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ABSTRACT 

Fresh fruit has become a major consumption item for city dwellers and the demand has 

continuously increased in recent years. A significant proportion of fresh fruit globally is grown 

by developing countries in tropical regions, especially in Asia, and exported to other countries. 

This has become an important source of economic income for many developing countries, 

such as Thailand. Nevertheless, the fresh fruit industry in developing countries is experiencing 

critical issues, including short shelf life, high wastage, poor quality, and food safety, due to 

operations in high-temperature environment.  Studies reveal that many developed countries 

have successfully solved these problems by using a cold supply chain with tight temperature 

control throughout the entire supply chain process.  Cold supply chain adoption usually 

requires heavy investment in infrastructure and technology, as well as technical knowledge 

training for operational staff to ensure temperature compliance along the supply chain.  In 

developing countries where capital resources are limited, this so-called high-tech high-cost 

approach has proven to be an obstacle to widespread cold supply chain adoption .  As such, 

the design adopted by developed countries to implement a fresh fruit cold supply chain might 

not be directly applicable to developing countries, due to the lack of cold chain infrastructure 

and equipment and the low level of technical know-how. 

To address this issue, this study presents a proposal for adopting a low-tech low-cost approach 

by focusing more on available resources, such as cheap labour, and flexibility in work practices 

such as work shifts, than on infrastructure and technology in designing cold chain systems for 

developing countries.  It is considered that this option would be more viable for developing 

countries with limited capital resources and know-how, and would thus enable widespread 

cold supply chain adoption.  It could also play a vital role in the transition of cold supply chain 

implementation from a nascent stage to a mature development, whereby the high-tech high-

cost approach of the developed countries would more readily be adopted.  This study 

incorporates insights from multiple theoretical perspectives, including the theory of 

constraint ( TOC)  and network theory ( NT) , to underpin the low- tech low- cost approach 
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proposed. Two alternative low-tech cold supply chain designs are investigated and developed 

based upon a comprehensive literature review of the state of the art in the field . 

Owing to the fact that fresh fruit cold chain adoption is still relatively rare in developing 

countries, this study explores different approaches to low-tech cold supply chain design for 

fresh fruits using simulation as a tool.  A traditional fresh mango supply chain in Thailand, 

which involves five farms, three processors, one transporter and one middleman company, 

was used as a case study to facilitate the exploration. Discrete-event simulation was employed 

to evaluate the changes in performance of the typical mango supply chain before and after 

the adoption of the cold supply chain design.  Key performance indicators, such as lead time, 

total operating cost, shelf life, wastage, and throughput, of the current supply chain and the 

different cold chain designs were compared. The findings reveal that cold supply chain design 

using the low-tech low-cost approach performs better in all aspects than the other design 

relying solely on infrastructure investment. Scenario tests also show that such a design is more 

robust than the other infrastructure-oriented design when facing fluctuations in demand and 

increases in labour cost in the long run.  By proposing an innovative approach to cold chain 

design for developing countries and exploring its feasibility using computer simiultaion, this 

study makes a significant contribution to practice by showing the potential benefits of a low-

tech low-cost approach to cold chain adoption in developing countries, thereby expeditng its 

implementation. It also contributes to knowledge by creating a new scope for research in cold 

chain design leveraging labour resource, change in work practices, and collaboration instead 

of merely infrastructure and technology.  
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Chapter 1  

INTRODUCTION 

The study undertaken in this thesis examines a suitable approach to cold supply chain design 

for fresh fruit supply chains in developing countries to improve performance in throughput, 

lead time, operating cost, shelf life, and wastage.  This chapter provides the context and 

motivation for the study.  The research methodology used as well as the contribution of the 

study are briefly discussed. Lastly, an outline of the thesis is presented.  

1.1 Research context 

Fresh fruit is a major food of consumption for city dwellers, due to affluence and changes in 

lifestyle towards a healthy diet.  The amount of global fresh fruit has been on the rise from 

2000 to 2013 (Food and Agriculture Organization 2016b) , because of the changes of dietary 

patterns resulting from the expanding global population, increasing income, and 

consciousness of the health benefits of fruit, including that fruit intake can help prevent major 

diseases ( World Health Organization 2003) .  The World Health Report ( World Health 

Organization 2003)  establishes that adequate daily consumption of fruit lowers the risk of 

heart disease and cancer.  Low intake of fruit leads to approximately 31% of ischemic heart 

disease and around 11%  of strokes worldwide.  Research outcomes on fruit and vegetable 

intake as well as cancer potential, organised by the World Health Organisation’ s IARC 

( International Agency for Research on Cancer) , have determined that cancer risk, mainly 

cancers of the gastrointestinal tract, can be reduced by eating fruits and vegetables .  IARC 

evaluates that the percentage of cancer preventable through fruit and vegetable 

consumption varies from 5- 12%  for all cancers to more than 20- 30%  for global upper 

gastrointestinal tract cancers (World Health Organization 2003).  

However, like other agricultural produce, fresh fruit – a high-value perishable product – suffers 

from issues, such as short shelf life, high wastage, poor quality, and food safety, due to 

harvesting, transport and storage operations within high- temperature conditions.  For 

example, certain fruits have limited shelf life because of their perishable nature and 
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unfavourable storage conditions.  In addition, the quality and safety of fruits can be reduced 

due to other factors, such as deterioration and spoilage (Van Rooyen 2006). All of these factors 

are highly reliant on temperature (Kitinoja 2013) .  As a result, retailers are compelled to sell 

these fruits to consumers as quickly as possible to ensure safety and quality, and to achieve 

maximum profit.  Therefore, more efficient and effective ways to deliver fresh fruits from 

farms to supermarkets so as to preserve quality and shorten lead time can significantly 

increase the value of the fresh fruit supply chain.  

The cold chain for the fresh fruit industry is a well-recognised work practice in developed 

countries, such as Canada, Japan, Germany and the USA (Deng, Wu & Yu 2012; Hodges, Buzby 

& Bennett 2011; Kitinoja 2013) , as it addresses all the above issues.  For instance, cold 

temperature slows down bacterial growth and reduces spoilage of the perishable produce 

(Coulomb 2008; Ovca & Jevšnik 2009) .  Kuo and Chen (2010)  and Montanari (2008)  state that 

temperature control of fresh produce across the entire supply chain during transportation 

and storage is critical for preserving product safety and value.  Cold chain also helps to 

preserve the vitamins of fruits and vegetables and protein in meat from the field to the 

consumer (Salin & Nayga 2003; Zanoni & Zavanella 2012). In addition, Flick et al. (2012), Wang 

and Zhang (2008) and Qi et al. (2014) all conclude that cold chain management can lead to an 

increase in produce shelf life and reduction in waste of produce.  

The current approach taken in developed countries to cold supply chain designs, which is 

considered a high- tech high- cost approach, generally focuses on heavy investment in 

technology and infrastructure ( Hodges, Buzby & Bennett 2011; Kitinoja 2013) .  It requires 

technologies such as pre- cooling facilities, vacuum cooling, cold storage, refrigerated 

warehousing and refrigerated carriers, as well as technical knowledge training for operational 

staff to ensure temperature compliance along the entire supply chain ( Hodges, Buzby & 

Bennett 2011; Kitinoja 2013; Li 2006). However, technologies and training are normally lacking 

in developing countries (Sharma & Pai 2015) .  For instance, the refrigerated storage capacity 

( m3/ 1000 inhabitants)  is 200 in developed countries but only 19 in developing countries 

(Kitinoja 2013).  
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The high-tech high-cost approach to cold supply chain design for fresh fruit supply chains 

might not always be applicable to developing countries, due to the issues of technology and 

training mentioned above. Therefore, an alternative cold supply chain adoption approach 

utilising other resources readily available in developing countries, such as cheap labour and 

flexibility in work practices in terms of work shifts, has to be considered, which is termed a 

low-tech low-cost approach. It is considered that this option would be more viable for 

developing countries with limited capital resources and know-how, and would enable 

widespread cold supply chain adoption (Heap 2006; Joshi, Banwet & Shankar 2009; Kitinoja 

2013; Salin & Nayga 2003). It could also play a vital role in the transition of cold supply chain 

implementation from a nascent stage to a mature development, whereby the high-tech high-

cost approach of the developed countries could thereafter be more readily adopted. 

Owing to the fact that cold supply chain adoption is still not widespread in developing 

countries (Heap 2006; Joshi, Banwet & Shankar 2009; Kitinoja 2013; Salin & Nayga 2003), and 

research on the low-tech low-cost approach is, as a result, relatively limited at the moment 

(Global Cold Chain Alliance 2016; Kitinoja et al.  2011; Rijpkema, Rossi & van der Vorst 2014), 

the present study explores whether this low-tech low-cost approach is feasible for fresh fruit 

supply chains in developing countries. 

1.2 Research motivation 

To explore whether a low-tech low-cost cold supply chain approach is feasible for the fresh 

fruit industry in developing countries, this study attempts to use a simulation approach to 

evaluate the changes in performance of a typical, traditional fruit supply chain before and 

after the adoption of the low-tech low-cost cold supply chain design.  It is widely considered 

that simulation is a beneficial technique to study the effects of system modification (Hellström 

& Nilsson 2006)  and impacts of changes in the processes involved (Abed et al.  2008) .  This 

approach is most suitable for exploration of non-existing systems, such as cold supply chain 

implementation in this case, when it is impossible to study a real system, on the grounds that 

it is too costly to build one for investigation (Joshi, Banwet & Shankar 2009). 
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This study selects the developing country, Thailand, as a case study, because the agricultural 

sector has played a vital part in the economic development of Thailand (Food and Agriculture 

Organization 2016a) .  Thailand’ s export of various types of farm produce has generated a 

revenue of more than US$ 215,300 million in 2016 ( Ministry of Commerce 2017) .  The 

agriculture sector itself contributed 9.78% of the country’s gross domestic product (GDP)  in 

2015 (National Statistical Office 2015) , accounting for 33.51% of total employment in 2015 

(National Statistical Office 2016). In the fresh fruit business, the volume of fresh fruit produce 

from Thailand has been on the rise from 2001 to 2016 (Ministry of Commerce 2017). Thailand 

was listed 6th in production value in 2014 (Food and Agriculture Organization 2015a) , and 1st 

in exporting in 2013 (Food and Agriculture Organization 2015b) , for the global tropical fruit 

business.  

A mango supply chain has been chosen in this study for investigation, as mango is one of the 

major high-value fresh fruits exported from Thailand (Office of Agricultural Economics 2012), 

and mangoes deteriorate rapidly after harvest and hence have a very short shelf life 

(Department of Agriculture 2011) .  In addition, in 2013 Thailand was ranked the world’s 3rd 

largest producer of mangoes, with more than 3.1 million tons (GBD Network 2015). In addition, 

Thailand was ranked 4th in world mango export in the same year ( GBD Network 2015) . 

Therefore, the choice of a typical mango supply chain in Thailand as a representative case 

study is considered appropriate. Improving the performance of the fresh fruit supply chain in 

Thailand through cold supply chain adoption can contribute significantly to the value of the 

industry as well as to the economy of the country.  

In Thailand, the fresh fruit supply chain begins with the farmer harvesting fruits from the 

farms, and sending them to a processing company for grading, consolidating and packaging. 

Immediately after that, the fruit produce is transported to the middleman company, where 

they are separated and then delivered to various retailers before sale to consumers in shops 

or supermarkets.  Owing to many obstacles, such as lack of infrastructure, labour- intensive 

operation, and poor supply chain management, the fruit supply chain in Thailand is currently 

facing critical issues.  One of the major issues is low quality of fruit produce as compared to 
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that of other competing fruit-exporting countries.  This is mostly due to lack of knowledge, 

amongst supply chain members, of fruit supply chain management to reduce wastage and 

lead time (Somboonsuk et al.  2013) .  The use of delivery trucks without temperature control 

during transportation of fruit produce from farms to processing centres in the hot climate 

also expedites the rate of perishability, resulting in lower quality of the product and shortened 

shelf life ( Center for Applied Economics Research 2012) .  These issues can lead to higher 

operating costs and significant loss in revenue in both the short and the long term. 

In Thailand, a generic fruit supply chain usually involves five parties –  farmer, processor, 

transporter, middleman firm, and retailer –  which are diverse in terms of their natures and 

characteristics ( Center for Applied Economics Research 2012; Somboonsuk et al.  2013) . 

Farmers, for instance, are mostly individuals who work in farms and know much about 

growing fruit but little about the supply chain ( Somboonsuk et al.  2013) .  Processors are 

companies which have two levels of employees: operational ground staff, and managers. The 

operational staff are normally involved in collecting, grading and packing the fruit, whereas 

the managers work on setting up procedures for the entire operation.  Nissen et al.  (2005) 

report that processors usually have low- tech methods for preserving fruit quality. 

Transporters are third party logistics service providers or part of the processor or middleman 

companies.  Many transporters, especially small companies, often face the issue of a lack of 

temperature-controlled vehicles for delivery of fruit produce (Nissen et al. 2005). A middleman 

company is basically a major buyer and seller that drives and dominates the running of the 

fruit supply chain.  However, the middleman company also faces the issue of lack of 

temperature control during storage and delivery (Nissen et al. 2005; Vellema et al. 2005). From 

the middleman company, the fruits will then either be delivered for export to other countries, 

or to the local retailers, which can be supermarkets or open air markets. Again, the same issue 

of lack of temperature control during storage and delivery occurs (Nissen et al.  2005) .  Figure 

1. 1 shows the various parties in a generic fruit supply chain in Thailand, and the current 

challenges faced by the industry. 
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Thailand is one of the developing countries that has not ventured into cold supply chain 

practice due to an absence of awareness of quality control at the farms and limited cold chain 

infrastructure in the country (Buurma & Saranark 2006; Nissen et al. 2005; Salin & Nayga 2003). 

Cold chain implementation requires an enormous amount of money to develop 

infrastructure, transfer knowledge, and change management and operational practices of the 

entire supply chain to ensure success ( Kitinoja 2013) .  These are mostly lacking in the 

agricultural industry of Thailand and other developing countries at the moment.  

1.3 Research questions 

In view of the above-mentioned challenges faced by developing countries, such as Thailand, 

in cold chain adoption, this study aims to answer the following primary research question : 

What is an appropriate approach to cold chain design for fresh fruit supply chain in 

developing countries? 

To answer the primary research question, a typical fresh fruit supply chain in a developing 

country, Thailand, is used as a case study for exploration utilising simulation as a tool for 

investigation. The following subsidiary research questions are raised: 

a. What is the performance in terms of throughput, lead time, operating cost, shelf life 

and wastage, of a fresh fruit supply chain in a developing country, with different cold 

chain designs, in the short run? 

b. What is the performance of the fresh fruit supply chain in a developing country with 

different cold chain designs, when subject to fluctuations in demand and other 

uncertainties, over the long term? 

1.4 Research objectives 

To answer the subsidiary research questions, the following research objectives are set: 

a. To investigate, through discrete event simulation ( DES)  with a model built on data 

collected from site observations and interviews with various supply chain partners, 

how cold chain adoption can impact on the performance of fresh fruit supply chains 

in developing countries such as Thailand. 
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b. To explore, using the simulation model developed in (a) above with scenarios created 

based on business trends and other national statistics, how cold chain adoption can 

impact on long-term supply chain surplus of fruit supply chains in developing countries 

such as Thailand. 

1.5 Scope of the study 

This study will use DES to model the operation of an existing, typical fresh fruit supply chain 

in Thailand, and compare its performance before and after cold chain adoption .  This will be 

done by comparing major supply chain key performance indicators ( KPIs) , such as total 

operating cost, throughput, lead time, shelf life, and wastage, for the current real system and 

for the simulated cold chain design.  Comparison of performance in both the short term and 

the long term will also be conducted. To investigate the impacts of cold chain adoption in the 

long term, different scenarios, such as changes in demand for exported fruits, increased 

uncertainty in supply, and increase in operating cost, will be simulated using the model.  This 

study will focus on the supply chain of mangoes because it is one of the most consumed fruits 

in Thailand.  The fruit is also chosen for investigation because of its high demand for export 

(hence, its significant contribution to the economy)  and short shelf life (hence, demanding 

short lead time to ensure product quality) .  The stages of the supply chain to be investigated 

comprise farms, processors, transporters and middleman firm.  How the fresh fruits are 

handled when they reach the retailers locally or overseas falls outside the scope of the study. 

Detailed operational data and patterns of practices will be collected and observed to help 

construct the simulation model for investigation. 

1.6 Contributions 

This thesis makes key contributions as follows: 

1.6.1 Academic contributions 

1. Extant literature on cold chain approaches for perishable produce mainly focuses 

on the technological aspect.  In this study, the feasibility of alternative cold chain 

designs in developing countries is explored by focusing more on available 
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resources, such as cheap labour and flexible work practices.  Findings of this study 

can contribute to knowledge by expanding the literature in this area with an 

alternative and agruably more appropriate and feasible approach to cold chain 

design for the fresh fruit industry in developing countries.  

2. Findings of this study can also point to new directions for research on cold chain 

adoption for fresh fruit supply chains in developing countries, by leveraging 

technology, collaboration and changes in work practices. 

1.6.2 Managerial contributions 

1. The study provides knowledge of the benefits of using a low- tech low- cost 

approach to cold chain adoption in developing countries, in contrast to the heavy 

reliance on technology in developed countries.  

2. The findings of this research can help supply chain members by providing a 

reference for cold chain design for fresh fruit supply chains, and can serve as a 

guide for developing future best practices in developing countries. 

3. The research findings may also assist firms in formulating appropriate strategies 

for cold chain adoption in the fresh fruit supply chain, addressing issues of short 

shelf life, high wastage, and low quality of fruit produce in developing countries . 

 

1.7 Thesis outline 

The thesis consists of seven chapters.  In Chapter 2, previous studies will be reviewed and 

critiqued in terms of four aspects.  The first part covers the need to adopt cold chain in the 

fresh fruit industry in developing countries, and the issues in cold chain adoption in these 

countries.  The second part elaborates on the theories used to underpin this study, and the 

roles they play in the development of the cold chain design proposed in this study.  The third 

part reviews the cold chain management for different designs.  The final part addresses the 

tool for investigating cold chain design.  

Chapter 3 describes the methodology used in this research, and provides a general 

explanation of the steps involved in DES modelling. 
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Chapter 4 explains how the base model is created through a detailed explanation of the 

system under study.  It then discusses the verification and validation procedures that have 

been followed to validate the model.  Outputs of the base model are also presented, and are 

compared against the actual performance of the investigated fresh fruit supply chain. 

Chapter 5 explains how the alternative models are created.  It begins by describing the 

alternative model development, which includes an individual cold chain design and a 

consolidated cold chain design. In addition, this chapter describes how the different scenarios, 

such as change in total demand, increase in supply uncertainty, and change in operating cost, 

are represented in the simulation to test the robustness of the model under various 

circumstances. Outputs of the alternative model with the two alternative designs under three 

different scenarios are presented and compared, so as to determine the appropriate 

approach to cold chain design for the fresh fruit industry in developing countries .  

Chapter 6 presents a discussion of the findings, including the implications for knowledge and 

practice, with a view to promoting cold chain adoption for fresh fruit supply chains in 

developing countries. 

Chapter 7 presents the conclusion to the research and its findings, including a discussion on 

the contributions to the field. Moreover, this chapter presents the limitations of this study 

and offers recommendations for future research.  
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Chapter 2  

LITERATURE REVIEW  

This chapter firstly presents an overview of cold chain adoption for the fresh fruit industry 

and reports on previous research in this field. Secondly, it elaborates on the theories used to 

underpin this study and the roles they play in the development of the cold chain designs 

investigated. Thirdly, it reviews the literature on commonly used cold chain designs and the 

pros and cons of different designs. Moreover, the tool for investigating cold chain designs is 

also discussed. Finally, a theoretical framework of cold chain design for the fresh fruit industry 

in developing countries is proposed.  

2.1 Cold chain adoption for the fresh fruit industry 

As the standard of living for people continues to increase, the development of cold chains for 

preserving food has rapidly increased and received widespread attention in the academic 

literature and in industry (Luo et al. 2016). Food quality and safety are priorities for the 

livelihood of people worldwide (Wang et al. 2015). The core concerns for a cold chain are to 

decrease food loss and health hazards at every stage of the cold chain (Stahl et al. 2015). 

According to Bogataj, Bogataj and Vodopivec (2005), cold chain management is the procedure 

of planning, implementing and controlling the effective and efficient flow and storage of 

perishable produce. Wang and Luo (2012) further elaborate that cold chain logistics includes 

the processes and equipment to preserve fresh foods under restricted cold conditions, during 

assembly, processing, warehousing, and shipping. Typical cold chain processes include post-

harvest handling, refrigerated storage and transport, chilled or cold processing, and retail and 

home refrigeration (Bledsoe 2009; Montanari 2008). The flow of produce in a typical cold chain 

is shown in Figure 2.1. 

 

 

Figure 2.1 – Flow of produce in a cold chain (Sharma & Pai 2015) 
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It is crucial that consistency throughout the cold chain is preserved, from the production 

point, through processing and every step of the transportation as well as warehousing, to 

point of sale (Salin & Nayga 2003). In the perishable produce business, deterioration begins 

right after harvest because of the perishability and short shelf life of the produce. Unlike other 

products, fresh produce requires strict temperature control throughout the entire supply 

chain process (Aung & Chang 2014). Even a short-term exposure of a few minutes to extreme 

cold or hot temperature can lead to a loss of quality and a decline in shelf life. Accurate and 

cautious temperature control throughout the supply chain is, therefore, important to quality 

control of the product (Helal et al. 2007).  

According to Aung, Chang and Kim (2012), Luo et al. (2016) and Smith (2005), cold chain can be 

applied to several industries, such as pharmaceuticals, chemicals, flowers, and food.  Lately, 

the development of cold chain in the food industry is becoming more important, especially in 

developing countries (Luo et al.  2016) .  Most studies suggest that cold chain is needed for 

reducing post-harvest loss in agricultural produce; but there is much less research on how to 

implement a cold chain (Kitinoja 2013; Serrano 2005; Sharma & Pai 2015) .  It is essential to 

study the cold chain design for agricultural produce, such as fresh fruits, because of their 

unique characteristics, such as being readily prone to rapid deterioration.These characteristics 

make greater demands on cold chain logistics technology, such as temperature-controlled 

storage and transportation (Zheng 2015) , due to the most important factor affecting fresh 

fruit products being temperature (Defraeye et al.  2015) .  In addition, the deterioration issue 

arises mainly for fresh products such as fresh fruit, among the food industries, because of 

their perishability and short shelf life (Aung, Chang & Kim 2012) .  According to Gustavsson et 

al.  (2011)  and Minten et al.  (2016) , the highest level of food waste and loss is for fruits and 

vegetables, which is approximately 44% of the total food loss globally.  Table 2.1 summarises 

the findings of a number of studies that discuss how the common problems of fruit produce 

can be solved using a cold chain. 

Researchers such as Joshi, Banwet and Shankar (2010)  and Viswanadham (2006)  argue that 

weaknesses in infrastructure between connecting partners, such as farmers, wholesalers and 
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retailers, and the lack of coordination of freight distribution ( Wang & Zhang 2008)  have 

resulted in the waste of fruit products. Others (Blanco et al. 2005; Cagnon et al. 2013) consider 

that the quality of fruit can be affected by materials used for packaging that are unable to 

protect the fruit products from water vapour during transfer throughout the supply chain.  In 

addition, lack of temperature control decreases fruit quality (Bogataj, Bogataj & Vodopivec 

2005) .  Furthermore, the safety of the fruit products is affected by bacterial contamination of 

the fresh harvest produce (Jacxsens et al. 2010; Johnston et al. 2006). Lastly, fruit products can 

have limited shelf life due to inappropriate inventory policy (Duan & Liao 2013) and improper 

supply chain structure (Thron, Nagy & Wassan 2007) .  Not surprisingly, these common issues 

in fresh fruits occur more frequently in developing countries ( Kuo & Chen 2010; Stephen 

2009). 

Table 2.1 – Benefits of cold chain for fruit produce 

Fruit 
issues 

Cause of the issues Studies Solution provided by 
cold chain adoption 

Studies 

Waste Waste is generated due to 
weaknesses of the supply 
chain structure in 
connecting, deterioration in 
freight distribution, and 
inappropriateness in quality 
control. 

Ahumada and Villalobos 
( 2009) ; Gustavsson et al. 
( 2011) ; Joshi, Banwet and 
Shankar ( 2010) ; van der 
Vorst, Tromp and van der 
Zee ( 2009) ; Viswanadham 
(2006); Wang and Li (2012); 
Wang & Zhang (2008) 

Maintaining consistent 
temperature during 
operation can reduce 
deterioration rate and 
hence food waste. 

Defraeye et al. 
( 2014) ; Joshi, 
Banwet and 
Shankar ( 2011) ; 
Xu, Lan and 
Ruijiang ( 2010) ; 
Wang & Zhang 
(2008) 

Quality Quality is reduced due to 
lack of temperature control, 
inappropriate materials 
used for packaging, and 
poor storage conditions. 

Blanco et al. (2005); Bogataj, 
Bogataj and Vodopivec 
(2005); Cagnon et al. (2013); 
Lambert et al.  ( 2014) ; 
Perdana and Kusnandar 
(2012) 

Temperature control 
throughout the entire 
cold chain is vital to 
preserving the quality of 
produce, such as colour, 
taste and freshness. 

Jol et al.  ( 2007) ; 
Kang et al. (2012); 
Salin and Nayga 
( 2003) ; Zanoni 
and Zavanella 
(2012); Zwierzycki 
et al. (2011) 

Safety Safety of fruits is affected by 
microbiological 
contamination and lack of 
coordination among supply 
chain members. 

Jacxsens et al. (2010); Rossi, 
Rijpkema and van der Vorst 
(2012) 

Cold chain with proper 
handling can reduce 
possibility of 
contamination of 
produce by 
microorganisms and 
bacteria, thus enhancing 
food safety. 

Coulomb ( 2008) ; 
Kang et al. (2012); 
Kuo and Chen 
( 2010) ; Laguerre, 
Hoang and Flick 
( 2013) ; Ovca and 
Jevšnik (2009) 

Shelf 
life 

Shelf life is reduced due to 
poor inventory 
management and non-
optimised supply chain 
structure. 

Duan and Liao ( 2013) ; 
Thron, Nagy and Wassan 
(2007) 

Refrigeration slows down 
natural deterioration of 
produce, hence 
extending its shelf life 

Flick et al.  (2012); 
James and James 
( 2010) ; Qi et al. 
( 2014) ; Tsironi et 
al. (2009) 
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The use of a cold chain can have significant positive impacts on shelf life, quality, waste, and 

safety of perishable produce, impacts that cannot be obtained using traditional supply chain 

management methods only (Aung & Chang 2014). For example, cold temperature slows down 

bacterial growth and reduces spoilage of perishable produce (Coulomb 2008; Ovca & Jevšnik 

2009) .  Kuo and Chen (2010)  and Montanari (2008)  state that temperature control of fresh 

produce across the entire supply chain during transportation and storage is critical for 

preserving product safety and value. The cold chain also helps to preserve the vitamin content 

of fruits and vegetables and protein content of meat, from the field to the consumer (Salin & 

Nayga 2003; Zanoni & Zavanella 2012). In addition, Flick et al. (2012), Qi et al. (2014) and Wang 

and Zhang (2008)  all conclude that cold chain management can lead to increases in produce 

shelf life and reduction in produce waste.  

Cold chain in developed countries, such as the USA and EU countries, has been adopted and 

implemented for many decades (Kitinoja 2013) .  In these countries, the cold supply chain of 

agricultural goods forms a complete system. All products use advanced cold chain technology 

along the entire supply chain with advanced management ( Li 2006; Pan, Yu & Li 2017) . 

However, cold chain adoption in developing countries is primarily at a nascent stage, and can 

encounter many difficulties.  For example, it is usually only implemented in some parts of the 

country and not sufficiently maintained (Yahia 2009). It also requires major investment which 

is very challenging for the food industry.  Less developed countries generally need 

infrastructure as well as human and organisational resources to develop effective cold chain 

capabilities (Bharti 2014). 

2.1.1 Issues faced by developing countries in cold chain adoption 

The main reasons for food loss in less developed countries include improper harvesting 

practices, lack of cold chain, insufficient infrastructure, and government policies (Winkworth-

Smith, Foster & Morgan 2015). Previous studies have identified issues in the adoption of cold 

chain in developing countries, as summarised in Table 2.2. 
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Table 2.2 – Problems of cold chain adoption in developing countries 

Problems Primary perspective Countries Studies 

High cost High costs in terms of 
equipment and 
infrastructure 
 

China, Ghana, 
India, Iraq 
 

Billiard ( 2003) ; Joshi, Banwet and Shankar ( 2009) ; Li 
( 2006) ; Maxwell Agyapong ( 2013) ; Negi and Anand 
(2015); Stephen (2009); Subin (2011); Zeng and Yu (2011) 
 

Lack of 
equipment 
 

Cold chain primary 
structure is limited by 
the nature of 
infrastructure as a 
community product 
and cost 

China, Sub-Saharan 
Africa, India, 
Azerbaijan, Egypt, 
Iraq, Kenya, 
Pakistan, the 
Philippines, 
Thailand 
 

Joshi, Banwet and Shankar ( 2009) ; Maheshwar and 
Chanakwa (2006) ; Zeng and Yu (2011) ; Kumar (2008); 
Bharti ( 2014) ; Bishop ( 2013) ; Drame and Meignien 
(2016) ; Global Cold Chain Alliance (2016) ; Jing and Jian 
( 2015) ; Joshi, Banwet and Shankar ( 2009) ; Li ( 2006) ; 
Navita (2015); Promethean Spenta Technologies Limited 
(2014) ; Runzhou (2014) ; Salin and Nayga (2003) ; Shane 
( 2016) ; Stephen ( 2009) ; Viswanadham ( 2005) ; 
Winkworth-Smith, Foster and Morgan (2015); Xiaosheng 
(2011); Yahia (2009); Yahia (1999) 
 

Lack of 
knowledge 
and training 
 

Lack of education and 
training, and 
operators are not 
familiar with the 
equipment 
 

China, Azerbaijan, 
Ghana, India, Iraq, 
Kenya, Pakistan 
 

Billiard ( 2003) ; Bishop ( 2013) ; Bledsoe ( 2009) ; Global 
Cold Chain Alliance (2016); Li (2006); Maxwell Agyapong 
( 2013) ; Shane ( 2016) ; Stephen ( 2009) ; Zeng and Yu 
(2011); Yahia (2009) 
 

Lack of 
awareness 
 

Lack of awareness of 
cold chain system and 
the use of 
information 
technology 
 

India, Iraq 
 

Bharti (2014) ; Joshi, Banwet and Shankar (2009) ; Negi 
and Anand (2015); Stephen (2009) 
 

Lack of 
collaboration 
 

Lack of continuous 
control and 
monitoring of 
temperature across 
the entire cold chain 
 

China, India, 
Pakistan 
 

Bharti (2014); Bishop (2013); Ji and Guo (2009); Jing and 
Jian ( 2015) ; Joshi, Banwet and Shankar ( 2009) ; Kochi 
(2009) ; Negi and Anand (2015) ; Salin and Nayga (2003); 
Shane (2016); Subin (2011); Viswanadham (2005); Wang 
& Zhang (2008) 

Lack of 
government 
support 

Lack of integrated 
cold chain 
infrastructure 
Regulations and laws 

China, India Joshi, Banwet and Shankar ( 2009) ; Li ( 2006) ; Shane 
(2016); Yachao (2013) 

 

2.1.1.1 High cost 

Modern cold chain technologies have been developed over the last few decades.  However, 

various tropical countries have not been able to use these advanced cold chain technologies 

because of their high cost (Maxwell Agyapong 2013), particularly developing countries (Yahia 

2009) .  In India, there are some factors that make the usage of cold storage in industries 
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difficult.  The high capital expenditure costs are a major discouragement.  Installation cost is 

also high, because of the costs of cold chain equipment imports, including high import duties, 

and excise duty (Joshi, Banwet & Shankar 2009) .  The installation and operating costs for cold 

storage units in India are double the costs of these in the West (Joshi, Banwet & Shankar 

2009) , leading to the high cost of logistics in India, which is approximately 15-25% of the end 

cost, as compared with 7-9% in the UK and the USA (Joshi, Banwet & Shankar 2009). 

