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ABSTRACT 

Global Navigation Satellite System (GNSS) receivers are now widely used for navigation and 

speed measurements. The increasing demand for vehicles monitoring in regulatory and non-

regulatory environments has led to a growing number of GNSS applications in the automobile 

industry. In addition, GNSS receivers are commonly used by civilian users for navigation and 

speed measurements.   

 

Manufacturers of GNSS receivers supply speed accuracy parameters in the receiver specification 

data sheets. However, little information is provided regarding specific conditions when the 

specified speed accuracy of GNSS receivers might be met. Also, there is limited research 

available about practical speed accuracy parameters of receivers in a variety of challenging 

GNSS environments. Finally, to the author’s knowledge, there is no research conducted to 

understand if adding more satellites from different constellations to GPS, for example, GLONASS 

provides an improvement in GNSS speed accuracy reporting.  

 

This thesis presents the design of a test asset system capable of testing GNSS receivers for speed 

accuracy and the Uncertainty of Measurements (UOM) analysis for this system. The test asset 

system utilises a variety of engineering solutions and is capable of maintaining high accuracy 

benchmarks in speed measurements. The test asset system has an UOM equal 0.4 km/h for the 

entire range of speeds used for GNSS speed testing. The system was designed, assembled and 

tested to ensure the system maintains its integrity and capability to test GNSS receivers for speed 

measurement. Subsequently, several field experiments were performed to collect GNSS speed 

data records in a variety of driving environments using different receivers. The receivers ranged 

from geodetic grade to low cost receivers. Test routes were selected specifically to reflect real 

world and challenging GNSS environments, such as freeways with overpasses and roads with tree 

canopies. 

 

Detailed analyses of outliers and statistical results are presented to demonstrate that GNSS 

receivers may not measure speed correctly under challenging environments. The results also show 

that different GNSS receivers perform differently in measuring speed. Methods to filter potentially 

unreliable speed records were also investigated. 

 

Key words: GPS, accuracy, speed, testing, challenging environment, outlier.
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1 INTRODUCTION 

1.1 Background 
 

Speed measurement systems are currently used across a range of industry sectors such as road 

transport, aviation, agriculture, maritime, rail and consumer. In the last 15 years, the use of Global 

Navigation Satellite Systems (GNSS), in particular the United States Global Positioning System 

(GPS) for speed determination has become well known, as it offers advantages over other 

methods, particularly in its accuracy of measurements. However, GPS based speed measurement 

solutions are vulnerable in areas where GPS satellites visibility drops or degrades, e.g. in urban 

canyons, along roads with tree canopies, overpasses and gantries. There are only a few practical 

research projects to date investigating the performance of GPS receivers for speed measurements 

under various environments.  Also, there is limited research that quantifies the amount of speed 

outliers generated by the receivers in such environments. This thesis covers the design of a test 

asset to test GPS/GNSS receivers for speed accuracy. Subsequently, it presents the performance 

analysis of low cost consumer grade, medium range and geodetic quality GNSS receivers in 

challenging environments. Finally, this research also analyses methods for detection of GPS speed 

outliers.  

 
This chapter reviews some background information pertaining to this thesis. A discussion covering 

prior theoretical and practical research is included, and a summary of the research contribution 

highlights the original research conducted as part of this Master study. The chapter concludes with 

a preview of the remaining chapters.  

 

1.2 Research motivation 
 

The use of GNSS technology is rapidly increasing and speed records provided by GNSS are 

currently used in the court of law (Truebridge 2014; Wainwright 2007). It is important to understand 

how GNSS speed records might be used for evidentiary purposes and specific circumstances 

when GNSS cannot be relied upon (Huang 2013). 
 

A few research activities focus attention on the theoretical performance of GPS receivers to 

measure speed (Zhang 2007; How, Pohlman & Park 2002; Zhuang 1994; Zhang et al 2006). Such 

research has advanced our theoretical knowledge on how speed is determined by GPS receivers 

and the error sources. On the other hand, theoretical research results do not necessarily reflect the 

practical performance of GPS receivers in a real world environment.  

 

A number of experiments have been conducted by researchers to estimate the speed accuracy of 

GNSS receivers when they are stationary (Chalko 2009; Ding & Wang 2011; Durrant & Hill 2005). 
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However, such experiments were usually conducted in open sky conditions and the GNSS 

receivers reported speed was very close to zero because the receivers were not operating under 

challenging environments. In such experiments, these GNSS receivers performed well and 

practically within their specifications provided.  

 

Also, a few research activities were performed in kinematic mode where GPS receivers were 

installed on test vehicles and driven along a specific route while their speed was compared to 

specific speed references (Chalko 2009; Witte & Wilson 2004; Ogle et al 2002; Al-Gaadi 2005; 

Chowdhury, Chakravarty & Balamuralidhar 2014; Ding & Wang 2011; Serrano et al 2004; 

Szarmes et al 1997; Keskin, Sekerli, & Kahraman 2014; Supej & Cuk 2014; Zhao, Goodchild & 

McKormack 2011).  While some of these research tests were conducted in a variety of GPS 

environments, there have been limitations: 

a) No information was provided in any research as to whether a test vehicle was calibrated 

and whether its accuracy can be traceable to national standards. 

                 Traceability to national standards means that a test vehicle shall be calibrated in such  

                 a way when its speed measurements or distance and time measurement results can be  

                 related to stated references, usually national or international standards, through an  

                 unbroken chain of comparisons all having stated uncertainties. For example, if  

                 calibration of a test vehicle is conducted on a chassis dynamometer, the   

                 dynamometer’s installation shall have its frequency counter calibrated and its drums  

                 calibrated. 

                 In addition, all the above calibrations shall be conducted by reference instruments with  

                 an unbroken chain of comparisons to national or international standards of frequency  

                 and length; and their uncertainties properly calculated and understood (Asia Pacific  

                 Legal Metrology Forum 2004). 

                 It is worth noting that the accuracy of the test vehicle designed in this research is  

                 traceable to National standards through the proven calibration procedure and a chain  

                 of recorded calibrations. This will be shown in Chapter 4 relating to the Uncertainty of  

                 Measurements (UOM). 

b) There has been minimal investigation conducted focusing on specific environments 

when a receiver operates in the GNSS challenging environment, e.g. near high rise 

buildings, tree canopies or overpasses. Such environments may create the degradation 

of the GPS signal or multipath. 

c) No work has been conducted to investigate simple quality indicators which can be used 

to indicate the reliability of the speed records. 

                 It should be noted that some of these simple quality indicators are widely available  

                 from GPS/GNSS receivers, e.g. the number of satellites tracked or Horizontal Dilution  

                 of Precision (HDOP).   
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d) No work has been conducted to assess the performance / accuracy of speed 

measurements using different GNSS receivers based on their cost and functionality 

under a variety of test conditions. 

 

Practical research has been conducted by Brzostowski et al (2012) to understand how different 

GPS receivers perform in kinematic mode under challenging environments. The receivers tested 

were NovAtel OEMV-3, U-block lEA-6, X-Sens MTI-G and others. However, this research only 

focused on positional accuracy but not speed accuracy.  

      

Limited research activities have also been conducted using GPS simulators (Sathyamorthy, 

Shafii, Amin, Jusoh & Ali 2015), and in real world environments with calibrated vehicles (Bai et al 

2015). It should be noted that the emphasis of the research was on the fact that a test asset, i.e. a 

GPS simulator or a test vehicle, was calibrated and therefore its accuracy parameters or UOM are 

well known and stated in the research. 

The first part of the research published the results of testing with GPS simulators but did not 

provide any real-world challenge to the receivers under test. Therefore, testing for speed with 

simulators had relatively minor value and could only highlight issues when the receivers had 

firmware issues in their speed measurement algorithms. Further, the second part of this research 

focused on a test with a calibrated test vehicle equipped with a Correvit speed measurement 

system on board (Corrys Datron Sensor Systems 2008). However, the focus of this real-world test 

described by Bai et al (2015) was with one specific GPS receiver and it was evident that testing 

was conducted on a highway with good GNSS visibility. The results showed the receiver 

performed very well throughout the journey. Also, Bai et al (2015) focused on one receiver 

operating in GPS mode rather than on a combined GNSS solution.   

 

Speed tests have also been conducted by GNSS chipset and receiver manufacturers. However, it 

is usually a challenge to find the results of such tests because they are mainly available for 

manufacturers use only. It is common that GNSS chipset data sheets contain speed accuracy 

parameters. However, it remains unclear whether such parameters were tested with GNSS 

simulators or in static / kinematic modes, and the conditions of the test. For example, the U-blox 

(2011; 2014) datasheets state that the accuracy of speed determination is 0.1 m/s but with a note 

that such accuracy is achievable under good GNSS conditions for U-blox 6 and 50% of 

measurements for U-blox 7. However, it is not specified what good conditions might mean or the 

speed accuracy performance in poor conditions. The documents from SIRF Technology, Inc 

(2007; 2010) also states the technical specifications of velocity accuracy of 0.01 m/s without 

specifying when this parameter is guaranteed. As a result, it appears that datasheets for these 

well-known GNSS receivers do not contain any specific conditions when speed records may fall 
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outside the compliance limits. Therefore, a consumer may be tempted to assume that speed 

accuracies are always guaranteed.  

  

Durrant & Hill (2005) represent a report developed by a manufacturer of GPS receiver. The report 

describes the performance of the receiver for speed measurements. However, this report 

described two test scenarios only. The first was in open sky static testing; and the second was a 

brief dynamic test in an open sky environment. In the latter test, the speed of a vehicle was 

measured precisely during a short timing interval when a vehicle passed a little section of the road 

where laser trap systems were installed. In addition, there was no analysis of the uncertainty of 

speed measurement. Finally, only one GPS receiver was tested.   

 

Another example of manufacturer GPS testing was described in U-blox (2013a). Although this 

report was very comprehensive, it did not focus on speed accuracy but demonstrated willingness 

of the GPS chipset manufacturer to test a few critical parameters using a GPS simulator. Such 

testing did not consider the accuracy of speed measurements in real-world situations. 

 

Speed Dilution of Precision (SDOP) is outputted by some GPS chipsets as a parameter to indicate 

possible quality of speed records (Chalko 2009). SDOP is a parameter determined based on the 

Kalman Filter covariance computed during each 1-second cycle of the SiRF3 chipset (Chalko 

2009). It should be noted that SiRF is a trademark of SiRF Technology, Inc. which pioneered in the 

commercial use of GPS technology for consumer applications. Chalko (2009) suggested the 

following benefits of using SDOP for determining errors of GPS-Doppler speed measurements: 

 the SDOP parameter reflects the influence of atmospheric phenomena and satellite 

constellation geometry at the time of each GPS-Doppler speed measurement (Chalko 

2009). 

 the GPS Doppler speed accuracy can be computed for each speed measurement 

individually. This is important when speeds are measured in varying atmospheric 

conditions. 

 the method of evaluating speed measurement errors based on SDOP parameters is self-

adjusting to the measurement conditions. 

 the speed values displayed by the GPS receiver in real time can be corrected for speed 

error. 

 the logged GPS-Doppler speeds corrected by SDOP can potentially serve as proof of 

speed, including in the court of law. 

 

There are disadvantages of using SDOP. They could be summarised as follows: 

 SDOP is not a parameter used in many GPS chipsets even after years of implementing it in 

SIRF type GPS chipsets. SDOP is not outputted as a parameter in most low cost or mid-
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range receivers, but also not always in geodetic quality receivers. For example, advanced 

NovAtel receivers (NovAtel Inc 2014a) used in this project, plus the Leica receivers (Leica 

Geosystems 2004) used in the survey industry do not output SDOP. 

 The determination of SDOP values is hidden behind proprietary algorithms, which are often 

not disclosed nor available to researchers. This may introduce doubts when such speed 

records are used for evidentiary purposes in legal proceedings. 

The above disadvantages of SDOP indicate a need to have other simple quality indicators which 

might be used to filter the potential unreliable speed records generated by GPS chipsets / 

receivers.  

As mentioned previously, little research activities have been conducted to investigate GNSS speed 

accuracy in challenging environments. GNSS signals are radio navigation waves and therefore can 

be impacted by multipath, tree foliage or other obstructions in the real-world environment.  

Multipath occurs when the GNSS signal is reflected from surrounding objects, such as buildings, 

bridges, road gantries and other structures. It is considered that multipath represents one of the 

largest sources of error in GNSS measurements (Mekik & Can 2010) and specifically in speed 

related applications (Zhang 2007). For multipath mitigation, existing approaches can be classified 

into several groups (Inside GNSS 2016): tracking loop based, antenna based, mask angle based 

and extra information based. The first approach focuses on tracking loop improvements and the 

other receiver based techniques (Van Dierendonck, Fenton & Ford 1992). Antenna based methods 

include the use of special antennas (Tranquilla, Carr & Al-Rizzo 1994). The extra information based 

method might use several sub-methods trying to improve the performance in multipath 

environments. Such sub-methods might include determination of SNR and the subsequent 

determination of probable multipath based on SNR values (Comp & Axelrad 1998; John A Dutton 

e-Education Institute 2015) or elevation enhanced maps (Pinana-Diaz, Toledo-Moreo, Betaille & 

Gomez-Scarmeta 2011).  

All the above methods are relevant to situations when GNSS receivers or antennas are designed 

rather than used by the end user and therefore may be applicable for research and development 

rather than practical applications. As a result, the only method available to the end user to mitigate 

multipath is to change the mask angle through the receiver configuration settings, if such settings 

are available. This method has been described in several sources (John A Dutton e-Education 

Institute 2015; Roberts 2015; Abd-Elazeem, Farah & Farrag 2010; Heng, Walter, Enge & Gao 

2015). Mask angle, also very often referred to as cut-off angle, is a parameter in the receiver 

configuration when signals below a particular elevation angle would be effectively filtered out by 

the receiver and would not be used in positional or speed computations. Therefore, the use of the 

cut-off angle to mitigate multipath related problems might be a sound strategy. In theory, it is 

considered that such strategy would help to improve speed accuracy parameter of GNSS receivers 

(Zhang 2007) or positional accuracy (John A Dutton e-Education Institute 2015; Roberts 2015; 
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Abd-Elazeem, Farah & Farrag 2010). On the other hand, implementing higher mask angles would 

drop the availability of satellites used for navigation and speed measurements and therefore 

reduce the number of speed records available. Hence, a compromise is needed between high 

mask angle to mitigate multipath and low mask angle to have sufficient satellite availability. It is 

worth noting that the above-mentioned research did not stipulate dependency between cut-off 

angle and speed accuracy. It is only considered in theory that the higher the cut-off angle, the 

better the speed accuracy (Zhang 2007). 

It is also worth mentioning that if reflected GNSS signals come from an object located by more 

than 160 meters from a receiver, it is highly unlikely that such signals could cause errors in GNSS 

performance (Hannah 2001). However, the majority of overpasses located along freeways or 

buildings are located close to the road. Therefore, overpasses shall be taken into consideration 

when analysing GNSS speed errors. As a result, it is important to understand if the strategy of 

elevating the mask angle would practically help to improve the speed accuracy in such 

environments. 

In addition to that, it is also known that tree foliage and canopy might affect the performance of 

GPS receivers (Goldhirsh & Vogel 1998). However, the research on investigating the impact of 

trees on GPS receivers focused on positional accuracy only (Klimanek 2010; Lachapelle, 

Henriksen & Melgard 1994), and only on GPS rather than GNSS receivers. Therefore, it is unclear 

how GNSS receivers would perform in tree foliage environments and whether such conditions 

represent more or less challenge to the receivers compared to multipath related environments. It 

is also unclear if elevation cut-off angle variations would influence the performance of GNSS 

receivers in tree foliage related environments. 

Trees can be a significant source of signal loss. Several parameters are involved in such a loss, 

among them: the specific type of a tree, whether trees are dry or wet, and in the case of deciduous 

trees, whether the leaves are present or not. It was expected that even isolated trees might 

represent a problem for GNSS signals; however, a dense group of trees or trees staying all along a 

section of the road might represent a major problem.  The expectation was based on the fact that 

the attenuation of RF and GPS signals in particular depends on the distance the signal must 

penetrate through the forest or leaves, and the attenuation increases with frequency. According to 

McLarson (1997), the attenuation of RF signals is in general approximately 0.05 dB/m at 200 MHz, 

0.1 dB/m at 500 MHz, 0.2 dB/m at 1 GHz, 0.3 dB/m at 2 GHz and 0.4 dB/m at 3 GHz. As GNSS L1 

frequency equals to 1575.42 MHz, the GNSS signal sits in the middle of Ultra High Frequency 

(UHF) range and therefore is vulnerable to propagation along tree lined roads. 

However, the challenge of tree foliage environments is not only related to obstructions and signal 

propagation. The second challenge relates to the test vehicle moving along the road when 

unobstructed line of sights (LOS) for every epoch is achieved for relatively short periods of time. In 

such instances, the satellite availability would vary significantly from one second to another. This 
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means the receivers are put under challenge of operating with constantly changing satellites 

because of LOS variability and signal variability from each satellite due to GNSS signal 

attenuation. 

As a result, it is important to quantify whether multipath or tree foliage environments represents a 

major challenge for GNSS receivers to measure speed. It is also important to investigate methods 

of determination of potentially unreliable speed records in such environments.  

 
 

1.3 Research objectives 
 

The aim of this research is to assess the performance of various GNSS receivers for measuring 

speed. The research has the following objectives: 

 Development of a speed measurement system for the test vehicle that can accurately 

measure the accuracy of speed measurements from GNSS receivers. This development 

includes the full design, assembly of a prototype, development of calibration methods and 

validation of proper operation of the test vehicle; 

 Analysis of the UOM for the developed speed measurement system in the test vehicle. 

 Assessment of speed accuracy provided by low cost consumer grade, medium range and 

high end geodetic quality GNSS receivers, particularly in GNSS challenging environments. 

The objective is also to quantify whether overpasses or areas with tree canopies represent 

most challenging environment for GNSS speed measurements; 

 Assessment of using HDOP parameter to filter potentially unreliable GNSS speed records; 

 Assessment of the effectiveness of using elevation mask angle to reduce the number of 

speed outliers in GNSS challenging environments; 

 Analysis of the benefits of adding Globalnaya Navigazionnaya Sputnikovaya Sistema 

(GLONASS) satellites to a Global Positioning System (GPS) only constellation to improve 

the accuracy of speed measurements; 

 Assessment of using Signal to Noise Ratio (SNR) to filter out unreliable speed records. 

 

1.4 Research approach and contributions 
 

In this thesis, a test vehicle with a speed measurement system was specifically designed and 

implemented to assess the accuracy of speed measurements provided by GNSS receivers.  

 

Modern GNSS chipsets which represent an integral part of GNSS receivers usually have a 

minimum sampling and processing rate of at least 1 Hz or higher. The majority of GNSS chipset 

manufacturers claim that the measured speed accuracy is about 0.1-0.4 km/h or better. However, 

a challenge in proving the GNSS speed accuracy parameter was to have an electronic speed 
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measurement system on the test vehicle capable of generating speed records synchronised to 

Universal Coordinated Time (UTC). Such synchronisation would provide a timing match between 

speed records produced by a test vehicle and speed records generated by the GNSS receivers 

under test.  

 

The second challenge was to design an electronic speed measurement system of the test vehicle 

with the UOM better than, or compatible to the speed errors of GNSS receivers. The calibrated 

speed of a test vehicle represents the reference speed for all comparisons. Therefore, it is 

important that the reference speed inaccuracies are well understood and estimated via proper 

UOM techniques. The speed measurement system must be calibrated for every run/test. Thus, the 

test vehicle must be driven with all GNSS receivers on observation days after each calibration. 

Also, after each test, the vehicle’s calibration was checked again to ensure that the calibration 

parameters are still maintained.  

 

The third challenge relates to reporting of an instantaneous speed value using raw Doppler 

measurement used by the GNSS receivers to compute speed. However, the speed measurement 

system of the test vehicle always reports an average value of speed for a specific timing interval, 

e.g., 1 sec. Indeed, GNSS receivers using Doppler to calculate speed are not able to provide one 

record per second when speed is reported as an average value for the entire second. Such GNSS 

receivers report speed which is immediate and corresponds to the end of each second, whereas 

the speed measurement system of the test vehicle averages the speed within the second of 

conducting a measurement. 

To address the above challenges, a specific test vehicle’s electronic speed measurement system 

was designed, assembled, pilot tested and implemented. Subsequently, the test vehicle was 

driven on specific routes selected such that the research objectives can be addressed. For 

example, to test GNSS receivers in challenging environments, the routes were selected either on 

freeways with multiple overpasses or countryside roads with multiple tree canopies or forest 

areas. Also, several GPS/GNSS receivers were tested simultaneously to compare their 

performance against each other and against the speed measurement system under the same 

GNSS environments. Data from these receivers were collected and subsequently analysed to 

address the research objectives.  

The contributions of this research can be divided into two distinct categories. The first relates to 

the engineering design of the speed measurement system; and the second relates to actual 

experiments with the GNSS receivers, their data analysis and results. Therefore, the research 

contributions are as follows: 
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1.4.1 Engineering design 

The contributions related to the engineering design of the speed measurement system: 

 Design of a speed measurement system for the test vehicle. This system is used to 

effectively test GNSS receivers for speed accuracy. 

 Analysis of the UOM of the speed measurement system. 

 Development of a calibration methodology for the speed measurement system and 

electronic calibration diagrams to ensure that the desired UOM is maintained. 

The designed and calibrated speed measurement system has its UOM well understood and 

comparable to what GNSS receivers may achieve in stationary mode. This will be described in 

chapters 4 and 6 of this thesis. Also, the developed calibration methodology provides traceability 

to national standards of distance and time. 

1.4.2 Experiments, data analysis and formulating outcomes 

The contributions related to actual experiments with GNSS receivers, their data analysis and 

results: 

 Assessment of the accuracy of speed measurement provided by various GNSS receivers in 

the real-world environment. Real-world challenging conditions include close proximity to 

bridges, overpasses, road gantries and roads with tree canopies / forests. This information 

is valuable in understanding whether the receivers speed records can be trusted. The 

research also attempts to investigate the quality of the speed measurement provided by 

different receiver types, e.g. geodetic quality, medium and consumer grade GNSS 

receivers. These receivers use the same algorithm for speed determination, i.e. the Doppler 

method.  

 Evaluation of the benefits of adding an additional GNSS constellation, such as GLONASS, 

to improve speed measurement accuracy, particularly in challenging environments.  

 Investigation on whether HDOP or SNR could be used for identification and detection of 

unreliable speed records.  

 Investigation on whether satellite mask angle can be used for filtering speed outliers 

generated by GNSS receivers in challenging environments. 

 

1.5 Thesis outline 
 

This thesis will present the details of the designed speed measurement system for testing GNSS 

receivers for speed accuracy, as well as the results from practical field experiments. 
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Chapter 2 contains a detailed discussion of the methods and algorithms utilised in GNSS for 

speed determination. This chapter also describes the practical implementation of such methods in 

modern GNSS chipsets and the sources of error. 

 

Chapter 3 contains a detailed discussion of the speed measurement system developed and used 

as reference in the research. This chapter includes information on the existing non-GPS based 

speed measurement methods and their analysis, peculiarities of the designed system based on 

the microcontroller, features of the speed sensor, and aspects of the hardware / firmware 

components of the non-GPS based speed measurement system. 

 

Chapter 4 focuses on the UOM of the speed measurement system. Relevant uncertainties of the 

calibration and speed measurement are analysed. The UOM provides a basis to benchmark, 

compare and quantify the accuracy of speed measurement provided by GNSS receivers. 

 

Chapter 5 describes the GNSS receivers tested in this research. In addition, this chapter details 

the test methodology used in the experiments. It also highlights the approach for validating each 

experimental run through checking the performance of GNSS constellation. Finally, this chapter 

contains a description of a trial test conducted to demonstrate that the test vehicle, with its speed 

measurement system, operated as expected, and proving that the test methodology was sound. 
 
Chapter 6 describes the outcomes from each experiment. The first part of the chapter concentrates 

on static speed tests for all GNSS receivers. It describes the results of the static speed tests 

conducted in ideal open sky environments and under various environments where a test vehicle 

was stationary. This aimed to determine the speed measurement noise for each GNSS receiver. 

Then, this chapter provides the results of the dynamic tests in open sky and challenging GNSS 

environments. Challenging environments were classified into two types: routes with overpasses / 

road gantries, and routes with forest / tree canopy. GNSS plus GLONASS speed measurements 

were compared to GPS only results. Test results are presented to analyse both speed outliers 

generated by GNSS receivers and their statistical performance.  

 

Chapter 7 presents an investigation into whether it is possible to filter individual speed outliers or 

potentially unreliable speed records using GNSS parameters such as HDOP, the number of 

satellites, SNR or satellite elevation.  

 

Chapter 8 contains discussions and conclusions reviewing the contributions of the research, and 

provides some recommendations for future work. 
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2 SPEED DETERMINATION WITH GPS/GNSS 

2.1 Overview 
GNSS receivers are widely used today for obtaining positional and speed information. Speed 

records produced by GNSS are used in a variety of applications, such as monitoring driver 

behaviour (SeaStar Solutions 2015), in court for challenging speed fines (Expert Law 2012), in the 

telematics industry to monitor if drivers of heavy vehicles are speeding (Fleetmatics 2015; United 

States Department of Transportation 2014), unmanned aerial vehicles (Christophersen et al 

2006) and Intelligent Transport Systems (ITS). Sometimes, speed records from GNSS are used 

to monitor drivers who have committed numerous driving offences, such as through the Intelligent 

Speed Assist initiative launched by VicRoads (VicRoads 2016).  

