN. MAX. 

USD_R1 586 7.21 3.56 1.00 11.04 0.00 100.00 

PATENTApp_1 586 0.29 0.00 0.00 1.30 0.00 15.00 

PATENTGrant_1 586 0.19 0.00 0.00 1.44 0.00 22.00 

PATENTCiteYear_1 586 0.06 0.00 0.00 0.44 0.00 6.83 

GrowthStage_1 
D:0 D:1 D:2 D:3 D:4     

12 248 246 78 2     

VCFReputation_1 586 0.0 0.0 0.4 0 0.00 1.00 

FounderSignal 119             

SyndicateInvestors_1 586 2.61 2.00 1.00 1.84 1.00 13.00 

SyndicateSize_1 586 367.01 75.47 0.00 616.60 0.00 4155.00 

DistanceClosestVCF 586 398.49 20.63 0.01 747.92 0.00 3146.00 

UniversitiesInMSA 586 9.29 9.00 17.00 8.09 0.00 37.00 

VCFarea_0010_1 586 23.34 10.00 1.00 29.36 0.00 103.00 

VCFarea_1020_1 586 15.21 5.00 0.00 25.37 0.00 127.00 

PATENTArea_0010_1 586 126.55 61.00 0.00 155.87 0.00 531.00 

PATENTArea_1020_1 586 69.73 18.00 0.00 115.16 0.00 608.00 

AGE1 586 2.54 1.37 0.00 3.12 0.00 27.00 
1By definition the number of applications needs to be greater or equal to the number of granted patents for a given firm.  The reason why the maximum value 

of granted patents is greater than the maximum value for patent applications is twofold: First, the values refer to different firms.  Second, to avoid double-

counting PatentApp_1 measures only applications that were not granted patent rights before the first round; that is we exclude applications whose grant we 

include in the PatentGrant_1 variable. Therefore, the number of granted patents may be greater than the number of applications if for instance the filing and the 

grant date of the patent are both before the date of the first round. 
2The variable takes the value of 1 if the investment was categorized as "Seed Stage", 2 if the investment was categorized as "Early Stage", 3 if the investment 

was categorized as "Expansion Stage", 4 if the investment was categorized "Later Stage", "Buy-Out" or "Acquisition". We code as 0 observations that 

correspond to other stages, mostly what is reported in our data source as "Pipe". The boxes indicate the number of observations for each round that correspond 

to each of the 5 categories 
3The index takes the value of 0 if the participating VCFs are unranked. When participating VCFs are ranked in the the Lee-Pollock-Jin VC Reputation index 

(Lee, Pollock et al. 2011), the value lies between 1 (when the VCF is rank 1) and 0.001 (when the VCF is the lowest ranked VCF in the list). 
4In the case of the FounderSignal variable the figure measures the number biotechnology firms with the founder matching the said characteristics       

Note: 64 observations in 2001, 59 observations in 2002, 52 observations in 2003, 50 observations in 2004, 66 observations in 2005, 74 observations in 2006, 78 

observations in 2007, 63 observations in 2008, 33 observations in 2009, 39 observations in 2010 and 8 observations in 2011 
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Table 1b. Descriptive Statistics of Selected Variables Used in the Empirical Models for the Second Round of Financing  

Variable code OBS MEAN MEDIAN MODE STD. DEV MIN. MAX. 

USD_R1 494 6.86 3.10 1.00 11.07 0.00 100.00 

USD_R2 494 8.00 4.32 10.00 9.94 0.02 87.00 

PATENTApp_1 494 0.18 0.00 0.00 1.10 0.00 13.00 

PATENTGrant_1 494 0.12 0.00 0.00 1.03 0.00 20.00 

PATENTApp_2 494 0.40 0.00 0.00 1.49 0.00 18.00 

PATENTGrant_2 494 0.22 0.00 0.00 1.24 0.00 22.00 

PATENTCiteYear_1 494 0.00 0.00 0.44 0.00 0.00 6.83 

PATENTCiteYear_2 494 0.08 0.00 0.00 0.56 0.00 9.17 

GrowthStage_2 
D:0 D:1 D:2 D:3 D:4     

30 103 213 148 0     

VCFReputation_1 494 0.37 0.00 0.00 0.45 0.00 1.00 

FounderSignal 101             

SyndicateInvestors_2 494 3.01 2.00 1.00 2.19 1.00 15.00 

SyndicateSize_2 494 438.17 138.17 0.00 624.23 0.00 3816.43 

DistanceClosestVCF 494 345.00 20.42 0.50 686.22 0.00 3146.00 

UniversitiesInMSA 494 9.28 8.00 17.00 8.24 0.00 37.00 

VCFarea_0010_2 494 24.12 11.00 0.00 30.04 0.00 103.00 

VCFarea_1020_2 494 15.51 5.00 0.00 26.61 0.00 127.00 

PATENTarea_0010_2 494 133.72 64.00 0.00 162.06 0.00 535.00 

PATENTarea_1020_2 494 72.04 21.00 0.00 118.63 0.00 613.00 

AGE2 494 3.34 2.41 2.00 3.08 0.00 28.89 
1By definition the number of applications needs to be greater or equal to the number of granted patents for a given firm.  The reason why the maximum value of 

granted patents is greater than the maximum value for patent applications is twofold: First, the values refer to different firms.  Second, to avoid double-counting 

PatentApp_1 measures only applications that were not granted patent rights between the first and the second round; that is we exclude applications whose grant 

we include in the PatentGrant_1 and PatentGrant_2 variable. Therefore, the number of granted patents may be greater than the number of applications if for 

instance the filing and the grant date of the patent are both between the dates of the first and the second round. 
2The variable takes the value of 1 if the investment was categorized as "Seed Stage", 2 if the investment was categorized as "Early Stage", 3 if the investment 

was categorized as "Expansion Stage", 4 if the investment was categorized "Later Stage", "Buy-Out" or "Acquisition". We code as 0 observations that 

correspond to other stages, mostly what is reported in our data source as "Pipe". The boxes indicate the number of observations for each round that correspond 

to each of the 5 categories 
3The index takes the value of 0 if the participating VCFs are unranked. When participating VCFs are ranked in the the Lee-Pollock-Jin VC Reputation index 

(Lee, Pollock et al. 2011), the value lies between 1 (when the VCF is rank 1) and 0.001 (when the VCF is the lowest ranked VCF in the list). 
4In the case of the FounderSignal variable the figure measures the number biotechnology firms with the founder 

matching the said characteristics 
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Tables 1a and 1b presents descriptive statistics of the variables used in the empirical 

models.  As described by the modal values of the two dependent variables we use in the analysis, 

most DBFs in the dataset received $1 million for the first round of financing and $10 million for 

the second round of financing.54  Note that the standard deviation is larger than the mean observed 

value which indicates the wide array of venture capital amounts invested in different firms.  Most 

firms did not have any patent activity before the focal round of financing, but the standard 

deviation of the observed patenting activity surpasses the average of the observed values and 

suggests that some firms had a large number of patents and patent applications before the focal 

round of financing.  This is an important observation because it indicates that our sample is 

composed of firms with varying degrees of patent activity and thus it alleviates concerns of 

overstressing the significance of patents that might result from the potential tendency of better 

firms to patent more and better protect their intellectual property assets (Helmers & Rogers, 

2011).55  The majority of the patents granted to firms in our sample did not receive any citations 

per year. 

Most of the firms in the dataset were close to four months (0 years in Table 1a) and two 

years old when they received first and second round of financing which were mostly directed to 

the seed and startup stage respectively.56  The average reputation score for the highest ranked 

                                                                        
54 As seen in Tables 1a and 1b the minimum value for the amount raised for a given firm in our sample is below 

$10,000, which, especially in biotechnology, is uncommon. We verified this amount with our data source but to 

ensure that a potential misreporting would not affect our estimates we run the baseline regression omitting the 

amount at hand and reached almost identical results. 
55 In a similar vein, an alternative explanation could be that larger firms patent more. To check this argument we 

used LexisNexis Academics, Business Insights: Essentials and Business Source Premier to assess the size 

distribution, via employee counts, of the DBFs in our dataset at the time they received the focal round of financing. 

But, employee counts for the specific point in time in which a particular DBF received the venture capital 

investment were difficult to source. Nevertheless, the statistics for the 196 DBFs that we could find their number of 

employees at the timing of round 1 indicate that 150 DBFs (or 76.5 percent of the 196 firms) had less than 25 

employees. In fact, the standard deviation of the variable in question was below the average, the modal value was 3 

and 96 firms had less than 10 employees. In all, these statistics suggest that our sample is relatively homogeneous in 

terms of firm size. This is a relevant consideration because it implies that the growth of venture capital funds in our 

sample is not primarily driven by firm size. Further note that we searched for the size of the firms at round 1 because 

the time span between rounds in the dataset was relatively short implying that firm size between rounds did not 

change drastically.  More specifically, the average time between round 1 and round 2 was 13 months with a standard 

deviation of 10 months and a modal value of 7 months. Interestingly, this homogeneous distribution in terms of time 

span between rounds is particularly relevant for the estimates of round 2 because it indicates that the effective time 

for the reduction of information asymmetries between VCFs and DBFs is relatively similar across firms. As such, 

potential differences in the reduction of information asymmetries that may result from different time spans between 

rounds do not appear to raise significant concerns. 
56 Note that the relatively uniform age in which the sample firms receive their first round of financing alleviates 

concerns that maybe better firms (or/and those that better protect their intellectual property) in the dataset did not 
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funding VCF in either round was 0.37 which translates to a yearly ranking of 630 out of 1000.57 

One hundred and nineteen firms in the first round dataset had a founder that was coded as 

conveying a signal of quality (the corresponding value for firms that went to the second round was 

101).  For half of the firms in either round the closest funding VCF was located within about 20 

miles distance from the firm. DBFs received funds mostly from 1 VCF both in the first and the 

second round of financing and the average number of investors for the first and the second round 

of financing was 2.6 and 3, respectively.  With regard to the size of the investors, on average, they 

had invested around 367 million before providing first round financing to the firm and 438 million 

before providing second round financing to the firm.  

With respect to the regional environment of the average focal firm, around 9 universities 

were located in the same MSA, roughly 24 VCFs were located in a 0 to 10 miles radius and 

approximately 15 VCFs in a 10 to 20 miles radius.  Further, in information not reported in Tables 

1a and 1b, we note that our dataset draws from both urban and rural areas. Finally, the average 

DBF in our sample was surrounded by DBFs that in sum had been granted around 200 patents 

before the focal DBF received funds (approximately 130 patents were granted to firms in a 0 to 10 

miles distance and roughly 70 patents were granted to firms in a 10 to 20 miles distance).    

Empirical Results 

The Impact of Patent Activity on Venture Capital Financing 

Tables 2 and 3 present the estimated coefficients for the models described in section 3. First we 

report the heteroskedasticity robust standard errors and the associated significance levels and in 

the last two columns of Tables 2 and 3 we report the corresponding information for standard errors 

clustered at the state level.  The statistical inferences from the two sets of standard errors are nearly 

identical (the coefficients are by definition the same) and hence the models are robust to these 

alternative specifications. 

The fit statistics reported at the bottom of those Tables indicate the joint significance of the 

variables in the empirical models and suggest that the fitted models have explanatory power. 

                                                                        

necessarily receive the most funds during that round but they did receive them faster (Hsu & Ziedonis, 2013 page 

772).  
57 1-(630/1000)=0.37 
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Finally, the multicollinearity condition index (13.36 and 13.40 for each model) is within limits and 

do not raise concerns about the presence of multicollinearity (Greene, 2003). Nevertheless, as part 

of our robustness checks, in section 5.2 we present regressions with only a limited number of 

regressors where the multicollinearity index is lower and still find qualitatively similar results. 

Relatedly, the correlation coefficient among the granted patents before round 1 and the granted 

patents after round 1 is inflated (0.78).58  Accordingly, the separate impact of each variable in the 

model of round 2 may be difficult to measure due to such correlation. In section 5.2 we present 

models where the patent activity measures of round 1 are omitted from the analysis and reach 

similar conclusion to the baseline estimates of Tables 2 and 3. 

                                                                        
58 This correlation coefficient is inflated by a single firm which has 20 granted patents in round 1 and 22 granted 

patents in round 2. When we exclude this firm from the sample the correlation coefficient drops drastically to 0.28. 

As well, excluding this firm from the analysis does not impact the baseline estimates in any material way. 
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Table 2. Estimated coefficients for the model of the first round of financing. The Dependent Variable is the natural log of the amount of venture capital 

funds invested by a biotechnology firm for the first round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 

Standard errors clustered at 

the state  level 

 Intercept 12.2816 0.2606 *** 0.4155 *** 

PATENTApp_1 0.0773 0.0302 ** 0.0289 *** 

PATENTGrant_1 -0.0675 0.0534   0.0510   

PATENTCiteYear_1 -0.0700 0.0738   0.0858   

GrowthStage_1 0.3609 0.0967 *** 0.0761 *** 

VCFReputation_1 0.2323 0.1277   0.1648   

FounderSignal 0.4516 0.1364 *** 0.1182 *** 

SyndicateInvestors_1 0.3876 0.0371 *** 0.0552 *** 

SyndicateSize_1 0.0003 0.0001 *** 0.0002   

DistanceClosestVCF 0.0004 0.0001 *** 0.0001 *** 

UniversitiesInMSA 0.0017 0.0080   0.0101   

VCFarea_0010_1 0.0084 0.0023 *** 0.0029 *** 

VCFarea_1020_1 0.0029 0.0028   0.0032   

PATENTarea_0010_1 0.0008 0.0004 ** 0.0004   

PATENTarea_1020_1 -0.0002 0.0007   0.0007   

AGE1 0.0771 0.0226 *** 0.0225 *** 

INTERACTION_1 -0.0051 0.0123   0.0075   

Year Fixed Effects YES YES  YES  

R2 0.4127         

Adjusted R2  0.3854         

F-test for overall model significance   15.26 *** 119.57 *** 

Multicollinearity Condition Number 13.36         

Χ2 for Breusch-Pagan test for heteroskedasticity 13.8 ***       

Number of observations 586         

The ommitted year is 2007             
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Table 3. Estimated coefficients for the model of the second round of financing. The Dependent Variable is the natural log of the amount of venture 

capital funds invested by a biotechnology firm for the second round of financing. 

Variable code Coefficient 

Heteroskedasticity robust 

standard  

errors 

  
Standard errors clustered at the 

state  level 
  

Intercept 13.1081 0.2587 *** 0.2865 *** 

PATENTApp_1 0.0262 0.0579   0.0564   

PATENTGrant_1 0.0533 0.0951   0.1144   

PATENTApp_2 -0.0010 0.0349   0.0266   

PATENTGrant_2 0.0083 0.0944   0.1058   

PATENTCiteYear_1 -0.1139 0.0836   0.0827   

PATENTCiteYear_2 0.0714 0.0506   0.0638   

VCF_Investment_1 0.0268 0.0067 *** 0.0070 *** 

GrowthStage_2 0.0329 0.0710   0.0582   

VCFReputation_1 0.0533 0.1376   0.1306   

FounderSignal 0.2414 0.1465   0.1799   

SyndicateInvestors_2 0.3310 0.0286 *** 0.0392 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 ** 

UniversitiesInMSA 0.0125 0.0077   0.0079   

VCFarea_0010_2 0.0013 0.0021   0.0014   

VCFarea_1020_2 0.0041 0.0026   0.0029   

PATENTarea_0010_2 0.0003 0.0003   0.0003   

PATENTarea_1020_2 0.0003 0.0006   0.0006   

AGE2 0.0020 0.0212   0.0164   

INTERACTION_2 -0.0011 0.0076   0.0086   

Year Fixed Effects YES YES  YES  

R2 0.4378         

Adjusted R2  0.4013         

F-test for overall model significance   11.26 *** 341.4 *** 

Multicollinearity Condition Number 13.40         

Χ2 for Breusch-Pagan test for heteroskedasticity 9.53 ***       

Number of observations 494         
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Because the dependent variable is in logarithmic form, the estimated coefficients can be 

interpreted as semi-elasticities. In line with theoretical expectations, we fail to reject the hypothesis 

that patents act as a signal that attracts venture capital investments for the first round of investment 

and have a diminished effect for the second round of investment.59 In particular, one additional 

patent application before the first round of financing increases the amount of funds raised by a 

firm by 7.7 percent.  This is a considerable increase especially when considering the 0 modal value 

for the PATENTApp_1 variable and suggests that firms without patent activity generally receive 

significantly less funding from VCFs. To put the magnitude of the estimated coefficient in 

perspective, when evaluated at the average amount of first round funds observed in the sample 

(Table 1a) the estimated coefficient indicates that one additional patent application increases 

venture capital investments by $557,33360 when the modal value of the first round of financing is 

$1,000,000.  When compared to the direct costs of obtaining a patent, which typically range 

between $10,000 and $38,000 (Graham et al., 2009; Lemley, 2000), the estimated signalling value 

of such a patent far surpasses these direct costs.  While this comparison is not meant to be a cost-

benefit ratio for the acquisition of patents by DBFs, our empirical results strongly suggest that the 

signalling value of patenting activity is very significant and should be explicitly accounted for 

when firm strategy and public policy consider the usefulness of patents. 

Patent activity does not appear to attract higher amounts of second round venture capital 

investments, implying that a reduction of information asymmetries between investors and target 

firms leads to a decrease in the signalling value of patent activity. Notably, patent activity before 

the first round of financing influences only the first round of financing funds and patent activity 

after the first round of financing does not influence the amount of funds raised in the second round. 

These findings are in line with Hypothesis 1 and, importantly, indicate that patent activity carries 

a significant signalling value that diminishes once the hidden quality of a given firm is better 

assessed by the investors.  Our empirical results also suggest that while patent applications play 

an important signalling role, the granted patents of a focal firm do not appear to attract additional 

funds either in the first or in the second round of financing.  This result is consistent with previous 

                                                                        
59 Technically, as an anonymous reviewer correctly points out, similar to a large body of empirical literature in a 

number of domains we cannot accept the hypothesis: by research design while we control for a type I error (wrongly 

rejecting the null hypothesis) we cannot control for a type II error (wrongly accepting the null hypothesis that patent 

activity has no effect in the second round).  
60 0.0773*7.21M (the average amount of first round funds reported in Table 1a)=557,333 
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findings (Baum & Silverman, 2004; Häussler et al., 2009) and it likely suggests that because patent 

applications may be stronger in conveying a firm that does not sit idle they are seen more favorably 

by investors.61 Interestingly, patents of higher economic value, as proxied by forward patent 

citations, did not appear to prompt VCFs towards larger investments either in round 1 or in round 

2.62 

The coefficient of the GrowthStage_l variable indicates that when the first round of 

financing occurs at later stages of firm development, the amount invested by VCFs increases 

considerably. Hence, this indicator seems to capture effectively the elevated financial inflows 

needed for later stage investments. The coefficient of the GrowthStage_2 for round 2 financing is 

not statistically significant, however.  

Similar to the diminishing signalling value of patent activity, the founder signal 

significantly improved only the level of the first round of financing, when information 

asymmetries are prevalent.  The reputation of the first round investors did not influence the level 

of funding in the second round of investment for the DBFs in our sample.  Indeed, most of the 

firms received funds from a single investor (Tables 1a and 1b), who in most cases was the main 

investor in the second round as well. As such, our finding may reflect this funding structure in our 

sample. 