2.1.1.2 Lack of equipment 

Investment in infrastructure for cold chain adoption, such as temperature- controlled 

warehouses and vehicles, is vital to the success of cold chain implementation (Salin & Nayga 

2003) .  The cold chain in developed countries is well-developed, but in developing countries 

there remains a lack of refrigeration, which is a cause of the huge post-harvest loss that occurs 

in these countries ( Maxwell Agyapong 2013) .  Yahia ( 2009)  asserts that transportation of 

perishable produce in developing countries is generally without temperature control and is in 

bulk, which leads to an enormous loss of food.  Table 2.3 shows the cold chain capacities of a 

range of developed and developing countries.  It can be seen that there is a big difference in 

cold chain capacity between developed and developing countries. 

Unlike developed countries, such as the USA and Japan, which are sustained by strong 

infrastructure (Joshi et al.  2012) , many developing countries, such as India and China, do not 

have sufficient cold chain infrastructure (Greis 2011) .  China still lacks elements of cold chain 

infrastructure, such as refrigerated trucks, cold storage facilities, and retail refrigeration; and 

existing cold storage facilities in China are often out of date; both of which issues lead to 

wastage and spoilage (Shane 2016). There are also a lack of cold chain facilities and insufficient 

capacity of cold chain operations in India, which result in approximately 40%  loss of 

agricultural produce ( Bharti 2014; Negi & Anand 2015) .  In both these countries, major 

development in building cold chain facilities is required. 
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Table 2.3 – Cold chain capacity in developed and developing countries 

Nation 2004 2006 2008 
Cubic meters 

(Million) 
Cubic feet 

(Million) 
Cubic meters 

(Million) 
Cubic feet 

(Million) 
Cubic meters 

(Million) 
Cubic feet 

(Million) 
USA 66.8 2,357.1 69.0 2,435.8 70.7 2,498.2 
Japan 27.5 969.7 27.7 977.9 27.7 977.9 
Germany 6.5 229.6 8.7 307.2 13.4 473.2 
France 5.4 190.7 5.4 190.7 8.5 300.2 
Canada 6.3 223.9 6.8 239.8 6.9 243.3 
Australia 5.3 187.1 6.0 211.9 6.0 211.9 
Netherlands 
Austria 
Denmark 
Italy 
India 
Russia 
China 

1.2 
0.7 
1.8 
3.0 

- 
- 
- 

42.4 
23.0 
63.6 

105.9 
- 
- 
- 

9 
0.8 
1.8 
3.0 

- 
- 
- 

317.8 
28.3 
63.6 

105.9 
- 
- 
- 

12.6 
0.8 
1.9 
3.5 

18.6 
16.0 
15.0 

445.0 
28.3 
67.1 

123.6 
656.2 
565.0 
529.7 

Argentina - - - - 0.5 17.7 
Chile - - - - 0.2 6.0 
Columbia - - - - 0.1 4.2 
Malaysia - - - - 0.0 0.5 
Mexico - - - - 1.4 47.7 
Peru 
Namibia 

- 
- 

- 
- 

- 
- 

- 
- 

0.0 
0.0 

1.4 
1.4 

Source: Yahia (2009) 

2.1.1.3 Lack of knowledge and training 

Cold chain management requires professional operators that have the skills to operate across 

the various aspects of the entire supply chain (Joshi, Banwet & Shankar 2009) .  Otherwise, 

there will be breakdowns in the cold chain, which can significantly reduce its effectiveness. 

Cold chain breakdown can happen when farmers lack education and training in cold chain 

practice (Joshi, Banwet & Shankar 2009). In developing countries, knowledge of accurate cold 

supply chain practices is very weak ( Yahia 2009) , and there are very limited numbers of 

sufficiently trained technicians (Bledsoe 2009) .  There are several developing countries that 

face a lack of knowledge and training in cold chain issues, such as China (Li 2006)  and India 

(Joshi, Banwet & Shankar 2009) .  China is a country with abundant labour, and there is ample 

available labour in the cold chain industry, but these workers are still in an early phase of 

learning and have little experience of cold chain logistics (Bledsoe 2009). In India, even though 

there is a growing number of cold chain infrastructure projects, there is a deficiency of 
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manpower with proper skill sets to handle the new technology ( Joshi, Banwet & Shankar 

2009). There are very limited training centres for farmers to adopt innovation and production 

methods regarding proper handling and harvesting systems (Bharti 2014); and also processing 

divisions across India require greater information on new techniques of handling and packing 

technology as well as on the cold storage and distribution system (Subin 2011). 

2.1.1.4 Lack of awareness 

A lack of awareness of cold chain systems and the use information technology is one of the 

main obstacles to cold chain adoption in developing countries. To take Iraq as an example, the 

growers are conscious of the positive effect of field heat removal as well as getting fresh 

harvest quickly into cooling, but there is a lack of consciousness of the use of cold storage to 

increase product shelf life at the wholesale market level (Stephen 2009) .  Furthermore, the 

awareness of Internet usage is very low in developing countries, such as India, which leads to 

a significant negative impact on cold chain reliability (Joshi, Banwet & Shankar 2009).    

2.1.1.5 Lack of collaboration 

The cold chain often lacks collaboration amongst its members.  Tamimi, Sundarakani and Vel 

(2010) claim that it is vital to maintain the correct and consistent temperature throughout the 

whole supply chain during transportation and storage.  This requires efficient teamwork 

amongst participant players in the supply chain, from farmers to retailers ( Khan 2005) . 

Inappropriate cooperation planning amongst these players may cause inconsistencies at 

various stages, such as forecast sharing, inventory management, labour scheduling, or 

optimising transport (Joshi, Banwet & Shankar 2009) .  Ji and Guo (2009)  and Salin and Nayga 

(2003)  mention that some countries, such as China (Wang & Zhang 2008)   and India (Joshi, 

Banwet & Shankar 2009), have not been successful in developing cold chain logistics because 

they have been unable to control the temperature throughout the entire cold chain process. 

Moreover, there is a lack of integrated cold chain facilities in India (Negi & Anand 2015) .  The 

cold chain infrastructure design is not flexible enough to permit full use of the system, given 

various goods containers as well as flexible workforce ( Kochi 2009) .  In China, the whole 

coordination of the supply chain is insufficient, which leads to serious impacts on the 
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composition of resources for fresh produce cold chain transport, as well as obstructing the 

establishment of cold chain systems (Jing & Jian 2015; Xie & Zhao 2016). 

2.1.1.6 Lack of government support 

Many governments have taken various actions regarding regulations and laws for cold chain 

in their countries (Li 2006). These government regulations vary across different countries and 

regions regarding safety in transportation and storage ( Shane 2016) .  Some countries face 

issues in cold chain adoption because regulations are not standardised and there is a lack of 

international laws and regulations ( Jing & Jian 2015; Shane 2016) .  For example, some 

regulations in China have stipulated standard requirements for food cold chain logistics. 

However, some government departments neglect their duty of control and engage in 

ineligible or illegal processes (Jing & Jian 2015). For another example, India suffers from a lack 

of cold chain because of government regulations on taxes. India has among the highest taxes 

in the world for processed food, which can increase the final product cost by approximately 

20-40% (Joshi, Banwet & Shankar 2009).  

To summarise, previous studies reveal that the cold chain design commonly adopted in 

developed countries cannot be directly implemented in developing countries.  These studies 

claim that cold chain adoption in developing countries is very challenging due to a lack of 

collaboration among supply chain members, lack of cold chain equipment, lack of training, 

and the requirement of large amounts of money for investment.  These barriers cannot be 

overcome in a short period of time.  Meanwhile, developing countries cannot wait until all 

these issues are resolved to introduce cold chains.  Therefore, the present study proposes an 

alternative approach to designing cold chain systems which attempts to lessen or evade the 

direct impacts of these issues. For example, low-cost technology that requires a lesser amount 

of monetary investment than high-cost technology does can be used. In addition, technology 

that is not difficult to implement (Kitinoja 2013), and approaches to the design of cold chains 

that focus on collaboration, such as sharing information among supply chain members, can 

be leveraged to increase supply chain performance (Runzhou 2014).  
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2.1.2 Related studies on perishable food cold chain 

In this section, the existing literature on perishable food cold chains is reviewed as a basis to 

set up the research topic of the present study. To begin with, a discussion is presented on cold 

chains for perishable foods in developed countries, focusing on major perspectives, such as 

cold chain monitoring, the effect of poor temperature control, and effects of cold chain on 

the environment. After that, a discussion on cold chains in developing countries is presented, 

focusing on the cold chain situation and cold chain development.  Studies on perishable food 

cold chains are summarised in Table 2.4. 
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Table 2.4 – List of selected papers categorised by cold chain issues and countries by level of 
economic development  

  

Research 
category 

Primary perspective Countries Studies  

Cold chain 
monitoring 

To apply information 
technology for monitoring 
the temperature such as 
RFID 

Developed 
countries 

Abad et al. (2009); Carullo et al. (2009); De-La-Fuente and 
Ros (2010) ; Derens, Palagos and Guilpart (2006) ; García-
Herrero et al.  (2010) ; Gogou et al.  (2013) ; Kacimi, Dhaou 
and Beylot (2009) ; Kang et al.  (2012) ; Ko et al.  (2015) ; Le 
Grandois et al. (2013); Richardson (2005); Riem-Vis (2004); 
Ruiz-Garcia and Lunadei (2010); Thakur and Forås (2015); 
Zubeldia et al. (2016) 

Developing 
countries 

Asadi and Hosseini (2014); Draganić et al. (2017); Emenike, 
Van Eyk and Hoffman (2016) ; Lu et al.  (2013) ; Qi et al. 
(2014); Shih and Wang (2016) 

Temperature 
abuse 

To study the effect of 
temperature abuse 
regarding product quality 
and safety 

Developed 
countries 

Bruckner et al.  ( 2012) ; Cruz, Vieira and Silva ( 2009) ; 
Dermesonluoglu et al.  (2015); Raab et al.  (2008); Rediers 
et al. (2009) 

Developing 
countries 

Cruz, Vieira and Silva (2013) 

Effect to 
environment 

To study the effect of cold 
chain on environment 
regarding global warming 

Developed 
countries 

Coulomb ( 2008) ; James and James ( 2010) ; James and 
James (2011) 

Cold chain 
situation 

To demonstrate the cold 
chain situation, issues and 
countermeasures at the 
moment in various 
countries.  

Developed 
countries 

Arduino and Parola (2010) 

Developing 
countries 

Chen and Lan (2016) ; Deng, Wu and Yu (2012) ; Freiboth 
et al.  (2013) ; Haasbroek (2013) ; Jemrić and Ilić (2012) ; Ji 
and Guo (2009) ; Jie (2010) ; Joshi, Banwet and Shankar 
(2009) ; Joshi, Banwet and Shankar (2011) ; Li and Zheng 
(2014) ; Prentice and McLachlin (2010) ; Rathore (2013); 
Ren (2011); Tian et al. (2015); Yang et al. (2012); Zeng and 
Yu (2011) ; Zhang et al.  (2016) ; Bledsoe (2009) ; Stephen 
(2009)  

Cold chain 
development 
strategies 

To suggest some strategies 
for cold chain 
management 

Developed 
countries 

Jol et al. (2007) 

Developing 
countries 

Lan, Liu and Wang (2010) ; Lan, Xue and Tian (2013) ; Lan 
et al. (2014); Qiu et al. (2009); Ren, Hu and Huang (2011); 
Tang, Liu and Chen (2013); Wang, Xuebing (2016); Xu, Lan 
and Ruijiang (2010) ; Yifeng and Ruhe (2013) ; Ying and Xi 
(2010) 

Alternative 
cold chain 
adoption 

To suggest some 
alternative cold chain 
technologies 

Developing 
countries 

Global Cold Chain Alliance (2016); Kitinoja (2013) 
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Cold supply chains in developed countries are advanced because they have enough money 

for training professionals and purchasing equipment (Li 2006). This high-tech high-cost 

approach to cold chain adoption ensures that there will be little or no technical issues during 

implementation. Therefore, much of the focus in previous studies about perishable food cold 

chains in developed countries have been placed on cold chain monitoring, effect of cold chain 

on the environment, and effect of temperature abuse. The objective of cold chain monitoring 

in the perishable food cold chain is to control and monitor temperature along the whole 

supply chain, by using technologies such as radio frequency identification (RFID) (Abad et al. 

2009; Kang et al. 2012), bar codes (Thakur & Forås 2015), and wireless sensor network (Carullo 

et al. 2009; Riem-Vis 2004). Real-time temperature checking is vital, for reducing losses in a 

cold supply chain arising from decay of goods affected by temperature fluctuation, and for 

preserving food safety (Le Grandois et al. 2013; Thakur & Forås 2015). The second group of 

previous studies focus on the effect of temperature abuse in the cold chain, for example 

incorrect refrigeration. Some studies have investigated the outcome of temperature abuse on 

product quality and microbial safety (Bruckner et al. 2012; Cruz, Vieira & Silva 2009; Raab et 

al. 2008; Rediers et al. 2009). For example, Raab et al. (2008) develop a generic model based on 

laboratory investigations for the calculation of remaining shelf life of fresh pork in various 

cold chains. Lastly, previous studies on perishable food cold chains in developed countries has 

focussed on the effects of cold chain on the environment, which lead to global warming and 

ozone depletion (Coulomb 2008; James & James 2010).  

Table 2.4 shows that the majority of previous studies on cold chain in developing countries 

report on the cold chain situation, suggest some strategies, and provide alternative cold chain 

technologies to develop cold supply chains. This is because cold chains in developing countries 

are still not widespread at the moment (Heap 2006; Joshi, Banwet & Shankar 2009; Kitinoja 

2013; Salin & Nayga 2003). The first category for developing countries is the cold chain 

situation, issues, and countermeasures. For example, to demonstrate the current situation 

and issues, Joshi, Banwet and Shankar (2009) and Rathore (2013) conducted their researches 

in the context of India, Jemrić and Ilić (2012) in Serbia, Prentice and McLachlin (2010) in 

Mexico, and Deng, Wu and Yu (2012), Ren (2011) and Tian et al. (2015) in China. In the second 
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category, there are previous studies proposing strategies to improve the efficiency of the cold 

chain. For example, Qiu et al. (2009) propose a new model of cross-docking logistics policy in 

the food cold supply chain. Xu, Lan and Ruijiang (2010) identify the critical points of the cold 

supply chain process by using quantitative analysis. Lastly, Global Cold Chain Alliance (2016) 

and Kitinoja (2013) have suggested some low-cost cold chain technologies to implement cold 

chains in developing countries, such as CoolBotTM and walk-in cold rooms (see Appendix A). 

2.1.2.1 Research gap 

Overall, it was found that for a majority of studies on cold chains in developing countries, in 

particular those which investigate the situation and problems of cold chain adoption, 

suggestions have been made for developing alternative strategies to cold chain design or 

leveraging alternative cold chain technology. Despite the call, there is little research on 

alternative cold chain designs that deviate from the high-tech high-cost approach commonly 

adopted in developed countries. Although the use of available less expensive cold chain 

technologies can be an option, the full potential of using less expensive technologies, together 

with other abundant resources in developing countries that can be leveraged for 

implementing cold chain, has not yet been intensively investigated. To fill this research gap, 

the present study explores in depth whether a low-tech low-cost approach to cold chain 

adoption is practical and beneficial for developing countries. 

2.2 Theories on cold chain design 

According to Halldorsson et al.  ( 2007) , a unified theory of supply chain management is 

currently not available.  Furthermore, it is also nearly impossible to give a thorough 

explanation for any supply chain phenomenon with a single theory, due to the complexity of 

supply chain interactions ( Chen, Daugherty & Landry 2009) .  Therefore, the present study 

employs a combination of theories to underpin an appropriate approach to cold chain design 

in developing countries.  Two key underpinning theories used in this study are the theory of 

constraints (TOC) and the network theory (NT). TOC helps to account for the need to invest in 

cold chain technology, while NT explains why collaboration plays a significant role in cold 

chain adoption in developing countries. 
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2.2.1 Theory of constraints 

The theory of constraints (TOC) is a management philosophy which was developed by Goldratt 

( 1990) .  The objective of the TOC is to recognise and focus on constraints that preclude a 

system from reaching an upper level of performance. The TOC philosophy basically claims that 

there is at least one constraint in every firm (Simatupang, Wright & Sridharan 2004). The TOC 

involves three interested areas: logistics, logical thinking, and performance measurement (Cox 

III & Spencer 1997; Simatupang, Hurley & Evans 1997) .  Logistics is based on the drum-buffer-

rope scheduling method and buffer management (Simatupang, Wright & Sridharan 2004) . 

Logical thinking is based on a continuous development cycle comprising five steps:  ( 1) 

recognise the bottleneck; (2)  make a decision on how to exploit the bottleneck; (3)  make all 

other things in the system subsidiary to the previous step; (4) upgrade the bottleneck; and (5) 

evaluate whether the bottleneck has been broken, and go back to the beginning (Costas et al. 

2015) .  Performance measurement is needed to determine whether the system is 

accomplishing its operational measures or not, which can be based on throughput or net 

profit.  Pegels and Watrous (2005)  state that a simplified version of TOC is to recognise the 

bottleneck and, after that, take whatever action is necessary to reduce that bottleneck.  

The TOC was firstly used to resolve issues in production systems by using several techniques, 

such as constraint-focused performance and drum-buffer-rope scheduling (Goldratt & Cox 

1992) .  Further extension of the TOC has incorporated resolutions for businesses regarding 

supply chain management, marketing, and project management (Costas et al.  2015; Goldratt 

1994; Simatupang, Wright & Sridharan 2004) .  Recently, increasing numbers of supply chain 

management scholars apply the TOC to suggest improvements to productivity in the supply 

chain (Costas et al. 2015; Dos Santos et al. 2010; Pegels & Watrous 2005). Pegels and Watrous 

(2005)  apply TOC to show how to increase the performance of the manufacturing capability. 

Dos Santos et al.  (2010)  discuss a TOC application regarding how vendor managed inventory 

(VMI)  adoption can increase the global supply chain performance.  Costas et al.  (2015)  apply 

TOC to reduce the bullwhip effect in a supply chain using agent-based modelling. Umble (2001) 

defines the use of TOC in the application of an enterprise resource planning (ERP)  system to 
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operate a supply chain.  It can be seen that TOC has been used to gradually inform various 

supply chain management issues. As a cold chain requires equipment to maintain consistency 

in temperature, the TOC is also considered appropriate for explaining the investment of 

resources in cold chain adoption. 

2.2.2 Network theory 

Network theory (NT) defines and clarifies relationships amongst linked entities (Thorelli 1986). 

NT contributes greatly to an acceptance of inter-organisational dynamics by highlighting the 

significance of personal chemistry among the parties, the construct of belief for positive long-

term supportive relations, and the shared adoption of practices and systems for exchange 

procedure (Halldorsson et al.  2007) .  NT suggests that, by working together, companies can 

enhance the competitiveness of the entire supply chain and achieve more than they could by 

operating independently (Axelsson & Easton 1992). Powell (1990) defines a network as a way 

of resource allotment where transactions happen through a network of individuals engaged 

in mutual, advantageous and commonly supportive actions.  

NT is expressive in nature, and has principally been applied in supply chain management to 

chart activities, actors and assets in a supply chain.  The emphasis has been on improvement 

in the long term, and on belief- based relations among the supply chain participants 

(Halldorsson et al.  2007) .  Some previous studies on supply chains have used NT to underpin 

the research.  For instance, Wilson (1996)  uses the NT approach to suggest improvement for 

the competitive advantage of an agri- food supply chain.  Nair and Lau ( 2013)  use the NT 

approach to develop a design for cold chain collaboration for fruits and vegetables.  Jarosz 

(2000)  applies NT to provide directions for research on regional agri-food networks.  Skjoett-

Larsen (2000)  discusses numerous meanings of third-party logistics and the related theories, 

including network theory and transaction cost, for developing third-party activities. Again, NT 

is considered applicable to the study of cold chain adoption using the low- tech low- cost 

approach in particular, as it leverages the close collaboration of supply chain members during 

implementation.  
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In the present study, the TOC explains why cold chain adoption should be considered, as it is 

a measure to overcome current constraints in the system and further enhance its 

performance.  The TOC can also guide the design of the cold chain by identifying bottlenecks 

and overcoming them through investment of resources or alteration of practices. NT accounts 

for the need for collaboration among supply chain members, as it permits firms to leverage 

one another’s resources and expertise to perform better together than any individual party 

alone could.  By working as a network, collaboration helps to reduce the total amount of 

resources required for improvement, and removes the weaker links in the supply chain, 

thereby making it more robust and competitive. The theory also serves as a guide to develop 

collaboration practices in the cold chain design investigated in this study, so as to maximise 

the overall benefit. The reasons for using these theories in this study are summarised in Table 

2.5. 

Table 2.5 – Summary of underpinning theories for this study 

Research question Underpinning 
theory 

Reason for using the theory Application 

What is an 
appropriate 
approach to cold 
chain design for 
fresh fruit supply 
chains in 
developing 
countries? 

 

Theory of 
constraints 

(TOC) 

This theory explains why cold 
chain adoption is investigated, as 
it is a measure to overcome 
existing constraints in the fruit 
supply chain and help enhance 
performance. 

To improve KPIs of fruit supply 
chain in Thailand through 
removal of system constraints, 
and reduction of non-value-
added activities.     

Network 
theory (NT) 

This theory accounts for the need 
to collaborate among all supply 
chain members within the cold 
chain, so as to leverage resources 
and expertise, share information 
and knowledge, and standardise 
practices.   

To improve KPIs of fruit supply 
chain in Thailand, through 
development of a better 
relationship among fruit supply 
chain members, so as to better 
compete against neighbouring 
fruit-exporting countries. 

 

2.3 Cold chain categorised 

Extant studies on cold chain design have been reviewed for the present study, the findings of 

which are summarised in Table 2.6.  Focuses of these studies can be categorised into two 

groups: (1) individual cold chain design; and (2) consolidated cold chain design. Individual cold 

chain design is based on the TOC to use the cold chain technology in the proper way to 
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overcome these constraints. Individual cold chain design also leverages the NT to account for 

the need for information sharing among supply chain members, such as on temperature 

control parameters. It refers to the adoption of the various cold chain technologies, which can 

be high-cost or low-cost (see Appendix A) .  They include pre-cooling facilities, temperature-

controlled trucks, and temperature-controlled warehouses invested in by each member of 

the supply chain individually to maximise flexibility of operations (see, for example, Global 

Cold Chain Alliance 2016). Consolidated cold chain design is also based on the ideas of the TOC 

and NT. It needs technologies to overcome the constraints, and requires collaboration among 

supply chain members.  Consolidated cold chain design refers to the sharing of cold chain 

technologies, infrastructure, knowledge and information among the supply chain members, 

so as to reduce total investment cost and maximise usage of resources (see, for example, De-

La-Fuente and Ros 2010).   
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Table 2.6 – Studies on cold chain management with different designs 

Category Primary 
perspective 

Design Approach Studies 

Individual 
cold chain 
designs 

Technology Use low-cost 
technology 

 Portable forced air 
cooling systems 

 CoolBot 
 USDA Porta-cooler 

CDH Energy Corp (2009); Dubey (2011); Global Cold Chain 
Alliance (2016); Kitinoja (2013); Robert, Andrew and John 
(2016) 

 Use high-cost 
technology 

 Vacuum cooling 
 Mechanical 

refrigeration 

Bishop ( 2013) ; Bledsoe ( 2009) ; Brecht et al.  ( 2010) ; 
California Strawberry Commission (2011) ; Picha (2006); 
Shane (2016); Wang & Luo (2012) 

Consolidated 
cold chain 
design 

 

 

 

Management Develop a 
collaborative network 

 Share information  
 Integrate logistics 

capabilities 
 Alliance 

Bishara (2006) ; D&B Tangram Advisory Services (2016); 
De- La- Fuente and Ros ( 2010) ; Drame and Meignien 
( 2016) ; Hou, Xie and Wang ( 2015) ; Kitinoja ( 2014) ; Li 
( 2006) ; AT Kearney Limited ( 2005) ; D&B Tangram 
Advisory Services (2016); Hou, Xie and Wang (2015); Jing 
and Jian (2015); Kitinoja (2014); Lan et al.  (2014); Lan, Liu 
and Wang (2010)  

 Reduce processing 
time 

 Use a hub and 
spoke design 

 Leverage cross 
docking 

 Set up a cold chain 
logistics centre 

Ma and Wu (2015) ; Zhu et al.  (2014) ; Qiu et al.  (2009); 
Yachao ( 2013) ; Pawanexh ( 2010) ; Anjum Asim Shahid 
Rahman Limited ( 2009) ; Pakistan Horticulture 
Development & Export Board (2007); Yu and Yan (2010) 

 

For individual cold chain design, the high-cost or low-cost facilities and technologies of the 

cold chain are used to operate a cold chain adoption (Quaye 2011). The design usually involves 

the use of pre-cooling technologies, cold storage, and refrigerated carriage, in order to control 

the temperature of products at the various stages along the entire supply chain.  To take the 

strawberry cold chain as an example, forced-air cooling is set up at farms to remove field heat 

from the fruit. After the pre-cooling process, the fruits will be held in a cold room to maintain 

the same temperature before the pick-up by the truck comes for transportation.  The trucks 

also have to be temperature-controlled, because the fruits need to be kept at a constant 

temperature to reduce the rate of natural degradation until they reach the consumers. This is 
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necessary to preserve the freshness or quality of the fruit and ensure food safety (California 

Strawberry Commission 2011) .  Similarly, seafood, milk, meat and other perishable products 

( Bledsoe 2009)  need to undergo pre- cooling after harvest to a specific temperature. 

Refrigerated transport is also needed to ship the products to a packing house that is also 

temperature-controlled.  After that, the products can be moved to cold storage, either in the 

packing house or a distribution centre, again by temperature- controlled trucks.  Later, the 

products are transferred to the retailers, which also need refrigeration facilities to maintain 

the temperature of the goods. With the use of advanced cooling technologies and specialised 

equipment, cold chain design in developed countries is generally robust and reliable. 

However, this may not be suitable for developing countries because of the high cost involved. 

Generally speaking, the advanced infrastructure and technology for cold chain is mostly 

lacking in developing countries (Kitinoja 2013) .  However, previous studies suggest that there 

are various low-cost cold chain technologies for preserving temperature along the cold chain 

( Global Cold Chain Alliance 2016; Kitinoja 2013) .  For example, instead of using forced- air 

cooling, which requires investment in equipment, pre- cooling at farms or small- scale 

businesses can be done using low-cost approaches such as ice or portable forced-air cooling. 

For cold storage, instead of building large, fully temperature-controlled storerooms, there is 

less expensive equipment available, such as walk- in cold rooms, which can be CoolBotTM-

equipped. For refrigerated transportation, again, low-cost cooling can be achieved by passive 

cooling technologies, such as ice or the use of USDA Porta coolers for short-distance delivery, 

instead of using specialised temperature-controlled vehicles which are quite expensive.  In 

Kenya as an example, the locals use a low-cost approach for pre-cooling called portable forced-

air cooling, which is suitable for low humidity areas. Economic temperature-controlled storage 

devices, such as the CoolBotTM systems, are often used, which cost less than half the cost of 

the standard commercial cold room.  This approach has also been proven to be effective in 

Bangladesh and India ( Global Cold Chain Alliance 2016) .  Low- cost cold chain technologies 

might also be suitable for other developing countries, such as Thailand, which has a large 

number of farmers with limited resources or knowledge of the use of advanced cold chain 

technologies (Buurma & Saranark 2006; Nissen et al. 2005; Salin & Nayga 2003).  



30 
 

With proper collaboration among supply chain partners and consolidation of activities, low-

cost cold chain design might still lead to significant improvement in performance (AT Kearney 

Limited 2005). A number of previous studies (Bishara 2006; Hou, Xie & Wang 2015; Ma & Wu 

2015; Pakistan Horticulture Development & Export Board 2007; Pawanexh 2010; Qiu et al. 

2009)  have developed some cold supply chain strategies to improve the efficiency of food 

logistics and reduce the total cost. One of these strategies is to set up a collaborative network 

involving all cold supply chain members.  For example, Rodríguez, Amorrortu and Álvarez 

(2011) and Lan et al. (2014) argue that a successful cold chain logistics system can be achieved 

through collaboration, integrated planning, information and resource sharing during the cold 

chain process for the food entity from providers to consumers.  Another strategy is to design 

the chain is such a way that processing time from farm to end customers can be reduced. The 

argument is that the cold chain is basically about speed.  The shorter the lead time in 

transportation is, the longer is the shelf life of the product (Zhu et al.  2014) .  For example, 

Billiard (2003)  suggests that the time interval between harvesting, processing and cooling 

should be reduced to decrease water loss from the produce and minimise the effects of fungi 

(Wardlaw 1939). Similarly, cold chain distribution centres should be located near the ports or 

farms to minimise transfer time (Yu & Yan 2010).  

Individual cold chain design (which can be seen as a high-tech high-cost approach) commonly 

applied in developed countries requires an enormous amount of capital investment in 

refrigeration technologies and equipment for each member.  This might not be suitable for 

developing countries, such as Thailand, which are limited in resources and less advanced in 

cold chain technologies (Serrano 2005). For basic cold chain adoption to keep harvested fruits 

at low temperature across the entire supply chain, low-cost technologies may suffice which 

require less resources and expertise than do the conventional cold chain technologies.  Using 

a consolidated cold chain design ( which can be seen as a low- tech low- cost approach) , 

infrastructure and capital investment requirements may be further reduced, while utilisation 

of assets and efficiency can be enhanced.  
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2.3.1 Pros and cons of different cold chain designs 

The literature reveals that there are various advantages and limitations of cold chain designs. 

Table 2.7 summarises the findings of a number of studies on the pros and cons of various cold 

chain designs, which, as mentioned earlier, can be categorised into two groups: (1) individual 

cold chain design; and (2) consolidated cold chain design. 

Table 2.7 – Studies on the advantages and limitations of cold chain management in 
different designs  

Type of cold 
chain design 

Advantages Limitations 
Category References Category References 

Individual cold 
chain 

The stable 
operation of the 
whole cold chain 

Hou, Xie and Wang 
(2015) 

 Lack of financial 
resources to 
invest 

 High cost 

Drame and Meignien (2016); 
Global Cold Chain Alliance 
(2016); Hou, Xie and Wang 
(2015); Kitinoja (2013) 

 Waste of 
resources in the 
off-season 

Hou, Xie and Wang (2015) 

Consolidated 
cold chain 

Minimise cost Hou, Xie and Wang 
(2015); Kitinoja (2013); 
Shane (2016); Stephen 
(2009) 

 Difficult to find 
members who 
have the ability 
to apply it 

Global Cold Chain Alliance 
(2016) 

 

Generally speaking, individual cold chain design can guarantee the possibility of the longest 

shelf life, thereby sustaining the flavour and quality of the product (Global Cold Chain Alliance 

2016) , because it supports a steady operation across the entire cold chain (Hou, Xie & Wang 

2015) .  This design can be valuable as even minor errors in handling temperature-sensitive 

goods may cause serious consequences such as decreasing shelf life ( Shane 2016) . 

Nevertheless, such design requires an enormous amount of money to invest in cold chain 

infrastructure and technologies (Drame & Meignien 2016; Global Cold Chain Alliance 2016; 

Hou, Xie & Wang 2015; Kitinoja 2013) .  Moreover, during the off-peak season, part of the 

invested cold chain infrastructure and technologies are often left in an idle state (Hou, Xie & 

Wang 2015). 

Consolidated cold chain design, on the other hand, can help to reduce the cost of 

infrastructure and technologies to invest in (Kitinoja 2013) , because supply chain members 

can share the infrastructure used, such as pre-cooling and cold rooms. It can also improve the 
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level of technology used for cropping, delivery process, and storage, and enhance the 

efficiency and responsiveness of all cold chain members (Winkworth-Smith, Foster & Morgan 

2015) .  Unfortunately, it is often difficult to find supply members to participate in the 

collaboration (Global Cold Chain Alliance 2016) , because some of the members, for example 

farmers, are not well- educated, trained or prepared to apply the consolidated cold chain 

design.  

In sum, individual cold chain design has benefits in terms of productivity improvement .  In 

addition, it enables maximum cold chain coverage during operation.  However, it requires an 

enormous amount of money to invest in infrastructure, which is a major obstacle for 

developing countries (Kitinoja 2013). In contrast, consolidated cold chain is considered a more 

feasible approach for developing countries, because it requires a relatively low cost of 

investment and can also improve the efficiency of the entire cold chain through collaboration 

among cold chain members. 

2.4 Tool for investigating cold chain designs 

There are very limited existing fresh fruit cold chains in developing countries, such as Thailand, 

for investigation ( Buurma & Saranark 2006; Nissen et al.  2005; Salin & Nayga 2003) . 