 

GNSS receivers measure speed using multiple methods. Three methods will be described: speed 

through position records, speed based on Doppler method, and speed based on Carrier-phase 

method. It should be noted that modern GNSS receivers may use a combination of the above 

methods.  

 

In this thesis, reference to GNSS includes GPS or GPS plus GLONASS. 

2.2 Speed based on position records 

The least accurate method of speed determination is via the use of position records and knowing 

the time interval between them. This method has been used by GPS receivers in the past, but is 

no longer a popular method.  

This method uses the following simple equation to calculate speed: 

                                                                                                            (2.1) 

Since GPS provides position at very precise moments, it is possible to compute average speeds 

for these intervals. All computations are made by the GPS receiver. 

The accuracy of this speed measurement method is lower compared to the Doppler derived or 

carrier phase methods. The accuracy entirely depends on the positional accuracy, which varies 

from a few centimetres to 20-30 meters or so. As a result, if the speed is low, the positional 

inaccuracy would provide large speed errors. Also, the accuracy will vary with the time period 

considered, i.e. the higher the sampling rate, the better the accuracy on a condition of maintaining 

a constant speed within this interval. Thus, for each segment between two track points, the 

receiver calculates an average speed over this time period. However, no instantaneous speed 

information is provided as a result.  
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In Figure 2-1, the blue track is the straight line projection of the real red track. The length of the 

blue track is shorter than the red one. Therefore, the straight speed (blue) is different from the real 

one. In fact, the more the track has a zigzag shape, the bigger the difference between these two 

values.  

 

Figure 2-1: Speed through distance over time 

In this method, measurements should be done faster to provide higher speed accuracy, otherwise 

zig-zag movements would result in an error. On the other hand, if the measurements are 

observed rapidly, say 100 times per second, then positional inaccuracies would come into play. 

Thus, speed measurements may become totally inaccurate.  

These limitations prevent its use in modern GNSS receivers.  

2.3 Speed based on Doppler method 

People are experiencing Doppler effects in their lives all the time. For example, when people swim 

against waves rather than with the wave. Another example is when an emergency vehicle drives 

with a siren and the siren is heard differently depending on whether the vehicle is travelling 

towards or away from an observer. This is because of the relative speed between two objects, i.e. 

the person on the one hand and the waves / car on the other. This principle of measurement is 

shown in Figure 2-2. 

 

Figure 2-2: Doppler effect 

When a source transmitting electromagnetic waves is moving relative to an observer, a  

frequency shift between the transmitted signal and the received signal will be observed. This effect 

is known as the Doppler effect and the frequency change is known as the Doppler shift or the 

Doppler frequency. The Doppler frequency shift speed calculation in GPS receivers is a direct 

measurement of speed. The L1 carrier frequency of the GPS satellite will appear to be shifted in 
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frequency by the relative motion between the satellite and the receiver. This is shown in               

Figure 2-3. 

 

Figure 2-3: Doppler shift and GPS speed measurements (Ono Sokki Co, Ltd 2017) 

Since each satellite emits a steady frequency, the different frequencies measured by the GPS 

receiver are caused by the motion of the receiver, provided that the speed and trajectory of the 

satellites are well known. Observing several satellites, the GPS receiver can determine its instant 

speed. This value is accurate according to GPS chipset and receiver manufacturers’ 

documentation and the accuracy could be as good as 0.1 km/h or better (SIRF Technology Inc 

2010; NovAtel Inc 2007; Libelium Comunicaciones Distribuidas 2014).  

In the context of GNSS, the frequency experienced by the receiver can be represented as 

(Bahrami 2008), 

if moving toward; and                     (2.2) 

                                                   if moving from the receiver,            (2.3) 

where 

- Ft and Fr are the transmitted and received frequencies, respectively; 

- Vprop is the propagation speed of the waves which equals the speed of light in a vacuum in 

this context;  

- Vradial is the relative radial velocity between the signal emitter (i.e. the satellite) and the 

receiver in the Line-of-Sight (LOS) direction. 

 

Re-arranging the above formula, the Doppler shift can be presented as, 
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                                                     (2.4) 

where  

- λft is the nominal/transmitted frequency wavelength; and 

- C is the speed of light. 

 

The above equation confirms that if there is a means to measure the Doppler shift ∆Fr, then it is 

possible to get the radial velocity to a satellite. Subsequently, by forming a system of equations, 

one should be able to estimate the receiver velocity vector assuming that the satellite velocities 

can be modelled and well understood.  

 

This Doppler computed speed is commonly used by GNSS receivers to provide instant speed 

measurements. The receiver provides the raw Doppler measurements that are the direct output of 

the Phase Lock Loop (PLL) filter (Borio, Sokolova & Lachapelle 2009), as shown in Figure 2-4. 

 

Figure 2-4: Phase lock loop (Borio, Sokolova & Lachapelle 2009) 

In Figure 2-4, the Loop Filter output is the raw estimate of the carrier Doppler, and the Integrator’s 

output represents carrier phase observations. The loop filter output is an instantaneous measure 

produced over a small-time interval, namely the coherent integration time. 

 

The Doppler shift is therefore the frequency difference between the received signal and the 

source signal. This results from the relative motion between a GNSS receiver and any GNSS 

satellite. The GNSS receiver in this instance measures the Doppler frequency shift.  
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2.4 Speed based on the carrier phase method 

A carrier phase measurement is the measurement of the phase of the arriving carrier wave signal 

from the GPS satellite. As the radio signal from a GPS satellite travels from the satellite to the 

receiver, it completes numerous whole and a fractional number of cycles of oscillation, i.e. the 

distance is represented by some fractional number of wavelengths, for example, 67 million and 

1/2 wavelengths.  In this case, the carrier phase measurement gives the fractional value of 1/2 

wavelength, or 180 degrees of phase.  This in itself has almost no value.  However, the GPS 

chipset can determine the phase change, or the number of wavelengths of distance change, 

between the satellite and the receiver from one measurement epoch to the next. In this instance, 

there is a measurement of the change in distance between the satellite and the receiver over a 

known period of time.  Given that the location and velocity of all the satellites are known, the GPS 

receiver can use this information to calculate the 3D velocity.  It is possible to do the same thing 

with both pseudo-range or Doppler measurements, which the receiver also generates. However, 

carrier phase measurements have the potential to be more accurate. The following is required to 

conduct the carrier phase speed calculations: 

 raw carrier phase measurement data; and 

 GPS broadcast ephemeris to compute the position of all the GPS satellites. 

In this process, the receiver clock drift rate may be significant and should also be considered in 

calculations.   

Figure 2-5 represents a visual interpretation of this method considering what is shown in       

Figure 2-4 and how the PLL operates. The carrier phase measurement of a GPS receiver is 

actually the integrated Doppler shift measurements (Borio, Sokolova & Lachapelle 2009). 
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Figure 2-5: Carrier phase method (Perez-Ruiz & Upadhyaya 2012) 

2.5 Practical implementation of speed measurements in modern GNSS chipsets 
One of the most comprehensive explanations about how GPS chipsets may use several methods 

to measure speed depending on settings is presented in Table 2-1 (U-blox 2013b; U-blox 2013c). 
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Table 2-1: Dynamic platform models of U-blox 6 and U-blox 7 (U-blox 2013b; U-blox 2013c) 

 

 

Table 2-1 demonstrates that the U-blox GPS chipsets is very flexible in selecting a number of 

modes of operation to measure speed. However, not all chipsets and GPS receivers allow this. 

The method of using position records to calculate speed is not used in the U-blox chipset. This is 

simply because positional inaccuracy parameters would cause errors in speed determination, 

particularly at low speeds. The Doppler and Carrier Phase methods are flexibly used in the U-blox 

GPS chipset to provide high accuracy speed determination (Sbisa 2013). 

 

The speed calculation method depends on the chosen dynamic platform (refer to Table 2-1). 

Some dynamic platforms enable speed calculation based on Doppler only, while others permit the 

use carrier phase measurements as well (Sbisa 2013). When Doppler measurements are used to 

calculate speed, then the solution relates to the exact moment when the solution is derived. When 

carrier phase measurements are used, then the speed solution relates to the mid-time between 
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the current and the last epoch. This is because the Doppler measurement is a measure of 

instantaneous speed, whereas a temporal difference of carrier phase is the measure of mean 

velocity between observation epochs (Hou 2014; Ding & Wang 2011). Thus, at a 1 Hz navigation 

rate, the speed solution in the carrier phase method relates to the time 0.5 seconds prior to the 

position solution. 

 

For example, when the speed dramatically changes within one epoch, the delay within one epoch 

in the speed measurement would be significant (integration effect). For that reason, in case of 

higher acceleration, U-blox chipsets switch back to the speed measurement based on the Doppler 

method (Sbisa 2013).  

 

Table 2-2 shows the U-blox 6 GPS chipset default modes of operation depending on the chosen 

dynamic platform (Sbisa 2013). It should be noted that the chipset automatically changes its 

default settings using the above approach depending on acceleration. 

Table 2-2: Dynamic platforms and speed determination for U-blox 6 GPS chipset (Sbisa 2013) 

Platform Speed determination via 
Doppler 

Speed determination via 
carrier Phase  

Portable No YES 

Stationary No YES 

Pedestrian No YES 

Automotive No YES 

At sea  No YES 

Airborne <1g YES No 

Airborne <2G YES No 

Airborne <4g YES No 

 

Thus, GPS chipsets such as U-blox 6 can provide significant flexibility in the selection of the required 

method to measure speed.  Moreover, depending on the acceleration of the chipset the default 

mode of operation may change from Doppler based to carrier phase or vice versa.  
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2.6 The sources of GPS speed errors  
Zhang (2007) states that the various methods of speed measurements have the following sources 

of errors: 

 atmospheric interference; 

 multipath; 

 GPS satellite frequency and velocity errors (United States of America Department of Defence 

2008); 

 GPS receiver errors related to frequency and phase shift determination. 

Atmospheric interference is related to the moisture and ions in the earth's atmosphere which can 

change the speed at which the satellite radio waves travel. Additionally, the radio waves are bent 

(refracted) when they enter the earth's atmosphere, which changes the length of the path the radio 

signal takes to get to the receiver. 

Atmospheric errors are usually greater for satellites in the low horizon. Therefore, some GPS 

receivers allow the user to mask satellites below a set angle (refer to Figure 2-6). For many 

receivers, the mask angle is implemented with 5° above the horizon as default. For more advanced 

receivers used in this research, the angle varied between 5° and 15° in different experiments. The 

effects of mask angle on speed measurement accuracy will be studied in chapter 7. 

 

Figure 2-6: Atmospheric errors 

Multipath means that the same radio signal is received several times through different paths. For 

instance, a radio wave could leave a satellite and travel directly to the receiver, but also bounces 

off a building and arrives at the receiver later. The most common causes of multipath are buildings, 

overpasses and road gantries. With advanced antenna-filtering techniques, some GPS receivers 

might be less prone to multipath errors.  
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Figure 2-7: Multipath related errors 

Even though all the errors should be considered, it appears that multipath (refer to Figure 2-7) 

may represent the most severe error source. 

Typically, GPS satellites have rubidium clocks which are used to generate signals for the Doppler 

speed measurements. Any deviation of frequency in such clocks contributes to errors in speed 

measurements. However, such errors are typically much lower compared to multipath and the 

atmospheric errors. In addition, satellite velocity may not be constant and such errors would also 

influence the determination of Doppler shifts. Again, such errors are typically much lower 

compared to multipath and atmospheric errors (United States of America Department of Defence 

2008). 

GPS receiver errors related to frequency and phase shift determination are linked to the receiver’s 

ability to operate as a frequency counter. The Doppler shift and the carrier phase are measured 

by first combining the received frequencies with the nominally constant reference frequency 

created by the receiver’s oscillator. The difference between the two frequencies is the so-called 

beat frequency, and the number of beats over a certain timing interval is known as the Doppler 

count for that interval (John A Dutton e-Education Institute 2017). Since the beats can be counted 

much more precisely than their continuously changing frequency can be measured, most GPS 

receivers just keep track of the accumulated cycles, i.e. the Doppler count. The sum of the 

consecutive Doppler counts from an entire satellite pass is often stored, and the data can then be 

treated like a sequential series of biased range differences. In this process, the nominally 

constant reference frequency is generated within the GPS receiver and therefore its variations 

influence the magnitude of errors. However, modern GPS receivers usually have precise crystal 

oscillators as sources of such frequencies. Therefore, the errors due to multipath or atmospheric 

interference are much larger than errors caused by frequency variations in GPS receivers (Zhang 

2007).  
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In this project, all receivers under test used the same method of speed determination, i.e. the 

Doppler derived method.  
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3 DESIGN OF A SPEED MEASUREMENT SYSTEM FOR GPS/GNSS 
TESTING 

3.1 Analysis of existing speed measurement systems 

Speed is typically measured as distance over time. A number of speed measurement devices and 

systems use this principle, although there are some devices which use completely different speed 

measurement techniques. Speed measurement systems may be classified as follows: 

 Systems measuring distance covered by a test vehicle within a specific timeframe and 

subsequently calculating speed. The distance measurements are conducted via sensors 

installed on a test vehicle’s wheel or some other rotating parts which move proportionally to 

speed. Such sensors do not belong to the vehicle’s original electronics. 

 Systems measuring distance based on optical technologies, for example, the Correvit-L400 

(Corrys Datron Sensorsystems GmbH 2008), where such systems use their internal timing 

to calculate the speed output. 

 Systems based on radar technologies. 

 Systems receiving speed data from the existing speed / distance sensors already installed 

on a vehicle. 

Each system has various advantages and disadvantages. Therefore, its suitability to test GPS 

receivers for speed accuracy may vary. 

3.1.1 Speed via distance over time 

Systems measuring speed via distance over time usually have sensors. These are often in the 

form of a Shaft Encoder (Encoder in further text), temporarily or permanently connected to a shaft 

of a vehicle’s wheel (Eitel 2014; Viswanathan 2005). Such Encoders have been widely used in the 

automation industry for many years to measure the rotation of shafts installed on different 

machine tools at the manufacturing facilities. Typical examples of such applications can be found 

in Dyukov (1988, 1990). Shaft Encoders have also been used in the automobile industry. In speed 

applications, the Encoder effectively measures the ground distance which is then converted into 

speed by a microcontroller. The use of Encoders in such applications is common practice. For 

example, in Viswanathan (2005), the speed measurement system is described based on the 

Dynapar encoder producing 200 pulses per revolution of a wheel. As the wheel rotates, multiple 

pulses are produced by the Encoder and the number of pulses is directly proportional to the actual 

distance covered by the vehicle. A distance reading is recorded at specific timing intervals, e.g. 

every second. 

The basic principle of the Encoder operation is shown in Figure 3-1. The Encoder is an electro-

mechanical device that converts the angular position or motion of a shaft or axle to a digital code 
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or a series of pulses. There are two main types of Encoders: absolute and incremental (relative). 

The output of an absolute Encoder indicates the current position of a shaft, making it an angle 

transducer. The output of an incremental Encoder provides information about the motion of the 

shaft, which is typically further processed into information such as speed, distance, and position. 

In Figure 3-1, as the wheel rotates, the light from the light source is interrupted multiple times and 

therefore a photo detector produces a series of pulses. This number is then converted into speed 

because the timing intervals are known and the number of pulses produced by the encoder per 

one rotation is also known.  

 

Figure 3-1: Basic principle of operation for the Encoder (Eitel 2014) 

The main advantage of this method is that it is possible to synchronise the output speeds of the 

test vehicle with Universal Coordinated Time (UTC) once the microcontroller is synchronised with 

UTC. This, however, would typically require an in-house design because no commercial products 

are available which are capable to provide such synchronisation.  

 

The disadvantage of this method relates to tyre pressure variations and the changing 

circumference as the tyres wear. These may cause less accurate readings or reference errors 

depending on the speed. Therefore, the test vehicle must be calibrated before the test and 

checked after the test to ensure that calibration was maintained. Also, the accuracy parameters of 

the test vehicle need to be well analysed and understood. This includes speed accuracy 

fluctuations depending on variations in tyre pressure. 

3.1.2 Speed via optical technologies  

Systems measuring speed via optical technologies are based on optical speed sensors. An 

example of such a system is the Correvit system (Corrys Datron Sensorsystems GmbH 2008) 

whose optical sensors are manufactured by Kistler Corrys Datron. Such speed sensors represent 

a major refinement in the evolution of measurement technology. Since the introduction of the 
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world’s first optical speed and distance sensor in 1981, Corrys have worked continuously to bring 

increasingly high levels of accuracy and repeatability to non-contact measurement of dynamic 

variables including speed, distance, angle and height. An example of Correvit sensor is shown in 

Figure 3-2. 

 

Figure 3-2: Parameters of Correvit (Kistler 2014) 

These optical sensors utilise a high-intensity light source to illuminate the measurement surface, 

while the optical sensor observes the stochastic microstructure of the surface via an objective 

lens. The acquired optical signal is then projected onto a periodic prismatic grating within the 

system, where it is multiplied as details of the surface microstructure move across the grating. 

Resultant spatial frequencies are integrated over the sensor field to generate a correlated average 

value. 

A setup of the Correvit system can be seen in Figure 3-3 (Jankovic et al, 2012): 
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Figure 3-3: Installation of Correvit (Jankovic et al 2012) 

The electronic signal-processing component of the system utilises tracking filters to determine the 

representative centre frequency. This is derived by calculating a mean value based on the 

variance in the frequency spectrum. The representative centre frequency allows reliable counting 

of signal periods, which are directly proportional to the distance that the observed surface has 

travelled.  

 

The advantage of speed measurement systems based on optical sensors is their high accuracy of 

measuring speed with typical errors less than 0.5% of the actual speed value. The second 

advantage is that the speed error does not depend on tyre pressure. 

 

The disadvantage of such speed measurement systems is that they measure speed 

autonomously based on their own timing and output speed measurement either through RS232 or 

by other means. Therefore, there is no synchronisation with UTC timing. Secondly, and more 

importantly, calibration of such systems is very complex and requires special facilities and 

methodologies (Lopez, Solva & Ruiz 2014). Considering that the speed tests in this research were 

to be conducted multiple times, it was not feasible to calibrate the Correvit system externally 

several times a year or build a calibration facility. Lastly, such devices as the Correvit are very 

complex and cost more than $20,000 to purchase. 

3.1.3 Speed via radar technologies 

Speed measurement systems based on radar technologies are well known. They work on the 

principle of reflected radar waves from the ground while a vehicle is moving (Dybedal 2013). 

Ground speed sensor Radar II from Dickey-John Corporation is an example of a radar based 

sensor, see Figure 3-4: 
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Figure 3-4: Speed sensor Radar II (Dickey John Corporation 2014) 

These sensors operate using the Doppler principle when the generated and transmitted microwaves 

are reflected with a frequency shift. This shift occurs due to movement between the transmitter / 

receiver installed on a test vehicle and the target object, which is the ground in this instance. The 

difference between the transmitted and the reflected frequencies is known as the Doppler effect. 

The sensor then determines the frequency of the reflected signals and compares it with that of the 

generated signal. The difference is proportional to the vehicle speed. 

  

The Doppler frequency can be calculated as shown: 

                                                        Fd = (2Vcos θ)/ λ                                                       (3.1) 

where  

 Fd is the Doppler frequency (Hz); 

 V is velocity of the vehicle (miles per second); 

 λ is wavelength of the transmitted signal (miles); 

 θ is an angle between the ground and the sensor (degrees). 

 

The Dickey-John Radar II, for example, works on a 24.125 GHz ± 25 MHz microwave frequency 

with micro power level of 5 mW. The second example is the Stalker Pro II Speed Sensor Radar 

(Applied Concepts 2016) which operates at 34.6 GHz frequency and provides speed measurement 

accuracy of ±0.3%, as claimed by the manufacturer. 
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All speed measurement systems based on radar technology have either Personal Computer (PC) 

applications available for configuration and data downloading capabilities or ports like an RS232 to 

download the data in real time.  

 

The disadvantages of radar based systems are:  

 The accuracy depends on the surface on which a vehicle is travelling.   

 Maintaining the mounting angle is critical to their accuracy (Viswanathan 2005).  

 The speed output is not synchronised with UTC. Therefore, the synchronisation should be 

conducted at the PC level. In this case, the PC will obtain GPS data from the receivers under 

test plus the speed records data from the radar and then record them simultaneously. Such 

synchronisation, however, poses questions about the traceability of the results. This is 

because the PC will obtain several data streams which are not synchronised with each other.  

3.1.4 Systems using embedded vehicle sensors 
Systems measuring speed using existing speed sensors installed in vehicles are well known and 

represent digital speedometers. Such speedometers obtain data from sensors already installed in 

the vehicles. These sensors typically produce a certain number of pulses proportional to the actual 

speed. For example, the SDS detector (Ballinger Technology 2015) is produced in Australia and is 

a digital speedometer used by the police departments nationally (see Figure 3-5).  

 

Figure 3-5: SDS detector (Ballinger Technology 2015) 

The SDS detector has a four-digit LED speed readout and a status indicator which is visible in 

direct sunlight. The speed lock switch allows checked speeds to be locked into the display. 

Alternatively, the speed values can be transmitted to a PC.                  

  

The specified accuracy of such devices is about ±2 km/h. The SDS detectors conduct 

measurements over a 2 second period with a 0.5 second display update rate. One second update 

rate optional. 
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The SDS detector can be calibrated on a pre-surveyed straight section of the road, in which the 

distance is accurately pre-determined. Alternatively, a calibration might be conducted on a 

Dynamometer. In the latter case, the wheels of a vehicle would be forcefully rotated at a known 

speed level and the frequency of rotation is proportional to speed and controlled. 

 

The disadvantage of these systems is their low accuracy. With a speed accuracy of ±2 km/h, it is 

not possible to accurately test GNSS receivers for speed as the test vehicle should be at least as 

accurate as the GNSS receivers under test, or better. The second disadvantage is that the speed 

output is not synchronised with UTC. Therefore, the synchronisation should be conducted on a 

PC where GPS data from the receivers under test plus SDS detector data are recorded 

simultaneously. Again, this approach poses questions regarding metrological traceability of the 

results. 

3.1.5 Selection of a system configuration for the research 

Systems based on radar technology and existing speed sensors are not suitable to test GNSS 

receivers for speed accuracy.  This is mainly because of accuracy issues and the un-reliability of 

the operation across multiple road surfaces. 

Systems based on optical technologies are suitable to test GNSS receivers from the accuracy 

point of view. However, their cost is high as well as the calibration is costly and requires specific 

installations (Lopez, Silva & Ruiz 2014). Considering that calibration needed to be conducted 

before each test and not just annually, then the use of optical systems may not be viable. Lastly, 

these systems require synchronisation with UTC. This action may be achieved via a PC which 

downloads data from the speed measurement system and the GNSS receivers under test. Such 

synchronisation, however, is complex. In terms of the metrological traceability it requires a 

guarantee of an exceptional timing match between all speed records from all devices under test 

as well as the test vehicle.  

 

Therefore, in this research it was decided to design and build an in-house speed measurement 

system based on the methodology of “speed via distance over time”. 

 

3.2 Hardware components in the speed measurement system 

3.2.1 Speed measurement system operating in speed mode 

Modern GNSS chipsets which represent an integral part of GNSS receivers usually have a 

minimum sampling and processing rate of at least 1 Hz. Such output rate allows GNSS equipment 
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to determine and report speed almost continuously. This sampling rate poses a requirement on 

how the speed measurement system of a test vehicle should operate.  

Firstly, speed records produced by the test vehicle should be time synchronised with UTC.  

 

Secondly, GNSS receivers represent very accurate speed measurement devices based on 

manufacturer’s specifications. Therefore, there is a challenge to create a speed measurement 

system that should be at least as accurate as the receivers, and preferably better. As the speed of 

the vehicle represents a reference speed for comparison purposes, the accuracy of the reference 

speed must be well estimated via appropriate UOM techniques. Also, the test vehicle should be 

calibrated and preferably driven with all GNSS receivers on the same day immediately after 

calibration; and subsequently checked at the end of the test on the same day.  

 

To address the issue of synchronisation with UTC, the adopted speed measurement system of 

the test vehicle must obtain time synchronisation via UTC using National Marine Electronics 

Association (NMEA) data strings (NVS Technologies AG 2012) produced by a high end geodetic 

quality GNSS receiver. Timing synchronisation of a specific device or system with UTC is well 

known in principle (National Coordination Office for Space Based Positioning, Navigation and 

Timing 2014; Bies 2016; Zhao 2015).  Based on this general approach, a specific electronic 

diagram was developed to synchronise the speed records of the test vehicle with UTC. Figure 3-6 

represents the structure of the speed measurement system of the test vehicle working in speed 

measurement mode. 

 

Figure 3-6: Speed measurement system working in speed mode 

The principle of obtaining timing synchronisation by the speed measurement system is explained 

below. 

 

A high end geodetic quality GNSS receiver produces data in NMEA format, where every 

$GPRMC string has UTC timing information. For example, the following string shows this timing in 
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yellow as 215035, which is equal to 21 hours 50 min 35 sec, then the next timing string shows 

215036, which is equal to 21 hours 50 min 36 sec, and so on. 