Our results on the influence of the syndication of investors are in line with theoretical 

expectations and recent literature findings (Tian, 2011).  In particular, we find that investments by 

large groups of wealthy syndicated VCFs are associated with higher levels of capital investments 

in a given firm.  In fact, for the second round of financing the characteristics of the funding VCFs 

are prime determinants of the venture capital funds invested in a given firm.  Finally, we find that 

firms funded by closely located VCFs receive, on average, less per round of financing.  One 

                                                                        
61 We note however, that the joint significance test of granted patents and patent applications suggests that patent 

activity influences the first round of investment but not the second. Therefore, while per se granted patents may not 

exert a significant influence on venture capital attraction, when considered in conjunction with applications, they 

matter for the first round of investment. 
62 In unreported models where the GrowthStage variables are not included in the analysis, the forward citations 

variable is statistically significant for round 1. Therefore, it appears that VCFs are attracted to patents that may yield 

higher returns (i.e. higher quality patents) but such effect lessens once calculations about the ex-ante valuation of the 

firm come in place. Note that such finding can be informative for the relevance of forward citations as a measure of 

economic patent value. 
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additional mile in the distance between the target firm and the closest investor increases the total 

amount of financing by approximately 0.03 percent.63   

The density of VCFs and patents in a 10 mile radius positively influences only the first 

round level of financing and not the second. We find these results particularly interesting because 

proximity effects appear to matter when firms are younger and less so when firms are more 

developed and experienced; a finding that sides with previous evidence that less established firms 

tend to benefit the most from proximity effects (McCann & Folta, 2011).  These results imply that 

DBFs in early stages of development benefit from proximity effects but as they mature, 

performance benefits from access to local knowledge are not as pronounced.  Finally, the density 

of universities in an MSA does not appear to influence the accumulation of venture capital funds 

of DBFs in the region in either round of financing. 

 Our control variables indicate that older firms receive more funds at the first round of 

financing and that year to year variations have only limited explanatory power in the amount of 

venture capital funds raised by firms. Similarly, the interaction term included in the analysis 

(granted patents * universities in the MSA) was not a statistically significant regressor. 

 

Robustness Checks 

To check the robustness of our results we construct a number of additional models whose results 

we present in Table 4. 

Our main estimates rely on a sample of firms that received venture capital investments. But 

if these firms were more likely to receive funds from other firms in the first place, then our 

estimates could suffer from selection bias. Along the same lines, for the empirical model of round 

2, we focus the analysis on firms that received such funds but if these firms differ from remaining 

firms, the estimates, again, could be biased. To address these issues we construct two Heckman 

selection models where for the model of round 1 in the first stage we model the probability that a 

                                                                        
63 This result is shaped, in some part, by the geographic distribution of VCFs and DBFs in our sample. Most of the 

firms in our sample source funds from VCFs located within walking distance and half of the firms receive funds 

from VCFs located less than 20 miles away (Tables 1a and 1b).  As such, the average distance between target firms 

and VCFs reported in Tables 1a and 1b (398 and 345 per round) is inflated somewhat by a small number of 

observations where East/West coast VCFs fund West/East coast DBFs in which typically larger VCFs provided 

significant amounts of finance to target firms across the country.  Consequently, while statistically significant, the 

effect of the DistanceClosestVCF is expected to have a small overall economic effect for the majority of firms in our 

sample. 
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firm receives venture capital and in the second stage we conduct the baseline analysis. In the 

selection model for round 2, we first model the probability that a firm receives second round 

financing and then analyze the factors that influence the amount it receives in that round. In the 

set of regressors we include variables such as patents, founder's status and receipt of government 

grants that have been previously shown to affect the chances of receiving venture capital and to 

influence the chances a firm receives second round investment (Kaplan & Strömberg, 2004a; 

Lerner, 1999a; MacMillan, Siegel, & Narasimha, 1986). To source the sample of firms that had 

not received venture capital funds we relied on proprietary data from InKnowVation reflecting all 

biotechnology firms that had won grants from the Small Business Innovation Research (SBIR) 

program from 1983 to 2006.64 The dataset included firm-specific information such as patents and 

year of foundation as well as an indicator of whether or not the SBIR winner firms had received 

venture capital  investments, with the majority of those firms not having received funds from 

VCFs.65  As shown in Models 1 and 2 of Table 4, the results remain nearly identical in magnitude, 

sign and statistical significance to our baseline estimates of Tables 2 and 3 and indicate that any 

potential selection bias does not materially change our estimates. 

  

                                                                        
64 The dataset included all life science winners. In order to identify the biotechnology firms we performed a 

keyword search on the business description of all the firms. The list of biotechnology keywords was constructed 

after consulting with biotechnology researchers employed at the authors' institutions and included almost 400 

keywords with about 100 of them characterizing the vast majority of the firms in the dataset (Kolympiris, 

Kalaitzandonakes, & Miller, 2014). These keywords included glycosylation, oligo-nucleotide, mutation, antigen, 

recombinant allergens, biofiltration, glycosylation, Bacillus thuringiensis, polymerase chain reaction (PCR), 

chondrocyte differentiation, biosynthesis, recombinant enzymes, genetic engineering, stem cells, bioprocessing, 

genetic, biotic stress, genetic parameters, chimeraplasty, introgression, biomedicine, reverse transcriptase, 

glycoprotein, directional cloning, western blot, combinatorial biocatalysis, arabidopsis, gene (DNA) sequencing. 
65 Instead of using the age variable in the first stage of the Heckman model we use the year of foundation. We do so 

because for the age variable to be meaningful in our application we need to model the probability that a firm 

receives venture capital investment within a specific period of time. However, by definition, such period of time 

does not exist for firms that did not receive venture capital investments.  More to the list of variables we use for the 

selection equation, we employ only granted patents as our measure of patent activity in the first stage because a 

number of recipient firms received the award before 2001 and as such the full list of submitted applications is not 

available from the USPTO (and hence from our data source, InKnowVation). The selection of the remaining 

variables we employ to construct the first stage of the Heckman model is guided, primarily, by findings of previous 

literature.  To illustrate, for the round 1 selection equation we include the SBIR and the location dummies based on 

the findings that a. SBIR winners are more likely to attract venture capital funds (Lerner, 1999) and b. that firms 

located in Massachusetts or California are more likely to attract funds (Lerner, 1999). The relationship of those 

factors with the amount of venture capital raised in the first round has not been replicated in the existing literature. 

As such, we consider these factors as relevant for the first and not for the second stage of the Heckman model. 

Factors for which empirical evidence is scarce but we theorize are relevant for both stages (e.g. FounderSignal) are 

included in both stages. Finally, note that even when different groups of variables are included in the selection 

equation, the results remain largely unchanged.  
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Table 4. Model 1.  Estimated coefficients from the Heckman Selection Model of the first round of financing. 

The Dependent Variable is the natural log of the amount of venture capital funds invested by a 

biotechnology firm for the first round of financing. 

Variable code Coefficient Standard Errors   

Intercept 12.28935 0.2292 *** 

PATENTApp_1 0.0880 0.0444 ** 

PATENTGrant_1 -0.0672 0.0466   

PATENTCiteYear_1 -0.0620 0.1327   

GrowthStage_1 0.4441 0.1396 *** 

VCFReputation_1 0.0003 0.0001   

FounderSignal 0.3861 0.0329 *** 

SyndicateInvestors_1 0.2291 0.1408 *** 

SyndicateSize_1 0.0004 0.0001 *** 

DistanceClosestVCF 0.0010 0.0081 *** 

UniversitiesInMSA 0.0082 0.0024   

VCFarea_0010_1 0.0026 0.0030 *** 

VCFarea_1020_1 0.0008 0.0004   

PATENTarea_0010_1 -0.0002 0.0007 ** 

PATENTarea_1020_1 0.0822 0.0206   

AGE1 0.3745 0.0834 *** 

INTERACTION_1 -0.0029 0.0116   

 Year Dummy Variables Included YES   

 Heckman First Stage       

Intercept -125.9853 99.4313   

SBIR -7.1722 96.0078   

STATE -0.1698 0.1350   

FounderSignal 0.3076 0.1516 ** 

PATENTGrants 0.0017 0.0023   

VCFarea_0010_1 0.0102 0.0028 *** 

VCFarea_1020_1 0.0110 0.0029 *** 

Founded 0.0659 0.0130 *** 

Inverse Mills Ratio -0.1673 0.0952   

Number of Obs 1,680     

Censored Obs 1,094     

Uncensored Obs 586     

Multicollinearity Condition Number, Stage 2 27.27     

Multicollinearity Condition Number, Stage 1 4.21     

Wald Chi2 (25) 417     

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued.  Model 2. Estimated coefficients from the Heckman Selection Model of the second round 

of financing. The Dependent Variable is the natural log of the amount of venture capital funds invested by a 

biotechnology firm for the first round of financing. 

Variable code Coefficient Standard Errors   

Intercept 13.6456 0.5493 *** 

PATENTApp_1 0.0315 0.0486   

PATENTGrant_1 0.0513 0.1053   

PATENTApp_2 -0.0012 0.0403   

PATENTGrant_2 0.0154 0.1023   

PATENTCiteYear_1 -0.1105 0.1425   

PATENTCiteYear_2 0.0730 0.1024   

VCF_Investment_1 0.0269 0.0052 *** 

GrowthStage_2 0.0578 0.0725   

VCFReputation_1 -0.1286 0.2191   

FounderSignal 0.0409 0.2376   

SyndicateInvestors_2 0.3290 0.0273 *** 

SyndicateSize_2 0.0006 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 

UniversitiesInMSA 0.0133 0.0080   

VCFarea_0010_2 0.0004 0.0024   

VCFarea_1020_2 0.0037 0.0030   

PATENTarea_0010_2 0.0001 0.0004   

PATENTarea_1020_2 0.0002 0.0007   

AGE2 0.0063 0.0204   

INTERACTION_2 -0.0031 0.0101   

Year Dummy Variables Included YES   

 Heckman First Stage       

Intercept 0.1277 0.1095   

STATE 0.2978 0.0899 *** 

PATENTGrant_1 -0.0583 0.0327   

FounderSignal 0.4220 0.1421 *** 

GrowthStage_2 -0.2435 0.0546 *** 

VCFreputation_1 0.5146 0.1099 *** 

USD_Independent_1 0.0014 0.0024   

Inverse Mills Ratio -0.4524 0.5755   

Number of Obs 783     

Censored Obs 289     

Uncensored Obs 494     

Multicollinearity Condition Number, Stage 2 13.40     

Multicollinearity Condition Number, Stage 1 6.75     

Wald Chi2 (25) 320 ***   

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 3. Estimated coefficients for the model of the first round of financing from 1974 to 

2011 without patent applications. The Dependent Variable is the natural log of the amount of venture 

capital funds invested by a biotechnology firm for the first round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 11.8688 0.1562 *** 0.2305 *** 

PATENTGrant_1 -0.0505 0.0520   0.0528   

PATENTCiteYear_1 0.0661 0.0810   0.0563   

GrowthStage_1 0.3599 0.0716 *** 0.0668 *** 

VCFReputation_1 0.1455 0.0976   0.1303   

FounderSignal 0.5348 0.1062 *** 0.0940 *** 

SyndicateInvestors_1 0.3599 0.0274 *** 0.0322 *** 

SyndicateSize_1 0.0004 0.0001 *** 0.0002 *** 

DistanceClosestVCF 0.0003 0.0001 *** 0.0001 *** 

UniversitiesInMSA -0.0002 0.0057   0.0058   

VCFarea_0010_1 0.0088 0.0019 *** 0.0016 *** 

VCFarea_1020_1 0.0025 0.0022   0.0027   

PATENTarea_0010_1 0.0007 0.0003 ** 0.0003 ** 

PATENTarea_1020_1 0.0000 0.0005   0.0005   

AGE1 0.0379 0.0125 *** 0.0129 *** 

INTERACTION_1 0.0032 0.0024   0.0024   

Year Dummy Variables Included YES   

R2 0.3924         

Adjusted R2  0.3708         

F-test for overall model significance   16.97 *** 398 *** 

Multicollinearity Condition Number 12.65         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
11.78 ***       

Observations 1,051         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 4. Estimated coefficients for the model of the second round of financing from 1974 

to 2011 without patent applications. The Dependent Variable is the natural log of the amount of venture 

capital funds invested by a biotechnology firm for the second round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state level   

Intercept 12.9011 0.1589 *** 0.1784 *** 

PATENTGrant_1 0.0403 0.0423   0.0395   

PATENTGrant_2 0.0237 0.0359   0.0388   

PATENTCiteYear_1 -0.0149 0.0779   0.0280   

PATENTCiteYear_2 -0.0006 0.0266   0.0694   

VCF_Investment_1 0.0294 0.0058 *** 0.0052 *** 

GrowthStage_2 0.0162 0.0490   0.0309   

VCFReputation_1 -0.0584 0.0971   0.1051   

FounderSignal 0.4793 0.1103 *** 0.1274 *** 

SyndicateInvestors_2 0.2440 0.0170 *** 0.0185 *** 

SyndicateSize_2 0.0007 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 *** 

UniversitiesInMSA 0.0095 0.0050   0.0041 ** 

VCFarea_0010_2 0.0036 0.0018 ** 0.0009 *** 

VCFarea_1020_2 0.0044 0.0021 ** 0.0029   

PATENTarea_0010_2 0.0002 0.0003   0.0002   

PATENTarea_1020_2 0.0005 0.0005   0.0006   

AGE2 0.0231 0.0117 ** 0.0054   

INTERACTION_2 -0.0004 0.0009   0.0010   

Year Dummy Variables Included YES   

R2 0.4198         

Adjusted R2  0.3933         

F-test for overall model significance   15.55 *** 412 *** 

Multicollinearity Condition Number 11.615         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
27.36 *** 

      

Observations 918         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 5. Estimated coefficients for the model of the first round of financing without 

outliers on patent applications. The Dependent Variable is the natural log of the amount of venture capital 

funds invested by a biotechnology firm for the first round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state level   

Intercept 12.3063 0.2617 *** 0.4150 *** 

PATENTApp_1 0.1515 0.0669 ** 0.0428 *** 

PATENTGrant_1 -0.0710 0.0517   0.0490   

PATENTCiteYear_1 -0.0869 0.0793   0.0866   

GrowthStage_1 0.3608 0.0971 *** 0.0766 *** 

VCFReputation_1 0.2313 0.1287   0.1670   

FounderSignal 0.4621 0.1375 *** 0.1133 *** 

SyndicateInvestors_1 0.3863 0.0371 *** 0.0555 *** 

SyndicateSize_1 0.0003 0.0001 *** 0.0002   

DistanceClosestVCF 0.0003 0.0001 *** 0.0001 *** 

UniversitiesInMSA 0.0015 0.0080   0.0101   

VCFarea_0010_1 0.0086 0.0023 *** 0.0029 *** 

VCFarea_1020_1 0.0031 0.0029   0.0032   

PATENTarea_0010_1 0.0008 0.0004 ** 0.0004   

PATENTarea_1020_1 -0.0002 0.0007   0.0007   

AGE1 0.0725 0.0231 *** 0.0225 *** 

INTERACTION_1 -0.0055 0.0120   0.0072   

Year Dummy Variables Included YES   

R2 0.4144         

Adjusted R2  0.3842         

F-test for overall model significance   15.09 *** 114.78 *** 

Multicollinearity Condition Number 13.35         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
13.99 ***       

Join test of significance 

PATENTApp_1 & PATENTGrant_1 
3.68 *** 

      

Observations 582         

** Significant at 5%. *** Significant at 1%.  

 

  



123 

 

Table 4 continued. Model 6. Estimated coefficients for the model of the second round of financing without 

outliers on patent applications from the first and second round of financing. The Dependent Variable is the 

natural log of the amount of venture capital funds invested by a biotechnology firm for the second round of 

financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 13.1415 0.2599   0.2922   

PATENTApp_1 0.0640 0.0885   0.0571   

PATENTGrant_1 0.0724 0.1133   0.1303   

PATENTApp_2 0.0348 0.0703   0.0614   

PATENTGrant_2 -0.0122 0.1116   0.1214   

PATENTCiteYear_1 -0.1296 0.0709   0.0718   

PATENTCiteYear_2 0.0678 0.0517   0.0616   

VCF_Investment_1 0.0313 0.0068 *** 0.0067 *** 

GrowthStage_2 0.0274 0.0706   0.0554   

VCFReputation_1 0.0176 0.1369   0.1368   

FounderSignal 0.2235 0.1483   0.1830   

SyndicateInvestors_2 0.3286 0.0292 *** 0.0409 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001   

UniversitiesInMSA 0.0103 0.0079   0.0075   

VCFarea_0010_2 0.0019 0.0021   0.0014   

VCFarea_1020_2 0.0042 0.0026   0.0030   

PATENTarea_0010_2 0.0002 0.0003   0.0003   

PATENTarea_1020_2 0.0002 0.0006   0.0006   

AGE2 -0.0010 0.0213   0.0161   

INTERACTION_2 -0.0032 0.0091   0.0098   

Year Dummy Variables Included YES   

R2 0.4291         

Adjusted R2  0.3915         

F-test for overall model significance   11.12 *** 308 *** 

Multicollinearity Condition Number 13.33         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
9.5 ***       

Join test of significance 

PATENTApp_2 & PATENTGrant_2 
0.35 

        

Observations 485         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 7. Estimated coefficients for Pooled Regression. The Dependent Variable is the 

natural log of the amount of venture capital funds invested by a biotechnology firm in the first or second 

round of financing. 