Furthermore, the testing of alternative designs cannot be implemented without significantly 

impacting on the current operation of a cold chain.  As such, a simulation approach can be 

adopted, as it is free of the above-mentioned issues (Hellström & Nilsson 2006). 

2.4.1 Simulation approach 

The simulation approach is commonly used in the supply chain field to show the actual 

situation that occurs in a logistics system or to test scenarios that are created on the basis of 

different input assumptions (Sumari et al.  2013; Tako & Robinson 2012) .  In general, discrete 

event simulation (DES) , system dynamic simulation (SDS) , and agent-based simulation (ABS) 

are the most commonly used simulation methods, because they can deal with the different 

variabilities and uncertainties of the system (Sumari et al. 2013). 
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A number of studies on supply chain simulation are summarised in Table 2 .8.  The focus of 

these studies can be categorised into four groups: (1) process design, (2) supply chain network, 

( 3)  supply chain policy, and ( 4)  supply chain performance.  Process design refers to the 

examination and rationalisation of physical processes to assist in decision- making and to 

control waste. Supply chain structure refers to the optimisation of supply chain configuration 

and the sequence or links between activities.  Supply chain policy refers to the identification 

of the most appropriate strategies to deal with changes in circumstances.  Supply chain 

performance looks at the output of a supply chain using certain indicators, such as cost and 

lead time. 

Table 2.8 – List of selected papers categorised by logistics and supply chain issues and 
simulation approach 

Research 
category 

Primary 
perspective 

Simulation 
method 

Studies 

Process 
design 

To design process 
with uncertainties 
and address 
transport issues in 
order to be an 
efficient process 

Discrete event 
simulation (DES) 

Iannoni and Morabito (2006); Jung et al. (2004); Kumar and 
Rahman (2014); van der Vorst, Beulens and van Beek (2000); 
van der Vorst et al. (1998); van der Vorst, Tromp and van der 
Zee (2005, 2009)  

Supply chain 
structure 

To configure the 
supply chain 
structure and 
network in order to 
be an efficient 
network and 
structure 

Discrete event 
simulation (DES) 

Carvalho et al. (2012); Katsaliaki, Mustafee and Kumar (2014); 
Kristianto et al. (2012); Persson (2011); Persson and Olhager 
(2002); Reiner and Trcka (2004) 

System dynamic 
simulation (SDS) 

Özbayrak, Papadopoulou and Akgun (2007) 

Agent-based 
simulation (ABS) 

Zhang et al. (2006) 

Supply chain 
policy 

To implement policy 
into the supply 
chain for solving 
supply chain issues, 
and developing 
produce quality 

Discrete event 
simulation (DES) 

Cigolini et al. (2014); Jacxsens et al. (2010); Lyu, Ding and Chen 
(2010); Meng et al. (2014); Rickard and Sumner (2011); Saad 
and Kadirkamanathan (2006); Thron, Nagy and Wassan 
(2007); Wang and Li (2012) 

System dynamic 
simulation (SDS) 

Cedillo-Campos et al. (2014); Georgiadis, Vlachos and Iakovou 
(2005); Low (2013); Martínez-Olvera (2009); Pierreval, 
Bruniaux and Caux (2007); Ramanathan (2014); Teimoury et 
al. (2013); Lee and Chung (2012); 

Agent-based 
simulation (ABS) 

Dominguez, Cannella and Framinan (2014); Zhang et al. 
(2006); Chan and Chan (2010) 

Systems 
performance 

To assess the 
operation 
performance by 
using certain criteria 
such as cost 

Discrete event 
simulation (DES) 

Fleisch and Tellkamp (2005); Jacxsens et al. (2010); Jansen et 
al. (2001); Kang et al. (2012); Mohan, Gopalakrishnan and Mizzi 
(2013) 

System dynamic 
simulation (SDS) 

Bueno-Solano and Cedillo-Campos (2014); Kumar, Sameer and 
Nigmatullin (2011); Low (2013); Martínez-Olvera (2009); 
Kumar and Nigmatullin (2011) 
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Among the three major simulation approaches, DES is widely used in all the supply chain 

research categories.  For instance, it is used for redesign processes in order to solve supply 

chain uncertainty problems, such as order cancellation and machine breakdowns (van der 

Vorst, Beulens & van Beek 2000; van der Vorst et al.  1998) .  In addition, DES is also used to 

address supply chain network issues in terms of designing an efficient supply chain network 

or structure (Kristianto et al. 2012; Persson & Olhager 2002). Some researchers have used DES 

to explore the use of a certain policy for solving supply chain problems, such as the 

replenishment problem ( Lyu, Ding & Chen 2010) .  Lastly, DES is used to evaluate system 

performance with different inventory levels ( Fleisch & Tellkamp 2005)  or supply chain 

configurations (Cigolini et al. 2014). 

Compared to DES, SDS is less often used as a simulation technique to investigate or explore 

process design, supply chain structure, and system performance. There is a general belief that 

SDS is most suitable for modelling problems at a policy level (Tako & Robinson 2012) .  For 

example, there are studies which have used SDS to investigate the effect of logistics and 

supply chain policies, such as inventory policy (Georgiadis, Vlachos & Iakovou 2005), “leagile” 

(a hybrid between lean and agile) strategy (Zhang, Wang & Wu 2012) , collaboration policy 

( Pierreval, Bruniaux & Caux 2007; Ramanathan 2014) , and export- import policy ( Cedillo-

Campos et al. 2014; Teimoury et al. 2013). 

Some researchers have used the ABS technique to examine the impacts of supply chain 

network and supply chain policy.  For instance, ABS has been used to study the bullwhip-

limiting effect in a supply chain ( Dominguez, Cannella & Framinan 2014) .  Nevertheless, 

compared to DES and SDS, ABS is not as popular as a simulation technique, based on the 

number of studies that have used the different approaches. 

As revealed in the literature, DES is a widely used simulation approach for studies in all of the 

four research focus categories.  In studies using simulation to design a more effective fruit 

supply chain, such as cold chain adoption, DES appears to be an appropriate tool for the 

purpose.  However, both SDS and ABS are appropriate candidates mainly when long- term 

policies or complex interactions between supply chain members are involved ( Lau & 
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Kanchanasuwan 2015) .  Therefore, this approach has been used to develop the fresh fruit 

supply chain model for analysis in the present study. 

2.5 Key performance indicators for the simulation study 

To employ a simulation methodology, it is necessary to use some key performance indicators 

(KPIs)  to compare the results of the simulation model.  A review of previous studies identifies 

some commonly used KPIs in supply chain simulation.  For example,  van der Zee and van der 

Vorst (2005) use cost, such as holding costs and transportation costs, as a KPI to evaluate the 

result of an alternative approach of vendor managed inventory (VMI)  through supply chain 

simulation.  Similarly, Persson and Olhager (2002) use lead time and cost to assess the impact 

of quality level for the alternative supply chain designs in the mobile communications 

business.  In addition, Umeda and Zhang ( 2006)  offer a simulation model to investigate 

collaboration between business partners using throughput, order lead-time, and shortage 

rate as KPIs. There have been efforts to systematically collect measures for appraising supply 

chain performance.  For example, Chan (2003)  has identified seven core performances:  cost 

(operating cost) , resource usage (machine, labour, capacity and energy) , quality ( lead time), 

flexibility (volume of output), visibility (accuracy), belief (consistency), and innovation (new use 

of technology).  

There are certain KPIs that are normally used in studies of the fruit and vegetable supply 

chain, as presented in Table 2 .9.  The KPIs used for these studies can be categorised into six 

groups: (1) shelf life, (2) safety, (3) wastage, (4) cost, (5) lead time, and (6) production.  
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Table 2.9 – List of KPIs that are normally used for fruit and vegetable research 

KPIs group KPIs  Central perspective Studies 
Quality Shelf life To improve shelf life by using 

several strategies 
 

Aung and Chang (2014); Cagnon et al. (2013); 
Jacxsens et al.  ( 2010) ; Rijpkema, Rossi and 
van der Vorst (2014) ; van der Vorst, Tromp 
and van der Zee (2009) 

Safety To improve fruit safety by using 
several strategies 

Jacxsens et al.  ( 2010) ; Joshi, Banwet and 
Shankar (2010); Narrod et al. (2009) 

Wastage To reduce fruit wastage by 
using several strategies 

Hsieh, Wang and Su (2011) ; Rossi, Rijpkema 
and van der Vorst (2012); Wang and Li (2012) 

Normal supply 
chain  

Cost To use as a performance for 
comparison 

Bogataj, Bogataj and Vodopivec ( 2005) ; 
Rijpkema, Rossi and van der Vorst (2014) 

Lead time To use as a performance for 
comparison 

Bogataj, Bogataj and Vodopivec ( 2005) ; 
Cadilhon et al. (2006) 

Production To use as a performance for 
comparison 

Bogataj, Bogataj and Vodopivec ( 2005) ; 
Rickard and Sumner (2011) 

 

Several literature reviews have been conducted focusing on the improvement of fruit quality 

(Cagnon et al. 2013; Jacxsens et al. 2010; Joshi, Banwet & Shankar 2010; Rijpkema, Rossi & van 

der Vorst 2014). Cagnon et al. (2013) apply the requirement-driven approach (RDA) to 

strawberry packaging to extend shelf life and reduce risk of damage to the strawberries. 

Rijpkema, Rossi and van der Vorst (2014) evaluate a sourcing policy which can improve supply 

chain performance regarding wastage, cost and shelf life of fresh fruit. Jacxsens et al. (2010) 

study policy development in order to ensure the long run of fresh produce safety. Narrod et 

al. (2009) explore the practices between Indian customers in order to investigate the 

relationship between preservation of food using cold chain and food safety. Moreover, Hsieh, 

Wang and Su (2011) study the implementation of green supply chain management policies to 

the hotel industry in order to reduce fruit and vegetable wastage. Rossi, Rijpkema and van der 

Vorst (2012) examine the effect of dual sourcing policies on the fresh strawberry industry, in 

terms of quality and wastage.  

Moreover, there are several previous studies on fresh fruit supply chains using KPIs, such as 

cost, lead time, and production (Bogataj, Bogataj & Vodopivec 2005; Rijpkema, Rossi & van 

der Vorst 2014). Rickard and Sumner (2011) examine the effect of policies on the evolution of 

the European Union (EU) domestic market for fruits and vegetables, by using production as a 

comparison. Cadilhon et al. (2006) study improvements in the Vietnamese vegetable industry 
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by using lead time as a performance measure to compare between modern and traditional 

chains.  Lastly, some studies have used cost as a performance measure for the fresh fruit 

supply chain (Bogataj, Bogataj & Vodopivec 2005; Rijpkema, Rossi & van der Vorst 2014) . 

Rijpkema, Rossi and van der Vorst (2014) use cost to evaluate the effectiveness of an existing 

sourcing policy for the fresh fruit supply chain.  

Shelf life and wastage of perishable produce are significantly influenced by temperature 

control (Aung & Chang 2014) .  Joshi, Banwet and Shankar (2011)  suggest that the suitable 

performance factors for cold chain study are throughput, timeliness, quality, and cost.  To 

evaluate the results of cold chain design, the present study uses five KPIs to examine the 

impacts of cold chain adoption:  total operating cost of the entire supply chain, shelf life, 

wastage, throughput, and lead time.  

2.6 Theoretical framework 

For the traditional fruit supply chain in developing countries, lack of supply chain 

management knowledge, no temperature control during storage and distribution, and low 

technology to improve post-harvest fruit quality, are some of the causes that lead to issues, 

as depicted in Figure 2.2.  These issues include high wastage, limited shelf life, low quality, 

reduced safety, and low efficiency. Previous studies have suggested some solutions to address 

these issues.  For example, several studies recommend packaging development (Blanco et al. 

2005; Sandhya 2010), demand analysis (Mergenthaler, Weinberger & Qaim 2009; Verdouw et 

al. 2010), and cold chain adoption (Chen, Hong & Lin 2000; Freiboth et al. 2013). Cold chain is 

a commonly used solution to address fresh fruit issues in developed countries. However, cold 

chain adoption is still uncommon in developing countries, due to limitations in infrastructure 

and knowledge. Thailand is one of those developing countries that is very limited in cold chain 

practice, for the foregoing reasons.  To promote cold chain adoption in developing countries, 

the present study uses simulation as a methodology to explore the appropriate approach to 

cold chain design for fresh fruit supply chains in developing countries, based on the ideas of 

the TOC and the NT.  The TOC is used to identify bottlenecks and improve on them through 

the allocation of resources.  The NT is employed to account for collaboration among supply 
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chain members.  The study expects to identify suitable cold chain designs for the fresh fruit 

industry in developing countries, so as to help improve supply chain performance in terms of 

lower operating cost, increased throughput, reduced lead time, extended shelf life, reduced 

wastage, and improved efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Proposed framework of this study 

 

2.7 Chapter summary 

This chapter discussed the need to adopt cold chain in developing countries, especially in the 

fresh fruit industry, and reviewed the issues faced by developing countries in cold chain 

adoption to understand why cold chains in developing countries have not succeeded. The two 

theories used to underpin this study – the theory of constraints, and the network theory – have 

been discussed.  They provide guidance for developing the cold chain designs investigated in 
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- Reduced safety 

Cold chain 
adoption Simulation 

Underpinning Theories 
- TOC - To overcome existing constraints in system 

- NT - To collaborate among all supply chain members 

Issues 
- Lack of supply chain management 
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distribution 

- Low technology to improve post-harvest 
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Expected Improvement in Performance 
- Lower operating cost 

- Increased throughput 

- Reduced lead time 

- Extended shelf life 

- Reduced wastage 



39 
 

this research. Furthermore, in this chapter commonly used cold chain designs were reviewed. 

In addition, tools for investigating cold chain designs were discussed in detail.  Finally, a 

theoretical framework for cold chain design for the fresh fruit industry in developing 

countries, such as Thailand, was proposed.  The next chapter will discuss the methodology 

used in this study.   
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Chapter 3  

METHODOLOGY 

The primary objective of this study is to examine an alternative approach to cold chain design 

for fresh fruit supply chains in developing countries. As cold chain implementation for fresh 

fruit products in developing countries is still uncommon, simulation is considered the most 

appropriate technique to compare the performance of a fruit supply chain before and after 

cold chain implementation. This chapter explains in general the approach used in this study. 

3.1 Modelling and simulation approach  

A simulation is a representational computer model of the real world or a system over time. 

Simulation is utilised to define and analyse a system’s behaviour, to ask what-if queries about 

the actual system, and to assist in the design of actual system (Banks 1998; Rossetti 2015) .  A 

simulation approach can assist in:  ( i)  discovering a system through the alteration of 

procedures, operations, strategies and approaches, with a relative lack of interference in the 

actual system and low cost; and (ii) slowing down or speeding up a phenomenon of attention 

so that it can be explored completely (Iannoni & Morabito 2006; Kelton, Sadowski & Sturrock 

2004) .  The simulation method is appropriate for this study because, to date, cold chain 

adoption is very limited in developing countries due to limited cold chain infrastructure, high 

cost, and the lack of awareness and training (Buurma & Saranark 2006; Nissen et al.  2005; 

Salin & Nayga 2003).  

There are numerous categories of computer- based simulation, such as system dynamics, 

discrete event simulation, and agent-based simulation.  For the present study, discrete event 

simulation (DES)  is used to develop the fresh fruit supply chain model for analysis, because it 

is generally used in the area of tactical or operational level, focusing more on the process in 

the business, and is typically used in decision making (Sumari et al.  2013) .  As revealed in the 

literature, DES is the most commonly used simulation approach for studies in supply chain 

performance analysis (Fleisch & Tellkamp 2005) , supply chain design (Carvalho et al.  2012), 

and supply chain policy formulation (Rickard & Sumner 2011).   
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There are many software packages for discrete event simulation.  Commercial DES packages, 

such as Promodel and ARENA, are commonly used by modellers to run simulations (Schriber 

& Brunner 2007; Sumari et al.  2013) .  The present study used ARENA to create the simulation 

models required for scenario testing and analysis.  Developed by the software company 

Rockwell, ARENA (Rockwell Automation 2018) is designed to model logistics and supply chain 

systems, among others.  It is a relatively popular DES tool commonly used by the 

manufacturing and the production industries (Setyaningsih & Basri 2013; Thomassey 2014). In 

the following sections, details of each step of the simulation methodology will be presented . 

3.2 Modelling and simulation process 

According to the literature, there are alternative explanations of the simulation methodology, 

which are frequently outlined as a flowchart (Figure 3.1) with a series of phases. Despite the 

different explanations, the main idea is the same and the variances are confined to the 

operation details (Steins 2010). This section presents a brief description of the typical phases 

in a discrete event simulation. The explanation is based primarily on the simulation study 

stages recommended by Rossetti (2015), Banks et al. (2010), Altiok and Melamed (2007), and 

Kelton, Sadowski and Sturrock (2004). 

3.2.1 Expressing the purposes of the study 

Simulation is frequently realised as a problem-solving technique. The initial step in 

construction of a simulation model is to indicate the problem to be solved, even though, 

occasionally, the actual issue itself comes to be clear after or during the simulation process. 

The problem statement sets up purposes for the entire simulation study. This comprises what 

queries the simulation model should address. If the simulation model intends to appraise 

some alternatives, these options are outlined (Altiok & Melamed 2007; Steins 2010). 
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Figure 3.1 – Simulation methodology in general (Rossetti 2015) 

3.2.2 Conceptual model design 

The modeller usually makes a conceptual modelling tool, such as a flow chart and/or 

conceptual diagrams, to obtain a clear understanding of the system under study (Rossetti 

2015). The tasks for conceptual modelling are to decide on how to clarify the reality, what to 

include in the simulation model, and how to select the correct level of model detail (Steins 

2010). The process of modelling starts with a basic model, and after that, further detail can be 

included if needed (Banks et al. 2010).   
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3.2.3 Data collection and analysis 

The data collection and analysis steps are usually run in parallel with the conceptual model 

design. All parameters in the model are recognised through this stage, and appropriate data 

regarding the system under investigation are gathered consistently within the scope of the 

model. Data are generally collected by direct observation, conducting interviews, querying 

database, and investigation of the remaining documentation (Steins 2010). According to Altiok 

and Melamed (2007), data gathering is required for model validation, as will be explained in 

the verification and validation step.    

3.2.4 Model translation 

After the problem is wholly formulated and the necessary data gathered, a working 

simulation model is constructed using computer language, which can be a special-purpose 

simulation language (e.g., Promodel, ARENA, and GPSS) or a general-purpose simulation 

language (e.g., Visual Basic, C++, and FORTRAN) (Altiok & Melamed 2007; Steins 2010).  

3.2.5 Verification and validation  

To develop an accurate simulation model, verification and validation is an important 

procedure.  Model verification, by definition, is a process to substantiate that the model is 

transformed from one form into another as proposed with adequate exactness (Balci 1998). It 

relates to the exactness in transforming the formulation of a problem into a model 

determination, or the correctness in transforming a model representation from a micro 

flowchart method into an executable computer program, as is appraised in model verification 

(Alzahrani 2011; Balci 1998) .  In other words, it deals with building the model correctly.  It can 

be performed by using debugging tools (Steins 2010). However, model validation is confirming 

that, within its area, the model performs with satisfactory exactness consistent with the 

research objectives (Balci 1998) .  It deals with building the correct model.  Validation can be 

achieved by comparing the historical data with the output of a simulation model and by 

sensitivity analysis (Sargent 2005).  
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3.2.6 Experimentation  

Designing and conducting simulation experiments to achieve the purposes of the study 

follows the verification and validation step. The design of experiments includes choosing the 

alternatives to be simulated. Experimental design involves making decisions on the number 

of replications and length of simulation run (Steins 2010).      

3.2.7 Analysis of the results 

The majority of discrete-event simulation models include stochastic elements (Kelton, 

Sadowski & Sturrock 2004). Therefore, the output is analysed by using statistical techniques. 

Average values over several replications are computed for necessary output measures at a 

confidence level of 99%. Simulation regularly involves more than assessing a single alternative. 

Analysis of output from a simulation also includes comparing the outputs from several 

experiments and choosing the best alternative from the results (Steins 2010).     

3.2.8 Recommendations 

The last phase in a simulation study is using the results to make recommendations for the 

fundamental system. This is normally part of a written report (Altiok & Melamed 2007).  

3.3 Overview of the modelling and simulation process in this study 

3.3.1 Problem identification 

In this study, DES is employed to explore the performance of a fresh fruit supply chain in a 

developing country before and after cold chain adoption, using both the high-tech high-cost 

and the low-tech low-cost designs. A typical fresh mango supply chain in Thailand is chosen as 

a case study to develop the base system. The commercial DES package ARENA is used as the 

tool for the building and testing of the models for the current situation and the future 

scenarios. At present, cold chain adoption in the fresh fruit industry in Thailand is very limited. 

Owing to the high ambient temperature of the tropical country, fresh fruits harvested from 

farms deteriorate quickly during processing and transportation, thereby shortening their shelf 

life and leading to high wastage. The major problem in the system under investigation is the 

lack of temperature control in storage and transit. It is believed that cold chain adoption can 
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provide a solution to this problem. The question is, which design is most suitable for 

developing countries, taking into consideration requirements and availability of resources, 

knowledge and skills, as well as flexibility of work practices. 

3.3.2 Conceptual model development 

This research used the conceptual modelling tools, flowcharts and conceptual diagrams, in 

Microsoft Visio 2013 software, to translate the identified actual fresh mango supply chain into 

a logical representation of the concerned activities and processes. The conceptual models 

help the modeller to understand the current system better. Simulation model building began 

after creating a solid conceptual model of the fresh mango supply chain as a case study. 

3.3.3 Data collection  

This study collected data and information about the sampled fresh mango supply chain by 

visiting all the parties involved, conducting semi-structured interviews, and making site 

observations. The semi-structured interviews were used to gather data and information about 

the cost, capacity of the machines, and exceptions, such as the operation during peak and off-

peak seasons, that might occur outside the period of investigation. Site observations were 

used to collect the actual flow rates and operation time. These observations also enabled 

cross-checking of the information provided by the interviewees, and recording of the 

characteristics of the operations, which could help to refine the simulation model to reflect 

accurately the actual situation.          

3.3.4 Model translation 

The conceptual model and the data collected about the mango supply chain were then used 

to create a DES model using ARENA, a commercial DES software package widely used for 

supply chain redesign (Sumari et al. 2013). 

3.3.5 Model verification and validation 

This research used several verification and validation techniques to test the validity of the 

simulation model. Process maps, 2D animation, and the ARENA debugger were used to 

confirm that the simulation model was correctly created. Comparison of output from the 
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simulation model against that of the real system was made through statistical analysis.  

Several sensitivity analysis tests were also conducted to investigate the validity of the model 

logic.        

3.3.6 Experimentation 

Upon model verification and validation, the validated model was modified to create 

alternative models to examine various cold chain designs, with a view to identifying the most 

appropriate one for developing countries. Previous studies reveal two types of cold chain 

design, individual cold chain design (which can be seen as a high-tech high-cost approach) and 

consolidated cold chain design (which can be seen as a low-tech low-cost approach). These two 

designs were translated into two alternative models for exploration. The operation length of 

the system in each simulation run was 72 hours (1 cycle), and 100 replications were made for 

each design. In addition, three scenarios regarding change in total demand, increase in supply 

uncertainty, and change in operating cost were created to test the robustness of the 

alternative cold chain designs in the long run.  

3.3.7 Analysis of the results 

This research used the t-test for independent samples to compare the performance of the 

actual system with the base model, and well as between the alternative models. 100 runs 

were used to obtain the sample means for comparison. This statistical technique was 

consistently applied to compare the simulation outcomes between the base model and the 

actual system during the model validation stage, as well as for the comparison of alternative 

cold chain designs within different scenarios. 

3.4 Chapter summary 

This chapter has described the methodology used for this study. It has described the process 

and the steps of the discrete-event simulation to be undertaken through the several phases 

of the research. It also gives an overview of how the methodology is applied in this study, 

using a fresh mango supply chain in Thailand as a case study. The next chapter will present 

the base model development (i.e., the actual situation).     
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Chapter 4 

DEVELOPMENT OF THE BASE MODEL 

This chapter describes the approach used in this study to create the base model, following 

the procedures recommended by Altiok & Melamed ( 2007) , Banks et al.  ( 2010) , Kelton, 

Sadowski & Sturrock (2004)  and Rossetti (2015) .  These procedures include system definition, 

model building, and model verification and validation.  In addition, this chapter presents the 

outputs of the base model and the validation results to verify that the base model is 

representative of the real system. Outputs of the base model in throughput, processing time, 

operating cost, shelf life and wastage, using the mean values of 100 replications, are 

compared against the actual values of the real system.  Student’ s t- test for independent 

samples will be used to determine whether there are significant differences between both 

means – simulated outcome versus actual performance – for each indicator. 

4.1 Modelling and simulation process 

Modelling and simulation is a complex process usually divided into distinctive phases .  This 

section describes the four phases of the simulation methodology that were followed in 

building the simulation model (Altiok & Melamed 2007; Banks et al. 2010; Kelton, Sadowski & 

Sturrock 2004; Rossetti 2015) for the fresh fruit supply chain under investigation. As shown in 

Figure 4.1, these phases constitute a guiding framework for constructing, running, validating 

and modifying the simulation model for scenario testing.  The entire process from an 

operational perspective is represented in Figure 4.2. 

1. Phase 1: System definition 

2. Phase 2: Model building 

3. Phase 3: Model validation 

4. Phase 4: Alternative model development and scenario testing  
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Figure 4.1 – Flow chart for the simulation process of this study (Rossetti 2015) 
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Figure 4.2 – Flow chart for the simulation process of this study from an operational 
perspective 
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4.2 Phase 1: system definition 
This stage covers the selection of study sample, identification of problem, and description of 

the system.  

4.2.1 Study sample 

In developing the simulation model, a single fresh fruit supply chain was selected for detailed 

analysis so that the current operation could be replicated.  Mango was chosen as the fruit for 

investigation as it is one of the major high- value fresh fruit exports in Thailand 

(Panichsakpatana 2013; Wangsinthaweekhun 2007) .  It is also a very popular fruit for local 

consumption in the country ( Department of Agriculture Extension 2010; Department of 

International Economic Affairs 2015) .  Furthermore, the fruit deteriorates easily in hot 

weather, and therefore needs to be processed quickly upon harvest ( Yahia 1999) .  These 

characteristics render a mango supply chain an appropriate candidate for cold chain adoption.  

As this study aims at developing a simulation model to investigate whether the performance 

of fresh fruit supply chains in developing countries such as Thailand can be improved through 

the adoption of cold chain design, a single representative fruit supply chain was selected and 

used as the base system for modelling. The objective was to understand in detail the structure 

and the processes of the selected fruit supply chain, and the parties and the activities 

involved, and to collect the operational data and performance statistics at different stages. 

For this reason, purposive sampling technique was adopted (Etikan, Musa & Alkassim 2016; 

Ritchie et al. 2013; Tongco 2007). The selection criteria included size and value of export. 

To select the appropriate sample, data published by the Ministry of Commerce of Thailand 

were used. According to the data, there were 324 fruit exporters, i.e., middleman companies, 

in Thailand (Department of International Trade Promotion 2011). They formed the population 

of this study. Among the 324 companies, there were 61 fruit exporters that exported mangoes. 

They formed the sampling frame of the research ( Department of International Trade 

Promotion 2011) .  This study chose one of the top mango exporting companies, i. e. , the 

middleman firm that was the focal company of the mango supply chain, on the assumption 

that the firm was representative in the fruit supply chain operation and management in 
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Thailand because of its scale of business.  The chosen firm –  a middleman company –  was 

reported by the media ( Focus 2008; Rattana 2011)  and the Thailand Research Fund 

(Somboonsuk et al.  2013)  as being one of the major players in the mango exporting industry 

in Thailand. Its supply chain operation was a typical example of the industry. The owner of the 

middleman firm was contacted on 6 May 2015 to explain the purpose of the research and 

seek agreement to participate. When the firm agreed to take part in the study, requests were 

made to invite its supply chain partners, such as farms, processors, and transporters who 

worked directly with the firm, to participate.  The data and information collected from the 

members of the supply chain enabled the development of a simulation model of the mango 

supply chain under study, to investigate how its performance could be improved through cold 

chain adoption. 

4.2.2 Problem identification 

During the data collection process, it was observed that there was basically no temperature 

control in the entire mango supply chain, although occasionally temperature- controlled 

trucks were used to deliver the harvested mangoes. To incorporate these real-world problems 

of the mango supply chain into the simulation model, the effect of temperature on spoilage 

of fresh fruit was incorporated in the model through the use of a spoilage formula (see Figures 

B21-B23 in Appendix B) .  This would enable the investigation of the impacts of cold chain 

adoption on the reduction of wastage and shelf life of mangoes in the supply chain.  

4.2.3 System description 

In this study, the system under investigation is a mango supply chain that consists of five 

farms, three processors, one transporter, and one middleman firm. They are labelled as farm 

A, farm B, farm C, farm D, farm E, processor A, processor B, processor C, transporter, and 

middleman company.  The size, capacities, and resources, including workforce, forklifts, hand 

lifts and trucks, were recorded during the site visits and interviews with the managers.  The 

system runs seven days a week from 8 AM to 5 PM. 
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Farms A, B and C 

Farms A, B and C were small groups of mango growers from the central part of Thailand.  The 

logistics and supply chain activities at the farms started from harvesting the mangoes, 

removing protective covers, surface grading based on the appearance of the fruit, and 

wrapping to protect the mangoes from damage during transportation. 

Activities at the farms were largely manual. Farmers (A, B, and C) harvested the mangoes and 

brought them to the group leader (Processor A). 

Processor A 

The leader of the mango growers (Processor A) played an important role in collecting products 

from group members.  Staff at processor A initially graded the mangoes to estimate the 

quantity of saleable products.  Processor A cooperated with its own group members ( the 

farmers) and the exporter (middleman firm) on time and product yield. 

The purpose of the grading process is to select qualified mangoes for export to the 

international market.  The process takes into consideration the condition of the peel, size, 

weight, and maturity of the fruit. Moreover, packing according to the grade of the fruit is also 

a primary responsibility of processor A.  

Farms D and E and processors B and C 

The activities at farms D and E were slightly different from those at farms A, B, and C, because 

of the different business characteristics. For the mango supply chain under investigation, farm 

D and processor B were owned by the same owner.  Similarly, farm E and processor C were 

owned by another owner.  As a result, activities conducted at the farms, although similar, are 

not identical. Certain activities that were carried out at the farms in one group were conducted 

at the processor site instead in the other group. For example, surface grading was conducted 

at the farm in one group but at the processor site in the other.  Nonetheless, the primary 

responsibilities of processors B and C were similar to those of processor A, which included 

grading and packing. 
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Transporter 

The transporter was a third-party firm which had been working together with the middleman 

firm for a long time. The main responsibility of the transporter was to transport the mangoes 

to the middleman firm for export. 

Middleman firm 

This middleman firm was the focal company of the mango supply chain comprising other 

members including farms, processors and transporter. The middleman firm’s operational 

activities involved receiving customers’ orders, sorting, labelling, and exporting the mangoes 

to various countries. Figure 4.3 gives an overview of the mango supply chain under 

investigation and the activities involved at different segments. 
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4.2.4 Data collection procedure 

This study gathered data and information from the respective four parties – farms, processors, 

transporter, and middleman firm – involved in the running of the selected mango supply chain, 

to help develop a simulation model. Thirteen and a half days were spent in collecting the data, 

starting from 8 May 2015 to 26 May 2015.  Data collected from site observations and semi-

structured interviews were used as input parameters for the simulation model.  In order to 

collect the required amount of information (process logic and resource process time)  for the 

development of the simulation model, some members of the mango supply chain were 

interviewed. Six members at the managerial level from farm A, farm D, processor A, processor 

B, transporter and the middleman firm were interviewed during the site visits, which started 

from 8.00 AM till 5.00 PM on the interview day. Most of the data collection time was spent at 

the middleman firm, followed by at the processors, the farms, and lastly the transporter.  A 

total of 250 minutes were spent with the interviewees to understand the logic of each 

operation system and the details of the operation, which could change across different times 

of the day, week, and month, as well as year.  During the site visits, a number of informal 

interviews or casual conversations were conducted with the operational staff to understand 

their activities. Table 4.1 shows the duration of the data collection process. 