 

$GPRMC,215035.00,A,3741.1775371,S,14501.3474342,E,48.378,278.2,070795,0.0,E*76 

$GPGSA,M,3,30,13,04,01,07,15,17,28,,,,,2.1,1.3,1.7*32 

$GPGSV,3,1,10,28,65,166,49,13,55,260,48,17,55,001,48,30,50,080,49*7D 

$GPGSV,3,2,10,15,22,228,45,07,21,066,44,11,20,117,,01,17,096,45*7C 

$GPGSV,3,3,10,04,10,124,41,05,00,300,*79 

$GPGGA,215036.00,3741.1757,S,14501.3306,E,1,08,1.3,105.94,M,5.37,M,,*42 

$GPRMC,215036.00,A,3741.1757014,S,14501.3306458,E,48.521,277.8,070795,0.0,E*74 

$GPGSA,M,3,30,13,04,01,07,15,17,28,,,,,2.1,1.3,1.7*32 

$GPGSV,3,1,10,28,65,166,49,13,55,260,48,17,55,001,48,30,50,080,49*7D 

$GPGSV,3,2,10,15,22,228,45,07,21,066,43,11,20,117,,01,17,096,43*7D 

$GPGSV,3,3,10,04,10,124,41,05,00,300,*79 

$GPGGA,215037.00,3741.1739,S,14501.3137,E,1,08,1.3,105.84,M,5.37,M,,*4A 

$GPRMC,215037.00,A,3741.1738602,S,14501.3137255,E,48.751,277.3,070795,0.0,E*78 

 

The task of the microcontroller of the speed measurement system is to determine the presence of 

each $GPRMC string and derive the timing from the string. This timing would then be used by the 

speed measurement system to output a previous speed reading and to start the next speed 

measurement cycle. In this way, the speed records of the test vehicle would then also be in 

synchronisation with UTC and the receivers under test.  

 

The above approach enables synchronisation of the speed measurement system with NMEA 

records produced by the GNSS receivers. It is important to note that if GNSS signals are totally 

unavailable, NMEA messages from a high end geodetic quality GNSS receiver would be 

generated based on the internal clock of the receiver. Therefore, the measurements would not be 

interrupted. In any case, the speed measurement system obtains a string of NMEA data every 

second and the logging interval is determined by this time. At the start of every second the speed 

measurement system immediately completes the previous speed measurement and then starts 

the logging interval for the next measurement. Within the logging interval the speed measurement 

system counts pulses from the Encoder installed on a wheel. In this research, the Encoder is 

represented by an industrial shaft encoder WDG 58H manufactured by German company 

Wachendorff Automation GmbH & Co (Wachendorff Automation GmbH & Co 2013). This Encoder 

produces 2048 pulses per revolution of the rear wheel. Installation of the Encoder is shown in 

Figure 3-7 where the Encoder is visible. Before each test the Encoder itself has been covered to 

protect it from the direct sunlight and rain. 
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Figure 3-7: Installation of the Encoder WGD 58H on Mazda 3 

The speed measurement system uses an internal calibration coefficient to convert the number of 

pulses from the Encoder into speed records. These are produced every second in synchronisation 

with UTC. A screenshot of an example of the logged speed records of the test vehicle is shown in 

Figure 3-8. 

 

Figure 3-8: Format of speed records 

As a result, the speed measurement system, based on a microcontroller, also has a sampling rate 

of 1Hz.  The various GNSS receivers under test generally have the same sampling rate or higher 

and are therefore fully synchronised with the test asset. This approach addresses the issue of 

synchronising the speed records between the speed measurement system and the GNSS 

receivers under test. 

The Speed / Distance data logger represents a laptop with the software to download the data from 

the speed measurement system. The software is called Terminal (Terminal 2013). This software 

works with an RS232 port and is a freeware package available from the Internet. The Terminal’s 

screenshot is shown in Figure 3-9. 
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Figure 3-9: Terminal software screenshot 

This software was used for downloading both speed records from the speed measurement 

system and the NMEA data from the GNSS receivers under test. The receivers had either an 

RS232 or a USB port. In the case of using a USB, a converter was required. In addition, this 

software was used to issue commands to the speed measurement system and load the 

Calibration Factor plus other parameters into the speed measurement system. 

The speed over ground is determined by the speed measurement system as follows. The 

Encoder, which is robustly connected to a wheel, sends pulses to the microcontroller of the speed 

measurement system. The number of pulses is 2048 per revolution of the wheel. This number of 

pulses is then required to be converted into distance measurements and subsequently to speed 

measurements. The real ground speed is determined by applying the following calculation: 

 Speed (km/h) =3.6 Speed (m/sec) = (3.6* (pulses per sample)*(samples per sec))/(Calibration Factor)        (3.2)                     

 

The Calibration Factor is represented in pulses per meter generated by the Encoder.  

Equation (3.2) was adopted considering a conversion of speed from km/h into m/sec plus 

representing m/sec via pulses per sample and the Calibration Factor. In (3.2), the pulses per 

sample parameter is the number of pulses calculated by the speed measurement system for a 

sample timing interval in seconds. It should be noted that for one second interval, a value of 

(pulses per sample)*(samples per second) is equal to pulses per second, i.e. frequency of the 

Encoder’s signal. 

 

Therefore, speed in m/sec can be presented as  
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                                                                                                       (3.3)                     

 

Then, (3.2) for speed can be transformed into: 

              Speed (km/h) =3.6 Speed (m/sec) = 3.6* Frequency/(Calibration Factor)                        (3.4) 

 

The Calibration Factor is a constant in the firmware of the microcontroller for the speed 

measurement system. This constant can be changed during calibration before the test to adjust 

the output to the right speed. Essentially the Calibration Factor is a divider of pulses from the 

Encoder. The Calibration Factor is measured in pulses per meter.  

 

In this project, a Mazda 3 vehicle was used. Mazda 3 typically has 195/65 R15 tyres and the tyre 

circumference was specified to be equal to 1993 mm, i.e. 1.993 m or 0.001993 km. Therefore, for 

the specific Encoder installed on this vehicle the parameters specified in Table 3-1 would ideally 

apply if the tyre circumference was 1993 mm. It is highly unlikely that the real tyre circumference 

would be equal to 1993 mm. Therefore, the task of calibration was to determine a value of the 

Calibration Factor, which would correspond to the real tyre circumference for the testing date. 

Table 3-1: Information to calculate the draft calibration factor 

Encoder pulses per 
revolution 

Pulses per meter Distance per pulse 
(depends on the wheel) for 
R15 tyre, m 

2048 948.90 0.0009733 m 

 

Changes in tyre circumference are compensated during the calibration each time before the test 

so that the accuracy of the test vehicle remains at the highest standard. This process is described 

further below in this chapter and chapter 4 related to the UOM. 

 

An example of using the Calibration Factor to calculate the actual speed: 

During one second the Encoder produced 26546 pulses. With Calibration Factor of the Encoder 

equal to 922.4, the speed of the test vehicle would be calculated as,  

 

                                              V=3.6*26546/922.4 = 99.7 km/h 

 

The speed measurement system in speed mode operates in a way that for every second, which is 

in synchronisation with UTC, the number of pulses from the Encoder is counted. Thus, for each 

second the speed calculation is conducted using the Calibration Factor. The calculated speed is 
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transmitted to the output at the end of every second in synchronisation with UTC, and the next 

speed measurement starts immediately after such transmission. 

3.2.2 The speed measurement system operating in calibration mode 

It is important to maintain high accuracy of speed measurements for the test vehicle. This is 

addressed through a separate calibration of the distance and time measuring diagrams of the 

speed measurement system. Such calibration provides an assurance that the test vehicle meets 

the desired UOM parameters. Also, a thorough UOM analysis was conducted in this research to 

assess the magnitude of errors attributed to the speed measurement system.  

3.2.2.1 Calibration of the distance measurement 

In general, the calibration of test vehicles for speed can be conducted in two methods: 

 The direct speed calibration when a speed dynamometer is used (Mainline 2014). With 

chassis dynamometers, the operator could manually set the desired speed and the vehicle 

will be held at that point regardless of throttle position.  Such speed could be controlled in 

increments as small as 0.1 km/h. Getting frequent access to such calibration facilities for 

this research was challenging, particularly considering that calibration had to be conducted 

before each test drive and every visit would cost several thousand dollars. 

 Conducting calibration of test vehicles through separate calibration of distance and time 

measurement diagrams. This method is widely used in engineering practice with 

differences seen in engineering solutions. Because of the advantages of this method, such 

as low cost, high calibration accuracy and many others, it was selected in this research.  

The principles of distance calibration as a component of speed calibration are described in 

numerous sources. In Polar (2016), the calibration of a device was conducted using two surveyed 

points. In ASTM International Standards Worldwide (2010), a test method was described for 

speed and distance calibration of a fifth wheel. In Austroads (2012), a surveyed test strip of 500 m 

was used for road distance test with the results migrating into a road speed indicator test. In 

Queensland Police Service (2016), the calibration of speed detection devices via distance 

calibration bases was also described. 

The calibrations of the distance measurement in this research were conducted before and after 

each test to ensure that the speed measurement system maintained the prescribed accuracy limit 

of the test. At the start of this research, a distance calibration site was surveyed. This site 

represented a straight section of a side road with a surveyed distance of 361.3 m as shown in 

Figure 3-10. This site was surveyed with an Electronic Distance Measurement device Leica 

FlexLine (Leica Geosystems AG 2013) provided by RMIT, to the accuracy better than 0.002 m. 

Two measurements were conducted during a survey to the above accuracy. However, a final 

distance value has been rounded to one decimal point. This is because the resolution of the 
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speed measurement system, when it operates during calibrations in distance measurement mode, 

equals 0.1 m. This would be shown in chapter 4.  

The Leica FlexLine was calibrated with legal traceability to the national distance reference 

standards. This provided a chain of traceability for the speed measurement system with respect to 

distance measurements. The surveyed section of the road was located in the Noble Park area in 

Melbourne, Australia. It is parallel to Princess Hwy, has almost no traffic and represents a straight 

road (see Figure 3-11). The factors of a quiet and straight road are important in this instance, as it 

will be a challenge to conduct calibrations on busy streets. During the distance calibrations, the 

test vehicle was driven from one surveyed point A to the second surveyed point B with the speed 

measurement system working in calibration mode.  

 

Figure 3-10: Calibration site 
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Figure 3-11: Calibration site view (Princess Hwy is to the right) 

A diagram depicting the calibration mode for the distance measurements is shown in Figure 3-12. 

 

Figure 3-12: Speed measurement system in calibration mode 

Before the field calibration, it was required to calculate an expected Calibration Factor. To do so, 

the following were considered: 

 The driving distance for calibration is 361.3 meters and this distance was surveyed. 

 The information from Table 3-1 about the number of pulses produced per meter and the 

distance travelled per pulse from the Encoder. 

It should be remembered that the Encoder produced 2048 pulses per revolution of a wheel. 

 The information that the tyre circumference is 1.99334 meters for Mazda 3. Mazda 3 has 

195/65R15 tyres and ideally their circumference can be determined based on Tyre Size 

Calculator (2014). It is required to know this value relatively precisely to establish a draft 

calibration factor before conducting calibrations.  
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Within the calibration procedure, the actual tyre circumference would be taken into consideration. 

At the start of the first calibration, an expected (draft) value of the Calibration Factor was used as 

input into the speed measurement system. 

 

Considering that the distance was 361.3 m and the number of pulses produced by the Encoder 

per meter was 948.9, ideally the total number of pulses counted (N) for the calibration run should 

be, 

 

                           N=Distance * Calibration Factor = 361.3 * 948.9 = 342837 

 

Therefore, before the start of calibration a command to the speed measurement system was 

issued through the Terminal software, advising that the speed measurement system should start 

working in calibration mode. Subsequently, the speed measurement system uploaded via the 

Terminal software an expected Calibration Factor of 948.9 and the driving distance of 361.3 m.  

 

Then, at point A (see Figures 3-10 and 3-13) of the calibration track, a command was issued to 

the speed measurement system from the laptop advising that the calibration drive was about to 

start, while the vehicle was in stationary mode.  

 

Figure 3-13: Starting point of the distance calibration 

The test vehicle was driven from the starting point A of the calibration site to the end point B. At 

point B, the test vehicle was stopped and a command issued through the Terminal software to the 

speed measurement system advising that the required distance was passed. During the drive 

from A to B the speed measurement system was working in the calibration mode and the pulses 

from the Encoder were counted. Then, the calculation of the distance was based on the expected 

Calibration Factor of 948.9 and the actual distance passed by the front wheel. At point B, where 

the front wheel reaches a specific mark on the ground the system, the test vehicle would be 
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stopped. At point B, therefore, the speed measurement system would calculate two values and 

send them back to the laptop: 

 

 The calculated distance based on the Draft Calibration Factor. 

Each rotation of the wheel produced 2400 pulses per revolution and hence the distance 

was not measured down to single numbers but rather to numbers with decimal points. 

 The correct (recommended) Calibration Factor, which shall be loaded into the system.  

This parameter was calculated by the speed measurement system based on the known 

distance of 361.3 meters and the actual measurement result shown by the speed 

measurement system for this distance. 

 

The calculated distance was determined by the speed measurement system as, 

 

                                   Dcalc =  N / Draft Calibration factor                                                        (3.5) 

 

The recommended Calibration Factor was calculated based on the distance of 361.3 meters and 

the number of counted pulses N as, 

 

                                           Calibration Factor = N / Dknown                                                              (3.6) 

 

Example 1.  
 

The test vehicle was initially loaded with the Draft Calibration Factor of 948.9. Then a vehicle was 

driven from A to B and the microcontroller counted N=343900 pulses for the distance of 361.3 

meters. At the end of the drive at point B the microcontroller would count the proposed correct 

Calibration Factor as, 

 

                               Calibration Factor = 343900 / 361.3 = 951.8 

 

This correct Calibration Factor would then be loaded into the speed measurement system through 

the Terminal software. A calibration drive then starts again to check the correctness of this 

Calibration Factor. If the recommended Calibration Factor was correctly calculated, the new 

calibration drive would show a better match of the distance covered. Generally, if the distance 

error was within 0.4 m (see chapter 4 for details as to why 0.4 m is the value selected as 

tolerance), then the calibration was complete. The recommended Calibration Factor was finally 

confirmed and permanently recorded in the EPROM of the microcontroller until the next 

calibration. This means that the recorded Calibration Factor was applied for the test run and this 



  

39 
 

also considers the actual tyre parameters, such as the tyre circumference and pressure, for the 

day of calibration and testing. This provided a higher accuracy of the test vehicle. 

 

With this new Calibration Factor the speed was then determined in km/h as, 

 

                                                     V=(3.6*N)/951.84                                                                   (3.7) 

 

where N is the number of pulses counted by the microcontroller within every 1 sec of 

measurements. 

 

Example 2. 

It was required to recalculate the correct Calibration Factor manually based on distance measured 

by the speed measurement system during a calibration drive.  

A calibration drive was conducted for the Encoder producing 2048 Pulses Per Revolution (PPR) 

of a wheel and the actual distance of 361.3 meters. The system showed 362.5 meters measured 

with the Calibration Factor equal to 948.9 pulses per meter. It was required to determine the 

recommended Calibration Factor manually without the help of a microcontroller. 

The following procedure could then be adopted: 

- calculate a draft circumference of a wheel as,  

                       PPR  / Calibration Factor = 2048 / 948.9 =2.158 m 

- calculate the actual number of revolutions a wheel had during a calibration drive as  

                    Distance Measured / Draft Circumference = 362.5 / 2.158 =167.979 revolutions 

- calculate a real circumference of a wheel using the same number of revolutions as 

                   Surveyed Distance / Actual Number of Revolutions = 361.3 / 167.979 =2.150 m 

- calculate a recommended Calibration Factor as 

                     PPR / Real Circumference = 2048 / 2.15 = 952.5 pulses per meter. 

Subsequently, it was required to upload the recommended Calibration Factor to the speed 

measurement system and repeat the drive to confirm that the value of Calibration Factor was 

correct. 

Example 2 was not used in practice because the microcontroller of the speed measurement 

system calculated everything automatically following the procedure described in this example. 

This example simply demonstrated how the microcontroller normally handled this. 
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The distance calibration was traceable to national standards via surveyed distance measured with 

a calibrated surveying instrument such as Leica which was also verified through a distance 

calibration at a standard baseline.  

In case of using any other EDM Unit, the calibration procedure still provides a complete 

traceability of distance calibration for the speed measurement system if such EDM Unit is 

traceable to national standards. For example, to provide a traceability to national standards, a 

different EDM Unit can be calibrated through any baseline which has such traceability. For 

example, the EDM might be calibrated by the National Measurement Institute (NMI) to the 

uncertainties as follows (National Measurement Institute 2015): 

Calibration class 1.10 Survey and alignment equipment 

Calibration subclass .08 Electronic distance measuring equipment 

Electronic distance measuring instruments with least uncertainties of measurement of - 

0.14 mm to 0.22 mm in the range 2 to 130 m; 

0.25 to 0.49 mm in the range 20 to 650 m.  

 

3.2.2.2 Calibration of the timing component of the speed measurement system 

The timing calibration (verification) was conducted in this research with the use of a specific 

diagram as shown in Figure 3-14. This diagram was designed, assembled and implemented in 

this research.  

 

Figure 3-14: Timing calibration diagram 

Even though the timing was obtained from NMEA messages received from a particular GNSS 

receiver, it was necessary to check the accuracy of timing. This was to ensure that the pulses 

from the Encoder were measured within the 1 sec interval ± an acceptable error. The value of this 

acceptable error can be described in the UOM. Even if timing in UTC is derived from a GNSS 

receiver and linked to UTC, there are processing delays present across the speed measurement 

system’s schematic. Therefore, such calibration simply verifies that these delays are not outside 

the prescribed limits. 
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The speed measurement system in any mode, including calibration, outputs short pulses from the 

microcontroller. Such pulses constitute the start of the new measurement (Figure 3-14) and the 

end (Figure 3-14). The measurement cycle of the microcontroller to count the Encoder’s pulses is 

shown in Figure 3-15. The cycle diagram was created using a website http://www.wavedrom.com. 

Figure 3-15: Measurement cycle 

When a new NMEA, containing time, is received by the microcontroller, it initially completes a 

speed calculation for a previous measurement by launching a process upon a front of the “End of 

measurement” pulse (see Figure 3-15). The microcontroller also generates a corresponding short 

pulse on the relevant output. Subsequently, the microcontroller sends the calculated speed value 

to the output microchip of the microcontroller board and starts a new measurement upon the front 

of the “Start of measurement” pulse (see Figure 3-15). The same “Start of measurement” pulse 

launches a process of generating a corresponding short pulse on the relevant output. Therefore, 

the timing interval between the “Start of measurement” and “End of measurement” pulses should 

be close to 1 sec. This is because this interval is determined by the neighbouring NMEA data 

strings in synchronisation with UTC and a deduction of the microcontroller’s time to count / output 

the result of a previous measurement. Thus, the timing interval between these two short pulses is 

used by the microcontroller to count high frequency pulses from the Encoder (see the V 

measurement cycle timing interval in Figure 3-15). Effectively, the same timing interval is 

measured during calibration to ensure that this interval sits within acceptable limits. This is 

because it determines the time used by the speed measurement system to count pulses from the 

Encoder. 

 

A specific microchip called the Universal Frequency to Digital Converter (UFDC-1) was selected 

to conduct this time measurement. This microchip has a high accuracy in various modes of 

operation, including the time measurement mode (International Frequency Sensor Association 

2004). The microchip interacted with a laptop via RS232 using the Terminal software to log these 

timing intervals in microseconds. The diagram of using the microchip UFDC-1 for time 

measurements is shown in Figure 3-16. A complete connection diagram for the UDFC-1 is shown 

in Appendix A. 
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Figure 3-16: Typical UFDC-1 connection diagram (International Frequency Sensor Association 2004) 

In the above diagram, inputs FX1 and FX2 were used for obtaining two timing signals which 

characterise the start and end of each 1 sec measurement. The UFDC-1 converted the time 

interval between these timing signals into digital data using mode 3 as shown in Figure 3-17.  

 

 

Figure 3-17: Modes of operation for UFDC-1 (International Frequency Sensor Association 2004) 

The timing interval values from the UDFC-1 would be transferred to a laptop via the RS232 

converter microchip MAX232 series (see Appendix A). The unit of measurements for this 

conversion result is microsecond. 

   

The timing calibration is achieved by verifying that the 1 sec timing interval of speed measurement 

is within the prescribed limit to maintain an appropriate UOM. This timing interval cannot be changed 
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through any settings as it depends on two factors: the 1 sec UTC from NMEA data strings and the 

speed of microcontroller’s operation. However, verification of this timing interval is still required for 

metrological purposes and guaranteeing that the UOM of the speed measurement system is within 

the prescribed limits. Usually the measurement time sits within 0.999996 sec and 0.999998 sec 

because some time is lost when the microcontroller interrupts the measurement upon the NMEA 

data string, outputs the result of the previous cycle and then starts the new cycle of speed 

measurement. 

As described by the International Frequency Sensor Association (2004), the measurement interval 

for timing for the UFDC-1 can vary between 2 microseconds and 250 seconds. 

 

The assembled time calibration circuit based on the UFDC-1 microchip is shown in Figure 3-18. 

 

Figure 3-18: Printed circuit board of the timing calibration circuit in the box 

Figures 3-14 and 3-15 have previously shown that, in terms of methodology of timing calibration, 

the accuracy of time measurements depends on the microchip UFDC-1. This microchip typically 

uses a crystal of 16.0 MHz for the microchips’ own operation and the Specification and 

Application Note for UFDC-1 (International Frequency Sensor Association 2004) confirms that the 

conversion error (E) in this mode depends on the converted values and can be calculated using 

the following equation: 

                                                                             (3.8) 

where  

 E is the conversion error; 

 Time is the value of time measured. 

Thus, for 1 sec, the conversion error is equal to 0.00000625% and so characterises a precise time 

measurement. 
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However, it is necessary to ensure that such measurements conducted by the UFDC-1 are 

traceable to national standards. In this instance, the accuracy of UFDC-1 measurements should 

be assessed against the devices having traceability to national standards via a chain of 

calibrations. For example, a calibrated pulse generator can be used to check the accuracy of the 

UFDC-1 time measurements. This is easily achievable with the use of an instrument such as the 

Agilent 81100 Pulse Generator which has two outputs with the capability to provide pulses with a 

calibrated known delay between them (Agilent 2009). Subsequently, this delay would be 

measured by the UFDC-1 and the results would demonstrate the error introduced by it in the time 

measurements. 

The calibration diagram for the UFDC-1 itself as designed in this research is shown in           

Figure 3-19: 

 

Figure 3-19: Calibration of UFDC-1 with traceability to national standards 

Therefore, if the Agilent 81000 generator is calibrated with traceability to national standards, the 

timing calibration approach will also be. 

Calibration of the speed measurement system for distance and time measurements provides an 

assurance that the test vehicle is accurate in terms of speed measurements. Calibration also 

provides a basis for the assessment of the UOM of the speed measurement system. This then 

ensures that it is capable to test GNSS receivers for speed measurement. See Appendix A for 

further information about the UFDC-1 microchip. 

3.2.3 Microcontroller board 

Speed measurement system is based on a Peripheral Interface Controller microcontroller (further 

PIC microcontroller as named by Microchip Technology which produces such microcontrollers) and 

is shown in Figure 3-20. 

Note. This board was used in the tests. 
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Figure 3-20: PIC Microcontroller board 

The microcontroller’s Printed Circuit Board (PCB) represents a PICDEM HPC Explorer board 

based on PIC18F8722 microcontroller (Microchip Technology Inc 2006a). This microcontroller 

offers 128kBytes of flash program memory, together with 4kBytes of data memory or SRAM. The 

standard microcontroller feature includes two enhanced addressable Universal Asynchronous 

Receiver / Transmitter (UART) modules supporting RS232 interface, one of which is directly 

connected to RS232 socket installed on the board and the second may be utilised with a MAX232 

microchip which is installed on this board by soldering it. 

 
Figure 3-21: PCB parts placement diagram of the microcontroller (Microchip Technology Inc 2006a) 

 

The PIC18F8277 PCB features an in-circuit program download for easy program modification and 

easy to use programming tools. The board has an MPLAB connector which allows a working 

program to be loaded into the microcontroller and kept in its Electrically Erasable Programmable 
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Read-Only Memory (EEPROM). A specific Run / Programming switch exists on the PCB and the 

Programming mode is selected to program the microcontroller. The programming mode is 

designed for high voltage programming mode for the PIC range of microcontrollers. Programming 

pins are then effectively isolated by switching the switch to RUN operation; the pins can then be 

used for inputs / outputs. Therefore, when a slide Switch position (PROG / RUN) is selected as 

PROG Position, the programming of the microcontroller occurs. Once the microcontroller is 

programmed, the switch can be moved to the RUN position and the microcontroller will 

commence to run the downloaded program. Programming of the microcontroller is conducted only 

at the stage of program development when the firmware embedded into the microcontroller is put 

in place and bugs are eliminated.  

 

Basic features of the firmware are described below in section 3.3 of this thesis Firmware of the 

Speed Measurement System.  

 

As soon as the program of the microcontroller works correctly, there is no need to use the PROG / 

RUN switch. Every time the power is on, the microcontroller’s board would start its normal 

operation in a speed measurement mode.  