Variable code Coefficient Standard Errors   

Intercept                            13.5865  0.9747 *** 

R1_Dummy                             -0.2388  0.0718 *** 

R1_PatentApp                              0.0896  0.0329 ** 

PATENTApp                             -0.0459  0.0187 ** 

R1_PatentGrant                             -0.0285  0.0316   

PATENTGrant                             -0.0053  0.1143   

PATENTCiteYear                              0.0073  0.0657   

GrowthStage                              0.0749  0.0760   

SyndicateInvestors                              0.3286  0.0265 *** 

SyndicateSize                              0.0004  0.0000 *** 

VCFarea_0010                              0.0503  0.0217 ** 

VCFarea_1020                              0.0180  0.0494   

PATENTarea_0010                             -0.0072  0.0016 *** 

PATENTarea_1020                             -0.0022  0.0011 *** 

AGE                             -0.0123  0.0043 ** 

INTERACTION                             -0.0013  0.0043   

Year Dummy Variables Included YES   

R2 Within 0.2979     

R2 Between 0.0988     

R2 Overall 0.1047     

Rho 0.80     

Multicollinearity Condition Number 42.23     

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 8. Estimated coefficients for the model of the second round of financing without 

patent activity measures of financing round one. The Dependent Variable is the natural log of the amount of 

venture capital funds invested by a biotechnology firm for the second round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 13.1200 0.2576 *** 0.2839 *** 

PATENTApp_1 - -   -   

PATENTGrant_1 - -   -   

PATENTApp_2 0.0045 0.0348   0.0278   

PATENTGrant_2 0.0459 0.0332   0.0260   

PATENTCiteYear_1 - -   -   

PATENTCiteYear_2 0.0526 0.0557   0.0278   

VCF_Investment_1 0.0265 0.0066 *** 0.0260 *** 

GrowthStage_2 0.0283 0.0705   0.0586   

VCFReputation_1 0.0530 0.1366   0.1268   

FounderSignal 0.2376 0.1453   0.1714   

SyndicateInvestors_2 0.3332 0.0284 *** 0.0384 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 ** 

UniversitiesInMSA 0.0137 0.0075   0.0080   

VCFarea_0010_2 0.0009 0.0021   0.0014   

VCFarea_1020_2 0.0041 0.0026   0.0029   

PATENTarea_0010_2 0.0003 0.0003   0.0003   

PATENTarea_1020_2 0.0003 0.0006   0.0006   

AGE2 0.0006 0.0211   0.0165   

INTERACTION_2 -0.0027 0.0044   0.0040   

Year Dummy Variables Included YES   

R2 0.4340         

Adjusted R2  0.4013         

F-test for overall model significance   11.74 *** 91.47 *** 

Multicollinearity Condition Number 13.34         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
9.41 ***       

Join test of significance 

PATENTApp_2 & PATENTGrant_2 1.08         

Observations 496         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 9. Estimated coefficients for the model of the second round of financing including 

only the variables that measure granted patents for the first and second round of investment. The 

Dependent Variable is the natural log of the amount of venture capital funds invested by a biotechnology 

firm for the second round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 13.1035 0.2579 *** 0.2814 *** 

PATENTApp_1 -  -    -    

PATENTGrant_1 0.0568 0.0926   0.1097   

PATENTApp_2 -  -    -    

PATENTGrant_2 0.0045 0.0924   0.1042   

PATENTCiteYear_1 -0.1060 0.0899   0.0873   

PATENTCiteYear_2 0.0696 0.0506   0.0642   

VCF_Investment_1 0.0268 0.0068 *** 0.0068 *** 

GrowthStage_2 0.0344 0.0707   0.0594   

VCFReputation_1 0.0534 0.1376   0.1298   

FounderSignal 0.2372 0.1459   0.1784   

SyndicateInvestors_2 0.3318 0.0275 *** 0.0355 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 ** 

UniversitiesInMSA 0.0122 0.0077   0.0078   

VCFarea_0010_2 0.0012 0.0021   0.0014   

VCFarea_1020_2 0.0041 0.0026   0.0029   

PATENTarea_0010_2 0.0003 0.0003   0.0003   

PATENTarea_1020_2 0.0003 0.0006   0.0006   

AGE2 0.0025 0.0210   0.0163   

INTERACTION_2 -0.0003 0.0070   0.0076   

Year Dummy Variables Included YES   

R2 0.4375         

Adjusted R2  0.4036         

F-test for overall model significance   11.88 *** 171.60 *** 

Multicollinearity Condition Number 13.24         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
9.22 ***       

Observations 494         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 10. Estimated coefficients for the model of the first round of financing without the 

patent activity and citation measures. The Dependent Variable is the natural log of the amount of venture 

capital funds invested by a biotechnology firm for the first round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 12.2724 0.2616 *** 0.4192 *** 

PATENTApp_1 - -   -   

PATENTGrant_1 - -   -   

PATENTCiteYear_1 - -   -   

GrowthStage_1 0.3721 0.0972 *** 0.0794 *** 

VCFReputation_1 0.2142 0.1299   0.1667   

FounderSignal 0.4250 0.1366 *** 0.1152 *** 

SyndicateInvestors_1 0.3940 0.0372 *** 0.0559 *** 

SyndicateSize_1 0.0003 0.0001 *** 0.0002   

DistanceClosestVCF 0.0003 0.0001 *** 0.0001 *** 

UniversitiesInMSA 0.0028 0.0079   0.0098   

VCFarea_0010_1 0.0085 0.0023 *** 0.0028 *** 

VCFarea_1020_1 0.0030 0.0028   0.0031   

PATENTarea_0010_1 0.0008 0.0004 ** 0.0004   

PATENTarea_1020_1 -0.0002 0.0007   0.0007   

AGE1 0.0800 0.0228 *** 0.0229 *** 

INTERACTION_1 -0.0135 0.0119   0.0077   

Year Dummy Variables Included YES   

R2 0.4072         

Adjusted R2  0.3830         

F-test for overall model significance   16.82 *** 106.30 *** 

Multicollinearity Condition Number 13.23         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
12.37 ***       

Observations 586         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 11. Estimated coefficients for the model of the second round of financing without 

the patent activity and citation measures. The Dependent Variable is the natural log of the amount of 

venture capital funds invested by a biotechnology firm for the second round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard errors 

clustered at the 

state  level   

Intercept 13.1349 0.2552 *** 0.2843 *** 

PATENTApp_1 - -   -   

PATENTGrant_1 - -   -   

PATENTApp_2 - -   -   

PATENTGrant_2 - -   -   

PATENTCiteYear_1 - -   -   

PATENTCiteYear_2 - -   -   

VCF_Investment_1 0.0266 0.0067 *** 0.0067 *** 

GrowthStage_2 0.0316 0.0702   0.0594   

VCFReputation_1 0.0515 0.1363   0.1266   

FounderSignal 0.2457 0.1448   0.1713   

SyndicateInvestors_2 0.3324 0.0271 *** 0.0351 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 ** 

UniversitiesInMSA 0.0123 0.0074   0.0081   

VCFarea_0010_2 0.0010 0.0021   0.0014   

VCFarea_1020_2 0.0041 0.0026   0.0029   

PATENTarea_0010_2 0.0002 0.0003   0.0002   

PATENTarea_1020_2 0.0003 0.0006   0.0006   

AGE2 0.0034 0.0206   0.0161   

INTERACTION_2 0.0014 0.0038   0.0033   

Year Dummy Variables Included YES   

R2 0.4325         

Adjusted R2  0.4036         

F-test for overall model significance   13.27 *** 71.68 *** 

Multicollinearity Condition Number 13.14         

Χ2 for Breusch-Pagan test for 

heteroskedasticity 
9.22 ***       

Observations 496         

** Significant at 5%. *** Significant at 1%.  

 

  



129 

 

Table 4 continued. Model 12. Estimated coefficients for the model of the first round of financing. The 

number of forward citations is replaced by the patent family. The Dependent Variable is the natural log of 

the amount of venture capital funds invested by a biotechnology firm for the first round of financing. 

Variable code Coefficient 

Heteroskedasticity 

robust standard  

errors 

Standard errors 

clustered at the 

state  level 

Intercept 12.2782 0.2613 *** 0.4182 *** 

PATENTApp_1 0.0753 0.0305 ** 0.0289 ** 

PATENTGrant_1 -0.0717 0.0510   0.0480   

PATENTFamilySize_1 -0.0009 0.0030   0.0030   

GrowthStage_1 0.3610 0.0978 *** 0.0759 *** 

VCFReputation_1 0.2329 0.1280   0.1657   

FounderSignal 0.4552 0.1378 *** 0.1206 *** 

SyndicateInvestors_1 0.3885 0.0371 *** 0.0547 *** 

SyndicateSize_1 0.0003 0.0001 *** 0.0002   

DistanceClosestVCF 0.0004 0.0001 *** 0.0001 *** 

UniversitiesInMSA 0.0019 0.0080   0.0101   

VCFarea_0010_1 0.0084 0.0023 *** 0.0028 *** 

VCFarea_1020_1 0.0028 0.0028   0.0032   

PATENTarea_0010_1 0.0008 0.0004 ** 0.0004   

PATENTarea_1020_1 -0.0002 0.0007   0.0007   

AGE1 0.0772 0.0226 *** 0.0227 *** 

INTERACTION_1 -0.0048 0.0121   0.0076   

Year Dummy Variables Included YES   

R2 0.4124         

Adjusted R2  0.3851         

F-test for overall model significance   15.18 *** 118.88 *** 

Multicollinearity Condition Number 13.38         

Χ2 for Breusch-Pagan test for heteroskedasticity 13.80 ***       

Join test of significance 

PatentApp_1 & PATENTGrant_1 
3.68 **       

Number of observations 586         

** Significant at 5%. *** Significant at 1%.  
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Table 4 continued. Model 13. Estimated coefficients for the model of the second round of financing. The 

number of forward citations is replaced by the patent family. The Dependent Variable is the natural log of 

the amount of venture capital funds invested by a biotechnology firm for the second round of financing. 

Variable code Coefficient 
Heteroskedasticity 

robust standard errors 
  

Standard 

errors 

clustered at 

the state  

level 

  

Intercept 13.0800 0.2749 *** 0.3049 *** 

PATENTApp_1 0.0130 0.0571   0.0557   

PATENTGrant_1 0.0083 0.1033   0.1194   

PATENTApp_2 0.0086 0.0360   0.0273   

PATENTGrant_2 0.0443 0.1038   0.1101   

PATENTFamilySize_1 0.0053 0.0062   0.0057   

PATENTFamilySize_2 -0.0009 0.0034   0.0033   

VCF_Investment_1 0.0270 0.0069 *** 0.0080 *** 

GrowthStage_2 0.0632 0.0768   0.0760   

VCFReputation_1 0.0723 0.1388   0.1239   

FounderSignal 0.1817 0.1494   0.1774   

SyndicateInvestors_2 0.3147 0.0282 *** 0.0389 *** 

SyndicateSize_2 0.0006 0.0001 *** 0.0001 *** 

DistanceClosestVCF 0.0002 0.0001 *** 0.0001 ** 

UniversitiesInMSA 0.0094 0.0085   0.0115   

VCFarea_0010_2 0.0013 0.0022   0.0017   

VCFarea_1020_2 0.0035 0.0027   0.0033   

PATENTarea_0010_2 0.0002 0.0003   0.0003   

PATENTarea_1020_2 0.0006 0.0006   0.0006   

AGE2 -0.0059 0.0224   0.0174   

INTERACTION_2 -0.0004 0.0078   0.0080   

Year Dummy Variables Included YES 

R2 0.4322         

Adjusted R2  0.3906         

F-test for overall model significance   9.37 *** 254 *** 

Multicollinearity Condition Number 13.67         

Χ2 for Breusch-Pagan test for heteroskedasticity 10.19 ***       

Join test of significance 

PatentApp_2 & PATENTGrant_2 
0.36         

Number of observations 494         

 ** Significant at 5%. *** Significant at 1%.  

 

 Our analysis uses data from 2001 to 2011 because it is in this period that both granted 

patents and patent application statistics are available from USPTO (granted patents are available 

for earlier years). Nevertheless, focusing solely on that period may mask differential effects that 

took place on earlier periods. Given that our data source on venture capital investments goes back 

to 1974, in Models 3 and 4 of Table 4 we present the results of empirical specifications that include 

only granted patents as the measure of patent activity and include observations that reflect 

investments that took place from 1974 to 2011 inclusive.  Importantly, these specifications do not 

directly test our hypotheses because only one of the two patent activity measures we employ is, by 
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definition, available. The goal of these specifications is to check whether the insignificance of the 

granted patents variables holds when we extend the period of analysis. Indeed, in accordance with 

the main results presented in Tables 1 and 2, granted patents have no effect neither on the first 

round investment level nor on the second round investment level.  As well, inferences from the 

remaining regressors are similar to those in the baseline results. 

As seen in Tables 1a and 1b a small cohort of firms had a number of patents and patent 

applications that surpassed the average patent activity of the firms in the dataset. In Models 5 and 

6 we test how these outlier observations impact our baseline results by re-estimating the models 

of Tables 2 and 3 using data that omits these observations from the analysis.66  By and large, the 

results agree with the estimates of Tables 2 and 3 that patent activity carries a signalling value that 

diminishes once the hidden quality of the DBFs is better approximated by the VCFs. A noteworthy 

result though is that the coefficient of the PatentApp_1 variable doubles in magnitude. We find 

this result particularly interesting because it implies that for firms with average patent activity the 

signalling value of patent applications is even more pronounced than the corresponding value for 

emerging DBFs with above average patent activity. 

In Model 7 we pooled the data for the first and the second round together to construct a 

pooled regression model that controls for firm and year fixed effects. The dependent variable in 

that model is the amount raised in a given investment round and the right-hand side variables are 

round-specific. Then, we include a dummy variable that takes the value of 1 if the observation 

corresponds to first round investment and 0 otherwise. To test for the impact of patent activity on 

venture capital growth we add an interaction term that is the product of the number of patent 

applications and the dummy variable previously described.67 The marginal effect of PatentApp_168 

indicates that patent activity is conducive to the increase of funds for the first round and negatively 

affects the level of the second round funds.  This result suggests that unobserved firm-specific time 

                                                                        
66 Specifically, for the model of round 1 we omitted 4 firms that had more than 10 patent applications before round 

1. These same firms were omitted from the analysis of round 2. Additionally, for round 2, we omitted 5 firms that 

had 10 or more patent applications between the two rounds. Therefore, in total we omitted 9 firms from the analysis. 

The results remained nearly identical even when we omitted firms with more than 5 patent applications. 
67 We also interact the round 1 dummy with granted patents but the corresponding coefficient is not statistically 

significant. We do not include that interaction term in the analysis because the multicollinearity index of the model 

including both interaction terms increases to levels that create inference concerns. 
68 The marginal effect is the first derivative of the amount of funds raised with respect to the number of patent 

applications. Employing the estimated coefficients, the marginal effect of patent applications can then be calculated 

as -0.2388 * D - 0.0459 + 0.0896 * D where D equals 1 for observations in the first round and 0 otherwise.  
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constant features can determine whether the overall trend of patent activity serving a signalling 

role that diminishes over time holds for a specific firm.  

To test the robustness of our estimates to the elevated correlation coefficient between the 

two variables that measure granted patents between rounds, in Models 8 and 9 we present estimates 

from i) a model that includes only patent activity measures after round 1 and ii) a model that 

includes only the two variables that are correlated (PatentGrant_1 and PatentGrant_2). Along the 

same lines, in models 10 and 11 we test whether the influence of the control variables is sensitive 

to the inclusion of the patent activity measures by constructing round 1 and round 2 models that 

include only the control variables. We draw two main conclusions from models 8 to 11. First, the 

influence of the control variables remains largely unchanged regardless of the inclusion of the 

patent activity variables. Second, the patent activity variables do not appear to be significantly 

affected by the correlation in question. Accordingly, we conclude that our main findings in the 

baseline models are robust. 

Finally, to test the sensitivity of our estimates to the (economic) patent value indicator we 

use in the baseline estimates, in Models 12 and 13 we replace the forward citations variables with 

variables that measure the average INPADOC69 family size of each patent owned by the focal 

firms. Patents in the same patent family typically protect the same (set of) invention(s) in different 

jurisdictions.  Patents that are then part of broad patent families are expected to have a higher 

economic value as the applicant has chosen to accrue additional costs for protection in multiple 

jurisdictions (Fischer & Leidinger, 2013; Harhoff et al., 2003; Lanjouw, Pakes, & Putnam, 1998). 

The results in Models 12 and 13 are nearly identical to the baseline estimates and show that under 

alternative proxies of economic patent value our main conclusions remain intact. 

Conclusion and Discussion 

A long stream of research has documented the positive effects that patents bring about to firms. 

The general consensus is that patents contribute to firm growth and survival because they confer 

monopolistic market rights, offer protection from competitors and enhance the negotiating position 

of patent holders. What has received relatively less attention in this literature is that patents can 

                                                                        
69 INPADOC, which stands for International Patent Documentation Center, is a patent information database that is 

maintained by the European Patent Office and contains cross-referenced data on patents gathered from national 

patent offices worldwide. The data to construct the variable were obtained from Thomson Innovation. 
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act as a signal to attract investors and capital. These types of effects are particularly important to 

emerging firms in knowledge intensive industries where long research cycles, scientific 

complexities and strict regulatory regimes make the development of a track record for newly 

established firms difficult. In this context, signals that convey firm potential and quality can be 

particularly relevant.  A handful of empirical studies that have taken up the issue in the past have 

shown that knowledge intensive firms which hold granted patents or have patent applications are 

more likely to receive larger venture capital investments faster. Out of these studies only few have 

demonstrated that the reported results reflect signalling effects and only one has indicated that such 

signalling effects wane with time. As such, the dynamics of signalling effects have not been 

investigated in any significant depth, and little is known about whether the signalling function of 

patents diminishes over time. In this study, we shed new light on the signalling function of patents 

in attracting investors by examining the strength of the signalling effects of patent activity in 

sequential rounds of financing for small biotechnology firms. By extension, the overarching 

contribution of the present study is to be among the first to study the dynamics of signals.  

Employing data from more than 580 U.S.-based dedicated biotechnology firms, we 

examine whether the patent activity (granted patents and patent applications) of small 

biotechnology firms increases the amount of venture capital funds raised by such firms during their 

first and second round of financing. Our empirical results strongly corroborate theoretical 

expectations that patent activity before the first round of financing increases the capital invested 

in a firm. However, as firms mature and information asymmetries between them and investors 

decrease, the signalling value of patent activity diminishes and it does not affect the level of funds 

raised in the second round of financing. We also find that patent applications rather than granted 

patents have a more significant signalling role. This finding potentially reflects the notion that 

patent applications offer a stronger signal than patents perhaps because they convey information 

that young emerging firms are further developing due to the learning curve associated with the 

patent acquisition process.  Investments that are directed towards later firm growth stages are also 

associated with higher amounts of capital investments. Finally, we find that the amount of venture 

capital funds raised by small biotech firms is also influenced by certain characteristics of the 

investors, such as size and syndication, as well as by proximity effects that allow firms to source 

knowledge from nearby institutions. 
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Our study has both scholarly and policy implications. For instance, we quantify the 

signalling value of patent activity and we find that, on average, an additional patent application is 

associated with an increase of approximately $557,333 in the amount of venture capital funds 

raised in the first round of financing by small biotech firms. This estimate is generally robust to 

various model specifications that address potential bias that can result from focusing solely on 

firms that receive venture capital investments and to alternative empirical designs.  Importantly, 

this $557,333 valuation complements existing studies which estimate the value of patents but do 

not take into account the value of their signalling effect in attracting capital (Gambardella et al., 

2008). The same finding however, has also important policy implications. Concerns have been 

frequently raised about the current status of the patenting system and about the degree it might 

hinder innovation, especially by placing young innovative firms at a disadvantage (Kingston, 

2001). Our findings, however, suggest that the signalling value of patent activity not only exceeds 

the typical direct costs of patent acquisition manifold but it can also improve the access of small 

innovative firms to capital during early stages of financing, exactly when such firms lack a track 

record and information about their potential is less available. It is therefore clear, that any 

discussion about the value of patents for small innovative firms and for firm strategy should 

include such considerations. More specifically, the case can be made that due to the signalling 

value of patent activity, emerging firms who opt out of using it may be more inclined to reconsider 

their strategy. Accordingly, if these kinds of firms are fetched back to the patent system they could 

provide additional income to the patent authorities which could then potentially address common 

patent system issues such as backlogging of applications via hiring qualified examiners, providing 

employee bonuses and the like. 

