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Abstract 

Conventional microfluidic systems enable the manipulation of liquids in micro-

scale structures. However, the majority of microfluidic systems rely on external 

off-chip equipment, such as pumps, tubes and valves for driving and control of 

flow. This in turn increases the overall costs, and dimensions of the system while 

decreases their utility for point-of-care purposes, and importantly their 

widespread application in biological laboratories.  

Chapter 1 presents a brief overview of self-sufficient microfluidic devices, and 

explores self-sufficient microfluidic components made of polydimethylsiloxane 

(PDMS) capable of storage and release of aqueous solutions into fluidic 

environments, which can be operated without the need for external off-chip 

equipment, and specialised training in microfluidics. This review identified a 

clear gap in the current body of knowledge and motivated me to develop PDMS 

sponges as a building block of self-sufficient lab-on-a-chip structures.  

Chapter 2 presents my first research contribution. Here, I fabricated a highly 

porous sponge by templating microscale droplets of water in PDMS using a 

microfluidic T-junction system. Scanning electron microscopy revealed the 

unique structure of the sponge, consisting of large pores which were only 

interconnected by small holes. This unique structure allowed for storage of 

aqueous solutions and their slow release into fluidic environments. Experiments 

indicated that the release characteristics of the sponge can be tuned by varying 

the size of the pores and interconnecting holes. 

I further demonstrated the capability of the highly porous PDMS sponge for the 

chemical stimulation of cultured cells. As a proof-of-concept, the sponge was 



loaded with ionomycin and placed into a well pre-coated with human umbilical 

vein endothelial cells. This enabled me to monitor the intracellular calcium 

signaling of cells in response to releasing ionomycin using a simple setup. 

I also demonstrated the ability of the PDMS sponge for the active release of 

stored chemicals into a microfluidic system. A PDMS sponge was loaded with 

an aqueous solution, and squeezed using a simple screw mechanism. This 

enabled me to release the stored solution in a controlled manner over consequent 

cycles into the surrounding flow. 

Chapter 3 presents my second research contribution. Here I demonstrated the 

capability of the highly porous PDMS sponge for the generation of micro-

droplets of aqueous solutions in oil by simply squeezing the sponge. The small 

interconnecting holes located at the interface of the sponge and the surrounding 

oil acted as microscale orifices, enabling the generation of hundreds of droplets, 

with the majority of them ranging from 10 to 200 µm. 

I demonstrated the ability of sponge-based droplet generation for the 

encapsulation of cells. As a proof-of-concept, monocytic leukaemia cells were 

encapsulated in droplets containing cell culture medium. The density of 

encapsulated cells was proportional to the volume of droplets as well as the 

concentration of cells, enabling me to produce hundreds of isolated droplets with 

various cell populations. 

I further investigated the ability of produced droplets for studying the response 

of cells to chemical stimulation. As a proof-of-concept, the leukaemia cells were 

stimulated with hydrogen peroxide prior to encapsulation. The quick settling of 

encapsulated cells facilitated monitoring their responses using fluorescent  



microscopy. Investigation of cell viability yielded similar results compared to 

off-chip experiments in the absence and presence of hydrogen peroxide. 

Experiments indicated the ability for conducting parallel experiments using 

multiple isolated cell clusters simultaneously. 

Chapter 4 presents a summary of the key findings of this thesis.  overall, the 

highly porous PDMS sponges developed during this research creates 

unprecedented opportunities for generation of self-sufficient microfluidic 

systems for various cellular assays. 
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CHAPTER 1: Introduction 

1.1 Self-sufficient microfluidic devices 

Microfluidic technologies enable the manipulation of small volumes of liquid in 

micro-scale structures [1]. These devices facilitate the precise prediction and 

control of flow variables including velocity, sheer stress, temperature, 

temperature gradients, and concentration of chemicals in miniaturised 

environments, which is difficult to achieve using traditional macro-scale devices 

[2]. Other benefits include reduced cost, enhanced sensitivity, portability, and the 

ability to integrate with other technologies such as photonics [3]. 

Despite these advantages, conventional microfluidic devices rely on bulky and 

rather expensive off-chip support equipment such as pumps, centrifuges, mixers, 

shakers, vortex generators, and power supplies. This increases the overall cost 

and footprint of microfluidic systems, and more importantly limits their 

application to specialist laboratories. Self-sufficient microfluidic devices aim to 

address these shortcomings by integrating all necessary components into one 

single platform, such that it can be operated with minimum reliance on off-chip 

equipment or specialised training, as schematically presented in Figure 1.1. 

Storage and release of liquids are among the essential requirements for the 

operation of microfluidic systems. While conventional microfluidic systems rely 

on bulky pumps and liquid interfaces, stand-alone self-sufficient microfluidic 

devices require the miniaturisation and integration of such components into one 

single platform, which can be operated using passive, manual, or active 

mechanisms, as summarised in Table 1.1.  
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Figure 1.1: Typical microfluidic devices using various external, off-chip 

equipment vs. self-sufficient microfluidic devices. a) A Typical microfluidic 

device. b) A self-sufficient microfluidic device. Figure adapted from reference 

[4]. 
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Table 1.1: Self-sufficient mechanisms for the storage and release of liquids in 

microfluidic devices. 

Principle Mechanism 

Passive Capillary driven flows [5, 6] 

Manual Syringe withdrawal [7-9] 

Blister pouches for manual release of liquids [6] 

Manual/Passive Blister pouches for liquid storage and on demand 

release along with capillary driven flows through a 

microfluidic chip [6] 

Manual compression of a microfluidic chip triggering 

a capillary based pumping [10] 

Active Centrifugally driven liquids [11, 12] 

Integrated solenoid valves with a microcontroller [13] 

Miniaturised peristaltic pumps [14] 

Braille module using peristaltic actuation [15] 

Piezoelectric micro-diaphragm pumps [16] 

Electrokinetic transport [17, 18] 

DC diaphragm pumps [19] 

Smartphone controlled devices [19] 

Surface acoustic waves [20] 
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1.2 Storage and release of liquids in self-sufficient microfluidic systems 

Passive driving mechanisms rely on the tendency of liquids to pass though micro-

scale structures. The capillary pumping is the most common passive driving 

mechanism, which relies on the adhesion forces between the microfluidic 

structures and the liquid resulting in pumping though the device [4, 21]. Capillary 

pumping has been extensively used in point-of-care devices for driving 

biological samples though micro-fabricated structures over short periods (in the 

order of minutes). 

A good example of a self-sufficient microfluidic system using passive 

mechanisms is a microfluidic blood analysis system, developed by Dimov et al., 

[5], as shown in Figure 1.2. This microfluidic chip consists of a PDMS slab 

sandwiched between two glass slides and stored in a degassed state in vacuum 

packages. Removal of the seal triggers a degas-driven flow due to air absorption 

into the PDMS structures. Next, 5 µl of whole blood is placed at the inlet and 

drawn into the chip via suction. Whole blood passes over a filter trench, 

separating blood cells from the plasma. Plasma based proteins are detected using 

a fluorescent scanner as the plasma passes over the trench and flows across a 

biomarker detection zone patterned on the top glass slide using micro-contact 

printing. This system allows for the detection of biomarkers from whole blood 

using a passive degas-driven flow. 

Despite the simplicity, the main disadvantages of capillary driven devices are: 

low flow rate, short operation periods, strong dependency on the properties of 

the sample as well as environmental parameters, including temperature and 

relative humidity [4].  
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Figure 1.2: Self-sufficient integrated blood analysis system on a microfluidic 

chip using passive mechanisms. a) Schematic of the PDMS microfluidic chip. b-

g) Schematic showing the operating principles of the chip. Absorption of air into 

degassed PDMS device draws whole blood into the chip where the blood cells 

are filtered and the plasma is drawn across biomarker detectors. Figure adapted 

from reference [5]. 
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Another method for driving fluids though self-sufficient devices is the use of 

manual mechanisms, in which an end-user triggers the device. The main 

advantage of manual driving mechanisms is to eliminate the dependency on 

environmental parameters as well as driving larger volumes of liquid. Infusion 

or withdrawal of liquids using a manually operated syringe is the most common 

manual driving mechanism [7]. 

Liquid flow can also be controlled in self-sufficient microfluidic devices by 

manual means. For example, Garstecki et al., [7] presents a device for the mixing 

two laminar streams in a microfluidic channel by the introduction of air bubbles 

into the main channel using a set T-junctions shown in Figure 1.3. Flow of the 

liquids through the chip as well as the generation of the air bubbles into the main 

channel is via negative pressure applied manually at the outlet of the chip with a 

hand operated syringe. Mixing of the liquids is completed in micro-mixer 

structures consisting of branched channels in which the air bubbles travelling 

though the branched channels cause the two liquids to mix. This approach allows 

for the efficient mixing of liquids in a microfluidic device using a manual hand 

pump. 

Despite such advantages, such devices are limited by the ability of the end-user 

to precisely apply a targeted flow rate as well as producing similar flow rates 

over repeated experiments [4].   
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Figure 1.3: A microfluidic setup used for mixing liquids using droplets of gas 

drawn into the microfluidic chip manually withdrawing a syringe. a) 

Experimental setup showing the microfluidic chip and syringe. b) Stitched 

microscope images showing the microfluidic chips components. Figure adapted 

from reference [7].  
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The combination of passive and manual mechanisms has been used in 

conjunction to facilitate the manual release and passive driving of liquids [6, 10]. 

An example is a self-sufficient point-of-care device by Smith et al., [6], in which 

reagents are stored in blister pouches that can be released by manually squeezing 

the pouch, after release from the pouch, the liquid can then flow though the 

microfluidic chip using passive capillary mechanisms, as shown in Figure 1.4. 

This device allows for the on demand, manual release of stored liquids into a 

microfluidic environment coupled with the passive pumping of the released 

liquids though the chip. 

Figure 1.4: A microfluidic chip utilising both manual and passive mechanisms 

for the release and pumping of stored liquids. a) Schematic of the blister reservoir 

and seat. b) photo of the blister seat. c-d) Liquids are released from an integrated 

blister pack upon squeezing, the released liquid is then passively. Figure adapted 

from reference [6].  
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The integration of miniaturised components such as diaphragm, peristaltic, and 

piezoelectric pumps in combination with on-chip valves such as solenoids [13] 

allow for the active control of liquids in a self-sufficient manner. 

For example, Addae-Mensah et al., [13] present a microfluidic with an 

integrated, battery, diaphragm pump, and solenoids to actuate membrane valves 

to control the flow of liquid in the device without the need for external equipment 

shown in Figure 1.5. This device was used for the detection of horseradish 

peroxidase enzyme. Buffers, reagents, horseradish peroxidase enzyme same 

along with a fluorescent dye are drawn into the microfluidic device using the 

integrated diaphragm pump and mixed using a serpentine mixer. Solenoids are 

used to actuate the membrane valves to confine the mixed samples required for 

the incubation and detection at the fluorescent detection zones. 

These devices allow for increasingly complex multi-step assays to be carried out 

in which multiple samples/reagents/buffers can be driven to facilitate target bio-

reactions. The ongoing advancement of smartphones has enabled these devices 

to be truly mobile as they enable the control and programming of experiments as 

well as image acquisition and processing of results [19]. 
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Figure 1.5: A self-contained microfluidic system integrating a PDMS 

microfluidic chip with a microcontroller and solenoids and integrated battery for 

the control of on chip valves for the detection of horseradish peroxidase enzymes. 

a) Photo of the integrated device. b) operating principle of the on-chip valves. 

Figure adapted from reference [13].   
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Alternative flow driving mechanisms such as centrifugally driven flows induced 

by the rotation of the microfluidic device have also been used for the realisation 

of complex multistep assays. 

An elegant example is the “LabDisk” presented by Stumpf et al., [11], as shown 

in Figure 1.6. In this device, reagents are centrifugally driven though the 

microfluidic system by simply adjusting the rotational speed of the disk. 

Reagents are pre-stored in miniature stick-packs, which burst at specific 

rotational frequencies. Using this approach, real-time reverse transcription 

polymerase chain reaction is conducted on an influenza A H3N2 sample through 

the sequential application lysing agents, RNA extraction buffers, as well as 

various washing steps. Finally, a real-time fluorescent signal readout allows for 

the detection of the target pathogens. 

Figure 1.6: A transparent “LabDisk” for the nucleic acid based detection of 

influenza A H3N2 virus related pathogens. a) Photo of the “LabDisk” 

microfluidic system, which utilises multiple inlet, reagent, and reaction cavities. 

b) The “LabDisk player” centrifugally drives liquids through the chip by varying

the rotational speed of the chip. Figure adapted from reference [11]. 



 
12 

1.3 Droplet based microfluidics systems 

While the majority of applications in microfluidics involve water based miscible 

liquids such as blood and cell culture media, some applications involve the 

application of immiscible liquids such as water and oil or air and water. The 

injection of water droplets into oil using a pipette leads to the generation of 

several droplets in the range of hundreds of microns to millimetres in diameter. 

These droplets can be further broken into smaller droplets by sonication. Despite 

this simplicity, this does not allow for the continuous production of micro-scale 

droplets in a controlled manner in such a way that the size, gap, and frequency 

of the droplets can be precisely controlled. Microfluidics has enabled the 

production of uniformly sized droplets. 

There are various ways to generate droplets in microfluidics. this can be achieved 

by the configuration of the microfluidic system as well as the flow rations 

between continuous and dispersed phases [22]. The most common geometries 

are coaxial, flow focusing, and T-junctions, as shown in Figure 1.7. More 

complex droplet generation systems can be realised by combining the above 

geometries or the incorporation of additional injection channels [23]. Different 

regimes can regimes can be produced by simply varying the ratio between the 

continuous and dispersed flows. In general, operating at high ratios of 

continuous/dispersed flow leads to the dripping regime, where droplets are 

formed at the injection site due to strong shear forces induced by the continuous 

phase. In comparison, operating at lower ratios of continuous/dispersed flow 

leads the formation of parallel streams of the dispersed phase in the continuous 

phase moving along the channel before the capillary pressure destabilised the 

interface and breaks the jet into individual droplets. Among the three commonly 
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used microfluidic droplet generation configurations, flow focusing systems are 

popular as they enable a higher degree of control over the flow ratios. 

Figure 1.7: Typical on-chip micro droplet generation principles. a) Co-axial 

droplet generation. b) Flow-focusing droplet generation. c) T-Junction droplet 

generation. Figure adapted from reference [22]. 
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Microfluidic droplet generation systems enable the precise control over the size, 

inter-droplet gap, and frequency of droplets using various configurations, as 

presented in Figure 1.7.  

The generated droplets can be precisely manipulated within microfluidic 

structures this involves driving the droplets through channels with variable cross-

sections to decelerate or accelerate them, transferring droplets across 

neighbouring liquid interfaces, merging neighbouring droplets, sorting droplets 

based on their size or composition, changing the composition of droplets by 

injecting small volumes of liquid, controlling the size of the droplets by changing 

the interfacial properties, and capturing the target droplets for analysis. Each of 

these manipulations can be achieved using various mechanisms, as summarised 

in Table 1.2. 

The droplets, which have been manipulated, as described above, present ideal 

platforms for studying various physical, chemical, biochemical, and biological 

reactions. The very small volume of each droplet enhances the reaction 

efficiently, which can be further boosted by recirculation flows inside moving 

droplets. Depending on the rate of reactions occurring inside the droplets, the 

droplets can be analysed in real time or stored either on-chip or off-chip to be 

analysed following the completion of reactions, as presented in Table 1.2. 

Figure 1.8 to 1.10 present some examples of microfluidic droplet generation 

systems for physical and biological applications.  
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Table 1.2: Droplet based microfluidic applications: 

Purpose Description 

Generation: • Two phase emulsions (eg: w/o) [24] 

• Multiphase emulsions (eg: w/o/w/o…) [25] 

• Encapsulation of microscale objects: 

o Micro/nano particles [26] 

o Cells [26, 27] 

o Multicellular organisms [28] 

Manipulation: • Controlling the size of droplets using 

electrocapillary forces [29] 

• Lateral transfer of droplets across liquid phases: 

o One liquid phase using rails [30] 

o One liquid phase using acoustic forces 

[31] 

o Two liquid interfaces using surface 

tension driven forces [24, 32] 

• Droplet merging using: 

o Pillars [33] 

o Channel widening [34] 

o Electrocoalescence [35] 

• Capturing droplets using: 

o Pillars [36] 

o Hydrodynamic arrays [37] 
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• Sorting of droplets based on their properties: 

o Electrical forces (dielectrophoresis) [27] 

o Mechanical traps (pillars) [34]. 

• Reagent mixing [7, 38] 

Reactions: • Mixing of reagents using recirculation of flow 

inside moving droplets [7, 38] 

• Injection of solutions into moving droplets [39] 

• Synthesis of micro-particles: 

o Janus particles [40, 41] 

o Hybrid particles (non-symmetric Janus 

particles) [42, 43] 

o Shape controlled particles [44-46] 

o Micro-structured particles [47-49] 

• Cell based assays: 

o Chemical stimulation [26, 27, 50, 51] 

o Sorting [27, 50, 52-55] 

o Culturing [27, 50, 55-57] 

o Cell electroporation [58-60] 

o UV stimulation [26] 

o Lysis [26, 54, 61-63] 

o Encapsulation of functionalised beads 

[26] 

o Capture of nucleic acids [54, 55, 59-63] 

o Capturing of proteins [64] 
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Gol et al., [24] presents the generation of galinstan liquid metal droplets using a 

microfluidic flow focusing chip, as shown in Figure 1.8. Galinstan is injected 

though the central channel and is pinched off by glycerol flow injected through 

the side channels, the high viscosity of glycerol produces enough shear force to 

overcome the high surface tension of the liquid metal droplets and pinch them 

into micro-scale droplets. The droplets are later transferred into a low viscosity 

sodium hydroxide solution using surface tension driven forces, to supress the 

oxidation of the liquid metal droplets. This approach was extended to selectively 

transfer the liquid metal droplets into parallel streams under hydrodynamic forces 

[32]. 