The designed speed measurement system hardware diagram is shown in Figure 3-22. 

 

Figure 3-22: High level hardware diagram of the speed measurement system 

In speed measurement mode, the Encoder installed on a wheel of Mazda 3 sends pulses through 

the optocoupler to the microcontroller. The number of pulses per second is proportional to speed 

and some other factors, such as the circumference of a wheel, the accuracy of the timing interval 

of 1 sec, etc., which are all taken into consideration in the Calibration Factor. The optocoupler 

(Vishay Semiconductors 2010) isolates the sensor from the microcontroller’s diagram. This 

isolation is done for several reasons. The first reason is that the PIC microcontroller board has its 

internal own power supply and its ground is not the same ground as the ground of power feeding 

the board. The internal power supply on the PCB of the microcontroller itself has limited power 

and cannot provide power to the Encoder as a result. Therefore, the Encoder gets its own power 

from a separate power supply which has a separate ground as a result. Connecting the PCB’s 

ground to the ground of the power supply of the Encoder would mean interfering with the PCB’s 
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proper operation. Secondly, for devices staying apart from each other in an unknown 

electromagnetic environment, represented by the test vehicle and its wiring, it is safer to 

electrically isolate them from each other from the signal perspective and safety points of view. 

This is a good practice which is applied across many areas where electronic devices operate in 

electromagnetic environments. Electromagnetic noise is generated by numerous parts of a 

vehicle such as the ignition system, fuel pump, starter motor, spark plugs, battery charging circuit 

and many others. Such sources of electromagnetic noise are powerful enough to disturb 

electronic diagrams, which are not properly protected. The use of optocouplers is one of the 

methods to protect the speed measurement system from such electromagnetic noise.  

 

The PIC microcontroller’s PCB gets NMEA data via RS232 port from the geodetic quality GNSS 

receiver and derives timestamps from each $GPRMC string. For every 1 sec of speed 

measurements in synchronisation with UTC, the microcontroller counts the number of pulses from 

the Encoder and determines speed values based on the Calibration Factor. Such speed values 

are logged every second to a laptop using the Terminal software. The operator may interact with 

the PCB within calibration to send commands and receive calibration data. Communication with 

the PCB with the laptop is bi-directional, although in speed measurement mode the data would be 

sent only from the PCB to the laptop.   

3.2.4 Encoder 

The Encoder installed on the rear wheel of the test vehicle Mazda 3 was WDG 58H (Wachendorff 

Automation GmbH & Co 2013). It is a rugged industrial standard encoder which had a relatively 

high protection class IP65 and able to operate from -400C up until +800C. This Encoder is 

produced by Wachendorff Automation GmbH & Co in Germany. 

The Encoder was fixed to a shaft, which was rigidly connected to a wheel, see Figures 3-23 and 

3-24, and protected with a plastic case from rain and direct sunlight in a way shown in          

Figure 3-25. 
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Figure 3-23: Dimensions and installation details of the Encoder (Wachendorff Automation GmbH & 
Co 2013) 

Such types of encoders can produce up to 25000 pulses per revolution. However, the higher 

number of pulses is not necessarily translated in higher speed accuracy because the calibration 

accuracy depends on other factors, which will be detailed in chapter 4. Therefore, a particular 

modification of Encoder was selected with a capability to produce 2400 pulses per revolution. This 

represents a compromise between accuracy of speed measurements and errors due to high 

frequency signals distributed through a custom wiring.   

 

Figure 3-24: Encoder WDG 58H (Wachendorff Automation GmbH & Co 2013) 
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Figure 3-25: Full installation of the Encoder on Mazda 3 with sunlight / rain protection 

The plastic cover which protected the Encoder allowed some airflow inside so that the Encoder 

would not fail from high temperatures. Wiring for the Encoder included 5V power supply and 

output wires, which were fixed in a safe manner as per the above picture and followed to the 

cabin to be connected to the microcontroller of the speed measurement system.  

 

3.3 Firmware of the speed measurement system 

To load a working program into the microcontroller, it was required to connect the PCB of the 

microcontroller to a PC and use the specific proprietary software or Microchip’s software MPLAB 

(Microchip Technology Inc 2006b). It is possible to develop programs in any language such as 

PIC Assembly, PicBasic Pro or C for the microcontroller. PicBasic Pro was used in this research 

(MicroEngineering Labs Inc 2005). Subsequently, the high-level program developed in PicBasic 

Pro was converted into a standard PIC hex code by MPLAB. The MPLAB is available as a free 

download from the Microchip website and allows writing and compiling the programs.  

Once the code has been successfully compiled and no errors existed, the code was then 

downloaded to the microcontroller board. Figure 3-26 shows the operation of preparing a program 

in this research. 

 



  

50 
 

 

Figure 3-26: Creating a program 

Algorithm of operation of the firmware in the designed speed measurement system is shown in 

Figure 3-27. This is the developed high-level algorithm, which was then translated into PicBasic 

commands of the actual program. 
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Figure 3-27: Algorithm of the firmware loaded into the microcontroller 

The firmware can determine whether the speed measurement system is in calibration or speed 

measurement mode through an operator’s response to this question.  
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When in calibration mode, the operator calculates and inputs a draft Calibration Factor and the 

calibration site distance, which equals 361.3 m in this research. The speed measurement system 

is hardcoded to use the Encoder with 2400 pulses per revolution and, therefore, as soon as the 

command START is issued when the test vehicle is at the start of the calibration track, the system 

starts counting pulses from the Encoder and outputting a current up to now distance as soon as 

the test vehicle keeps driving. At the same time, the system monitors if the operator issues a 

command END. Upon receiving the command END, the system knows that the test vehicle has 

reached a distance of 361.3 meters and stopped. At this point, the system displays the distance 

that was passed based on the draft Calibration Factor loaded earlier. If the result is suitable and 

within tolerance, the operator confirms that the Calibration Factor is correct and it is recorded and 

kept in microcontroller’s memory. The operator still requires conducting the second run to ensure 

that the distance measured sits within the prescribed limits. If after the next run there is no need 

to change the Calibration Factor, the system goes into speed measurement mode getting a 

command from the operator. If the Calibration Factor is unsuitable, the operator would have 

several iterations in the process described above until the point when the test vehicle measures 

361.3 meters with a suitable tolerance, which equals to 0.4 m (see chapter 4). 

 

In the speed measurement mode, the microcontroller derives timing data from each NMEA 

$GPRMC string. As such strings are coming with a frequency of 1 sec, with each subsequent 

string the system stops counting pulses from the Encoder and then raises a flag “Finish of 

measurement”. This flag represents a pulse equal to one working cycle of the microcontroller. 

Then the system calculates the speed based on the number of counted pulses within one second 

and Calibration Factor kept in microcontroller’s memory. Immediately after that the speed 

measurement system outputs both the UTC and speed values to the laptop. Subsequently, the 

firmware raises a flag indicating the start of a new measurement. This measurement takes place 

until the next NMEA $GPRMC string comes in. The actions of speed calculation and outputting 

data take several cycles of the microcontroller’s operation and effectively this is the time which 

provides a difference between the ideal 1 sec of measurements and the real measurement time. 

Considering that the microcontroller PIC18F8722 works with 10 MHz frequency oscillator, which is 

used with an internal PLL to provide 40 MHz of operational frequency, this time difference 

between the ideal 1 sec and the real measurement time is typically no more than 20 

microseconds, providing a timing error of measurements no more than 0.002%. Obviously, the 

quicker the microcontroller operates, the smaller the timing error is; however, it is still taken into 

consideration in the UOM budget when a combined uncertainty of measurements for the test 

vehicle is calculated. 

 

Therefore, in the speed measurement mode the system outputs UTC and speed data for every 

second and speed records are in full synchronisation with UTC.  
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Summary 
This Chapter presented a detailed description of the following: 

1. Detailed analysis of the existing methods and systems of the test vehicles used to 

measure speed. 

2. Description of the designed speed measurement system, including its hardware and 

firmware components. 

3. Technical solution for synchronising the microcontroller of the speed measurement 

system with UTC. 

4. Determination of the Calibration Factor for the speed measurement system through 

the calibration process and the calibration site. 

5. Calibration diagram and the processes of calibrating the speed measurement system 

for distance and timing. 
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4 UNCERTAINTY OF MEASUREMENTS OF THE SPEED 
MEASUREMENT SYSTEM 

4.1 Background 

Measured values are imperfect and the measure of imperfection is called Uncertainty. The UOM 

is a parameter, associated with the result of a measurement, that characterises the dispersion of 

the values that could reasonably be attributed to the measurand. The measurand is the particular 

quantity being measured, e.g. the speed of a vehicle.  

The true value is a hypothetical quantity and is the value resulting from a perfect measurement. 

The error of a measurement is the difference between the measured value and the true value.  

The UOM is the range, centered on the measured value, with an associated confidence level, 

which is often selected as 95%. This percentage means 5 chances in 100 that the true value is 

outside the range.  

It is important not to confuse the terms ‘error’ and ‘uncertainty’. Error is the difference between the 

measured value and the ‘true value’ of the measurand. Uncertainty is a quantification of the doubt 

about the measurement result. 

 
As the reference value of speed would be produced in this research by the speed measurement 

system, knowing the UOM for the speed measurement system is important for several reasons. 

The first is that GNSS speed records are expected to be accurate, therefore good quality 

measurements from the test vehicle are important. Secondly, making good quality speed 

measurements requires calibration of the speed measurement system and this is where the UOM 

is critical. Lastly, during the information processing stage, the UOM of the speed measurement 

system would be taken into consideration for making conclusions when the GNSS speed 

measurement is outside of the expected boundaries and subsequently the outliers are generated. 

 

Uncertainties generally come from the following sources (Metrology Training International Pty Ltd 

2005): 
 The measuring instrument - instruments may have multiple sources of errors, such as: 

systemic errors, errors because of ageing, wear and tear, timing drift, noise and many 

others. 

 The item measured may have random errors in the form of noise of the measured signal. It 

would be further shown that GNSS speed records also have random noise even in ideal 

static conditions.  
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 The measurement process can make it difficult to make a measurement. For example, if 

there is no full synchronisation of GNSS speed records with the test vehicle. This is a 

source of uncertainty associated with difficulties in measurement. 

 ‘Imported’ uncertainties when calibration of an instrument has an uncertainty which is then 

embedded into the uncertainty of the actual measurements. Imported uncertainty is an 

uncertainty which typically comes from calibration sources. The calibration UOM of the 

speed measurement system would be imported as a parameter into speed measurement 

UOM when the actual speed tests are conducted. 

 Operator skill. Some measurements may depend on the skill and judgement of the 

operator, particularly when measurements are conducted by non-digital equipment. 

 Sampling issues. Measurements should be representative of the 

process under assessment. 

 The environment: humidity, temperature, air pressure, etc.  

 

In many measurements, often the values are more likely to fall near the average rather than 

further away. This is typical for a normal distribution. When the measurements are evenly spread 

between the highest and the lowest values, this would represent a rectangular distribution. More 

rarely, distributions may have other shapes, such as; triangular, M-shaped, etc. It is important to 

understand the types of distributions when it comes to individual UOM components.  

4.1.1 Typical steps to calculate the uncertainty of measurements 
To calculate the UOM, the sources of UOM must be first identified. Then, an estimation of the size 

of the uncertainty from each source should be conducted. Finally, the individual uncertainties are 

combined to give an overall value. 

 

There are two approaches in estimating individual uncertainties: ‘Type A’ and ‘Type B’ evaluations 

(Metrology Training International 2006). In most measurement situations, uncertainty evaluations 

of both types are needed. Type A evaluations are uncertainty estimates using statistics, usually 

from repeated readings. Type B evaluations are uncertainty estimates from any other information. 

This could be information based on experience in conducting measurements, information derived 

from calibration certificates or manufacturer’s specifications, from published information or 

calculations and even from common sense. 

 

Eight main steps are in place for the UOM evaluation (Metrology Training International 2005): 

1. Decide what is needed to be determined from measurements and what measurements and / or 

calculations are required to produce the result. 

2. Carry out the measurements required. 

3. Make the UOM model using the UOM techniques. 
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4. Estimate the uncertainty of each individual component that feeds into the final UOM result and 

express all uncertainties in similar terms, i.e. calculate standard uncertainties. 

5. Decide whether the errors of the input quantities are not connected to each other. If this is not 

the case, some extra considerations and assessments should be carried out. 

6. Find the combined standard uncertainty from all the individual sources. 

7. Express the uncertainty in terms of a coverage factor, together with a size of the uncertainty 

interval, and state a level of confidence. 

8. Record the measurement result and the UOM. 

4.1.2 Standard uncertainty  
All contributing uncertainties should be expressed at the same confidence level, by converting 

them into standard uncertainties. A standard uncertainty is a margin whose size can be thought of 

as ‘plus or minus one standard deviation’. The standard uncertainty describes the uncertainty of 

an average (not just about the spread of values). A standard uncertainty is usually shown by the 

symbol u, or u(y) (the standard uncertainty in y). 

 
When a set of several repeated readings has been taken (for a Type A estimate of uncertainty), 

the mean, (x) , and the estimated standard deviation, (s), can be calculated for the set. From 

these, the estimated standard uncertainty, u, of the mean is calculated using (4.1) (Cook 2002): 

 

                                                                                                                     (4.1) 

 
where n is the number of measurements in the set. The standard uncertainty of the mean is also 

called the standard deviation of the mean, or the standard error of the mean. 

4.1.3 Combining standard uncertainties 

Individual standard uncertainties calculated by Type A or Type B evaluations are typically 

combined by ‘summation in quadrature’, also known as ‘root sum of the squares’. The result of 

this is called the combined standard uncertainty, shown by uc or uc(y). 

4.1.4 Coverage factor k 
Having scaled the components of uncertainty consistently, to find the combined standard 

uncertainty, re-scaling the result might be required. The combined standard uncertainty may be 

thought of as equivalent to ‘one standard deviation’, but it might be required to have an overall 

uncertainty stated at another level of confidence, e.g. 95%. This re-scaling can be done using a 

coverage factor k. Multiplying the combined standard uncertainty, (uc) , by a coverage factor gives 

a result which is called the expanded uncertainty (Cook 2002), usually shown by the symbol U, 

i.e. 
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                                                            U =k*uc                                                         (4.2) 
A particular value of the coverage factor gives a particular confidence level for the expanded 

uncertainty. Most commonly, the overall uncertainty is scaled by using the coverage factor k = 2, 

to give a level of confidence of approximately 95%. (k = 2 is correct if the combined standard 

uncertainty is normally distributed). This is usually a fair assumption, but it is worth noting this 

assumption. Some other coverage factors (for a normal distribution) are: 

 k = 1 for a confidence level of approximately 68%; 

 k = 2.58 for a confidence level of 99%; 

 k = 3 for a confidence level of 99.7%. 

4.1.5 Uncertainty budget 

It is useful to summarise the uncertainty analysis or ‘uncertainty budget’ (Cook 2002). A simplistic 

example of such budget is shown in Figure 4-1 for the process of determination how long a piece 

of string is. As shown, the UOM budget shall have several components listed, such as: the 

sources of uncertainty and their respective values, types of distribution for each source with 

corresponding divisors and values of standard uncertainty for each component.  

Figure 4-1: Example of the UOM budget (Bell 2013) 

4.1.6 Compliance to data sheets 
As highlighted previously, the majority of GPS/GNSS receivers have a number of parameters in 

their datasheets and one of them relates to speed accuracy. Strictly speaking, a statement of 

compliance against such data sheets in relation to speed accuracy should only be made if the 

ratio of the UOM of the test asset to the specified tolerance is reasonably small. If this is not the 

case, the UOM of the speed measurement system shall be taken into consideration when 

analysing the discrepancies between the speed data obtained from GNSS receivers and 

reference speed data records from the speed measurement system. 
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The key to the assessment of compliance is the concept of “decision rules”. These rules give a 

prescription for the acceptance or rejection of a product based on the measurement result, its 

uncertainty and the data sheet limits, considering the acceptable level of the probability of making 

a wrong decision. Based on the decision rules, an “Acceptance zone” and a “Rejection zone” are 

determined, such that if the measurement result lies in the acceptance zone the product is 

declared compliant. Alternatively, if in the rejection zone it is declared non-compliant. Four 

possible examples of decision rules are shown in Figure 4-2 (National Aeronautics and Space 

Administration 2010; Eurachem 2007): 

 

Figure 4-2: UOM and decision rules (Eurachem 2007) 

The majority of manufacturers of GNSS receivers and chipsets claim that their products are 

accurate in speed measurements up to 0.2 km/h or better. On the other hand, the UOM of the 

speed measurement system used in testing might be worse than 0.2 km/h. Therefore, the best 

option is to apply the decision rule shown below in (4.3). This would mean that the UOM of the 

speed measurement system would be added to the maximum speed error claimed by the 

manufacturer and a combined figure would be compared against a speed error in any 

measurement. In this instance, the following approach is in place (Moscitta, Pianegiani & Petri 

2004; Eurachem/Citac Guide 2011; Dobbert & Stern 2009): 

                                                                CT = UOM + ME,                                                   (4.3) 

where  

 CT is a compliance threshold; 

 UOM is the uncertainty of measurement of the speed measurement system; 

 ME – manufacturer’s speed error claimed in the datasheet. 

If a measurement error sits outside CT, then such speed records would be considered as non-

compliant with a high degree of probability, e.g. 95%. This rule is shown in Figure 4-3. 



  

59 
 

 

 

Figure 4-3: Decision rule used for testing (Eurachem 2007) 

4.2 Supplementary data for uncertainty calculations 

Before each speed test is conducted, the test vehicle is calibrated. Calibration is conducted 

through separate calibrations of distance and time measurement diagrams as described in 

chapter 3.  

After each test, the same calibration process would follow in the form of verification of the 

performance of the distance and time measurement components of the speed measurement 

system. Such verification without conducting any re-calibrations must confirm that both the 

distance and time measurement components perform within the prescribed limits. 

As explained previously, calibration for speed consists of distance and time calibrations. Within 

distance calibration, a few tolerances / errors are introduced which would influence the speed 

UOM. For example, when a vehicle is driven from A to B covering a surveyed distance of 361.3 

m, it is not possible for the speed measurement system working in distance measurement mode 

to determine a covered distance precisely and there would be always a tolerance. This tolerance 

would obviously influence the speed UOM. Tolerances of initial positioning at points A and final 

positioning at point B would also influence the UOM. Therefore, it is important to understand the 

magnitude of such distance inaccuracies and how they influence the speed inaccuracy.  

As an example, an influence of 1 m distance inaccuracy would be assessed for 1 km distance. 

Then, the assessment results would be applied to all other distances in the UOM budget, 

considering that the actual distance calibration is conducted using 361.3 meters. 

Example.  
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During a distance calibration procedure, a vehicle is driven from A to B covering 1 km. A vehicle is 

placed at point A precisely with no error, then driven ideally in a straight line to point B. However, 

instead of stopping exactly at point B, it stopped 1 m before the point. It is required to estimate the 

impact of such 1 m inaccuracy in the distance calibration on speed accuracy.  

One meter represents 0.1% of 1 km distance and therefore for any value of speed V it would 

cause a speed error of the magnitude equal to 0.1% of V, which means the actual speed error 

would be equal to (0.1*V)/100. Subsequently, 10 cm error of distance would cause a speed error 

which would be (0.01*V)/100 and so on.  

If a similar distance calibration is conducted on a distance of 361.3 m with an error of 1 m, then 

the impact of this error on speed would be 2.7 times higher because the distance of 361.3 m is 

2.7 times smaller than 1 km.  

Table 4-1 illustrates speed error values caused by distance errors during calibrations for two 

scenarios. The first is if calibrations occur on 1 km distance which makes it easy to understand 

where the values are coming from; the second is if calibrations occur on a distance of 361.3 m, 

which is the real calibration distance used in this research. Data from this table would further be 

used in the UOM assessment. 

Table 4-1: Speed error as a function of calibration distance error 

Distance error Error in speed for 1 km 

distance 

Error in speed for 361.3 m 

distance  

1 m 0.1% of speed 0.27% of speed 

40 cm 0.04% of speed 0.1% of speed 

30 cm 0.03% of speed 0.081% of speed 

20 cm 0.02% of speed 0.054% of speed 

10 cm 0.01% of speed 0.027% of speed 

5 cm 0.005% of speed 0.013% of speed 

4 cm 0.004% of speed 0.011% of speed 

3 cm 0.003% of speed 0.009% of speed 

1 cm 0.001% of speed 0.005% of speed 
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4.3 Calibration uncertainties 

The UOM components for calibration are analysed below to establish their exact values and 

magnitude.  

4.3.1 Resolution in distance measurement mode 
The speed measurement system is designed such that it is capable to measure distances with the 

resolution of 10 cm when operating in calibration mode. Considering the information from Table 4-

1 and the fact that calibration is conducted on a 361.3 m surveyed site, this resolution translates 

into (0.00027*V) km/h UOM component, where V is the actual speed of the vehicle. 

4.3.2 Initial positioning 
At the start of a calibration, the test vehicle is positioned at a surveyed point A. Due to inability to 

position the bottom of the wheel exactly at point A, an uncertainty of 3 cm is allocated based on 

practical experience. This uncertainty of 3 cm mainly relates to determination of the centre of a 

wheel. 

 

Considering that calibration is conducted on a 361.3 m surveyed site and values mentioned in   

Table 4-1, the uncertainty of initial positioning translates into (0.00009*V) km/h UOM component. 

4.3.3 Final positioning 
During calibration, a test vehicle is driven from one surveyed point A to the second surveyed point 

B covering 361.3 m distance (see Figure 3-10). At point B, the test vehicle stops and its final 

position cannot be ideal. Therefore, the uncertainty of its final positioning is selected as 10 cm. 

This characterises the uncertainty of positioning of a vehicle’s front wheel bottom exactly at the 

final surveyed point B. It must be emphasised that at this point it is not possible for the vehicle to 

move back and forth to reach a perfect match in positioning because the microcontroller counts 

pulses from the Encoder. Therefore, the UOM value of final positioning is higher than the one 

selected for initial positioning. Specifically, when a vehicle is positioned at the surveyed point A, 

its distance measurement system is not enabled in terms of counting pulses from a wheel sensor, 

and therefore a vehicle can be manoeuvred back and forth until a perfect match of the bottom of 

the wheel with the surveyed mark A is achieved. On the other hand, when a vehicle is about to 

reach the final surveyed point B, the distance measurement system is already enabled and counts 

pulses from a wheel’s Encoder. As a result, it is not possible to conduct any movements back and 

forth to achieve a perfect match in the positioning of a wheel’s bottom with the surveyed point B. 

In this instance, it is possible to miss the surveyed point and thus accept its final position without 

conducting further calibrations. However, this value of 10 cm is very conservative. In the reality, 

better positioning accuracy of the wheel could be achieved.  
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Considering that calibrations are conducted on a 361.3 m surveyed distance and information from 

Table 4-1, a calibration error due to this uncertainty factor equates to (0.00027*V) km/h. 

4.3.4 Timing diagram 
Timing calibration is conducted with the use of the microchip UFDC-1 working as a timing interval 

measurement device.  Therefore, the error of the microchip UFDC-1 in time measurement mode 

is the value which might be used for further assessment of the time measurement uncertainty. 

This error according to UFDC-1 data sheet is determined using (eq.3.8). For the measured 

intervals of 1 sec which are used for time stamping of speed and distance measurements, the 

calculated error would be equal to 0.00000625% of the time stamp interval. This means that the 

UOM component related to timing uncertainty is negligible.  

4.3.5 Surveying the baseline distance 
Surveyed distance of 361.3 m was measured using the Leica FlexLine EDM unit. According to the 

brochure for this equipment (Leica Geosystems AG 2013), the accuracy of distance 

measurements sits within 1.5 mm (0.0015 m) for 361.3 m distance. Considering the magnitude of 

this value relative to other components mentioned earlier, its influence on speed errors would be 

negligible. 

4.3.6 Driving straight 
This UOM component relates to situations when a vehicle is not driven perfectly straight from A to 

B during calibrations. 

 

To estimate the magnitude of this UOM component, a few practical experiments were conducted 

when a vehicle was driven through the calibration distance with the same tyre pressure and initial 

/ final positioning points were maintained as precise as possible. Such approach is acceptable as 

far as there are no alternatives to estimate this UOM component. Through the number of 

experiments, it was determined that variations of 40 cm may occur between the runs when such 

runs seem to be identical. Therefore, 40 cm can be attributed to the uncertainty of driving straight 

factor, although, strictly speaking, this variation might be partially caused by the resolution of the 

distance measurement system of the test vehicle. According to Metrology Training International 

(2005), the error distribution for this component might be considered close to normal, if the 

number of tests conducted to determine this variation was more than 10.  

 

Considering the information from Table 4-1, a final value of speed errors depending on this 

component equals to (0.001*V) km/h. 
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4.3.7 Tyre pressure 

This uncertainty component is attributed to the error in tyre pressure measurements conducted by 

calibrated pressure gauges. 

The tyre pressure gauge used in the experiments was Longacre 2" Digital Tire Pressure Gauge 

Longacre Part # 53036 (Longacre Racing Products 2016). This gauge has a measurement range 

of 0-100 Pounds per Square Inch (PSI) with a claimed accuracy of 0.8%. Considering that the 

nominal tyre pressure for Mazda 3 used in the experiments equals to 32 PSI, an expected error of 

tyre pressure measurements would equal (0.8*32)/100 = 0.25 PSI. 