Given these policy and firm-specific implications, of direct interest is then the applicability 

of our results to industries other than biotechnology and to countries other than the US. With regard 

to applicability to other industries, we generally expect our findings to hold for emerging firms in 

industries that, like biotechnology, are prone to information asymmetries due to long research or 

development cycles with uncertain research and commercial outcomes that make quality signals 

useful. To corroborate these expectations, indeed, there is some limited empirical evidence 

suggesting that patents are positively associated with increases in venture capital in a number of 

such industries (Cao & Hsu, 2011) and in some countries outside the US (Baum & Silverman, 

2004; Engel & Keilbach, 2007). 
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There are several ways that our work can be extended. First, in depth analysis of the 

dynamics of signals, not confined to patents, seems promising especially given the dearth of 

research on the topic (Higgins et al., 2011).  Such research can, for instance, analyze the factors 

that influence the strength and effectiveness of signals. These factors include transmission 

mechanisms and the a priori credibility of the signal transmitter. Second, a straightforward 

extension of the present work would be to track the growth of the firms who successfully transmit 

signals in order to evaluate the long term effects of signalling. Third, a potentially qualitative 

analysis could directly identify the firm-specific factors that can influence how strong is the overall 

trend of the diminishing signalling value of patents for a given firm.  Fourth, the dynamics of 

proximity effects on capital investment uncovered in this study may be worth further attention. 

Proximity effects were found to have a positive impact on the venture capital funds of small biotech 

firms only during the first round of financing when firms were in the early stages of development. 

It is therefore possible that knowledge spillovers from agglomeration and associated pecuniary 

effects may be stronger for smaller firms early in their innovation cycle. Such dynamic effects are 

not broadly researched in the agglomeration literature and it may be a worthwhile follow-up 

research topic.  

To conclude, we note that our study is not without limitations. For instance,  to account for 

the venture capital funds provided to a firm in exchange of equity in the firm we employ a variable 

that reflects the firm growth stage that venture capital funds are directed to and a variable that 

reflects the reputation of the investors. While we expect these variables to indeed be suitable 

proxies, data limitations do not allow us to use sharper measures such as the actual equity level 

secured by the investors, which could yield more refined estimates. Along the same lines, assessing 

proprietary firm-specific information about (unsuccessful) patent applications before 2001 could 

provide further insights by expanding the time period of the analysis. Finally, based on a large 

body of empirical work we employ forward citations and patent family size to capture the 

economic value of patents.  However, by design, proxies are imperfect measures. As such, it is 

possible that the economic value of a given patent is not fully accounted for in our models. Direct 

inquires to the venture capital firms we study with regard to the economic value they ascribed to 

the sample patents would address the issue. But, such endeavor is prohibitively difficult in large 

part because a significant part of the investments we study took place more than a decade ago.  
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Chapter 5. Geographic Distance between Venture 

Capitalists and Target Firms and the Value of 

Quality Signals70  

                                                                        
70 This chapter is based on:  

Kolympiris, C., Hoenen, SJ., Kalaitzandonakes, N (2017) Geographic distance between venture capitalists and 

target firms and the value of quality signals, Industrial and Corporate Change 
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Introduction 

Signalling theory builds on the premise that signals, defined as purposely sent costly pieces of 

information, partly reveal unobserved characteristics of the sender to an interested receiver. 

Credible signals, then, which are too costly to pursue for lesser quality actors, ease transacting by 

allowing the receiver to place more confidence on the unobserved quality of the sender and thus 

reduce the negative effects of information asymmetries (Amit et al., 1990a; Connelly, Certo, 

Ireland, & Reutzel, 2011; Spence, 1973).71   Precisely because the main function of signals is to 

increase the confidence receivers place on the senders in the face of information asymmetries, 

signals should not only be more likely to occur in the presence of high uncertainty (Roberts & 

Khaire, 2009), but they should also carry a higher value for receivers in environments of elevated 

information asymmetries (Janney & Folta, 2003). 

Indeed, there is empirical support for that expectation. Stuart, Hoang, and Hybels (1999) 

find that signals, in the form of prominent alliance partners, are effective in transactions that 

involve  

young firms with limited track records. Janney and Folta (2006) conclude that signals, in the form 

of private placements of equity, are more relevant for those young firms that are subject to higher 

uncertainty. Park and Mezias (2005) show that the stock market relies more heavily on alliances 

as signals when the level of industry uncertainty is high.  Arthurs, Busenitz, Hoskisson, and 

Johnson (2009), in the context of initial public offerings, report that the higher the uncertainty 

surrounding a given firm, the more effective the signals it transmits. Finally, Hsu and Ziedonis 

(2013) and Hoenen, Kolympiris, Schoenmakers, and Kalaitzandonakes (2014) find that the 

signalling function of patent activity is more effective in inducing venture capital investments for 

early rounds of financing, when information asymmetries between venture capitalists and target 

firms are elevated. 

Prior studies, then, have contextualized the level of information asymmetries and have 

approximated the value receivers ascribe to signals by studying the age of the sender, the 

uncertainty of its environment and the degree of familiarity between senders and receivers. 

However, little attention has been paid to an additional transactional characteristic that can 

                                                                        
71 Extended literature demonstrates the effectiveness of signals in communicating value to customers, investors, 

potential employees and possible alliance partners (e.g. Chung & Kalnins, 2001; Cohen & Dean, 2005; Davila et al., 

2003; Higgins & Gulati, 2006; Mishra et al., 1998; Ozmel, Reuer, & Gulati, 2012). 
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significantly determine the degree of information asymmetries between transacting parties and can 

ultimately shape the value receivers place on signals: the geographic distance between the sender 

and the receiver of the signal.  

Information asymmetries increase with distance (Coval & Moskowitz, 1999; Ivkovic & 

Weisbenner, 2005; Portes, Rey, & Oh, 2001). It is therefore important to know whether the value 

receivers ascribe to signals also increases with the distance between two transacting parties, and 

we examine this question in this study. Because knowledge is sticky and hence difficult to move 

across space (von Hippel, 1994), the marginal cost of knowledge transmission is an increasing 

function of distance.  This explains why larger distances may discourage the transmission of (tacit) 

knowledge (Audretsch, 1998) and could lead to increases in information asymmetries. Given that 

the costs of signalling do not typically vary with geographic distance, signals may be even more 

relevant and valuable for transactions between geographically distant parties.  

To study this proposition, we analyze two signals often employed by emerging  

knowledge-intensive firms that can lack a track record: patent activity, including patent 

applications and granted patents, and the entrepreneurial experience and academic status of firm 

founders. Using data from first round venture capital investments in 586 U.S-based emerging 

biotechnology firms from 2001 to 2011, we associate the amount of capital raised by each firm 

through first round of financing with its patent activity and indicators of serial entrepreneurship 

and academic excellence among firm founders prior to the investment. Methodologically, to test 

whether the geographic distance between venture capitalists and the biotechnology firms they 

invest in conditions the impact of those signals on the firm funding level, we interact the measures 

of signals with the measures of the distance between the two parties and examine the statistical 

significance of the combined measure.  We also control for many factors that can influence the 

size of venture capital investment in a given firm, including the market value of patents which 

arises from the monopoly rights they afford. We therefore first approximate the signalling value 

of patents and then investigate how such value is affected by the distance between the investor and 

the recipient. Along the same lines, by separating out the effects of academic and entrepreneurial 

experience of firm founders we also examine what venture capitalists value most when they invest 

in firms founded by academics.  

Our focus on emerging firms is consistent with the notion that signalling is more important 

during the early stages of firm growth, when the typical lack of a track record and increased level 
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of information asymmetries make the evaluation of investment targets a thorny task. As such, it is 

at this stage we expect venture capitalists to place more value to quality signals. We break new 

ground by examining whether the value that venture capitalists place on signals depends on their 

distance with target firms. We also complement previous studies that have examined the effect of 

signals in attracting distant investors in later stages of firm growth where the venture capitalist is 

already in the firm and the next stepping stone for the company is the attraction of additional 

investors, often via an initial public offering (Mäkelä & Maula, 2008; Powell, Koput, Bowie, & 

Smith-Doerr, 2002; Ragozzino & Reuer, 2011).  

Relatedly, we contribute to the literature on the function of patents and other forms of 

intellectual property for attracting firm financing (Block, De Vries, Schumann, & Sandner, 2014; 

Conti, Thursby, & Thursby, 2013; Greenberg, 2013; Hoenen et al., 2014; Hsu & Ziedonis, 2013). 

These studies analyze a number of issues, including whether patents act as a signal and whether 

the signalling function of patents is more pronounced during early stages of firm growth, but do 

not examine the impact of the geographic distance between agents on the strength and value of the 

signal. Accordingly, our work improves the understanding of the conditions where patents lead to 

greater external funding for a given firm.  Furthermore, our study offers a novel test on whether 

patents act primarily as a signal or whether they are valued by their investors mostly for the 

monopoly rents they can bring about. If patents act mainly as a signal, then we would not expect 

them to have as significant an impact on venture capital investments in short distance transactions.  

Locally circulated knowledge about a given firm can reduce the degree of information asymmetries 

between investors and potential investees (Asheim & Gertler, 2005; Bathelt, Malmberg, & 

Maskell, 2004; Florida & Kenney, 1988) and hence mitigate the need for signals as well as the 

value that investors may place on them. In contrast, if patents are valued mostly for the exclusion 

rights they carry, we would expect them to increase venture capital funding even for investors who 

allocate funds to nearby firms.  

Finally, our work informs the literature on the geography of venture capital investments 

(Gupta & Sapienza, 1992; Kolympiris et al., 2011; Lutz, Bender, Achleitner, & Kaserer, 2013; 

Powell et al., 2002; Sorenson & Stuart, 2001). While venture capital firms have a general 

preference to invest locally (Cumming & Dai, 2010; Powell et al., 2002; Sorenson & Stuart, 2001), 

here we investigate whether signals can induce larger investments in distant targets at their early 

stages of firm growth.   
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We focus on venture capital investments in biotechnology for several reasons. First, 

biotechnology firms are frequent investment targets of venture capitalists reflecting not only the 

potential for high returns but also their need for external capital, which is difficult to meet through 

bank lending and other forms of traditional finance due to inherent risks in the industry (Baum & 

Silverman, 2004; Gompers & Lerner, 2001). Second, long distance venture capital investments 

occur in the industry with some frequency. East/West Cost investors fund West/East Coast firms 

(Powell et al., 2002). Third, the lengthy R&D cycles of biotechnology coupled with strict 

regulatory regimes  prohibit  emerging  firms  from developing  an  early  track  record  which  can 

approximate future performance. The very same structural characteristics of biotechnology 

startups lead venture capitalists investing in this industry to often rely on signals (Higgins et al., 

2011; Janney & Folta, 2003). All in all, these circumstances suggest that if the value venture 

capitalists place on signals is influenced by the geographic distance of their potential targets we 

should be able to detect such an influence in that industry.  

We proceed as follows: In section 2, we explore the existing literature and discuss our 

theoretical expectations. In sections 3 and 4 we discuss the methodology and the dataset of the 

empirical study. In section 5, we present our empirical results and we conclude in section 6.  

How geographic distance can influence the effectiveness of signals 

In their most common form, venture capital firms (VCFs) raise funds from institutional 

investors such as pension funds and university endowments, invest these funds in new ventures 

that have the potential to yield high returns and, in large part, tie their compensation to the 

performance of the investment targets (Zider, 1998). Because VCFs seek high returns they tend to 

invest in relatively young promising companies in knowledge-based industries, such as 

biotechnology, in which the risks are pronounced but the returns, if realized, can also be 

considerable (Gompers & Lerner, 2001, 2004).  

Mainly because of the long research cycles in biotechnology, firms in this industry rarely 

have a track record in their early stages of development. Even when these firms are fully aware of 

their potential, they typically possess private information regarding their quality, which is not 

easily discerned by the VCFs (Amit, Glosten, & Muller, 1990; Gompers, 1995; Gompers & Lerner, 

2004; Sahlman, 1990). In turn, such information asymmetries complicate the investment decisions 



143 

 

of VCFs because the problem of adverse selection is ever-present (Akerlof, 1970; Amit et al., 

1990a; Mishra et al., 1998).72 In order to mitigate adverse selection VCFs typically invest in rounds 

of financing. Under this scheme, funds are provided in separate sequential points in time and 

financing continues only if firms meet certain, mainly technical, milestones (Gompers, 1995).  

Information asymmetries between VCFs and target firms are therefore more acute before the first 

round of financing as VCFs have not previously worked with the firm and the level of familiarity 

between investors and investees is low.  It follows that because first round investments present an 

environment of exacerbated uncertainty, it is in this round we expect VCFs to place more value to 

signals. This is why we focus our discussion and subsequent empirical analysis on this round.  

To prevent investments in ‘lemons’ VCFs are highly selective and put substantial time  

and effort in scouting firms and evaluating the promise of their investments targets (Amit et al., 

1990a; Baum & Silverman, 2004).  This time and effort is primarily devoted towards assessing the 

quality of the firm before the first investment takes place.  However, in the case of knowledge-

based young firms, overall quality and promise are tightly linked to the quality of knowledge 

supporting their research efforts. Precisely because knowledge quality can be tacit (Johnson, 

Lorenz, & Lundvall, 2002), the selection process of VCFs can become increasingly difficult when 

the target firm is at a distance as  tacit knowledge is more easily gained when investors and 

investees are closely located (Coval & Moskowitz, 1999; Foray, 2004; von Hippel, 1994). For this 

reason, VCFs circulate knowledge about investment targets via networks which are often built on 

social capital, interpersonal contacts and other spatially bounded means of knowledge transfer 

(Bygrave, 1988; Florida & Kenney, 1988). It follows that the ex ante evaluation of untested target 

firms that are under consideration for first time investments is generally easier when these firms 

are located nearby.73  Spatial proximity assists VCFs in gathering (tacit) knowledge about the 

target firms and decreases the level of information asymmetries. Indeed, empirical evidence 

                                                                        
72 Uncertain market conditions, complex regulatory regimes and a general scarcity of tangible assets exacerbate  

the issue (Carpenter & Petersen, 2002c; Gompers & Lerner, 2001). Also note that under certain conditions a firm  

might have incentives to purposely withhold information, either because private information implicates the  

entrepreneurial opportunity that it is trying to protect, or because the entrepreneur might want to conceal negative 

information regarding the quality of the firm (Shane & Cable, 2002; Shane & Venkataraman, 2000). 
73 Note that contrary to other forms of capital infusion, the involvement of VCFs in target firms extends to  

providing advice, management support and other value-added activities (Sahlman, 1990). Spatial proximity is  

also relevant for those activities (Lerner, 1995) because it can ease the oversight of the target firms. 
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indicates that VCFs have a general preference for local investments (Chen, Chu, & Billota, 2011; 

Cumming & Dai, 2010; Powell et al., 2002; Sorenson & Stuart, 2001; Tian, 2011).74  

Notwithstanding the general tendency for local investments, VCFs do engage in long 

distance financing (Powell et al., 2002), especially when the promise of the target firm is  

significant. In such cases, VCFs use alternative strategies to cope with the associated information 

asymmetries. Most frequently, for first round investments, but sometimes in later rounds too, VCFs 

use syndication schemes in which they co-invest with one or more local VCF(s) (Fritsch & 

Schilder, 2008; Sorenson & Stuart, 2001). Beyond syndication, VCFs may also rely on signals as 

a way to mitigate the effects of information asymmetries for long distance first round transactions 

(Busenitz et al., 2005; Toole & Turvey, 2009). Indeed, there is evidence that VCFs are more likely 

to invest in distant firms in which other VCFs have previously invested (Mäkelä & Maula, 2008; 

Powell et al., 2002; Ragozzino & Reuer, 2011).  This behavior is consistent with the idea that 

VCFs use signals in distant transactions and indicates the trust VCFs show to the investment 

choices of their peers. However, little is known about the value placed by VCFs on the ex ante 

signals sent by start-ups prior to first round financing.  

All in all, given that receivers of signals place more value to them in environments 

characterized by increased information asymmetries (Arthurs et al., 2009; Hoenen et al., 2014; 

Hsu & Ziedonis, 2013; Ozmel et al., 2012; Stuart et al., 1999) we expect signals to be more 

effective in raising the amount of first round financing for distant transactions when compared to 

transactions between closely located VCFs and target firms. We build this expectation on the 

observation that short distance transactions are typically less susceptible to the sort of information 

asymmetries that underpin most first round investments.   

Signals Used by Biotechnology Firms before the First Round of 
Financing  

A relevant question then is which signals are available to biotechnology firms during their early 

stages of growth and more specifically before the first round of financing? These signals need to 

satisfy three main conditions. First, they need to be observable and costly to imitate (Spence, 

                                                                        
74 In related evidence outside the venture capital industry, the number of local investments in the portfolio of fund 

managers is disproportionally large (Coval & Moskowitz, 1999) and fund managers perform better when investing 

in these local funds (Coval & Moskowitz, 2001). 
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1973). Second, they need to adequately convey the knowledge available to emerging 

biotechnology firms since their tangible assets are limited (Hicks, 1995). Third, they need to be 

valued by VCFs so that they lead to increases in the level of first round of financing.  

One way by which biotechnology firms can convey their knowledge is through  

certain characteristics of their founder(s). Founder characteristics are observable  

through firm presentations, websites and other information featuring the biographies of the 

founding team. They are also costly. For instance, the opportunity costs of eminent university 

professors and other high profile professionals who are often among the founders of biotechnology 

firms are high (Audretsch & Stephan, 1996; Zucker, Darby, & Brewer, 1998). As such, founder 

characteristics meet condition 1 described above. Founder characteristics can also convey 

knowledge because high technology firms at the early development stages often resemble the 

qualities of their founders (Cooper & Bruno, 1977). Hence, high profile professionals can leverage 

their reputation to convey the underlying quality of their firms (Bonardo, Paleari, & Vismara, 

2011; Certo, 2003) and as such founder characteristics meet condition 2 above. But what kinds of 

founder characteristics are valued by venture capitalists so that condition 3 is also met? Within the 

broad literature documenting the effects of founders on firm growth (Ding, 2011; Hannan, Baron, 

Hsu, & Koçak, 2006; Klepper, 2002; Roberts, Klepper, & Hayward, 2011), a number of studies 

has shown that VCFs prefer to invest in entrepreneurs with earlier business experience (Gompers 

et al., 2010; Hsu, 2007; Mueller, Westhead, & Wright, 2012; Wright, Robbie, & Ennew, 1997). 

This is likely so because experience can help entrepreneurs cope with recurring problems, enhance 

their ability to spot profitable opportunities and the like (Baron & Ensley, 2006). For academic 

founders, previous business/entrepreneurial experience may therefore be important (Lockett & 

Wright, 2005).  

VCFs may also value the academic prominence of founders of early stage biotechnology 

firms as an additional signal of their knowledge.  Because  of  the  knowledge-intensive  character  

of  biotechnology,  the  core technological innovations upon which the firms are built often rely 

on academics (Wright, Vohora, & Lockett, 2004) who are regularly founders of biotechnology 

firms (Zucker et al., 1998). Importantly, preeminent academic scientists tend to start successful 

biotechnology firms (Zucker et al., 1998). When considering these observations together with the 

favorable attitude of VCFs towards firms founded/managed by individuals with high academic 

achievements  (Engel & Keilbach, 2007; Hsu, 2007; Mueller et al., 2012) we conclude that the 
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presence of academics in the founding team, especially eminent ones, may serve as a signal of 

quality for biotechnology firms with limited track record.  

Patent activity is yet another signal that biotechnology firms can use. Patent  

information is freely available from public sources but patents themselves are costly to acquire 

and maintain (Graham et al., 2009). Hence, patents conform to the basic characteristics of a signal. 