Table 4.1 – Summary of data collection process for the mango supply chain under study 

Mango supply chain member Farm Processor Transporter Middleman firm 
A D A B 

Number of interviewees (Managerial level) 1 1 1 1 1 1 
Duration of interview (Managerial level) (Mins) 30 30 30 30 15 60 
Number of interviewees (Operational level) 1 1 1 1 1 1 
Duration of interview (Operational level) (Mins) 10 10 10 10 5 10 
Site observation (Days) 2 2 2.5 2.5 0.5 4 

 

Owing to the substantial workload of the staff during the harvesting season, most of the 

interviews and casual conversations were of relatively short duration. The purpose was mainly 

to find out the actual rates of operation and the common issues encountered in the supply 

chain which could not be observed in a few site visits.  As the research did not employ a case 

study approach to explore in depth a particular phenomenon, long interviews were not 
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required.  The brief interviews enabled the capture of the necessary information for model 

building, and at the same time did not disrupt the busy work of the supply chain members on 

the site.  

Site observations 

This study conducted several on-site observations of each member in the mango supply chain. 

Data collected include, among others, the actual number of workers and machines used, and 

actual flow rate and time required in each process.  During the observations, behaviours and 

activities of individual members were noted.  The site observations provide snapshots of the 

various operational processes in the mango supply chain under study, for the modeller to 

develop a simulation model that is realistic and representative of the real system. 

Semi-structured Interviews 

Semi-structured interviews were conducted face-to-face with various members of the mango 

supply chain at the managerial and operational levels.  The interviews took place at the 

worksites of the farmers and the offices of the processors, the transporter, and the 

middleman firm.  The interviewees, being the key representatives of the current system 

structure, provided information and data about the cost ( including labour cost and vehicle 

and machine operating cost), the number of workers, the number of machines used, capacity 

of the trucks, and the probability data (which were collected by asking the respondents for 

probability estimates together with onsite observations). The interviewees also explained the 

situations that were not readily available for observation during the site visits, such as changes 

in resources utilisation during peak and off- peak seasons.  This information was used to 

develop the simulation model to give a more realistic view of the operation of the fruit supply 

chain process.  

The following input data were required in order to build the base model: 

 Number of workers 

 Number of trucks 

 Number of mangoes harvested 
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 Truck capacity in containers 

 Probability that a mango is accepted or rejected 

 Number of mangoes in a basket 

 Scheduled time of the operation in minutes 

 Operating cost in Thai Baht 

 Operation breakdown time in minutes 

 Probability that a mango is grade AA, grade A, grade B, grade C 

 Probability that a mango is exported to country A, country B  

 Probability a mango box fails for 10kg of weight  

 Speed of the forklift in kilometres per hour 

 Temperature degrees Celsius 

 Number of mango boxes exported 

 Processing time of each activity in seconds 

 Shelf life of mango in days 

 Transportation time in hours 

 Number of mangoes per box in different grades of mango 

 Number of mango boxes per pallet 

 Distance for forklift operation in feet 

4.3 Phase 2: model building 

Data collected from semi-structured interviews and onsite observations were used as input 

to create a simulation model representative of the actual mango supply chain under study. 

For example, the data collected during site observations were used to model practices that 

are close to reality. These include the number of operators deployed in each process and the 

frequencies of operation delays due to machine breakdowns (e.g., box wrap machine)  and 

other causes. Lastly, information that was collected from semi-structured interviews was used 

to help the modeller understand in greater depth the operation process under different 

situations at different times, and for giving some details about the operating cost. The model 

outputs are compared with actual performance as a part of the model validation process. 

Once the simulation model is created and validated, the model can be used to simulate long-
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run operation of the mango supply chain with different cold chain designs under various 

scenarios. 

4.3.1 Conceptual diagram  

In this step, the real- world system was translated into a logical representation of the 

processes and activities involved. The conceptual model represents the basic concepts of the 

real system -  a mango supply chain with five farms, three processors, one transporter, and 

one middleman firm.  Figure 4. 4 shows the swim lane diagram representing the logical 

representation of the simulation model and the description of the high- level business-

mapping diagram for the mango supply chain activities, which are presented in Table 4.2. 

High-level business process mapping diagram

Pr
oc

es
so

r
Fa

rm
Tr

an
sp

or
te

r
M

id
dl

em
an

 
fir

m

Phase

Begin Harvesting

Weighing 1

Surface 
Grading ?

Cover 
Release Inspecting

Size Grading Packing Weighing 2 10 KG ? Weight 
Adjustment

Box Cover 
and Stamp  Box Wrap

Truck 
Loading 

Transporter

Truck 
Unloading 

Transporter
Sorting Stamp and 

Labelling Pallet Wrap

Truck 
Loading to 

International 
Market

End 

End 
No

Yes

Yes

No

Truck 
Loading Farm

Truck 
Unloading 

Farm

 

Figure 4.4 – High-level business process-mapping diagram 
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Table 4.2 – Explanation of mango supply chain activities 

Activity Explanation 
Harvesting To cut the mangoes from the mango tree 
Cover release To release the cover enclosing the mango that was placed to protect the 

fruit from insects and rain during the growing process 
Inspecting To select the good mangoes to export by looking at the appearance such as 

the colour of the peel of the mangoes 
Truck loading farm To load baskets of mangoes onto the truck 
Truck unloading farm To unload baskets of mangoes from the truck 
Weighing 1 To check the weight of the baskets for paying to the farmer the value of the 

mangoes 
Size grading To grade the mangoes based on their size  
Packing To pack mangoes into boxes for transportation 
Weighing 2 To check the weight of the mango boxes to ensure 10 kg/box 
Weight adjustment To adjust the number of mangoes in each box to ensure 10 kg/box 
Box cover and stamp To put a box cover and stamp the name of the processor and the grade of 

the mangoes 
Box wrap To wrap the boxes 
Truck loading transporter To load the mango boxes onto the truck for delivery to the middleman firm 
Truck unloading transporter To unload the mango boxes from the truck  
Sorting To sort the mango boxes by country for export 
Stamp and labelling To stamp and label the name of middleman firm on the boxes 
Pallet wrap To wrap the batch of mango boxes 
Truck loading international 
market 

To load the mango batches onto the truck for export 

 

Farms A, B and C 

Farm A, farm B, and farm C shared the same operational characteristics, which include various 

activities such as harvesting, inspection and stem cutting, waiting for the resin to be dried 

(see Table 4.3), and truck loading (Figure 4.5) .  The operation started with farmers harvesting 

mangoes by climbing the mango trees.  After that, they put the mangoes into a basket and 

then moved it to an inspection yard. Next, the farmers removed the cover from mangoes and 

conducted inspection as well as cutting the stem.  Afterwards, the farmers determined the 

grades of the mangoes by looking at the appearance and waiting for the resin to dry.  Lastly, 

the mangoes were loaded onto the truck.  Farm A, farm B and farm C normally started their 

operation from 8 AM and worked until 5 PM. Moreover, there was a truck for each farm which 

usually came to pick up the mangoes at 11.30 AM for mangoes that were harvested in the 

morning, and at 8 AM for those mangoes that were harvested in the previous afternoon. The 

trucks delivered the harvested mangoes to processor A two times per day. Farmers had a two-
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hour break for lunch from 12 PM to 2 PM.  Table 4.3 shows the description of Farms A, B and 

C activities.   

Begin Harvesting
Move to 

Inspection 
Yard

Release BasketPut into 
Basket Cover Release

Inspection and 
Cutting

Selection of 
Quality 
Mango?

Delay for 
Resin Dried

Put into 
Basket Truck Loading

No (3%)

Yes (97%)

End

End
 

Figure 4.5 – Process plan for farms A, B and C 

Table 4.3 – Explanation of mango supply chain activities at farms A, B and C 

Activities Explanation Resources requirement  
Harvesting To cut the mangoes from the mango tree 5 persons 
Put into basket To put the mangoes into a basket upon harvesting (25 

mangoes per basket) 
Shared the same resources 
with harvesting process 

Move to 
inspection yard 

To deliver the baskets of mangoes to the yard for 
inspection 

Shared the same resources 
with harvesting process 

Release basket To take the mangoes out from the baskets and lay them 
down on the floor 

Shared the same resources 
with harvesting process 

Cover release To release the cover enclosing the mango placed during 
the growing process 

2 persons 

Inspection and 
cutting 

To select good-looking mangoes for export by checking 
the appearance, such as the colour of the mangoes, and 
cutting excessive stem 

2 persons 

Delay for resin 
dried 

To wait until the resin from the stems of the mangoes 
dry up after cutting (20 minutes as a minimum) 

 

Put into basket To put the mangoes into the baskets for transportation 
(55 mangoes per basket) 

9 persons 

Truck loading To load the baskets of mangoes onto the truck (61 
baskets per truck) 

Shared the same resources 
with harvesting process and 
one truck 

 

Farms D and E 

Farm D shared the same operation characteristics with farm E.  The operation started with 

harvesting by farmers climbing the mango trees.  Then, the farmers decided on the grade of 

mangoes by looking at the appearance.  After that, the mangoes were put into the basket for 

truck loading (Figure 4.6) .  Two trucks for each farm would arrive to load the mangoes and 
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deliver these to processor B for farm D and to processor C for farm E. Due to the short distance 

between the farms and the processors, the trucks usually came to pick up the mangoes 

approximately 28 times for each farm each day.  Farm D and farm E shared the same working 

hours, from 8 AM to 5 PM, as those of the other three farms .  However, they used only one 

hour, between 12 PM and 1 PM, for lunch break.  Table 4. 4 provides a description of the 

activities involved. 

Begin Harvesting Put into 
Basket

Selection of 
Quality 

Mango ?
Truck Loading

End

End

Yes 
(90%)

No 
(10%)

 

Figure 4.6 – Process plan for farms D and E 

Table 4.4 – Explanation of mango supply chain activities at farms D and E 

Activities Explanation Resources requirement 
Harvesting To cut the mangoes from the mango tree 14 persons 
Selection of quality 
mango 

To select the mangoes that still have a cover Shared the same resources with 
harvesting process 

Put into basket To put the mangoes into baskets upon 
harvesting (45 mangoes per basket) 

Shared the same resources with 
harvesting process 

Truck loading To load the baskets of mangoes onto the truck 
(13 baskets per truck) 

Two trucks and two persons (One 
person for each truck) 

 

Processor A 

For this supply chain member, the operation consisted of unloading, weighing, grading, 

packing, and wrapping (Figure 4.7) .  Firstly, staff of processor A unloaded the mango baskets 

from the farm’s truck for weighing.  After that, they moved the mango baskets to the grading 

yard for grading.  Mangoes were graded by size.  For example, Grade AA is the biggest size, 

followed by Grades A, B and C.  Next, the staff packed the mangoes into the boxes by grade. 

The weight was set at ten kilograms per box.  In the case of being over or under the target 

weight, the staff made a weight adjustment manually until the weight was close to ten 

kilograms per box.  Then, processor A staff moved the mango boxes to the cover box yard for 
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covering and wrapping.  Working time of this system was between 8 AM and 5 PM.  This also 

included a lunch break from 12 PM to 1 PM.  Table 4.5 provides a description of the activities 

involved for processor A. 

Begin Truck 
Unloading Weighing 1 Move to Yard

Lay Down 
Mangoes to 

Yard

Decide 
Grading ? Packing AA

Packing A

Packing B

Packing C

End

Move to 
Weighing Weighing 2 10 KG?

Weight 
Adjustment

Move to Box 
Cover Yard

Box Cover and 
Stamp

Move to Box 
Wrap Wrap Box

Move to 
Transportation 
Preparing Yard

End

Grade 
AA (70%)

Grade 
A (20%)

Grade B 
(5%)

Grade C 
(4%)

Reject 
(1%)

Yes 
(80%)

No 
(20%)

 

Figure 4.7 – Process plan for processor A 
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Table 4.5 – Explanation of mango supply chain activities at processor A 

Activities Explanation Resources requirement 
Truck unloading To unload the baskets of mangoes from the truck (3 

baskets per one round) 
2 persons 

Weighing 1 To check the weight of the baskets for paying to the 
farmer the value of the mangoes. 

1 person 

Move to Yard To deliver the baskets of mangoes to the yard 2 persons 
Lay down 
mangoes to 
yard 

To lay down the mangoes upon the floor. 2 persons 

Decide grading To grade the mangoes by size (3 mangoes per one round) 2 persons 
Packing AA To pack grade AA mangoes into the boxes (25 mangoes) 1 person 
Packing A To pack grade A mangoes into the boxes (28 mangoes) 1 person 
Packing B To pack grade B mangoes into the boxes (33 mangoes) 1 person 
Packing C To pack grade C mangoes into the boxes (35 mangoes) 1 person 
Move to 
weighing 

To move the mango boxes to the weighing station 2 persons 

Weighing 2 To check the weight of the mango boxes to ensure 10 
kg/box. 

1 person 

Weight 
adjustment 

To adjust the number of mangoes to ensure 10 kg/box Shared the same resources 
with weighing 2 process 

Move to box 
cover yard 

To move the mango boxes to yard for covering Shared the same resources 
with weighing 2 process 

Box cover and 
stamp 

To put a box cover and stamp the name of processor and 
the grades of mangoes on the boxes 

2 persons 

Move to box 
wrap 

To move the mango boxes to the wrapping station Shared the same resources 
with box cover and stamp 
process 

Wrap box To wrap the boxes 1 person 
Move to 
transportation 
preparing yard 

To move the mango boxes to the transportation yard 2 persons 

 

Processors B and C 

Processor B and processor C followed the same processes but involved several operations 

different from processor A, such as mango basket unloading, cover removing, inspection and 

cutting, appearance grading, size grading, putting plastic bubble cover, packing, weighing, 

mango box cover, and stamp and box wrapping.  Before the formal grading step, some 

mangoes were rejected because of the obvious lower quality based on the appearance (see 

Figure 4.8). Processors B and C sell the rejected mangoes to local people to make dried candied 

mango.  The system operated between 8 AM and 5 PM.  They also had a break time from 12 

PM to 1 PM.  There was one hand lift to move the pallet close to the transporter’s truck at 
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each of the sites of processors B and C during the truck loading operation.  Table 4.6 provides 

a description of the activities involved for processor B and processor C. 

Begin Truck 
Unloading Cover Release Inspection and 

Cutting

Selection of 
Quality 

Mango ?

Delay for 
Resin Dried

Put into 
Basket

Put into 
Trolley

Move to 
Grading Yard

Lay Down 
Mango to Yard

Decide 
Grading ?

Packing A Move to 
Weighing A Weighing 2 A Weight 

Adjustment A

Box Cover and 
Stamp

Move to Box 
Wrap Wrap Box

Move to 
Transportation 
Preparing Yard

End

End

End

Yes 
(90%)

No 
(10%)

Put Plastic 
Bubble AA 

Put Plastic 
Bubble A

Put Plastic 
Bubble B

Put Plastic 
Bubble C

Grade 
AA 

(45%)

Grade 
A 

(25%)

Grade 
B 

(10%)

Grade 
C 

(10%)

10 Kg? A

Yes 
(80%)

Packing AA

Packing B

Packing C

Move to 
Weighing AA

Move to 
Weighing B

Move to 
Weighing C

Weighing 2 AA

Weighing 2 B

Weighing 2 C

10 Kg? AA
Weight 

Adjustment 
AA

Yes 
(80%)

No 
(20%)

10 Kg? B

10 Kg? C

Weight 
Adjustment B

Weight 
Adjustment C

Yes 
(80%)

No 
(20%)

No 
(20%)

Yes 
(80%)

No 
(20%)

Reject 
(10%)

 

Figure 4.8 – Process plan for processors B and C
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Transporter 

The middleman firm hired a transportation service provider. The capacity of the truck is 1,000 

mango boxes. The transporter started from the market at 2 PM, located in the same province 

as that of processors A, B and C. Empty trucks were sent to processor B to pick up the mango 

boxes first. Then, they went to processor C and processor A to pick up the mango boxes there. 

Finally, the trucks delivered the mango boxes to the middleman firm (Figure 4.9) .  Table 4.7 

provides a description of the activities involved for transportation. 

Begin Travel to 
Processor B

Pick Up Boxes 
Processor B

Travel to 
Processor C

Pick Up Boxes 
Processor C

Travel to 
Processor A EndPick Up Boxes 

Processor A
 

Figure 4.9 – Process plan for transporter 

Table 4.7 – Explanation of mango supply chain activities at the transporter 

Activities Explanation Resources requirement 
Travel to processor B To deliver to processor B - 
Pick up boxes 
processor B 

To pick up mango boxes from processor 
B 

7 persons and one hand lift 

Travel to processor C To deliver to processor C - 
Pick up boxes 
processor C 

To pick up mango boxes from processor 
C 

Shared the same resources with pick up 
boxes processor B process 

Travel to processor A To deliver to processor A  
Pick up boxes 
processor A 

To pick up mango boxes from processor 
A 

Shared the same resources with pick up 
boxes processor B process but no hand lift 

 

Middleman firm 

The operation of the middleman firm was to receive and sort the mango boxes by country 

and grade the mangoes for export. The sorting is required to facilitate the export operation. 

After the sorting, staff would label and stamp the mango boxes.  They would then be loaded 

onto temperature-controlled trucks and delivered to the specified countries (Figure 4.10). The 

truck delivery to country A used the middleman company trucks, usually two trucks per day 

departing at 11 AM.  However, the middleman firm used the transportation company for 

delivery to country B, which deployed a truck per day departing at 4 PM. The middleman firm 

had two forklifts and one hand lift to move the mango box pallets.  They also operated 
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between 8 AM and 5 PM, with break time from 12 PM to 1 PM. Table 4.8 provides a description 

of the activities involved for processor A. 

Begin Truck 
Unloading

Stamp and 
Labelling 1 for 

Grade AA 

Move to 
Prepare for 

Loading Yard
Truck Loading End

Move to 
Prepare for 
loading Yard

Stamp and 
Labelling 2 Wrap Truck Loading End

Sorting by 
Grade of 
Mango

Sorting by 
Grade of 
Mango

Sorting by 
Exported 
Country ?

Country A 
(55%)

Country B 
(45%)

Transport to 
Country A

Transport to 
Country B

Stamp and 
Labelling 1 for 

Grade A 

Stamp and 
Labelling 1 for 

Grade B

Stamp and 
Labelling 1 for 

Grade C

 

Figure 4.10 – Process plan for middleman firm 
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Table 4.8 – Explanation of mango supply chain activities at the middleman firm 

Activities Explanation Resources requirement 
Truck unloading To unload mango boxes from the truck 2 persons 
Sorting by exported 
country 

To sort the mango boxes by country for export (60 
mango boxes per pallet) 

9 persons 

Sorting by grade of 
mango 

To sort the mango boxes by the grades of the 
mangoes (60 mango boxes per pallet) 

Shared the same resources 
with sorting by exported 
country process 

Stamp and labelling 1 
for Grade AA 

To stamp and label the name of the middleman 
firm (Grade AA) 

2 persons 

Stamp and labelling 1 
for Grade A 

To stamp and label the name of the middleman 
firm (Grade A) 

Shared the same resources 
with stamp and labelling 1 for 

Grade AA 
Stamp and labelling 1 
for Grade B 

To stamp and label the name of the middleman 
firm (Grade B) 

Shared the same resources 
with stamp and labelling 1 for 

Grade AA 
Stamp and labelling 1 
for Grade C 

To stamp and label the name of the middleman 
firm (Grade C) 

Shared the same resources 
with stamp and labelling 1 for 

Grade AA 
Stamp and labelling 2 To stamp and label the name of the middleman 

firm (A pallet). Normally done after finishing truck 
loading for country A 

1 person 

Wrap To wrap the batches of mango boxes Shared the same resources 
with stamp and labelling 2 
process 

Move to prepare for 
loading yard 

To move the batches of mangoes to the yard to 
prepare for loading and putting on the pallet (60 
boxes per pallet) 

2 Folk lifts 

Truck loading To load the mango batches onto the truck for 
export (To start at 11 AM for Country A and at 4 
PM for Country B) 

3 persons and 1 hand lift 

 

4.3.2 Input parameters 

In this stage, actual data recorded during the site observations were fed into the Input 

Analyzer module of ARENA for analysis. The purpose of this step was to obtain the parameters 

for the statistical distributions used for simulating various activities (Abed et al.  2008) .  The 

recorded data provide a pattern for long-term simulation, which is then translated into a 

mathematical formula to generate the data as input.  This is based on the assumption that 

long-term running of the system is basically a repetition of what is actually happening in the 

short term, provided that the recorded data are representative of the normal operation . Input 

Analyser is a tool that comes with the ARENA software.  It is generally used to determine an 
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appropriate statistical distribution for raw data, such as process time, which can be used in 

the model to enable simulation (Alzahrani 2011).  

4.3.3 Goodness-of-fit test distributions 

The ARENA Input Analyzer was used to determine the theoretical distributions that best fit a 

sample of data.  To determine the reliability or goodness of fit, Chi- Square tests and 

Komogorov-Smirnov (K-S) goodness-of-fit hypothesis tests are provided by the Input Analyzer. 

In these tests, the null hypothesis is that the chosen distribution is a sufficiently good fit to 

the sample data (Altiok & Melamed 2007; Alzahrani 2011).  

The sample of data were fit to all distributions in the Input Analyzer of ARENA.  The squared 

error values were calculated and ranked in ascending order.  Squared error is the criterion to 

measure the distribution that best fits the data (Rossetti 2015) .  “Squared error is defined as 

the sum over the intervals of the squared difference between the relative frequency and the 

probability associated with each interval”  (Rossetti 2015, p.271) .  In addition, ARENA Input 

Analyzer reports the corresponding p-value, which takes values between 0 and 1.  A large p-

value means better fit of the theoretical distribution to the data. For example, if the p-value is 

greater than 0.05, it means the null hypothesis of a good fit at 95% confidence level can be 

rejected.  The p-value is the probability determining whether the theoretical distribution fits 

the data collected in the real-world environment.  Figure 4.11 shows the output of the Input 

Analyzer for the farm A harvesting processing time. 
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Figure 4.11 – Input Analyzer output for farm A harvesting processing time 

Every data file was run by the ARENA Input Analyzer. The input Analyzer created the likelihood 

distribution functions used to offer a baseline approximation of the transition interval for 

every step of the process. The resulting distributions and p-values are summarised in Appendix 

B. Table B.1 is for farms A, B and C, Table B.2 for farms D and E, Table B.3 for processor A, Table 

B.4 for processors B and C, Table B.5 for the transporter, and Table B.6 for the middleman 

firm.  

4.3.4 Model translation to ARENA 

In this step, the conceptual model was translated to an ARENA DES simulation model .  The 

individual modules representing the farms, processors, transport and the middleman firm, as 

shown in Figure 4.2, were created on ARENA – the DES software package used in this research. 

Input distributions as well as input parameters derived using the Input Analyzer of ARENA, as 

shown in Tables B.1-6 of Appendix B, were then set in the modules for test runs and validation. 

Once the individual modules were validated, they were put together to form the whole 
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system to be validated again. Figure B.1 of Appendix B shows a screenshot of the ARENA model 

for farm A, Figure B.2 for farm B, Figure B.3 for farm C, Figure B.4 for farm D, Figure B.5 for 

farm E, Figure B.6 for processor A, Figure B.7 for processor B, Figure B.8 for processor C, Figure 

B.9 for the transporter, and Figure B.10 for the middleman firm. 

4.3.5 Performance metrics  

Evaluating the performance of a cold chain for perishable produce is difficult, because it has 

several features that are different from other categories of supply chain, such as physical 

product characteristics including appearance and taste, seasonality in production, and long 

production throughput time (Joshi, Banwet & Shankar 2011; Joshi et al. 2012). Fearne, Barrow 

and Schulenberg (2006)  and Joshi, Banwet and Shankar (2011)  suggest that the appropriate 

performance indicators may include the products’ amount, quality, timeliness, and cost. Using 

this suggestion as reference, the simulation model for the mango supply chain under study 

generates, among others, five major KPIs as detailed in Table 4. 9.  They comprise total 

operating cost of running the entire supply chain, shelf life, lead time, wastage, and 

throughput.  These outputs are compared against the actual figures during the model 

validation process. 
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Table 4.9 – Definition of key performance indicators used in the simulation model 

Key 
performance 

indicator  

Definition Unit of 
measurement 

How it is calculated in the 
simulation model  

Lead time Total time required to deliver the fruit 
produce from the farm to the 
supermarket shelf 

Hours Value of the difference 
between the time an entity 
enters and exits the system 

Shelf life Total time the fruit produce stays on 
the supermarket shelf until it becomes 
unsuitable for consumption and has to 
be trashed 

Number of 
days 

Difference between the best 
before date (BBD) – time taken 
for the fruit to spoilage after 
harvest under certain 
temperatures (see Figure B.21) – 
and the lead time 

Wastage Percentage of fruit produce of which 
the best before date (BBD) is not yet 
reached but that has to be trashed due 
to bacterial infection or yeast 
contamination which render the fruit 
unsuitable for consumption 

Percentage      Percentage of entities to be 
marked as waste due to natural 
spoilage (see Figure B.22 and 
Figure B.23) 

Throughput The amount of fruit produce that can 
be handled during a certain period of 
time in a fruit supply chain  

Number of 
boxes 

Total number of entities that 
entered and exited the system 
during the model running time 

Total 
operating cost 

Total cost incurred along the entire 
fruit supply chain, including labour 
cost, transportation cost, and 
electricity cost  

Thai Baht Summation of all operating 
costs associated with the 
processing of entities during the 
running of the system 

 

Lead time 

Lead time, or processing time, in the simulation refers to the time taken from harvesting the 

mangoes to shipping them to international markets.  For multiple runs, it is taken as the 

average of the time an entity stays in the system which is the difference between the entry 

and the exit times. 

Shelf life  

According to Moomin (2010) , the shelf life of mangoes upon harvesting is usually around 10 

days at ambient temperature.  In the base model simulating the actual situation, shelf life 

refers to the time the mangoes can stay on the shelf at the market, and is calculated using 

the difference between the shelf life upon harvesting (10 days, according to Moomin 2010) 

and the processing time. As there are limited sample data to determine the actual distribution 

of the mango shelf life in this case, a triangular distribution of TRIA (9,10,11)  days is used in 

the simulation model to introduce some natural randomness. This is because, in reality, there 
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can be a slight difference in shelf life for each mango, even though they are harvested at the 

same time. 

Research reveals that the best temperature for preserving mangoes is around 13 degrees 

Celsius, which can extend the shelf life by more than 200% compared to the situation when 

the mangoes are placed in ambient temperature (Kader 2008) .  Therefore, in the simulation 

model incorporating the cold chain designs, the shelf life of mangoes upon harvesting is taken 

to be 25 days in a cold chain (refer to Figure B.21) .  As such, the shelf life upon reaching the 

market is calculated using the difference between shelf life upon harvesting and the 

processing time of the cold supply chain.  Again, in the simulation model, a triangular 

distribution of TRIA (24,25,26) days is used to introduce some natural randomness. 

Wastage 

Liu, Wang and Young (2014)  develop a decay index for mangoes at room temperature (see 

Figure B.22). Together with the Moomin (2010) calculation of shelf life (10 days), it can be seen 

that the average wastage of mangoes at room temperature is about 5 percentage in 10 days. 

Assuming the decay is uniform at the early stage, we can work out that the percentage of 

wastage for mango is about 0.5 % per day at ambient temperature.  This rate is used in the 

simulation model. 

Abou-Aziz et al. (1976) develop a decay index for mangoes at 10-15 degrees Celsius (see Figure 

B.23) .  It can be seen that, at 15 degrees Celsius, the decay of mangoes starts on the 9th day 

after harvest.  At 10 degrees Celsius, decay starts on the 14th day.  Both indices indicate that, 

for mangoes, there is very little or even no decay at these two temperatures for the first nine 

days after harvest if there is no temperature abuse in the delivery process. As the lead time in 

the mango supply chain being simulated is less than three days, this means that a zero percent 

wastage can be assumed if a consistent cold chain arrangement is adopted across the entire 

mango supply chain. 
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Throughput 

This refers to the number of mangoes harvested and processed during a harvesting cycle 

(from tree to market) , which can last from one to three days.  In the model, it is calculated by 

counting the number of mango boxes that have exited the system during the model running 

time. A box contains 25 mangoes for grade AA, 28 mangoes for grade A, 33 mangoes for grade 

B, or 35 mangoes for grade C. 

Total operating cost  

This refers to the total operating cost of the mango supply chain being simulated.  In the 

model, it is computed by calculating the running cost, starting from harvesting the mangoes 

to sending them to the international markets.  The running cost includes, among others, 

worker salary, truck fuel and insurance, electricity, the cost of packaging boxes, the cost of 

bubble wraps, and shipment cost.  

4.4 Phase 3: model validation 

A number of model verification and validation techniques can be used to verify and validate 

simulation models (Sargent 2005) .  In the present study, three verification and two validation 

techniques were adopted to check the validity of the developed simulation model.  These are 

discussed as follows. 

4.4.1 Model verification 

4.4.1.1 Process maps 

Before constructing the simulation model, all process maps involving the overall logic of the 

mango supply chain system and the relevant flowcharts were reviewed by the manager of the 

middleman firm.  Each process map representing a particular process was discussed with a 

senior employee working in that process.  In the case of any omission or difference in 

depiction, the maps have been revised and reconfirmed with the senior managers for 

accuracy prior to finalisation.  
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4.4.1.2 2D animation 

Initial verification of the model was done by observing the animation of movement of the 

simulated entities ( i.e. , mangoes)  to ensure that they were travelling to the right location in 

accordance with the entity flow diagram as reflected in the process maps.  The combined 

simulation model for the entire system was verified by checking the sequence of the 

simulated process.  The process flow was tracked to see whether the entities created in the 

model were moving exactly as in the actual supply chain process.  Screen shots of model 

animation are provided as Figures B.11 –  B.20 in Appendix B showing the movement of the 

entities in the system. 

4.4.1.3 The ARENA debugger 

Prior to running the model, any programming or logical errors were identified using the 

ARENA debugger.  The steps were to run the model and, if any error was encountered, the 

ARENA debugger would locate the area in the model where the error occurred so that 

appropriate correction could be made (Alzahrani 2011). 

4.4.2 Model validation 

4.4.2.1 Comparison with the real system 

As a base model for investigating the performance of various cold chain designs, the output 

of the simulation model has to be similar to the actual output of the mango supply chain in 

reality.  The validation method used in this study was to determine whether the operating 

cost, processing time, throughput, shelf life, and wastage for each process in the simulation 

model matched with the actual figures. It was also important to check the mango supply chain 

member process for the convergence of results with the “As- Is”  outputs (Kelton, Sadowski & 

Sturrock 2004).  

To compare the means of two independent samples, the independent t-test is used for this 

study (Huang, Kuo & Wu 2007) .  The independent t-test at 99%  significant level is used to 

investigate the hypothesis that the dissimilarity between the means of the two samples is 
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basically zero.  The null hypothesis is rejected when the p- value is less than 0. 01 and the 

decision is that the two means vary significantly (Urdan 2016). 

After running the simulation model on a 72-hour (1 cycle)  period for 100 replications, the 

average results were compared against the actual figures by using a two-sample t-test to 

determine whether there was any significant difference. The real data for comparison include 

the number of boxes created (throughput) , Country A processing time (CA processing time), 

Country B processing time ( CB processing time) , and total operating cost ( in Thai Baht) . 

Furthermore, the model also used some KPIs to account for the shelf life and the wastage of 

the fruit. For shelf life, this was calculated upon the fruit arriving at the international markets 

in Country A (CA) and Country B (CB). For the percentage of wastage, this was calculated from 

harvest at farm group A (farms A, B, and C) and farm group B (farms D and E) to the shipment 

of fruit to Country A and Country B. 

Table 4.10 shows the output of the base model compared against actual performance of the 

mango supply chain being simulated. The statistics reveal that the outcome of the base model 

is close to the actual performance at 99% significance level (see Tables B.7-18 for more details 

about the t-test results). 
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Table 4.10 – Comparison between simulated output and actual data 

KPIs  Actual 
mean 

Base model 
mean 

t 
statistic 

p-
value 

Number of Boxes 1,705 1,698** -1.27 0.92 
Country A Processing time (Hours) 59.5 59.57** 0.14 0.91 
Country B Processing time (Hours) 70.5 70.25** -0.50 0.70 
Operating Cost (Thai Baht) 243,589 241,817** -0.30 0.82 
Farms group A (A, B and C) to CA (Country A) shelf life (Days) 7.02 7.52** 1.72 0.18 
Farms group B (D and E) to CA (Country A) shelf life (Days) 7.02 7.49** 1.61 0.20 
Farms group A (A, B and C) to CB (Country B) shelf life (Days) 6.56 7.07** 1.76 0.18 
Farms group B (D and E) to CB (Country B) shelf life (Days) 6.56 7.05** 1.68 0.19 
Farms group A (A, B and C) to CA (Country A) wastage 
(Percentage of decay) 

1.24 1.24** 0.42 0.75 

Farms group B (D and E) to CA (Country A) wastage 
(Percentage of decay) 

1.24 1.26** 1.97 0.30 

Farms group A (A, B and C) to CB (Country B) wastage 
(Percentage of decay) 

1.47 1.47** -0.09 0.93 

Farms group B (D and E) to CB (Country B) wastage 
(Percentage of decay) 

1.47 1.48** 1.15 0.46 

** Significant at  = .01 

 

Based on the statistical results, it can be concluded that there is no significant difference 

between the modelled outcome and the actual performance of the supply chain .  In other 

words, the model is able to simulate the actual system and produce outputs similar to reality. 