To determine the actual link between this error and the subsequent distance measurement error, 

a few experiments were conducted during this research (Dyukov 2016c). The test vehicle Mazda 

3 was driven multiple times along the surveyed distance of 361.3 m with different tyre pressure 

values, resulting in slight differences in distance measurements. The experiments revealed the 

following data: 

Table 4-2: Distance measurements as a function of tyre pressure 

Tyre pressure, PSI Average distance measured Number of test drives 

28 362.0 10 

32 (Nominal) 361.3 10 

35 361.2 10 

 

It is evident from Table 4-2 that the tyre pressure variations influence the distance measurement 

error when the actual pressure goes down rather than up. Therefore, to assess the impact of this 

UOM component, a worst-case scenario is considered. Instead of an ideal 32.0 PSI tyre pressure, 

the value would be equal to 31.75 PSI because of the above-mentioned error 0.25 PSI in 

measurement.  

 

Considering that a difference of 4 PSI in tyre pressure causes 0.7 m distance measurement error 

on a surveyed 361.3 m distance (see Table 4-2), it is possible to estimate that a tyre pressure 

error of 0.25 PSI may cause an error in distance measurement of approximately (0.25*0.7)/4 = 

0.04 m (4 cm). This error, as per Table 4-1 would translate into (0.0001*V) km/h.  

4.3.8 Allowable tolerance in distance measurements 
When distance calibrations are conducted, it is highly unlikely that the distance measurement 

component of the speed measurement system would measure a surveyed distance with the 
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result, which exactly matches this distance. Therefore, the allowable tolerance in distance 

measurements is introduced. This is the tolerance when a calibration run is considered to be 

successful without a perfect match between the measured and surveyed distances. 

 

Distance calibrations are conducted before each test. The purpose of distance calibrations is to 

determine a Calibration Factor of the speed measurement system for the test day. Considering 

the resolution of the speed measurement system in distance measurement mode (0.1 m as 

mentioned earlier), it is not practical to select the tolerance in distance measurements to be 

smaller than the resolution. Also, if a small allowable tolerance is selected, for example 20 cm, 

this may not be practical too because driving perfectly straight is not achievable in practice. 

Therefore, in this instance a high number of calibration runs might be conducted before the actual 

test trying to achieve the allowable tolerance. As a result, time would be spent on calibrations 

rather than testing. On the other hand, if the allowable tolerance is selected too high, this would 

increase errors in speed measurements.  

 

Therefore, the tolerance was selected as 40 cm considering the practicalities of calibration and 

the above information. This would practically mean that calibration is considered to be successful 

if the actual distance measurement sits within the range of 360.9 m–361.7 m.  

 

In this instance, considering the information from Table 4-1, the corresponding speed error equals 

to (0.001*V) km/h.  

4.3.9 Calibration uncertainty spreadsheet 
The Calibration UOM spreadsheet, created as per the recommendations described in Metrology 

Training International Pty Ltd (2005) takes into account all the above components and calculates 

the combined UOM attributed to the calibration activities. As shown above in sections 4.3.1 – 

4.3.8, almost every UOM component depends on speed and therefore the combined Calibration 

UOM would also be speed dependant. Figure 4-4 and Figure 4-5 show two screenshots derived 

from the UOM spreadsheet for specific speeds of 60 km/h and 110 km/h. Considering that 110 

km/h is the maximum allowable speed to conduct testing due to relevant traffic legislation in 

Victoria, the corresponding UOM related to this speed would subsequently be used when speed 

test UOM is counted. This calibration UOM equals to 0.16 km/h as per Figure 4-5. 
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Figure 4-4: Combined Calibration UOM for 60 km/h speed 

 

 
Figure 4-5: Combined Calibration UOM for 110 km/h speed 

 

4.4 Field speed measurement uncertainty 

Field speed measurement uncertainty is the most important parameter which needs to be taken 

into consideration when assessing an individual GNSS receiver against its relevant datasheet for 

speed performance.  
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The UOM of the actual field speed measurement has its own parameters which should be 

individually assessed in a similar manner as it was done for the calibration UOM. These 

parameters are listed and analysed below, taking into consideration information in Table 4-1.  

4.4.1 Resolution of speed measurement 
The displayed speed is logged by the speed measurement system to one decimal place (see 

Figure 3-8). Therefore, the resolution component in the UOM is 0.1 km/h. 

4.4.2 Uncertainty inherited from calibration 

This component comes from the Calibration UOM spreadsheet and characterises an imperfection 

in calibration and how it influences the UOM when a vehicle is driven. The uncertainty inherited 

from calibration is selected at its maximum level, i.e. at a level corresponding to 110 km/h.  

Considering the value of UOM in Figure 4-5, the uncertainty inherited from calibration is 0.16 

km/h.  

4.4.3 Time stamp random error 
This error is caused by possible missing of a pulse from the speed sensor (Encoder) installed on 

a wheel during a sampling timing interval of 1 sec. This may occur because of random timing of 

pulses from the Encoder in relation to a sampling timing interval of 1 sec.  

 

The Encoder produces 2048 pulses per one rotation of a wheel and such pulses are not in 

synchronisation with 1 sec time stamps produced by the microcontroller. Therefore, one pulse of 

the Encoder might be missed at either the start of count or the end. 

 

The missing of a pulse from the speed sensor in each measurement causes a distance 

measurement error of 0.0009733 m (see Table 3-1). This error is negligible compared to other 

UOM factors and therefore not taken into consideration in the UOM spreadsheet.  

4.4.4 Tyre pressure error due to non-ideal initial tyre pressure 

Implementation of the incorrect tyre pressure causes speed errors when a vehicle is driven during 

speed tests. Such errors and their influence on speed error are fully described in paragraph 4.3.7 

and Table 4-1. Therefore, a value of (0.0001*V) could be used to describe a speed error caused 

by initial non-ideal tyre pressure.  

4.4.5 Speed error caused by changes in tyre pressure 
When conducting a speed test, the tyres are subject to friction and increased temperature. 

Therefore, their circumference may change because of increased tyre pressure. There are 

currently no reviews on how hot tyres can increase tyre pressure for specific vehicles. Therefore, 

experiments were conducted in this research to understand the link between the driving speed and 
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tyre pressure (Dyukov A 2016c).  In such experiments, a vehicle Mazda 3 was used with 195/65 

R15 tyres.  

To determine the speed error caused by tyre pressure, the following steps were taken: 

 Determination of possible changes in tyre pressure while a vehicle is driven with different 

speeds; 

 Determination of changes in distance measurement by the speed measurement system of 

the test vehicle depending on tyre pressure; and 

 Estimation of speed errors depending on tyre pressure. 

The first step was to reveal how hot tyres might change the tyre pressure. To achieve this, an 

experiment was conducted when the test vehicle Mazda 3 was driven using several speeds with 

the specific tyre pressure gauges installed on each wheel. Such gauges have Radio Frequency 

(RF) transmitters embedded in each gauge that could transmit tyre pressure values remotely to the 

Instrument Panel (Advantage Enterprises 2014). Figures 4-6 and 4-7 show the actual installation of 

the RF tyre pressure gauges and the Instrument Panel (monitor) getting the RF pressure signals. 

Figure 4-8 shows the principle of operation and the devices used during the experiment.  

 
Figure 4-6: Tyre pressure gauge with the RF transmitter installed on Mazda 3 tyre 
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Figure 4-7: Instrument Panel to receive, indicate and record tyre pressure values 

The system consisted of four RF tyre pressure sensors installed on the wheels of Mazda 3 (see 

Figure 4-8). Such sensors were capable of measuring tyre pressure on the move and transmit the 

results through the RF to the Instrument Panel. The latter displayed pressures in sequence for 

each wheel or logged pressure values to a laptop via RS232 port embedded to the Instrument 

Panel. These systems are produced by Advantage Enterprises, Inc in the United States and sold 

under the trademark PressureProTM. In this research, the 10-wheel Monitor Part #ALTGPM10 was 

used as the Instrument Panel (Advantage PressurePro LLC 2014) with software package for 

logging called enTIRE Pressure Agent provided by the same company.  

 

Figure 4-8: Tyre pressure monitoring on the move 

In this experiment, the test vehicle Mazda 3 was driven from 0 km/h up to 110 km/h with an initial 

and nominal tyre pressure of 32 PSI implemented before driving. Further analysis of the tyre 

pressure log-file depending on speed values recorded during an experiment, revealed that at 0 

km/h the tyre pressure was at 32 PSI; and at 100 km/h, the tyre pressure was 34 PSI. This is 

because the temperature of the tyres increases as the speed increases. This change essentially 

means that pressure increased by about 6% from its original nominal value. Quantifying the actual 



  

69 
 

changes in tyre pressure depending on how fast the test vehicle moved, allowed estimation of 

potential errors in speed measurements caused by changes in tyre pressure. 

 

To understand how hot tyres contribute to distance measurement errors and consequently speed 

errors, an experiment was conducted with a number of drives along the surveyed distance of 361.3 

m with different tyre pressures: nominal 32 PSI, below nominal 28 PSI and above nominal 35 PSI. 

Such variations would cover possible tyre pressure increase while driving at high speed. 

 

The results for different tyre pressures were shown earlier in Table 4-2 and the main outcome was 

as follows: an increase of tyre pressure from 32 PSI to 35 PSI changes a measured distance from 

361.3 m to 361.2 m. It appears that inner plies of a tyre, particularly for a belted tyre, would not 

stretch or compress a lot in this circumstance. This is probably because the steel belt of a tyre 

remains the same regardless of air pressure. When a tyre is under-inflated, a tyre thread is 

deformed to be flat against the ground and the tyre flat spot, or footprint, increases with reduction 

of air pressure. Therefore, as the tyre thread is deformed to be flat against the ground, the 

outermost part is slightly compressed to be shortened to the same length as the steel belt over the 

length of the flat area. This then accounts for the slightly reduced travel distance in relation to the 

tyre circumference. As a result, under-inflation causes a larger error than over-inflation as shown in 

Dyukov (2016c). Therefore, maintaining a nominal initial tyre pressure is very important. If this 

condition is met, subsequent distance measurement error caused by even 10% tyre pressure 

increase might be about 10 cm or so for a distance of 361.3 m. This would translate into speed 

errors of 0.01% of the actual speed, i.e. 0.0001*V as shown in Table 4-1.  For example, at 100 

km/h, an increase by 10% in tyre pressure may cause a speed error up to only 0.01 km/h.  

 

Considering that during the experiments the tyre pressure increased by 6% at speeds equal to 110 

km/h, such changes in tyre pressure would cause a speed error of approximately 0.006 km/h as a 

result. This result is taken into consideration in calculating the relevant UOM component in the 

uncertainty budget. 

4.4.6 Noise of the GNSS receiver under test 
This parameter is determined to be 0.33 km/h based on field experiments conducted with 

stationary GNSS receivers. This is the most convenient way of verifying the noise of the receivers 

for speed measurements. Details of the field experiments will be provided in chapter 6. However, 

to keep the UOM budget conservative, the worst results of 0.33 km/h were selected.  

4.4.7 Uncertainty of field speed measurements 

A combined UOM for speed measurements was calculated based on the individual UOM 

components described above. Below are two screenshots derived from the Speed UOM 

spreadsheet for specific speeds of 60 km/h and 110 km/h. Considering that the speed of 110 km/h 
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is the maximum allowable speed to conduct testing because of relevant traffic legislations in 

Victoria, the corresponding UOM of 0.4 km/h related to this speed would subsequently be used in 

all assessments. Normally the test asset should be more superior in terms of accuracy compared 

to the device under test. However, considering the speed accuracy claimed by the manufacturers 

of GNSS receivers, providing such a superiority represents a challenge. More importantly, the 

GNSS speed outliers investigated in this thesis would be far beyond the UOM of a test vehicle. 

 
Figure 4-9: Speed UOM for 60 km/h driving speed 

 

 
Figure 4-10: Speed UOM for 110 km/h driving speed 
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Summary 
This Chapter presented a detailed description of the following:  

1. Principles of decision making when assessing GNSS receivers for compliance to 

speed accuracy parameters from their datasheets. 

2. The analysis of the UOM components for calibration and speed measurement. 

3.  Experimental results which help to calculate individual UOM components. 
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5 GPS/GNSS RECEIVERS UNDER TEST AND TRIAL TESTS 

This chapter describes all GPS/GNSS receivers tested in this research and preliminary trial 

testing. Trial testing was conducted because it was anticipated that difficulties may occur while 

the long test drives are conducted. The main goal was to become familiar with the speed 

measurement system’s reliability parameters and to assess the mechanical parts of the speed 

measurement system for robustness, as well as the ability to record the speed data from multiple 

sources to a PC. 

5.1 GPS receivers under test 

Table 5-1 summarises the GNSS receivers tested in this research. 

Table 5-1: GNSS receivers tested  

Parameter Columbus G-Log V-Box 

Sport 

Garmin  

GPS 72H 

NovAtel 

ProPak-

V3-L1 

NovAtel 

OEM6 

Classification Consumer 

grade 

Consumer 

grade 

Medium 

range 

Medium 

range 

Geodetic 

quality 

Geodetic 

quality 

GPS antenna Internal Internal Internal  

External 

External     External External 

Data logging SD card 

50 million 

records, CSV 

file 

Via USB 

NMEA 

0183 

v.3.01 

SD card Via 

RS232 

Via RS232 

NMEA 

0183 

v.3.01 

Via RS232 

NMEA 

0183 

v.3.01 

GPS chipset MTKII MTKII Unknown SiRFIII OEM3 OEM6 

Number of 

channels 

66 66 Unknown Unknown 72 72 

Sensitivity -165dBm -165dBm Unknown -159dBm Unknown Unknown 

Frequency L1 L1 Unknown L1 L1 L1 

Data update 1 Hz 1 Hz 0.01 Hz 0.5 Hz 1 Hz 1 Hz 

Internal 

battery 

Yes 

13-15 hours 

No Yes Yes No No 

Mask angle Unknown Unknown 7° Unknown 5° - 15° 15° 

Claimed speed 

accuracy 

N/A 0.36 km/h 0.1 km/h 0.36 km/h 0.1 km/h 0.1 km/h 

 

It should be noted that GNSS receivers mean not only the devices showing GNSS data on their 

display, but also the devices capable of data logging either on Secure Digital (SD) cards or via any 
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output ports, for example, RS232 or USB. Such devices are widely available to the general public 

and researchers nowadays. 

 

The first group of GNSS receivers was classified as consumer grade primarily because of their 

simplicity and limited set of functions and capabilities. This group originally consisted of three 

receivers: Columbus (Victory Co Ltd 2011), Canmore (CanMore Electronics Co Ltd 2013) and G-

Log (Transystems Inc 2011). However, the performance of the Canmore GPS receiver was 

inconsistent as multiple records were missing. This behaviour was discovered during the trial tests 

and confirmed during subsequent speed tests. Therefore, only Columbus and G-Log receivers 

were tested in speed tests (see Table 5-1) and their performance analysed. Consumer grade 

receivers often do not allow the operator to change their settings. Also, such receivers are priced 

up to $100 and they all use internal GPS antennas. Therefore, such receivers can only be 

installed inside a test vehicle on a dashboard as per manufacturer’s recommendations. In terms of 

data logging the following parameters were logged by Columbus to its own SD card: date, time, 

latitude, longitude, altitude, speed, direction, voice, Position Dilution of Precision (PDOP), HDOP, 

Vertical Dilution of Precision (VDOP). Columbus uses the Doppler derived methodology for speed 

determination and this principle was confirmed by the manufacturer through email.  

 

Figure 5-1: Columbus GPS receiver 

One of the features of Columbus was that the speed output was hardcoded by the manufacturer 

to produce by default the integer speed values with no option to change. The manual for 

Columbus has no information about the speed accuracy (Victory Co Ltd 2011). However, 

considering that Columbus V-990 uses MTK 3329 GPS chipset, it may be assumed that the 

estimated speed accuracy is around 0.36 km/h (Mediatek Inc 2010).  

 

The second low cost consumer grade receiver tested in this research was a recreational GPS 

receiver G-Log 760 (Transystems Inc 2011).  
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G-Log is a low-cost GPS recorder which allows a route to be logged by setting the interval of time 

/ distance / speed. It has a rechargeable battery and several indicators of the receiver’s operation. 

In this research the receiver was configured to log GPS data with 1 sec timing intervals. 

 

Figure 5-2: G-Log GPS receiver 

The second group of GPS receivers was classified as medium range primarily because of their 

increased complexity, functionalities and cost compared to low cost consumer grade receivers. 

This group consisted of two receivers: VBox Sport and Garmin GPS 72H. Medium range 

receivers generally do not allow the operator to change their internal settings, but their cost varies 

from $200 to $500. Such receivers typically use active external GPS antennas. This allows 

optimisation of GPS signal strength when external antennas could be placed on the roof of the 

test vehicle.  

 

The first medium range GPS receiver was VBox Sport. This receiver comes with an option of 

using the internal and external antenna (Racelogic 2013). It is is produced by Racelogic in the 

United Kingdom. 
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Figure 5-3: VBox GPS receiver 

During initial experiments (prior to October 2015) this receiver was tested with its internal 

antenna. An external antenna was purchased on 10 Oct 2015 and subsequently used for 

experiments. The receiver does not have an option of adjusting a mask angle which has been 

hardcoded by the manufacturer. Therefore, the default angle was 7º. As per Racelogic (2013), the 

receiver should provide speed measurements accurate to 0.1 km/h. However, the operating 

conditions when such accuracy could be guaranteed, are not specified. The speed measurements 

are made using the Doppler method. This receiver is specifically designed for use in sport racing 

applications where speed is measured with high frequency and then acceleration / deceleration 

and speed accuracy parameters are analysed.  

Unfortunately, very little is known about the parameters of the GPS chipset of VBOX. In addition 

to the information provided above, the following might be of interest.  The VBOX Sport is officially 

certified by Apple. It can connect to an iPhone™, iPod™, or iPad™ via a wireless Bluetooth 

connection and work with the popular application such as Harry's Lap Timer. Racelogic's own 

performance test application is also available from the Apple App Store, providing increased 

functionality and immediate feedback for performance testing. 

As well as using VBOX Sport for motorsport, it can be employed as an enhancement for GPS 

reception on iOS devices, or for adding GPS functionality to those that do not have it already.  

The limitations of this receiver for testing purposes related to the non-generation of records when 

the receiver was in stationary mode. In addition, the receiver generated records every 0.01 sec 

when a vehicle was moving.  This complicated the data matching process with other receivers 

and the speed measurement system, as well as prevented comparison when the receiver was 

stationary. The third disadvantage of VBox was that this receiver generated latitude and longitude 

in VBox’s own format and this format was non-standard.  

The second medium range GPS receiver was Garmin GPS 72H (Garmin Corporation 2009). 
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Figure 5-4: Garmin GPS 72H receiver 

Garmin GPS 72H is very popular among marine navigators. The reasons for this is that the 

receiver is water-proof and it can float on water. The second reason is that it can save coordinates 

of up to 500 favourite places in its internal memory. Originally this receiver was priced at about 

$200 but with time its price dropped to about $130-$140. 

Geodetic quality GPS / GNSS receivers tested in this research were NovAtel products with 

advanced configuration functions, multi-GNSS capability and specialised external GPS / GNSS 

antennas (NovAtel Inc 2015). The cost of these receivers varies between $5,000 and $7,000 

depending on their complexities and functions.  

The first geodetic quality receiver was NovAtel ProPak-V3-L1 (further in text ProPak-V3-L1) 

(NovAtel Inc 2007; NovAtel Inc 2013; NovAtel Inc 2014a). 

 

Figure 5-5: Novatel ProPak-V3-L1 GPS receiver 

Up to three Novatel ProPak-V3-L1 receivers were tested during this research simultaneously. To 

address the research objectives the receivers had different elevation cut off angles: 5°, 10° and 

15°. ProPak-V3-L1 receivers were equipped with external GPS antennas and configured by the 

commands sent via RS232 port to output speed records every second with four NMEA data 

strings: $GPGGA, $GPGSA, $GPRMC and $GPGSV. These NMEA records contained all 
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information required, such as UTC date and time, speed, HDOP, number of satellites tracked and 

the satellites parameters, such as SNR and satellite elevation angle. These parameters were 

used to address the research objectives.  

 

NovAtel receivers use Doppler based methods in conducting speed measurements. This was 

confirmed through NovAtel Inc (2014a). 

The second geodetic grade GNSS receiver tested in this research was NovAtel OEM6 (NovAtel 

Inc 2014b; NovAtel Inc 2014c), (see Figure 5-6). It represents the next generation of NovAtel 

receivers capable of operating with all existing and emerging GNSS constellations. In addition, the 

receiver is also Satellite-Based Augmentation Systems (SBAS) capable. The details of the 

specific NovAtel OEM6 model used in this research are outlined in Table 5-1. 

 

Figure 5-6: Novatel OEM6 GNSS receiver 

 

5.2 Typical test setup 

Depending on the constraints and availability of GNSS receivers during the research, the number 

of receivers tested during each test were different. However, Figure 5-7 and Figure 5-8 show a 

typical test setup covering the most extensive configuration when all receivers were tested 

simultaneously. Figure 5-7 shows the data flow, while Figure 5-8 shows the power connections. 

This test configuration could be narrowed during a specific test if the number of receivers under 

test has been smaller than shown on Figure 5-7 and Figure 5-8. 
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Figure 5-7: Data flow for a typical test setup for all tests 

Figure 5-7 shows the data flow diagram for a typical test setup. Three NovAtel receivers ProPak-

V3-L1 were configured to operate with 5º, 10º and 15º elevation cut-off angle, respectively. They 

were connected to their respective GPS antennas and sent NMEA data through USB-to-Serial 

converters to the laptop for logging. While only one RS232 output in the receivers with higher 

elevation cut-off was used to send the data to the laptop, the ProPak-V3-L1 with the lowest cut-off 

angle of 5º had its second RS232 port connected to the microcontroller board to send NMEA data 

used for time stamps detection. G-Log GPS receiver had direct connection to the USB port of the 

laptop, whereas both VBox and Columbus logged GPS data to their own SD-cards. Each test 

further below would mention explicitly whether VBox used its internal or external antenna, 

because this antenna has been received not at the start of the research.  

USB-to-Serial converters represented an off-the-shelf product and their task was to convert 

signals from RS232 ports to USB format. The laptop used in the tests had one RS232 port 

available and this port was always connected to one of the ProPak-V3-L1 receivers directly (on 

Figure 5-7 this is ProPak-V3 with the lowest cut-off angle).  

The Encoder installed on the back wheel of the test vehicle was connected to the microcontroller’s 

input for counting pulses, whereas the output of the microcontroller sent time stamps with 

corresponding speeds to the laptop via the USB-to-Serial converter.  
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Figure 5-8 shows the research test setup with power connections, i.e. how power was supplied to 

the equipment. 

 

Figure 5-8: Typical test setup for power connections in all tests 

All NovAtel receivers and Garmin got their power supply +12V from a splitter connected to a 

cigarette lighter of the vehicle. Columbus and VBox GPS receivers used their internal batteries. 

G-Log GPS receiver used a USB interface to obtain power directly from the laptop, whereas the 

laptop itself had its own power supply converter providing the right power for the laptop from 12V. 

Finally, the microcontroller board and Encoder obtained +12V and +5V power supply voltages 

respectively from separate power supply devices connected to the 12V DC –to- 240V AC 

converter. This converter produced 240V AC from +12V DC obtained from a splitter.  

The power supply connections to the microcontroller and Encoder provided their electric isolation 

from each other.  

Figure 5-9 and Figure 5-10 show examples of the receivers’ setup in the test vehicle. 
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Figure 5-9: Installation of GPS receivers on a dashboard 

 
Figure 5-10: GPS receivers and speed measurement system in the boot 

Figure 5-10 demonstrates the installation of two Novatel ProPak-V3-L1 receivers, VBox and 

Garmin. Also, a laptop for logging data is to the right. Behind the laptop is the microcontroller box. 

GPS antenna cables were linked from the luggage compartment to the roof where the antennas 

were installed; see two examples in Figures 5-11 and 5-12. 
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Figure 5-11: GPS antennas on the roof 

 

Figure 5-12: Test vehicle with antennas on the roof during a trial test 

5.3 Trial test for the speed measurement system 

The goal of a trial test was to confirm the operation of the typical setup and the speed 

measurement system. Typically, it is important to determine whether new test assets are 

appropriate for conducting the tests. Trial tests are used to determine what has 'worked', or can 

be fixed and improved. The goal of this test was not to collect experimental data from the 

receivers to make a conclusion about their speed accuracy, but rather to validate all technical 

solutions used in designing the speed measurement system. 

At the time of trial testing, not all receivers used in this research for kinematic testing described in 

chapter 6 were available and therefore a limited number of them were used in the test. On the 

other hand, the main goal of the test was to practically check the performance of the speed 

measurement system and its reliability during a long drive. In particular, the mechanical fixing of a 

speed sensor to a wheel was the main area of concern. 
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The receivers tested were: 

- NovAtel ProPak-V3-L1 receiver with 15º elevation mask operating in GPS mode only; 

- NovAtel OEM6 GNSS receiver with 15º elevation mask working in GPS + GLONASS    

mode; 

- VBOX Sport operating with an internal GPS antenna; and 

- Columbus and Canmore.  