 

 

Figure 1.8: The continuous generation of galinstan liquid metal droplets in 

glycerol using a PDMS flow focusing microfluidic chip. Figure adapted from 

reference [24]. 
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Baret et al., demonstrate a microfluidic system for culturing E. coli cells, as 

shown in Figure 1.9. Cells with fluorogenic substrate are encapsulated in 

fluorinated oil using a flow focusing chip. The droplets are then collected in a 

pipette off-chip and incubated at 20 C for 14 hours to allow for cell growth and 

production of an enzyme that causes the hydrolysis of the fluorogenic substrate. 

This process causes the droplets containing cells to become highly fluorescent. 

The droplets are then reinjected into a secondary microfluidic device in which 

each droplet is illuminated by a 488 nm laser, and the fluorescent response of 

each droplet is detected using a photomultiplier tube. Fluorescent droplets 

containing cells are then sorted using dielectrophoresis by deflecting the 

fluorescent droplets into a secondary channel. This method allows for collection 

of droplets containing the E. coli cells. 

Zilionis et al., [63] present a microfluidic droplet generation system for 

barcoding and genetic sequencing of cell, as shown in Figure 1.10. Droplets are 

generated using a flow focusing microfluidic chip in which the reagents, and 

hydrogel beads and the cell suspension are injected the central channel upstream 

of the orifice. Injection of oil from the side channels leads to the formation of 

droplets, which contain cells, reagents, and beads. The encapsulated cells are 

lysed due to the presence of the lysis buffers. The mRNA released from the cells 

is dispersed though the droplet. The droplets are then exposed to UV light, which 

in turn releases barcoding cDNA components from the hydrogel to capture 

mRNA of the lysed cell. This facilitates the reverse transcription of the genetic 

materials.  
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Figure 1.9: A microfluidic droplet generation and cell sorting system. a) 

Microfluidic droplet generation utilising a flow focusing chip. b) Subsequent off 

chip collection and incubation in a Pasteur pipette. c) Re-injection of the droplets 

into a microfluidic chip prior to droplet sorting based on the droplet contents. d) 

Droplet sorting using dielectrophoresis. Figure adapted from reference [27]. 
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Figure 1.10: Genetic sequencing of droplet encapsulated cells. a) Microfluidic 

droplet generation system including side channels for the injection of cell culture 

medium, reagents, and hydrogel barcoding beads followed by a flow focusing 

droplet generation system. b) Lysis of the encapsulated cells for subsequent 

genetic analysis. Figure adapted from reference [63]. 
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1.4 Porous sponges 

Porous structures have been traditionally used for cleaning due to their ability to 

absorb liquids. A common example is sponges made from cellulose, which are 

routinely used in kitchens. The porosity of sponges enables them to store liquids. 

The flexibility of sponges enables the active release of stored liquids upon 

squeezing. Also, the surface of a sponge can be readily functionalised with 

various nano-materials or chemicals to enhance their selectivity and sensitivity 

to specific solutions and materials. In addition, the high surface to volume ratio 

of porous sponges enhances the efficiency of surface mediated reactions [65]. 

Due to their unique features, sponges have been used for various applications 

such as the selective absorption of liquids, the selective filtering of ions, chemical 

catalysers, flexible electric components such as: sensors and capacitors, and 

scaffolds for tissue engineering and drug delivery using different materials, as 

summarised in Table 1.3. 
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Table 1.3: Highly porous sponges 

Material Application  

Cellulose sponges • Scaffold for supporting nanoparticles serving 

as a catalyser [66] 

• Piezoresistive sensors with the integration of 

carbon nanotubes [67] 

Other polymers • Piezoresistive sensors with the integration of 

sputtered gold on polyurethane sponges [68] 

• Selective absorption of emulsified droplets 

using a chitosan and linear polyacrylamide 

composite sponges [69] 

• Surface-mediated drug delivery using micro-

porous films of polyethylenimine and 

polyacrylic acid [70] 

Hydrogels • Scaffold for in vivo tissue generation in mice 

[71] 

• Scaffold for soft tissue engineering and 

culturing of human skin fibroblast cells [72] 

• Scaffold for the in vivo repair of cranial bone 

defects in rats [73] 
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PolyHIPEs • Selective absorption of oils and organic 

solvents [74] 

• Selective capture of carbon dioxide gas from 

air [75] 

• Selective nitrite ion exchange using a 

functionalised polyHIPE [76] 

• Removal of silver, lead and cadmium ions 

from aqueous solutions [77] 

• Photocatalytic water purification a titanium 

dioxide surface modified polyHIPE [78] 

• Chemical sensing using polyHIPE 

membranes, modified with conductive 

particles, enzymes and electron mediators 

[79] 

• Energy storage (capacitors) by incorporating 

cobalt hydroxide nanorods [80] 

• A scaffold for culturing bacteria [81] 

• Slow release of bone growth factors in vivo 

using polyHIPE microspheres [82] 

• Droplet templated PolyHIPEs with 

controllable porous structures [83] 
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Polydimethylsiloxane (PDMS) is among the polymers used to fabricate porous 

sponges. PDMS is commonly used the fabrication of microfluidic systems due 

to its ability to be easily patterned, chemical stability, elasticity, transparency and 

biocompatibility [84].  

PDMS sponges are fabricated using various techniques for a wide range of 

applications such as: selective absorption of oil from water, filtering of ions, 

flexible electronics, and acoustic metamaterials, and manually actually pumps 

for microfluidic applications, as presented in Table 1.4.  

Sacrificial crystal templating is the most widely used method for fabricating 

PDMS sponges due to its simplicity, as further discussed in Figure 1.11. The 

elasticity of the PDMS sponges has made them suitable for manual release of 

stored liquids, as presented in Figure 1.12 as well as well as the selective 

absorption of oil from water, as shown in Figure 1.13.   
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Table 1.4: Porous PDMS sponges 

Fabrication method Applications 

Crystal templated 

structures using 

sugar, salt, citric 

acid 

monohydrate, or 

ice: 

• Pressure pump for the active release of stored 

liquids for microfluidic systems [85, 86] 

• Selective absorption of oils in water [87-90] 

• Enhanced selective absorption of oils in water 

by the incorporation of carbon nanotubes [91] 

• Filtering heavy metal ions [92] 

• Making flexible electronics with the 

incorporation of carbon nanotubes [93], 

metals [94, 95], or liquid metals [96] 

Gas foaming • Transport of fluorescent molecules across a 

thin film [97] 

Emulsion 

templating 

• Acoustic metamaterials by adjusting the 

porosity [98] 

Sacrificial 

polymer 

microparticle 

templating 

• PDMS films with tuneable micro/nano pores 

[99] 
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Cha et al., [86] present a simple method for fabricating porous PDMS sponges 

using a sugar cube as a sacrificial scaffold, as shown in Figure 1.11. First, sugar 

cubes are placed into a Petri dish filled with uncured PDMS. The uncured PDMS 

is drawn into the sugar cubes by applying a vacuum. Following the curing of the 

PDMS, the sugar cubes are placed in warm water to dissolve the sacrificial sugar 

cube resulting in a porous PDMS sponge. Other sacrificial crystal templating 

materials such as salt [97], and citric acid monohydrate [100] have been used to 

template porous PDMS sponges.  

 

Figure 1.11: Fabrication of porous PDMS sponges via the sugar leaching 

technique. a) Sugar cubes in a petri dish. b) Uncured PDMS (10:1 w/w base to 

curing agent) is then poured into the petri dish. c) Absorption of the PDMS into 

the sugar cube due to capillary forces under vacuum. d) Curing of the PDMS in 

an oven. e) Dissolving the sacrificial sugar cubes in water. f) Porous PDMS 

sponges after drying. Figure adapted from reference [86].  
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The porous and elastically of these sugar templated PDMS sponges allows for 

the loading and unloading of aqueous solutions by simply squeezing the sponge 

manually. Yang et al., [85] has used this concept for the manual pumping of 

aqueous solutions into a microfluidic chip, as shown in Figure 1.12. This idea 

has been extended by Hong et al., [101] by incorporating micro scale iron powder 

into the PDMS matrix to make the sponge magneto-responsive. This allows for 

the sponge to be actively squeezed using a magnetic field to produce pulsatile 

flows in microfluidic channels to study the response of cultured cells. 

 

Figure 1.12: A portable, integrated pressure pump utilising a porous PDMS 

sponge and manual compression. a) A porous PDMS sponge is loaded with red 

stained water and interfaced with a PDMS. b-d) Show the stored liquid being 

pumped though the PDMS channel via manual compression of the sponge. 

Figure adapted from reference [85]. 
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Sugar templated sponges have also been used for the selective absorption of 

various oils from water. Choi et al., [87] showed that a drop of water will remain 

on the surface of a sugar templated PDMS sponge due to its hydrophobicity 

whereas a droplet of oil will be immediately absorbed into the sponge due to its 

oleophilicity as shown in Figure 1.13. This selectivity has been used for the 

absorption of a layer of oil floating on water. The oil filled sponge can then be 

removed and squeezed to eject the stored oil enabling the reuse of the sponge. 

This concept has been used by Zhao et al., [88] to absorb oil within a tube to 

block oil leakage. This is facilitated by the absorption of oil into the sponge 

causing it to swell and seal the pipe. 

 

Figure 1.13: Porous PDMS sponges used as a filter to selectively absorb oil. a) 

Hydrophobic properties of the sponge. b) Oleophilic properties of the sponge. c-

f) The selective absorption of oil from water. Figure adapted from reference [87].  
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Despite the simplicity of this fabrication method, this method does not provide 

control over the size and distribution of the pores.  

A closer look at Table 1.3 reveals the possibility for fabricating porous polymer 

structures though the injection of sacrificial micro droplets into an uncured 

polymer matrix, forming a high internal phase emulsion (HIPE). Once the 

polymer is cured and the sacrificial droplets are removed, revealing a highly 

ordered porous polymer network (polyHIPE).  

Costantini et al., [83] presents a highly porous polymer structure by injecting 

micro droplets of cyclohexane into uncured dextran-methacrylate (DEX-MA) 

using a flow focusing microfluidic chip, as shown in Figure 1.14. The resulting 

cyclohexane/DEX-MA emulsion is collected in glass tubes. The DEX-MA was 

then crosslinked and the cyclohexane was washed out resulting in a highly 

ordered polymer network. By changing the flow rates of the two phases, the size 

of the pores can be easy adjusted. Despite these advantages such polyHIPEs have 

not been used for the storage and release of aqueous solutions, enabling self-

sufficient microfluidic systems. 

The ability for highly porous PDMS sponges for the storage and release of 

solutions makes them highly suitable for fabricating versatile, self-sufficient 

microfluidic systems, with the ability to control the porous structure of the 

sponge, which has been the motivation of this thesis, as further discussed in 

Section 1.3.  
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Figure 1.14: Tunable polyHIPEs using microfluidics. a) A microfluidic flow 

focusing chip is used to generate droplets of cyclohexane in an external phase of 

dextran-methacrylate (DEX-MA) to form a HIPE. b) The DEX-MA is 

crosslinked using UV light and temperature. c) The internal phase is removed 

using a polar solvent. d-e) SEM images of the resulting porous hydrogel 

polyHIPE. Scale bar is 30 µm. Figure adapted from reference [83]. 
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1.5 Motivation: 

Motivation 1: Self-sufficient standalone microfluidic systems for the storage 

and release of solutions: 

Typical microfluidic systems enable the storage, driving and control of liquids in 

micro-scale structures. However, the operation of such systems is heavily reliant 

on external off-chip supporting equipment, such as pumps, tubes, and valves, 

which limits their utility for end-users who are not necessarily specialised in 

microfluidics or do not have access to such facilities. This is particularly 

important for the development of more complex point-of-care diagnostic devices. 

This motivated me to create a self-sufficient, stand-alone microfluidic device 

enabling the passive and manually operated storage and release of biological 

agents to facilitate cellular assays. 

 

Motivation 2: Self-sufficient micro-droplet generation systems for cellular 

assays:  

Microfluidic droplet generation systems facilitate the generation of micro-scale 

droplets, which have been extensively used for the encapsulation of cells. 

However, such systems rely on microfluidic structures, bulky and rather 

expensive supporting equipment such as pumps. More importantly the operation 

of such systems relies on specialised training and time-consuming processes. 

These drawbacks limit their widespread usage in biological laboratories. This 

motivated me to develop a self-sufficient micro-droplet generation systems, 

which can be used for encapsulation, chemical stimulation, and monitoring of 

cells.   
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1.6 Research Questions 

Motivation 1 described in Section 1.2 led to the following three research 

questions that are addressed in Chapter 2. 

Research Question 1: Can a highly porous PDMS sponge be fabricated and 

utilised for the release of stored aqueous solutions?  

This can be divided into the following three sub-questions: 

• Can a porous PDMS sponge be manually loaded with aqueous solutions 

due to its elasticity and porosity? 

• Can the stored solutions be released passively released into a surrounding 

liquid environment? 

• Can the passive release characteristics of the sponge be modulated by 

varying the porous structure of the sponge? 

 

Research Question 2: Can this highly porous PDMS sponge be utilised for 

conducting cellular assays? 

This can be divided into the following two sub-questions: 

• Can the PDMS sponge be used for the passive release of stored solutions 

into biologically relevant structures such as Petri dishes or multi-well 

plates or is it just limited to for microfluidic channels? 

• Does the sponge enable the chemical stimulation of cells passively? 
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Research Question 3: Can this highly porous PDMS sponge be used for the 

active release of stored chemicals? 

This can be divided into the following two sub-questions: 

• Can the sponge me integrated into a microfluidic structure serving as 

active reservoir/valve at the same time? 

• Is the active release characteristics of the PDMS sponge controllable and 

repeatable? 

 

Motivation 2 described in Section 1.2 led to the following three research 

questions that are addressed in Chapter 3. 

Research Question 4: Can this highly porous PDMS sponge be utilised for the 

generation of micro-scale droplets of aqueous solutions without the need for 

traditional microfluidic support equipment such as syringe pumps? 

This can be divided into the following three sub-questions: 

• What carrier liquid provides suitable conditions for pinching off droplets? 

• Are the droplets mechanically stable (do not coalesce following release)? 

• Do the generated droplets have a predictable size and volume 

distribution? 

 

Research Question 5: Can this highly porous PDMS sponge be utilised for the 

encapsulation of cells inside droplets? 

This can be divided into the following five sub-questions: 
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• Can the droplets be filled with cell suspension to enable the generation of 

droplets carrying encapsulated cells? 

• Do encapsulated cells remain stable and viable? 

• Is there a relation between number of encapsulated cells and the 

parameters such as the size of the droplets, concentration of cells? 

• What parameters determine the number of cells inside each droplet? 

• Does the sponge enable the generation of customized cell clusters ranging 

from single, to multiple cells? 

 

Research Question 6: Can the droplets be containing cells be used as “micro-

Petri dishes” facilitating the chemical stimulation and microscope imaging of 

encapsulated cells? 

This can be divided into the following four sub-questions: 

• Can the droplets be loaded with chemicals, agents, and fluorescent probes 

to enable cellular assays? 

• Are the settled cells stable enough to be easily monitored using inverted 

microscopy without software based tracking techniques? 

• Does this encapsulation method enable the settling and monitoring of 

highly motile cells? 

• Does this enable highly parallel cellular assays to be conducted?  
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1.7 Thesis Layout 

This research aimed to investigate the self-sufficient microfluidic systems 

capable of the storage and release of solutions to facilitate cellular assays. The 

contents of my thesis are outlined below: 

Chapter 1 presents a brief literature review of current microfluidic systems and 

their limitations in terms of operation, which motivated me to conduct this 

research. 

Chapter 2 presents a porous sponge made of PDMS, which was fabricated by 

templating micro-scale water droplets using a T-junction microfluidic structure. 

The sponge contains a network of pores, interconnected by small holes. This 

unique structure enables the sponge to passively release stored solutions very 

slowly. Proof-of-concept experiments demonstrated that the sponge can be used 

for the passive release of stored solutions into narrow channels and circular well 

plates, with the latter used for inducing intracellular calcium signaling of 

immobilised endothelial cells. The sponge can also actively release stored 

solutions into microfluidic channels though the controlled compression of the 

sponge. 

Chapter 3 presents a new droplet generation system using porous PDMS 

sponges, which enables the creation of hundreds of isolated micro-scale droplets 

containing cells and desired chemicals inside a well. These droplets can be 

considered isolated ‘micro-Petri dishes’, as they are chemically isolated, 

mechanically stable, and do not evaporate, due to the presence of oil in the well. 

These ‘micro-Petri dishes’ are generated manually in a quick and simple manner, 

and therefore can be easily used in biological laboratories to investigate various 



 
36 

cellular and molecular studies in a parallel manner, with minimum supportive 

equipment and microfluidic skills. 

Chapter 4 presents concluding remarks and recommendations for future work.  



 
37 

1.8 References 

[1] G. M. Whitesides, "The origins and the future of microfluidics," Nature, 

10.1038/nature05058 vol. 442, no. 7101, pp. 368-373, 07/27/print 2006. 

[2] T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the 

nanoliter scale," Reviews of Modern Physics, vol. 77, no. 3, pp. 977-1026, 

10/06/2005 2005. 

[3] C. Szydzik et al., "An automated optofluidic biosensor platform 

combining interferometric sensors and injection moulded microfluidics," 

Lab on a Chip, 10.1039/C7LC00524E vol. 17, no. 16, pp. 2793-2804, 

2017. 

[4] M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, "Self-

contained microfluidic systems: a review," Lab on a Chip, 

10.1039/C6LC00712K vol. 16, no. 17, pp. 3177-3192, 2016. 

[5] I. K. Dimov, L. Basabe-Desmonts, J. L. Garcia-Cordero, B. M. Ross, A. 

J. Ricco, and L. P. Lee, "Stand-alone self-powered integrated 

microfluidic blood analysis system (SIMBAS)," Lab on a Chip, 

10.1039/C0LC00403K vol. 11, no. 5, pp. 845-850, 2011. 

[6] S. Smith, R. Sewart, H. Becker, P. Roux, and K. Land, "Blister pouches 

for effective reagent storage on microfluidic chips for blood cell 

counting," Microfluidics and Nanofluidics, journal article vol. 20, no. 12, 

p. 163, November 23 2016. 

[7] P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. 

Whitesides, "Mixing with bubbles: a practical technology for use with 

portable microfluidic devices," Lab on a Chip, 10.1039/B510843H vol. 

6, no. 2, pp. 207-212, 2006. 