Therefore, the base model can be seen as representative of the real system, and can be used 

to model different cold chain designs and explore a suitable cold chain design for developing 

countries. 

4.4.2.2 Sensitivity analysis 

Following the common practices of structure validation through parameter variability test, 

this study employed sensitivity analysis to validate the structure of the model. The sensitivity 

analysis tests serve two purposes:  ( i)  to determine whether small changes in certain factors 

would result in significant variations in the responses; and ( ii)  to check whether the changes 

in the responses are in the expected direction according to the model logic (Rossetti 2015) . 

The rationale is that variations in the value of certain critical parameters would generate 

changes in the output of the model but should show a consistent pattern that is in line with 
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the underlying assumption.  Chaotic changes would suggest problems with the model logic 

that need to be identified and resolved. 

The first step of the sensitivity test is to identify and select the input parameters to modify, 

so as to generate changes to the model output.  These input parameters have to impact 

significantly on all the KPIs used to gauge the model.  The other selection criterion is that the 

changes are likely to happen in real life.  For example, the number of mangoes harvested per 

day is not an appropriate input parameter for sensitivity analysis because it depends primarily 

on weather and is basically constant (Léchaudel et al. 2005). Despite the minor daily variations 

due to natural randomness, the impact on the model, particularly in throughput, is not 

significantly changed if there is no increase in the number of farms.  

Based on previous studies reported in the literature, a list of the candidate input parameters 

to change was compiled. Ge (2006), Kara, Rugrungruang and Kaebernick (2007), Parthanadee 

and Buddhakulsomsiri (2014), Rodrigues (2004) and Wijewickrama and Takakuwa (2005) test 

the effect of increase in incoming goods.  As discussed, this parameter is not suitable for this 

study, because it is not feasible to suddenly increase the mango output without setting up 

new farms.  Some studies looked at the effect of increase in transportation or labour cost on 

model output ( Goldsby, Griffis & Roath 2006; Kara, Rugrungruang & Kaebernick 2007) . 

However, this parameter is also not appropriate for sensitivity analysis in the present study, 

because the change would not generate significant impact on the performance of the model, 

as it would affect only the operating cost. Jayaswal and Chhabra (2005) use the percentage of 

product disposal in sensitivity analysis. Again, this parameter is not appropriate for this study, 

because wastage is an output instead of an input.  In the end, truck loading/unloading time 

(Bouzada 2009; Kara, Rugrungruang & Kaebernick 2007) and transportation delay (Rodrigues 

2004) were selected as input parameters for the sensitivity analysis in this study, because they 

would affect all the five KPIs and also would be likely to happen in real life.  If the model logic 

is correct, increase in truck loading/unloading time and transportation delay would increase 

processing time and wastage but reduce shelf life. In addition, throughput and operating cost 

would change drastically if the delay exceeded certain thresholds resulting in disruption of 
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the one-day harvest-to-export cycle.  Table 4.11 summarises the input parameters identified 

and selected for sensitivity analysis in this study. 

Table 4.11 – Input parameters identified and selected for sensitivity analysis 

Input parameter 
identified 

References Impact on KPIs Reason for inclusion/exclusion 

Amount of Input Ge (2006); Kara, Rugrungruang and 
Kaebernick (2007); Parthanadee 
and Buddhakulsomsiri (2014); 
Rodrigues (2004); Wijewickrama 
and Takakuwa (2005) 

Throughput and 
operating cost 

 Not impacting on all KPIs 
 Big increase is unlikely to 

happen in reality without 
adding new farms 

Transportation or 
labour cost 

Goldsby, Griffis and Roath (2006); 
Kara, Rugrungruang and 
Kaebernick (2007); Zhang et al. 
(2003) 

Operating cost  Not impacting on all KPIs 
 Big increase/decrease is 

unlikely to happen in 
Thailand 

Percentage of 
disposing 

Jayaswal and Chhabra (2005) Throughput and 
operating cost 

 Not impacting on all KPIs 
 Big increase/decrease is 

unlikely to happen in 
reality 

 
Transportation 
delay 

Chan and Zhang (2011); Günther 
and Kim (2005); Rakha and Zhang 
(2004); Rodrigues (2004) 

Throughput, 
processing time, 
shelf life, wastage 
and operating cost 

 Impacting on all KPIs 
 Big increase is likely to 

happen in reality due to 
inclement weather 

Truck 
loading/unloading 
time 

Bouzada (2009); Günther and Kim 
(2005); Jansen et al. (2001); Kara, 
Rugrungruang and Kaebernick 
(2007) 

Throughput, 
processing time, 
shelf life, wastage 
and operating cost 

 Impacting on all KPIs 
 Big increase is unlikely to 

happen in reality due to 
heavy rain, flooding and 
muddy road condition 

 

 Change in transportation delay  

This sensitivity analysis is to investigate whether increases in transportation delay can impact 

significantly on the performance of the model.  The increase in transportation delay can be 

caused by torrential rain and consequent road damage ( common in tropical developing 

countries), because the delivery trucks have to reduce speed. The delay can impact on all the 

five KPIs.  For example, if the delay increases significantly, some mangoes would not be 

shipped to the middleman firm on time and would miss the daily departures to foreign 

markets on the same day.  As a result, throughput, operating cost, processing time, shelf life, 

and wastage may all be affected.  Sadowski and Grabau (2003)  suggest that, in simulation, an 

increase of 15% in value for this parameter for sensitivity analysis would be appropriate. Based 
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on this recommendation, the present study uses increases in transportation delay at 5%, 10% 

and 15% of the current level to investigate the changes in performance of the model .  

The sensitivity analysis test is simulated by increasing transportation delay to the truck 

operations at the farms, processors and middleman firm.  The argument is that, with the 

increases in transportation delay, the processing time and wastage would increase, leading 

to a reduction in shelf life of the mangoes shipped. Furthermore, throughput would drastically 

decrease when a certain limit is exceeded.  To allow for some randomness in the simulation 

model, a triangular distribution instead of a fixed value is used to mimic the increase in 

transportation delay at 5% , 10%  and 15%  of the current level ( see Table B. 19) .  Table 4.12 

summarises the details of the sensitivity analysis test regarding change in transportation 

delay. 

Table 4.12 – Summary of sensitivity analysis tests in terms of change in transportation 
delay 

Sensitivity 
analysis test 

Change made to the model Reason for the change Additional 
resource 

Increase in 
transportation 
delay 

 An increase in transportation 
delay at farms, transporter and 
middleman firm in the simulation 
model by 5%, 10% and 15% of the 
current value (see Table B.19). 

 To represent an 
increase of 
transportation delay 
ranging from 5% to 
15% 

 Nil 

 

Revised to incorporate an increase in transportation delay by 5%, 10% and 15%, the model was 

run for 100 replications on a 72-hour period for each increase.  The average outcomes of the 

simulation runs were compared to determine the effect of increase in transportation delay 

on throughput, as shown in Figure 4. 12, on operating cost in Figure 4. 13, on country A 

processing time in Figure 4.14, on country B processing time in Figure 4.15, on country A shelf 

life in Figure 4.16, on country B shelf life in Figure 4.17, and on wastage in Figure 4.18.  
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Figure 4.12 – Effect of transportation delay on the throughput 

 

Figure 4.13 – Effect of transportation delay on the operating cost 
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Figure 4.14 – Effect of transportation delay on the country A processing time 

 

Figure 4.15 – Effect of transportation delay on the country B processing time 
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Figure 4.16 – Effect of transportation delay on the country A shelf life 

 

Figure 4.17 – Effect of transportation delay on the country B shelf life 
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Figure 4.18 – Effect of transportation delay on the wastage 

Increasing the transportation delay leads to increases in processing time ( Figure 4. 14 for 

country A and Figure 4.15 for country B) and wastage (Figure 4.18) but a decrease in shelf life 

( Figure 4. 16 for country A and Figure 4. 17 for country B) , as reflected in the simulation 

outcome. However, some mangoes cannot be exported to the foreign markets (country A) on 

the same day when transportation delay increases to 15% (Figure 4.12), as the truck will then 

miss the daily departures for country A. This leads to an increase in processing time for country 

A (Figure 4.14)  and operating cost (Figure 4.13) .  With these findings, it can be concluded that 

the outcome for this sensitivity analysis test is logical, because all the changes are in the 

expected direction. 

 Change in truck loading/unloading time 

This sensitivity test is to investigate whether the base model would operate as expected when 

truck loading/unloading time increases.  Truck loading/unloading time is affected by several 

factors in reality. For example, heavy rain is one of the main causes of truck loading/unloading 

delay, because the truck loading/unloading operation needs to stop in torrential rain, which is 

not uncommon in Thailand. Significant delay in truck loading/unloading time can impact on all 

the five KPIs of this study, similar to that of the transportation delay discussed in the previous 

section.  Bouzada (2009)  uses a 30%  increase in truck loading/unloading time for sensitivity 

analysis. Using this number as a reference, the present study sets a maximum of 45% increase 
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in truck loading/unloading time to allow for extreme cases, as long- lasting torrential rain in 

Thailand does sometimes occur. 

The model logic envisages that an increase in truck loading/ unloading time will increase 

processing time and impact on shelf life and wastage.  To mimic random fluctuations in the 

simulation model, again, a triangular distribution instead of a fixed value is used to generate 

the variations in truck loading/unloading time at 15% , 30% and 45% of the current level (see 

Table B. 20) .  Table 4. 13 summarises the details of the sensitivity analysis tests regarding 

increase in truck loading/unloading time. 

Table 4.13 – Summary of sensitivity analysis test in terms of increase in truck 
loading/unloading time 

Sensitivity analysis 
test 

Change made to the model Reason for the change Additional 
resource 

Increase in truck 
loading/unloading 
time 

 

 An increase in truck 
loading/unloading time at 
farms, processors, transporter 
and middleman firm in the 
simulation model by 15%, 30% 
and 45% of the current level (see 
Table B.20). 

 To represent an 
increase of truck 
loading/unloading time 
ranging from 15% to 
45% 

 

 Nil 
 

 

The delay in truck loading/unloading occurs at the farms, processors, transporter and the 

middleman firm.  The effects of changes in the percentage of truck loading/unloading time, 

which is modified to increase by 15%, 30% and 45%, on the throughput, operating cost, country 

A processing time, country B processing time, country A shelf life, country B shelf life, and 

wastage, are shown in Figures 4.19 to 4.25.  
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Figure 4.19 – Effect of truck loading/unloading time on the throughput 

 

 

Figure 4.20 – Effect of truck loading/unloading time on the operating cost 
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Figure 4.21 – Effect of truck loading/unloading time on the country A processing time 

 

 

Figure 4.22 – Effect of truck loading/unloading time on the country B processing time 
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Figure 4.23 – Effect of truck loading/unloading time on the country A shelf life 

 

 

Figure 4.24 – Effect of truck loading/unloading time on the country B shelf life 
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Figure 4.25 – Effect of truck loading/unloading time on the wastage 

The simulation results show that an increase in truck loading/ unloading time affects the 

processing time (Figure 4.21 for country A and Figure 4.22 for country B), shelf life (Figure 4.23 

for country A and Figure 4.24 for country B)  and wastage (Figure 4.25) .  Further delay in truck 

loading/unloading leads to an increase in processing time but a decrease in shelf life.  The 

increase in processing time for both countries A and B is proportional to the increase in truck 

loading/unloading delay. However, wastage is not significantly affected by the increase in truck 

loading/unloading time, because the percentage of wastage for mangoes is about 0.5% per day 

at ambient temperature (Liu, Wang & Young 2014; Moomin 2010). Even though the shipments 

to countries A and B are delayed by one day due to the additional truck loading/unloading 

delay, the increase in wastage is only 0.5%.  Throughput and operating cost are not affected, 

because the additional truck loading/unloading delay is minimal when compared to the total 

cycle time. All these outputs suggest that the model is working well even when an increase of 

truck loading/unloading time by 45% maximum is incorporated.  Furthermore, all changes in 

output for this test are in the expected direction, suggesting that the model logic is valid.   

In summary, the sensitivity analysis results reveal that the impacts on the model outcomes 

are minimal, even when an additional 30%  in transportation delay and 45%  in truck 

loading/unloading time are incorporated into the model.  Discussions with the various supply 

chain partners, with onsite observations, also confirm that the mango supply chain operation 
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under study is relatively stable, even though some delay is allowed for in the process.  This 

finding aligns with the simulated output.  Hence, it can be concluded that the sensitivity 

analysis results can reflect the reality. As such, the base model is considered valid and can be 

used to explore the appropriate cold chain approach for fresh fruit supply chains in developing 

countries.  

4.5 Phase 4: alternative model development and scenario testing 

Once validated, the validated base model developed can be used to explore the appropriate 

approach to cold chain design for fresh fruit supply chains in developing countries. To answer 

the research questions, this study has developed three scenarios for each approach. The first 

scenario is a change in total demand for exported fruit.  The second scenario is an increase in 

supply uncertainty.  The last scenario is an increase in operating cost.  The objective of the 

scenario tests is to see whether the investigated cold chain design is robust and still 

appropriate for developing countries under different situations.  Again, the five performance 

indicators for the model under each of the different scenarios were compared.     

4.6 Chapter summary 

This chapter has described the approach used in this study to create the base model. Details 

of the data collection and other stages of the simulation process were given. Furthermore, 

the output of the base model was presented, and its representativeness of the real system 

was validated using the t-test for independent samples. To test whether the model logic is 

valid, several sensitivity analyses through changes in transportation delay and truck 

loading/unloading time were conducted. The outcomes also support the validity of the model. 

The next chapter will present the development of the alternative models incorporating the 

cold chain designs and some scenario testing used to examine the robustness of the cold chain 

designs.   
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Chapter 5 

EVALUATION OF ALTERNATIVE MODELS 

Chapter 4 explained in detail how the validated base model was developed in order to be 

used as a basis for building and evaluating the alternative models and scenarios. This chapter 

describes in detail how the alternative models were constructed to incorporate the different 

cold chain designs for fresh fruit supply chains in developing countries, such as Thailand . In 

addition, explanation of how the various scenarios were developed to test the robustness of 

the alternative models are given. Three scenarios were considered, which involve change in 

total demand, increase in supply uncertainty, and change in operating cost in the long run. In 

addition, simulation results of the base and the alternative models, which incorporate the 

individual and the consolidated cold chain designs, are compared in performance in five 

aspects, including throughput, processing time, operating cost, shelf life, and wastage. 

Outcomes of the alternative models under different scenarios are also given to show the 

robustness of the alternative models. Again, to maintain consistency, performances of the 

models in the five areas are compared.  

5.1 Phase 4: alternative models development and scenario testing  

In developed countries where financial resources are relatively abundant, cold chain adoption 

generally involves significant capital investment in equipment and technology –  the so-called 

high-tech high-cost approach. Although changes in work practices or a redesign of the supply 

chain might be needed on some occasions during cold chain implementation, maintaining the 

existing supply chain structure and operation while investing heavily in state-of-the-art cold 

chain equipment is still the norm (Hodges, Buzby & Bennett 2011; Li 2006; Runzhou 2014). In 

developing countries, however, financial resources are usually scarce.  Therefore, alternative 

implementation tactics combining limited capital investment in equipment and changes in 

work practices –  or the so-called low-tech low-cost approach –  need to be considered.  The 

objective is to reduce total cost to make adoption feasible and to increase overall cost-

effectiveness by leveraging other resources, such as cheap labour.  With this understanding, 

the present study developed alternative models incorporating different cold chain designs, 
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by not only utilising cold chain equipment but also changing work practices. This was achieved 

by adjusting the resources and modifying existing process modules in the base model .  The 

same approach was used to generate the various scenarios with changes in the external 

business environment.  Two cold chain designs, namely individual and consolidated designs, 

together with three scenarios, representing fluctuations in total demand, supply uncertainty, 

and operating cost, were investigated. To determine whether cold chain adoption in the fresh 

fruit supply chain under study could help improve its performance, five KPIs were used to 

validate the base model. Similarly, the same KPIs were used to gauge the performance of the 

alternative models under the different scenarios.  

5.1.1 Alternative design 1: individual cold chain design 

The main characteristic of individual cold chain design is that every party invests in its own 

part of the supply chain during implementation.  For instance, the farmers, who are short of 

financial resources or do not have the ability to invest in cold chain technology or equipment, 

can still invest in labour resources to change operation times to tie in with cold chain adoption. 

Labour supply is usually abundant and relatively cheap in developing countries. It is, therefore, 

more affordable for the growers to hire labour than to invest in cold chain equipment .  As a 

company with more resources, the processor can invest in pre-cooling and cold room facilities. 

Similarly, the transporter can invest in temperature-controlled trucks.  For the same reason, 

the middleman company can invest in setting up a temperature-controlled area for storage 

of fresh fruits prior to exporting them overseas.  Figure 5. 1 presents an overview of the 

individual cold chain design (bottom half of the figure)  represented by the alternative model 

( model 1)  in comparison with the current supply chain design ( top half of the figure) 

represented by the base model.  Descriptions in red font in the alternative model represent 

the changes made to the current situation in order to incorporate the cold chain design .  
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Farm C
Farm BFa

Farm A

Farm D

Farm E

Middleman Company

International market Country Atry AAAAAAAAAAAAAAAAAAA
International market Country B

Processor B Processor A

Truck Company

Farm A, B and C trucks

Farm D and E trucks

Truck to Middleman firm

Exported truck (Temperature control)

2-days operation

44% of total 
mangoes harvested

1-hour 
journey

Harvest hours from 8 AM to 5 PM (with a 
2-hour break)
Activities: Selection and latex removal
Each farm runs its own truck (1 truck) 
with no temperature control
Two deliveries from each farm to 
processor A at 8:30 AM and 12:00 PM

5-minutes 
journey

15-minutes 
journey

2-days operation

56% of total 
mangoes 
harvested

Harvest hours from 8 AM to 5 PM (with 1-hour 
break)
Each farm runs its own trucks (2 trucks) with 
no temperature control
28 deliveries from each farm to processor
No pre-cooling facility or cold room at 
processors 
Selection and latex removal at processors

40-minutes 
journey

35-minutes 
journey

All operations in area at 
room temperature
Loading for export at 11 
AM and 4 PM
2 trucks for country A 
and 1 truck for country 
B, all temperature 
controlled

Processor C

2 trucks with no 
temperature 
control depart at 
2 PM

No pre-cooling 
facility or cold 
room
Lunch break 12 
PM – 1 PM

 

Overview of the current mango supply chain operation 
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journey
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11 AM and 4 PM
2 trucks for country A 
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country B, all 
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control depart at 
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starts at 1.20 PM
Operation hours 
from 8 AM to 5 
PM
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PM - 2.30 PM
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Overview of the mango supply chain using individual cold chain design 

Figure 5.1 – Overview of the alternative model 1 versus the base model 
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The individual cold chain design (alternative model 1) requires only minor modifications to the 

base model.  For example, the harvesting time of farms A, B and C has changed from the 

original 8.00 AM –  5.00 PM to 6.00 AM –  10.00 AM, as ambient temperature in the early 

morning is lower ( Brecht et al.  2010; Mango Research Station & University of Agriculture 

Faisalabad 2015; Siddiqui 2015) .  The harvested mangoes can be protected from exposure to 

direct sunlight (Brecht et al.  2010) , and the advanced harvesting time reduces the need for 

cooling and the electricity cost (which can be up to a 37% reduction) of the pre-cooling process 

(Thompson, Mejia & Singh 2010; Sargent, Talbot & Brecht 1988). To advance and shorten the 

harvesting time of farms A, B and C, it is necessary to increase the manpower by hiring more 

workers.  However, no temperature-controlled truck to transport the harvested mangoes to 

the processor is needed, because the ambient temperature is not high in early morning (see 

Appendix C, Table C.1) .  The advancement of harvesting time also enables the pre-cooling of 

the harvested mangoes at processor A to be completed on the same day. By the time the pre-

cooling process finishes, the transporter’s temperature-controlled truck arrives to collect the 

cooled mangoes and deliver them to the middleman firm. As such, there is no need for a cold 

room at processor A for storage.  However, the harvesting time at farms D and E remains 

unchanged because they are substantially closer to processors B and C than the other three 

farms are.  It takes only about five minutes to transport the harvested mangoes to processor 

B from farm D and to processor C from farm E, whereas it takes approximately one hour for 

the other farms (A, B, and C) to deliver the harvested mangoes to processor A. As such, without 

advancing and shortening the harvesting time, thereby avoiding the need for additional 

labour, pre-cooling of the mangoes harvested at farms D and E can still be done on the same 

day of harvest. 

For the pre-cooling of mangoes at the processors, portable forced air cooling equipment is 

used because it is suitable for cooling fresh fruit while the investment cost is not high 

compared with that of other pre- cooling technologies ( Brecht et al.  2010; Kitinoja 2013; 

Kitinoja & Thompson 2010; Quaye 2011; Winrock International 2009). Upon completion of the 

harvest at 10.00 AM and after the mangoes have been packed, the pre-cooling process at 



 
 

96 
 

processor A starts at 1.20 PM so that it can finish before the transporter’s truck arrives to 

collect and deliver the pre-cooled mangoes to the middleman company. To make this happen, 

it is necessary to change the lunch time at processor A, from 12.00 PM-1.00 PM to 1.30 PM-

2.30 PM.  For processors B and C, the process commences at 5.00 PM on the harvest day and 

10.00 AM on the following day.  Running the pre-cooling process two times is necessary.  The 

first pre-cooling at 5.00 PM is suitable for mangoes that are harvested before 2.00 PM on the 

day.  It starts at 5.00 PM when the latex-reduction process, which takes three hours, finishes. 

Upon pre-cooling, the mangoes are placed in a cold room overnight. A walk-in CoolBotTM cold 

room can be equipped at each of the processors B and C, as it is cheaper than other types of 

cold room (Kitinoja & Thompson 2010; Store It Cold Limited 2016) .  To place the pre-cooled 

mangoes in the cold room, two workers are required to work overtime for 4 hours at both 

processors B and C. The second pre-cooling starts at 10.00 AM on the following day. This is for 

the mangoes that are harvested after 2.00 PM on the previous day. The temperature at night 

is low, and therefore the harvested mangoes are kept at ambient temperature until the 

morning of the next day before they are pre-cooled.  The pre-cooling finishes just before the 

transporter’s truck arrives to transport the mango boxes to the middleman company. 

Under the individual cold chain design, the transporter is also required to invest in 

temperature- controlled trucks which are used to transport the cooled mangoes from the 

processors to the middleman company.  Refrigerated container trucks are preferred because 

they are more energy efficient than small refrigerated vehicles (Winrock International 2009) . 

When the trucks arrive at the middleman company, all operations, such as truck unloading 

and mango sorting, are conducted in a temperature- controlled area which is a walk- in, 

CoolBotTM-equipped cold room. Compared to other cold room designs, the walk-in, CoolBotTM-

equipped cold room is usually a cheaper option (Kitinoja & Thompson 2010; Store It Cold 

Limited 2016). In this case, additional cost will be incurred for building a cold room to sort and 

store the packed mango boxes before they are exported to international markets.  Table 5.1 

summarises the design of the cold chain model in this study using the individual cold chain 

design approach.   
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Table 5.1 – Details of the individual cold chain design 

Fruit supply 
chain 

members 

Changes made to base model Reason for the change Additional resource 

Farms A, B 
and C 

 To harvest in the morning 
from 6 AM to 10 AM instead 
of from 8 AM to 5 PM 

 To protect the harvested 
mangoes from direct sunlight 
and keep the temperature low 
so as to reduce the time and 
energy for pre-cooling 

 9 persons at each 
farm 

 1 non-
temperature-
controlled truck at 
each farm   To increase staff for 

harvesting from 9 persons to 
18 persons 

 To tie in with the advancement 
of harvesting time 

 To reduce the truck loading 
time by half 

 Due to increase in manpower 

 To increase the number of 
trucks from 1 to 2 at each 
farm 

 To transport harvested 
mangoes to the pre-cooling 
facility as quickly as possible 

 To change truck loading time 
from 11.30 AM on the 
harvest day and 8.00 AM on 
the following day to 7.30 AM 
and 9.20 AM on the same 
day 
 

 To tie in with the advancement 
of harvesting time 

Farms D 
and E 

 Nil 
 

 Nil  Nil 

Processor A  To add a pre-cooling process 
starting at 1.20 PM (see 
Table C.2) 

 To cool the mangoes after 
harvest as quickly as possible 

 Mangoes are usually cooled for 
2- 4 hours 

 Harvesting in early morning 
can help reduce pre-cooling 
time and electricity cost by 37% 

 To finish pre-cooling before the 
arrival of the temperature-
controlled trucks from the 
transporter 

 1 portable forced 
air-cooling  facility 

 To change lunch time of staff 
from 12.00 PM-1 PM to 1.30 
PM-2.30 PM 

 

 To place the harvested 
mangoes in the pre-cooling 
facility at the processor sites 
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Table 5.1 – Details of the individual cold chain design (continued) 

Fruit supply 
chain 

members 

Changes made to base 
model 

Reason for the change Additional resources 

Processors B 
and C 

 To run a pre-cooling at 5 
PM on the harvest day 
and another one at 10 
AM on the following day, 
for 2-4 hours  

 

 It is necessary to run pre-cooling 
two times because harvesting 
time of farm D and farm E 
remains unchanged  

 The 5 PM run is for the mangoes 
harvested before 2 PM on the 
harvest day, whereas the 10 AM 
run on the following day is for 
the mangoes harvested after 2 
PM on the previous day  

 Pre-cooling starts at 5 PM 
because it has to wait until the 
latex-reduction process is 
completed 

 The second pre-cooling starts at 
10 AM the next morning 
because the temperature is low 
at night 

 Harvested mangoes are usually 
cooled for 2-4 hours 

 1 portable forced 
air-cooling facility 
in each processor 

 1 walk-in cold 
room CoolBotTM-
equipped facility 
in each processor 

 2 overtime staff 
working for four 
hours at each 
processor 

 To operate a 
temperature-controlled 
room store for the 
mangoes pre-cooled at 5 
PM 

 To hold the mangoes in the 
cooler before shipment 

 To have two overtime 
staff working for 4 hours 

 To move the mangoes to the 
cold room at each processor site 
when the pre-cooling process 
finishes 
 

Transporter  To use temperature-
controlled trucks to 
deliver the cooled 
mangoes from the 
processor sites to 
middleman firm 
 

 To link up the cold chain  2 refrigerated 
container trucks 

Middleman 
firm 

 To operate temperature-
controlled area 

 To link up the cold chain  1 walk-in cold 
room CoolBotTM-
equipped facility 

 

5.1.2 Alternative design 2: consolidated cold chain design  

Instead of having all supply chain members investing individually in their own cold chain 

equipment, supply chain members can coordinate their operations and share the use of cold 

chain equipment and infrastructure to operate the cold chain at a lower cost. For example, all 
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farms can shift the mango harvest time to the early morning to reduce pre-cooling needs and 

cost.  Processors A and B can share a common pre-cooling facility located at Processor B to 

maximise usage of the facility. The transporter and the middleman company can change their 

operation time to tie in with the processor’s operation.  Figure 5.2 shows an overview of the 

consolidated cold chain design represented by the alternative model (model 2) in comparison 

with the current supply chain design represented by the base model.  Again, the top half of 

the figure shows the current situation while the bottom half shows the consolidated cold 

chain design. The changes made are shown in red font for easy understanding. 

In the consolidated cold chain design ( alternative model 2) , shift of harvest time to early 

morning and increase in the number of staff at farms A, B and C are identical to those of the 

individual cold chain design (see Table C.3) .  The harvested mangoes are still transported to 

processor A, but it will be relocated to the same site as that of processor B. This is because the 

distance between farms A, B, and C and processor B is much shorter than that between the 

original position of processor A and the farms (see Figure C.1). The relocation will significantly 

reduce the travelling distance, time and fuel of the transporter’s truck which collects the 

cooled mangoes from the processors for delivery to the middleman company.  Such an 

arrangement is possible in developing countries, such as Thailand, because the middleman 

firm, being a company with more resources, usually has the greatest power over other supply 

chain members, who are usually small firms with very limited assets.  Therefore, the 

middleman company can arrange and facilitate collaboration among supply chain members 

for the benefit of all parties (Vellema et al. 2005). By relocating processor A to the same site of 

processor B, the two processors can share pre- cooling facilities, thereby reducing total 

investment cost as well as maximising utilisation of resources.  Because of this arrangement, 

mangoes harvested from farms A, B and C are pre-cooled at 3.00 PM together with mangoes 

harvested from farm D. Mangoes harvested from farm E will go to processor C for pre-cooling, 

again at 3.00 PM. As such, it is necessary to shift the harvest time of farms D and E to the early 

morning (AT Kearney Limited 2005; Aswaney 2007; Brecht et al. 2010; Mango Research Station 

& University of Agriculture Faisalabad 2015; Zhu et al.  2014) .  This enables the pre-cooling 

process for all harvested mangoes to start at the same time, i.e., 3.00 PM, on the day of harvest 
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and finish before the temperature-controlled trucks from the transporter arrive to transport 

the cooled mangoes to the middleman company (Thompson, Meijia & Singh 2010). To do this, 

farms D and E are required to increase the number of workers from 14 to 28 persons and to 

add two more trucks (see Table C.4)  at each farm.  The harvesting time will also change from 

8.00 AM-5.00 PM to 6.00 AM-10.00 AM. 
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Farm C
Farm BFa

Farm A

Farm D

Farm E

Middleman Company

International market Country Atry AAAAAAAAAAAAAAAAAAA
International market Country B

Processor B Processor A

Truck Company

Farm A, B and C trucks

Farm D and E trucks

Truck to Middleman firm

Exported truck (Temperature control)

2-days operation

44% of total 
mangoes harvested

1-hour 
journey

Harvest hours from 8 AM to 5 PM (with a 
2-hour break)
Activities: Selection and latex removal
Each farm runs its own truck (1 truck) 
with no temperature control
Two deliveries from each farm to 
processor A at 8:30 AM and 12:00 PM

5-minutes 
journey

15-minutes 
journey

2-days operation

56% of total 
mangoes 
harvested

Harvest hours from 8 AM to 5 PM (with 1-hour 
break)
Each farm runs its own trucks (2 trucks) with 
no temperature control
28 deliveries from each farm to processor
No pre-cooling facility or cold room at 
processors 
Selection and latex removal at processors

40-minutes 
journey

35-minutes 
journey

All operations in area at 
room temperature
Loading for export at 11 
AM and 4 PM
2 trucks for country A 
and 1 truck for country 
B, all temperature 
controlled

Processor C

2 trucks with no 
temperature 
control depart at 
2 PM

No pre-cooling 
facility or cold 
room
Lunch break 12 
PM – 1 PM

Overview of the current mango supply chain operation 
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harvested

Harvest hours from 6 AM to 10 AM
Each farm runs its own trucks (4 trucks) with 
no temperature control
Use plastic racks to reduce latex removable 
time from 3 hours to 30 mins.
Pre-cooling starts at 3.00 PM  at processors 
Processor A and B share the same pre-cooling 
facility

40-minutes 
journey

All operations in area 
with temperature 
control
Loading for export at 
1.00 PM and 4 PM
2 trucks for country A 
and 1 truck for country 
B, all temperature 
controlled

Processor C

2 trucks with 
temperature 
controlled 
depart at 5.00 
PM

40-
Minutes 
journey

12-Hours 
journey
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Overview of the mango supply chain using consolidated cold chain design 

Figure 5.2 – Overview of the base model versus summary of consolidated cold chain design 



 
 

102 
 

To tie in with the advancement of harvesting time of farms D and E, processors B and C have 

to increase the number of staff and advance the operation time of inspecting and cutting the 

harvested mangoes from 8.00 AM-5.00 PM to 6.00 AM-12.00 PM (see Table C.5). A plastic rack 

can be used in the latex-removal process to reduce the processing time from the original three 

hours to 30-60 minutes (Mango Research Station & University of Agriculture Faisalabad 2015). 