5.3.1 Test route 

The test was conducted in February 2015 with the test vehicle driven from Melbourne to Echuca. 

The route consisted of different environments: freeways with many overpasses, suburban areas, 

countryside roads with tree canopies and long open sky sections; and the distance covered was 

approximately 250 km. Considerable parts of the test route are represented in Appendix B. 

To eliminate any potential causes of systematic errors which might be experienced by all 

receivers on the day, the following measures were put in place: 

a/ Space weather reports were analysed to confirm that there were no events which could  

potentially impact the performance of the receivers under test; 

b/ GPS Notice Advisory to NAVSTAR Users (NANU) Reports and GLONASS advisories  

were analysed to confirm that the integrity of the GPS and GLONASS constellations can  

be maintained for the duration of the test; 

c/ An analysis was conducted with help of the GPS planning software to confirm the  

satellites availability in Victoria and HDOP for the duration of the test. 

The above assessments were conducted for the trial test and any subsequent test described in 

this thesis. 

Figures 5-13, 5-14 and 5-15 show the results from the GPS planning software for the area where 

the test was conducted. 
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Figure 5-13: Number of GPS + GLONASS satellites during the test period 

 

Figure 5-14: GPS DOP values during the test period 
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Figure 5-15: GPS and GLONASS DOP values during the test period 

It is visible from the above plots that for GPS only receivers the number of predicted satellites in 

open sky conditions varied from five to eight. For GPS +GLONASS receivers, the number of 

satellites varied between nine to 15.  Also, the predicted HDOP for GPS only receivers was no 

more than 2.5 and for GPS+GLONASS receivers was no more than 1.75 (refer to the lowest graph 

in Figure 5-15). All the above demonstrates that GNSS availability in the area was sufficient for 

conducting speed tests. 

5.3.2 Statistical results from the trial test 

Statistical analysis of the speed differences between the speed measurement system and 

GPS/GNSS receivers from a trial test is provided in Table 5-2. 

Table 5-2: Statistical performance of GPS/GNSS receivers in kinematic conditions 

Parameter NovAtel ProPak-

V3-L1 

Novatel OEM6 VBox Columbus 

Mean, km/h -0.1  -0.1 -0.1 0.4 

Standard 

deviation, km/h 

0.3 0.3 0.7 0.5 

Maximum 

negative speed 

difference, km/h 

-3.5 -2.8 -11.3 -3.1 

Maximum 

positive speed 

difference, km/h 

3.1 3.9 6.5 4.0 
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To understand how the measured values of the speed measurement system correlated with GPS 

speed records, the Pearson’s correlation assessment (paired t-test) was conducted (Shier 2004). 

A paired t-test is typically used to compare two population means where there are two samples in 

which observations in one sample can be paired with observations in the other sample. One of the 

examples of where this might occur is a comparison of two different methods of measurements 

where the measurements were applied to the same subjects. This is exactly our case where 

speed measurements were conducted with the test vehicle and they were compared against a 

number of GPS speed measurements.  

Evans (1996) suggests that according to the Pearson’s assessment the strength of correlation 

highlights the following: 

 0.00 – 0.19 is considered as very weak correlation; 

 0.20 – 0.39 is considered as weak correlation; 

 0.40 – 0.59 is considered as moderate correlation; 

 0.60 – 0.79 is considered as strong correlation; and 

 0.80 – 1.00 is considered as very strong correlation. 

Table 5-3 shows the results obtained from the Pearson’s correlation assessment conducted using 

the trial test data. 
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Table 5-3: T-test paired two samples for means 

 Test vehicle Novatel GPS ProPak-V3-L1 

Observations 3269 3269 

Pearson Correlation  0.9999 

                Test vehicle Novatel GPS+GLONASS 
OEM6 

Observations 4927 4927 

Pearson Correlation  0.9998 

                Test vehicle VBox 

Observations 5409 5409 

Pearson Correlation  0.9991 

                Test vehicle Columbus 

Observations 3305 3305 

Pearson Correlation  0.9996 

Results shown in Table 5-3 highlight that some GPS receivers are more conservative than the 

others, considering the number of records generated by each receiver. 

More importantly, measurements from the test vehicle and GPS receivers demonstrated very 

strong correlation with the t-test result no less than 0.9991.  

Figures of Appendix C demonstrate speed difference distributions for the receivers under test 

during a trial test. Such distributions represent the number of speed records of the GPS/GNSS 

receivers corresponding to the specific speed errors.  Speed errors were measured as differences 

between the calibrated test vehicle speed records and the relevant speed records of the 

receivers. Such distributions were put in place considering smooth driving records of the test 

vehicle only. Smooth driving records represented only those records of the test vehicle when the 

speed difference between neighbouring 1 sec records was less than the UOM of the test vehicle. 

This means that sharp accelerations and decelerations of the test vehicle were excluded and only 

those records processed when the speed difference between neighbouring ones did not exceed 

0.4 km/h. Also, speed outliers generated around overpasses were eliminated from the 

assessment as they are separately analysed in the next paragraph 5.3.3. Finally, speed records 
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when the test vehicle was stationary were also eliminated from the assessment as they may 

change the statistical performance dramatically due to differences in static measurements caused 

by rounding in the Columbus GPS receiver. This means that Columbus always produced 0 km/h 

speed when a vehicle was stationary, while other receivers produced speed around 0 km/h with 

no perfect match because of a GPS speed noise.  

5.3.3 Speed outliers 

An outlier is defined herein as a measurement that is distant from other measurements. As GNSS 

receivers are generally very precise in speed measurements, any GNSS speed measurement with 

an error of several kilometers per hour is considered to be an outlier. 

 

Table 5-4 outlines the magnitude and the number of speed outliers generated by the receivers 

during a trial test only around overpasses. Also, an example of a location where speed outlier was 

generated is shown in Figure 5-16 for NovAtel ProPak-V3-L1. More examples for different 

receivers are provided in Appendix D. 

Table 5-4: Average GNSS speed spikes for overpasses only and the number of spikes during the 
test 

 Novatel ProPak-

V3-L1 

Novatel OEM6 VBox Columbus 

Average speed 

difference 

between the test 

vehicle and the 

receiver, km/h 

5.3  4.7 10.7 10.5 

Number of 

outliers  

7 10 30 23 
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Figure 5-16: Example of the environment where an outlier was generated by Novatel ProPak-V3-L1 

For the trial test it was calculated that the amount of outliers represented 0.09% for Novatel 

ProPak-V3-L1 and 0.08% for Novatel OEM6 from the total number of valid speed records.     

In addition to the outliers generated around overpasses, VBox only generated 122 outliers in the 

countryside on road sections where some tree foliage environments were present. The average 

magnitude of such outliers was equal to 3.8 km/h. Trees can potentially be a significant source of 

GNSS signal loss and GPS speed accuracy degradation. However, this topic would be further 

discussed in chapters 6 and 7.  

Despite all receivers used Doppler based method to determine speed, their statistical results 

demonstrated significant performance differences. Considering the standard deviation of speed 

errors produced by different receivers as shown in Table 5-2 and relevant speed error distributions 

(see Appendix C), it is possible to derive a preliminary conclusion that the reported speed sits 

within 0.6 km/h from the true speed (two standard deviations) for geodetic quality receivers. For 

medium range receiver VBox and low-grade receiver Columbus, speed records are within 1.4 km/h 

and 1 km/h from the true speed, respectively. It is likely that the statistical performance of Novatel 

receivers complies to the datasheets. This is because when combined with the UOM of the test 

vehicle (0.4 km/h), the total UOM is ±0.5 km/h, compared to ±0.6 km/h as reported from the test. 

 

Unlike Novatel receivers, the receiver VBox was potentially non-complaint to its specified speed 

accuracy parameter. The receiver’s speed values were ±1.4 km/h from the true speed. In the worst 

situation, the combined UOM of the test vehicle is 0.4 km/h and the speed noise of VBox receivers 

is expected to be 0.1 km/h. The total speed error is expected to be up to 0.5 km/h, which 

significantly differs from ±1.4 km/h range of speed errors.  

 

It is to note that the above conclusions are only preliminary. Further experiments will validate the 
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performance of the GNSS receivers, particularly in challenging environments. 
 

Despite the fact that all receivers use the Doppler based method to determine speed, the 

performance of geodetic quality receivers was considerably better compared to medium range and 

low-grade receivers both in terms of the number of outliers and their magnitude. Around 

overpasses, Novatel receivers produced either good or blank records indicating unreliable speed 

measurement with only several outliers, i.e. seven and 10 respectively for Novatel ProPak-V3-L1 

GPS receiver and Novatel OEM6 GPS + GLONASS receiver for the entire run. VBox and 

Columbus produced more outliers than Novatel receivers despite sufficiently higher number of 

satellites in speed records.  

 

The use of GLONASS in the Novatel OEM6 receiver did not significantly improve the performance 

in terms of both speed accuracy and the number of outliers. However, it increased the number of 

valid speed records in general (see Table 5-3). The average speed error for Novatel OEM6 outliers 

was 4.7 km/h compared to 5.3 km/h for Novatel ProPak-V3-L1. This improvement is marginal, 

considering that Novatel OEM6 is the next generation of Novatel receivers. It is to highlight that the 

number of outliers, i.e. seven and 10 produced by geodetic quality receivers ProPak-V3-L1 and 

OEM6 for the entire test, was still relatively high in magnitude (see Table 5-4). The average speed 

errors of 5.35 km/h and 4.74 km/h are generally not expected from geodetic quality receivers.  

 

For medium range (VBox) and low grade (Columbus) receivers the speed accuracy around 

overpasses is worse. These receivers had average speed errors of 10.7 km/h and 10.5 km/h (see 

Table 5-4). The number of outliers was also relatively high.  These preliminary results highlighted 

that the use of speed records, when produced around overpasses and narrow pedestrian crossing 

bridges (see Figure 5-17), cannot be justified.  Also, VBox produced 122 outliers when measuring 

speed on road sections with tree canopies. The average error for this group of outliers was 3.8 

km/h. Such magnitude of speed error highlighted that the measurements from VBox may not be 

trusted in such environments.  
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Summary 
This chapter presented a detailed description of the following:  

1. The GNSS receivers tested in the research. 

2. Typical test setup used in the experiments. 

3. Planning of experiments for each test date to confirm that the test results would not 

be adversely affected by the GNSS availability in the area where the test was 

conducted. 

4. Analysis of results of the trial test. 
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6 VALIDATING THE ACCURACY OF GPS/GNSS SPEED 
MEASUREMENT 

6.1 Tests overview 

Static and kinematic tests were conducted to evaluate the performance of GNSS receivers in 

different environments. Static tests were conducted in two environments, e.g. ideal open sky and 

non-ideal environment. In the static tests, the receivers were stationary.  

The next group of tests represented several kinematic tests where a test vehicle was driven 

through a number of specific GNSS environments. All static and kinematic tests are summarised 

in the Table 6-1. As the test environments were becoming more complex with each subsequent 

kinematic test, the goal of each test was to get the statistical performance of the speed error and 

compare the test results against each other to determine the environment representing the 

biggest challenge. 

Table 6-1: Summary of tests 

Test No Environment 

 Static tests 

1 Ideal open sky environment 

2 Non-ideal open sky environments with good GNSS visibility 

                                                    Kinematic tests 

1 Predominantly open sky with limited number of trees (Narre Warren – Drouin - 

Warragul) 

2 Predominantly open sky with limited number of trees (number of trees is higher 

compared to the kinematic test No1) 

3 Freeway with a number of overpasses (Monash Fwy in Melbourne) 

4 Tree foliage environment (Berwick – Upper Beaconsfield – Emerald – Berwick) 

5 Tree foliage environment (Berwick – Emerald – Nangana - Woori Yallock) 
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In all kinematic tests No1 – No5 shown in Table 6-1, the VBox GPS receiver was tested with an 

external GPS antenna located on the roof of the test vehicle. 

In the following sections, the results from the static and kinematic tests will be explained in more 

detail. 

6.2 Static speed tests 

Before commencing kinematic tests, the receivers were tested for their static performance to 

ensure their speed errors are known in ideal environmental conditions. The first static test (refer to 

Table 6-1) represented the open sky ideal environment where the receivers were stationary having 

good GNSS visibility with no trees or any other structures around. The duration of this test was 24 

hours and thousands of speed records were collected from each receiver. Speed test results from 

the static test No1 were also required to assess the speed noise parameter, which was 

subsequently used in UOM calculations described in chapter 4. Then, the receivers were tested in 

non-ideal static conditions when the receivers were also stationary, but located at different 

locations (refer to Table 6-1, static test 2). For example, such locations could represent situations 

when the test vehicle was stationary at traffic lights or emergency lanes off roads. The duration of 

this test comprised several hours with times when the GPS visibility dropped. Therefore, test 

results from the static test No2 would demonstrate how simple, non-dynamic changes in the 

environments could affect the speed accuracy parameter.   

During such static tests, the receivers reported minor variations in speed values and their statistical 

speed difference parameters are shown in Tables 6-2 and 6-3. 
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Table 6-2: Speed errors for the static test No1 

Parameter Novatel 
ProPak-

V3-L1 GPS 
receiver 

Novatel 
OEM6 
GPS + 

GLONASS 
receiver  

VBox GPS 
receiver  

Columbus 
GPS 

receiver  

G-Log 
GPS 

receiver 

Garmin 
GPS 

Receiver 

Mean, 

km/h 

0  0 N/A 0 0 0 

Standard 

deviation, 

km/h 

0.02 0.02 N/A 0 0.01 0.02 

Maximum 

negative 

speed 

difference, 

km/h 

0 0 N/A 0 0 0 

Maximum 

positive 

speed 

difference, 

km/h 

0.2 0.16 N/A 0 0.31 0.33 

 

Considering that in the static test No1 the test vehicle was not present, it was decided to use the 

worst values from this environment as a GPS speed noise. The worst performer in this instance 

was Garmin with a noise value of 0.33 km/h. This value was used in the UOM analysis as 

described in chapter 4. 

 

It should be noted that VBox GPS receiver did not produce static speed records because of the 

internal accelerometer preventing the receiver to produce records in stationary conditions. 

Columbus GPS receiver produced very good static results, simply because the receiver does not 

generate speed records with decimal points. Therefore, all speed values were rounded to zero for 

Columbus. Novatel ProPak-V3-L1 used 15º cut off elevation angle in such experiments. 
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Table 6-3: Speed errors for the static test No2 

Parameter Novatel 
ProPak-

V3-L1 GPS 
receiver 

Novatel 
OEM6 
GPS + 

GLONASS 
receiver  

VBox GPS 
receiver  

Columbus 
GPS 

receiver  

G-Log 
GPS 

receiver 

Garmin 
GPS 

receiver 

Mean, 

km/h 

0  0 N/A 0 0.02 0 

Standard 

deviation, 

km/h 

0.04 0.04 N/A 0 0.03 0.04 

Maximum 

negative 

speed 

difference, 

km/h 

-0.3 -0.4 N/A 0 0 0 

Maximum 

positive 

speed 

difference, 

km/h 

0 0 N/A 0 0.7 0.74 

 

As can be seen from the results in Tables 6-2 and 6-3, the geodetic quality Novatel receivers 

complied with the manufacturers specifications. At the same time, it was noticed that for Novatel 

receivers the occasional speed records in the static test No2 were outside the datasheet 

boundaries. In such instances Novatel receivers produced occasional outliers of up to 0.3 km/h 

and 0.4 km/h respectively, while errors of the test vehicle were eliminated as it was stationary. The 

number of outliers sitting beyond the boundaries prescribed in the datasheets was 113 for the 

Novatel ProPak-V3-L1 and 66 for Novatel OEM6 for the test data covering several hours of 

operation. 

 

Garmin and G-Log GPS receivers were the worst performers in stationary speed tests as shown 

from Tables 6-2 and 6-3.  
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One important consideration relates to the comparative performance of receivers. While their 

speed inaccuracies are different, it is not possible to guarantee that the consumer grade or 

medium range receivers performed very differently against the geodetic quality receivers. This is 

seen from the standard deviation values of the speed error. This highlights the fact that potentially 

in the ideal environments, it would be hard to distinguish the differences in speed measurement 

performance between various receivers. 

 

6.3 Kinematic speed tests in a predominantly open sky environment 

The goal of the kinematic tests No1 and No2 (refer to Table 6-1) was to collect kinematic speed 

records from all GNSS receivers in predominantly open sky environment. Test results will be 

compared to those collected in challenging environments. This comparison would help to assess 

the impact of such challenging environments on speed accuracy.  

6.3.1 Test routes 

The test routes were mainly on the Australian countryside roads. Unfortunately, in a real-world 

environment when collecting thousands of speed records, it is challenging to select a test route 

with absolutely no trees or obstacles causing obscuration to GNSS signal. However, the test 

routes for the tests No1 and No2 were selected so that the vast majority of GNSS speed records 

would be generated in the open sky environments. Also, the routes were selected so that only 

occasional trees would be present but no buildings. The kinematic test No1 contained less trees 

along the road compared to the kinematic test No2. In the kinematic test No1 several overpasses 

were present, but speed records around them were carefully filtered out for all receivers under 

test. Filtering was conducted with a buffer of several seconds around each overpass. 

The route for kinematic test No1 is shown in Figure 6-1. Figure 6-2 shows the route for the 

kinematic test No2.  
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Figure 6-1: Test route for the kinematic test No1 

 
Figure 6-2: Test route for the kinematic test No2  

6.3.2 Comparative test results 

Comparative test results for the speed error for the kinematic tests No1 and No2 are shown in 

Tables 6-4 and 6-5, respectively. 
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              Table 6-4: Practical performance in speed measurement for the kinematic test No1 

Parameter Novatel 
GPS 
ProPak-
V3-L1 
with 5º 
cut-off 
angle 

Novatel 
GPS 
ProPak-
V3 with 
10º cut-
off angle 

Novatel 
GPS 
ProPak-V3 
with 15º 
cut- off 
angle 

Novatel 
OEM6 
GNSS 

VBox Garmin Columbus G-Log 

Mean, 
km/h 

-0.05 -0.06 -0.05 -0.06 0.00 -0.03 0.48 0.00 

Standard 
deviation, 
km/h 

0.19 0.20 0.25 0.19 0.31 0.16 0.34 0.25 

 

Table 6-5: Practical performance in speed measurement for the kinematic test No2 

Parameter 
Novatel 
GPS 
ProPak-
V3-L1 

with 5º 

cut-off 
angle 

Novatel 
GPS 
ProPak-
V3 with 

10º cut-
off angle 

Novatel 
GPS 
ProPak-V3 

with 15º 

cut- off 
angle 

Novatel 
OEM6 
GNSS 

VBox Garmin Columbus G-Log 

Mean, 

km/h 
-0.02 -0.02 -0.04 -0.04 0.10 -0.14 0.54 0.01 

Standard 

deviation, 

km/h 

0.64 0.45 0.31 0.35 0.59 0.30 0.45 0.52 

 

In open sky environment, all GNSS receivers tested had similar performance. Hence, it was not 

possible to conclude that geodetic quality receivers performed better.  

Looking at the results shown in Tables 6-4 and 6-5, it is possible to make the following 

conclusions. First, for the kinematic test No1 in ideal environments, all receivers were within the 

prescribed limits. Second, not all the receivers were compliant to their specifications in kinematic 
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test No2 as more trees were present along the route. Such conclusions can be made considering 

two factors: one is the UOM of 0.4 km/h of the speed measurement system; second is the 

manufacturer’s data sheets where the speed accuracy parameter is stipulated. For the kinematic 

test No1 two standard deviations of the speed difference is generally no higher than the sum of 

the UOM and the speed measurement error expressed in the datasheet for each receiver (refer to 

Table 6-6). This is however not the case for a number of receivers tested in the kinematic test 

No2. Nevertheless, considering the results from Table 6-6, it is premature to make conclusions 

without further testing of the receivers in the real challenging environments. 
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Table 6-6: Test results versus datasheets information 

Receiver Datasheet 
speed 

accuracy, 
km/h 

UOM of the 
speed 

measurement 
system, km/h 

Compliance 
threshold, 
km/h (Sum 

of two 
previous 
columns) 

Practical error 
(two standard 
deviations) for 
kinematic test 

No1 

Practical error 
(two standard 
deviations) for 
kinematic test 

No2 

Novatel 
GPS 
ProPak-V3 
with 5º cut- 
off mask 

0.1 0.4 0.5 0.38 1.28  

Novatel 
GPS 
ProPak-V3 
with 10º 
cut-off 
mask 

0.1 0.4 0.5 0.40 0.9 

Novatel 
GPS 
ProPak-V3 
with 15º 
cut-off 
mask 

0.1 0.4 0.5 0.50 0.62 

Novatel 
OEM6 
GNSS 

0.1 0.4 0.5 0.38 0.7 

VBox 0.1 0.4 0.5 0.62 1.2 

Garmin 0.04* 0.4 0.44 0.32 0.6 

Columbus N/A* 0.4 N/A 0.68 0.90 

G-Log 0.36 0.4 0.76 0.50 1.04 

It should be noted that Columbus’ speed accuracy parameter is not specified in the datasheet. 

It should also be noted that having no challenging GNSS environments in kinematic tests No1 and 

very limited challenges in the kinematic test No2, the receivers still generated some speed 

outliers. The number and magnitude of outliers, though, were relatively minor. Figures 6-3 to 6-7 

mention the outliers for the kinematic test No1 for each GPS receiver with the speed errors 

greater than 2 km/h when compared to the test vehicle.  The corresponding GPS parameters for 
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every outlier are also indicated. All speed values and speed differences in Figures 6-3 to 6-7 are 

indicated in km/h. 

Figure 6-3: Speed outliers generated by Novatel GPS ProPak-V3-L1 with 5º mask angle 

 
Figure 6-4: Speed outliers generated by Novatel GPS ProPak-V3-L1 with 10º mask angle 

Figure 6-5: Speed outliers generated by Novatel GPS ProPak-V3-L1 with 15º mask angle 

 
Figure 6-6: Speed outliers generated by VBox 

Figure 6-7: Speed outliers generated by G-Log 

Garmin GPS receiver had no outliers during the kinematic test No1 and the maximum / minimum 

speed differences for this receiver were equal -0.8 km/h and 0.7 km/h respectively.  

Columbus GPS receiver had no outliers for the kinematic test No1 and the maximum / minimum 

speed differences for this receiver were equal -1.0 km/h and 1.6 km/h respectively. 

During this test and all the subsequent kinematic tests, it was noticed that the consumer grade 

receivers reported GPS visibility over-optimistically. On the other hand, the geodetic quality 

receivers were more conservative. This is visible from the reported number of satellites and 

HDOP. 

After careful examination of each outlier generated in kinematic test No1, it was determined that 

almost every outlier was generated in areas where there were single trees or groups of trees 
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along the road, except for G-Log. Also, it was noticed that outliers were generated at different 

times for different receivers, which makes it highly unlikely that the speed measurement system of 

the test vehicle caused them.  

Lastly, it is worth mentioning that in the kinematic test No1 there were two occasions when VBox 

GPS receiver generated duplicate speed records for the same time but provided different speed 

values (see Figure 6-8). Two records instead of one were generated for 00:18:38 UTC with 

different speed values and the same problem was seen for 00:18:39 UTC. Such occurrences may 

compromise the performance of a particular type of receiver and raise doubts in relation to its 

integrity, although during this test and the subsequent tests this event did not happen anymore. 

 
Figure 6-8: Duplicate speed records generated by VBox 

 

6.4 Speed tests in challenging environments 

6.4.1 Freeways with overpasses 

The main tasks of this test, which is represented by the kinematic test No3 (refer to Table 6-1), 

were as follows: 

 To investigate if high GPS receiver mask angle can improve the speed measurements 

accuracy and reduce the number of speed outliers and/or their magnitude. 

 To assess the performance of consumer grade, medium range and high end geodetic 

quality GPS / GNSS receivers in terms of generation of outliers, specifically in the 

environments where overpasses are present. 

 To assess if the GPS + GLONASS solution provides improved speed measurement 

performance compared to GPS only in case of driving through overpasses. 

To address the above tasks, kinematic test No3 (see Table 6-1) was conducted along Monash Fwy 

in Melbourne where there were a lot of overpasses between Narre Warren and Chadstone. The 

route for this test is shown in Figure 6-9. The challenge of this route was that the receivers passed 
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through many overpasses causing the multipath and obstruction of the GPS signal to occur. It is 

important to note that only those speed records where multipath caused issues in speed 

measurement would be further investigated. Such records demonstrated good GPS visibility 

considering such parameters as HDOP and number of satellites.  

Overpasses mainly represented bridges for traffic or narrow pedestrian bridges. For the entire 

route there were 40 overpasses. In addition, several road gantries or wide metal signs, crossing 

over Monash Freeway were also presented. It was expected (see chapter 1) that the geodetic 

quality receivers under test whose mask angle might be configured to higher degrees would 

generate several speed outliers with the magnitude and frequency dependent on the mask angle. 

In this instance, it was expected that the best performer would be the GNSS receiver Novatel 

OEM6 as it had the highest mask angle of 15º and used two GNSS constellations, i.e. GPS and 

GLONASS. Subsequently, the second-best performer was expected to be the GPS receiver 

ProPak-V3-L1 with the highest elevation mask of 15º, followed by the GPS Novatel receivers with 

10º and then 5º elevation masks. The expectation was based on the fact that the receivers had 

completely identical GPS/GNSS settings except the mask angle. In addition, ProPak-V3-L1 

receivers were of the same type. Finally, the expectation was based on the fact that higher 

elevation masks would filter potential multipath occurrences as described in chapter 1 (Zhang 

2007; Roberts 2015; Abd-Elazeem, Farah & Farrag 2010).  