[8] A. R. Abate and D. A. Weitz, "Syringe-vacuum microfluidics: A portable 

technique to create monodisperse emulsions," Biomicrofluidics, vol. 5, 

no. 1, p. 014107, 2011. 

[9] K. Han, Y.-J. Yoon, Y. Shin, and M. K. Park, "Self-powered switch-

controlled nucleic acid extraction system," Lab on a Chip, 

10.1039/C5LC00891C vol. 16, no. 1, pp. 132-141, 2016. 



 
38 

[10] T. Kokalj, Y. Park, M. Vencelj, M. Jenko, and L. P. Lee, "Self-powered 

Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE," Lab on 

a Chip, 10.1039/C4LC00920G vol. 14, no. 22, pp. 4329-4333, 2014. 

[11] F. Stumpf et al., "LabDisk with complete reagent prestorage for sample-

to-answer nucleic acid based detection of respiratory pathogens verified 

with influenza A H3N2 virus," Lab on a Chip, 10.1039/C5LC00871A 

vol. 16, no. 1, pp. 199-207, 2016. 

[12] M. Focke, F. Stumpf, G. Roth, R. Zengerle, and F. von Stetten, 

"Centrifugal microfluidic system for primary amplification and 

secondary real-time PCR," Lab on a Chip, 10.1039/C0LC00161A vol. 

10, no. 23, pp. 3210-3212, 2010. 

[13] K. A. Addae-Mensah, Y. K. Cheung, V. Fekete, M. S. Rendely, and S. 

K. Sia, "Actuation of elastomeric microvalves in point-of-care settings 

using handheld, battery-powered instrumentation," Lab on a Chip, 

10.1039/C002349C vol. 10, no. 12, pp. 1618-1622, 2010. 

[14] F. Truffer et al., "Compact portable biosensor for arsenic detection in 

aqueous samples with Escherichia coli bioreporter cells," Review of 

Scientific Instruments, vol. 85, no. 1, p. 015120, 2014. 

[15] N. Futai, W. Gu, J. W. Song, and S. Takayama, "Handheld recirculation 

system and customized media for microfluidic cell culture," Lab on a 

Chip, 10.1039/B510901A vol. 6, no. 1, pp. 149-154, 2006. 

[16] J. Akagi et al., "Fish on chips: Microfluidic living embryo array for 

accelerated in vivo angiogenesis assays," Sensors and Actuators B: 

Chemical, vol. 189, no. Supplement C, pp. 11-20, 2013/12/01/ 2013. 

[17] D. Erickson, D. Sinton, and D. Li, "A miniaturized high-voltage 

integrated power supply for portable microfluidic applications," Lab on 

a Chip, 10.1039/B316916B vol. 4, no. 2, pp. 87-90, 2004. 

[18] Y. Oyama et al., "A glass fiber sheet-based electroosmotic lateral flow 

immunoassay for point-of-care testing," Lab on a Chip, 

10.1039/C2LC40994A vol. 12, no. 24, pp. 5155-5159, 2012. 



 
39 

[19] B. Li et al., "A smartphone controlled handheld microfluidic liquid 

handling system," Lab on a Chip, 10.1039/C4LC00227J vol. 14, no. 20, 

pp. 4085-4092, 2014. 

[20] M. K. Tan, L. Y. Yeo, and J. R. Friend, "Rapid fluid flow and mixing 

induced in microchannels using surface acoustic waves," EPL 

(Europhysics Letters), vol. 87, no. 4, p. 47003, 2009. 

[21] M. Zimmermann, H. Schmid, P. Hunziker, and E. Delamarche, 

"Capillary pumps for autonomous capillary systems," Lab on a Chip, 

10.1039/B609813D vol. 7, no. 1, pp. 119-125, 2007. 

[22] J. Nunes, S. Tsai, J. Wan, and H. Stone, "Dripping and jetting in 

microfluidic multiphase flows applied to particle and fibre synthesis," 

Journal of physics D: Applied physics, vol. 46, no. 11, p. 114002, 2013. 

[23] L. Li and R. F. Ismagilov, "Protein Crystallization Using Microfluidic 

Technologies Based on Valves, Droplets, and SlipChip," Annual Review 

of Biophysics, vol. 39, no. 1, pp. 139-158, 2010. 

[24] B. Gol et al., "Continuous transfer of liquid metal droplets across a fluid-

fluid interface within an integrated microfluidic chip," Lab on a Chip, 

10.1039/C5LC00415B vol. 15, no. 11, pp. 2476-2485, 2015. 

[25] W. Wang et al., "Controllable microfluidic production of 

multicomponent multiple emulsions," Lab on a Chip, 

10.1039/C1LC20065H vol. 11, no. 9, pp. 1587-1592, 2011. 

[26] R. Zilionis et al., "Single-cell barcoding and sequencing using droplet 

microfluidics," Nat. Protocols, Protocol vol. 12, no. 1, pp. 44-73, 

01//print 2017. 

[27] J.-C. Baret et al., "Fluorescence-activated droplet sorting (FADS): 

efficient microfluidic cell sorting based on enzymatic activity," Lab on a 

Chip, 10.1039/B902504A vol. 9, no. 13, pp. 1850-1858, 2009. 

[28] W. Shi, J. Qin, N. Ye, and B. Lin, "Droplet-based microfluidic system for 

individual Caenorhabditis elegans assay," Lab on a Chip, 

10.1039/B808753A vol. 8, no. 9, pp. 1432-1435, 2008. 



 
40 

[29] S.-Y. Tang et al., "Liquid-Metal Microdroplets Formed Dynamically 

with Electrical Control of Size and Rate," Advanced Materials, vol. 28, 

no. 4, pp. 604-609, 2016. 

[30] P. Abbyad, R. Dangla, A. Alexandrou, and C. N. Baroud, "Rails and 

anchors: guiding and trapping droplet microreactors in two dimensions," 

Lab on a Chip, 10.1039/C0LC00104J vol. 11, no. 5, pp. 813-821, 2011. 

[31] I. Leibacher, P. Reichert, and J. Dual, "Microfluidic droplet handling by 

bulk acoustic wave (BAW) acoustophoresis," Lab on a Chip, 

10.1039/C5LC00083A vol. 15, no. 13, pp. 2896-2905, 2015. 

[32] B. Gol, M. E. Kurdzinski, F. J. Tovar-Lopez, P. Petersen, A. Mitchell, 

and K. Khoshmanesh, "Hydrodynamic directional control of liquid metal 

droplets within a microfluidic flow focusing system," Applied Physics 

Letters, vol. 108, no. 16, p. 164101, 2016. 

[33] X. Niu, S. Gulati, J. B. Edel, and A. J. deMello, "Pillar-induced droplet 

merging in microfluidic circuits," Lab on a Chip, 10.1039/B813325E vol. 

8, no. 11, pp. 1837-1841, 2008. 

[34] Y.-C. Tan, Y. L. Ho, and A. P. Lee, "Droplet coalescence by 

geometrically mediated flow in microfluidic channels," Microfluidics 

and Nanofluidics, journal article vol. 3, no. 4, pp. 495-499, August 01 

2007. 

[35] M. Zagnoni and J. M. Cooper, "On-chip electrocoalescence of 

microdroplets as a function of voltage, frequency and droplet size," Lab 

on a Chip, 10.1039/B906298J vol. 9, no. 18, pp. 2652-2658, 2009. 

[36] M. Zagnoni and J. M. Cooper, "A microdroplet-based shift register," Lab 

on a Chip, 10.1039/C0LC00219D vol. 10, no. 22, pp. 3069-3073, 2010. 

[37] S. H. Jin, H.-H. Jeong, B. Lee, S. S. Lee, and C.-S. Lee, "A programmable 

microfluidic static droplet array for droplet generation, transportation, 

fusion, storage, and retrieval," Lab on a Chip, 10.1039/C5LC00651A vol. 

15, no. 18, pp. 3677-3686, 2015. 

[38] J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, "Formation of 

Droplets and Mixing in Multiphase Microfluidics at Low Values of the 



 
41 

Reynolds and the Capillary Numbers," Langmuir, vol. 19, no. 22, pp. 

9127-9133, 2003/10/01 2003. 

[39] A. R. Abate, T. Hung, P. Mary, J. J. Agresti, and D. A. Weitz, "High-

throughput injection with microfluidics using picoinjectors," 

Proceedings of the National Academy of Sciences, vol. 107, no. 45, pp. 

19163-19166, November 9, 2010 2010. 

[40] K. Maeda, H. Onoe, M. Takinoue, and S. Takeuchi, "Controlled 

Synthesis of 3D Multi-Compartmental Particles with Centrifuge-Based 

Microdroplet Formation from a Multi-Barrelled Capillary," Advanced 

Materials, vol. 24, no. 10, pp. 1340-1346, 2012. 

[41] R. K. Shah, J.-W. Kim, and D. A. Weitz, "Janus Supraparticles by 

Induced Phase Separation of Nanoparticles in Droplets," Advanced 

Materials, vol. 21, no. 19, pp. 1949-1953, 2009. 

[42] S.-H. Kim, A. Abbaspourrad, and D. A. Weitz, "Amphiphilic Crescent-

Moon-Shaped Microparticles Formed by Selective Adsorption of 

Colloids," Journal of the American Chemical Society, vol. 133, no. 14, 

pp. 5516-5524, 2011/04/13 2011. 

[43] Y. Zhao et al., "Multifunctional photonic crystal barcodes from 

microfluidics," NPG Asia Mater, vol. 4, p. e25, 09/07/online 2012. 

[44] S. Xu et al., "Generation of Monodisperse Particles by Using 

Microfluidics: Control over Size, Shape, and Composition," Angewandte 

Chemie International Edition, vol. 44, no. 5, pp. 724-728, 2005. 

[45] D. K. Hwang, D. Dendukuri, and P. S. Doyle, "Microfluidic-based 

synthesis of non-spherical magnetic hydrogel microparticles," Lab on a 

Chip, 10.1039/B805176C vol. 8, no. 10, pp. 1640-1647, 2008. 

[46] A. Fang, C. Gaillard, and J.-P. Douliez, "Template-Free Formation of 

Monodisperse Doughnut-Shaped Silica Microparticles by Droplet-Based 

Microfluidics," Chemistry of Materials, vol. 23, no. 21, pp. 4660-4662, 

2011/11/08 2011. 

[47] K. Shin-Hyun, S. Jae Won, L. Jong-Min, L. Su Yeon, and Y. Seung-Man, 

"Microfluidic fabrication of microparticles with structural complexity 



 
42 

using photocurable emulsion droplets," New Journal of Physics, vol. 11, 

no. 7, p. 075014, 2009. 

[48] Z. Nie, J. I. Park, W. Li, S. A. F. Bon, and E. Kumacheva, "An “Inside-

Out” Microfluidic Approach to Monodisperse Emulsions Stabilized by 

Solid Particles," Journal of the American Chemical Society, vol. 130, no. 

49, pp. 16508-16509, 2008/12/10 2008. 

[49] H. Hwang, S.-H. Kim, and S.-M. Yang, "Microfluidic fabrication of 

SERS-active microspheres for molecular detection," Lab on a Chip, 

10.1039/C0LC00125B vol. 11, no. 1, pp. 87-92, 2011. 

[50] T. Konry, M. Dominguez-Villar, C. Baecher-Allan, D. A. Hafler, and M. 

L. Yarmush, "Droplet-based microfluidic platforms for single T cell 

secretion analysis of IL-10 cytokine," Biosensors and Bioelectronics, vol. 

26, no. 5, pp. 2707-2710, 2011/01/15/ 2011. 

[51] V. Chokkalingam et al., "Probing cellular heterogeneity in cytokine-

secreting immune cells using droplet-based microfluidics," Lab on a 

Chip, 10.1039/C3LC50945A vol. 13, no. 24, pp. 4740-4744, 2013. 

[52] E. Brouzes et al., "Droplet microfluidic technology for single-cell high-

throughput screening," Proceedings of the National Academy of Sciences, 

vol. 106, no. 34, pp. 14195-14200, August 25, 2009 2009. 

[53] L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. 

Heyman, "Single-cell analysis and sorting using droplet-based 

microfluidics," Nat. Protocols, Protocol vol. 8, no. 5, pp. 870-891, 

05//print 2013. 

[54] M. Hosokawa, Y. Nishikawa, M. Kogawa, and H. Takeyama, "Massively 

parallel whole genome amplification for single-cell sequencing using 

droplet microfluidics," Scientific Reports, vol. 7, no. 1, p. 5199, 

2017/07/12 2017. 

[55] S. S. Terekhov et al., "Microfluidic droplet platform for ultrahigh-

throughput single-cell screening of biodiversity," Proceedings of the 

National Academy of Sciences, vol. 114, no. 10, pp. 2550-2555, March 7, 

2017 2017. 



 
43 

[56] B. L. Wang et al., "Microfluidic high-throughput culturing of single cells 

for selection based on extracellular metabolite production or 

consumption," Nat Biotech, Research vol. 32, no. 5, pp. 473-478, 

05//print 2014. 

[57] J. Pan et al., "Quantitative tracking of the growth of individual algal cells 

in microdroplet compartments," Integrative Biology, 

10.1039/C1IB00033K vol. 3, no. 10, pp. 1043-1051, 2011. 

[58] Y. Zhan, J. Wang, N. Bao, and C. Lu, "Electroporation of Cells in 

Microfluidic Droplets," Analytical Chemistry, vol. 81, no. 5, pp. 2027-

2031, 2009/03/01 2009. 

[59] A. C. Madison et al., "Scalable Device for Automated Microbial 

Electroporation in a Digital Microfluidic Platform," ACS Synthetic 

Biology, vol. 6, no. 9, pp. 1701-1709, 2017/09/15 2017. 

[60] F. Chen, Y. Zhan, T. Geng, H. Lian, P. Xu, and C. Lu, "Chemical 

Transfection of Cells in Picoliter Aqueous Droplets in Fluorocarbon Oil," 

Analytical Chemistry, vol. 83, no. 22, pp. 8816-8820, 2011/11/15 2011. 

[61] A. C. Larsen, M. R. Dunn, A. Hatch, S. P. Sau, C. Youngbull, and J. C. 

Chaput, "A general strategy for expanding polymerase function by 

droplet microfluidics," Article vol. 7, p. 11235, 04/05/online 2016. 

[62] P.-Y. Colin et al., "Ultrahigh-throughput discovery of promiscuous 

enzymes by picodroplet functional metagenomics," Article vol. 6, p. 

10008, 12/07/online 2015. 

[63] R. Zilionis et al., "Single-cell barcoding and sequencing using droplet 

microfluidics," Nature Protocols, vol. 12, no. 1, pp. 44-73, 2017. 

[64] A. Huebner et al., "Quantitative detection of protein expression in single 

cells using droplet microfluidics," Chemical Communications, 

10.1039/B618570C no. 12, pp. 1218-1220, 2007. 

[65] M. S. Silverstein, "PolyHIPEs: Recent advances in emulsion-templated 

porous polymers," Progress in Polymer Science, vol. 39, no. 1, pp. 199-

234, 1// 2014. 



 
44 

[66] Y. Li et al., "Cellulose Sponge Supported Palladium Nanoparticles as 

Recyclable Cross-Coupling Catalysts," ACS Applied Materials & 

Interfaces, vol. 9, no. 20, pp. 17155-17162, 2017/05/24 2017. 

[67] H. Zhang et al., "Piezoresistive Sensor with High Elasticity Based on 3D 

Hybrid Network of Sponge@CNTs@Ag NPs," ACS Applied Materials 

& Interfaces, vol. 8, no. 34, pp. 22374-22381, 2016/08/31 2016. 

[68] Y.-h. Wu et al., "Channel Crack-Designed Gold@PU Sponge for Highly 

Elastic Piezoresistive Sensor with Excellent Detectability," ACS Applied 

Materials & Interfaces, vol. 9, no. 23, pp. 20098-20105, 2017/06/14 

2017. 

[69] L. Xu et al., "Breathing Demulsification: A Three-Dimensional (3D) 

Free-Standing Superhydrophilic Sponge," ACS Applied Materials & 

Interfaces, vol. 7, no. 40, pp. 22264-22271, 2015/10/14 2015. 

[70] X.-c. Chen et al., "Self-Healing Spongy Coating for Drug “Cocktail” 

Delivery," ACS Applied Materials & Interfaces, vol. 8, no. 7, pp. 4309-

4313, 2016/02/24 2016. 

[71] M. C. Ford et al., "A macroporous hydrogel for the coculture of neural 

progenitor and endothelial cells to form functional vascular networks 

invivo," Proceedings of the National Academy of Sciences of the United 

States of America, vol. 103, no. 8, pp. 2512-2517, February 21, 2006 

2006. 

[72] C. Ji, N. Annabi, A. Khademhosseini, and F. Dehghani, "Fabrication of 

porous chitosan scaffolds for soft tissue engineering using dense gas 

CO2," Acta Biomaterialia, vol. 7, no. 4, pp. 1653-1664, 2011/04/01/ 

2011. 

[73] N. Kobayashi, H. Miyaji, T. Sugaya, and M. Kawanami, "Bone 

Augmentation by Implantation of an FGF2-loaded Collagen Gel-sponge 

Composite Scaffold," Journal of Oral Tissue Engineering, vol. 8, no. 2, 

pp. 91-101, 2010. 



 
45 

[74] X. Yang, L. Tan, L. Xia, C. D. Wood, and B. Tan, "Hierarchical Porous 

Polystyrene Monoliths from PolyHIPE," Macromolecular Rapid 

Communications, vol. 36, no. 17, pp. 1553-1558, 2015. 

[75] Q. Wang, Y. Liu, J. Chen, Z. Du, and J. Mi, "Control of Uniform and 

Interconnected Macroporous Structure in PolyHIPE for Enhanced CO2 

Adsorption/Desorption Kinetics," Environmental Science & Technology, 

vol. 50, no. 14, pp. 7879-7888, 2016/07/19 2016. 

[76] M. Alikhani and M. R. Moghbeli, "Ion-exchange polyHIPE type 

membrane for removing nitrate ions: Preparation, characterization, 

kinetics and adsorption studies," Chemical Engineering Journal, vol. 

239, no. Supplement C, pp. 93-104, 2014/03/01/ 2014. 