But do patents convey knowledge and are they valued by VCFs? A number of studies have 

demonstrated that VCFs are attracted to firms with patent activity (Audretsch et al., 2012; Conti 

et al., 2013a; Engel & Keilbach, 2007; Hoenen et al., 2014; Hsu & Ziedonis, 2013). Patents also 

convey knowledge for two main reasons: First, they represent inventions and innovations (Igami, 

2013) which are the outcomes of knowledge development efforts. Second, the patent acquisition 

process entails interactions with patent examiners so that the prior art of the submitted application 

is adjusted, and the claims of the patents are clarified and placed within the context of existing 

technologies and innovations. As such, the patent application process compels firms to keep up to 

date with the latest scientific developments in rapidly evolving fields such as biotechnology, 

enhance their knowledge and refine their technology development strategies.  

In sum, we expect patent activity, as well as the entrepreneurial experience and academic 

prominence in the founding team to act as signals that can help firms to increase their first round 

of investment as they are costly, observable, they transmit knowledge and they are valued by 

venture capitalists. We expect these signals to be more effective and valuable in long distance 

transactions because it is in these types of transactions that information asymmetries are elevated 

and hence venture capitalists place more value to signals. 

Methods 

To test whether signals are more effective and valuable for long distance transactions between 

VCFs and biotechnology firms we build econometric models in which the level of funding raised 

during the first round of financing is regressed on variables that measure patent activity and 

founding team characteristics prior to the investment. To explicitly test the impact of geographic 

distance on the effectiveness of these signals in stimulating larger investments, we include a 

variable that measures the distance between the VCF and the target firm and we interact this 

variable with the signals we study. We expect the interaction terms to be positive, indicating that 

signals are more valuable for long distance transactions. 
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Formally, the model takes the following form:  

 

ln(𝑌𝑖) = 𝑋𝑖𝛽 +  𝜀                                                                                                              (1) 

 

where the dependent variable 𝑌𝑖 is the natural logarithm of the amount of funds received 

by the focal firm 𝑖 in the first round of venture capital funding, 𝑋𝑖 is the design matrix including 

the variables we discuss below and the 𝛽𝑠 are the associated coefficients.  

The first signal we study is patent activity which we measure with the patent applications 

submitted by the firms in our sample prior to the first round financing they received and with the 

patents granted to the firms during the same period. More specifically, following previous works 

that constructed patent variables in the same way (e.g. Czarnitzki, Ebersberger, & Fier, 2007; 

Toole & Czarnitzki, 2007) each of the two measures takes the value of 1 if the firm had applied 

for a patent or was granted a patent before the investment occurred and 0 otherwise. 75 76 

The reason we employ two measures of patent activity is that the signal transmitted by 

granted patents can be meaningfully different than the signal transmitted by patent applications.  

For instance, throughout the examination process patent applications may signal a firm that is not 

sitting idle but it updates its knowledge and extends its experience by revising the claims of the 

patent, populating the list of prior art with new references, and refining its innovation strategy. 

These are important considerations since knowledge in biotechnology is continuously updated and 

breakthroughs may come from newer discoveries at any time (see Humphries, 2010; McNamee & 

Ledley, 2012 for specific examples). As such, new knowledge development is crucial and patent 

                                                                        
75 To avoid double-counting if an application is granted patent rights before the first round of financing, we measure 

only the granted patent as a measure of patent activity and not the application.  
76 Originally we used the count of patents and applications as our measures of patent activity. However, constructing 

the interaction terms using the counts and including them in the empirical specifications increased the 

multicollinearity index well above the safe threshold of 30 and hence raised inference concerns. When we measured 

patent activity with dummy variables (and constructed the interaction terms) the index dropped significantly to 

below 30. Importantly, the dummy variables are roughly equivalent to continuous measures of patent activity as the 

latter are heavily left skewed with the vast majority of the firms having no patent activity. As such, we opt to use the 

dummy variables because they lead to lower multicollinearity indices, and, hence higher confidence in inference. 

Still, in section 5.2 we present estimates from models omitting from the analysis firms with inflated records of 

patent activity. The results are qualitatively similar to the baseline estimates we present in Table 3. Alternatively, we 

could omit certain control variables in order to reduce the multicollinearity index. That option raises significant 

concerns on the interpretation of our findings due to omitted variable bias. Such bias is particularly relevant in our 

application as teasing out the signaling function of patents is challenging mainly because a host of factors  can 

explain the growth of venture capital funds for a given firm. 



148 

 

applications may capture such a process more effectively than granted patents. Instead, granted 

patents can signal a firm that has developed original knowledge and has gone through the patent 

application process successfully in the past. Conceptually, then, we expect granted patents to 

approximate the knowledge a company has already developed and owns while patent applications 

to approximate the knowledge a company is developing. It is interesting to note that there is 

empirical evidence which reinforces the potential for differential signalling function of granted 

patents and patent applications. Specifically, a few studies have shown that patent applications are 

more effective than granted patents in shortening the time that venture capitalists invest in a firm 

and in increasing the amount of funds invested (Baum & Silverman, 2004; Haeussler, Harhoff, & 

Muller, 2014; Hoenen et al., 2014). 

Because we are interested in the signalling value of patent activity, we need to account for 

the market value of monopoly rights that patents offer, which can also attract investors and raise 

the amount of invested capital. Estimating with precision the market value that patent monopoly 

rights can bring about is a difficult task partly because the true market value of an invention is 

often unobservable and, if observed, it is difficult to attribute solely to the patent that protects the 

invention. A setting in which patent market value can be closely approximated is at patent auctions 

where patents are traded between interested parties. This setting is appropriate not only because 

the auction price is observed but also, and perhaps more importantly, because what is traded is 

only the patent and not its owner. Accordingly, it is unlikely that the signalling function of granted 

patents drive their auction prices. Crucially, the price paid for a patent in such auctions correlates 

strongly with an observed feature of the patent: the number of times the patent is cited by later 

patents (forward citations) (Fischer & Leidinger, 2014; Odasso, Scellato, & Ughetto, 2014; Sneed 

& Johnson, 2009). Based on this evidence, and with an eye on previous works demonstrating the 

relevance of forward citations as a measure of patent value (e.g. Gambardella et al., 2008; Harhoff 

et al., 2003), we employ forward citations as a measure of the economic value of a patent.  Because 

older patents have a longer time frame to gather forward citations we measure forward citations 

per year. 

The second signal we examine is the entrepreneurial experience and academic standing of 

the founding team. We employ two different empirical specifications to more extensively test their 

potential impacts. Specification 1 employs the signal used in Hoenen et al. (2014). In particular, 

we approximate the academic standing and business experience of the founding team with a 
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dummy variable that takes the value of 1 if a member of the founding team has high academic 

standing and/or earlier experience in founding a firm (Foundersignal). In Specification 2 we use 

two separate measures to characterize the standing of the founding team. The first measure, 

Entrepreneurialsignal, indicates whether one of the members of the founding team has previously 

started a firm.77 The second measure, Academicsignal, assumes increasing values with the highest 

academic rank held by members of the founding team and ranges from 0 to 5 with 0 indicating that 

there is no academic in the founding team, 1 through 4 indicate increasing professorial standing (a 

lecturer, an assistant, an associate and a full professor) while 5 indicates that a member of the 

founding team holds a distinguished and/or named professorship and/or is a member of the 

Academy of Sciences and/or has won a Nobel Prize.  

To test our expectation that signals are more valuable for long distance transactions we 

include an additional variable which measures (in logarithmic form) the distance between the 

funding VCF and the target firm (for syndicate investments we measure the distance to the closest 

VCF).78 We then interact the distance variable with the signal measures described above and 

expect a positive sign for these interaction terms. 

Control Variables 

The design matrix X in equation 1 above includes a number of control variables which can 

influence the level of first round financing each firm receives.79  Each VCF investment that a firm 

receives is proportional to the valuation of the firm ex ante and the equity level the VCFs collects.  

It follows that we need to account for both of those factors but finding direct measures for such 

factors is empirically challenging. As such, we use two separate indicators that can approximate 

                                                                        
77 Alternatively, it could be argued that serial entrepreneurs have more access to venture capital because a VCF 

might be more willing to engage in repeated interactions with an entrepreneur, because private information 

regarding the entrepreneur is gained in earlier investment. However, in general the frequency of such repeated 

interactions is relatively low (Bengtsson, 2013; Wright et al., 1997). 
78 We do not expect distance to have a linear effect on the effectiveness of signals. For instance, a move from the 5th 

to the 6th mile should not have the same meaning as a move from, say, the 1005th to the 1006th mile even though in 

both cases the change (1 mile) is the same. This is why we use the natural log of distance. To calculate the distances 

we use the straight distance formula (arcos(sin(lat1).sin(lat2)+cos(lat1).cos(lat2).cos(long2−long1)) ×3963 ). For the 

(short) distances that we look at, the straight line distance closely resembles the driving distance but unlike the 

driving distance, it does not change over time due to newly constructed roads and other residential developments. 

This is relevant for our application because we study transactions that spread over a decade and, hence, need 

comparable distances across time. In cases where more than one VCF invested in the focal firm we measure the 

distance to the closest VCF because in syndication schemes the closest VCF typically assumes most of the oversight 

and consulting roles (Ferrary, 2010; Fritsch & Schilder, 2012) . 
79Additional discussion on the impact of certain control variables included in our model on venture capital funding 

is presented in some of previous work (Hoenen et al., 2014).  
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the conceptual variables. Specifically, we first include dummy variables (seed, early, and 

expansion) that correspond to the growth stage of the firm when the VCF investment took place.80 

Because the valuation of firms, ex ante, increases with the stage of firm growth (Cumming & Dai, 

2011) these indicators should approximate firm valuation.  Importantly, early and later stage 

investments by VCFs are also associated with different equity levels acquired (Beaton, 2010; 

Kaplan & Strömberg, 2003).  As such, the dummy indicators should be correlated with the amount 

of equity secured by VCFs. Given the increased valuation of firms at later stages of firm growth, 

we expect a positive sign for the indicators representing later stages of firm growth.  We also 

construct a second indicator to approximate the level of equity VCFs receive for their investments. 

Because VCFs with stronger reputation typically receive larger equity than investors with weaker 

reputation for similar investments (Hsu, 2004) we also include a variable that reflects the Lee et 

al. (2011) reputation score of the highest ranked funding VCF of the first round of financing 

(VCFreputation).  

The availability of funds from the VCFs may also influence the amount invested in the first 

round of financing, overall. Because such availability is often largely determined by the number 

of investors that spread the risks of their investments (i.e. by the syndication size) (Lockett & 

Wright, 2001) as well as by the capital available to the investors (Gupta & Sapienza, 1992; Tian, 

2011) we include two variables that measure the number of investors as well as their average size 

(SyndicateInvestors, SyndicateSize), and expect positive signs for both coefficients.  

We also include the age of the focal firm at the round of financing (Age) as a control 

variable in the model.  We do not form strong priors with regard to the direction the age of firms 

can move the amount of funds received because VCFs may evaluate positively older firms due to 

higher experience and survival but they may also view negatively older firms that have not 

received previous financing. 

To incorporate in the analysis year-to-year variations, such as “hot IPO market” periods 

(Lowry & Schwert, 2002), that can encourage or discourage venture capital investments at an 

aggregate level we include in our empirical models a set of year dummies that match with the year 

in which the investment took place. We do not form expectations for the signs of their coefficients.   

                                                                        
80 Seed stage funds are typically small amounts directed primarily towards proving a concept. Early stage funds are 

directed mainly towards product development. Funds directed towards the expansion stage are used, in large part, to 

boost market entry or strengthen R&D (Jeng & Wells, 2000). There are also funds directed towards later stage 

financing, such as buy-outs or acquisitions. 
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Agglomeration externalities (e.g. knowledge spillovers and network effects) can also help 

biotechnology firms improve their performance and thus increase their funding levels (Coenen et 

al., 2004; Döring & Schnellenbach, 2006; Gittelman, 2007; Kolympiris et al., 2011). To account 

for such effects we include the following variables in the model: a) UniversitiesInMSA which 

measures the number of universities that perform biotechnology related research and are located 

in the same Metropolitan Statistical Area as the focal firm and b) several indicators that measure 

the density of VCFs (VCFarea 0010, VCFarea 1020) and the number of patents granted to 

biotechnology firms (PATENTarea 0010, PATENTarea 1020) within 0–10 and 10–20 miles from 

the origin firm, respectively. We expect positive signs for the corresponding coefficients. 

Data Sources and Presentation 

To conduct the analysis we started by sourcing all venture capital first round investments by 

independent VCFs in dedicated biotechnology firms from 2001 up to 201181 using Thomson 

Reuter’s SDC Platinum Database (SDC). In the remaining part of this section, we focus on the 

variables we employ in our empirical models as shown in Table 1.  

  

                                                                        
81 We start our analysis in 2001 because before then the United States Patent and Trademark Office (USPTO) did 

not publish patent applications. Also note that the dataset does not include investments from corporate venture 

capital. As well, while SDC reports the total amount invested in each round, it does not report the round investment 

per venture capital firm. As such, we cannot weight the distance to the closest VCF by the amount it invested. While 

this issue does not hold for the majority of the sample firms because they received first round investment only from 

one VCF (see Table 1), the finding that in syndicated investments the closest VCF is typically the one conducting 

the main scouting for investment targets (Fritsch & Schilder, 2012) alleviates concerns about the effect of this non-

weighting on the estimated parameters. 
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Table 1. Descriptive Statistics of Selected Variables Used in the 

Empirical Models. 
              

Variable Description N MEAN 
STD. 

DEV 
MIN. MEDIAN MAX. MODE 

Investment size 586 7.21 11.04 0.001 3.56 100.00 1.00 

Patent applications 66       

Granted patents 32       

Forward citations 586 0.06 0.44 0.00 0.00 6.83 0.00 

Founder signal 119       

Entrepreneurial signal 61       

Academic signal1 
d=0 d=1 d=2 d=3 d=4 d=5  

445 5 4 9 49 74  

Distance between firm and closest VCF 586 398.49 747.92 0.00 20.63 3146.00 0.01 

Seed 248       

Early 246       

Expansion 78       

Firm age 586 2.54 3.12 0.00 1.37 27.73 0.00 

VCF reputation 586 0.36 0.45 0.00 0.00 1.00 0.00 

Syndicate investors 586 2.61 1.84 1.00 2.00 13.00 1.00 

Syndicate size 586 366.99 616.60 0.00 75.47 4155.00 0.00 

Number of universities located in the MSA 586 9.30 8.09 0.00 9.00 37.00 17.00 

Density of VCFs in 0 to 10 miles from the firm 586 23.46 29.36 0.00 10.00 103.00 1.00 

Density of VCFs in 10 to 20 miles from the firm 586 15.21 25.37 0.00 5.00 127.00 0.00 

Number of patents granted to biotechnology firms 

located 0 to 10 miles from the firm 
586 126.55 155.87 0.00 61.00 531.00 0.00 

Number of patents granted to biotechnology firms 

located 10 to 20 miles from the firm 
586 69.73 115.16 0.00 18.00 608.00 1.00 

1The variable takes the value of 0 if none of the founding team members had an academic title, 1 if a 

member of the founding team is an instructor or lecturer, 2 if a member of the founding team is an assistant 

professor, 3 if a member of the founding team is an associate professor, 4 if a member of the founding 

team is a full professor, 5 if a member of the founding team holds a distinguished and/or named 

professorship and/or is a member of the Academy of Sciences and/or has won a Nobel Prize. 

Note: 64 observations in 2001, 60 observations in 2002, 52 observations in 2003, 49 observations in 

2004, 66 observations in 2005, 74 observations in 2006, 78 observations in 2007, 63 observations in 

2008, 33 observations in 2009, 39 observations in 2010 and 8 observations in 2011 

  

 

The sample we employ draws upon Hoenen et al. (2014).82  As noted above, a noteworthy 

change from Hoenen et al. (2014) is that in Specification 2 we use a sharper way to account for 

the signalling function of the founding team as we decompose the Foundersignal variable into two 

separate indicators: EntrepreneurialSignal and AcademicSignal. We collected the data for both of 

these variables by visiting the websites of the sample firms. 

                                                                        
82 The main finding from that study was that having applied for a patent increased the level of first round of 

financing for biotechnology firms by 7.7 percent while patent activity had no impact on the level of funds raised 

during the second round of financing.   
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In total, the dataset includes 586 first round venture capital investments in 586 

biotechnology firms.  As shown in Table 1 the average distance between the recipient firms and 

the closest VCFs investing in such firms is 400 miles. Given that almost half of the observations 

are within a 20 miles threshold level (median: 20.63) the sample average is influenced by a small 

number of firms that received investments from VCFs located across the country.  On average, the 

sample firms received $7.2 million in the first round of financing which was realized for half of 

the firms when they were less than 1.3 years old. The average $7.2 million investment is, however, 

inflated by few firms that attracted significantly more funds than the rest (e.g. the modal value is 

$1million). 

With regards to the signals we study, the vast majority of the firms did not have any patent 

activity before the first round of financing. 66 firms had applied for at least one patent and 32 were 

granted at least one patent before the investment.83 

The Foundersignal indicates that 1 out of 5 firms had at least one member in the founding 

team with entrepreneurial experience and/or with academic standing. In particular, approximately 

1 out of 10 founders had earlier entrepreneurial experience while a sizeable portion of sample firms 

were (co)founded by academicians, a small share of which of preeminent status. Most founding 

teams, however, did not include an academic or a serial entrepreneur.   

As it pertains to the regional environment, on average, a firm in the sample was surrounded 

by high patent activity and 39 VCFs located within a 20 miles radius. Figure 1 explains, in large 

part, these statistics as it shows that the majority of the sample firms were located in traditional 

biotechnology clusters of the East and West Coast of the United States. Nevertheless, a meaningful 

share of the firms was located outside the traditional biotechnology hubs in locations such as 

Austin, TX and Boulder, CO. This latter observation implies that our results are not specific to the 

traditional biotech clusters. 

                                                                        
83 The heavy representation of firms without patent activity in the sample supports our empirical choice to employ 

corresponding dummy variables.  More specifically, 531 firms did not have any applications, 29 firms had 1 

application, 9 firms had 2 applications, 14 firms had between 2 and 7 applications and 2 firms had 10 and 13 

applications respectively. Granted patents had a similar left skewed distribution as well. The fact that the sample 

includes firms with varying degrees of patent activity is relevant in that it mitigates potential concerns of 

overstressing the significance of patents that could result from the tendency of better firms to patent more and 

generally better protect their intellectual property assets (Helmers & Rogers, 2011).  
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In Table 2 we present the correlation coefficients for the variables described above. While 

in general the correlation coefficients assume low values, those between the level terms of the 

signal variables and the interaction terms between the signals and the distance are high (0.5, 0.75, 

0.79, 0.81, 0.83). This suggests that there may be some overlap in the information provided by the 

level and interaction terms on the dependent variable. As we explain below, this point becomes 

relevant when we opt to not include the level terms in our baseline specifications. 

 

Results 

Baseline Model  

Table 3 includes the estimates from the baseline specifications in which we omit the level terms. 

Model 1 does not include the interaction terms we use to test our theoretical expectations. We 

include it for comparison purposes to Models 2 and 3, which present the coefficients from 

Specifications 1 and 2, respectively. We cluster the standard errors at the state level.84 We do so 

to account for the possibility that firms located in the same state underperform or overperform 

jointly due to unobserved state-specific features promoting innovation, such as the quality of 

entrepreneurial coaching provided by local agencies, and because we expect the distance measures 

to be more similar among firms in the same state. The F-tests across all empirical models as well 

as the adjusted R2 suggest that our empirical models have explanatory power. The multicollinearity 

condition index is below the generally regarded as safe threshold of 30 (Belsley, Kuh, & Welsch, 

1980).  