Due to the shortening of the latex-removal operation, the next step of moving the de-latexed 

mangoes to the grading yard can be expedited from two times to three times per day.  By 

advancing harvesting time, using plastic racks to quicken latex removal from the harvested 

mangoes, expediting the grading process, and sharing pre-cooling facilities to maximise usage, 

this design does not require any cold room for storage of mangoes during waiting, due to 

improved coordination of activities.  The pre- cooling process completes just before the 

transporter trucks arrive to the processor sites to pick up the cooled mangoes and transport 

them to the middleman company for sorting and export.  The mango boxes upon pre-cooling 

wait inside the pre-cooling room for pickup, thereby avoiding the need for a separate cold 

room. 

As with the individual cold chain design, the transporter needs to invest in two temperature-

controlled trucks to transport the mangoes.  However, under the consolidated cold chain 

design, the transporter will arrange the two temperature-controlled trucks to depart at 5.00 

PM instead of the original 2.00 PM, to tie in with completion of the pre-cooling process at the 

processor sites.  The routing of the trucks also needs to be revised.  Instead of going to 

processor B first and then to processors C and A, as in the base model, the trucks will travel 

to processors A and B (located at the same site) first to pick up the mango boxes, and then to 

processor C to pick up the mango boxes. After that, the trucks drive directly to the middleman 

company (Figure 5.3). 

 

 

Figure 5.3 – Transporter’s process under the consolidated cold chain design 
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Due to the postponement of the transporter trucks’ departure time, even though the distance 

from processor C to the middleman company is shorter than that from processor A, it is still 

necessary to delay the departure time of the country A truck at the middleman company, 

from 11.00 AM to 1.00 PM, to tie in with the arrival of the transporter trucks.  Again, all the 

operations at the middleman company site will be done in a temperature-controlled cold 

room, which needs to be built. Table 5.2 summarises the design of the consolidated cold chain 

design for this study. 
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Table 5.2 – Details of the consolidated cold chain design 

Fruit supply 
chain 

members 

Changes made to base model Reason for the change Additional 
resource 

Farms A, B 
and C 

 To harvest in the early 
morning from 6 AM to 10 AM, 
instead of from 8 AM to 5 PM 

 To protect the harvested mangoes 
from direct sunlight and keep the 
temperature low so as to reduce 
the time and energy for pre-cooling 

 9 persons at 
each farm 

 

 To increase the number of 
staff for harvesting from 9 to 
18 persons 

 To tie in with the advancement of 
the harvesting time 

 To reduce 50% of the truck-
loading operation time  

 Due to increase in workforce 

 To change truck-loading time 
from 11.30 AM on the harvest 
day and 8.00 AM on the 
following day, to 7.30 AM and 
9.20 AM on the same day 

 To tie in with the advancement of 
the harvesting time 

 To transport harvested 
mangoes to processor B 
instead of processor A (see 
Table C.6) 

 

 Due to relocation of processor A to 
the same site as processor B 

Farms D 
and E 

 To harvest in the early 
morning from 6 AM to 10 AM 

 To protect the harvested mangoes 
from direct sunlight and keep the 
temperature low so as to reduce 
the time and energy for pre-cooling 

 16 persons 
at each farm 

 2 trucks at 
each farm 

 To increase the number of 
staff for harvesting from 16 to 
32 persons 

 To tie in with the advancement of 
harvesting time 

 To increase the number of 
trucks from 2 to 4 at each 
farm 

 To move the harvested mangoes to 
the cooling facility as quickly as 
possible 

 To tie in with the advancement of 
harvesting time 

Processor A  To run the pre-cooling process 
at 3.00 PM (see Table C.6) 

 To cool the harvested mangoes as 
soon as possible 

 To cool the harvested mangoes for 
2-4 hours 

 To harvest in the morning to help to 
reduce the pre-cooling time and 
electricity used by 37% 

 To finish pre-cooling prior to 
transportation from processors to 
the middleman firm 

 Sharing the 
pre-cooling 
facility with 
processor B 

 To relocate to the same site as 
processor B 

 To share cold chain infrastructure 
between processor B and processor 
A 

 To reduce processing time 
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Table 5.2 – Details of the consolidated cold chain design (continued) 

Fruit 
supply 
chain 

members 

Changes made to base model Reason for the change Additional 
resource 

Processor
s B and C 

 To run the pre-cooling process at 3 
PM (see Table C.6) 

 To cool the harvested mangoes 
as soon as possible 

 To cool the harvested mangoes 
for 2-4 hours 

 To harvest in the morning to 
help to reduce the pre-cooling 
time and electricity used by 37% 

 To finish pre-cooling prior to 
transportation from processor 
to arrival of middleman firm 

 1 portable 
forced air-
cooling at 
each 
processor 
site 

 6 persons at 
each 
processor 
site 

  To reduce the time for latex removal 
from 3 hours to 30-60 minutes, by 
using plastic racks to quicken the 
process 

 To reduce processing time 

  To change the time of moving the 
harvested mangoes to grading yard 
from 8.00 AM and after finishing 
transporter truck loading, to 8.00 
AM, 10.00 AM and 1.00 PM 

 To tie in with the advancement 
of harvesting time and reducing 
the latex-removal time 

 To tie in with the pre-cooling at 
3.00 PM 

  To advance the processes of cover 
release and inspection, from 8.00 
AM-5.00 PM to 6.00 AM-12.00 PM 

 To tie in with the advancement 
of harvesting time 

 To tie in with the pre-cooling at 
3.00 PM 

  To increase the number of staff for 
cover release and inspection from 6 
to 12 persons 

 To tie in with the advancement 
of harvesting time 

 To tie in with the pre-cooling at 
3 PM 

Transport
er 

 To use temperature-controlled trucks 
to deliver the cooled mangoes from 
the processors to middleman firm 

 To link up the cold chain 
 

 2 
refrigerated 
containers 
trucks  To change the truck departure time 

from 2.00 PM to 5.00 PM  
 To tie in with the pre-cooling 

starting at 3.00 PM 
 To revise the delivery route, to 

transport directly to the middleman 
firm upon picking up the cooled 
mangoes from processor C (see Table 
C.6) 

 

 To tie in with the relocation of 
processor A to the same site as 
processor B 

Middlema
n firm 

 To operate in the temperature-
controlled area 

 To link up the cold chain  1 walk-in 
cold room 
CoolBot 
equipped 
facility 

 To postpone the departure time of 
country A truck, from 11.00 AM to 
1.00 PM 

 To tie in with postponing 
transporter truck departure 
time 
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To summarise, the individual cold chain design requires each supply chain member to invest 

in cold chain technologies on its own.  For the supply chain under study, this design requires 

three pre- cooling facilities, two cold rooms, two temperature- controlled trucks, and one 

temperature- controlled packing area at the middleman firm location.  In contrast, the 

consolidated cold chain design emphasises the sharing of cold chain equipment and 

infrastructure among supply chain members to reduce total investment cost.  It leverages 

changes in work practices and coordination of activities to reduce the need for cooling and to 

maximise usage of resources.  As a result, it needs only two pre- cooling facilities, two 

temperature-controlled trucks, and one temperature-controlled packing area.  In short, the 

individual design involves fewer changes in work practices compared to the consolidated 

design. However, it requires greater investment in cold chain equipment and is a more costly 

option. Table 5.3 summarises the cold chain investment of the individual and the consolidated 

cold chain designs. 

Table 5.3 – Details of cold chain investment for each of the two alternative models  

Additional 
resource 

Current 
situation 

Individual cold chain design Consolidated cold chain design 

Cold chain 
investment 

 Nil  3 pre-cooling facilities 
 2 cold rooms 
 2 refrigerated trucks 
 Temperature-controlled sorting 

and storing area 

 2 pre-cooling facilities 
 2 refrigerated trucks 
 Temperature-controlled sorting 

and storing area 

 

5.2 Simulation results of the alternative models 

Once the alternative models were developed, they were run for 100 times each, and the 

average model outputs were compared with the outputs from the base model to determine 

which cold chain design is more suitable for fresh fruit supply chains in developing countries . 

Table 5.4 shows the output of the two alternative models (each represents a different cold 

chain design) , compared to the actual performance of the mango supply chain being 

simulated.  The statistics reveal that, while maintaining the same throughput, the 

performances of the two alternative models excel that of the current supply chain by a 

significant margin.  The processing time for the consolidated cold chain design is significantly 
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reduced. Furthermore, there is a significant difference between the actual and the alternative 

models with different cold chain designs in shelf- life period and the percentage of wastage. 

The percentage of mango wastage decreases to basically zero in both alternative models.  In 

addition, the shelf life of mangoes in both alternative models increases by almost three times 

the current shelf life. 

Table 5.4 – Actual and alternative model KPIs comparison 

KPIs Actual  Individual cold 
chain (ICC) 

Consolidated cold 
chain (CCC)  

 

Number of Boxes 1,705 1,708 1,700  

Country A Processing time (Hours) 59.50 59.53 37.58  

Country B Processing time (Hours) 70.50 70.23 46.20  

Operating cost (Thai Baht) 243,589 247,220 233,478  

Farms group A (A, B and C) to CA (Country A) 
shelf life (Days) 

7.02 23.34 23.15  

Farms group B (D and E) to CA (Country A) shelf 
life (Days) 

7.02 22.57 23.20  

Farms group A (A, B and C) to CB (Country B) 
shelf life (Days) 

6.56 22.82 22.83  

Farms group B (D and E) to CB (Country B) shelf 
life (Days) 

6.56 22.12 22.88  

Farms group A (A, B and C) to CA (Country A) 
wastage (Percentage of decay) 

1.24 0* 0*  

Farms group B (D and E) to CA (Country A) 
wastage (Percentage of decay) 

1.24 0* 0*  

Farms group A (A, B and C) to CB (Country B) 
wastage (Percentage of decay) 

1.47 0* 0*  

Farms group B (D and E) to CB (Country B) 
wastage (Percentage of decay) 

1.47 0* 0*  

* At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 
14th day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the 
fruit reaches the market. 

 

The comparison in Table 5.4 is categorised into two groups: (1) actual and individual cold chain 

design model; (2) actual and consolidated cold chain design model. The first group shows that 

the individual cold chain design can improve the shelf- life period and reduce the percentage 

of wastage of mangoes.  For this design, shelf life increases almost three times compared to 

the base model, from approximately 7 days to around 22 days.  Furthermore, there is a 
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reduction in wastage.  It can be seen that the wastage of mangoes for the actual situation is 

approximately 1. 2- 1. 5% , whereas the wastage for the alternative model is basically zero. 

Throughput of the individual cold chain design model is similar to that of the actual system, 

because the individual cold chain design is created by simply incorporating the cold chain 

technologies, such as pre-cooling, into the base model without altering the model structure 

or logic. However, the operating cost has increased because of the electricity consumption for 

cooling and refrigerating the mangoes.   

The second group compares the outputs for the consolidated cold chain design and the actual 

performance.  For wastage and throughput, the results are similar to those of the model for 

the individual cold chain design.  However, the shelf- life period for this design is higher than 

that of the individual cold chain design from farm group B to country A and from farm group 

B to country B.  It has improved from approximately 7 days to 23 days.  Moreover, the 

consolidated cold chain design reduces the operating cost by approximately 13,000 Thai Baht, 

and lead time by around one day for country A and country B.  Through sharing of cold chain 

infrastructure, changing of current work practices, and coordination of activities, the model 

incorporating the consolidated cold chain design succeeds in reducing the operation time 

from approximately three days to two days. 

In summary, simulation results show that cold chain adoption, using either individual or 

consolidated design, can improve the performance of the investigated mango supply chain in 

terms of longer shelf life and lower wastage (Table 5.5). As other fruit supply chains in Thailand 

are operating under similar conditions as the mango supply chain being investigated, it is 

contended that the modeled cold chain design can be implemented for other high-value and 

fast-perishing fruit supply chains, thereby bringing considerable benefits to the economy of 

Thailand ( and other developing countries) , which depends on exporting its fresh fruits to 

nearby developed countries. However, the model output also shows that operating costs will 

increase for the individual cold chain design, as investment in cold chain technologies needs 

to be made by all members of the supply chain.  In the consolidated cold chain design model, 

however, cold chain infrastructure is shared among supply chain members, thereby reducing 

the total operating cost while increasing the usage of resources. The design requires changes 
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in work practices and tight coordination and collaboration among supply chain members 

across the entire supply chain.  If done properly and successfully, overall lead time can be 

reduced to make the supply chain more efficient.  In view of these advantages, the 

consolidated cold chain design appears to be more desirable. 

Table 5.5 – Summary of benefits of each cold chain design model 

KPIs Current situation Individual cold chain design Consolidated cold chain 
design 

Throughput  About 1,700 Boxes  Same as current  Same as current 
Processing 
time 

 Three days per 
cycle 

 Three days per 
cycle 

 Two days per cycle 

Total operating 
cost 

 About 243,589 Thai 
Baht per cycle 

 About 247,220 Thai 
Baht per cycle 

 About 233,478 Thai 
Baht per cycle 

Shelf life  6 - 7 days  About 22 days  About 23 days 
Wastage  1.2 – 1.4 %  Basically 0%  Basically 0% 

 

5.3 Scenario simulations 

To determine whether cold chain adoption is appropriate for the fresh fruit export industry 

in developing countries in the long run, the performance of the alternative models 

incorporating the two cold chain designs under different scenarios was evaluated .  Several 

scenarios with variations in the external business environment were tested.  These variations 

include change in total demand for exported fruit, increase in supply uncertainty, and change 

in operating cost, which are the most likely changes to occur in developing countries.  Again, 

the five KPIs were used to evaluate the performance of the simulated cold chains under the 

different scenarios to determine the robustness of the different cold chain designs.  Findings 

of the scenario testing can help answer the second subsidiary research question.  

5.3.1 Change in total demand 

This scenario is to explore whether the proposed cold chain designs could handle changes in 

aggregate demand for fruits from developing countries, such as Thailand, in the long term. 

Several factors affect the demand for fresh fruits exported from Thailand.  For instance, 

confidence of the customers in the quality and safety of the product is a major challenge faced 

by the industry at the moment (Pornsiripratharn 2011; Somboonsuk et al.  2013) .  To address 

this issue, cold chain adoption for the fresh fruit supply chain becomes more relevant and 
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urgent. In general, demand is increasing. However, demand for fresh fruits from Thailand can 

also be affected by competition from neighbouring fruit exporting countries, such as Vietnam 

or the Philippines (Cooperative Promotion Department 2014) .  Together, these factors have 

led to an observed increase in demand for fresh fruit exports from Thailand of approximately 

61.33% from 2011 to 2016 (Ministry of Commerce 2017) .  In other words, the average annual 

increase is about 12- 15% .  Based on this observation and allowing for further growth, an 

increase of 100% in demand is used to create this scenario.  

In reality, when demand for mangoes increases, there will be more farms to grow the fruit, 

because it is a high-value product which will generate more income for the farmers (Pannee 

2013; Phavaphutanon 2015). Therefore, in the simulation model, this scenario is represented 

by increasing the number of farms in the two groups.  Assuming that the new farms are 

operating at the same scale of operation as the existing ones, the additional farms in the first 

group – farms AA, BB and CC – are created by replicating farms A, B and C. Similarly, the second 

group –  farms DD and EE –  are replicated from farms D and E.  In addition, transportation 

resources will also increase from two to four trucks, together with an adjustment to the 

number of staff for truck loading.  Similarly, the number of trucks transporting the packed 

mangoes from the middleman firm site to international markets will increase to three trucks 

(two for country A and another one for country B) .  The number of staff for the truck- loading 

operation will also be adjusted.  Table 5.6 summarises the details of the change in the total 

demand scenario and the corresponding changes to the models. 
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Table 5.6 – Details of change in total demand scenario test 

Scenario 
test 

Change made to the model Reason for the change Additional 
resource 

Change in 
total 
demand 

 To increase the number of 
farms in the simulation model 
from 5 to 10 

 There will be more farms to 
grow the fruit, thereby 
meeting the increases in 
demand, assuming the new 
farms are operating at the 
same scale of operation as the 
existing ones 

 Farms AA, BB, 
CC, DD and EE 
are created 
which are 
replicated from 
farms A, B, C, D 
and E 

 2 refrigerated 
container trucks 

 7 persons for 
transporter 
truck loading  

 2 country A 
trucks 

 1 country B 
truck 

 3 persons for 
country A truck 
loading 

 3 persons for 
country B truck 
loading 

 To increase the number of 
trucks from 2 to 4 at the 
transporter 

 To tie in with the increase in 
mangoes harvested 

 To increase staff for truck 
loading from 7 to 14 persons at 
the transporter 

 To tie in with the increase in 
mangoes harvested 

 To increase the number of 
country A trucks from 2 to 4 at 
the middleman firm 

 To tie in with the increase in 
mangoes harvested 

 To increase the number of 
country B trucks from 1 to 2 at 
the middleman firm 

 To tie in with the increase in 
mangoes harvested 

 To increase staff for country A 
truck loading from 3 to 6 at the 
middleman firm 

 To tie in with the increase in 
mangoes harvested 

 To increase staffs for country B 
truck loading from 3 to 6 at the 
middleman firm 

 

 To tie in with the increase in 
mangoes harvested 

 

5.3.1.1 Simulation results of change in total demand for exported fruits 

For this scenario, it is assumed that there is no substantial change in other attributes that may 

result in major changes in the fresh fruit supply chain in Thailand. Only growth in total demand 

is considered. This scenario can be investigated using the simulation model, incorporating the 

cold chain designs with long-term fluctuations in demand.  The simulation outcome will help 

determine which cold chain design could better handle changes in total demand for fruit 

exported from developing countries, such as Thailand, in the long run.  Table 5.7 shows the 

outputs of the base model and the alternative models with both the individual and the 

consolidated cold chain designs, subject to the same change in total demand. 
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Table 5.7 – Comparing the base model and alternative model outputs for change in  
demand 

KPIs (Change in total demand) Base 
model  

Individual cold 
chain 
(ICC)  

Consolidated cold 
chain 
(CCC) 

Number of Boxes 3,405 3,422 3,409 
Country A Processing time (Hours) 59.55 59.54 37.58 
Country B Processing time (Hours) 70.24 70.26 46.23 
Operating Cost (Thai Baht) 457,752 467,189 451,390 
Farms group A (A, B and C) to Country A shelf life 
(Days) 

7.41 23.21 23.18 

Farms group B (D and E) to Country shelf life (Days) 7.39 22.56 23.21 
Farms group A (A, B and C) to Country B shelf life 
(Days) 

6.96 22.77 22.74 

Farms group B (D and E) to Country B shelf life (Days) 6.95 22.08 22.76 
Farms group A (A, B and C) to Country A wastage 
(Percentage of decay) 

1.28 0* 0* 

Farms group B (D and E) to Country A wastage 
(Percentage of decay) 

1.29 0* 0* 

Farms group A (A, B and C) to Country B wastage 
(Percentage of decay) 

1.51 0* 0* 

Farms group B (D and E) to Country B wastage 
(Percentage of decay) 

1.51 0* 0* 

* At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 
14th day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the 
fruit reaches the market. 

 

Apart from the increase in the number of boxes created and total operating cost, other 

outputs of the three models – base model, individual design, and consolidated design – under 

the rising demand scenario show a similar pattern as those found in the base model.  This 

means that the alternative models, of both individual cold chain design and consolidated cold 

chain design, are able to handle changes in total demand for exported fruits.  Nevertheless, 

performance of the model of consolidated cold chain design is better than that of individual 

cold chain design in terms of processing time and operating cost. 

5.3.2 Increase in supply uncertainty 

This scenario is to investigate whether the proposed cold chain designs could still operate 

efficiently when supply uncertainty for fruit in developing countries, such as Thailand, 

increases in the long term.  Supply uncertainty for fresh fruit exported from Thailand is 

affected by inclement weather, and devastating fruit epidemics ( Cooperative Promotion 
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Department 2014; Worasatit et al.  2017) .  For example, torrential rainfall and widespread 

epidemic caused by thrips affected fruit production (Aydinalp & Cresser 2008)  and led to a 

reduction in mango supply by 20-30% in 2016 (Kehakaset 2017). In other words, annual supply 

of fresh mangoes can drop by an average of 25% due to weather or a plant epidemic.  Using 

this figure as a reference and allowing for extreme situations, a decrease of 30- 50%  in 

harvested mangoes is used to create this scenario.  

This scenario is simulated by introducing some perturbations to the model input in terms of 

entity generation, which represents the number of mangoes to be harvested.  The argument 

is that, with the changes in supply, the harvested mangoes will also vary in number (Tiwong 

et al.  2013; Wijewickrama & Takakuwa 2005) .  This can happen on a regular basis, meaning 

that it can occur in every harvesting cycle. To mimic this random fluctuation in the simulation 

model, a variation in supply from 50% to 70% (see Table C.7) of the current level is created by 

multiplying a random factor between 0.5 and 0.7 to the hourly entities created to enter the 

system.  Table 5.8 summarises the details of the increase in supply uncertainty scenario, and 

the corresponding changes to the models. 

Table 5.8 – Details of increase in supply uncertainty scenario test 

Scenario test Change made to the model Reason for the change Additional 
resources 

Increase in 
supply 

uncertainty 

 A decrease of supply to 50% to 70% of the 
current level is effected by limiting the 
hourly entities created to enter the 
system (see Table C.7) 

 To represent a decrease 
of supply to 50% to 70% 
of the current level 

 Nil 

 

5.3.2.1 Simulation results of increase in supply uncertainty 

Under this scenario, it is assumed that only an increase in supply uncertainty is considered. 

Supply uncertainty can be affected by inclement weather, global climate change, and a 

devastating fruit epidemic (Cooperative Promotion Department 2014; Worasatit et al.  2017) . 

This scenario is to explore whether the two cold chain designs were able to handle increases 

in supply uncertainty for fresh fruit in developing countries, such as Thailand, on a regular 
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basis.  Table 5.9 shows the output of the base model, the individual cold chain design model, 

and the consolidated cold chain design model, under this scenario. 

Table 5.9 – Comparing between the base model and alternative model outputs for change 
in supply uncertainty 

KPIs (Supply uncertainty) Base 
model  

Individual cold 
chain 
(ICC) 

Consolidated cold 
chain  
(CCC) 

Number of Boxes 1,023 1,025 1,015 
Country A Processing time (Hours) 59.57 59.54 37.55 
Country B Processing time (Hours) 70.26 70.24 46.21 
Operating Cost (Thai Baht) 168,563.68 169,078.44 155,331.82 
Farms group A (A, B and C) to Country A shelf life 
(Days) 

7.46 23.27 23.16 

Farms group B (D and E) to Country shelf life (Days) 7.45 22.56 23.20 
Farms group A (A, B and C) to Country B shelf life 
(Days) 

7.01 22.80 22.73 

Farms group B (D and E) to Country B shelf life 
(Days) 

7.01 22.09 22.78 

Farms group A (A, B and C) to Country A wastage 
(Percentage of decay) 

1.28 0* 0* 

Farms group B (D and E) to Country A wastage 
(Percentage of decay) 

1.28 0* 0* 

Farms group A (A, B and C) to Country B wastage 
(Percentage of decay) 

1.50 0* 0* 

Farms group B (D and E) to Country B wastage 
(Percentage of decay) 

1.50 0* 0* 

* At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 
14th day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the 
fruit reaches the market. 

 

The most significant change in model output under this scenario is the reduction in 

throughput and operating cost.  Other outputs regarding shelf life, wastage and processing 

time are similar to those of the previous scenario.  The findings show that the two cold chain 

design models can handle regular uncertainty in supply without issues, although the cold 

chain equipment might be under-utilised when supply is low.  It appears that the two cold 

chain designs are not particularly costly to run when compared to the no cold chain situation, 

even when subject to increase in supply uncertainty for export. However, the benefits of cold 

chain adoption in terms of lengthened shelf life and reduced wastage still prevail, which can 

be critical to the competitiveness of the industry in situations of reduced supply.  Again, the 
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consolidated cold chain design performs better than the individual cold chain design under 

this scenario, as reflected in lower operating cost, longer shelf life, and lower processing time 

required. 

5.3.3 Change in operating cost 

This scenario is to determine whether the proposed cold chain designs are still financially 

viable when the operating cost for fresh fruit in developing countries, such as Thailand, 

increases in the long term. The increase in operating cost can be caused by rises in labour cost, 

fuel cost, and electricity cost.  For example, wages of labour have remained unchanged for a 

long time in Thailand as the government has not approved an increase of the minimum wage 

for a long time.  Then, in 2012, the Thai government passed a bill to increase the minimum 

wage in every province by an average of 47.67% (Siksamat 2011). This means that labour cost 

would increase despite that this is not happening on a regular basis.  The same applies to 

electricity cost, which, again, seldom changes in Thailand. However, it also escalated by about 

12.42% in 2016 (Electricity Tariffs and Business Division 2017) .  Fuel cost, on the other hand, 

fluctuates with global oil prices.  From 2007 to 2017, fuel cost in Thailand has grown, on 

average, by 10.58% (Bangchak Corporation Public Company Limited 2017) .  These figures are 

used as references to create the scenario with increases in operating cost in the long run . 

The scenario is represented by increasing the unit operating cost in the model. The argument 

is that changes in labour, fuel and electricity costs increase the total operating cost. To mimic 

this increase in the simulation model with some randomness, a rise of labour cost between 

150% and 200% of the current level is set by multiplying a random factor (see Table C.8) to the 

original value in the models.  Similarly, the same technique is used to increase the current 

levels of electricity and fuel costs between 150% and 200%. Table 5.10 summarises the details 

of the scenarios and the corresponding changes to the models. 
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Table 5.10 – Details of change in operating cost scenario test 

Scenario test Change made to the model Reason for the change Additional 
resource 

Change in 
operating 
cost 

 An increase of labour cost to 150% to 
200% of the current level is effected by 
inflating the input parameter (see Table 
C.8) 

 An increase of electricity cost to 150% to 
200% of the current level is effected by 
inflating the input parameter (see Table 
C.8) 

 An increase of fuel cost to 150% to 200% 
of the current level is effected by 
inflating the input parameter (see Table 
C.8) 

 To represent an increase of 
labour cost to 150% to 200% 
of the current level 

 
 To represent an increase of 

electricity cost to 150% to 
200% of the current level 

 
 To represent an increase of 

fuel cost to 150% to 200% of 
the current level 

 Nil 
 

 

5.3.3.1 Simulation results of change in operating cost 

Under this scenario, it is assumed that there is no significant change in demand for export. 

Only operating cost increase is considered. This scenario attempts to explore whether the cold 

chain designs could handle changes in operating cost of fresh fruit supply chains in developing 

countries, such as Thailand, in the long term. Table 5.11 shows the outputs of the base model, 

the individual cold chain design model, and the consolidated cold chain design model, under 

this scenario.  

Under this scenario, outputs of the three models show a similar pattern as those of the base 

model despite an increase in the total operating cost in all the models.  The findings suggest 

that cold chain designs are performing consistently under this scenario and are not inferior to 

the as- is situation.  In other words, the designs are relatively robust to an increase of the 

operating cost in the long run. It can be seen that performance of the consolidated cold chain 

design is, again, better than that of the individual cold chain design under this scenario, as 

reflected in lower operating cost and processing time. 
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Table 5.11 – Comparing the base model and alternative model outputs for change in 
operating cost 

KPIs (Increase operating cost) Base 
model  

Individual cold 
chain 
(ICC)  

Consolidate cold 
chain 
(CCC)  

 

Number of Boxes 1,698 1,709 1,700  
Country A Processing time (Hours) 59.57 59.58 37.54  
Country B Processing time (Hours) 70.24 70.19 46.23  
Operating Cost (Thai Baht) 366,202 377,374 352,377  
Farms group A (A, B and C) to Country A shelf life 
(Days) 

7.55 23.28 23.13  

Farms group B (D and E) to Country shelf life (Days) 7.52 22.57 23.17  
Farms group A (A, B and C) to Country B shelf life 
(Days) 

7.09 22.80 22.74  

Farms group B (D and E) to Country B shelf life 
(Days) 

7.07 22.14 22.79  

Farms group A (A, B and C) to Country A wastage 
(Percentage of decay) 

1.24 0* 0*  

Farms group B (D and E) to Country A wastage 
(Percentage of decay) 

1.26 0* 0*  

Farms group A (A, B and C) to Country B wastage 
(Percentage of decay) 

1.47 0* 0*  

Farms group B (D and E) to Country B wastage 
(Percentage of decay) 

1.48 0* 0*  

* At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 
14th day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the 
fruit reaches the market. 

 

5.3.4 Summary of the simulation results under different scenarios 

To summarise, the simulation results show that, when total demand for exported fruit 

increases, both alternative models produce the highest number of boxes of mangoes.  In 

contrast, they produce the lowest number of boxes of mangoes when there is increase in 

supply uncertainty. However, the throughput of the two models in the other scenario is similar 

to that of the base model.  It can be concluded that both alternative models are viable in the 

long run and perform better than the base model.  This means that cold chain adoption is 

suitable for developing countries despite the possibilities of change in demand, supply 

uncertainty, and increase in operating cost in the long term. Operating cost of the model with 

the consolidated cold chain design, however, is lower than that of the base model and that of 

the individual cold chain design.  Performance of the model with the consolidated cold chain 

design was in general the best among the three under various scenarios.  Therefore, it can be 
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concluded that the simulation results suggest that the consolidated cold chain design, which 

represents a low-tech low-cost approach, is most appropriate for fresh fruit supply chains in 

developing countries.  It excels in operating cost, processing time, and shelf life, when 

compared with the individual cold chain design, which represents the high- tech high- cost 

approach.  

5.4 Chapter summary 

This chapter has described how cold chain adoption for the fresh mango supply chain under 

study was simulated by modifying the base model to incorporate two different designs, 

namely individual and consolidated designs.  Three scenarios depicting long-term changes in 

demand, supply and operating costs were also generated to test the robustness of the 

alternative models incorporating the cold chain designs. The characteristics of the designs and 

scenarios, together with the rationale behind the changes, were discussed.  The necessary 

modifications to the base model and resource requirements to effect the changes were also 

explained.  Furthermore, this chapter has presented the simulation results of cold chain 

adoption using both the individual and the consolidated cold chain designs under different 

scenarios. The next chapter will discuss the implications of the findings. 
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Chapter 6  

RESULTS AND DISCUSSION 

Chapter 5 evaluated the alternative models with different cold chain designs for the mango 

supply chain under study, and presented the simulation findings in terms of performance of 

the base model and the alternative models under different scenarios.  This chapter discusses 

the implications of the findings from the perspective of their contributions to knowledge and 

actual practice, with a view to promoting cold chain adoption in developing countries.  In this 

regard, a proposed framework for cold chain adoption in developing countries is also 

presented.  

6.1 High-tech high-cost approach versus low-tech low-cost approach 

Previous studies have shown that cold chain adoption can address the various issues of fresh 

fruit supply chains in developing countries, such as high wastage, low quality, and limited shelf 

life.  This is because, by reducing the temperature of fresh fruits and maintaining them in the 

same temperature condition throughout the entire supply chain, cold chain implementation 

can help reduce natural deterioration rate (Defraeye et al.  2014; Joshi, Banwet & Shankar 

2011; Xu, Lan & Ruijiang 2010) , preserve the quality of the fruits (Kang et al.  2012; Zanoni & 

Zavanella 2012) , and extend their shelf life (Flick et al.  2012; Qi et al.  2014) .  However, the 

literature review also reveals that cold chain adoption requires heavy investment in 

infrastructure and technology ( Kitinoja 2013; Yang et al.  2012) .  To ensure standardised 

practices and minimise temperature abuses along the entire supply chain, adequate technical 

knowledge and training for operational staff is also required (Hou, Xie & Wang 2 0 1 5 ; Joshi, 

Banwet & Shankar 2009). This so-called high-tech high-cost approach is commonly adopted in 

developed countries, and has proven to be effective.  However, it may not be appropriate for 

developing countries due to limitations in capital resources, knowledge and skills, as well as 

experience in adopting and running cold chains (Li 2006). 