In addition, all medium range and consumer grade receivers were also tested; however, no 

expectations could be formulated in advance in relation to their comparative performance to each 

other and to geodetic quality receivers. 

This test was conducted at speeds between 80 km/h and 100 km/h with no cruise control. 
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Figure 6-9: Test route along Monash Fwy 

After processing the data, the statistical parameters for speed errors from geodetic quality Novatel 

receivers are presented in Table 6-7. 
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Table 6-7: Statistical parameters for speed errors from GPS/GNSS Novatel receivers for the 
kinematic test No3 

 
Novatel GPS 
ProPak-V3-L1 

with 5º mask 
angle 

Novatel GPS 
ProPak-V3-L1 

with 10º mask 
angle 

Novatel GPS 
ProPak-V3-L1 

with 15º mask 
angle 

Novatel OEM6 
GPS + 

GLONASS with 

15º mask angle 

Mean, km/h -0.11 -0.15 -0.10 -0.09 

Standard 

deviation, km/h 

0.3 1.0 0.3 0.4 

Minimum 

speed difference, 

km/h 

-2.1 -27.9 -0.9 -1.0 

Maximum 

speed difference, 

km/h 

5.5 4.1 4.6 9.8 

Speed difference distributions for Novatel receivers for this test are shown in Appendix E. 

The results for four geodetic quality GPS/GNSS receivers having different mask angles 

demonstrate the following: 

 All geodetic quality Novatel receivers demonstrated occasional significant speed errors. 

 Despite theoretical approaches that higher mask angles would lead to better speed 

accuracy results because of elimination of outliers caused by multipath, this is not always 

the case in practice. The worst performer was Novatel with 10º mask angle for both 

generation of outliers and standard deviation of the speed error. Also, there was no 

significant difference in performance between GPS receivers having 5º and 15º mask 

angles. It is possible that differences in electronic components of the receivers and 

antennas, despite the fact that the antennas are the same and receivers are identical with 

the same settings, may play a bigger role in the performance than the masking angle. 

 Lastly, the newer and more modern GPS+GLONASS OEM6 Novatel receiver with 15º 

mask angle performed no better than Novatel GPS only receivers having the same mask 

angle or even 5º mask angle. This highlights the fact that adding GLONASS to GPS may 
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not improve the performance in terms of generation of speed outliers. Possibly, adding 

Galileo may improve speed accuracy in the future. 

The other four GPS receivers tested during this test expressed the results shown in Table 6-8. 

Table 6-8: Statistical parameters for speed errors from consumer grade and medium range GPS 
receivers for the kinematic test No3 

 VBox  Garmin Columbus G-Log 

Mean, km/h -0.06 -0.16 0.35 -0.07 

Standard 

deviation, km/h 

0.64 0.87 1.06 0.39 

Minimum 

speed difference, 

km/h 

-3.22 -10.52 -13.0 -2.37 

Maximum 

speed difference, 

km/h 

11.52 2.04 13.4 2.00 

Speed difference distributions for the medium range and consumer grade receivers for this 

specific test are shown in Appendix E. 

The results for medium range and consumer grade GPS receivers demonstrate the following: 

 Geodetic quality receivers on average performed better compared to medium range and 

consumer grade receivers;  

 Despite the average performance, G-Log consumer grade receiver performed equally to 

the geodetic quality ones (refer to G-Log standard deviation parameter).  

 G-Log consumer grade GPS receiver demonstrated good performance around overpasses.  

To further analyse how many outliers were generated by each receiver during this test a specific 

assessment was conducted with a focus on the number of outliers and their magnitude. Table 6-9 

illustrates the number of records where the GPS speed differs from the true speed by more than 2 

km/h, 3 km/h and 10 km/h for each receiver. Such number of records characterises how many 

speed outliers were generated by each GPS/GNSS receiver under test because of the 

overpasses along a freeway. 
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Table 6-9: Number of records where GPS speed errors are higher than specific thresholds 

Speed error Novatel 
ProPak-
V3-L1 GPS 
receiver 

with 5º 

mask 
angle 

Novatel 
ProPak-
V3-L1 GPS 
receiver 

with 10º 

mask 
angle 

Novatel 
ProPak-V3-
L1 GPS 
receiver with 

15º mask 
angle 

Novatel 
GPS + 
GLONASS 
OEM6 
receiver 

with 15º 

mask 
angle 

VBox  Garmin Columbus G-Log 

>2 km/h 3 9 1 2 11 5 19 2 

>3 km/h 1 5 1 2 5 3 14 0 

>10 km/h 0 2 0 0 1 1 3 0 

It is to note that Garmin receiver measures speed at every two seconds.  

Table 6-9 shows the following: 

 The worst receivers (Columbus, VBox and Garmin) belong to consumer grade and medium 

range ones. It should be noted that Garmin was included in this group because it generated 

speed records every two seconds rather than every one second. Therefore, despite the fact 

that the number of outliers generated by Garmin is less compared to Columbus or VBox, 

the dataset of Garmin’s speed records is half as much compared to Columbus or VBox. 

The number of speed outliers generated by Columbus and VBox is very significant and 

considering that only 40 overpasses were present, every second overpass for Columbus 

and every forth for VBox triggered a speed outlier. This is not what a general consumer 

may expect from such receivers.  

 There was no one receiver which did not generate speed outliers.  

 Adding GLONASS to GPS constellation did not reduce the number of speed outliers 

around overpasses (refer to the results of Novatel OEM6 receiver versus ProPak-V3-L1 

with 5º and 15º mask angles). 

 Receivers in all groups generated speed outliers with very high magnitude (>10 km/h). It is 

important to highlight that all outliers were having good GPS data, including the number of 

satellites and HDOP. This means that the receivers have not seen a problem with the GPS, 

while generating such speed records. Again, this is not what average consumers and even 

researchers may expect to see.  
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 There is no correlation between the mask angle of Novatel GPS receivers and the number 

of outliers. The expectation was that the receiver with 5º mask angle would be the worst 

performer, while the receiver with 15º the best and the receiver with 100 in between. In 

practice (refer to Table 6-9), a specific receiver with 10º mask angle having all other GPS 

settings identical was the worst performer, while the receivers with 5º and 15º mask angles 

did not differ too much from each other. 

 It was observed from the data that in the majority of instances around overpasses the 

Novatel receivers produced either good records or blank records indicating unreliability of 

speed measurement. At the same time, in such instances VBOx and Columbus produced 

more outliers. More importantly, such outliers reported good GPS quality indicators looking 

at number of satellites and HDOP in the relevant speed records. 

 It was noticed that some receivers produced speed spikes not only around overpasses but 

also near narrow pedestrian bridges above the road or road gantries.  

Figure 6-10 shows an example of the environment where the outlier was generated by Novatel 

GPS receivers. Further examples for different receivers are provided in Appendix F. 

 

Figure 6-10: An outlier generated by Novatel with 5º elevation mask (Speed error = 2.2 km/h, Number 
of satellites in view = 9, HDOP = 1.2) 

Looking at the data from each outlier from this test proved that almost all outliers were generated 

by GPS/GNSS receivers around overpasses or road gantries except for G-Log. G-Log generated 

two outliers and both were in the areas where some trees were observed about 10 meters from 

the freeway (see Figure 6-11). Therefore, G-Log and the majority of geodetic quality receivers 

proved to be relatively accurate receivers for speed measurements in the vicinity to the 

overpasses compared to the rest of the receivers under test.  However, it was observed that the 
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performance of all receivers in this challenging environment degraded compared to open sky 

environment in kinematic tests No1 and No2. 

 

Figure 6-11: An outlier generated by G-Log (Speed error = 2.0 km/h, Number of satellites in view = 
11, HDOP = 0.85) 

6.4.2 Roads with tree canopies 

Tests along roads with tree canopies are represented by the kinematic tests No4 and No5 (refer 

to Table 6-1). Kinematic test No4 represented a test along the route: Berwick- Upper Beaconsfield 

– Emerald – Narre Warren East – Harkaway – Berwick as shown in Figure 6-12. This specific 

route was selected as it has a high percentage of tree-lined roads with 5 m to 20 m high 

evergreen trees. 

Kinematic test No5 represented a test along the route: Berwick – Emerald – Nangana – Woori 

Yallock and back as shown in Figure 6-13. This specific route was selected as it was longer than 

the route No4 and also had a high percentage of tree-lined roads with 5 m to 20 m high evergreen 

trees. 

The main goal of the tree canopies environment tests was to assess if tree foliage environments 

represent a bigger challenge for GNSS receivers compared to overpasses in terms of generation 

of speed outliers. Obviously, the remaining research objectives mentioned in chapter 1 had to be 

addressed too. 

The driving speed in both tests varied between 50 km/h and 90 km/h. Also, the mask angle of the 

top of the trees varied and sometimes reached 90º. This means that occasionally trees completely 

prevented GNSS signals to be received or significantly reduced the GNSS signal’s power. 
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Figure 6-12: Kinematic test No4, tree foliage environments 

 
Figure 6-13: Kinematic test No5, tree foliage environments 

Statistical performance of Novatel GPS/GNSS receivers for the kinematic tests No4 and No5 is 

shown in Table 6-10 and Table 6-11, respectively. Statistical performance of the consumer grade 

and medium range GPS receivers for the kinematic tests No4 and No5 is demonstrated in Table 

6-12 and Table 6-13, respectively. 
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Table 6-10: Statistical speed difference parameters for geodetic quality receivers in tree foliage 
environment for the kinematic test No4 

 Novatel 
ProPak-V3-L1 
GPS receiver 

with 5º mask 
angle 

Novatel 
ProPak-V3-L1 
GPS receiver 

with 10º mask 
angle 

Novatel 
ProPak-V3-L1 
GPS receiver 

with 15º mask 
angle 

Novatel GPS + 
GLONASS 
OEM6 receiver 

with 15º mask 
angle 

Mean, km/h 0.16 0.17 0.19 0.02 

Standard 

deviation, km/h 

0.5 0.7 0.6 0.9 

Minimum 

speed difference, 

km/h 

-2.2 -4.8 -3.0 -9.1 

Maximum 

speed difference, 

km/h 

2.9 6.0 2.5 15.2 
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Table 6-11: Statistical speed difference parameters for geodetic quality receivers in tree foliage 
environment for the kinematic test No5 

 Novatel 
ProPak-V3-L1 
GPS receiver 

with 5º mask 
angle 

Novatel 
ProPak-V3-L1 
GPS receiver 

with 10º mask 
angle 

Novatel 
ProPak-V3-L1 
GPS receiver 

with 15º mask 
angle 

Novatel GPS + 
GLONASS 
OEM6 receiver 

with 15º mask 
angle 

Mean, km/h 0.0 0.0 0.03 0.21 

Standard 

deviation, km/h 

1.11 0.5 0.46 1.1 

Minimum 

speed difference, 

km/h 

-24.0 -6.1 -6.1 -5.6 

Maximum 

speed difference, 

km/h 

6.3 2.6 3.2 24.3 
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Table 6-12: Statistical speed difference parameters for medium range and consumer grade receivers 
in tree foliage environment for the kinematic test No4 

 VBox  Garmin Columbus G-Log 

Mean, km/h         0.97         0.22          0.74          0.18 

Standard 

deviation, km/h 

       1.73         0.60          0.71          0.82 

Minimum 

speed difference, 

km/h 

      -7.46        -5.54        -4.60        -3.46 

Maximum 

speed difference, 

km/h 

      15.36         2.39         6.20         5.42 
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Table 6-13: Statistical speed difference parameters for medium range and consumer grade receivers 
in tree foliage environment for the kinematic test No5 

 VBox  Garmin Columbus G-Log 

Mean, km/h        0.23          0.07          0.80          0.10 

Standard 

deviation, km/h 

       6.11          0.50          1.14          1.20 

Minimum 

speed difference, 

km/h 

      -176.9         -2.5          -6.3          -6.2 

Maximum 

speed difference, 

km/h 

        16.6         2.7           8.0          8.0 

The following conclusions can be made from information presented in Tables 6-10 to 6-13: 

 Almost all GPS/GNSS receivers performed worse in tree foliage environment compared to 

a test No3 along a freeway with overpasses. This is derived from the comparative values of 

standard deviation of speed error and maximum / minimum speed differences for tree 

foliage environment (refer to Tables 6-10 to 6-13) versus overpasses (refer to Tables 6-7 to 

6-8). 

 In tree foliage environment, high end geodetic quality GPS or GNSS receivers generally 

performed better than the medium and low cost receivers. 

 The addition of GLONASS satellites did not improve the performance of the GNSS OEM6 

Novatel receiver compared to its GPS Novatel ProPak-V3-L1 counterparts. 

 The use of high mask angles did not improve the performance of GPS receivers in tree 

foliage environment. 

To investigate the number of outliers and their relative magnitude, a separate assessment was 

completed for two tests conducted in tree foliage environment with results presented in Table 6-14 

and Table 6-15. 
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Table 6-14: Outliers generated in tree foliage environment during kinematic test No4 

Speed 

error 
Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 5º 

mask 
angle 

Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 10º 

mask 
angle 

Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 15º 

mask 
angle 

Novatel 
GPS + 
GLONASS 
OEM6 
receiver 

with 15º 

mask angle 

VBox  Garmin Columbus G-Log 

>2 km/h 3 14 9 10 167 3 31 34 

>3 km/h 0 4 2 6 88 1 9 13 

>10 km/h 0 0 0 2 6 0 0 0 

 

Table 6-15: Outliers generated in tree foliage environment during kinematic test No5 

Speed 

error 
Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 5º 

mask 
angle 

Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 10º 

mask 
angle 

Novatel 
ProPak-
V3-L1 
GPS 
receiver 

with 15º 

mask 
angle 

Novatel 
GPS + 
GLONASS 
OEM6 
receiver 

with 15º 

mask angle 

VBox  Garmin Columbus G-Log 

>2 km/h 14 7 6 29 209 5 162 150 

>3 km/h 3 1 0 9 90 0 80 51 

>10 km/h 1 0 0 0 8 0 0 0 

During the kinematic test No5 VBox GPS receiver generated five large outliers with the values 

shown in Figure 6-14: 
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Figure 6-14: Large speed outliers of VBox during the kinematic test No5 

From Tables 6-14 to 6-15 and Figure 6-14, the following conclusions can be made: 

 It is clearly visible that almost all GPS/GNSS receivers performed worse in tree foliage 

environment (refer to Table 6-14 and Table 6-15) compared to a test conducted on a 

freeway with overpasses (refer to Table 6-9). 

 In tree foliage environment, geodetic quality GPS or GNSS receivers generally performed 

better compared to other types of receivers. 

 VBox GPS receiver generated a substantial number of speed outliers (167 for the kinematic 

test No4, and 209 for the kinematic test No5). The second worst performer was G-Log, 

followed by Columbus. 

 G-Log performed well when it was tested around overpasses (refer to Table 6-9). However, 

tree foliage environment represented a bigger challenge for this receiver. This is evident 

from 34 and 150 outliers generated by G-Log in tree foliage environments with a speed 

difference of more than 2 km/h (refer to Tables 6-14 to 6-15). An important conclusion can 

be made from here: a GPS receiver may perform differently in different challenging 

environment. A particular environment, such as trees, may represent a bigger challenge for 

a specific receiver compared to a different challenging environment. This highlights the fact 

that it is important to test a receiver in a variety of environments to uncover its true 

behaviour. 

 The use of GLONASS did not improve the performance of the OEM6 Novatel receiver 

when compared to the GPS Novatel ProPak-V3-L1. In fact, the OEM6 GNSS receiver was 

the worst performer amongst geodetic quality receivers.  

 The use of high mask angles did not improve the performance of GPS receivers in terms of 

generation of outliers. 

 Generation of five large speed outliers by VBox highlighted that tree foliage environments 

might be exceptionally challenging for certain types of GPS receivers.  

An example of the environment where a speed outlier was generated by the Novatel ProPak-V3-

L1 receiver during the test in tree foliage environment is shown in Figure 6-15. Additional 

examples are shown in Appendix G: 
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Figure 6-15: Street view for an outlier of Novatel ProPak-V3-L1 with 10º mask angle (Speed error = -
4.87 km/h, Number of satellites in view = 4, HDOP = 7.6) 

From Figure 6-15 and all figures represented in Appendix F it can be noted that outliers were 

generated in the environments represented by typical Victorian countryside roads. This means 

that full reliance on GPS receivers when driving along such roads can be compromised. Also, 

HDOP and number of satellites for outliers revealed that in the majority of instances all the 

receivers reported good GPS visibility.  

The speed difference distribution graph for the kinematic test No4 for VBox is shown in         

Figure 6-16. Additional examples are presented in Appendix H. 

 
Figure 6-16: Speed difference distribution for VBox 

Speed difference distribution graphs from the kinematic test No4 (refer to Figure 6-16 and 

Appendix H) demonstrate the following: 

 Speed difference distribution for VBox is significantly asymmetric (see Figure 6-16). For 

VBox this is only noticed for tree foliage environment. Again, as with G-Log, this 
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demonstrates that GPS receivers should be tested in a variety of environments separately 

to reveal their true performance in speed measurements for specific environments. 

 Speed difference distributions for test No3 with overpasses (see Appendix E) and test No5 

in the tree foliage environment (see Appendix H and Figure 6-16) are completely different. 

In the tree foliage environment, the receivers perform worse considering the shape of 

distribution graphs. 

 The worst performers are different in test No3 with overpasses versus tests No4 and No5 in 

tree foliage environment. This highlights that different receivers are capable to handle 

specific types of challenging environments differently. Therefore, it is important to test each 

receiver in different environments separately. Such tests would reveal their true 

performance in each specific environment. Then, this performance should be compared 

against the receivers’ specifications. For test No4 and No5, the receivers are non-compliant 

to their specifications, considering the speed distribution graphs, speed error statistical 

parameters and outliers. 

 Mask angle is not a speed error contributor in both tree foliage and overpasses 

environments. For example, the GPS receiver Novatel ProPak-V3-L1 with 5º mask angle in 

theory was expected to be the worst performer. However, in practice this receiver was not 

the worst. The result highlights the fact that possibly the differences in electronic 

components of the receivers, even in case the receivers are of the same type, might play a 

bigger role than expected. Indeed, all three Novatel ProPak receivers had their GPS 

settings and firmware versions identical, except the mask angle. Therefore, it is likely that 

the parameters of RF channels of these receivers played a bigger role in speed errors than 

expected. Such parameters may include sensitivity of the RF componentry of the receivers, 

amplification, actual crystal oscillator parameters with phase noise and some others. 

 GPS+GLONASS solution did not improve the speed accuracy parameter in tree foliage 

environment.  

 In tree foliage environments, geodetic quality receivers performed better compared to 

medium range and consumer grade receivers in terms of number of speed outliers and 

their magnitude. On the other hand, it is not possible to conclude that medium range 

receivers performed better than consumer grade receivers. 
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7 ANALYSIS OF FILTERING METHODS FOR GPS / GNSS SPEED 
OUTLIERS 

Chapter 6 provided examples of instances when GNSS receivers generated speed outliers in 

challenging environments. Therefore, it is important to investigate whether it is possible to filter 

such outliers. It is to note that filtering should preferably be conducted based on GPS parameters 

provided by the majority of GNSS receivers. These parameters are mainly the number of satellites 

and HDOP. For more advanced receivers, such as Novatel, the SNR parameter may be 

considered.  

To address the research objectives of filtering outliers based on HDOP, number of satellites and 

SNR, further assessment was conducted. The results of this assessment are described in this 

chapter. 

7.1 Horizontal dilution of precision as a possible quality indicator to filter the 
speed outliers 

Generally, it is considered that more satellites used in calculating a position provide a greater 

level of accuracy. As the GNSS satellites orbit around the Earth, the number of satellites in view 

varies. With just three satellites it is possible to determine the location. In practice, a fourth 

satellite is required to improve accuracy because of errors in measuring the precise time by the 

receiver. Generally, more satellites provide better HDOP. One of the research objectives, 

therefore, is to determine if HDOP values can be used to filter unreliable speed records. 

HDOP is a measure of the geometric quality of a GNSS satellite configuration in the sky. The 

smaller the HDOP number, the better the geometry. HDOP is calculated mathematically from the 

positions of the satellites. 

 

For position determination, the location of satellites in the sky is one of the factors that determines 

the accuracy of positioning, see Figure 7-1. 
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Figure 7-1: Satellite geometry and HDOP (Texas Tech University 2015) 

While for positional accuracy the dependency of it on HDOP is clear, for speed accuracy this 

dependency needs to be investigated. When using triangulation techniques for calculating a 

position, the distance from known points is used to determine the position of the target point. The 

known points are the ones where the GPS satellites are located. The optimum positional accuracy 

is achieved when the angles to the known points are near right angles to each other (see Figure 

7-1). Where the satellites are close together (refer to the right picture in Figure 7-1), the distance 

lines intersect with a small angle and it is more difficult to determine the exact point of intersection. 

HDOP is related to the volume formed by the intersection of the points of the user satellite vectors, 

with the user at the centre of the sphere. However, for speed accuracy parameter the relationship 

between HDOP and the Doppler frequencies assessed by GPS receivers on the ground is not so 

clear. At the same time, it might be possible that the geometric configuration of satellites, 

characterised by HDOP, could influence the accuracy of speed determination. This is because the 

Doppler frequency shift is dependent on the angle of the satellite’s movement against the GPS 

receiver (Borio, Sokolova & Lachapelle 2009). 

 

For positional determination, it is generally considered that if DOP values, including HDOP, are 

less than one, the GNSS situation for the receiver is ideal. When HDOP is more than one but less 

than 2, the situation is excellent (Texas Tech University 2015). In Texas Tech University (2015) 

one of the tables classifies GNSS reception for positional determination depending on DOP 

ranges in a way as follows: 
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Figure 7-2: Positional accuracy and HDOP (Texas Tech University 2015) 

The United States of America Department of Defence (1996), which is one of the fundamental 

documents on GPS, mentions that the expected velocity accuracy of GPS receivers on the 

ground, although not guaranteed, might be 0.4 m/sec (1.44 km/h) for 95% of measurements. 

However, this document does not mention how such accuracy might depend on GPS 

constellation parameters, multipath and other real life environmental factors. The US. Department 

of Defence (2008), which is the subsequent fundamental document on GPS, is more cautious 

about speed accuracy of GPS receivers on the ground and does not specify this parameter in 

km/h. However, this document specifies the horizontal speed error as follows: 

                                                       UHVE=UERRE * HDOP,                                                    (7.1) 

where 

- UHVE is the User Horizontal Velocity Error; 

- UERRE is the User Equivalent Range Rate Error; and  

- HDOP is Horizontal Dilution of Precision. 

The above equation emphasises that the speed error would depend on HDOP. It also highlights 

that, ideally, i.e. if the receivers are of the same complexity with the same errors, it might be 

possible to derive a certain HDOP threshold when speed measurements are becoming unreliable.  

 

In addition, in Clark (2015) it is also emphasised that the speed error generally depends on HDOP 
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and theoretical estimations are conducted on what the ideal speed accuracy of the receivers might 

be. The GPS signal carrier wavelength is ~20 cm and with a reasonable SNR the PLL inside the 

receiver can measure the carrier phase to about 1 cm. Therefore, for one second speed 

measurement intervals  ~1 cm/sec of velocity error for a given satellite might be (in theory) 

achieved, which is equal  ~0.04 km/h. To factor in the geometry and the fact that multiple satellites 

are observed, this error for horizontal speed should be multiplied by HDOP as recommended by 

Clark (2015). Since HDOP for the majority of records is typically less than three, this means that 

the "system" speed error is rarely (in theory) expected to be less than ~0.12 km/h. In practice, due 

to multipath around overpasses and sharp changes in SNR in the tree foliage environment, HDOP 

values calculated by the receivers might be misleading and hence errors could grow. If a receiver 

moves and a satellite is suddenly blocked by a tree, a receiver may not output a correct value of 

HDOP depending on time of blocking of a particular satellite versus a sampling rate. With rapid 

changes of the GPS reception around trees and one second rate of HDOP updates, the output 

HDOP values may not correspond to the reality. The effect of an addition or loss of a visible 

satellite (or different visible satellite for the situation when the total number of visible satellites 

remains the same) on HDOP depends on angular separation between that satellite and the rest of 

the visible satellites used for speed computation. If none of the remaining visible satellites were 

near that satellite, the effect of seeing or losing sight of the additional satellite would make a 

disproportionally big difference to the HDOP value. Therefore, rapid changes of the GNSS 

environment may provide incorrect HDOP reporting if such changes occur faster than the reported 

frequency, e.g. 1 Hz. However, considering the above information, the task of this investigation is 

to determine HDOP thresholds with the goal to try to filter out potentially unreliable speed records. 

Of course, because the GPS receivers have different magnitudes of errors, this HDOP threshold 

might be specific for each type of receiver. 

 

Ideally, the task of further investigation is to consider if it is possible to put a similar table for GNSS 

speed records as shown in Figure 7-2 for positional accuracy depending on HDOP.  