[77] S. Huš, M. Kolar, and P. Krajnc, "Separation of heavy metals from water 

by functionalized glycidyl methacrylate poly (high internal phase 

emulsions)," Journal of Chromatography A, vol. 1437, no. Supplement 

C, pp. 168-175, 2016/03/11/ 2016. 

[78] E. Yüce et al., "Photocatalytic Activity of Titania/Polydicyclopentadiene 

PolyHIPE Composites," Macromolecular Materials and Engineering, 

vol. 302, no. 10, pp. 1700091-n/a, 2017, Art. no. 1700091. 

[79] C. Zhao, E. Danish, N. R. Cameron, and R. Kataky, "Emulsion-templated 

porous materials (PolyHIPEs) for selective ion and molecular recognition 

and transport: applications in electrochemical sensing," Journal of 

Materials Chemistry, 10.1039/B700929A vol. 17, no. 23, pp. 2446-2453, 

2007. 

[80] U. M. Patil et al., "PolyHIPE Derived Freestanding 3D Carbon Foam for 

Cobalt Hydroxide Nanorods Based High Performance Supercapacitor," 

Article vol. 6, p. 35490, 10/20/online 2016. 

[81] E. Erhan, E. Yer, G. Akay, B. Keskinler, and D. Keskinler, "Phenol 

degradation in a fixed-bed bioreactor using micro-cellular polymer-

immobilized Pseudomonas syringae," Journal of Chemical Technology 

& Biotechnology, vol. 79, no. 2, pp. 195-206, 2004. 



 
46 

[82] R. Moglia, M. Whitely, M. Brooks, J. Robinson, M. Pishko, and E. 

Cosgriff-Hernandez, "Solvent-Free Fabrication of polyHIPE 

Microspheres for Controlled Release of Growth Factors," 

Macromolecular Rapid Communications, vol. 35, no. 14, pp. 1301-1305, 

2014. 

[83] M. Costantini et al., "Highly ordered and tunable polyHIPEs by using 

microfluidics," Journal of Materials Chemistry B, 

10.1039/C3TB21227K vol. 2, no. 16, pp. 2290-2300, 2014. 

[84] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, "The present and future 

role of microfluidics in biomedical research," Nature, Review vol. 507, 

no. 7491, pp. 181-189, 03/13/print 2014. 

[85] W. Yang, Y. G. Nam, B.-K. Lee, K. Han, T. H. Kwon, and D. S. Kim, 

"Fabrication of a Hydrophilic Poly (dimethylsiloxane) Microporous 

Structure and Its Application to Portable Microfluidic Pump," Japanese 

Journal of Applied Physics, vol. 49, no. 6S, p. 06GM01, 2010. 

[86] K. J. Cha and D. S. Kim, "A portable pressure pump for microfluidic lab-

on-a-chip systems using a porous polydimethylsiloxane (PDMS) 

sponge," Biomedical Microdevices, journal article vol. 13, no. 5, p. 877, 

June 23 2011. 

[87] S.-J. Choi et al., "A Polydimethylsiloxane (PDMS) Sponge for the 

Selective Absorption of Oil from Water," ACS Applied Materials & 

Interfaces, vol. 3, no. 12, pp. 4552-4556, 2011/12/28 2011. 

[88] X. Zhao, L. Li, B. Li, J. Zhang, and A. Wang, "Durable 

superhydrophobic/superoleophilic PDMS sponges and their applications 

in selective oil absorption and in plugging oil leakages," Journal of 

Materials Chemistry A, vol. 2, no. 43, pp. 18281-18287, 2014. 

[89] D. N. H. Tran, S. Kabiri, T. R. Sim, and D. Losic, "Selective adsorption 

of oil-water mixtures using polydimethylsiloxane (PDMS)-graphene 

sponges," Environmental Science: Water Research & Technology, 

10.1039/C5EW00035A vol. 1, no. 3, pp. 298-305, 2015. 



 
47 

[90] A. Zhang, M. Chen, C. Du, H. Guo, H. Bai, and L. Li, 

"Poly(dimethylsiloxane) Oil Absorbent with a Three-Dimensionally 

Interconnected Porous Structure and Swellable Skeleton," ACS Applied 

Materials & Interfaces, vol. 5, no. 20, pp. 10201-10206, 2013/10/23 

2013. 

[91] C.-F. Wang and S.-J. Lin, "Robust Superhydrophobic/Superoleophilic 

Sponge for Effective Continuous Absorption and Expulsion of Oil 

Pollutants from Water," ACS Applied Materials & Interfaces, vol. 5, no. 

18, pp. 8861-8864, 2013/09/25 2013. 

[92] A. A. Chavan et al., "Elastomeric Nanocomposite Foams for the Removal 

of Heavy Metal Ions from Water," ACS Applied Materials & Interfaces, 

vol. 7, no. 27, pp. 14778-14784, 2015/07/15 2015. 

[93] J.-W. Han, B. Kim, J. Li, and M. Meyyappan, "Flexible, compressible, 

hydrophobic, floatable, and conductive carbon nanotube-polymer 

sponge," Applied Physics Letters, vol. 102, no. 5, p. 051903, 2013. 

[94] W. Liu et al., "3D Porous Sponge-Inspired Electrode for Stretchable 

Lithium-Ion Batteries," Advanced Materials, vol. 28, no. 18, pp. 3578-

3583, 2016. 

[95] S. Liang et al., "3D Stretchable, Compressible, and Highly Conductive 

Metal-Coated Polydimethylsiloxane Sponges," Advanced Materials 

Technologies, vol. 1, no. 7, pp. 1600117-n/a, 2016, Art. no. 1600117. 

[96] S. Liang et al., "Liquid metal sponges for mechanically durable, all-soft, 

electrical conductors," Journal of Materials Chemistry C, vol. 5, no. 7, 

pp. 1586-1590, 2017. 

[97] K. Jiao, C. L. Graham, J. Wolff, R. G. Iyer, and P. Kohli, "Modulating 

molecular and nanoparticle transport in flexible polydimethylsiloxane 

membranes," Journal of membrane science, vol. 401-402, pp. 25-32, 

2012. 

[98] K. Zimny, A. Merlin, A. Ba, C. Aristégui, T. Brunet, and O. Mondain-

Monval, "Soft Porous Silicone Rubbers as Key Elements for the 



 
48 

Realization of Acoustic Metamaterials," Langmuir, vol. 31, no. 10, pp. 

3215-3221, 2015/03/17 2015. 

[99] J. Li and Y. Zhang, "Porous Polymer Films with Size-Tunable Surface 

Pores," Chemistry of Materials, vol. 19, no. 10, pp. 2581-2584, 

2007/05/01 2007. 

[100] Q. Li et al., "Engineering of carbon nanotube/polydimethylsiloxane 

nanocomposites with enhanced sensitivity for wearable motion sensors," 

Journal of Materials Chemistry C, 10.1039/C7TC03434B 2017. 

[101] S. Hong et al., "Magnetoactive sponges for dynamic control of 

microfluidic flow patterns in microphysiological systems," Lab on a 

Chip, 10.1039/C3LC51076J vol. 14, no. 3, pp. 514-521, 2014. 

  



 
49 

CHAPTER 2: Porous PDMS structures for the storage and 

release of aqueous solutions into fluidic environments 

2.1 Abstract 

Typical microfluidic systems take advantage of multiple storage reservoirs, 

pumps and valves for the storage, driving and release of buffers and other 

reagents. However, the fabrication, integration, and operation of such 

components can be difficult. In particular, the reliance of such components on 

external off-chip equipment limits their utility for creating self-sufficient, stand-

alone microfluidic systems. This chapter demonstrates a porous sponge made of 

polydimethylsiloxane (PDMS), which is fabricated by templating micro-scale 

water droplets using a T-junction microfluidic structure. High-resolution 

microscopy reveals that this sponge contains a network of pores, interconnected 

by small holes. This unique structure enables the sponge to passively release 

stored solutions very slowly. Proof-of-concept experiments demonstrate that the 

sponge can be used for the passive release of stored solutions into narrow 

channels and circular well plates, with the latter used for inducing intracellular 

calcium signaling of immobilised endothelial cells. The release rate of stored 

solutions can be controlled by varying the size of interconnecting holes, which 

can be easily achieved by changing the flow rate of the water injected into the T-

junction. The active release of stored liquids into a fluidic channel upon the 

manual compression of the sponge is also demonstrated. The developed PDMS 

sponge can be easily integrated into complex micro/macro fluidic systems and 

prepared with a wide array of reagents, representing a new building block for 

self-sufficient microfluidic systems.  
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2.2 Introduction 

Microfluidic systems are generally equipped with multiple reservoirs for storing 

buffers, reagents and drugs. These reservoirs are interconnected to the main 

channel via narrow channels, which can be opened and closed on-demand using 

micro-valves. The flow through the main channel is provided by means of a 

pumping mechanism. While various active mechanisms can be used to actuate 

the valves and pumps [1, 2, 20], the reliance of active mechanisms on off-chip 

equipment might limit the effectiveness of the entire microfluidic system to 

research laboratories. A logical way to address this limitation is to use passive or 

hand-operated (manual) mechanisms for driving and control of flow through the 

microfluidic system, which can be fabricated, integrated, replaced and operated 

with minimum complexities, leading to self-sufficient microfluidic systems [3]. 

Interconnected porous structures enabling the storage and release of liquids into 

the surrounding fluidic environment hold a great promise for realising such self-

contained microfluidic systems [4, 5].  

Polydimethylsiloxane (PDMS) is a silicon elastomer, which is widely used for 

the fabrication of microfluidic structures [6]. PDMS is generally biocompatible, 

transparent, flexible, and chemically stable. While PDMS is a gas permeable 

material [7] it is not porous to liquids. Highly porous PDMS sponges have been 

created by templating and the subsequent removal of self-assembled colloidal 

micro/nano particles [8], gas foaming [9], and sugar cubes [10]. Other crystal 

structured materials such as salt [11], citric acid monohydrate [12], and ice [13] 

have also been used as a template for making porous PDMS sponges. Among 

these methods, sugar templating has become very popular due to its simplicity 

and accessibility. Sugar templated PDMS sponges have been used for selective 
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adsorption of oil from water [10, 14-16] or adsorption of water for filtering heavy 

metal ions [14]. Incorporation of conductive materials such as carbon nanotubes 

[17], metals [18, 19] and liquid metals [20] into the sugar templated porous 

sponges has been also used for making flexible electrical components and 

circuits. More interestingly, sugar templated porous sponges have been utilised 

for the active release of stored solutions upon manual compression [4, 21], 

enabling a portable pressure pump suitable for self-contained microfluidic 

systems. However, the utility of sugar templated sponges for the passive release 

of liquids has not been investigated in these works. 

Alternatively, templating of high internal phase emulsions (HIPEs) has been 

demonstrated as a route for generating highly porous polymers, known as 

polyHIPEs [22]. Such emulsions are made by dispersing droplets (internal phase) 

into a polymer solution (external phase). Polymerisation of external phase and 

the subsequent removal of the internal phase droplets lead to the formation of a 

highly porous structure with interconnected pores [22], in which the pore size 

can vary from sub-microns to hundreds of microns [23, 24]. PolyHIPE sponges 

have been utilised for selective adsorption of liquids [25] and gasses [26], 

separation of ions [27] and heavy metals [28], chemical sensing [29], energy 

storage [30] as well as chemical and biochemical reactions [31, 32]. Using 

microfluidic droplet generation systems, uniformly sized droplets can be 

continuously generated within a carrier fluid (e.g. water droplets in styrene) [33, 

34]. The collection of droplets and carrier fluid inside a chamber leads to 

formation of an emulsion of droplets in carrier fluid. The polymerisation of 

carrier fluid (external phase) and the subsequent extraction of the liquid 

encapsulated within the droplets (internal phase) results in the formation of a 
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highly ordered polyHIPE. This technique, also known as microfluidic foaming, 

has been used for making highly porous sponges made of polymers such as 

dextran-methacrylate [35], alginate [36] and polystyrene [37]. However, the 

utility of microfluidic foaming for making highly porous PDMS sponges has not 

been investigated in these works. More importantly, the utility of these sponges 

for the storage and passive release of liquids have not been studied. 

This chapter presents a porous PDMS sponge for the storage and passive release 

of aqueous solutions into the surrounding liquid environment. The sponge is 

fabricated by continuous generation of micro-scale water droplets in uncured 

PDMS using a microfluidic droplet generation system. The PDMS was 

supplemented with hydroxy group terminations to avoid the coalescence of water 

droplets. The polymerisation of PDMS and evaporation of water leads to 

formation of a porous PDMS sponge. High-resolution microscopy indicates that 

the pores of the sponge are only interconnected via small holes. This unique 

structure enables the sponge to passively release the stored solutions at a 

controllable rate, which is governed by the size of the interconnecting holes. 

Proof-of-concept experiments demonstrate the capability of this PDMS sponge 

for the passive release of aqueous solutions into narrow channels and circular 

well plates. The latter is used to induce intracellular calcium signalling of 

endothelial cells upon the release of chemicals. Furthermore, the active release 

of dye solution into a microfluidic system upon manual compression was 

demonstrated. The PDMS sponge can be easily integrated within more complex 

micro/macro fluidic systems, and thus represents a new building block for PDMS 

lab-on-a-chip systems.  
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2.3 Materials and Methods 

2.3.1 Fabrication process of the PDMS sponge 

In order to fabricate a porous PDMS sponge, a microfluidic droplet generation 

system (Figure 2.1a), as briefly described here was utilised. The droplet 

generation system consists of a T-junction with cross-sectional dimensions of 

300 µm × 300 µm (Figure 2.1b) imprinted into PDMS (Sylgard® 184, 10:1 w/w 

base to curing agent) using soft lithography techniques. The PDMS structure was 

then peeled off the master, trimmed to size, and punched with 600 µm diameter 

ports for liquid interfacing. The PDMS structure was then plasma bonded to a 

glass microscope slide. 

Similar to other microfluidic droplet generation systems, this system relies on a 

discrete liquid to make droplets along with a carrier liquid to pinch off the 

discrete liquid into small droplets. The discrete liquid was prepared by mixing 

deionized water with a non-ionic surfactant (Polysorbate 20, Sigma-Aldrich) 

with a volumetric ratio of 19:1. A small amount of blue dye was then added for 

producing visual contrast of droplets. The carrier liquid was made of PDMS 

composite, composed of PDMS base, PDMS curing agent, and monohydroxy 

terminated PDMS with a molar weight of 4670 (all from Sigma-Aldrich) with a 

weight ratio of 15:2:5 respectively, and mixed manually for 5 minutes. The 

PDMS composite was allowed to degas for 30 minutes at room temperature to 

remove air bubbles introduced by mixing.  

A pair of 2 ml syringes (Braun, Germany) were then filled with discrete and 

carrier liquids and connected to the microfluidic droplet generation system via 

stainless steel liquid interfaces (21.5 gauge hypodermic needles) and Tygon® 
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tubing (inner diameter = 0.51 mm). The carrier liquid was applied into the main 

channel at 20 µl/min while the discrete liquid was applied into the narrow 

channel at 4 µl/min using two syringe pumps (Harvard Pico Plus). The produced 

water droplets have a diameter of ~300 µm. 

The water droplets and the carrying PDMS composite were discharged from the 

droplet generation system via Tygon® tubing (Figure 2.1c) to be collected in a 

collection chamber made of poly(methyl methacrylate) (Figure 2.1d). It should 

be noted that while droplets can be generated using standard PDMS, the produced 

droplets will coalesce shortly after leaving the T-junction. In contrast, the 

monohydroxy terminated PDMS, used here has ionic charged hydroxy (OH) 

group terminations, which migrate to the water/PDMS interface forming a 

negatively charged barrier protecting against droplet coalescence [38-41].  

The PDMS composite was then allowed to cure at room temperature for 48 hours. 

It should be noted that the sample should be cured in a high humidity 

environment to reduce the effects of water evaporation from the droplets and 

subsequent shrinkage of the pores. To maintain humidity, the sample was cured 

in a sealed plastic container that was partially filled with water. During the curing 

process, the droplets were dispersed randomly within the surrounding PDMS 

composite (Figure 2.1e-f). The droplets rose during the curing process and 

accumulated at the top free surface of PDMS composite (Figure 2.1g), forming 

a dense network of droplets. The sponge was then squeezed manually to eject the 

water droplets trapped within the cured sponge, and allowed to dry in the room 

temperature for 60 minutes. This left a porous PDMS sponge with a dense 

network of air voids (Figure 2.1h).  
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Figure 2.1: Continuous generation of water droplets for the fabrication of porous 

PDMS structures. a) Illustration of the microfluidic droplet generation system. 

b) Microscope image of formation of water droplets within modified PDMS 

carrier fluid using a microfluidic T-junction with arrows representing flow 

direction. c) Microscope image of continuous flow of water droplets in PDMS 

through Tygon® tubing. d) Microscope image of collection of water droplets in 

PDMS in the curing reservoir. e) A rendering of a section of sponge after curing 

and drying. f) Random arrangement of the droplets within the PDMS. g) 

Illustration of droplet accumulation during the curing process. h) Illustration of 

dried sponge after curing and cleaning. Scale bars are 300 µm.  
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2.3.2 Characterisation of the PDMS sponge 

To characterise the PDMS sponge, a section of the sponge with a diameter of 6 

mm and a height of 8 mm was isolated using a biopsy punch (Harris Uni-core, 

Sigma-Aldrich). It was hypothesised that the pores within the PDMS sponge 

were interconnected. To validate this hypothesis, a simple experiment was 

conducted. The PDMS sponge was loaded with food dye. In doing so, the sponge 

was placed in a glass container filled with blue food dye. The sponge was 

squeezed using a plastic spatula to approximately 50% of its height for 3-5 times. 

This enabled the sponge pores to be saturated with the dye within 30 seconds 

(Figure 2.2a). To examine if the stored dye can be released the sponge was 

placed on absorbent paper and squeezed using the same plastic spatula to 

approximately 50% of its height. This caused the dye to be released from the 

sponge and absorbed by the paper (Figure 2.2b). Owing to its elasticity, once the 

plastic spatula was removed the sponge returns to its original shape (Figure 

2.2c). The sponge could be repeatedly squeezed to release the remaining dye. 