Studies on issues with cold chain adoption in developing countries reveal many challenges, 

including the high cost of applying cold chain technology, lack of infrastructure, and lack of 

technical knowledge (Heap 2006; Joshi, Banwet & Shankar 2009; Kitinoja 2013; Salin & Nayga 
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2003; Yahia 2009) .  These constraints hinder, to a large extent, the ability of less developed 

countries to invest in the latest cold chain technology.  Even if developing countries could 

invest an enormous amount of money in cold chain infrastructure and technology, 

operational staff might not be able to use the infrastructure and technology in compliance 

with the latest cold chain protocols, due to lack of staff training (Kitinoja 2013; Yahia 2009). All 

these barriers suggest that, although the high-tech high-cost approach proves to be effective 

in developed countries, developing countries are still a long way from being able to adopt it. 

Obviously, an alternative way to promote cold chain adoption in developing countries has to 

be used to overcome the initial hurdles. When cold chain adoption in the developing countries 

becomes widespread, with an accumulation of knowledge, skills and experience, the high-

tech high- cost approach could then be gradually adopted to advance cold chain 

implementation to the next stage. 

Previous studies show that there are alternative cold chain technologies that are more 

suitable for developing countries.  These include portable forced air cooling and CoolBotTM-

equipped walk- in cold rooms, which are simpler in design, easier to use, and less expensive 

than many high- cost cold chain technologies, such as vacuum cooling and mechanical 

refrigeration ( Dubey 2011; Global Cold Chain Alliance 2016; Kitinoja 2013; Kitinoja & 

Thompson 2010) .  Furthermore, there are studies suggesting a shift of focus in developing 

countries from infrastructure and technology to other attributes of cold chain adoption .  It is 

contended that operating cost of a cold chain can be reduced with improvements in service 

quality through collaboration among the supply chain members and reduction in lead time 

through integration of logistics activities (AT Kearney Limited 2005; Billiard 2003; Lan, Liu & 

Wang 2010; Lan et al. 2014; Qiu et al. 2009).  

Based on the findings of previous research, the present study contends that, to promote cold 

chain adoption in developing countries where capital resources and technical knowledge and 

skills are relatively scarce, the high-tech high-cost cold chain adoption approach commonly 

used in developed countries is not appropriate.  In contrast, an alternative approach that 

utilises other resources and the flexibility of work practices through collaboration among 
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supply chain members might be more suitable.  Such an arrangement can be regarded as a 

low-tech low-cost approach which leverages cheap labour, changes in work practices, and the 

use of proven and less-expensive technologies to serve the purpose. In developing countries, 

such as Thailand, power within a fresh fruit supply chain is often asymmetrical (Bijman 2008; 

Dolan & Humphrey 2000; Matopoulos et al.  2007) .  The middleman company, being the one 

with the most abundant resources to drive the entire supply chain, usually has the greatest 

power over other supply chain members such as farmers, processors and transporters. 

Therefore, without much difficulty, the middleman company can arrange and facilitate 

collaboration among supply chain members for the benefit of all parties (Vellema et al. 2005). 

In addition, instead of using expensive state-of-the-art cold chain technology and equipment, 

fresh fruit supply chains in developing countries can invest in economical, simple and robust 

cold chain technologies, such as portable-forced air cooling and the CoolBotTM-equipped walk-

in cold room. Simulation results suggest that such a low-tech low-cost approach is completely 

feasible and excels in performance when compared with the high-tech high-cost approach 

focusing on investment in infrastructure and technologies. 

6.2 Findings of the simulation study 

Table 6. 1 ( second and third columns)  shows the output of the base model in five areas, 

throughput, processing time, operating cost, product shelf life, and wastage, compared with 

the actual system.  All the outcomes are close to the actual performance, at 99% significance 

level, meaning that the base model is representative of the actual situation .  Therefore, the 

base model can be used to explore the various cold chain designs under various scenarios, in 

order to identify the appropriate cold chain design for fresh fruit supply chains in developing 

countries. 
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Table 6.1 – Comparison of simulation results with actual performance 

KPIs Actual Base model Alternative model 
with high-tech high-

cost design 

Alternative model 
with low-tech low-

cost design 
Throughput 

(Boxes) 
 About 

1,700  
 About 

1,700 ** 
 Same as base 

model 
 Same as base 

model 
Processing time 
(Days per cycle) 

 Three    Three**  Three  Two   

Operating cost 
(Thai Baht per 

cycle) 

 About 
243,589  

 About 
241,817 
** 

 About 
247,220  

 About 
233,478  

Shelf life (Days)  6-7   About 
7** 

 About 22   About 23  

Wastage 
(Percentage) 

 1.2 – 1.4   1.2 – 1.4 
** 

 Basically 
zero* 

 Basically 
zero* 

** Significant at  = .01 
*At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 
14th day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the 
fruit reaches the market. 
 

Next, the base model was used to create the alternative cold chain designs which were 

established based on a comprehensive literature review.  The cold chain design can be 

classified into two groups:  (1)  individual cold chain design (which can be seen as a high-tech 

high-cost approach), and (2)  consolidated cold chain design (which can be seen as a low-tech 

low- cost approach) .  Individual cold chain design refers to the adoption of cold chain 

technologies by all members of the supply chain separately. Consolidated cold chain design is 

about collaboration among supply chain members by sharing cold chain technology and 

infrastructure among participants.  The simulation results in Table 6. 1 ( fourth and fifth 

columns)  show that, regardless of design, cold chain adoption is desirable because it can 

improve the fresh fruit supply chain performance.  For example, the implementation of cold 

chain in both designs helps increase the period of shelf life by almost three times and decrease 

the percentage of wastage to almost zero, compared with the no cold chain situation. 

Therefore, it can be concluded that cold chain adoption is a way to address fresh fruit supply 

chain issues in developing countries.  

The objective of this study is to find an appropriate approach to cold chain design for fresh 

fruit supply chains in developing countries.  The simulation results in Table 6. 1 show that 

product shelf life of the cold chain using the low-tech low-cost design is slightly longer than 
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that of the high-tech high-cost design.  In addition, operating cost and processing time of the 

low-tech low-cost design are also lower than those of the design using the high-tech high-cost 

approach.  This means that the low-tech low-cost approach to cold chain design is preferable 

for developing countries. 

Next, this study investigated the robustness of the cold chain designs in the long run by 

running three scenario tests that could happen in the future.  These comprise change in total 

demand for exported fruits, increase in supply uncertainty, and change in operating cost. 

Table 6.2 compares the model outputs of the high-tech high-cost approach and low-tech low-

cost approach under the different scenarios.  

Table 6.2 – Comparison of simulation results between the high-tech high-cost approach and 
the low-tech low-cost approach under different scenarios 

KPIs Change in total demand 
for exported fruits 

Increase in supply 
uncertainty 

Increase in operating cost 

High-tech 
high-cost 

Low-tech 
low-cost 

High-tech 
high-cost 

Low-tech 
low-cost 

High-tech 
high-cost 

Low-tech 
low-cost 

Throughput (Boxes) About 3,400 About 3,400 About 
1,000 

About 
1,000 

About 
1,700 

About 
1,700 

Processing time 
(Days per cycle) 

Three Two Three Two Three Two 

Operating cost (Thai 
Baht per cycle) 

About 
467,189 

About 
451,390 

About 
169,078 

About 
155,332 

About 
377,374 

About 
352,377 

Shelf life (Days) About 22 About 23 About 22 About 23 About 22 About 23 

Wastage 
(Percentage) 

Basically 
zero* 

Basically 
zero* 

Basically 
zero* 

Basically 
zero* 

Basically 
zero* 

Basically 
zero* 

*At 15 degrees Celsius, decay of mangoes starts on the 9th day upon harvest. At 10 degrees Celsius, decay starts on the 14th 
day. As the cycle time of the simulated supply chains is only two to three days, there is basically little decay when the fruit 
reaches the market. 

 

The simulation results in Table 6.2 again show that the model using a low-tech low-cost design 

performs better than the one with a high-tech high-cost design, in processing time, operating 

cost, and shelf life, under various situations, such as increase in total demand for exported 

fruits, growth in supply uncertainty, and increase in operating cost.  The simulation results 
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provide empirical evidence to support the argument that cold chain adoption for fresh fruit 

supply chains in developing countries using the low-tech low-cost approach is feasible and 

preferable.  In the next section, some critical implications of the findings from both the 

academic and the managerial perspectives will be discussed. 

6.3 Theoretical implications 

The findings of the present study state that cold chain adoption is the right approach for a 

fresh fruit supply chain because it can address various issues, such as reducing wastage and 

increasing shelf life.  However, as the literature reveals, the high-tech high-cost cold chain 

approach that is normally used in developed countries predominantly focuses on the use of 

state-of-the-art technology. This approach might not be appropriate for developing countries 

due to limitations in capital resources and cold chain knowledge.  Therefore, this study 

proposes the use of an alternative way to implement a cold chain. This so-called low-tech low-

cost approach emphasises collaboration among supply chain members, changes in work 

practices, and the use of less expensive cold chain technology. The simulation outcomes show 

that the low-tech low-cost approach is feasible and performs better than the high-tech high-

cost approach (see Table 6.1 and Table 6.2) .  The outcome of this study thus opens up a new 

direction for research on how to optimise the low- tech low- cost cold chain approach to 

generate the maximum benefit and to promote cold chain adoption in developing countries .   

Secondly, the simulation outcomes corroborate the suitability of using the network theory 

(NT) and the theory of constraints (TOC) to underpin cold chain adoption and, in particular, the 

consolidated cold chain design.  NT accounts for the collaboration among supply chain 

members, and the TOC explains the investment in resources needed to overcome the 

constraints. This research is among the first attempts to explore alternative cold chain designs 

in developing countries, and does so from two different theoretical perspectives.  Results of 

the study suggest that the two theories chosen for this study are appropriate.  For example, 

the simulation results indicate that working together and changing work practices to tie in 

with cold chain adoption can improve efficiency.  In addition, investment in cold chain 

technologies that are affordable and effective but not necessarily expensive and state-of-the-
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art can still achieve the purpose of overcoming the constraints in temperature control along 

the entire fresh fruit supply chain, leading to improvement of performance in waste reduction 

and extension of shelf life. 

6.4 Practical implications 

The findings in this research have numerous managerial implications for business 

organisations and governments of developing countries in cold chain adoption for the fresh 

fruit industry.  Firstly, the study provides empirical evidence on the benefits of cold chain 

adoption using a low- tech low- cost approach.  It shows to decision makers that such an 

approach can help promote cold chain adoption in developing countries, thereby bringing 

great value to industries.  The findings could be used as a guide for developing best practices 

for setting up fresh fruit cold chains in developing countries.  

Secondly, the findings of this study show that, while the low-tech low-cost cold chain design 

is a feasible approach for fresh fruit supply chains in developing countries, successful 

implementation still requires strong support by the government as well as business 

organisations.  These supports are needed to overcome many obstacles, including initial 

capital investment, low awareness, knowledge and skill transfer, legislation to ensure sharing 

of rewards and risks, and issues associated with collaboration.  In this regard, this study 

proposes a framework in the next section to assist supply chain members and the 

governments of developing countries in formulating appropriate strategies for cold chain 

implementation in fresh fruit supply chains.  

6.5 A framework for cold chain adoption in developing countries 

Based on the simulation outcomes, it can be concluded that the low-tech low-cost approach 

to cold chain adoption is the preferred option for the fresh fruit industry in developing 

countries.  To promote cold chain adoption in developing countries, supply chain members 

and governments need to work together to remove the obstacles to cold chain adoption 

identified in Chapter 2.  These include high cost ( Joshi, Banwet & Shankar 2009; Maxwell 

Agyapong 2013; Yahia 2009) , lack of equipment (Greis 2011; Joshi et al.  2012; Salin & Nayga 

2003) , lack of knowledge and training (Bledsoe 2009; Li 2006; Yahia 2009) , lack of awareness 
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(Joshi, Banwet & Shankar 2009; Stephen 2009), lack of collaboration (Joshi, Banwet & Shankar 

2009; Negi & Anand 2015; Wang & Zhang 2008), and lack of government support (Jing & Jian 

2015; Shane 2016) .  Following the approach taken by Lau and Wang (2009)  to formulating 

strategies for promotion of reverse logistics in China, the present study proposes some 

managerial guidelines for cold chain adoption in developing countries which are entirely 

based on the findings of the study.  Aiming to remove barriers to the adoption of cold chains 

in developing countries, these guidelines comprise five dimensions:  financial policy, 

infrastructure and technology, community awareness, cold chain collaboration, and legal 

support.  Financial policy refers to the mitigation of the high-cost challenge through financial 

support from the government.  Infrastructure and technology refers to solving equipment 

issues through the use of proven and relatively less expensive technology.  Community 

awareness refers to the removal of awareness barriers through the provision of knowledge 

and training. Cold chain collaboration refers to overcoming the collaboration obstacle through 

coordinated restructuring of the supply chain, led by the focal company.  Legal support refers 

to the strengthening of government support through development of relevant policies and 

subsidies.  A framework to promote cold chain adoption in developing countries is presented 

in Figure 6.1. 
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Role of Government:                                                          Role of supply chain members: 

 1. To make regulations and laws                                     1. To implement cold chain  

 2. To prepare guidelines and directives                         2. To invest in standardisation of low-cost cold  

 3. To provide subsidies and financial aid                           chain technologies 

 4. To enhance community awareness                            3. To cooperate with other cold chain members 

 5. To facilitate collaboration within industry 

Source: Adapted from Lau and Wang (2009) 

Figure 6.1 – A proposed framework for accelerating cold chain logistics development in 
developing countries 
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6.5.1 Financial policy 

Unlike in developed countries, cold chain adoption for the fresh fruit industry in developing 

countries, such as Thailand, is still not widespread, due to the high cost of cold chain 

equipment such as pre-cooling, cold storage facilities and refrigerated trucks (Joshi, Banwet 

& Shankar 2009; Stephen 2009; Zeng & Yu 2011) .  According to International Trade 

Administration ( 2016) , cost is the most challenging obstacle for cold chain adoption in 

developing countries.  For example, the costs of temperature- controlled vehicles and 

warehouses are three to five times those of normal warehouses and vehicles for dry products 

in both developed and developing countries (Wang & Luo 2012). To implement cold chains in 

developing countries, governments can support the sourcing of funds for small businesses to 

invest in cold chain technology (Ji & Guo 2009; Joshi, Banwet & Shankar 2009; Kitinoja 2013; 

Yang et al.  2012). In addition, governments may introduce supporting policy that is beneficial 

to cold chain members. For example, the government could introduce a policy to reduce taxes 

for those supply chain members who are willing to invest in cold chain technology and 

infrastructure (Joshi, Banwet & Shankar 2009; Li 2006) .  Therefore, small businesses would 

have the funding to invest in cold chain technology and infrastructure, which will expedite 

cold chain adoption in developing countries.  

6.5.2 Infrastructure and technology 

Developing countries are not successful in cold chain adoption at the moment due to a lack 

of cold chain infrastructure and technology (Joshi, Banwet & Shankar 2009; Wang & Luo 2012; 

Xie & Zhao 2016). Cold chain infrastructure can be categorised into two parts. The first part is 

internal infrastructure, which includes pre- cooling technologies, cold storage, and 

refrigerated transportation.  The second part is external infrastructure, which relates to road 

conditions, and the availability of power and ports (Negahban & Smith 2014). The lack of cold 

chain technology and infrastructure can cause a cold chain to break. Cold chain breakage can 

quickly lead to fruit spoilage and deteriorated cold chain performance (Australian Food and 

Grocery Council 2013; Joshi et al.  2012) .  To take India as an example, the lack of cold chain 

technology and infrastructure has led to a 40% loss of agricultural produce (Bharti 2014; Negi 
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& Anand 2015) .  To remedy such a situation, the government, together with the middleman 

companies, should invest in cold chain infrastructure and technology related to pre-cooling, 

cold storage and temperature-controlled transportation for small-size fresh fruit supply chain 

members (Joshi, Banwet & Shankar 2009; Kitinoja 2013; Li 2006) , because they are the ones 

who have the greatest difficulties in sourcing the necessary funds. It is very important that the 

government should assist them in overcoming the initial difficulties.  Furthermore, the 

government and the middleman companies should invest in the standardisation of low-cost 

cold chain technology and share the technology with other supply chain members to lessen 

the financial issues and to achieve economies of scale ( Global Cold Chain Alliance 2016; 

Kitinoja 2013) .  In addition, governments should provide public infrastructure, such as roads, 

electricity, and ports, to support the operation of the cold chain for fresh fruit supply chains 

in developing countries to help improve cold chain efficiency (Kitinoja 2013; Kuo & Chen 2010; 

Sharma & Pai 2015; Yahia & Smolak 2014) .  In doing so, cold chain infrastructure and 

technology in developing countries will gradually increase in usage and maturity.  

6.5.3 Community awareness 

Hindrance to cold chain adoption due to lack of awareness can be categorised into two 

groups:  (1)  lack of awareness of using cold chain; and (2)  lack of knowledge and training for 

staff to maintain continuous cold chain operation (Hou, Xie & Wang 2015; Joshi, Banwet & 

Shankar 2009; Viswanadham 2006) .  Generally speaking, a cold chain process involves 

extremely labour- intensive work, including many tasks taken care of by handlers, such as 

carrying the products, monitoring the product quality, and preparing paperwork.  The 

efficiency of the handlers determines the flow of the products during handling activities, such 

as transit and storage, which has a major impact on the effectiveness of a cold chain. It is very 

important to have well-trained staff to handle these tasks (Bharti 2014; Sharma & Pai 2015) . 

In this regard, the government should offer crucial services, such as education, to enhance 

awareness of the handlers about cold chain operation (Yahia & Smolak 2014) .  For example, 

the government can organise and introduce education programs at every level, including 

primary, secondary and higher education, to promote the value of cold chains ( Drame & 
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Meignien 2016; Kitinoja 2013; Yang et al.  2012) .  Given time, public awareness about the 

benefits of cold chains will increase, which will certainly benefit cold chain implementation. 

Furthermore, the government can also provide instructions for appropriate cold chain 

adoption and prepare guidelines for all levels of industry (Stephen 2009) .  This is critical to 

ensuring constant temperature control across the entire chain, as cold chain staff know the 

best practices and standards of cold chain management (Global Cold Chain Alliance 2016). The 

government should also support research and development of appropriate low- cost cold 

chain technologies, such as low-cost precooling technology, focusing on the needs of small 

businesses (Drame & Meignien 2016; Yahia & Smolak 2014). To increase the chances of success 

in cold chain adoption, the fresh fruit industry should work together with the government to 

provide training to new adopters based on the successful experiences of large businesses. This 

is especially critical to helping small businesses or SMEs understand the best practices in cold 

chain implementation (Global Cold Chain Alliance 2016; Jie 2010) .  Fresh fruit supply chain 

members will then be aware of the benefits and the proper process of the cold chain 

operation, which will lead to widespread cold chain adoption in the long run.     

6.5.4 Cold chain collaboration        

Lack of proper collaboration planning among companies in a supply chain to manage the flow 

of goods can be an issue in cold chain implementation in developing countries. This is because 

the companies will be unable to ensure consistent temperature control throughout the entire 

cold chain process (Joshi, Banwet & Shankar 2009; Negi & Anand 2015; Wang & Zhang 2008). 

Such lack of collaboration can cause serious negative impacts on cold chain performance. 

Therefore, it is necessary to have coordinated cold chain logistics control to ensure that the 

products are at appropriate temperatures throughout the entire process ( Ko et al.  2015; 

Runzhou 2014; van der Hulst 2004). To ensure success, the government should function as an 

organiser to assist industry in establishing collaborative cold chain logistics systems.  It could 

set up a collaborative advisory board to provide information and advice to supply chain 

members on collaborative cold chain adoption.  The purpose of this is to enhance cold chain 

performance and decrease operating cost for small businesses, through proper collaboration 

planning and economies of scale by sharing cold chain technology and infrastructure among 
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supply chain members (Jie 2010; Joshi, Banwet & Shankar 2009; Yang et al. 2012). In addition, 

industries can work together with cold chain partners and companies on integration of 

policies and action plans in order to ensure a continuous cold chain (Sharma & Pai 2015; Yahia 

& Smolak 2014) .  For example, a cooperative conference of all the partners of a cold chain, 

held at regular intervals, may be beneficial to overcoming issues arising from misaligned 

operations (Joshi, Banwet & Shankar 2009). Cold chain members can also set up alliances with 

other cold chain logistics companies to share basic facilities or resources, which can increase 

the competitiveness of all the participating parties (Jie 2010; Li 2006). Therefore, with proper 

planning and initiatives, cold chain collaboration among supply chain members in developing 

countries can be achieved, leading to improved cold chain performance.  

6.5.5 Legal support 

As previous studies revealed, one of the major barriers to cold chain logistics in developing 

countries is the lack of comprehensive laws and regulations to support cold chain 

development ( Jing & Jian 2015; Joshi, Banwet & Shankar 2009; Shane 2016) .  Cold chain 

members need to comply with regulations that are specific to various aspects, such as transfer 

of fresh fruit products and safety. Consequently, impacts of laws and regulations on cold chain 

adoption cannot be overlooked (Sharma & Pai 2015). To remedy the situation, the government 

should provide legal support, such as legislation to promote, control, and standardise cold 

chain logistics practices ( Global Cold Chain Alliance 2016; Joshi, Banwet & Shankar 2009; 

Viswanadham 2005; Yahia & Smolak 2014) .  For example, the government could set up 

stringent regulations to regulate cold chain members, such as farms, processors, transporters 

and middleman companies, to enable temperature control along the entire supply chain (Li 

2006) .  Regulations and laws also should be developed based on standards that align with 

national food security policies and adopted by international markets ( Global Cold Chain 

Alliance 2016; Yahia & Smolak 2014). In addition, the government should introduce beneficial 

policies to support the needs of the fresh fruit industry. For example, the government can set 

up regulations and play the role of facilitator or coordinator to promote the sharing of risks 

and duties among cold chain members (Jie 2010; Kitinoja 2013; Yahia & Smolak 2014).  
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To promote the development of cold chain logistics in developing countries, attempts need 

to be made to encourage financial support from the government, investment in cold chain 

technology and infrastructure by the government and middleman companies, increased 

awareness of the public through education, knowledge and skill training to cold chain 

members, improved collaboration among businesses, and introduction of legislation 

beneficial to supply chain members for cold chain development.  However, to be successful, 

each dimension has to link together with other dimensions.  For example, beneficial financial 

policies introduced by the government can increase the tendency for cold chain technology 

and infrastructure investment by supply chain members.  This is because, generally speaking, 

cold chain technology requires a significant amount of money for investment. It is very difficult 

for small businesses to invest in cold chain infrastructure and technology without supporting 

financial aid from the government.  Moreover, investment in cold chain infrastructure and 

technology can lead to an increased tendency for cold chain collaboration, because cold chain 

collaboration cannot take place if the supply chain members have no cold chain infrastructure 

and equipment.  Cold chain collaboration also supports further investment of infrastructure 

and technology when cold chain members obtain the benefits from collaboration, such as 

reducing operating cost and improving performance.  In addition, cold chain collaboration 

promotes public awareness.  As companies are aware of the benefits of cold chain 

collaboration, they would like to understand and follow the process of successful cold chain 

collaboration.  Public awareness also promotes cold chain collaboration because, with 

adequate cold chain education or training, people would become aware how to implement 

the process and benefit from cold chain collaboration.  Next, public awareness can support 

financial policy, because education will increase knowledge of supply chain members about 

the benefits of cold chain adoption.  Then, they will be more interested in obtaining financial 

aid from the government to invest in cold chain infrastructure and technology.  Without 

understanding the benefits of cold chains, people may not be interested in investing in cold 

chain technology, even when the government provides financial support for cold chain 

investment.  Financial policy can also impact on community awareness.  For example, tax 

incentive policies to encourage cold chain investment may increase public awareness about 

the importance of a cold chain to supply chain members.  Lastly, all the four dimensions, 
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namely financial policy, infrastructure and technology, cold chain collaboration, and 

community awareness, need to be supported by regulations, laws and government policies 

which act like glue holding the other four tightly together.  Without the support of relevant 

laws and regulations, a cold chain implemention might not be successful. Tax incentive policy, 

provision of necessary infrastructure, provision of advice on cold chain collaboration from the 

government, and provision of public education and training, are all important as they are 

linked together. 

The success of all these improvements depends on the support from the government and the 

supply chain members.  There are several roles that the government and the supply chain 

members should take.  To begin with, it is essential that the government should introduce 

enforceable cold chain regulations and laws and provide guidelines and directives for the 

supply chain members as soon as possible (Global Cold Chain Alliance 2016; Sharma & Pai 

2015). A government should provide financial aid to small businesses to help them implement 

the initiatives of cold chain infrastructure and technology (Ji & Guo 2009; Kitinoja 2013) .  The 

government should also enhance community awareness of cold chains through education and 

training (Jie 2010; Yang et al.  2012) .  It should also set up collaborative cold chain advisory 

boards to provide advice to the supply chain members and facilitate collaboration among 

them (Ji & Guo 2009; Yang et al.  2012) .  On the other hand, middleman companies with more 

resources and stronger capabilities should take the lead in investing in cold chains, setting the 

direction for small businesses, such as farms, processors, and transporters (Lau & Wang 2009). 

Supply chain members should invest in the standardisation of cold chain technologies, 

because they can collaborate by sharing cold chain technology with other cold chain members 

(Ji & Guo 2009) .  Lastly, supply chain members should be willing to cooperate with other cold 

chain members to ensure an unbroken cold chain and improve cold chain performance (Joshi, 

Banwet & Shankar 2009). 

6.6 Conclusion 

In summary, this study contends that simulation outcomes support the use of cold chain 

adoption for the fresh fruit industry in developing countries, because of the resulting 

extension of shelf life and reduction in wastage and processing time.  This study has explored 
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two cold chain designs based on the findings of previous studies. The simulation results show 

that, in general, consolidated cold chain design (which can be seen as a low-tech low-cost 

approach)  is more beneficial than individual cold chain design (which can be seen as a high-

tech high-cost approach). The superior performance of the consolidated design persists under 

various scenarios, which include change in total demand for exported fruits, increase in supply 

uncertainty, and increase in operating cost in the long run.  These findings support the 

arguments of previous studies on the benefits of collaboration (AT Kearney Limited 2005; 

Joshi, Banwet & Shankar 2009; Lan et al.  2014; Salin & Nayga 2003; Sharma & Pai 2015) , 

change in work practices for reducing processing time (Qiu et al.  2009; Zhu et al.  2014) , and 

using more economical cold chain technology ( Dubey 2011; Kitinoja 2013)  for cold chain 

design.  The present thesis contends that collaboration and change in work practices can play 

a primary role in cold chain design for the fresh fruit industry in developing countries .  This is 

supported by the sharing of infrastructure and the use of proven and less-expensive cold chain 

technologies without the need for excessive knowledge and skills. With the significant hurdles 

in cold chain adoption being overcome using the aforementioned arrangement, it is 

considered that cold chain adoption in the fresh fruit industry in developing countries can be 

promoted and expedited.  Once the necessary capital resources and knowledge and skills for 

the use of more sophisticated cold chain technologies are available, the high-tech high-cost 

approach can then be adopted to further enhance operational efficiency and responsiveness.  

6.7 Chapter summary     

This chapter has discussed the implications of the research findings and confirmed the 

feasibility of using the low-tech low-cost approach to implement cold chains for the fresh fruit 

industry in developing countries, such as Thailand.  To put the proposed approach into 

practice, a framework to expedite the development of cold chain adoption in developing 

countries using the low- tech low- cost approach was also presented and discussed.  The 

following chapter will conclude the study by discussing the contributions of the study and 

pointing out its limitations as well as the directions for future research.    
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Chapter 7  

CONCLUSION 

The previous chapters provided the justification for the study, stated the research problem 

and questions, reviewed the relevant literature, described the methodology adopted, 

presented the findings and discussed their implications. This chapter provides a conclusion to 

the study and highlights the contributions of this research from both the academic and the 

management perspectives.  Lastly, limitations of the study and directions for future research 

in this field are discussed. 

7.1 Conclusions 

Cold chain adoption is a well-recognised practice in developed countries, such as the USA and 

EU countries, for fresh fruit supply chains to lengthen shelf life and reduce wastage. However, 

due to hot weather and lack of cold chain management, fresh fruit supply chains in many 

developing countries suffer from issues such as short shelf life, high wastage, and low quality. 

Implementation of cold chains in developing countries is limited because of the high cost of 

cold chain technology, lack of equipment and infrastructure, inadequate knowledge and 

training, lack of collaboration, and absence of government support.  To promote cold chain 

adoption in developing countries, this study examined an alternative cold chain design for 

fresh fruit supply chains by borrowing insights from the theory of constraints ( TOC)  and 

network theory (NT) .  A discrete-event simulation methodology was employed to model the 

operation of an existing typical mango supply chain in Thailand, a developing country, 

comprising five farms, three processors, one transporter, and one middleman company, as a 

case study.  Verification and validation techniques, namely process maps, 2D animation, and 

the simulation software debugger, were used to compare the output from the simulation 

model against that of the real system.  Statistical tools and sensitivity analysis were also used 

to validate the representativeness of the base model to the actual situation. Upon validation, 

the base model was used to explore the alternative cold chain designs. 

Extant studies on cold chain designs suggest that there are two groups of cold chain design: 

(1) individual cold chain design (which can be seen as a high-tech high-cost approach); and (2) 
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consolidated cold chain design (which can be seen as a low-tech low-cost approach). Individual 

cold chain design, which is often found in developed countries, refers to the adoption of cold 

chain technology by each member of the supply chain.  Consolidated cold chain design refers 

to the sharing of cold chain technologies, infrastructure and knowledge among supply chain 

members so as to overcome the entry barrier.  Through discrete-event simulation, this study 

incorporated the two designs in the simulation model and compared their performance using 

common key performance indicators, namely throughput, processing time, operating cost, 

shelf life, and wastage.  The findings indicate that cold chain adoption can help improve the 

performance of the existing fresh fruit supply chain under study in terms of extended shelf 

life and reduced wastage.  The simulation results also reveal that, regardless of design, the 

fresh fruit supply chain under study performs better with cold chain adoption than without, 

in the long term. Furthermore, when comparing the performance of two alternative cold chain 

designs, the simulation outcomes suggest that consolidated cold chain design is more 

appropriate for developing countries than individual cold chain design. The simulation results 

also show that the consolidated cold chain design is robust in the long run when subject to 

fluctuations in demand and other uncertainties.  

The research findings suggest that the journey to cold chain adoption for the fresh fruit 

industry in developing countries such as Thailand using a high- tech high- cost cold chain 

approach will be a long one.  Many barriers, such as high start-up cost, lack of infrastructure 

and technology, and lack of knowledge, have to be overcome.  Therefore, an advanced cold 

chain leveraging state-of-the-art technologies, as found in developed countries, cannot be 

accomplished in the short term. It is considered that a low-tech low-cost cold chain approach 

is the most feasible transitional arrangement for cold chain development in developing 

countries, until they have accumulated, in time, the necessary resources, knowledge and 

experience for adopting the high-tech high-cost approach.  

To promote the low-tech low-cost cold chain adoption approach in developing countries, this 

study also proposed a framework to serve as a guide for governments and the supply chain 

members in developing countries to develop cold chain management for fresh fruit industries. 
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In the following section, the contributions of the present study, from both the academic and 

the managerial perspectives, will be discussed.  

7.2 Academic contributions 

The outcomes from this thesis have several significant academic implications. Firstly, the most 

important contribution the present study makes to the literature in the area of cold chain 

adoption is that it opens up a new scope for cold chain design in developing countries by 

leveraging technology, collaboration and changes in work practices. 

Secondly, the simulation outcomes of this study corroborate the use of the theory of 

constraints (TOC)  and the network theory (NT)  as underpinning theories for the study of cold 

chain adoption.  This is because the success of the alternative cold chain design relies very 

much on supply chain members working together and sharing resources to overcome 

constraints.  The two underpinning theories account for these mutually beneficial behaviours 

among supply chain members, which are not uncommon in developing countries. 

7.3 Managerial contributions 

Firstly, this study provides empirical evidence to support the use of a low- tech low- cost 

approach to cold chain adoption for fresh fruit supply chains in developing countries.  From a 

managerial perspective, collaboration and change in work practices are relatively more 

feasible than is capital investment, in developing countries with limited financial resources. 

This is in contrast to the heavy reliance on cold chain technologies in developed countries .  

Secondly, the research findings could also assist supply chain members and governments in 

formulating appropriate strategies for cold chain adoption for fresh fruit supply chains in 

developing countries, to address the issues of short shelf life, high wastage, and low quality 

of fruit. 

7.4 Limitations of the study 

Despite the contributions this research has made to the literature on fresh fruit cold chains, 

there are several limitations of the study that need to be noted. Firstly, the scope of this study 

is confined to the upstream and the midstream of the investigated fresh fruit supply chain . 
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The system boundary is from farm to international markets in different countries. 