  

                                                                        
84 Inference remains unchanged even when we employ White’s heteroskedasticity robust standard errors. 
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Model

Variable Coefficient
Standard 

errors
Coefficient

Standard 

errors

Intercept 13.3103 0.3477 *** 13.2968 0.3714 ***

Distance between firm and closest VCF 0.1016 0.0280 *** 0.0806 0.0299 **

Distance between firm and closest VCF * Granted patents -0.0129 0.0062 **

Distance between firm and closest VCF * Patent applications 0.0733 0.0188 ***

Distance between firm and closest VCF * Founder signal 0.0981 0.0196 ***

Distance between firm and closest VCF * Academic signal

Distance between firm and closest VCF * Entrepreneurial signal

Forward citations -0.0554 0.0958 -0.0287 0.0835

Seed -0.9806 0.2483 *** -0.9299 0.2506 ***

Early -0.2413 0.1820 -0.2094 0.2052

Expansion -0.1253 0.3156 -0.0968 0.3078

Firm age 0.0640 0.0231 *** 0.0608 0.0233 **

VCF reputation 0.2904 0.1707 0.2697 0.1623

Syndicate investors 0.3732 0.0547 *** 0.3687 0.0526 ***

Syndicate size 0.0003 0.0001 0.0003 0.0001

Number of universities located in the MSA -0.0010 0.0102 -0.0004 0.0100

Density of VCFs in 0 to 10 miles from the firm 0.0112 0.0031 *** 0.0110 0.0031 ***

Density of VCFs in 10 to 20 miles from the firm 0.0027 0.0023 0.0030 0.0025

Number of patents granted to biotechnology firms located 0 to 

10 miles from the firm 0.0008 0.0004 0.0007 0.0004

Number of patents granted to biotechnology firms located 10 

to 20 miles from the firm 0.0008 0.0004 0.0007 0.0004

Year Dummies included

Obervations 586 586

Adjusted R
2 0.3997 0.4116

F test for overall model significance 157.9900 *** 152.1700 ***

Multicollinearity Condition Index 27.4842 28.0051

Standard errors are clustered at the state level

* Significant at 5%. ** Significant at 1%.

Table 3. Baseline Estimates. The dependent variable is the natural logarithm of the amount of venture capital funding in the first 

round of financing.

Specification 1

Model 1 (No signals)
Model 2 (Including founder 

signal only)

YES

1
For model 3, the founder signal in the joint tests of significance refers to the academic and entrepreneurial signal 

YES
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We first evaluate whether geographic distance influences the value of the Foundersignal 

to VCFs in Model 2 (Table 3).  In this model, the slope coefficient associated with distance 

between the firm and the nearest VCF is allowed to change when founders are eminent and/or have 

business experience. Based on the fitted model, we find that the coefficient of the interaction term 

is significantly positive (0.0981), and the marginal effect of distance on VC funding levels more 

than doubles when the firm’s founder is eminent/experienced. Hence, we find empirical support 

for the hypothesis that geographic distance influences the signalling value of the founding team 

characteristics, as measured by the Foundersignal indicator. This result is also consistent with 

simple averages as firms that were founded by serial entrepreneurs and/or eminent academics 

received, on average, $4.2 million more funding than the rest of the firms in our sample.   

Next, we evaluate whether the academic standing and previous experience with starting a 

firm among firm founders have different value as signals and whether they are more effective in 

raising the amount of first round financing for distant transactions. In Models 3a-3c we use two 

separate measures to characterize the standing of the founding team: AcademicSignal and 

EntrepreneurialSignal. We evaluate the relevance of first for each of these signals separately (in 

Models 3a and 3b) and then jointly (in Model 3c).  

While AcademicSignal*Distance is statistically significant and positive (0.0129) in Model 

3a, the marginal effect of distance on VC funding levels when the firm’s founder has high 

academic standing does not increase appreciably due to the weak quantitative impact of this signal. 

In contrast, when we estimate the joint impact of distance and the firm founders’ business 

experience on the VC funding levels, through EntrepreneurialSignal*Distance in Model 3b, the 

result is quite different. Based on the fitted version of this model, we find that the estimated 

coefficient on this variable is significantly positive (0.088) and the marginal effect of distance on 

VC funding levels increases by 75% when the firm’s founder is a serial entrepreneur. These results 

are confirmed when both indicators are included in Model 3c as their coefficients remain roughly 

the same. In addition, the AcademicSignal interaction is now statistically not different from zero. 

Taken together these results suggest that business experience as a signal matters more when the 

distance between investors and recipients increases while academic prominence does not seem to 

have such an effect.  

In all of the Models 2 and 3, the estimated coefficient on the interaction term between 

patent applications and distance is significantly positive and varies between 0.0655 and 0.0733 in 
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value. As such, the marginal effect of distance on VC funding levels increases (depending on the 

model) by 50-70% when the firm has patent applications. The positive and statistically significant 

coefficient of the interaction term between patent applications and distance is therefore also 

supportive of the theoretical expectation that the larger the distance, the larger the positive effect 

of patent applications on the level of venture capital funds received by the firms in the sample.  

  The interaction term between granted patents and distance in all empirical models 

(Models 2 and 3) is very small in size and, for the most part, statistically not different from zero. 

The insignificance of granted patents as a signal is an interesting result, especially since patent 

applications are found to have signalling value. By definition, applications do not have an 

exclusion value because patent claims are not finalized until the patent issues. As such, patent 

applications may be a stronger signal than granted patents because they convey both a learning-

by-doing process and a fine-tuning process (Hoenen et al., 2014). The learning-by-doing process 

refers to the fact that every patent needs to conform to the same criteria of novelty, usefulness and 

non-obviousness. Accordingly, the more often a firm submits patent applications the more likely 

it will learn how to satisfy these three criteria. The fine-tuning process refers to the interactions 

between applicants and patent officers after an application is submitted. Following the initial 

application, firms learn more about the prior art in their technology development area from 

communication with the patent examiner, redefine their claims, and overall get exposed to a 

process that can deepen and update their knowledge. This deepening and updating of knowledge 

is particularly important in fast evolving industries such as biotechnology where breakthroughs 

are often the result of the very latest techniques and cutting edge discoveries (see Humphries, 2010; 

McNamee and Ledley, 2012 for specific examples). Hence, while a granted patent may represent 

what a firm has learned, an application may better signify what a firm is learning. Given that 

learning processes are important for fast-evolving industries, patent applications in biotechnology 

may be a stronger signal because investors value firms that can evolve over time by keeping up 

with the latest developments in the industry and do not sit idle. 

It is worth noting, that the estimated coefficients in Model 3c where all the interaction 

terms of the signals with distance are included suggest that the marginal effect of distance on VC 

funding levels increases by 125% when the firm’s founder is a serial entrepreneur and the firm has 

patent applications. The individual effects of the two signals are distinct and remain stable across 

all specifications. Hence, our findings suggest that signals increase the level of venture capital 
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funding primarily in environments where information asymmetries are more pronounced, and 

hence investors place more value on them, such as when the geographic distance between the VCF 

and the target firm is extended.  For distant target firms, VCFs appear less able to assess the quality 

of the firm in question (Rosiello & Parris, 2009; Sorenson & Stuart, 2001; Zook, 2002) and as a 

means to mitigate the effects of the associated increase in information asymmetries they tend to 

rely on signals transmitted by firms seeking for investments.  

Importantly, our findings also shed new light on the ongoing discussion whether patent 

activity is valued by investors primarily as a signal or as a means to gain monopoly rights (Hoenig 

& Henkel, 2014). The granted patents signal and the forward citations control proxy for the 

economic value of patents are statistically insignificant across specifications. Therefore, similar to 

previous works (Hoenen et al., 2014; Hsu & Ziedonis, 2013) our findings are supportive of the 

explanation that patents serve, in large part, a signalling function. More to it, if patents were valued 

more for the exclusion value they carry, then we would expect them to attract investors even in 

environments of reduced information asymmetries. Short distance investments are an example of 

such an environment. Yet, what we consistently find is that patent activity does not increase VC 

investments for short distance transactions, which then provides evidence in favor of a signalling 

function. Perhaps, what can explain this finding is that specifically for patents covering drug-

related inventions (hence the sorts of patents we study), infringements are common (Lanjouw & 

Schankerman, 2001). Accordingly, while in principle the exclusion value afforded by the 

monopoly rights of a patent is present, VCFs might be discounting such value in light of potential 

infringements.  

With regards to the control variables we include in the analysis, the results indicate that 

older firms receive more funds and firms receiving seed stage investments receive less (firmage 

and seed).  The number of VCFs in the syndication also increases the amount of investment 

received by firms in the sample while the reputation of VCFs has no effect. The density of VCFs 

within a 10 miles radius from the recipient firm increases the level of first round financing for the 

firms in the sample as well. Finally, several other control variables, including the number of 

universities in the metropolitan statistical area (MSA) and the density of granted patents, do not 

affect the level of investments.  
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Sensitivity Analysis of Baseline Results 

The estimated empirical models presented in Table 3 are very stable. The coefficients of all the 

signal and control variables have been largely unchanged across the various specifications.  Still, 

to further test the robustness of our baseline empirical results we conducted a number of additional 

sensitivity tests. In Table 4 we present the estimates for these robustness checks only for 

Specification 2 (model 3c) and we note that the results are qualitatively similar for Specification 1 

as well.85  

Because we rely on a sample of firms that received venture capital investments, our 

estimates could suffer from selection bias if the sample firms were more likely to receive funds 

than other firms in the first place.  To check whether this potential bias influences our results in 

sensitivity test 1 we construct a Heckman selection model where in the first stage we model the 

probability that a firm receives venture capital and in the second stage we conduct the baseline 

analysis. In the set of regressors in the first stage we include variables such as patents, founder's 

status and receipt of government grants that have been previously shown to affect the chances of 

receiving venture capital (Kaplan & Strömberg, 2004; Lerner, 1999; MacMillan et al., 1986). To 

source the sample of firms that had not received venture capital funds we relied on proprietary data 

from InKnowVation reflecting all biotechnology firms that had won grants from the Small 

Business Innovation Research (SBIR) program from 1983 to 2006. 

 

  

                                                                        
85 In Hoenen et al. (2014) we demonstrate the robustness of the model without the interaction terms to a number of 

observations that include a) different time frames of analysis and, b) different measures of patent quality. We obtain 

similar results when we conduct the same tests here.  Along the same lines, on top of the tests we present in section 

5.2, we also conducted a) a test where we employ the density of VCFs in a region as an alternative proxy for the 

existence of environments characterized by strong information asymmetries and b) a test where we replace the 

minimum distance to the VCF with the average distance (in case of syndicate investments). By and large, our 

estimates are qualitatively similar to the estimates reported in Table 3. 
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Model

Variable
Coefficient

Standard 

errors
Coefficient

Standard 

errors

Intercept 13.2210 0.3806 *** 12.6878 0.8759 ***

Distance between firm and closest VCF 0.0787 0.0302 *** 0.2069 0.1717

Distance between firm and closest VCF * Granted patents -0.0107 0.0057 -0.0114 0.0061

Distance between firm and closest VCF * Patent applications 0.0741 0.0175 *** 0.0658 0.0178 ***

Distance between firm and closest VCF * Academic signal 0.0122 0.0068 0.0106 0.0068

Distance between firm and closest VCF * Entrepreneurial signal 0.0724 0.0318 ** 0.0789 0.0308 **

Forward citations -0.0152 0.0708 -0.0282 0.0792

Seed -0.8591 0.2527 *** -0.8133 0.2675 ***

Early -0.1280 0.2222 -0.1811 0.2169

Expansion 0.0108 0.3080 -0.1224 0.3207

Firm age 0.0706 0.0226 *** 0.0473 0.0237

VCF reputation 0.2757 0.1558 0.3796 0.2299

Syndicate investors 0.3678 0.0523 *** 0.3757 0.0591 ***

Syndicate size 0.0003 0.0001 0.0002 0.0001

Number of universities located in the MSA -0.0005 0.0097 0.0018 0.0096

Density of VCFs in 0 to 10 miles from the firm 0.0110 0.0030 *** 0.0138 0.0053 **

Density of VCFs in 10 to 20 miles from the firm 0.0031 0.0022 0.0033 0.0025

Number of patents granted to biotechnology firms located 0 to 

10 miles from the firm
0.0007 0.0003 ** 0.0006 0.0005

Number of patents granted to biotechnology firms located 10 

to 20 miles from the firm
-0.0005 0.0005 -0.0006 0.0006

First stage residuals of Distance between firm and closest VCF -0.1257 0.1574

Year Dummies included

Obervations 586 586

Adjusted R
2

0.4085

F test for overall model significance 225.3500 ***

Multicollinearity Condition Index 28.1721 75.5719

Wald test for Rho 3.7300

Standard errors are clustered at the state level

** Significant at 5%. *** Significant at 1%.

Table 4. Sensitivity Analysis. The dependent variable is the natural logarithm of the amount of venture capital funding in 

the first round of financing.

Heckman Selection Model Hausman test

1 2

YES YES
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Model

Variable
Coefficient

Standard 

errors
Coefficient

Standard 

errors

Intercept 13.7132 0.4232 *** 13.2886 0.3676 ***

Distance between firm and closest VCF 0.0534 0.0320 0.0830 0.0316 **

Distance between firm and closest VCF * Granted patents -0.0119 0.0065 * -0.0144 0.0059 **

Distance between firm and closest VCF * Patent applications 0.0635 0.0170 *** 0.0599 0.0178 ***

Distance between firm and closest VCF * Academic signal 0.0123 0.0072 * 0.0108 0.0066

Distance between firm and closest VCF * Entrepreneurial signal 0.0705 0.0308 ** 0.0803 0.0328 **

Forward citations -0.0488 0.0706 -0.0146 0.0820

Seed -0.9327 0.2603 *** -0.9401 0.2621 ***

Early -0.1828 0.2137 -0.2225 0.2157

Expansion -0.0654 0.3469 -0.1137 0.3140

Firm age 0.0557 0.0266 ** 0.0597 0.0224 **

VCF reputation 0.3763 0.1806 ** 0.2733 0.1654

Syndicate investors 0.3731 0.0536 *** 0.3680 0.0537 ***

Syndicate size 0.0003 0.0002 ** 0.0003 0.0001

Number of universities located in the MSA 0.0001 0.0100

Density of VCFs in 0 to 10 miles from the firm 0.0112 0.0031 ***

Density of VCFs in 10 to 20 miles from the firm 0.0031 0.0024

Number of patents granted to biotechnology firms located 0 to 

10 miles from the firm
0.0007 0.0004

Number of patents granted to biotechnology firms located 10 

to 20 miles from the firm
-0.0005 0.0005

Firm located in Boston 1.1250 0.2584 ***

Firm located in San Francisco 0.3837 0.1303 ***

Firm located in San Diego 0.1341 0.1102

Year Dummies included

Obervations 586 578

Adjusted R
2

0.3779 0.4055

F test for overall model significance 14.6700 *** 195.5600 ***

Multicollinearity Condition Index 24.3924 27.9837

Standard errors are clustered at the state level

** Significant at 5%. *** Significant at 1%.

Table 4 Continued. Sensitivity Analysis. The dependent variable is the natural logarithm of the amount of venture 

capital funding in the first round of financing.

Regional environment 

with dummy variables for 

traditional biotechnology 

clusters

Omit firms with more 

than four patent 

applications

3 4

YES YES
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Model

Variable
Coefficient

Standard 

errors
Coefficient

Standard 

errors

Intercept 13.2886 0.3676 *** 13.2751 0.3633 ***

Distance between firm and closest VCF 0.0830 0.0316 ** 0.0824 0.0317 **

Distance between firm and closest VCF * Granted patents -0.0144 0.0059 ** -0.0116 0.0060

Distance between firm and closest VCF * Patent applications 0.0599 0.0178 *** 0.0692 0.0187 ***

Distance between firm and closest VCF * Academic signal 0.0108 0.0066 0.0105 0.0070

Distance between firm and closest VCF * Entrepreneurial signal 0.0803 0.0328 ** 0.0799 0.0322 **

Forward citations -0.0146 0.0820 -0.0144 0.0834

Seed -0.9401 0.2621 *** -0.9282 0.2633 ***

Early -0.2225 0.2157 -0.2131 0.2174

Expansion -0.1137 0.3140 -0.1013 0.3098

Firm age 0.0597 0.0224 ** 0.0610 0.0230 **

VCF reputation 0.2733 0.1654 0.2759 0.1640

Syndicate investors 0.3680 0.0537 *** 0.3672 0.0525 ***

Syndicate size 0.0003 0.0001 0.0003 0.0001

Number of universities located in the MSA 0.0001 0.0100 -0.0001 0.0101

Density of VCFs in 0 to 10 miles from the firm 0.0112 0.0031 *** 0.0112 0.0031 ***

Density of VCFs in 10 to 20 miles from the firm 0.0031 0.0024 0.0031 0.0024

Number of patents granted to biotechnology firms located 0 to 

10 miles from the firm
0.0007 0.0004 0.0007 0.0004

Number of patents granted to biotechnology firms located 10 

to 20 miles from the firm
-0.0005 0.0005 -0.0005 0.0005

Year Dummies included

Obervations 578 581

Adjusted R
2

0.4055 0.4063

F test for overall model significance 195.5600 *** 231.8600 ***

Multicollinearity Condition Index 27.9837 28.0500

Standard errors are clustered at the state level

** Significant at 5%. *** Significant at 1%.

Table 4 Continued. Sensitivity Analysis. The dependent variable is the natural logarithm of the amount of venture capital 

funding in the first round of financing.

Omit firms with more 

than four patent 

applications

Omit firms with more that 

five  patent applications

4 5

YES YES
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Model

Variable
Coefficient

Standard 

errors
Coefficient

Standard 

errors

Intercept 13.2958 0.3639 *** 13.3395 0.3389 ***

Distance between firm and closest VCF 0.0865 0.0315 *** 0.0941 0.0280 ***

Distance between firm and closest VCF * Granted patents

Distance between firm and closest VCF * Patent applications 0.0612 0.0187 ***

Distance between firm and closest VCF * Academic signal 0.0089 0.0073

Distance between firm and closest VCF * Entrepreneurial signal 0.0819 0.0308 **

Forward citations -0.0637 0.0925 -0.0722 0.0903

Seed -0.9674 0.2688 *** -0.9720 0.2441 ***

Early -0.2256 0.2136 -0.2415 0.1813

Expansion -0.1113 0.3263 -0.1396 0.3031

Firm age 0.0642 0.0238 ** 0.0551 0.0229 **

VCF reputation 0.2587 0.1690 0.3066 0.1723

Syndicate investors 0.3729 0.0529 *** 0.3672 0.0538 ***

Syndicate size 0.0003 0.0001 0.0003 0.0001

Number of universities located in the MSA -0.0003 0.0100 -0.0004 0.0103

Density of VCFs in 0 to 10 miles from the firm 0.0111 0.0031 *** 0.0112 0.0032 ***

Density of VCFs in 10 to 20 miles from the firm 0.0030 0.0023 0.0028 0.0024

Number of patents granted to biotechnology firms located 0 to 

10 miles from the firm
0.0008 0.0004 0.0007 0.0004

Number of patents granted to biotechnology firms located 10 

to 20 miles from the firm
-0.0005 0.0005 -0.0005 0.0005

Year Dummies included

Obervations 586 586

Adjusted R
2

0.4045 0.4015

F test for overall model significance 140.7900 *** 142.4600 ***

Multicollinearity Condition Index 27.9250 27.6536

Standard errors are clustered at the state level

** Significant at 5%. *** Significant at 1%.

Table 4 Continued. Sensitivity Analysis. The dependent variable is the natural logarithm of the amount of venture capital 

funding in the first round of financing.