Experiments indicated that the process of loading and unloading of the sponge 

can be repeated without changing the elastic or releasing characteristics of the 

sponge.  
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Figure 2.2: Qualitative characterisation of PDMS porous sponge, confirming 

that the pores are interconnected. a) PDMS sponge loaded with blue dye. b) The 

stored dye is then released via elastic compression of the sponge, and c) The 

sponge returns to its original shape. Scale bar is 6 mm. 
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The volume of the pores was calculated by comparing the weight of wet (water-

loaded) and dry sponges, as follows: 𝑉𝑝𝑜𝑟𝑒𝑠 =
𝑚𝑤𝑒𝑡 − 𝑚𝑑𝑟𝑦

𝜌𝑤𝑎𝑡𝑒𝑟
, and the porosity of 

sponge as follows: 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑠𝑝𝑜𝑛𝑔𝑒
. Using this method, the porosity of the 

sponge was obtained as  64.1%. 

The porous structure of the sponge was analysed using scanning electron 

microscopy (SEM). In doing so, the sponge was coated with a 20 nm layer of 

gold and analysed using a FEI Quanta ESEM, equipped with a back-scattered 

secondary electron Everhart-Thornley detector. The SEM images were taken in 

high-voltage, high-vacuum mode (Figure 2.3). Measurements based on 15 pores 

indicated the pores have a diameter of  

Dpore = 356 ± 74 µm (average ± standard deviation). More importantly, SEM 

imaging confirms that the pores within the PDMS sponge are interconnected 

through smaller holes. Measurements based on 36 interconnecting holes 

indicated that these holes have a diameter of dhole = 23.5 ± 11.2 µm.  

It is hypothesised that the small holes that interconnect the larger pores are 

formed when the cured sponge is squeezed for the first time. This causes the very 

thin walls between the droplet-templated pores to collapse, forming the smaller 

interconnects. 
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Figure 2.3: Quantitative characterisation of PDMS porous sponge. SEM images 

confirm the interconnection of pores with small holes, shown at different 

magnifications of a) 100×. b) 367×. and c) 1342×. 
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Characterisation of the porous structure of a sugar templated sponge fabricated 

as introduced in [4]. SEM imaging showed that the sugar template sponges have 

a pore size of Dpore = 410 ± 85 µm (Figure 2.4), which is similar to the values 

that were obtained for the droplet templated sponge. However, unlike the droplet 

templated sponge that consists of an array of isolated pores interconnected by 

small holes, the sugar template sponge consists of an open network of pores 

(similar to hydrogel scaffolds used for tissue engineering applications [42-44]).  

 

Figure 2.4: SEM imaging of a sugar templated PDMS sponge, shown at various 

magnifications of a) 45×, b) 100×, and c) 250×.  
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2.3.3 Cell culture, live cell imaging of intracellular calcium and data analysis 

Human Umbilical Vein Endothelial Cells (HUVECs) were grown in EGMTM-2 

media supplemented with SingleQuots kit (Lonza, Walkersville, USA) 

according to the supplier instruction. HUVECs were seeded at the density of 

1,000,000 cells per well onto a 6-well plate, and cultured for 24 hours. Cells were 

then washed with HBSS (Hank's Balanced Salt Solution) buffer at 37 °C, and 

loaded with the calcium sensitive dye, Fluo4-AM ester (2 µM) to quantify their 

intracellular calcium signalling ([Ca2+]i) following stimulation with Ca2+ 

ionophore ionomycin (Sigma-Aldrich). Following loading with Fluo4-AM, the 

cells were kept at 37°C and 5% CO2 in the dark for 30 min, before being washed 

twice with HBSS buffer. 

The loaded cells were excited with a 488 nm laser using the Nikon A1 laser 

scanning confocal microscope (Nikon Instruments Inc., Melville, USA). 

Changes in the fluorescent intensity of individual cells were measured using NIS-

Elements software. Details of calcium imaging and image analysis are reported 

elsewhere [45, 46]. Data are shown as mean ± standard deviation of at least three 

independent experiments, and at least 20 cells have been analysed in each 

experiment.  
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2.4 Results and Discussions 

2.4.1 Passive release of stored liquids 

Having shown that the interconnected porous structure of the PDMS sponge 

enables the sponge to be manually loaded with liquid solutions, as presented in 

Figure 2.2, the utility of these features were further explored for practical 

applications. As a first step, it was hypothesised that the sponge could be used 

for the passive release of stored liquids into the surrounding liquid.  

A simple proof-of-concept experiment was conducted, as briefly explained here. 

The experimental setup consisted of a straight channel (Length × Width × Height 

= 24 mm × 2 mm × 9 mm) cut into a poly-methyl methacrylate (PMMA) slab 

with two 6 mm wells at each end of the channel. The channel was prefilled with 

water to a depth of 2 mm. A PDMS sponge (Diameter × Height = 6 mm × 8 mm) 

preloaded with ~145 µl of red food dye was then placed into one of the wells 

(Figure 2.5a). The colour change of the water along the channel following the 

release of dye was recorded using a Canon 6D camera equipped with a 100 mm 

macro lens, over a period of 20 min (Figure 2.5b + Movie 2.1 (Clickable online 

video)). Under these conditions, the amount of time required for the red dye to 

cross the 24 mm long channel is obtained as 12.5  ±  0.7 min (average ± standard 

deviation, based on 15 independent experiments), which is referred to as 

‘crossing time’ in the manuscript (Figure 2.5c), based on which the average 

velocity of dye progression is calculated as 31.5 ± 3.6 µm/s. Analysis of the 

intensity of the red colour at multiple segments along the channel with 2.25 mm 

gap in between using ImageJ software (Figure 2.5c-inset).  

https://youtu.be/_bez4xCKt8M
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Figure 2.5: Passive release of stored food dye within the PDMS sponge into a 

narrow channel prefilled with water over a 20 minute period. a) Experimental 

setup. b) Gradual colour change within the channel captured over 20 minutes, 

and c) Normalised intensity of red food dye at sampling lines i to ix which are 

2.25 mm apart. Scale bar is 2 mm.  
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To further analyse the release characteristics of the sponge, Various volumes of 

red dye ranging from 145 to 1.45 µl was directly pipetted into the well and 

monitored the release of red dye through the channel (Figure 2.6 + Movie 2.2). 

The amount of time required for the red dye to advance along the channel was 

obtained as 0.05, 1.87, 2.97, 6.03, 7.37 and 9.33 min when pipetting 145, 14.5, 

7.2, 3.6, 1.8 and 1.45 µl of red dye into the channel inlet well, respectively. This 

clearly demonstrated that the diffusive velocity of the dye through the channel 

reduces by reducing the volume (concentration) of the dye. Despite this, even 

after reducing the volume of pipetted red dye to 1.45 µl the progression velocity 

of the red was ~25% faster compared to the porous PDMS sponge prefilled with 

145 µl of dye. This suggests that the sponge enables the slow release of stored 

liquids.  

  

https://youtu.be/oruCCOJCt5c
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Figure 2.6: Comparing the velocity of red dye released into the channel when 

red dye pipetted directly into the channel and when loaded into the sponge. a) 

various volumes of directly pipetted dye injected into a straight channel. b) 

Average progression of dye though the channel. Snapshot image extracted from 

Movie 2.2 (Clickable online video). 

  

https://youtu.be/oruCCOJCt5c
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The passive release characteristics of droplet and sugar [4] templated sponges 

(Figure 2.7 + Movie 2.3) was also compared. Under similar conditions, the dye 

released from the sugar templated sponge filled the channel in 3 ± 0.12 min 

(based on 15 independent experiments using 3 different sponges), which is ~4.1 

times faster than the droplet templated sponge. This was further illustrated by 

comparing the release characteristics of droplet and sugar templated sponges 

placed at the opposite wells of the channel (Figure 2.8 + Movie 2.4). The slower 

release characteristics of the droplet templated sponge can be attributed to the 

small interconnecting holes between the pores (Figure 2.3), which restricts the 

diffusion of stored dye through the sponge, as compared to the open network of 

pores in the sugar template sponge (Figure 2.4). 

  

https://youtu.be/X9ApyYSsMds
https://youtu.be/WkfabNizjLc
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Figure 2.7: Comparison of the passive release of stored food dye into a narrow 

channel using: a) Reference droplet sponge. b) Sugar templated PDMS sponges. 

c) Shows the progress of the red food dye though the narrow channel over time. 

Snapshot images are extracted from Movie 2.3 (Clickable online video). 

  

https://youtu.be/X9ApyYSsMds
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Figure 2.8: Comparison of the passive release of stored food dye into a narrow 

channel using: (left) Sugar and (right) Droplet templated PDMS sponges placed 

at the opposite wells of a 22 mm channel. a) 0 min. b) 1 min. c) 2 min. Snapshot 

images are extracted from Movie 2.4 (Clickable online video). 

  

https://youtu.be/WkfabNizjLc
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To examine whether the droplet template PDMS sponge can be passively loaded 

with solutions, a wet (water-saturated) and dry sponge was inserted onto a 

channel prefilled with red dye solution. These experiments showed the passive 

penetration of dye into the wet sponge, whereas the dye did not penetrate into the 

dry sponge even after 18 hours (Figure 2.9). This can be attributed to the surface 

tension at the interface of the dry pores and the dye solution, which limits the 

diffusive penetration of dye into the pores. The passive loading of the wet PDMS 

sponge enables loading multiple liquid solutions onto a single sponge (Figure 

2.10), and more interestingly allows for the passive mixing of multiple liquids 

(Figure 2.11). 
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Figure 2.9: Left column: A wet sponge (prefilled with water) can be passively 

loaded with red food dye. Right column: In contrast, a dry sponge is not loaded 

with red dye. a) Sponges in a straight channel. b) Sponges removed from the 

channel after 18 hours. 

  



 
71 

 

Figure 2.10: Passive loading of multiple liquid solutions, demonstrated by 

loading blue, red and green dyes into the droplet templated PDMS sponge over 

a period of 60 minutes. a) 1 min. b) 20 min. c) 40 min. d) 60 min.  
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Figure 2.11: Passive loading and mixing of multiple liquid solutions, 

demonstrated by loading blue and red dyes into the droplet templated PDMS 

sponge followed by the passive release of mixed dye from the outlet channel over 

a period of 150 minutes. a) 2 min. b) 60 min. c) 120 min. d) 150 min.  



 
73 

In addition, a control experiment was conducted to examine whether the 

adsorption of dye into the wet sponge is due to the terminal hydroxyl groups or 

the pores. In doing so, three PDMS structures, including an ordinary PDMS, an 

OH terminated PDMS, and a droplet templated PDMS sponge were placed into 

a 35 mm Petri dish, which was prefilled with red dye solution. Time lapse 

imaging indicated that only the droplet templated sponge absorbed the dye. 

Extended experiments up to 24 hours led to similar results (Figure 2.12). 

This experiment clearly shows that the porous PDMS sponge can be used for the 

storage and passive release of liquids into fluidic systems. These results show 

that a controlled diffusion profile can be seen in a narrow channel. The sponges 

are durable and can be washed, dried and subsequently reused. It is also possible 

to load the sponges mechanically or passively via diffusion.   
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Figure 2.12: Comparison of adsorption of dye into cylindrical structures made 

of ordinary PDMS, OH terminated PDMS, and the droplet templated sponge, 

shown: a) 1 minute. b) 2 hours. c-d) 24 hours after placing into a 35 mm Petri 

dish. 
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2.4.2 Characterisation of the release rate of droplet templated PDMS 

sponges 

Additional experiments were conducted to study how the size of interconnecting 

holes influences the diffusion rate of the droplet templated porous sponges. 

Extensive SEM characterisation indicated that the average diameter of the 

interconnecting holes is proportional to the average diameter of the pores (Figure 

2.13), which can be expressed as �̅�ℎ𝑜𝑙𝑒 ∝  0.0474 �̅�𝑝𝑜𝑟𝑒. This creates 

opportunities to vary the diameter of interconnecting holes, as described below.  

 

 

Figure 2.13: Variations of the average diameter of interconnecting holes versus 

the average diameter of pores, obtained from SEM imaging of droplet templated 

PDMS sponges.  
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In a T-junction, the length of the discrete phase slug is proportional to the ratio 

of discrete to carrier flow rates, which can be expressed as Ldiscrete / Wdiscrete = 1 + 

α Qdiscrete / Qcarrier (in which Ldiscrete is the length of discrete phase slug, Wdiscrete is 

the width of the discrete phase inlet channel at the T-junction while Qdiscrete and 

Qcarrier are the flow rates of the discrete and carrier liquids), as comprehensively 

discussed in [47]. Therefore, by varying the ratio of water to PDMS flow rates 

(Qwater / QPDMS), the length of water slugs was varied and consequently the 

diameter of the pores and holes. Using this strategy, porous sponges with larger 

pores (Dpore= 497.3 ± 94.7 µm, dhole = 29.6 ± 13.9 µm) were fabricated as well 

as smaller pores (Dpore = 267.9 ± 55.1 µm, dhole = 19.1 ± 9.2 µm) in comparison 

to the reference sponge discussed previously, as presented in Figure 2.14.  
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Figure 2.14: SEM imaging of droplet templated PDMS sponges shown at 200× 

with different pore sizes. a) Small pores, the pore size is measured as 267.9 ± 

59.1 µm (average ± standard deviation) and interconnecting holes as 19.1 ± 9.2 

µm. b) Large pores, the pore size is measured as 497.3 ± 94.7 µm and 

interconnecting holes as 29.6 ± 13.9 µm.  
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Next, the release characteristics of these two sponges were analysed in a 24 mm 

long channel, as presented in Movie 2.5 + Figure 2.15. The slope of these curves, 

which correspond to the velocity of diffused dye, is proportional to the diameter 

of interconnecting holes (Figure 2.16a). Using these curves, the amount of time 

required for the released dye to reach the end of the channel (crossing time) was 

measured as 8.23 ± 0.4 and 19.85 ± 1.1 minutes for the sponges with the larger 

and smaller holes, respectively. Figure 2.16b presents the variations of crossing 

time with respect to the diameter of interconnecting holes, which can be 

expressed as crossing time ∝  �̅�ℎ𝑜𝑙𝑒
 −2.07.  

Theoretically, the diffusion rate of dye through the sponge can be defined as 

J𝑑𝑦𝑒 =  
𝐷∆𝑐

∑(𝐴/𝑡)ℎ𝑜𝑙𝑒𝑠
, in which D is the diffusion coefficient of dye in water, c is the 

concentration of dye, while Ahole and thole are the cross sectional area and the 

thickness of interconnecting holes, respectively [48]. 𝐴ℎ𝑜𝑙𝑒 ∝ �̅�ℎ𝑜𝑙𝑒
 2  and 

therefore, this equation can be simplified as J𝑑𝑦𝑒 ∝ �̅�ℎ𝑜𝑙𝑒
 2 , based on which 

𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ∝ �̅�ℎ𝑜𝑙𝑒
 −2 . Experimental analysis suggests crossing time ∝

 �̅�ℎ𝑜𝑙𝑒
 −2.07, which matches well with theory.   

https://youtu.be/7jtH_WsvDNE
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Figure 2.15: Qualitative comparison of the passive release of stored food dye 

into a 24 mm channel using sugar sponge, droplet sponge with large pores, 

droplet sponge with reference pores, and droplet sponge with small pores. a) 3 

min. b) 8 min. c) 19 min. Snapshot images are extracted from Movie 2.5 

(Clickable online video).  

https://youtu.be/7jtH_WsvDNE
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Figure 2.16: Quantitative analysis of the passive release of stored dye with 

respect to the average diameter of interconnecting holes. a) Dye progress along 

the 24 mm channel using droplet sponges with large, reference and small pores 

and a sugar sponge, extracted from Movie 2.5 (Clickable online video). b) 

Crossing time of various droplet sponges with respect to the average diameter of 

their interconnecting holes. 

  

https://youtu.be/7jtH_WsvDNE
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Furthermore, numerical simulations to study the effect of the size of the 

interconnecting holes on the release rate of the sponge was conducted. The 

simple model consisted of three pores interconnected by small holes (Figure 

2.17). The diameter of the pores was set to 350 µm while the size of 

interconnecting holes was varied as 15, 25 and 50 µm.  

Simulations are performed using ANSYS Fluent software by solving the 

differential equation governing the transport of species in liquid environments: 

𝜕𝑐

𝜕𝑡
= 𝐷 ∇2𝑐, in which c is the concentration, t is time, and D is the diffusion 

coefficient of dye in water. 

Simulations clearly indicate a faster diffusion rate for the sponge with larger 

holes (Figure 2.18), which is in line with experimental results. Extended 

simulations by setting the size of interconnecting holes to 25 µm but variable 

pore sizes of 300, 350 and 400 µm did not change the release rate of sponges 

significantly.  
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Figure 2.17: Geometry of the numerical model used for studying the effect of 

interconnecting hole dimensions on diffusion rate of stored liquids. Geometry 

consists of three interconnected pores (shown as pores 1 to 3 in the inset), which 

are connected to a longer channel, which represents the liquid filled container. In 

the simulation, the pore diameter, Dpore is set to 350 µm, whereas the width of 

the interconnecting holes, dinter-pore is varied as 15, 25, and 50 µm. Mesh 

generation is conducted using Gambit software.  
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Figure 2.18: Results of numerical simulations. a) Contours of mass fraction 

obtained by numerical simulations over 6 minutes, showing the diffusion rate of 

food dye through the channel for the model with Dpore= 350 µm and dinter-pore = 

25 µm. b) the diffusion rate of dye from sponges over 6 minutes with various 

dinter-pore of 15, 25 and 50 µm, obtained from numerical model. In all cases, Dpore= 

350 µm.  
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2.4.3 Passive release of chemicals to induce intracellular calcium signalling 

of endothelial cells 

The utility of the porous PDMS sponge for the storage and slow release of liquids 

into a narrow channel passively has been shown (Figures 2.5 and 2.16). To 

extend this and demonstrate the utility of the sponge in an experimental 

environment, It was hypothesised that the sponge could be utilised for the slow 

release of chemicals/drugs into a cell culture system. However, the majority of 

cell culture systems consist of circular structures such as Petri dishes or well 

plates rather than narrow channels. Therefore, the release of chemicals in a 6-

well plate (with a well diameter of 24 mm) was studied. In doing so, a reference 

droplet sponge was manually loaded with red dye, and inserted it close to the 

sidewalls of the well plate, which was prefilled with water up to the height of 2 

mm. The release of red dye was monitored over a period of 95 min, as 

demonstrated in the Movie 2.6. This experiment indicated the ordered 

progression of released dye up to the middle plane of the well plate followed by 

the more chaotic progression of released dye after passing the middle plane, 

caused by the converging cross section of the well plate.  