Downstream logistics, i.e., how the fresh fruits are handled after reaching the markets, is not 

included in this study.  As cold chain implementation should be from end to end, i.e. , from 

farms to consumers, research analysing alternative cold chain designs that includes all stages 

would be valuable. 

Secondly, this research used a mango supply chain as case study. Although the concept of low-

tech low-cost cold chain adoption should be applicable to other supply chains, the outcomes 

may not be generalisable to certain other industries, such as pharmaceutical products, meat 

and flowers.  In this regard, future studies could use other supply chains as samples to 

investigate whether the alternative cold chain design is appropriate for other industries.  

7.5 Directions for further research 

Despite the above limitations, this research assists as a reference point to guide upcoming 

study in the field of cold chain adoption. 

The concept of a low- tech low- cost approach should be applicable to most developing 

countries, in particular Asia, because the lifestyle and weather are more or less the same 

throughout the region. Therefore, future research might repeat this study in other developing 

countries in the region, such as Vietnam, Malaysia, and Indonesia, to compare with the results 

of the present research.  The purpose is to gain more evidence to support the proposed 

approach and generalise the applicability of the low-tech low-cost approach to all developing 

countries.  

Another direction for future study is to use other simulation methodologies to investigate 

cold chain adoption in developing countries. Since the low-tech low-cost approach relies very 

much on collaboration among supply chain members involving behaviourial interactions, it 

can be simulated using agent-based simulation to investigate how agents can work in the 

negotiation between supply chain members.  As government plays a vital role in formulating 

policies to help communities in developing countries in various aspects to implement cold 

chain, future study could also use a system dynamic simulation technique to investigate the 

effectiveness of various policies for cold chain adoption.  
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7.6 Chapter summary 

This chapter concluded the study by highlighting the academic and the managerial 

contributions of the outcomes of the present study.  It also identified the limitations of the 

study, and recommended several directions for future research. 
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APPENDIX A  

Cold Chain Technologies 

The cold chain infrastructure comprises pre-cooling technology, a cold room, and refrigerated 

transport (Sharma & Pai 2015). As revealed from the literature, there are two options for cold 

chain technology for food handling, processing, storing and transportation.  The first group is 

simple and low-cost, which is more suitable for developing countries; while the other group 

is intended to reach the same results but is more complex and expensive (Kitinoja 2013). Table 

A1 shows the mechanical technologies available for refrigeration.  

Table A.1 – Mechanical technologies available for refrigeration 

Cold chain stage Small-scale Large-scale 
Pre-cooling Portable forced air cooling systems, Icing, 

Room cooling 
Vacuum cooling, Forced air cooling, 
Hydro-cooling 

Cold storage Walk- in cold room, CoolBotTM- equipped 
cold room  

Mechanical refrigeration 

Refrigerated 
transport 

USDA Porta-cooler Cold trucks, Refrigerated marine 
containers 

Source: Adapted from Kitinoja (2013), Kitinoja and Thompson (2010) and Thompson and 
Spinoglio (1988) 

Pre-cooling 

It is important to do a pre-cooling as near to the harvest area as possible (Stephen 2009) . 

Cooling is vital to preserve the quality of perishable products.  Even a small delay before 

commencement of pre- cooling can lead to produce quality loss and food deterioration 

(Intelligent Supply Chain Solutions 2015; Wardlaw 1939). According to Picha (2001), every hour 

that the produce stays at field temperature after harvesting leads to a reduction in shelf life 

of ten hours.  There are several types of pre- cooling techniques for perishable produce. 

Therefore, it is very significant to select the suitable pre-cooling method, which depends on 

several factors (Bledsoe 2009; Brosnan & Sun 2001; Quaye 2011)  including:  (1)  the nature of 

the product (i.e., some products can be badly affected by wetting, hydro cooling or icing, which 

thus may not be appropriate for fruits such as tomatoes); (2) product packaging requirements 

(i.e., the dominant selection of cooling method depends on the product being in a bag, box or 
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bin, because this can affect the rate of cooling); (3)  product flow capacity ( i.e. , some cooling 

methods are quicker than others); and (4)  economic constraints ( i.e. , operation and building 

costs differ amongst cooling approaches) .  Common methods used for the first cooling are 

icing, forced-air cooling, room cooling, hydro cooling, and vacuum cooling. 

 Icing 

There are several types of approach that use ice to cool a commodity. They may include simply 

adding ice packs to the product (either placed directly in touch with the produce, or by passing 

cooled air over the produce) (Kitinoja & Kader 2015). Icing can be used on a range of produce. 

In the package icing process, it can be applied directly as a slurry in water, which is injected 

into commodity packages over handholds or openings, often without the necessity for 

removing their tops or depalletising (Bledsoe 2009) .  The particles of ice are forced into all 

available room in the container, thus accomplishing better contact with the product (Regional 

Office for Asia and Pacific Division 2012) .  For the top icing procedure, crushed or flaked ice is 

added by machine or hand to the container above the upper part of goods (Bledsoe 2009) . 

There are several disadvantages of using ice as a cooling method: for example, the melting ice 

damps the produce; it leads to more susceptibility to disease of the produce because the 

produce is in direct contact with ice; and it also adds weight to the box (Regional Office for 

Asia and Pacific Division 2012) .  Therefore, this method works well with water- tolerant 

packaging (plastic, fibreboard, or wood) , and with water-tolerant and non-chilling-sensitive 

goods such as carrots, sweet corn, broccoli, green onions, and lettuce (Kitinoja & Kader 2015; 

Kitinoja & Thompson 2010). 

 Forced-air cooling 

According to the Kitinoja and Thompson ( 2010)  and Regional Office for Asia and Pacific 

Division (2012) , this cooling technique forces cool air to be transferred over containers of 

goods.  This approach can be effective for most packaging of produce, and it is extremely 

energy efficient. This technique is generally 75% to 90% faster than room cooling, although the 

cooling level depends on the rate of air flow and the temperature target (Bledsoe 2009) .  It 

requires an energy cost of 35 kWh/MT and two to four hours for cooling time to maintain 13 
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degrees Celsius (Brecht et al.  2010; Winrock International 2009) .  Forced-air cooling is where 

goods are cooled by placing the products into a cold room and organising the air-flow pattern 

by adding fans to raise the cooling speed (Quaye 2011) .  There are diverse styles of forced-air 

cooling designs in usage; while the most commonly used in developed countries is termed 

tunnel cooling ( Regional Office for Asia and Pacific Division 2012) .  However, a forced- air 

cooling which is particularly suitable for small- scale business, especially in developing 

countries, is portable forced-air cooling (Bhawna 2016; Kitinoja & Thompson 2010; Winrock 

International 2009) .  This cooling method is useful for fruits that need to be cooled quickly 

after harvesting such as mangos and strawberries (Quaye 2011).  

 Room cooling 

This technique basically involves placing goods in an insulated room provided with cooling 

units, and cooling air is disseminated everywhere, to the bins, sacks or cartons (Bledsoe 2009; 

Kitinoja & Thompson 2010). However, while this technique is a relatively energy efficient and 

appropriate one for produce that is marketed rapidly after harvest, it provides the slowest 

refrigeration rate, extreme water loss according to the slow rate of cooling, and is 

inappropriate for packed produce (Bhawna 2016) .  It is suitable only for products that have a 

long shelf life such as onions, sweet potato and tomatoes, because more highly perishable 

products will spoil before being sufficiently cooled ( Kitinoja & Kader 2015; Kitinoja & 

Thompson 2010; Regional Office for Asia and Pacific Division 2012).  

 Hydro-cooling 

Hydro- cooling can be used only on products that are not too delicate for wetting, which 

frequently encourages the growth of microorganisms, because it will increase deterioration 

through these organisms (Bledsoe 2009; Kitinoja & Thompson 2010) .  The standard style of 

hydro-cooling is using a cistern of cold water in which goods are immersed or drenched, and 

therefore cold water moves over the goods to remove heat (Kader 2002; Kitinoja & Kader 

2002) .  According to Bledsoe ( 2009)  and Kitinoja and Kader ( 2015) , air removes heat 

approximately 15 times more slowly than water, the latter which thus provides faster cooling 

to the product.  Nevertheless, hydro-cooling is only 20% to 40% energy efficient, as compared 

to 70% to 80% for forced-air cooling and room cooling; and, in addition, it is more suitable for 
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large- scale business than small- scale industry, because it requires high capital investment 

(Bledsoe 2009; Brosnan & Sun 2001) .  There is some produce that responds well to hydro-

cooling, especially products that have a large surface area such as peaches and sweet corn 

(Bledsoe 2009).  

 Vacuum cooling 

This cooling method works well with goods that have a large surface area such as lettuce and 

leafy greens, which might be extremely hard to cool with hydro-cooling or forced air cooling 

( Bhawna 2016; Bledsoe 2009) .  The product is located inside a metal cylinder, where the 

atmospheric pressure is decreased.  The low pressure also results in the water in the produce 

boiling, as the produce is refrigerated ( Quaye 2011; Regional Office for Asia and Pacific 

Division 2012). However, there are several adverse effects for vacuum cooling, such as that it 

leads to a water loss in the product if overdone, and that the equipment is extremely costly 

to operate and to purchase (Bledsoe 2009). 

Cool storage  

Cold storage can have a very high energy demand; however, the cold storage costs are usually 

more than counterbalanced by cost saving from decreased produce loss and improved quality. 

Appropriate selection of cold storage for a proposed use will increase energy effectiveness of 

the cold chain (Winrock International 2009) .  However, there is a diverse range of choices in 

cold storage type, from small, walk-in cold rooms to large-scale refrigerated warehouses.  

 Walk-in cold rooms, CoolBotTM-equipped  

Small-scale cold rooms can be considered using a recent development in cooling technology, 

namely the low- cost, CoolBot™ - equipped air conditioner- based systems, which were 

developed by Boyette and Rohrbach in 1993 (Kitinoja 2013) .  According to CDH Energy Corp 

(2009) and Store It Cold Limited (2016), CoolBot™ can help to save up to 42% of the energy use 

of a mechanical refrigeration system; and a Coolbot™ system with a room air conditioner costs 

approximately 90%  less than an equal- sized commercial refrigeration method ( Kitinoja & 

Thompson 2010) .  The CoolBot™  is a controller for a normal air conditioner which works by 

operating the air conditioner to refrigerate the storing room.  The air conditioner is changed 
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to function so as to drop the temperature without creating ice on the evaporator despite 

being at an extremely low temperature (Karithi 2016; Kitinoja & Thompson 2010).   

 Mechanical refrigeration 

Although mechanical refrigeration is the considered the most effective technology for 

transportation systems and cold rooms, mechanical refrigeration is practically infeasible for 

the limited resources of small-scale business (Dubey 2011). These systems have higher working 

costs than CoolBot™, because they consume more electricity to cool a space (Robert, Andrew 

& John 2016) .  The energy use for a cold room of mechanical refrigeration costs 30 kWh/MT 

for 12 degrees Celsius of cooling (Winrock International 2009). Cold rooms can be bought new 

or used, as pre- assembled units such as prefabricated cold rooms, highway vans, marine 

containers, or owner- built cold rooms ( Thompson & Spinoglio 1988) .  However, some 

researchers suggest that the owner-built cold room and used, prefabricated cold room are 

the cheapest choices among the range of mechanical refrigeration (Thompson & Spinoglio 

1988; Winrock International 2009) .  However, used cooled highway vans and marine 

containers have the benefit that the cold room is portable, and thus can be relocated to the 

new site; but they are the most costly among this group in some regions ( Thompson & 

Spinoglio 1988; Winrock International 2009).  

 Refrigerated transport  

Transportation happens several times in the agricultural supply chain, which is a significant 

part of the cold supply chain in terms of transporting produce at a particular temperature 

(Zhang, Chen & Lu 2011) .  Vehicles are an essential component of the cold chain to transport 

produce from the farm to the packinghouse, and from the packinghouse to the wholesale or 

retail market (Winrock International 2009) .  Transportation of perishable produce from the 

farm to the consumer has an aspect of time and might lead to significant losses if there are 

postponements at any stage in the supply chain ( Karithi 2016) .  There are a number of 

technologies for transportation, such as USDA Porta-cooler, Cold truck, and Marine container. 

Therefore, efficiency, productivity and cost are factors that of necessity are to be considered 

in the selection of refrigerated transportation (Quaye 2011).    
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 USDA Porta-cooler 

USDA porta-coolers can be transported on traditional small-scale transport such as pick-up 

trucks, either set into a pick- up truck bed or pulled as a trailer ( Kitinoja 2013; Winrock 

International 2009). This method is suitable for small farmers that have to sort and grade crops 

in the field, directly cool the harvest to take away field heat, pack the produce appropriately 

for the marketplace, and transport straight to the market (Kitinoja & Kader 2015) .  The USDA 

Porta-cooler uses a room-size air conditioner to refrigerate air in a small insulated box.  The 

refrigerated air in the front of the insulated box is enforced through the produce by a pressure 

fan inside an insulated box (Global Cold Chain Alliance 2016; Kitinoja & Kader 2015).  

 Cold trucks 

Fruit and vegetables should be transported in fully covered trucks, if possible in refrigerated 

trucks (Agricultural & Processed Food Products Export Development Authority 2009) , which 

are also termed ‘reefer’ trucks.  There are several sizes of cold trucks.  The most common cold 

trucks are 12 feet and 20 feet in size, which normally can carry approximately six to ten pallets 

of produce.  Due to the cooling system fitted on a reefer truck being quite small compared 

with the dimensions of the truck, a cold truck would require five to ten percent more energy 

than a normal truck to transport the equivalent load over the same length ( Winrock 

International 2009).  

 Refrigerated marine containers 

A reefer, or refrigerated container, is a container in intermodal transportation that is cooled 

for sensitive produce at a target temperature during delivery (Bledsoe 2009). It can be used to 

transport anything, such as fruit, vegetables, meat, and pharmaceuticals. Refrigerated marine 

containers are usually either 20 or 40 feet (NPCS Board of Consultants & Engineer 2015) .  The 

refrigerated container is suitable for use in developing countries such as India (Maheshwar & 

Chanakwa 2006). 
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APPENDIX B  

Base Model Development 

Table B.1 – Distributions and input parameters for the module representing farms A, B and 
C 

Process Statistical distributions Units of time P-value Mean 
Square 
Error 

Process harvesting 2 + 7 * BETA (1.29, 1.51) Seconds/Mango 0.62 0.005249 
Process move to inspection 
Yard 

NORM (14.7, 2.08) Seconds/Basket >0.75 0.002313 

Process cover release TRIA (2, 4.18, 10) Seconds/Mango 0.62 0.009047 
Process inspection and 
cutting 

2 + 8.93 * BETA (2.14, 2.39) Seconds/Mango 0.47 0.007623 

Process put into basket 2.02 + GAMM (0.0605, 6.66) Minutes/Basket >0.15 0.009933 
Process truck loading 23.4 + 1.96 * BETA (0.585, 0.526) Minutes/Truck >0.15 0.039651 
Travel to processor A TRIA (55, 60 , 65 ) Minutes/1 time - - 
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Table B.2 – Distributions and input parameters for the module representing farms D and E 

Process Statistical distributions Units of time P-value Mean Square 
Error 

Process harvesting 3 + 4.9 * BETA (1.83, 1.84) Seconds/Mango >0.75 0.005127 
Process truck loading 7.18 + 3.24 * BETA (1.04, 0.995) Minutes/Truck >0.15 0.006314 
Travel to processor B or C 4 + GAMM (0.506, 1.15) Minutes/ 1 time >0.15 0.022706 
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Table B.3 – Distributions and input parameters for the module representing processor A 

Process Statistical distributions Units of time P-value Mean Square 
Error 

Process truck unloading 14 + GAMM (0.579, 3.14) Seconds/3 Baskets 0.15 0.019209 
Process weighing 1 1.64 + LOGN (0.711, 0.375) Seconds/ 3 Baskets 0.56 0.001258 
Process move to yard 3.61 + ERLA (0.285, 3) Seconds/3 Baskets 0.21 0.006876 
Process lay down mangoes 
to yard 

6 + 5.62 * BETA (1.85, 1.64) Seconds/3 Baskets 0.61 0.005664 

Process decide grading 1.53 + LOGN (1.11, 0.469) Seconds/3 
Mangoes 

0.07 0.016672 

Process packing  12 + GAMM (0.447, 3.32) Seconds/Box 0.49 0.005650 
Process move to weighing TRIA (3.15, 5.67, 8) Seconds/Box 0.34 0.011043 
Process weighing 2 NORM (2.68, 0.374) Seconds/Box >0.15 0.01.781 
Process weight adjustment 10 + 4.65 * BETA (1.61, 1.6) Seconds/Box 0.06 0.017092 
Process move to box cover 
yard 

1.75 + 2.59 * BETA (2.44, 3.69) Seconds/Box >0.15 0.004931 

Process box cover and 
stamp 

NORM (5.08, 0.982) Seconds/Box 0.21 0.007023 

Process move to box wrap TRIA (1.12, 2.31, 2.63) Seconds/Box 0.47 0.008205 
Process wrap box 5 + ERLA (0.373, 4) Seconds/Box 0.19 0.007414 
Process move to 
transportation preparing 
yard 

7 + 5 * BETA (1.68, 1.75) Seconds/Box 0.35 0.007732 
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Table B.4 – Distributions and input parameters for the module representing processors B 
and C 

Process Statistical distributions Units of time P-value Mean Square 
Error 

Process truck unloading 4.34 + 6.53 * BETA (2.54, 1.77) Seconds/Basket 0.34 0.005947 
Process cover release 1.03 + LOGN (3.59, 1.8) Seconds/Mango 0.24 0.007323 
Process inspection and 
cutting 

4 + GAMM (1.32, 1.44) Seconds/Mango 0.66 0.000637 

Process put into basket 15 + 6.95 * BETA (1.06, 1.56) Seconds/Basket 0.23 0.010662 
Process put into trolley 2.16 + 3.84 * BETA (1.99, 2.14) Seconds/ 3 Baskets 0.20 0.012749 
Process move to grading 
yard 

NORM (16.3, 2.31) Seconds/1 time >0.15 0.008150 

Process lay down mango to 
yard 

TRIA (3, 4.5, 6) Seconds/3 baskets 0.66 0.003468 

Process decide grading 1.07 + WEIB (2.02, 3.76) Seconds/Mango 0.38 0.003636 
Process put plastic bubble 1.21 + 2.31 * BETA (2.09, 2.05) Seconds/Mango >0.75 0.004228 
Process packing NORM (43.5, 4.48) Seconds/Box 0.18 0.007058 
Process move to weighing 2 + WEIB (3.44, 2.64) Seconds/Box 0.57 0.002882 
Process weighing 2 2.41 + 2.59 * BETA (2.08, 1.55) Seconds/Box >0.75 0.001650 
Process weight adjustment NORM (9.62, 1.18) Seconds/Box 0.49 0.005761 
Process box cover and 
stamp 

4 + 8.97 * BETA (1.82, 2.5) Seconds/Box 0.40 0.010487 

Process move to box wrap 4 + GAMM (1.04, 3.79) Seconds/Box 0.41 0.005050 
Process wrap box 5.03 + 4.97 * BETA (2.86, 3.21) Seconds/Box 0.07 0.019714 
Process move to 
transportation preparing 
yard 

TRIA (2, 4.63, 9) Seconds/Box 0.40 0.011424 
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Table B.5 – Distributions and input parameters for the module representing transporter 

Process Statistical distributions Units of time P-value Mean Square 
Error 

Travel to processor B TRIA (35, 40, 45) Minutes - - 
Process pick up boxes Pro B 24 + 8 * BETA (0.834, 0.703) Minutes/1 Time >0.15 0.047045 
Travel to processor C UNIF (15, 20) Minutes - - 
Process pick up boxes Pro C 24 + 8 * BETA (0.834, 0.703) Minutes/1 Time >0.15 0.047045 
Travel to processor A TRIA (30, 35, 40) Minutes - - 
Process pick up Boxes Pro 
A 

34 + 11 * BETA (0.506, 0.756) Minutes/1 Time >0.15 0.027957 

Travel to middleman firm TRIA (13.5, 14, 14.5) Hours - - 
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Table B.6 – Distributions and input parameters for the module representing middleman 
firm 

Process Statistical distributions Units of time P-value Mean Square Error 
Process truck unloading 2.43 + 5.02 * BETA (2.57, 2.68) Seconds/Box 0.63 0.003770 
Process truck unloading 
operation break down 

TRIA (25, 30, 35) Minutes - - 

Process sorting  26 + GAMM (1.81, 3.99) Seconds/Box 0.51 0.002222 
Process stamp and labelling 
CA 

2.6 + 3.91 * BETA (2.2, 2.58) Seconds/Box 0.61 0.006271 

Process stamp and labelling 
CB 

1.49 + 1.19 * BETA (3.8, 1.61) Minutes/Palle
t 

>0.15 0.013046 

Process wrap NORM (2.32, 0.291) Minutes/Palle
t 

>0.15 0.140333 

Process truck loading CA 30.4 + 6.42 * BETA (0.973, 0.924) Minutes/1 
Time 

>0.15 0.047292 

Process truck loading CB 12.4 + 1.9 * BETA (0.685, 0.911) Minutes/1 
Time 

>0.15 0.104751 

Travel to CA TRIA (7.5, 8, 8.5) Hours - - 
Travel to CB TRIA (13.5, 14, 14.5) Hours - - 
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Figure B.1 – Screenshot for ARENA model for farm A 
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Figure B.2 – Screenshot for ARENA model for farm B 
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Figure B.3 – Screenshot for ARENA model for farm C 
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Figure B.4 – Screenshot for ARENA model for farm D 
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Figure B.5 – Screenshot for ARENA model for farm E 
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Figure B.6 – Screenshot for ARENA model for processor A 
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Figure B.7 – Screenshot for ARENA model for processor B 
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Figure B.7 – Screenshot for ARENA model for processor B (continued) 
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Figure B.8 – Screenshot for ARENA model for processor C 
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Figure B.8 – Screenshot for ARENA model for processor C (continued) 
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Figure B.9 – Screenshot for ARENA model for transporter 
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Figure B.10 – Screenshot for ARENA model for middleman firm 
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Figure B.10 – Screenshot for ARENA model for middleman firm (continued) 



 
 

185 
 

 

Figure B.11 – Screenshot of the model animation for farm A 
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Figure B.12 – Screenshot of the model animation for farm B 
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Figure B.13 – Screenshot of the model animation for farm C 
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Figure B.14 – Screenshot of the model animation for farm D 
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Figure B.15 – Screenshot of the model animation for farm E 
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Figure B.16 – Screenshot of the model animation for processor A 
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Figure B.17 – Screenshot of the model animation for processor B 
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Figure B.17 – Screenshot of the model animation for processor B (continued) 
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Figure B.18 – Screenshot of the model animation for processor C 
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Figure B.18 – Screenshot of the model animation for processor C (continued) 
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Figure B.19 – Screenshot of the model animation for transporter 
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Figure B.20 – Screenshot for ARENA model for middleman firm 
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Figure B.20 – Screenshot for ARENA model for middleman firm (continued) 
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Figure B.21 – Mango shelf life with different temperature in degrees (Dongkhum & 
Kanlayanarat 2002). 
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CK = Control, A = Coated by bentonite (Deionizedwater:bentonite = 1:15), B= Coated by 

bentonite + potassium sorbate bentonite (Deionized water:bentonite = 1:15:0.07) 

Figure B.22 – Mango decay index at room temperature (Liu, Wang & Young 2014)
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Figure B.23 – Mango decay percentage at 10-15 Degrees Celsius (Abou-Aziz et al. 1976) 
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Table B.7 – t-test results comparing base model and actual on Throughput of mango supply 
chain 
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Table B.8 – t-test results comparing base model and actual on country A processing time of 
mango supply chain 
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Table B.9 – t-test results comparing base model and actual on country B processing time of 
mango supply chain 
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Table B.10 – t-test results comparing base model and actual on operating cost of mango 
supply chain 
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Table B.11 – t-test results comparing base model and actual on farm group A to country A 
shelf life of mango supply chain 
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Table B.12 – t-test results comparing base model and actual on farm group B to country A 
shelf life of mango supply chain 
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Table B.13 – t-test results comparing base model and actual on farm group A to country B 
shelf life of mango supply chain 
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Table B.14 – t-test results comparing base model and actual on farm group B to country B 
shelf life of mango supply chain 
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Table B.15 – t-test results comparing base model and actual on farm group A to country A 
wastage of mango supply chain 
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Table B.16 – t-test results comparing base model and actual on farm group B to country A 
wastage of mango supply chain 
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Table B.17 – t-test results comparing base model and actual on farm group A to country B 
wastage of mango supply chain 
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Table B.18 – t-test results comparing base model and actual on farm group B to country B 
wastage of mango supply chain 
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Table B.19 – Model change of base model under different sensitivity analysis tests 
regarding statistical distribution for change in transportation delay 

Change in truck loading/unloading time Change made to base model 
Increase 5% 

Increase 10% 
Increase 15%  

TRIA (1.03, 1.05, 1.07) of the current transportation delay time 
TRIA (1.08, 1.10, 1.12) of the current transportation delay time 
TRIA (1.13, 1.15, 1.17) of the current transportation delay time 
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Table B.20 – Model change of base model under different sensitivity analysis tests 
regarding statistical distribution for change in truck loading/unloading time 

Change in truck loading/unloading 
time 

Change made to base model 

Increase 15% 
Increase 30% 
Increase 45%  

TRIA (1.10, 1.15, 1.20) of the current truck loading/unloading time 
TRIA (1.25, 1.30, 1.35) of the current truck loading/unloading time 
TRIA (1.40, 1.45, 1.50) of the current truck loading/unloading time 
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APPENDIX C  

Alternative model development 

Table C.1 – The number of staff increasing for farms A, B and C for individual cold chain 
design 

Activities Resource requirement (Base model) Resource requirement (Individual cold 
chain design)  

Harvesting 5 persons 10 persons 
Put into basket Shared the same resources with 

harvesting process 
Shared the same resources with 
harvesting process 

Move to inspection 
yard 

Shared the same resources with 
harvesting process 

Shared the same resources with 
harvesting process 

Release basket Shared the same resources with 
harvesting process 

Shared the same resources with 
harvesting process 

Cover release 2 persons 4 persons 
inspection and 
cutting 

2 persons 4 persons 

Put into basket 9 persons 18 persons 
Truck loading 5 persons 10 persons 
Truck 1 Truck 2 Trucks 
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Table C.2 – Model change of Individual cold chain design regarding statistical distribution 

Fruit supply chain member Change made to base model 
Processor A To do a pre-cooling process at 1.20 PM for (UNIF (2, 4)) *(1-0.37) hours  
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Table C.3 – The number of staff increasing for farms A, B and C for consolidated cold chain 
design 

Activities Resource requirement (Base model) Resource requirement (Individual cold 
chain design)  

Harvesting 5 persons 10 persons 
Put into basket Shared the same resources with 

harvesting process 
Shared the same resources with 
harvesting process 

Move to inspection 
Yard 

Shared the same resources with 
harvesting process 

Shared the same resources with 
harvesting process 

Release basket Shared the same resources with 
harvesting process 

Shared the same resources with 
harvesting process 

Cover release 2 persons 4 persons 
Inspection and 
cutting 

2 persons 4 persons 

Put into basket 9 persons 18 persons 
Truck loading 5 persons 10 persons 
Truck 1 Truck 1 Truck 
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Figure C.1 – The distance between the supply chain member 
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Table C.4 – The number of staff and trucks increasing for farms D and E for consolidated 
cold chain design 

Activities Resources requirement (Base model) Resources requirement (Consolidated 
cold chain design)  

Harvesting 14 persons 28 persons 
Selection of quality 
mango 

Shared the same resources with 
harvesting process 

Shared the same resources with harvesting 
process 

Put into basket Shared the same resources with 
harvesting process 

Shared the same resources with harvesting 
process 

Truck loading 2 persons 4 persons 
Number of trucks 2 Trucks 4 Trucks 
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Table C.5 – The number of staff increasing of processors B and C for consolidated cold chain 
design 

Activities Resource 
requirement 
(Base model) 

Operation time 
(Base model 

Resource 
requirement 

(Consolidated cold 
chain design) 

Operation time 
(Consolidated cold chain 

design) 

Cover release 4 persons 8.00 AM - 5.00 PM 8 persons 6.00 AM – 12.00 PM 
Inspection and 
cutting 

2 persons 8.00 AM - 5.00 PM 4 persons 6.00 AM – 12.00 PM 

Put into basket 3 persons 8.00 AM - 5.00 PM 3 persons 8.00 AM - 5.00 PM 
Put into trolley Shared the 

same 
resources 
with put into 
basket 
process 

8.00 AM - 5.00 PM Shared the same 
resources with put 
into basket process 

8.00 AM - 5.00 PM 

Move to grading 
yard 

1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 

Lay down 
mangoes to yard 

2 persons 8.00 AM - 5.00 PM 2 persons 8.00 AM - 5.00 PM 

Decide grading 2 persons 8.00 AM - 5.00 PM 2 persons 8.00 AM - 5.00 PM 
Put plastic bubble 
AA 

1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 

Put plastic bubble 
A 

Shared the 
same 
resources 
with put 
plastic 
bubble AA 
process 

8.00 AM - 5.00 PM Shared the same 
resources with put 
plastic bubble AA 
process 

8.00 AM - 5.00 PM 

Put plastic bubble 
B 

1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 

Put plastic bubble 
C 

Shared the 
same 
resources 
with put 
plastic 
bubble B 
process 

8.00 AM - 5.00 PM Shared the same 
resources with put 
plastic bubble B 
process 

8.00 AM - 5.00 PM 

Packing AA 1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
Packing A 1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
Packing B 1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
Packing C 1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
Move to 
weighing AA 

Shared the 
same 
resources 
with Packing 
AA process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing AA process 

8.00 AM - 5.00 PM 
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Table C.5 – The number of staff increasing of processors B and C for consolidated cold chain 
design (continued) 

Activities Resource 
requirement (Base 

model) 

Operation time 
(Base model 

Resource 
requirement 

(Consolidated cold 
chain design) 

Operation time 
(Consolidated cold 

chain design) 

Move to weighing 
A 

Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM 

Move to weighing 
B 

Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM 

Move to weighing C Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM 

Weighing 2 AA Shared the same 
resources with 
Packing AA process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing AA process 

8.00 AM - 5.00 PM 

Weighing 2 A Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM 

Weighing 2 B Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM 

Weighing 2 C Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM 

Weight adjustment 
AA 

Shared the same 
resources with 
Packing AA process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing AA process 

8.00 AM - 5.00 PM 

Weight adjustment 
A 

Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing A process 

8.00 AM - 5.00 PM 

Weight adjustment 
B 

Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing B process 

8.00 AM - 5.00 PM 

Weight adjustment 
C 

Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM Shared the same 
resources with 
Packing C process 

8.00 AM - 5.00 PM 

Box cover and 
stamp 

1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 

Move to box wrap 2 persons 8.00 AM - 5.00 PM 2 persons 8.00 AM - 5.00 PM 
Wrap box 1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
Move to 
transportation 
preparing yard 

1 person 8.00 AM - 5.00 PM 1 person 8.00 AM - 5.00 PM 
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Table C.6 – Model change of consolidated cold chain design regarding statistical 
distribution 

Fruit supply chain 
members 

Change made to base model 

Farms A, B and C To transport mangoes to processor B instead of processor A by using statistical 
distribution TRI (35, 40, 45) minutes  

Processor A To do a pre-cooling process at 3 PM for (UNIF (2, 4)) *(1-0.37) hours 
Processors B and C To do a pre-cooling process at 3 PM for (UNIF (2, 4)) *(1-0.37) hours 
Transporter To modify the delivery path which directly transports to middleman firm after finished 

truck loading at processor C by using TRIA (11, 12, 13) hours 
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Table C.7 – Model change of alternative model under different scenarios regarding 
statistical distribution for increase in supply uncertainty 

Scenario Test Change made to base model 
Increase in supply uncertainty UNIF (0.5, 0.7) is multiplied to the hour entities created to enter the system 
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Table C.8 – Model change of alternative model under different scenarios regarding 
statistical distribution for change in operating cost 

Scenarios Tests Change made to base model  
Change in operating cost UNIF (1.5, 2.0) is multiplied to the current labour cost  

 UNIF (1.5, 2.0) is multiplied to the current electricity cost  
 UNIF (1.5, 2.0) is multiplied to the current fuel cost  

 

 

 

 