7

Omit patent activity signal 

interactions

Omit academic and 

entrepreneurial signal 

interactions

6

YESYES
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The dataset included firm-specific information such as patents and year of foundation as well as 

an indicator of whether or not the SBIR winner firms received venture capital investments, with 

the majority of those firms not having received funds from VCFs.86  The estimates of Heckman 

selection model remain similar in magnitude, sign and statistical significance to our baseline 

estimates and indicate that any potential selection bias does not materially change our findings. 

If the amount invested in a biotechnology firm is endogenously determined with the 

distance between the VCF and the firm, our estimates would suffer from endogeneity bias.87 For 

instance, if local investors could not provide sufficient amounts of capital to local firms, the only 

option for such firms would be to raise funds from distant investors. In such a case, distance and 

the amount raised (our dependent variable) would be determined simultaneously. To test whether 

distance is an endogenous variable we performed the Hausman endogeneity test described in 

Wooldridge (2010, p. 119) and present the second stage estimates in test 2.88 The coefficient of 

the residuals of the first stage is not statistically significant, thus, rejecting endogeneity. This 

implies that our estimates are not plagued by endogeneity bias. Further, the magnitude, sign and 

statistical significance of the signal interactions remain qualitatively similar to the baseline 

estimates. 

To measure the effects of the regional environment and clustering in general, we include 

variables measuring the density of VCFs and patent activity within a 20 miles radius from the focal 

firm. However, clusters are not defined solely by geography but also through professional and 

social ties (Casper, 2007). It is, thus, possible that nearby firms might not belong in a cluster or 

                                                                        
86 Instead of using the age variable in the first stage of the Heckman model we use the year of foundation. We do so 

because for the age variable to be meaningful in our application we would need to model the probability that a firm 

receives venture capital investment within a specific period of time. However, by definition, such period of time 

does not exist for firms that did not receive venture capital investments.  For the selection equation, we also use only 

granted patents as measures of patent activity in the first stage because a number of recipient firms received the 

award before 2001 and as such the full list of submitted applications is not available as it was not recorded by the 

USPTO. The selection of the remaining variables in the first stage of the Heckman model is guided, primarily, by 

findings of previous literature.  To illustrate, for the selection equation we include the SBIR and the location 

dummies based on the findings that SBIR winners are more likely to attract venture capital funds (Lerner, 1999) and 

that firms located in Massachusetts or California are more likely to attract funds (Lerner, 1999). The relationship of 

those factors with the amount of venture capital raised in the first round was not replicated in the existing literature. 

As such, we consider these factors as relevant for the first but not for the second stage of the Heckman model. 

Factors for which empirical evidence is scarce, we theorize, are relevant for both stages (e.g. FounderSignal) and are 

included in both stages (we opt for FounderSignal and not AcademicSignal and EntrepreneurialSignal because of 

better model fit). Finally, when we include different groups of variables in the selection equation we find that the 

results remain largely unchanged.  
87 We thank an anonymous reviewer for bringing up this point. 
88 More specifically, we first run the reduced form regression with distance as the dependent variable against the 

exogenous variables and use the residuals of this regression as an explanatory variable in our baseline model.     
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that firms located further away are still part of the cluster.  To address this possibility, in sensitivity 

test 3 we replace the variables describing the regional environment with variables that take the 

value of 1 for firms located in the MSAs of the three traditional biotech clusters in the US: Boston, 

San Diego and San Francisco. As shown in Table 3, the estimates of this sensitivity test are nearly 

identical to the estimates of the baseline specification. 

As we explained above, we opted to represent patent activity in our baseline model with 

dummy variables that take the value of 1 if the firm was granted a patent or had applied for a patent 

before the investment and 0 otherwise. We did so chiefly because of multicollinearity concerns 

and because the left skewed distribution of patent activity made the dummy variables we used 

roughly equivalent to continuous measures.  In sensitivity tests 4 and 5 we put this modelling 

choice to test. In those tests we omit firms with well above average patent applications, thus, 

checking whether these outliers drive our estimates. In both tests the results are qualitatively 

similar to the baseline estimates and hence provide additional support to our representation of 

patent activity with dummy variables.  

Finally, in tests 6 and 7 we test for the separate significance of the interaction terms – patent 

activity measures and distance as well as founder characteristics and distance—as those are tested 

jointly in the baseline model. The coefficients are similar to the baseline coefficients we present 

in Table 3. Patent applications and the entrepreneurial experience interaction variables remains 

significant and granted patents and academic eminence interaction variables remain insignificant.      

 

Conclusion and Discussion 

A long stream of literature based on signalling theory has analyzed the factors that make signals 

more valuable to receivers.  The general consensus in this literature is that signals are more 

valuable to receivers when transmitted in environments of elevated information asymmetries 

between senders and receivers, such as when firms are untested and when industries are risky. 

However, despite extensive evidence of increasing information asymmetries between transacting 

parties over geographic distance, the value of signals relative to geographic distance remains 

largely unknown. Against this background, and keeping in mind that signals are often more 

relevant for early stages of firm growth, in this paper we pose the following question: are signals 
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of start-up firm quality more valuable to distant than nearby investors and, if so, do they lead to 

higher investments?   

To address the question we examine venture capital investments in 586 US-based 

biotechnology firms over a 10 year period. In line with the notion that information asymmetries 

are more pronounced in long distance transactions we find that firm patent activity and the business 

experience of the founder team carry a stronger signalling value for long distance transactions.  

Overall, our empirical results corroborate the idea that because tacit knowledge circulates 

mostly within local circles, it diminishes the value that receivers place on signals for local 

transactions. Notably, our analysis sheds new light on why patents and patent applications of start-

up firms attract investors.  If patents were valued mostly for their monopoly rights, we would 

expect them to attract investors, equally, in environments of low and high information 

asymmetries. If, however, they were valued primarily as a signal of unobserved firm quality, we 

would expect them to attract investors, chiefly, when information asymmetries are pronounced. 

We find strong support for the latter argument: patent activity, especially patent applications, 

seems to attract venture capitalists mostly because of its signalling function.   

Our study also has managerial and policy implications.  For instance, for start-up firms 

located outside the traditional venture capital hubs seeking early stage venture capital investments, 

our study suggests that signals can help them overcome any potential disadvantages of their 

location. This finding is particularly relevant because, early stage firms are often tempted to 

relocate to increase their access to financial resources (Tian, 2011). In contrast, potential senders 

of signals located close to intended receivers, may benefit more from conveying quality 

information through local networks. Our study shows that in close proximity the value of signals 

tends to diminish and, hence, the costs of signalling may outweigh the potential benefits. For policy 

makers our findings imply that signalling is a way to attract venture capital from outside the region. 

If local governments are able to assist local firms with signalling, through certification or award 

programs or technical assistance for patent and grant acquisition, this could attract distant venture 

capital and therefore contribute to the innovativeness and economic growth of the region (Samila 

& Sorenson, 2011).  

We close with a note on the limits of our study and on potential extensions.  Our focus on 

biotechnology is largely motivated by the spatial configuration and the types of investments that 

occur in the industry, which present a suitable setting for studying the strength of signals across 
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different distances between senders and receivers. The spatial configuration of the biotechnology 

industry and of investments in it may not be representative of other industries thereby limiting the 

generality of our conclusions. Extending the analysis to different industries could leverage the 

presence of shorter research cycles, differential locations, industry structures, and overall 

information asymmetries and risks thereby providing opportunities for new signals and additional 

insights.   

A potential limitation of our work is that common factors could affect the location of 

biotechnology firms and venture capital firms. For instance, biotech firms with low patent activity 

aware of its signalling value to distant investors could purposefully locate close to VCFs. If that 

holds, the analysis would be subject to an identification concern.89 Existing empirical evidence 

from a broad set of industries indicates that the effect of regional venture capital activity per se on 

firm births is not strong (Samila & Sorenson, 2010, 2011). Specifically for biotechnology the 

impact of venture capital activity on firm births is either non-existent (Kolympiris, 

Kalaitzandonakes, & Miller, 2015) or weakly positive and lessens even more when other factors 

(e.g. university presence) are explicitly considered (Stuart & Sorenson, 2003). While such 

evidence suggests that the concern at hand is not particularly acute, the possibility cannot be fully 

ruled out.   

The focus of the study coupled with data limitations does not allow us to use sharper 

measures of the regional environment in which the focal firms are located. Relevant measures 

could account for the ties between nearby organizations and the overall network structure 

surrounding the firms receiving funding. Along the same lines, investigating whether social and 

industrial distance between investors and recipient firms impacts the effects of geographic distance 

on the valuation of signals a la Sorenson and Stuart (2001) is a fruitful avenue for further work. 

Finally, the correlation of the signals and their interactions with the distance between VCFs 

and target firms in our data set constraints, somewhat, our model specification. Our empirical tests 

provide some comfort on the robustness of our results but future work could explore further their 

separate effects.   

                                                                        
89 Along the same lines, an additional identification concern could arise if venture capitalists encourage firms to 

apply for patents. Given that we measure patent activity before the first round of investment, this would hold only 

for cases under which the venture capitalist plays a role in the decision process of the firm before the investment. 

However, because of the well-established ex ante scanning function and ex post coaching function of venture 

capitalists, this sort of identification is not a particularly strong concern in our work.  
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Chapter 6. Conclusions and Discussion 
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The knowledge economy demands constant feeding of new knowledge. As conducting 

science is an expensive activity with uncertain results, resource scarcity constrains industry and 

academia from producing knowledge at socially optimal levels (Acs et al., 2002; Cohen et al., 

2002; Nelson, 1959). Emerging firms and academia, two major contributors to the advancement 

of science (OECD, 2005), face the largest of these resource constraints. One important reason for 

this is that both high-technology start-ups and academics have to participate in resource acquisition 

from public or private parties. However, knowing how to successfully attract resources is a tacit 

knowledge that is not easily learned and is typically beyond their core skillset. This is an important 

topic because individual academics and high-technology start-ups who raise funds from private or 

public sources are more likely to capitalize on research trajectories that allow them to become 1) 

a major form of human capital for the advancement and direction of science, and 2) connect science 

to society in the knowledge economy (Lerner, 1996; Oyer, 2006; Petersen et al., 2011; Waldinger, 

2016). Given the important contribution academics and start-ups make to the knowledge economy, 

we formulated the following research objective for this dissertation: 

 

Investigate how start-up firms and researchers in the knowledge economy can 

acquire resources that allow them to innovate and advance science. 

 

To complete the main research objective, we guide ourselves with the knowledge that the 

two groups (start-ups and academics) approach the issues around resource acquisition in their own 

way as they have different tools available and their problems with resource acquisition stem from 

different foundations. For instance, academic researchers rely heavily on the experience and 

knowledge of academic peers in their department (Stigler, 2003) and start-ups look for ways to 

reduce information asymmetries. (Zhang & Wiersema, 2009).  

In this chapter, we start with answering our main research question for researchers and 

start-ups separately in 6.1. Then in 6.2, we follow with the theoretical contributions that the four 

research chapters make. After, 6.3 discusses the main limitations and accordingly 

recommendations for future research. Finally, 6.4 closes the thesis by providing implications for 

policy makers and managers.   
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Conclusions per group 

Resource Acquisition by Academic Researchers 

In the first two essays in this dissertation, we study how academics with little to no experience in 

attracting research funding can learn from colleagues with specific knowledge on this subject. In 

order to tease out the subtleties of how learning between peers occurs and to rule out competing 

explanations as the causal factor behind performance gains including increases in research funding 

in this paper we are the first to exploit the rotation program at the National Science Foundation 

(NSF).  

The rotation program presents a rare research opportunity in that it equips academics with 

unique knowledge that is difficult to acquire when following an academic career trajectory that 

does not include experience outside academia. Further, the rotation setting provides an opportunity 

for this knowledge to spill over to the colleagues of rotators. Exploiting such richness and with an 

eye on the fact that the rotation program has never been analyzed empirically the question we ask 

in chapter 2 whether, upon return, rotators cause scientists who are early in their career to increase 

their NSF funding? Such learning could occur with the returning rotator providing hints on topics 

NSF is keen on funding, guidance on available but difficult to detect funding opportunities and 

other forms on knowledge transfer (Argote, Beckman, & Epple, 1990; Argote et al., 2000; 

Gruenfeld et al., 2000).  Then, in Chapter 3, we ask what are the conditions that magnify the effects 

that result from knowledge transfer.  

To study these questions, we split academics who are inexperienced with acquiring funding 

in two groups: 1) early career academics who have only recently taken on their first faculty positon 

at the target department and 2) seasoned academics who are further in their career but have been 

unable to acquiring funding for a significant amount of time. These two groups are heterogeneous 

in their characteristics as they are in different stages of their careers and have different knowledge 

bases and standings within the department.  

In chapter 2, we reveal evidence consistent with a causal link between increases in the 

NSF funding record of newly hired assistant professors and exposure to academics in their 

department who return from their tenure at the National Science Foundation as Program Directors 

(rotators). We construct novel data that follows PhD graduates from the moment they land their 

first faculty position in departments with and without a rotator. However, different sources of 
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endogeneity may allocate individuals to treatment and control groups non-randomly, labor market 

conditions differ across years, the best candidates will land the best positions, and university-wide 

policies around grant-writing support and tenure track incentives may boost funding rates. We 

tackle these issues by creating three datasets: In the first dataset we exploit time variation by 

including new hires joining the same department at different points in time when labor market 

conditions vary, the focal colleague had or not left for the NSF and had or not the rotation 

experience. Indeed, these factors are the prime determinants of initial job placement (Miller et al., 

2005). In the second dataset we include PhD holders (some landing a job in a department with a 

rotator and some without a rotator) who had the same PhD advisor, worked in the same science 

field and graduated about the same year (Kahn & MacGarvie, 2016). In the third dataset we hold 

university-wide factors constant. This allows us to compare the funding records of new hires who 

joined the same university at approximately the same time but in different, yet comparable, 

departments having one main difference: some have a rotator as a faculty member and some do 

not. Finally, the three datasets reveal reveal that rotators have a causal impact on the funding 

acquisition records of new hires as they raise close to $200,000 more from the NSF when compared 

to similar others who do not have a rotator as a colleague.  

These gains are realized in the first two years after the rotator returns. Given that the 

average assistant professor in our sample start their tenure-track position two years prior to the 

rotator returning, the two years after the rotator returns are at a critical moment in their career: 

successfully raising research funding often means the difference between getting tenure or leaving 

the department (Feinberg & Price, 2004; Stephan et al., 2017). Through a number of empirical 

tests we reveal that the effect originates from knowledge transfer from the rotator to the early stage 

academic.  

In chapter 3, we find causal evidence that rotator’s colleagues with no NSF funding in the 

ex-ante period raise close to $140,000 more than scientists who do not have a rotator as a colleague 

in the ex-post period. Additionally, we go one step further and study how the personal 

characteristics of the rotator and his colleagues affect the transfer of knowledge. We find strong 

evidence that rotators with longer tenure and a similar knowledge base as the focal colleague affect 

the NSF funds the focal colleague acquires. Additionally, as the focal academics in this chapter 

are not early stage academics but rather academics with a longer career history, we compare the 

effect similar productivity between rotator and focal academic has on raising research funding. To 
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this we find evidence that suggests that the more similar the rotator and focal colleague are in terms 

of productivity, the more knowledge transfer happens. 

 

We conclude that researchers in the knowledge economy can acquire resources 

through positive knowledge spillovers that stem from interactions with peers who have 

specific knowledge and experience in how funding works. 

 

Resource Acquisition by Start-Ups 

In the last two essays of this dissertation, we study how start-up firms can signal their quality to 

funding providers in order to overcome information asymmetries. Strong and valuable signals need 

to be observable and costly to imitate (Cohen & Dean, 2005; Spence, 1978).  Additionally, signals 

that are governed by strong institutions and hence conform to a certain institutional standard tend 

to increase in value (Janney & Folta, 2003). Patents meet these requirements because they are 

easily observable, have high, up-front costs (Graham, Merges, Samuelson, & Sichelman, 2009) 

and are governed strictly. Indeed, a number of studies have shown the value patents have in 

signalling quality to investors such as venture capital firms (Baum & Silverman, 2004; Häussler 

et al., 2012; Mann & Sager, 2007).   

However, what is difficult to conclude from these empirical studies is what the dynamics 

are of the signalling strength that patents carry. Is the value of patents as signal equal to all high-

technology firms looking for funding? To answer this question we look at two factors that 

influence the level of information asymmetry between start-up and venture capital investor, 

namely, time and distance.  

In chapter 4, we investigate how the value of patents or patent applications as signal 

develops as the venture capitalist firm (VCF) and target firm become more familiar over time. To 

do so, we exploit the fact that a popular mechanism VCFs use towards that end is to provide funds 

in rounds (Wang & Zhou, 2004). Between these rounds, VCFs spend considerable time at the firm 

and involve themselves with day-to-day activities through mentoring and consulting (Gorman & 

Sahlman, 1989). As they spend time at the firm, they have a chance to evaluate the potential of the 

firm and the skills of its founder. It follows then that these VCFs become more acquainted with 

the firm and information asymmetries reduce.  
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Our empirical estimates strongly support our theoretical expectations that patent activity 

before the first round of financing increases the growth of funds for that round. However, once 

investors and target firms decrease the information asymmetries between them, patent activity 

ceases to serve as a signal that increase the level of funds raised at the second round of financing. 

In chapter 5, we investigate whether the geographic distance between VCFs and high-

technology start-ups influences the value of signals transmitted by emerging biotechnology firms. 

We do so because prior work has found that information asymmetries increase with distance 

(Coval & Moskowitz, 1999; Ivkovic & Weisbenner, 2005; Portes et al., 2001), yet they are nearly 

silent about the impact of the geographic distance between agents on the strength of the signal. In 

line with our expectations, we find that the larger the distance between VCF and target firm, the 

more important signalling becomes.  

Combined, these studies shed new light on the reasons why patents attract investors such 

as venture capital firms and how high-technology start-ups can leverage their intellectual property 

to attract funding.  

 

We conclude that start-ups in the knowledge economy can acquire resources by 

signalling their competence to venture capital firms when information asymmetries are 

inflated due to the two parties being unfamiliar with one another and geographic distance 

is high.  

Theoretical Contributions 

By studying how start-ups and academic researchers in the knowledge economy acquire resources, 

this thesis contributed to a number of research streams.  

First, chapter 2 contributes to previous research on the academic labor market. More 

specifically, we submit novel evidence to prior work on the effects of access to high human capital 

in academia (Azoulay et al., 2010; Borjas & Doran, 2012; Borjas & Doran, 2015; Waldinger, 2010, 

2012; Waldinger, 2016), success in science (Kahn & MacGarvie, 2016; Kelchtermans & 

Veugelers, 2013) and academic mentoring (Blau et al., 2010).  The study also shows –for the first 

time- how scholars can use the rotation program of the NSF to study a range of economic and 
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social science topics (eg. advancement of science, peer effects, knowledge transfer and diffusion, 

and networking).  