The passive release characteristics of the reference droplet and sugar [4] 

templated sponges was also compared in a 24 mm well. Under similar conditions, 

dye released from the sugar templated sponge filled the well in 12.5 ± 0.7 min 

(based on 12 independent experiments using 3 different sponges), which is ~7.6 

times faster than the droplet templated sponge (Figure 2.19 + Movie 2.7). The 

release characteristics of these two sponges was further compared by inserting 

them into the opposite sides of a 24 mm well (Figure 2.20 + Movie 2.8).  

 

https://youtu.be/O3tXAgLeFMs
https://youtu.be/vlHtSFfaQLc
https://youtu.be/4GCvc6gs7Tw
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Figure 2.19: Comparison of the passive release of stored food dye into a 24 mm 

well. a) Reference droplet templated PDMS sponge. b) Sugar templated PDMS 

sponge. c) Compares the area of the red food dye into the well plate over time. 

Snapshot images are extracted from Movie 2.6 (Clickable online video). 

  

https://youtu.be/O3tXAgLeFMs
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Figure 2.20: Comparison of the passive release of stored food dye into a 24 mm 

well using: (left) Sugar and (right) Droplet templated PDMS sponges, placed at 

the opposite sides of the well. The sponges were loaded with blue and red dyes 

for better visual comparison. a) 0 min b) 2 min. c) 4 min. d) 10 min. Snapshot 

images are extracted from Movie 2.8 (Clickable online video).  

https://youtu.be/4GCvc6gs7Tw
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Proof-of-concept experiments were conducted to assess the ability of the PDMS 

sponge for the chemical stimulation of cultured HUVEC endothelial cells, as 

detailed in Materials and Methods. The cells were loaded with calcium sensitive 

dye, Fluo-4AM, to quantify their intracellular calcium signalling ([Ca2+]i) 

following stimulation with ionomycin. The well plate was filled with cell culture 

medium up to a height of 2 mm. A PDMS sponge (Diameter × Height = 6 mm × 

8 mm) was manually loaded with 2 µg/ml ionomycin, and inserted close to the 

sidewall of the well plate (Figure 2.21a).  

Changes in the [Ca2+]i of cells in response to stimulation with ionomycin were 

measured using confocal microscopy. The response of cells was monitored 

across a square region close to the sponge (Figure 2.21b). The selected region 

was located before the middle plane of the well plate to ensure the ordered 

progression of released ionomycin. It had an area of 1.27 mm × 1.27 mm, 

accommodating more than 100 cells. Figure 2.21c-f show the changes in the 

fluorescent intensity of endothelial cells when exposed to 2 µg/ml ionomycin 

over a 10-minute period.  

Figure 2.21g presents the changes in the [Ca2+]i of 20 individual cells. The 

calcium response of cells increased until reaching a peak value, after which it 

remained almost constant. The slow release of ionomycin from the sponge led to 

the delayed response of cells depending on their location relative to the sponge. 

Based on 20 randomly selected cells, the maximum fold increase of [Ca2+]i in 

response to 2 µg/ml ionomycin was obtained as 4.2 ± 0.4 fold. Control negative 

group (without ionomycin) did not show any change in [Ca2+]i, confirming the 

selectivity and sensitivity of the proposed assay.  
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To quantify the velocity of released ionomycin, five cells (designated with i to v 

in Figure 2.21h) were selected, which were located along the radial axis of the 

well plate. Using these five cells, the velocity of released ionomycin was 

obtained as 3.96 µm/s (Movie 2.9).  

https://youtu.be/OztTRlLE0QI
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Figure 2.21: Passive release of 2 µg/ml ionomycin from the PDMS sponge into 

a 6-well plate to induce intracellular calcium signalling of endothelial cells. a) 

Experimental setup comprising of ionomycin-loaded sponge inserted into one of 

the wells which is pre-coated with endothelial cells and pre-filled with cell 

culture medium. b) Release pattern of ionomycin into the well visualised by 

using red food dye with the observational region shown as a dashed square. c-f) 

Intracellular calcium signalling of endothelial cells in response to the passive 

release of 2 µg/ml ionomycin over a 10 minute period. g) Normalised intensity 

profiles for 30 randomly selected cells. h) Normalised intensity profiles for five 

cells designated with i to iv in Figure 2.21c located radially with respect to the 

sponge with inset showing the response time of each cell. Scale bar is 200 µm.  
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The calcium response of cells when stimulated with 1 µg/ml ionomycin (Figure 

2.22 + Movie 2.10) was also investigated. The calcium response of cells 

increased until reaching a peak value, after which it reduced, which is expected 

at low concentrations of ionomycin [45, 49]. The maximum fold increase of 

[Ca2+]i reduced to 2.5 ± 0.4 fold. The velocity of ionomycin release reduced to 

2.26 µm/s compared to 3.96 µm/s obtained at a concentration of 2 µg/ml.  

This experiment showed the utility of a porous PDMS sponge for the passive 

release of stored chemicals/drugs into a cell culture system. The calcium 

signalling response of endothelial cells was investigated for two different 

concentrations of ionomycin. This system can also be used for investigation of 

the response of cells to various drugs such as apoptosis inducer drugs [50]. More 

complicated cellular assays can be designed by implementing several sponges, 

which can be loaded with desired reagents/buffers/drugs.  

  

https://youtu.be/bPiN8gmfq0k


 
91 

 

Figure 2.22: Passive release of 1 µg/ml ionomycin from the PDMS sponge into 

a 6-well plate to induce intracellular calcium signalling of endothelial cells. a-d) 

Intracellular calcium signalling of endothelial cells in response to the passive 

release of 1 µg/ml ionomycin over a 10 minute period. e) Normalised intensity 

profiles for 30 randomly selected cells. f) Normalised intensity profiles for five 

cells designated with i to iv in Figure 2.22a located radially with respect to the 

sponge. Scale bar is 600 µm.  
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2.4.4 Active release of stored liquids into a microfluidic channel  

The utility of the sponge for the active release of stored liquids into the 

surrounding environment is investigated in this section.  

The experimental setup consisted of a U-shaped fluidic channel (Width × Height 

= 2 mm × 2 mm) with a large inlet reservoir imprinted into a PDMS slab using 

soft lithography (Figure 2.23a). A cylindrical well was punched over the channel 

using a biopsy punch (diameter = 8 mm) to accommodate a reference PDMS 

sponge (Diameter × Height = 6 mm  ×  8 mm). The sponge was pre-loaded with 

red food dye before being placed into the well. The active release mechanism 

consisted of an M4 screw thread to convert the rotational into axial movement to 

enable the controlled compressing of the PDMS sponge (Figure 2.23b). Water 

was extracted through the outlet port of the channel using a syringe pump 

(Harvard Pico Plus) at 180 µl/min. This allowed water to flow around the sponge 

and carry away the released dye. The Péclet number of the system, describing 

the ratio of convective to diffusive release, is defined as 𝑃𝑒 = 𝑑𝑠𝑝𝑜𝑛𝑔𝑒. �̅� 𝐷⁄  

(where 𝑑𝑠𝑝𝑜𝑛𝑔𝑒 is the diameter of sponge, �̅� is the average velocity of water 

through the channel and D is the mass diffusion coefficient of food dye in water, 

which is taken as 10−9 m2/s [51]). At the flow rate of 180 µl/min the Péclet 

number was obtained as ~4,800 indicating the dominance of convective release 

at such a high flow rate.  

Using this setup, the active release of red dye over 5 consecutive release cycles 

was investigated over a 25-minute period. Each release cycle corresponded to a 

full turn on the M4 threaded screw, causing a 700 µm compression of the sponge. 

The consequent compression of the sponge led to the active release of dye from 
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the sponge into the surrounding water flow (Figure 2.23c-e). The experiment 

was recorded using a Canon 6D camera equipped with a 100 mm macro lens. 

The resulting video was then processed and the intensity of the red dye was 

extracted at cross section iii of the channel using ImageJ (Figure 2.23a).  

Analysis indicated that the red dye reaches peak intensity ~1.5 minutes after each 

turn. For example, Figure 2.23c-e show the second release cycle starting at 5 

minutes (Figure 2.23c) reaching peak intensity at 6.5 minutes (Figure 2.23d) 

followed by the beginning of the third cycle at 10 minutes (Figure 2.23e). This 

process is presented in Movie 2.11. 

The results also indicated a slight increase of dye release over the consecutive 

cycles. For example, the peak intensity of cycles one to five was measured as 

1.35, 1.37, 1.42, 1.44 and 1.45, respectively. Accordingly, the area under 

intensity curves one to five was calculated as 6.090, 6.217, 6.484, 6.472 and 

6.433, respectively suggesting the increased release of dye. This could be due to 

the non-linear compression of the sponge due to its flexible properties. The 

duration of release cycle, and accordingly the amount of released dye can be 

varied by changing the amount of sponge compression. Similar trends were 

observed in five independent experiments. 

Experiments clearly indicated that the active release of stored solutions from the 

sponge was at least one order of magnitude higher than the passive release. To 

minimise the effect of the passive release, the sponges could be inserted in side 

channels of a microfluidic chip, rather than in the main channel. This could 

significantly reduce the passive release of stored solutions into the main channel. 

https://youtu.be/N9EfQhSDhQc
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This experiment clearly shows that the porous PDMS sponge can be used for the 

active release of liquids into microfluidic systems. The system can be easily 

adapted for the use of different sponge and channel sizes. More importantly, the 

system is adaptable into parallel systems with multiple sponges/channels. The 

system could also be automated using stepper motors for automation or complex 

squeezing patterns.  
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Figure 2.23: Active release of stored liquids into a microfluidic channel using a 

porous PDMS sponge. a) Experimental setup comprising of a microfluidic U-

shaped channel integrated with a PDMS sponge and the active release 

mechanism. b) A rendering view of the sponge assembly showing the sponge 

secured in the well with the screw mechanism (M4 thread, 700 µm pitch) 

allowing water to flow around the sponge. c-e) Show the release of red dye into 

the water channel at different stages of active release cycle: c) Start of release 

cycle after 1 turn (700 µm). d) Peak intensity of the release cycle. e) Beginning 

of the next cycle. f) Relative intensity of red dye in the microfluidic channel as a 

response to the actuation of the screw mechanism as measured over cross section 

iii over five consecutive cycles of screw compression. Scale bar is 20 mm for a) 

and 4 mm for c-e).  
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2.5 Summary 

In summary, A highly porous PDMS sponge that is fabricated using a 

microfluidic droplet generation system has been demonstrated. The application 

of hydroxy terminated PDMS reduces the hydrophobicity of PDMS, facilitating 

the loading of sponge with aqueous solutions. The elasticity of PDMS along with 

its interconnected porous structure enables the quick loading of the sponge with 

liquids upon manual compression. The PDMS sponge consists of large pores, 

which act as miniaturised reservoirs to store liquids. These pores are 

interconnected by small holes, which act as miniaturised diffusion barriers that 

restrict the release rate of stored liquids into surrounding fluidic environments. 

The ability to tailor the size of these holes allowed us to control the diffusion rate 

of dye through the sponge, expressed as J𝑑𝑦𝑒 ∝ �̅�ℎ𝑜𝑙𝑒
 2.07. By varying the average 

size of the interconnecting holes from 19.1 to 29.6 µm it was possible to increase 

the diffusion rate of dye into a narrow channel by a factor of 2.4. This enables 

the sponge to act as a passive yet controllable reservoir, which allows the user to 

control the duration and rate of release of stored solutions.   

Furthermore, the utility of the porous PDMS sponge for the passive release of 

stored chemicals into cell culture systems has been demonstrated. This feature is 

used to investigate the intracellular calcium signalling of endothelial cells in 

response to two different concentrations of ionomycin. Finally, the porous 

sponge can be used for the active release of stored liquids upon compression. 

This feature is demonstrated by cyclic release of stained water into the 

surrounding flow through compressing the sponge using a screw mechanism. 

The process of loading and unloading of the sponge can be repeated without 

changing the elastic or releasing characteristics of the sponge. 
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The PDMS sponge can be loaded with various drugs to investigate the response 

of cultured cells [50] or interaction between different cell populations [52]. More 

complicated cellular assays can also be designed by implementing multiple 

sponges to enable consequent preparation, stimulation and washing of cells with 

desired buffers, reagents, chemicals and drugs. The system can be equipped with 

stepper motors or solenoid actuators [53] to automate the active release of liquids 

from the sponge, also enabling more complex compression patterns. 

Using this fabrication approach, the sponges created by introducing the stabilised 

water droplets into an unstructured volume of PDMS which was cured. It would 

be possible instead to introduce the water droplets into local regions of a more 

complex cast PDMS structure [54] to achieve a composite with solid and porous 

regions adding a new building block for lab-on-a-chip microfluidics.  
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CHAPTER 3: A self-sufficient micro-droplet generation system  

using porous sponges: enabling simple and quick cellular assays 

 

3.1 Abstract 

Microfluidic droplet generation systems enable the production of micro-scale 

droplets. However, such systems generally rely on microfluidic structures, bulky 

and rather expensive supporting equipment such as pumps, specialised training 

and time-consuming processes, which limit their usage in biological laboratories. 

This chapter presents a self-sufficient droplet generation system by simply 

squeezing a porous polydimethylsiloxane (PDMS) structure filled with aqueous 

solutions into oil. This enables the generation of hundreds of isolated micro-scale 

droplets containing cells and desired chemicals inside a well. The number of 

encapsulated cells is proportional to the volume of the droplets, allowing for 

generating customised small, medium and large cell clusters. The droplets are 

chemically isolated, mechanically stable, and do not evaporate due to the 

presence of oil in the well. This sponge based droplet generation system 

facilitates customised cellular and molecular assays in a simple, quick and 

parallel manner suitable for biological laboratories with minimum supportive 

equipment and microfluidic skills.  
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3.2 Introduction 

Microfluidic droplet generation systems enable the continuous formation of 

micro-scale droplets using a pair of immiscible liquids such as water and oil [1-

3]. The size, shape and generation rate of the droplets depends on the flow rate 

and viscosity of the accompanying liquids as well as the interfacial tension 

between them [4]. Each droplet carries a very small amount of liquid, which can 

be loaded with multiple liquid solutions or desired micro/nano particle 

suspensions. This facilitates studying various chemical and biochemical 

reactions inside a stream of isolated droplets [5-9]. Recirculation of flow inside 

the droplets facilitates rapid mixing of the stored materials [10]. These reactions 

can also be triggered by optical, electrical or thermal stimuli [11, 12].  

Encapsulation of single cells inside droplets has provided unprecedented 

opportunities for studying various cellular and molecular reactions in a high 

throughput manner. Cells need to be ordered along the inlet channel to ensure the 

droplets carry a single cell [13, 14]. The droplets can be loaded with desired 

reagents, chemicals, fluorescent probes, and functionalised beads to enable the 

stimulation of encapsulated cells and consequent detection of cellular responses. 

Such materials can be added into the cell suspension prior to injection into the 

microfluidic device [15-17] or be injected into the cell suspension on-chip [18-

20]. The droplets can be sorted, deflected, trapped and released using various 

passive and active mechanisms [21, 22]. The droplets can be collected for a 

predetermined period to enable cellular reactions to occur [16] and re-injected 

into secondary microfluidic devices for further investigation [23, 24]. The 

chemical content of these droplets can be changed by combining two 

neighbouring droplets [23, 25, 26] or by injection of chemicals into moving 
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droplets [27]. The droplets can also be broken to measure the fluorescent 

response of chemically stimulated cells using flow cytometry [28] or to process 

the nucleic acids released from lysed cells using various sequencing technologies 

[29, 30].  

Despite these advantages, current microfluidic droplet generation systems 

strongly rely on external bulky equipment such as multiple syringe pumps to 

drive the carrier and discrete fluids through the microfluidic structures. The 

operation of such systems requires general training and skills in microfluidics, 

and is rather time-consuming due to degassing, tubing and leakage. These 

drawbacks limit the widespread application of such systems in biological 

laboratories. Self-sufficient, stand-alone droplet generation systems, which could 

be operated with minimum reliance on external equipment and specialised 

training could facilitate the utilisation of this technology by biomedical 

researchers.  

Porous sponges exhibit unique properties such as permeability and high surface 

area. They can be made from different materials such as cellulose [31-33], 

hydrogels [34], and polymers [35, 36] while their physical properties can be 

changed following synthesis with various chemicals or functionalisation with 

different nanomaterials [31-33]. In particular, polymeric porous sponges made 

of polydimethylsiloxane (PDMS) are suitable for microfluidic applications due 

to their biocompatibility, stability, transparency, and elasticity. PDMS sponges 

have been utilised for the active storage and release of solutions [37, 38]. In 

general, PDMS sponges are made by templating and the subsequent removal of 

crystal structured materials such as sugar cubes [39]. Alternatively, highly porous 

polymeric sponges can be made by injecting micro-scale droplets of water into 
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uncured polymers [40, 41]. Curing of the polymer and subsequent evaporation 

of the encapsulated water droplets leads to the formation of a network of 

interconnected air voids within a polymer scaffold. Using this method, highly 

porous PDMS sponges were fabricated, consisting of large pores that are 

interconnected by very small holes (presented in detail in Chapter 2), which has 

been utilised for the passive chemical stimulation of immobilised endothelial 

cells as well as the active release of solutions into microfluidic environments. 

Despite these advantages, PDMS sponges have not been used for generation of 

micro-scale droplets. 

In this chapter, a novel approach was presented for generating micro-droplets by 

squeezing highly porous PDMS sponges loaded with aqueous solutions into a 

cell culture well filled with oil. Experiments indicate that upon squeezing, 

hundreds of micro-droplets are generated inside the well. The capability of this 

droplet generation system for encapsulating THP-1 human monocytic leukemia 

cells inside droplets was demonstrated. Measurements indicate that the number 

of encapsulated cells is proportional to the volume of droplets as well as the 

concentration of cells in the cell suspension. Furthermore, cytotoxicity assays 

were conducted using this encapsulation method. As a proof-of-concept, the 

response of encapsulated THP-1 cells to hydrogen peroxide using fluorescent 

microscopy was studied. The ability to generate droplets with different chemical 

contents into the same well was also demonstrated. The cells settle at the lowest 

surface of the droplets without using any secondary immobilisation mechanisms. 

This sponge based droplet generation system enables highly parallel cellular 

assays in a very simple, versatile and quick manner without the need for rather 

expensive supporting equipment or any expertise in microfluidics.  
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3.3 Materials and Methods 

3.3.1 Fabrication of the porous PDMS sponge 

The PDMS sponge is fabricated using a microfluidic T-junction droplet 

generation system imprinted into a PDMS slab, as presented in detail in Chapter 

2 and briefly summarised in Figure 3.1. Deionised water mixed with a surfactant 

(polysorbate 20, Sigma-Aldrich) (19:1 v/v) is injected into a continuous phase 

consisting of PDMS base, PDMS curing agent (Sylgard 184, Dow Corning) and 

monohydroxy terminated PDMS (Sigma-Aldrich) (15:2:5 v/v) to create droplets 

of water in uncured PDMS. The resulting emulsion is then collected and cured 

in a high humidity environment at room temperature. The water is then squeezed 

out of the sponge leaving a porous PDMS sponge consisting of a network of large 

pores (Dpore = 356 ± 74 μm) which are interconnected via small holes (dhole = 23.5 

± 11.2 μm) with an overall porosity of 64.1%. SEM imaging presented in Figure 

3.1e shows the non-uniform size of the pores with larger pores accumulating at 

the top section of the sponge during the curing process. This indicates the 

expansion or shrinkage of the droplets within the PDMS chamber, which could 

be due to the gas permeability of PDMS to water vapour as well as waters 

relatively low vapour point. 
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Figure 3.1: Fabrication process of the porous PDMS sponge, as explained in 

reference [42]. a) A microfluidic droplet generation system used for generating 

water droplets by injecting deionised water mixed with polysorbate surfactant 

(19:1 v/v) into a carrier fluid comprised of PDMS base, PDMS curing agent and 

monohydroxy terminated PDMS (15:2:5 v/v). The T-junction has cross-sectional 

dimensions of 300 µm × 300 µm, b) The emulsion is then collected in a container 

for curing, c) A 6 mm section of sponge is then isolated using a biopsy punch, d) 

Photograph of the PDMS sponge partially loaded with blue dye for visualisation. 

e) SEM image of the PDMS sponge showing the large pores interconnected by 

small holes.  
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3.3.2 Cell preparation 

The human THP-1 monocytic leukemia cell line was grown in RPMI1640 

medium supplemented with 10% fetal bovine serum, 50 U/ml of penicillin and 

50 µg/ml of streptomycin at 37°C, 5% CO2. Before each experiment, the cell 

suspension was diluted to the concentrations of 3×106 and 6×106 cells/ml using 

the growth media. 

 

3.3.3 Microscopic imaging and Analysis 

Microscopic images were acquired using a Nikon Eclipse Ti inverted 

fluorescence microscope (Nikon Corporation, Japan) equipped with a 

QuantEM:512SC electron-multiplying CCD camera (Photometrics, USA) using 

objective lenses 4, 10, 20 (Nikon). Fluorescence images were obtained using 

an Intensilight C-HGFI UV light source (Nikon) set to ND8 in conjunction with 

a Nikon G-2A filter set to capture the response of propidium iodide (ex/em 

536/617 nm) stained THP-1 cells. Automated time-lapse image acquisition was 

acquired using NIS-Elements software (Advanced Research, Nikon Instruments) 

at 5 second intervals with an exposure time of 400 ms with an electron-multiplier 

gain of 200 to minimise photo bleaching. Fluorescence intensities were 

extracted using NIS-Elements software, and subsequently normalised in 

Microsoft Excel. Results shown are representatives of three independent 

experiments. Counting and measurement of droplets were performed using 

ImageJ (https://imagej.nih.gov/ij/). 
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3.4 Results and discussion 

3.4.1 Droplet generation using PDMS porous sponge 

The process of droplet generation consists of both loading and squeezing steps, 

as schematically shown in Figure 3.2. During loading step, the sponge is placed 

in a cell culture well filled with aqueous solutions, and gently squeezed two to 

three times to be filled (Figures 3.2a-c). The loaded sponge is then gently placed 

into the second well filled with olive oil, and gently squeezed to release the stored 

solution into the surrounding oil (Figures 3.2d-e). This leads to generation of 

hundreds of micro-scale droplets which settle at the bottom surface of the well 

(Figures 3.2f). The manual squeezing of the sponge is principally similar to 

deformation of elastomeric membranes used in ref. [43] for discretisation of 

stored liquid and consequent generation of droplets. 

Olive oil is 80 times more viscous than water (µolive oil = 80 mPa) yet is 8.55% 

less dense than water (ρolive oil = 914.5 kg/m3) [44]. The high viscosity of olive oil 

is essential to produce sufficient shear force to break the continuous water phase 

into micro-scale droplets upon leaving the sponge, while its low density 

facilitates the settling of produced water droplets onto the surface of the well. In 

comparison, fluorinated oils which are commonly used in microfluidic droplet 

generation systems [17, 19, 21, 30], are less viscous yet denser than water, which 

makes them unsuitable for this approach.   

The sponge can then be removed from the well for further analysis of droplets 

(Figure 3.2g). The resulting droplet pattern shown here is obtained by inserting 

a PDMS sponge with a diameter of 6 mm and a height of 8 mm loaded with a 

solution of deionised water stained with red dye into a 6-well plate (Corning® 
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Costar® 3516, diameter = 34.8 mm) containing 3 ml of olive oil. It should be 

noted that the surface of the well should be non-treated to avoid the adhesion of 

droplets to the well plate.  

 

Figure 3.2: Generation of aqueous micro-droplets-in-oil emulsion using a porous 

PDMS sponge. a) Schematic of the droplet generation method, including a 

porous PDMS sponge placed into a well containing water with red dye. b) 

Manual compression of the sponge to load the aqueous solution. c) Removal of 

the saturated sponge. d) Placement of the sponge into the second well containing 

olive oil e) Generation of micro-droplets-in-oil via manual compression of the 

sponge. f) Droplets settling on the bottom of the well plate. g) Photograph of 

water droplets-in-oil settled on the surface of a well plate.  
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3.4.2 Principles of sponge based droplet generation   

The ability of the PDMS sponge to generate a large quantity and variety of 

droplet sizes, as presented in Figure 3.2g lies in its unique structure, which 

consists of a network of large pores that are only interconnected via small holes 

(Figure 3.1e). The large pores (Dpore = 356 ± 74 μm) facilitate the storage of 

aqueous solutions inside the sponge, whereas the small holes (dhole = 23.5 ± 11.2 

μm) facilitate the passage of solution from one pore to another upon squeezing 

of the sponge. The small holes located at the interface of sponge and surrounding 

oil serve as micro-scale ‘orifices’, which facilitate the breaking (pinch off) of 

droplets by stationary viscous oil upon leaving the sponge, as schematically 

presented in Figure 3.3.  

The shear stress induced at the interface of water-oil can be expressed as 𝜏 ∝

 µ
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑈𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑ℎ𝑜𝑙𝑒⁄  is, in which µ
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 is the viscosity of water, U𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

is the average velocity of aqueous solution through the orifice induced by 

squeezing, which can be defined as 𝑈𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  �̇�𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∑ 𝐴ℎ𝑜𝑙𝑒⁄ =

4 𝐴𝑠𝑝𝑜𝑛𝑔𝑒  ∆ℎ̇ 𝑁ℎ𝑜𝑙𝑒  𝜋𝑑ℎ𝑜𝑙𝑒
2⁄ , where �̇�𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is the average flow rate of water 

released from the sponge, Ahole is the area of orifices along the external surface 

of the sponge which are exposed to oil, Asponge is the basal surface area of the 

sponge, ∆ℎ̇ is the rate of sponge compression, 𝑁ℎ𝑜𝑙𝑒 is the total number of holes 

along the external surface of the sponge. This suggests that 𝜏 ∝  𝑑ℎ𝑜𝑙𝑒
−3 .  

Accordingly, the capillary number [4] of generated droplets (𝐶𝑎 =

 µ
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑈𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝛾𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑜𝑖𝑙⁄ ) can be expressed as: 

𝐶𝑎 =  4 µ
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 𝐴𝑠𝑝𝑜𝑛𝑔𝑒  ∆ℎ̇ 𝑁ℎ𝑜𝑙𝑒  𝜋𝑑ℎ𝑜𝑙𝑒
2⁄ 𝛾𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑜𝑖𝑙. 
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It should be noted that the level of shear stress induced on encapsulated cells is 

minimal, as the cells are suspended inside the cell suspension.  

SEM imaging characterisation indicates that dhole   =   23.5 ± 11.2 µm [42], 

suggesting that for the majority of interconnecting holes lie between 12.3 to 35.7 

µm. This suggests that the sponge acts as a droplet generation system with 

multiple orifices with varying sizes, which enables it to produce various droplet 

sizes simultaneously, as explored in Section 3.4.3. 
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Figure 3.3: Schematics of micro-droplet generation using a porous PDMS 

sponge. a) Rendering of the PDMS Sponge filled with a red aqueous solution. b) 

Shows the internal interconnected porous structure of the filled sponge. c) 

Schematic of the process of droplet pinch off when squeezed into oil. d) A 

simplified schematic of the droplet generation system.  
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3.4.3 Size distribution of generated droplets 

Figures 3.4a-d show the stitched microscopic images of generated droplets over 

successive squeezes. In this case, the sponge was loaded with cell culture 

medium and gently squeezed over four separate wells prefilled with olive oil, as 

described in Figure 3.2. The droplets were counted and measured using ImageJ 

to calculate their size and volume distributions, as shown in Figures 3.4a′-d′. 

The first squeeze produced 298 droplets in the range of 5-1600 µm in diameter 

(Figures 3.4a′). Smaller droplets were not counted, as they were smaller than the 

diameter of THP-1 cells investigated in this paper. A positively skewed normal 

distribution was obtained with 44.6% of droplets falling between 10-30 µm in 

diameter, and 89.9% falling between 10-200 µm. Similar trends are obtained for 

the volume distribution of droplets with 37.9% of droplets falling between 1-10 

pL, and 94.3% of them below 10 nL (shown in the insets of Figures 3.4a′-d′). 

Interestingly, successive squeezes produced similar size and volume 

distributions of droplets. However, the number of generated droplets increased 

over successive squeezes. For instance, 394, 815, and 1061 of droplets were 

counted within the range of 5-1600 µm produced in 2nd to 4th squeezes, 

respectively. Interestingly, this increase was observed mostly for droplets smaller 

than 100 µm, as shown in Figure 3.4e. This also coincided with a reduction in 

the number of droplets larger than 200 µm, which can be clearly seen in Figures 

3.4a-d. This was associated with increasing the number of droplets with volumes 

less than 10 pL, as shown Figure 3.4e-inset. Similar trends were obtained in five 

independent experiments. 
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Figure 3.4: Characterisation of droplets generated by successive squeezes. a-d) 

Stitched microscopic images of four successive squeezes. aˊ-dˊ) The size 

distribution of micro-droplets for each squeeze with the inset showing the 

distribution of droplet volume. e) Comparison of droplet size and droplet volume 

with respect to each squeeze. eˊ) Comparison of droplet size distribution obtained 

at the 4th squeeze using various olive oils.  
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According to Figures 3.4a′-d′, 46.9% of droplets lie in the range of 12.3 to 35.7 

µm, suggesting a very good correlation between the diameter of interconnecting 

holes and the diameter of droplets. It was hypothesised that the larger droplets 

are generated when the orifice is not directly exposed to oil, and instead is located 

at the upstream of a large pore which holds cell culture medium (Figure 3.5).  

 

 

Figure 3.5: Varying the size of droplets according to the location of orifice with 

respect to surrounding oil. a) Orifice is exposed to oil leading to generation of 

small droplets. b) Orifice is not exposed to oil and is followed by a portion of a 

large pore leading to generation of large droplets. 
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The droplet size distribution was further investigated using two categories of 

olive oils, including ‘refined’ and ‘extra virgin’. Each category was provided 

from two independent Australian suppliers (Always Fresh and Moro). The 

‘refined’ olive oil supplied from Always Fresh is the reference oil used 

throughout the manuscript. Similar size distribution trends were obtained using 

various olive oils (Figure 3.4e′), in which whiskers represent the 0th and 100th 

percentiles (corresponding to largest and smallest droplet sizes), and the boxes 

represent the 25th, 50th and 75th percentiles. This is expected, as these oils have 

similar viscosities ranging from 75 to 83 mPa at room temperature [45], inducing 

similar shear stress levels at the interface of water-oil. These oils have also 

similar densities [45] facilitating the settling of droplets in the well.  
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3.4.4 Reducing the heterogeneity of droplet sizes 

The possibility for improving the uniformity of droplets dimensions was 

investigated by sieving them using conventional cell strainers. In doing so, a cell 

strainer was submerged in oil above the well substrate. A sponge loaded with cell 

culture medium was then squeezed (four times) above the filter using tweezers. 

This enabled droplets smaller than the mesh size to pass through the strainer. The 

strainer was then gently removed from the well to facilitate the imaging process 

(Figure 3.6). Figures 3.7a-d present the stitched images of unfiltered cells, and 

filtered cells using nylon mesh cell strainers (pluriStrainer, Germany) with mesh 

sizes of 500, 200 and 100 µm, respectively. Figure 3.7e compares the size 

distribution of droplets with the whiskers representing the 0th and 100th 

percentiles (corresponding to largest and smallest droplet sizes), and the boxes 

representing the 25th, 50th and 75th percentiles. It should be noted that the 

unfiltered case corresponds to the 4th squeeze, as previously shown in Figure 

3.4d. The size of the largest droplet reduced from 915 µm for the unfiltered case 

to 412, 164, and 94 µm for the filtered cases with 500, 200 and 100 µm mesh 

sizes. This in turn reduced the heterogeneity of droplets. The largest and median 

droplet sizes reduced proportional to the mesh size, as given in the inset. The 

filtering reduced the number of droplets settling in the well. This is because the 

large droplets block the mesh filter, reducing the chance of smaller droplets to 

pass through the filter. This also increases the median droplet size pushing them 

toward the centre of the box. 
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Figure 3.6: Schematics of size-based droplet filtering using a cell strainer: a) 

experimental setup, b) Close-up of experimental setup, c) Large droplets trapped 

by the cell strainer with a mesh size of 200 µm, d) Small droplets that have passed 

through the mesh and settled on the well substrate. 
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Figure 3.7: Improving the homogeneity of droplet dimensions by sieving using 

nylon mesh filters. a-d) Stitched images showing the distribution of unfiltered 

droplets at the 4th squeeze, and filtered droplets using 500, 200, and 100 µm mesh 

filters, respectively. e) Comparing the size distribution of droplets. The whiskers 

represent the minimum and maximum droplet sizes, and the boxes represent the 

25th, 50th and 75th percentiles.  
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3.4.5 Encapsulation of cells inside droplets: enabling droplet-based cellular 

assays 

Further experiments were conducted to investigate whether cells can be 

encapsulated inside the generated droplets. In doing so, the sponge was loaded 

with a cell suspension containing THP-1 cells, and squeezed in a well containing 

olive oil. Experiments indicated that the cells can indeed be encapsulated inside 

droplets (Figure 3.8a). The majority of encapsulated cells settled at the lowest 

surface of the droplet in contact with the well surface, which facilitated 

monitoring of cells using inverted microscopy.   

Next, the number of cells inside each droplet was counted to investigate whether 

the population of encapsulated cells can be correlated to the size of droplets. 

Droplets with diameters ranging from 5 to 300 µm, which constituted ~95% of 

generated droplets. In doing so, the droplets were divided into six groups 

according to their diameter, as follows: Ddroplet = 25 ± 2.5, 50 ± 5, 100 ± 10, 150 ± 

15, 200 ± 20, and 250 ± 25 µm. The number of encapsulated cells within each 

droplet group was counted using ImageJ. Counting was performed over four 

successive sponge squeezes with the droplets generated in each squeeze collected 

in separate wells. For example, Figure 3.8b presents the number of encapsulated 

cells against droplet diameter averaged over four successive squeezes. 

Measurements revealed that the average number of encapsulated cells can indeed 

be correlated with the diameter of droplets:  �̅�Cell ∝ 𝐷Droplet
3.06  (µm). This is 

significant, as it suggests that the average number of encapsulated cells is 

proportional to the volume of droplets: �̅�Cell ∝ 𝑉𝐷𝑟𝑜𝑝𝑙𝑒𝑡. A similar trend was 

obtained for 1st to 4th sponge squeezes with a maximum ~10% standard deviation 

observed between them (Figure 3.8c). Reducing the concentration of THP-1 
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cells in the cell suspension reduced the number of encapsulated cells (Figure 

3.8d + Figure 3.9). Similar trends were observed in three independent 

experiments. 

These findings suggest that this droplet generation method enables the creation 

of hundreds of isolated droplets inside a well with a single squeeze, which 

accommodate small, medium and large cell clusters depending on the size of 

droplets. These cell clusters are isolated and several can be observed in the same 

field of view. This provides unique opportunities for studying various cellular 

responses using different categories of cell populations.  
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Figure 3.8: Encapsulation of cells inside the micro-droplets. a) A snapshot of 

THP-1 cells encapsulated in micro-droplets. b) The number of encapsulated cells 

against the diameter of droplets. c) The number of encapsulated cells over 

successive squeezes. d) The number of encapsulated cells at two cell 

concentrations.  
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Figure 3.9: The number of encapsulated cells against the diameter of droplets 

shown for the cell concentrations of 3.0×106 and 6×106 cells/ml. 
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3.4.6 Analysing the viability of encapsulated cells  

To ensure the process of encapsulating cells within droplets does not damage the 

cells, viability tests were conducted. THP-1 cells in culture medium were treated 

with 25 µg/ml of propidium iodide (PI), which is a fluorescent stain, which 

infiltrates into the plasma membrane of damaged cells and stains their cell 

nucleus. PI-treated cells were loaded into the PDMS sponge to be encapsulated 

within droplets. The viability of the encapsulated cells was monitored over a 3 

hour period. In doing so, images at 5 minute intervals were extracted, and 

measured the normalised fluorescent intensity of cells using NIS Elements 

software (Figure 3.10a + Movie 3.1 (Clickable online video)). Using this data, 

viability curves of the encapsulated cells were obtained (Figure 3.10c). An off-

chip viability assay was also conducted by treating cells with PI and directly 

applying them into a well (Figure 3.11 + Movie 3.2) Similar viability curves 

were obtained from on-chip (droplet encapsulated) and off-chip assays, 

suggesting that this sponge droplet generation system does not damage cells over 

a 3 hour period (Figure 3.10c).  