Second, the findings in chapter 3 speak directly to the research on knowledge transfer, 

academic mobility and organizational learning by showing how academics with brief spells of 

work outside the normal environment can generate positive spillovers for their colleagues (Argote 

& Ingram, 2000; Herrera, Muñoz-Doyague, & Nieto, 2010; Song et al., 2003). This research has 

an original contribution to these research streams by presenting how organizations can learn not 

only by learning by doing and learning by hiring, but also by learning by seconding. Additionally, 

we contribute to the literature on social identity and organizational by studying how employees 

use the positive effects of a common social identity to improve their position. For instance, 

scientists with a common knowledgebase transfer knowledge between them more, even when this 

knowledge is outside their core field.  

Third, chapter 4 contributes to prior work on start-up and SME financing (Baum & 

Silverman, 2004; Carpenter & Petersen, 2002) and patent valuation (Harhoff et al., 2003; Häussler 

et al., 2012). Above all, we extend the research on signalling theory and information asymmetries 

(Fama, 1980; Jensen & Meckling, 1976). Prior research established that the value of signals differs 

between the type of signal and the agents that receive them (Janney & Folta, 2003; Zhang & 

Wiersema, 2009). We show that the value of the same signals between the same actors changes in 

line with changes in information asymmetries.   

Last, in chapter 5 we extend the contribution chapter 4 makes on the existing literature. 

Starting with the premise that the value signals carry is dynamic, we investigate other factors and 

additional signals. We find that not only does the value of signals change over time (as information 

asymmetries reduce), but they also change with distance between transferor and receiver. 

Additionally, and conflicting with earlier work, we find no evidence that the founding team of 

start-ups act as a signal.  

Limitations of the Dissertation and Recommendations for Further 
Research 

This dissertation adds to existing theories in transferring knowledge and information to overcome 

resource constrains in the knowledge economy and does so through novel methodological 

approaches. However, the research findings should be treated with caution and its limitations 
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should be considered before the conclusions in this chapter can be generalized. This sections 

presents the identified limitations and provides recommendations for future research.  

First, the main limitation of this research is that there are more ways for academics and 

start-ups in the knowledge economy to overcome resource constraints. In this dissertation, we look 

solely at how resource acquisition improves for academics and start-ups when they use 

knowledgeable peers to overcome gaps in their knowledge repository or signalling to overcome 

information asymmetries. These parties can improve their funding records by many more ways. 

For instance, academics may also overcome barriers to funding by interacting with current NSF 

staff (Custer et al., 2000) and improve their scientific writing skills (Porter, 2007). Likewise, start-

ups can improve their funding levels by improving internal capabilities and improving their 

network linkages (Lee, Lee, & Pennings, 2001), hiring staff with experience and ability in 

attracting funding (Gartner et al., 1999) and applying for a mentorship (Waters, McCabe, 

Kiellerup, & Kiellerup, 2002). 

Second, the essays in this study looked only at a single form of funding for both academics 

and start-ups, namely public research funding from the NSF and venture capital funding. Although 

these two are major funding sources for the two parties in the US, they are not the only options 

available. Academics can look at other public funding agencies such as the NIH, Department of 

Energy, NASA and Department of Defense (AAAS, 2016). In addition, the private sector can be 

a source of funding as industry has an increasing role in funding academic research (Gulbrandsen 

& Smeby, 2005). Therefore, reaching out to industry parties and partaking in contract research is 

a viable solution to many academics who are unable to get public funding (Hoenen, Kolympiris, 

Wubben, & Omta, 2018). Generally for start-ups, self-funding and funding from friends and 

families are the major sources of funding. However, start-ups in the knowledge economy typically 

require more funding and a longer time to market (Vohora, Wright, & Lockett, 2004). As a result, 

self-funding or friends and families become less viable funding sources. Other sources of funding 

for high-technology start-ups are business angles, banks and the public sector and the way these 

start-ups should deal with them might differ from how they deal with venture capital firms. For 

instance, because business angels do not have agency problems from their fund providers, they are 

not under pressure to behave professionally, leading to a more informal, incomplete contracts 

approach (Van Osnabrugge, 2000). Also, because venture capital firms conduct more and better 

pre-investment due diligence to reduce information asymmetries, it might be the case that business 
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angles are more attracted to signals from start-ups. Public funding also allows start-up firms to 

overcome funding constraints. The highly successful United States SBIR program allocates 

funding to innovative start-ups and SMEs. Because agency problems are less relevant here as the 

SBIR does note acquire a share in the firm, and there is generally less uncertainty on the technical 

merit of a proposed innovation, the value of signals might be lower or less relevant.  

The last main limitation to our research is that we focus solely on academics and high-

technology start-ups in the United States. As such, the results may not be generalizable directly to 

other (developed or developing) countries. Although resource constraints affect academics and 

start-ups everywhere, the level of experienced funding limitations and how these academics and 

firms get funding differs from country to country. For instance, the uniqueness of the rotation 

program at the NSF together with our estimates makes one wonder whether other funding agencies 

elsewhere would benefit from a similar setting.  

Given the above limitations to our research, we arrive at a number of general 

recommendations for future research.  

First, we recommend further research to conduct studies on other sources of finance for 

academics and high-technology start-ups. The NSF is unique in its use of rotators. Other public 

funding agencies use different methods to award grants. For instance, many funding agencies use 

academics not as rotators but as panelists. Do these panelists at other agencies also gain new 

knowledge in how to acquire research grants, and do they transmit this knowledge at their home 

institution?  In a similar vein, do start-ups also benefit from patent signals when they try to acquire 

funding from business angels and government programs? The SBIR is similar to venture capital 

funding in that it provides funding in stages. Future research can investigate whether the dynamic 

mechanism explained in chapter 4 and 5 also affects SBIR grants. Additionally, the ones who make 

the funding decisions at the SBIR have academic backgrounds. Do they look for different signals 

than venture capitalists?  

Finally, we close with the recommendation that going more deeply into the qualitative 

approach can yield answers to a number of questions that the essays in this dissertation were unable 

to answer. Exactly what type of knowledge do rotators transmit, how do they transmit this 

knowledge and why do they do it? Likewise, interviews with start-ups and venture capital firms 

could have extended the scope of this research: Do start-ups know that patents are a signal and do 

they deliberately use the signalling value? Are venture capital firms aware that they might be 
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valuing patents more than they are economically worth? We would have liked to study these 

questions in depth, but because our goal was to investigate at a large scale how academics and 

start-ups attract funding, we leave such refinements for future work.      

Managerial and Policy Implications 

This dissertation investigated how two major actors in the knowledge economy can attract funding 

that allows them to innovate and advance science. Considering the relevancy and importance of 

this research, this section presents the policy and decision making implications at public and 

private organizations.  

Our results in chapter 2 and 3 show that it is not peers per se that induce gains but peers 

with valuable experience that are willing to share their knowledge and insights with others. Still, 

the challenge for universities is that scientists with unique experiences are not in ample supply. 

Competition for talent is already pronounced in academia and the evidence we present in this 

dissertation may intensify it. Importantly, though, universities typically compete for one’s 

individual record of academic achievements. The rotation setting implies that competition for 

one’s unique experience may also pay off: winning the race may bring about significant multiplier 

effects because the benefits from such cohort of hires appear to spill over to other faculty members 

and especially to those who might be in the most need for help. Alternatively, and keeping in mind 

that most rotators have had a limited number of career moves, if any, an alternative means for 

universities to create spill-over effects via scientists with unique experience is to promote NSF 

rotation within existing faculty members. Still, as became clear during our interviews, rotation, for 

the largest part, comes at the expense of one’s own, at least short term, research productivity. 

Therefore, universities must balance the sorts of benefits we document with the decline in 

academic productivity that rotation tends to entail. The way forward may be to promote rotation 

primarily towards targeted faculty members. The actual forms such promotion may take depend 

on the field of science, the university rules and norms and other factors. 

From a policy perspective, the paper speaks directly to the design of the rotation program. 

Under the premise that home universities gain from the rotation program a recent policy mandates 

that they cover part of the rotation program bill (Mervis, 2016a). Here, while we do not fully 

measure the benefits and the costs of the program, we do nevertheless find that home institutions 
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realize gains from returning rotators.  Also, given the importance of getting funded and the 

difficulty many academics have to achieve this, policy makers have started to react by 

implementing measures that improves the chances of early stage and inexperienced academics to 

get granted. Yet, focus has been on large scale institutional changes on the supply side. We show 

to policy makers that exploiting existing knowledge held by colleagues’ (the demand side) might 

also be a complementary, less resource-intensive strategy.  

Regarding our findings in chapter 4 and 5, the empirical estimates can inform managers of 

biotechnology firms on the benefits that arise from patent activity. We estimated that, on average, 

an additional pending patent application can increase the amount of venture capital funds raised in 

the first round of financing. The size of the coefficient clearly surpasses the existing estimates for 

the direct costs of being granted a patent (which ranges from $10,000 to $38,000). Moreover, in 

line with previous research, our estimates strongly point managers of biotechnology firms towards 

patents of higher quality since investors appear to be able to detect patents of higher value and 

invest in the firms that possess them instead of investing in firms that are granted a large number 

of patents (Häussler et al. 2009). Additionally, our findings that patent activity matters only for the 

first round of financing imply that after the attraction of venture capital alternative protection 

mechanisms such as licensing may not be suboptimal in terms of venture capital attraction. 

Assessing the strength of alternative protection mechanisms in attracting venture capital 

investments is a potential avenue for further research that can complement the present work. 

Finally, our results on the effect of distance on funding and patent signals indicate that firms that 

are not able to produce sufficient patent signals may need to locate closer to innovative clusters 

where there is a higher supply of venture capital firms. On the other hand, senders of signals 

located in the proximity of the intended receiver, should carefully consider whether signalling 

indeed delivers the expected returns. Our study shows that in such cases the value of signals is not 

particularly high.  Accordingly, the costs of signalling may eventually outweigh the potential 

benefits. 

From a policy perspective, a number of concerns have been raised about the current status 

of the patenting system and the degree that it hinders innovation. The $630,000 figure we presented 

in chapter 4 can be informative towards that end if the federal costs per patent are discernible and 

if, as expected, higher investments eventually translate to higher innovation measures via the 

strengthening of firms with potential to innovate. Additionally, our findings show that signals are 
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a way to attract investments into regions outside the main technology clusters. Governments in 

these ‘barren’ regions may improve the attractiveness of their region by providing technical 

assistance for patent acquisition.  
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Summary 

Academia and industry are major actors in the knowledge economy. The contributions 

these actors make to the knowledge economy is largely constrained by resource scarcities. Such 

resource scarcity is more pronounced for the two actors I focus on in this dissertation, start-ups 

and academic scientists. 

First, mainly due to a lack of revenue streams, high-technology start-ups seek funding to 

fuel their research activities from outside sources, such as governmental subsidies, venture capital 

and business angels (Audretsch, 2003; Hellmann & Puri, 2002; Shane, 2012).  However, the 

uncertainty surrounding embryonic inventions as well as complex regulatory environments create 

information asymmetries between these firms and the potential financers that make investment 

decisions a difficult task (Sahlman, 1990). Second, academics source their research funding 

generally from the public. They do so generally primarily by submitting research proposals to 

funding agencies. However, fund raising is challenging as knowing where possible funding 

opportunities exist and being able to submit competitive research proposals requires tacit 

knowledge that is difficult to get access to (Feinberg & Price, 2004; Stephan et al., 2017).  

Because resource acquisition is one of the main drivers for knowledge production for 

academics and start-ups alike, and the difficulty of resource acquisition is inversely correlated with 

the available knowledge, competence and experience the parties have in securing resources, the 

aim of this dissertation is to  

Investigate how resource constrained start-up firms and researchers in the knowledge 

economy can gain access to resources in order to innovate and advance science. 

We start with the premise that the two groups, start-ups and academics, approach the issues 

around resource acquisition in their own way as they have different tools available:  
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How academics overcome resource constraints. 

Academic researchers rely heavily on experience and knowledge of academic peers in their 

department (Stigler, 2003). Collegial behavior manifested in help towards the generation of 

valuable ideas, feedback and criticism via formal or informal interactions is recognized as a key 

input for the advancement of one’s (academic) career (Laband & Tollison, 2000; Laband & 

Tollison, 2003). Therefore, in the first two essays in this dissertation, we study how academics 

with little to no experience in attracting research funding can learn from colleagues with tacit 

knowledge how to do so. In order to tease out the subtleties of how learning between peers occurs 

and to rule out competing explanations as the causal factor behind performance gains including 

increases in research funding in this paper we are the first to exploit the rotation program at the 

National Science Foundation (NSF).  

Under the rotation program, since 1970, NSF employs academic scientists, called rotators, 

who step out of their academic institution for a period of usually 1 to 2 years to manage its review 

process as Program Directors (PDs), make recommendations on the allocation of the 5 billion 

dollars per year across the 45,000 competing proposals it receives, and essentially shape the 

direction of science (Li & Marrongelle, 2013). Once these scientists return to their academic homes 

they are armed with experience and unique knowledge of the NSF, they carry insights on how 

funding decisions are made, they have inside knowledge on the potential funding directions and 

priorities of the agency, and ultimately they know what makes a proposal competitive and what 

does not. Simply put, they gain knowledge that is difficult to acquire unless they jump out of 

academia, even only temporarily.   

In chapters 2 and 3, we split academics in departments with a returning rotator and who 

are inexperienced with acquiring funding in two groups: 1) early career academics who have only 

recently taken on their first faculty positon at the target department and 2) seasoned academics 

who are further in their career but have been unable to acquiring funding for a significant amount 

of time. These two groups are heterogeneous in their characteristics as they are in different stages 

of their careers and have different standings within the department.  

In chapter 2, we construct novel longitudinal data that follows PhD graduates from the 

moment they land their first faculty position in departments with and without a rotator. However, 

different sources of endogeneity may allocate individuals to treatment and control groups non-

randomly, labor market conditions differ across years, the best candidates will land the best 
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positions, and university-wide policies around grant-writing support and tenure track incentives 

may boost funding rates. We tackle these issues by creating three datasets: In the first dataset we 

exploit time variation by including new hires joining the same department at different points in 

time when labor market conditions vary, the focal colleague had or not left for the NSF and had or 

not the rotation experience. Indeed, these factors are the prime determinants of initial job 

placement (Miller et al., 2005). In the second dataset we include PhD holders (some landing a job 

in a department with a rotator and some without a rotator) who had the same PhD advisor, worked 

in the same science field and graduated about the same year (Kahn & MacGarvie, 2016). In the 

third dataset we hold university-wide factors constant. This allows us to compare the funding 

records of new hires who joined the same university at approximately the same time but in 

different, yet comparable, departments having one main difference: some have a rotator as a faculty 

member and some do not. Finally, the three datasets reveal reveal that rotators have a causal impact 

on the funding acquisition records of new hires as they raise close to $200,000 more from the NSF 

when compared to similar others who do not have a rotator as a colleague.  

In chapter 3, we exploit the academic experience of over 1,500 seasoned academics and 

the familiarity they have with their department colleagues and use this to study whether intensity 

of knowledge transfer hinges, in large part, on the relationships between the transferor (the rotator) 

and the recipient of knowledge (Argote & Ingram, 2000; Singh & Agrawal, 2011). We use 

coarsened exact matching to create a dataset that contains similar academics in similar departments 

with and without a rotator. In line with our hypotheses, we find that rotators have a stronger effect 

on funding acquisition of seasoned academics who have not raised NSF funding in the prior 5 

years when they 1) are more familiar with the department, 2) do similar research, and 3) are closer 

to each other in terms of research productivity.  

Combined, both studies reveal evidence consistent with a causal link between increases in 

the NSF funding record of academics who are inexperienced with raising funds and exposure to 

academics in their department who return from their tenure at the National Science Foundation as 

Program Directors (rotators). Additionally, the studies speak directly to the research on knowledge 

transfer, academic mobility and organizational learning by showing how academics with brief 

spells of work outside the normal environment can generate positive spillovers for their colleagues 

(Argote & Ingram, 2000; Herrera et al., 2010; Song et al., 2003). This research has an original 
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contribution to these research streams by presenting how organizations can learn not only by 

learning by doing and learning by hiring, but also by learning by seconding.  

Regarding our research objective, we conclude that researchers in the knowledge 

economy can acquire resources by having access to superior human capital gained via 

experience outside academia. 

 

How start-ups overcome resource constraints 

In chapters 4 and 5, we study how high-technology start-ups overcome resource 

constraints. In order to overcome resource constraints, start-ups look for ways to reduce 

information asymmetries. One way firms can reduce information asymmetries is to use signals 

that that can shine a light on the potential of the firm (Zhang & Wiersema, 2009). Indeed, a number 

of studies demonstrate that signals reduce information asymmetries and improve funding of start-

ups (Baum & Silverman, 2004; Cohen & Dean, 2005; Häussler et al., 2012; Hsu, 2007; Janney & 

Folta, 2003; Mann & Sager, 2007; Mishra et al., 1998a; Spence, 1978). However, what is difficult 

to conclude from these empirical studies is what the dynamics are of the value that different signals 

carry. To answer this question, in the last two essays of this dissertation, we study two factors that 

influence the level of information asymmetry between start-up and venture capital investor, 

namely, time and distance.   

In chapter 4, we investigate how the value of patents or patent applications as signal 

develops as the venture capitalist firm (VCF) and target firm become more familiar over time. To 

do so, we exploit the fact that a popular mechanism VCFs use towards that end is to provide funds 

in rounds (Wang & Zhou, 2004). Between these rounds, VCFs spend considerable time at the firm 

and involve themselves with day-to-day activities through mentoring and consulting (Gorman & 

Sahlman, 1989). As they spend time at the firm, they have a chance to evaluate the potential of the 

firm and the skills of its founder. It follows then that these VCFs become more acquainted with 

the firm and information asymmetries reduce. To test our hypothesis we use a rich dataset that 

measures patent and investment activities of over 1500 biotechnology start-ups between 1974 and 

2001. In line with our theoretical expectations, we find that patent activity only influences the size 

of the first round of financing and not the second.  

In chapter 5, we investigate whether the geographic distance between VCFs and high-

technology start-ups influences the value of signals transmitted by emerging biotechnology firms. 
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We do so because prior work has found that information asymmetries increase with distance 

(Coval & Moskowitz, 1999; Ivkovic & Weisbenner, 2005; Portes et al., 2001), yet they are nearly 

silent about the impact of the geographic distance between agents on the strength of the signal. In 

line with our expectations, we find that the larger the distance between VCF and target firm, the 

more important signalling becomes.  

Combined, these two studies shed light on the reasons why patents attract investors such 

as venture capital firms and how high-technology start-ups can leverage their intellectual property 

to attract funding. The two chapters contribute to prior work on start-up and SME financing (Baum 

& Silverman, 2004; Carpenter & Petersen, 2002) and patent valuation (Harhoff et al., 2003; 

Häussler et al., 2012). Additionally, we extend the research on signalling theory and information 

asymmetries (Fama, 1980a; Jensen & Meckling, 1976). We find that not only does the value of 

signals change over time (as information asymmetries reduce), but they also change with distance 

between transferor and receiver. 

Regarding our research objective, we conclude that start-ups in the knowledge 

economy can acquire resources by signalling their competence to venture capital firms when 

information asymmetries are inflated due to the two parties being unfamiliar with one 

another and geographic distance is high.  
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