Proof-of-concept cytotoxicity experiment were also conducted by treating cells 

with hydrogen peroxide (H2O2) [46, 47]. THP-1 cells were treated with 20 mM 

H2O2 following which PI was added to the cell culture medium. These cells were 

then loaded into the PDMS sponge to be encapsulated within droplets. The 

viability of the encapsulated cells was monitored over a 3-hour period (Figure 

3.10b + Movie 3.3), using which the viability curve was obtained for the H2O2 

treated cells (Figure 3.10c). Stitched microscopic images confirmed the death of 

>98% of the cells, which were encapsulated inside a total number of 693 droplets 

after 3 hours (Figure 3.13). Similar viability curves were obtained with off-chip 

https://youtu.be/blAkwUDb2C0
https://youtu.be/V0GuH8R6G14
https://youtu.be/NmwWN7WRIH0
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assays (Figure 3.12 + Movie 3.4). Furthermore, analysing the size of H2O2 

containing droplets indicated similar trends presented in Figure 3.4e, suggesting 

that the incorporation of cell suspension, H2O2 or the by-products of treated cells 

does not influence the size distribution of droplets.  

 

 

Figure 3.10: Analysis of cell viability for THP-1 cells encapsulated in droplets. 

a) Control experiment comprising of cells suspended in cell culture media and 

PI fluorescent probe encapsulated in droplets. b) Cytotoxicity experiment 

comprising of cells suspended in cell culture media and PI fluorescent probe 

treated with 20 mM H2O2 encapsulated in droplets. c) Viability curves showing 

the response of control and H2O2 treated cells indicating similar responses for 

off-chip (petri dish) and on-chip (encapsulated in droplets) experiments over 180 

minute period.   

https://youtu.be/1WDixctKdKs
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Figure 3.11: Snapshot images captured over a period of 120 minutes to 

demonstrate the motility of THP-1 cells following injection into a 24 mm 

diameter well. The images clearly show the crawling and swarming of cells even 

after 120 minutes, which makes it challenging for tracking individual cells. 

Highly motile cell clusters are highlighted with dashed lines. 
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Figure 3.12: Snapshot images captured over a period of 120 minutes to 

demonstrate the motility of H2O2 treated THP-1 cells following injection into a 

24 mm diameter well. 

  



 
132 

 

Figure 3.13: A large image of H2O2 stimulated / PI stained cells encapsulated 

inside droplets. This image is obtained by stitching an array of 7×7 images 

captured with a 4× Nikon objective. 

  



 
133 

3.4.7 Parallel viability assays 

Considering that the droplets are isolated this allows for parallel cytotoxicity 

assays to be conducted using various chemical stimuli simultaneously. A simple 

experiment was carried out by loading two sponges with red and blue dye 

solutions and squeezing them in the same well (Figure 3.14a). Only two droplets 

merged in this process. Extended experiments indicated that the droplets smaller 

than 150 µm are very stable and do not merge due to dominance of surface 

tension.  

Based on this, a proof-of-concept parallel cytotoxicity assay was conducted 

utilising two sponges. The first sponge was loaded with a suspension of THP-1 

cells containing PI. The second sponge was loaded with a suspension of THP-1 

cells containing PI and treated with 20 mM H2O2. The sponges were placed in 

the same well at approximately 5 mm apart, and squeezed simultaneously. A 

location of the well was selected, where multiple droplets generated by the first 

and second sponges were settled in close proximity (Figure 3.14b). The droplets 

were easily differentiated due to addition of blue dye solution into the H2O2 

treated THP-1 cell suspension. This allowed us to monitor the response of non-

treated and H2O2 treated cells over a 120 minute period in the same field of view 

(Figure 3.14c-e + Movie 3.5). The viability curves based on a small population 

of 16 cells is presented in Figure 3.14f. The results matched very well with the 

results presented in Figure 3.10, where the viability of cells in the presence and 

absence of H2O2 was studied in two separate experiments.  

This experiment further proves the ability of this sponge based droplet generation 

system for formation of isolated cell clusters that are pre-stimulated with various 

https://youtu.be/E2u3zKfnVAs
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chemicals in close proximity of each other, paving the way for conducting highly 

parallel cellular assays in a simple, quick, and inexpensive manner. 

 

Figure 3.14: Simultaneous analysis of cell viability for non-treated and H2O2 

treated cells encapsulated in droplets in one field of view. a) Red and blue water 

droplets generated by squeezing two separated sponges in a single well. b) 

Microscope image showing the monitored cells. c-e) Snapshot images over a 120 

minute period showing the fluorescent response of non-treated (bottom droplet) 

and H2O2 treated cells (top two droplets). f-g) Cell viability bar charts for the 

non-treated and H2O2 treated cells encapsulated in separate droplets.  
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3.4.8 Analysing the dynamic response of encapsulated cells  

Experiments demonstrate that the encapsulated cells settle at the bottom area of 

droplets almost immediately, and remain stable (Movie 3.1). In contrast, off-chip 

experiments demonstrate that the cells directly injected into a well require up to 

30 minutes to settle at the bottom area of the well. Even after settling, the cells 

remain highly motile and can crawl and swarm [48], which makes it difficult to 

track individual cells (Movie 3.3 with snapshot images presented in Figure 

3.11). The reduced motility of cells encapsulated within droplets enables the 

dynamic response of non-adherent and motile cells to various stimuli to be 

monitored almost immediately without the need for secondary immobilisation 

mechanisms such as conventional surface modification [49], or other techniques 

commonly used in microfluidics such as hydrodynamic traps [50], 

dielectrophoresis [51], magnetophoresis [52], and optical tweezing [53].  

This reduced motility was taken advantage of to study the dynamic response of 

encapsulated cells against 20 mM H2O2 by recording the normalised fluorescent 

intensity of cells in 5 second intervals (Figure 3.15a-b). Interestingly, the results 

revealed two distinct patterns of cellular responses, which will be referred to as 

‘slow’ and ‘fast’ response, respectively (Figures 3.15c-d). These responses were 

further investigated by analysing the normalised fluorescent intensity of 14 

individual cells over a period of three hours (Figures 3.15e) with the location of 

cells presented in (Figure 3.16). Using these dynamic curves the initial response 

time of cells was measured (the time at which the cells start to fluoresce) and the 

peak response time of cells (the time at which the cell fluorescence reaches its 

peak and becomes saturated). It should be noted that the initial and peak response 

times are widely used for quantifying the intracellular calcium signalling of cells 

https://youtu.be/blAkwUDb2C0
https://youtu.be/NmwWN7WRIH0
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induced by shear stress or chemicals [49, 54]. Using these two parameters, the 

dynamic response time of stimulated cells was measured, defined as the 

difference between the initial and peak response times. The dynamic response 

time of ‘slow’ responding cells was measured as 32.84 ± 3.60 minutes, which 

reduced to 3.94 ± 1.80 minutes for ‘fast’ responding cells.  

Furthermore, the average normalised fluorescent intensity of those 14 individual 

cells was calculated, which is presented as a dashed line in Figure 3.15e. Using 

this curve, the dynamic cell viability was calculated, defined as 

𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑡) = (𝑓(𝑡) − 𝑓𝑚𝑖𝑛) (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)⁄ × 100%, in which f is the 

normalised fluorescent intensity, fmin = 1 (as the data is normalised) and  

fmax = 3.67, as shown in Figure 3.17. Interestingly, the dynamic cell viability 

matches very well with the viability curves presented in Figure 3.8c. A similar 

concept is used in fluorescence microplate readers to measure the viability or 

other cellular responses after stimulation with desired drugs [55]. 
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Figure 3.15: Real time, dynamic cell monitoring of encapsulated cells under 

H2O2 treatment and propidium iodide fluorescent labelling. a-b) 20× bright field 

microscopy with (Nikon G-2A filter cube) propidium iodide fluorescence at 0 

min and 180 minutes. c) normalised intensity of H2O2 treated cells sampled at 5 

second intervals over 180 minutes, with slow responding cells represented by 

blue and fast responding cells represented in red. d) snapshot images showing 

the death of a Slow responding cell shown over a 60-minute period, i-iv e) fast 

response of a circled cell undergoing cell death shown over a 7.5 minute period, 

i-iv.  
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Figure 3.16: Selected cells used for analysing the dynamic response of cells 

treated with H2O2. a) Shows a frame of experimental data highlighting each 

tracked cell. b) ROI pattern used in NIS Elements software to obtain the 

fluorescent intensity curves shown in c). 
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Figure 3.17: Comparing cell viability curves. a) The normalised fluorescent 

response of 14 individual cells following treatment with 20 mM H2O2 

encapsulated inside two droplets with the average curve shown in black. b) 

Comparing cell viability curves obtained by average normalised fluorescence 

from a) versus conventional viability curves presented in Figure 3.10c. 
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3.5 Summary 

In summary, a simple method for generating micro-scale droplets of aqueous 

solutions in oil was demonstrated, using a highly porous PDMS sponge. Upon 

squeezing hundreds of droplets are generated inside a cell culture well with ~90% 

of droplets ranging from 10 to 200 µm in diameter. Sieving of droplets using 

conventional cell strainers allows for removal of large droplets, increasing the 

homogeneity of droplet dimensions in a simple and controlled manner. This 

method was used for encapsulation of THP-1 human monocytic cells inside the 

droplets. The number of encapsulated cells is proportional to the volume of 

droplets, enabling us to generate isolated cell clusters with varying number of 

cells close to each other. The droplets are chemically isolated and mechanically 

stable, enabling us to monitor the viability of multiple cell clusters following 

treatment with hydrogen peroxide in a parallel manner.  

Compared to existing microfluidic droplet generation systems, this sponge based 

droplet generation system is a self-sufficient, stand-alone device [56] which can 

be operated without any supportive equipment (pumps, tubes and valves) or 

microfluidic skills. The self-sufficiency and simplicity of this method facilitate 

the widespread use of droplet-based cellular and molecular assays in biological 

laboratories. In particular, the isolation of droplets enables studying the response 

of multiple encapsulated cells to various chemical compounds, drugs and 

nanomaterials [57-59]. The limited number of encapsulated cells facilitates 

studying the interaction of different cell types, for instance studying the response 

of immune cells to pathogens [60]. The limited volume of droplets facilitates the 

capturing and detection of target biomarkers secreted from encapsulated cells 
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[15, 19, 28], which might be of great interest for various biological and clinical 

applications [61]. 

The throughput of this sponge based droplet generation system is relatively low, 

as it only produces hundreds of droplets in each squeeze as compared to 

thousands of droplets generated by fully automated microfluidic droplet 

generation systems. This limitation can be addressed by reloading and re-

squeezing the same sponge or squeezing multiple sponges in the same well. 

Especially, loading of sponges with different cell types or chemical stimuli 

facilitates multiplexed experiments in a quick and simple manner. Also, this 

method of droplet generation lacks controllability for producing uniformly sized 

droplets, and consequently homogeneously sized cell clusters. This limitation 

can be partially addressed by filtering the droplets through mesh filters, as 

demonstrated in extended experiments.   

Future work involves investigating methods to improve the uniformity of the 

porous PDMS structure. This includes increasing the stability of water droplets 

injected into the uncured PDMS chamber as well as reducing the curing period 

of the PDMS. Future work also involves studying the viability and proliferation 

of encapsulated cells over extended periods (>20 hours). The sponge based 

droplet generation system can also be integrated other miniaturised systems to 

facilitate the patterning, driving, merging and sorting of droplets, enabling more 

complex cellular assays [62, 63]. 

.  
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CHAPTER 4: Conclusions and Future Work 

 

4.1 Concluding Remarks 

The author demonstrated the utility of highly porous PDMS sponges for the 

storage and release of solutions into the surrounding liquid environments as well 

as generation of micro-scale droplets for encapsulation of cells in a self-sufficient 

manner, as presented in Chapters 2 and 3. The contributions of this research are 

summarised in this chapter. 
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4.2 Research Contributions 

My research contributions can be summarised as below: 

Research Contribution 1: I fabricated a highly porous PDMS sponge using a 

T-junction microfluidic droplet generation system. SEM characterisation 

revealed that the PDMS sponge consisted of large pores, which were only 

interconnected by small holes. The porosity and elasticity of PDMS sponge along 

enabled the quick loading of the sponge with aqueous solutions upon manual 

compression.  The large pores acted as miniaturised reservoirs to store liquids, 

whereas the interconnecting holes acted as miniaturised diffusion barriers that 

limited the passive release of stored liquids into surrounding fluidic 

environments. This was demonstrated through a series of experiments, releasing 

stored aqueous solutions into straight channels (Figures 2.5 to 2.8). Varying the 

average size of interconnecting holes from 19.1 to 29.6 µm enabled me to change 

the passive release rate of aqueous solutions into a straight channel by a factor of 

2.4 (Figures 2.13 to 2.18). This addresses my Research Question 1. 

Research Contribution 2: I demonstrated the utility of fabricated porous PDMS 

sponge for the passive release of stored chemicals into circular shape Petri dishes, 

which are commonly used for cell-based assays (Figures 2.19 to 2.20). This 

feature was utilised for investigating the intracellular calcium signalling of 

human umbilical vein endothelial cells upon stimulation with ionomycin, which 

was stored and passively released from the sponge. The response of cells varied 

in a dose-dependent manner. For example, a maximum fold increase of 4.2 ± 0.4 

was obtained in response to 2 μg/ml of stored ionomycin (Figures 2.21 to 2.22). 

This addresses my Research Question 2. 
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 Research Contribution 3: I demonstrated the active release of stored aqueous 

solutions into surrounding fluidic environments. This was demonstrated by 

cyclic release of stored solutions into a microfluidic structure (Figure 2.23) 

Using a screw mechanism enabled the controlled and repeatable release cycles 

using a simple setup. This addresses my Research Question 3. 

Research Contribution 4: I utilised my porous PDMS sponge for generating 

micro-scale droplets of aqueous solutions in oil upon manual compression. The 

interconnecting holes located at the surface of the PDMS acted as micro-scale 

orifices, and facilitated the breaking (pinch off) of aqueous solutions into micro-

scale droplets upon leaving the sponge (Figure 3.2). Hundreds of such orifices 

existed at the surface of the sponge, allowing for generation of hundreds of 

droplets in one single squeeze. The droplets followed a positively skewed normal 

distribution with approximately 90% of the droplets falling between 10 to 200 

µm in diameter (Figure 3.4) This addresses my Research Question 4. 

Research Contribution 5: The ability for generation of micro-scale droplets was 

further utilised for encapsulation of THP-1 monocytic leukemia cells inside the 

droplets. Microscopic experiments revealed that the number of encapsulated cells 

is proportional to the size of droplets as wells the density of cells within the cell 

suspension (Figures 3.6 to 3.7). This feature was utilised to generate a diverse 

range of cell clusters consisting of small, medium and large number of cells, 

demonstrating the ability of this method for generation of hundreds of isolated 

micro-droplets inside a cell culture well. These micro-droplets were chemically 

isolated, mechanically stable, and did not evaporate, due to the presence of oil in 

the well. This addresses my Research Question 5. 
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Research Contribution 6: The chemical isolation of droplets enabled me to 

conduct highly parallel cellular assays. This feature was used for investigating 

the oxidative stress of encapsulated THP-1 cells in response to hydrogen 

peroxide. As opposed to cells directly injected in to a well, the encapsulated cells 

settled almost immediately at the lowest surface of droplets, and hence could be 

easily monitored using fluorescent microscopy without using any secondary 

immobilisation technologies The encapsulated cells exhibited similar viability 

characteristics as off-chip experiments (Figure 3.8). By applying two sponges 

into the same well, I could position droplets containing hydrogen peroxide-

stimulated and non-stimulated cells in the same field of view, and compared their 

responses simultaneously (Figure 3.12). The stability of encapsulated cells 

allowed me to measure the dynamic response of stimulated cells without using 

any cell tracking algorithms. This feature was utilised for investigating the 

average dynamic response time (defined as the difference between the initial and 

peak response times) of THP-1 cells upon stimulation with hydrogen peroxide, 

based on which I observed two distinct cell death patterns. For the ‘slow’ 

responding cells, the average dynamic response time was measured as 32.84 min, 

while for the ‘fast’ responding cells the average dynamic response time decreased 

to 3.94 min (Figure 3.13). This addresses my Research Question 6.  
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4.3 Recommendations for Future Work 

The current research can be further extended to make a new generation of self-

sufficient microfluidic systems enabled by highly porous PDMS sponges, as 

summarised below: 

• The passive release of stored drugs into a biological system presented in 

Chapter 2 could be easily expanded to allow for more complicated cellular 

assays implementing multiple sponges to enable consequent preparation, 

stimulation and washing of cells with desired buffers, reagents, chemicals 

and drugs. 

• The active release of stored liquids into a microfluidic channel via 

compression with a screw mechanism presented in Chapter 2 could be 

equipped with stepper motors or solenoid actuators [1] to automate the 

active release of liquids from the sponge, this automation could also enable 

more complex compression patterns. The system could also be augmented 

with multiple sponges in either parallel channels or inline, allowing for the 

release of multiple drugs/reagents/buffers in complex patterns into a 

biological system. 

• The effect of the pore and interconnecting hole size on the resulting micro-

droplets generated upon squeezing in oil could be investigated by using 

sponges with different characteristics.  

• The cell assays presented in Chapter 3 could be extended to various 

chemical compounds, drugs and nano-materials [2-4] all studied in a 

parallel manner. 
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• The limited number of encapsulated cells facilitates studying the interaction 

of different cell types, for instance studying the response of immune cells 

to pathogens [5]. 

• The limited volume of droplets facilitates the capturing and detection of 

target biomarkers secreted from encapsulated cells [6-8], which might be of 

great interest for studying various cellular signaling mechanisms [9] or the 

diagnosis of diseases [10] using fluorescent microscopy.  
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