 

For a start, the speed data records from Feb 2015 drive from Melbourne to Echuca (described in 

chapter 5.3) were used to understand if individual speed outliers may be filtered out based on 

HDOP. Two geodetic quality receivers tested during this run were Novatel GPS ProPak-V3-L1 with 

15º mask angle and Novatel OEM6 GPS + GLONASS with the same mask angle. The consumer 

grade receiver capable to output HDOP and used during this test was Columbus. All receivers 

under test generated a number of speed outliers mainly around overpasses on Eastlink Freeway 

and Eastern Freeway. Tables 7-1 to 7-3 represent each individual outlier with GPS parameters 

derived from NMEA data for Novatel receivers and Excel log-file for Columbus. 
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Table 7-1: GPS parameters for speed outliers produced by the GPS Receiver NovAtel ProPak-V3-L1 

HDOP Number of Satellites Speed Difference, km/h 

1.6 7 5.3 

2.1 6 5.4 

2.2 6 2.5 

4.8 4 6.1 

7.4 4 4.3 

9.3 4 -6.0 

26.3 4 7.6 

 

Table 7-2: GPS parameters for speed outliers produced by the GPS + GLONASS Receiver NovAtel 
OEM6 

HDOP Number of Satellites Speed Difference, km/h 

0.9 12 2.5 

1.1 11 2.7 

1.1 12 6.0 

1.2 8 -2.9 

1.2 11 9.6 

1.6 7 -2.7 

7.2 6 3.8 

9.2 6 5.8 
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Table 7-3: GPS parameters for the selected* speed outliers produced by GPS receiver Columbus 

HDOP Number of Satellites Speed Difference, km/h 

1.1 N/A -12.0 

1.1 N/A -10.3 

1.1 N/A 28.0 

1.1 N/A 13.7 

1.1 N/A 22.2 

1.1 N/A -10.0 

2.1 N/A -14.0 

 

It should be noted that Columbus produced more speed outliers than shown in Table 7-3 for this 

run and only selected outliers are presented in Table 7-3. It is to note also that the Columbus GPS 

receiver does not record the Number of Satellites parameter in its log-file.  

 

It is seen from the above Tables 7-1 to 7-3 that speed records with high values of HDOP might be 

used to potentially indicate a problem in speed accuracy. However, some records represent speed 

outliers while having low values of HDOP. Considering that equation (7.1) has been always 

correct, this means that the receivers could provide incorrect HDOP due to multipath around 

overpasses or tree foliage environments. Therefore, from an integrity point of view, it is safe to 

exclude speed records around overpasses from the assessment rather than rely on them even in 

case if HDOP values do not indicate a problem.  

 

Tables 7-4 to 7-10 show the outliers with the respective GNSS parameters produced by all 

receivers under test during a kinematic test No3 described in 6.4.1. It should be noted that VBox 

receiver does not output HDOP in the log-file. 
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Table 7-4: GPS parameters for speed outliers produced by the GPS Receiver Novatel ProPak-V3-L1 
with 5º mask angle on Monash Fwy 

HDOP Number of Satellites Speed Difference, km/h 

1.2 9 2.2 

1.3 9 5.5 

2.2 7 -2.1 

 

Table 7-5: GPS parameters for speed outliers produced by the GPS Receiver Novatel ProPak-V3-L1 

with 10º mask angle on Monash Fwy 

HDOP Number of Satellites Speed Difference, km/h 

1.4 8 2.5 

1.6 4 4.0 

2.0 7 2.0 

2.1 6 -8.7 

2.5 7 2.9 

3.2 5 -2.2 

3.5 5 -12.5 

11.3 5 -27.9 

50.0 4 3.3 
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Table 7-6: GPS parameters for speed outliers produced by the GPS Receiver Novatel ProPak-V3-L1 

with 15º mask angle on Monash Fwy 

HDOP Number of Satellites Speed Difference, km/h 

1.4 7 4.6 

 

Table 7-7: GPS parameters for speed outliers produced by the GPS + GLONASS Receiver Novatel 

OEM6 with 15º mask angle 

HDOP Number of Satellites Speed Difference, km/h 

1.1 11 3.1 

9.9 7 9.7 

 

Table 7-8: GPS parameters for speed outliers produced by the GPS receiver Garmin on Monash Fwy 

HDOP Number of Satellites Speed Difference, km/h 

0.8 11 -9.1 

0.8 11 -4.6 

0.8 11 2.0 

1.0 10 -2.6 

1.6 7 -10.5 

 

Table 7-9: GPS parameters for speed outliers produced by the GPS receiver G-Log on Monash Fwy 

HDOP Number of Satellites Speed Difference, km/h 

0.8 11 2.0 

0.8 11 -2.3 
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Table 7-10: GPS parameters for speed outliers produced by the GPS receiver Columbus on Monash 
Fwy 

HDOP Number of Satellites Speed Difference, km/h 

0.8 N/A -5.3 

0.9 N/A 3.0 

0.9 N/A 4.1 

0.9 N/A 3.2 

0.9 N/A -3.9 

0.9 N/A -11.6 

1.0 N/A -6.0 

1.0 N/A -3.0 

1.1 N/A -3.7 

1.1 N/A 13.4 

1.1 N/A 3.0 

1.2 N/A -9.1 

1.3 N/A 4.6 

1.3 N/A 2.5 

1.3 N/A 2.3 

1.4 N/A -3.8 

1.5 N/A -8.4 

1.7 N/A -13.0 

1.8 N/A -10.1 
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Several examples are also given for the kinematic test No5 where the receivers were driven along 

roads with tree canopies. 

In Figures 7-3 to 7-5 the outliers are shown for the respective receivers under test with 

corresponding satellite visibility parameters and/or HDOP. 

 
Figure 7-3: Outliers generated by Novatel ProPak-V3-L1 with 5º mask angle for the kinematic test 

No5 

 
Figure 7-4: Outliers generated by Novatel OEM6 GPS + GLONASS with 15º mask angle for the 

kinematic test No5 
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Figure 7-5: Selected outliers generated by VBox for the kinematic test No5 

Some outliers generated during the kinematic test No5 can be filtered based on high values of 

HDOP or number of satellites. This is visible, for example, in Figure 7-3 for the outliers shown in 

light red. However, other measurements show no signs of problems based on either number of 

satellites in view or HDOP. The same result was observed for the remaining receivers tested 

during the kinematic test No5 and in fact any other test conducted during this research. 

 

Graphs of Appendix I also demonstrate no linear dependency of a speed error on HDOP for 

selected test drives and GNSS receivers.  

 

Considering the results from the above test drives and consistency across all the receivers under 

test, it is possible to conclude that HDOP is not a reliable measure to filter individual speed outliers. 

The above tables and figures prove that it is not possible to solely rely on HDOP values when 

analysing each individual speed record for its integrity. HDOP values calculated by the receivers in 

the areas where multipath is present and specifically around overpasses might be misleading. 

Possibly, this is because the reflected GNSS signal from one or two specific satellites makes 

HDOP value looking good, whereas the real value of HDOP simply cannot be calculated by the 

receiver correctly. As a result, reliance on individual GPS/GNSS speed records based on the 

number of satellites and HDOP reported in such records might be unrealistic. This conclusion 

agrees with Zabrieszach (2013) where a statement is made that reliance on a single GPS speed 

observation is not appropriate. This is because the localised interferences may not necessarily be 

identified and corrected by the GPS receiver. As a result, the approach which analyses an array of 

speed observations for integrity is most optimal.   
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7.2 Signal to noise ratio as a measure to filter potentially unreliable speed records 

The goal of this investigation was to investigate if it is possible to filter speed outliers based on 

changes in SNR between the neighbouring speed records.  

SNR might change when a signal is reflected from structures like buildings or overpasses (Comp 

& Axelrad 1998; John A Dutton e-Education Institute 2015). In such instances, post-processing 

analysis might be conducted and outliers determined based on changes in SNR value for 

problematic speed readings compared to the neighbouring speed readings.  

For this investigation, several speed outliers from kinematic tests No3 to No5 were taken for 

further analysis. 

In Table 7-11 two selected outliers are presented for the kinematic test No3.  

Table 7-11: Examples of GPS parameters for two selected outliers for the test route on Monash 
Fwy 

 Speed error, km/h Horizontal Dilution of 

Precision (HDOP) 

Number of satellites 

used for navigation 

Outlier No1 (time 

01:37:46 UTC) 

2.2 1.2 9 

Outlier No2 (time 

01:50:32 UTC) 

5.5 1.3 9 

 

Both outliers in Table 7-11 show very good GPS visibility. The environments where such outliers 

were generated (see Figure 7-6) represented typical freeway situations with speed differences 2.2 

km/h (left) and 5.5 km/h (right). 
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Figure 7-6: Examples of the environments where selected speed outliers were generated by Novatel 

GPS  receiver with a 5º mask angle on Monash Fwy 

To further determine if it is possible to use SNR for filtering potentially unreliable speed records, 

NMEA data for such outliers should be assessed, including NMEA sentences for neighbouring 

records. Below is an example of NMEA data records generated by the GPS receiver Novatel 

ProPak-V3-L1 with 5º mask angle when the first outlier was generated as indicated in Table 7-11.  

It should be noted that NMEA data format is stipulated in NMEA 0183 Standard (2013) and the 

relevant $GPGSV and $GPRMC messages generated by the receivers according to this Standard 

have the following structure: 

$GPGSV,2,1,08,01,40,083,46,02,17,308,41,12,07,344,39,14,22,228,45*75 

where: 

      GSV = Satellites in view; 

      2       = Number of sentences for full data; 

      1       = Sentence 1 of 2; 

      08    = Number of satellites in view; 

      01     = Satellite Pseudo Range Noise (PRN) number; 

      40     = Elevation, degrees; 

     083    = Azimuth, degrees; 

      46     = SNR - higher is better for up to 4 satellites per sentence; and 

   *75      = the checksum data, always begins with *. 

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A 

where: 

     RMC          = Recommended Minimum sentence C; 

     123519      = Fix taken at 12:35:19 UTC; 

     A                = Status A=active or V=Void; 

     4807.038,N   = Latitude 48 deg 07.038' N; 

     01131.000,E  = Longitude 11 deg 31.000' E; 

     022.4             = Speed over the ground in knots; 
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     084.4             = Track angle in degrees True; 

     230394          = Date - 23rd of March 1994; 

     003.1,W         = Magnetic Variation; and 

     *6A                = The checksum data, always begins with *. 

In Figure 7-7 NMEA sentences are shown for the Outlier No1 (see Table 7-11) and the 

surrounding records. 

 

Figure 7-7: NMEA data for the outlier generated at 01:37:46 UTC and the surrounding records 

Considering the structure of the GSV and RMC messages, from the NMEA data shown in Figure 7-

7 it is possible to see the following.  The outlier with the magnitude of 2.2 km/h was generated in 

the environment where the speed record generated 1 sec before (at 01:37:45 UTC) is valid. 

However, the record after the outlier is determined by the receiver as invalid (at 01:37:47 UTC), i.e. 

excluded by the receiver from the assessment. Validity of records is based on the relevant field in 

$GPRMC message where V or A symbol is represented. There is no difference in SNR for all 

satellites used by the receiver for the outlier itself compared to neighbouring records. As a result, 

the user is totally unaware of the outlier looking at NMEA data. Further analysis demonstrated that 

similar situations are present for the outlier No2 (see Table 7-11) and in fact for almost any other 

outliers generated by GPS/GNSS receivers during this test.  

The above example highlights that in environment where overpasses cause speed outliers, it is not 

always possible to rely on SNR for filtering potentially unreliable speed records. To further validate 

this conclusion for situations when outliers are generated in tree foliage environment, specific 

outliers were selected for kinematic tests No4 and No5.  
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In Table 7-12, two speed outliers are shown as examples for the kinematic test No4. These two 

records belong to the GPS receiver Novatel ProPak-V3-L1 with 10º mask angle.  GPS parameters 

for these specific outliers and times of their generation in UTC are as follows: 

Table 7-12: Examples of GPS parameters for outliers generated during the kinematic test No4 

 Speed error, km/h Horizontal Dilution of 

Precision (HDOP) 

Number of satellites 

used for navigation 

Outlier No1 (time 

23:25:42 UTC) 

3.1 2.4 4 

Outlier No2 (time 

23:36:43 UTC) 

-4.8 7.6 4 

Table 7-12 represents mixed examples of GPS parameters. While for outlier No2 an indication of 

the problem might be obtained from the high value of HDOP, this is not the case for the outlier 

No1. This is because for outlier No1 both the number of satellites and HDOP parameters are 

within reasonable limits. Also, the environments where such outliers were generated (see Figure 

7-8) do not represent a significant challenge in the form of a grove of trees. This emphasises the 

fact that even individual trees may represent a challenge for GPS/GNSS receivers when precise 

speed measurements are required. 

Figure 7-8: Examples of the environments where the Novatel ProPak-V3-L1 with 10º mask angle 
generated the outliers during the kinematic Test No4  

For this test route, it also appears that the outliers are caused by a combination of multiple 

scattering of GPS signal from tree canopies and signal absorption. It is known that attenuation 

from a single tree at GPS frequencies takes place with different values depending on tree types 

as shown in Table 7-13 (Cavdar, Dincer & Erdoglu 1994): 
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Table 7-13: Examples of GPS signal attenuation at GPS frequency L1 

Tree type Coefficient of attenuation, 

dB/m 

Average attenuation, dB 

Pine 1.8 18.0 

Maple 1.2 16.2 

Poplar 0.7 3.5 

It is possible that such signal attenuation as 18.0 dB or 16.2 dB, if it happens fast and randomly 

because of scattering and absorption from both foliage and tree branches, might not be handled 

by the receivers effectively. Figure 7-9 and Figure 7-10 show the NMEA data records generated 

by the relevant receiver at times of generation of the above outliers No1 and No2 (see Table 7-12) 

with the surrounding records. 

 

Figure 7-9: NMEA data for the outlier generated at 23:25:42 UTC and the surrounding records 

From the above NMEA dataset it is noted that the outlier with the magnitude of speed error equal 

to 3.1 km/h (23:25:42 UTC, see Figure 7-9) was generated in environment where the immediately 

preceding and succeeding speed records were invalid, i.e. excluded by the receiver from the 

assessment. It is also noted that there is a significant difference in SNR for the satellites with PRN 

numbers 30, 8, 27 and 19 at the time when the outlier was generated compared to the immediately 

succeeding speed record generated at 23:25:43 UTC (see data in aqua colour in Figure 7-9). It is 
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very likely that shadowing from the tree canopies changed the SNR values for several satellites or 

completely prevented some satellite availability within a particular second and the receiver could 

not handle this situation. A similar occurrence could be seen for the outlier No2 (see Figure 7-10) 

where satellites PRN 8 and PRN 19 also have completely different SNR values during a 1 sec 

timing interval (data in aqua colour), although at a lesser scale compared to the outlier No1. 

 

Figure 7-10: NMEA data for the outlier generated at 23:36:43 UTC and the surrounding records 

One more example is selected from the kinematic test No5 in tree foliage environment for Novatel 

ProPak-V3-L1 GPS receiver with 5º mask angle. The selected outlier has the parameters shown 

in Table 7-14: 

Table 7-14: GPS parameters for the outlier generated during the kinematic test No5 

 Speed error, km/h Horizontal Dilution of 

Precision (HDOP) 

Number of satellites 

used for navigation 

Outlier (time 

07:04:23 UTC) 

2.3 1.3 6 

Figure 7-11 shows NMEA data records observed for the time when the outlier was generated and 

around this time: 
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Figure 7-11: NMEA data for the outlier generated at 07:04:23 UTC and the surrounding records 

NMEA data in Figure 7-11 (see data in aqua colour) demonstrates that for the satellites 5 and 25 

the SNR value sharply changed in the problematic record compared to surrounding records. It is 

likely that this change caused the outlier to occur. 

The above examples highlight that while sometimes it is possible to use changes in SNR as a 

good indication of an outlier (tree foliage environment), in other instances the use of SNR to filter 

the outliers might be problematic (freeway with overpasses environment). Therefore, changes in 

SNR might be considered as a good indication of a problem for selective GPS environments.  

7.3 Higher mask angles for filtering of speed outliers 

The goal of this assessment was to estimate an option of using high mask angle to filter potential 

speed outliers. As shown in Zhang (2007), theoretically this option is a possibility. However, as 

previously discussed in chapter 6, this may not be the case in practice.  

Tables 7-15 to 7-17 represent the results from kinematic tests No3 to No5 in a summarised 

manner for receivers with mask angles of 5º, 10º and 15º.  
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Table 7-15: Number of speed outliers for the kinematic test No3 on Monash Fwy 

GPS/GNSS Receiver Number of GPS/GNSS 

speed records with the speed 

error greater than ± 2 km/h 

Number of GPS/GNSS speed 

records with the speed error 

greater than ± 3 km/h 

GPS receiver with 5º mask 

angle 

3 1 

GPS receiver with 10º 

mask angle 

9 5 

GPS receiver with 15º 

mask angle 

1 1 

GPS + GLONASS receiver 

with 15º mask angle 

2 2 
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Table 7-16: Number of speed outliers for the kinematic test No4 

GPS/GNSS Receiver Number of GPS/GNSS 

speed records with the speed 

error greater than ± 2 km/h 

Number of GPS/GNSS speed 

records with the speed error 

greater than ± 3 km/h 

GPS receiver with 5º mask 

angle 

3 0 

GPS receiver with 10º 

mask angle 

14 4 

GPS receiver with 15º 

mask angle 

9 2 

GPS + GLONASS receiver 

with 15º mask angle 

10 6 
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Table 7-17: Number of speed outliers for the kinematic test No5 

GPS/GNSS Receiver Number of GPS/GNSS 

speed records with the speed 

error greater than ± 2 km/h 

Number of GPS/GNSS speed 

records with the speed error 

greater than ± 3 km/h 

GPS receiver with 5º mask 

angle 

13 4 

GPS receiver with 10º 

mask angle 

7 1 

GPS receiver with 15º 

mask angle 

6 0 

GPS + GLONASS receiver 

with 15º mask angle 

29 8 

 

Tables 7-15 to 7-17 demonstrate that the higher mask angle does not necessarily improve the 

performance in the generation of outliers. Considering that the types of GPS receivers were the 

same ProPak-V3-L1 and all of them had identical GPS settings except the mask angle, there is no 

clear dependency between the mask angle and the number of speed outliers generated.  

The second conclusion is that additional constellation, e.g. GLONASS, does not improve the 

performance of the GNSS receiver for speed determination. This is demonstrated by results 

between GPS only and GPS + GLONASS receivers in chapter 6.  
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8 CONCLUSION 

8.1 Summary 

Modern sophisticated navigation and control applications require speed measurement of vehicles. 

In many instances, speed measurements are derived from GPS/GNSS receivers. These receivers 

will operate in real-world environment with obstructions. As a result, GPS/GNSS receivers might 

produce speed records with higher errors compared to open sky environments. Therefore, it is 

required to evaluate the accuracy of GPS / GNSS speed measurements in challenging 

environments. This research specifically focused on two challenging GNSS environments: 

overpasses / road gantries and areas of tree foliage. To address the research objectives, a 

solution to test geodetic quality, medium range and consumer grade GPS/GNSS receivers for 

speed accuracy has been developed and implemented. The materials presented focused largely 

on methods of testing for speed accuracy in real-world environments and improving the 

robustness of the test through proper calibration of the test asset. Subsequently, the research 

focused on practical speed testing of several GPS / GNSS receivers of different complexities. 

Finally, the research included processing of GNSS speed records to understand more about 

GNSS speed measurements and errors associated with them. The main outcomes of this 

research are as follows: 

8.1.1 Outcomes related to the designed speed measurement system 
 The non-GPS based speed measurement system has been designed, assembled, tested 

and implemented. The system performed favourably during all experiments in terms of 

robustness and its ability to test GNSS receivers in real-world environments. 

 Calibration methods and electronic diagrams supporting calibration methods were 

developed for the speed measurement system to maintain its accuracy.  

 The uncertainty of measurement budgets were developed to determine the actual speed 

accuracy parameters for the speed measurement system.  

8.1.2 Outcomes related to testing of GPS/GNSS receivers for speed accuracy 
 The outcomes from the speed tests show that that the surrounding environment may have 

substantial influence on GPS/GNSS speed accuracy. This influence has been proven from 

both the trial test and the subsequent kinematic tests when the environmental factors got 

worse with each subsequent test. It has been validated that the speed error of GNSS 

receivers might be relatively high around overpasses where multipath may affect the 

accuracy of speed measurements. It has been further demonstrated that speed errors of 

GNSS receivers might be worse in areas where tree foliage is present compared to 

overpasses. The research proved that speed measurements conducted by consumer grade 

and medium range GPS receivers cannot be relied upon in tree foliage environment. The 
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number of outliers generated by these medium range and consumer grade receivers in tree 

foliage environment was excessively high. Tree foliage provides both scattering and 

attenuation of the GNSS signal causing difficulties to accurately measure speed. It was 

validated that even a single tree can significantly influence the speed accuracy parameter 

even when the receiver did not report any deterioration in the number of satellites in view 

and HDOP. It should be highlighted that in both challenging environments, e.g. overpasses 

and tree canopy, the majority of speed outliers had good GPS visibility parameters. Users 

are often not aware of these issues experienced by GNSS receivers in such environments. 

 In this research, while high end geodetic GPS and GNSS receivers performed better 

compared to medium range and consumer grade receivers, they still experienced speed 

spikes of up to several km/h. Such spikes include instances when the receivers were 

configured with relatively high elevation mask filtering. Medium range and consumer grade 

GPS receivers may generate a substantial number of measurement outliers around 

overpasses with up to 10 km/h reported errors in speed measurements.  The number of 

outliers for all GPS/GNSS receivers increases in tree canopy environment. This conclusion, 

however, should not be generalised. Independent testing of each receiver is encouraged to 

reveal its true performance in real-world environments. At the same time, it is possible to 

conclude that more sophisticated GPS/GNSS receivers are likely to achieve better speed 

accuracy in challenging environments. For applications where the GPS/GNSS speed 

accuracy is very important, the user should select the appropriate receivers to achieve 

desired outcome. 

 It was determined that the benefit of having additional GNSS constellations to complement 

GPS speed measurements in terms of improving speed accuracy is marginal.  Multiple 

examples were seen when GPS + GLONASS receiver had similar performance as GPS only 

receiver. This relates to both challenging environments tested in this research.  

 The research demonstrated that the number of speed outliers generated by GPS/GNSS 

receivers has no direct correlation with mask angle values between 5º and 15º. This result 

was observed for both overpasses and tree foliage environments.  

 It has also been demonstrated that the specific GPS receivers may perform well in relation 

to the others around overpasses; however, their relative performance may change in tree 

foliage environment, and vice versa.  This highlighted the necessity of individual testing of 

GPS/GNSS receivers in each type of environment. 

 The research topic of filtering potential GPS speed outliers is very broad and there are many 

possible methods that can be used. Since the receivers could only output HDOP, number of 

satellites and SNR (SNR for NovAtel only receivers), the use of these parameters to filter 

out unreliable GNSS speed records was investigated in this research. Such methods have 

been chosen because they can be used in practice for the majority of GPS receivers, 
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including medium range and consumer grade types. It has been demonstrated that it is not 

always possible to rely on SNR values to filter potentially unreliable speed records. While 

reliance on SNR changes might be used for GPS speed records generated in tree foliage 

environments, this is not always the case for records generated around overpasses or road 

gantries. It has been demonstrated that HDOP and number of satellites are also not suitable 

parameters to filter speed outliers. Therefore, reliance on individual GPS based speed 

measurements in challenging environments, even if such measurements demonstrate good 

GPS parameters, may not be justified.  

The above conclusions cannot be generalised for all receivers. However, they highlight the 

importance of testing individual receivers to derive their true behaviour in different environments. 

8.2 Future research 
This research has investigated the accuracy of GNSS speed measurements in two challenging 

environments. It is evident that environmental conditions significantly affect the quality of GNSS 

speed measurements. Considering the results of this research and outliers generated by the 

receivers in various challenging environments, the next step of research is to develop theoretical 

algorithms to be embedded into GNSS receivers to improve their speed accuracy measurements 

in challenging environments. Also, it would be interesting to investigate the use of dual frequency 

GNSS receivers to understand if speed accuracy of measurements can be improved. In addition, 

the lack of GNSS measurement accuracy in challenging environments can be compensated with 

the use of accelerometers in conjunction with GNSS. This area of research is worth exploring. On 

top of that, the quality of GNSS antennas is worth exploring and its linkage with the speed outliers 

generated by identical GNSS receivers. Finally, future research should focus on developing 

filtering methods to eliminate GNSS speed outliers and understanding the correlation between a 

speed error and the direction of the Doppler measurement from the satellite versus the direction 

of travel of the vehicle. It is possible that the number of satellites contributing to the speed 

measurement solution is less important than this satellite-vehicle alignment for Doppler speed 

measurements.   

As a final commentary, this research focused on several GNSS receivers made available in the 

research. There is no doubt that future development of GNSS technology will improve the 

accuracy of speed measurement in the real-world environments.  
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Appendix A: UFDC-1 CONNECTION DIAGRAM 

 
Figure A.1: Full UFDC-1 connection diagram 
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Appendix B: TRIAL TEST ROUTE 

 

 

Figure B.1: Trial test route in Melbourne area 
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Figure B.2: Trial test route in the countryside 
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Appendix C: SPEED DIFFERENCE DISTRIBUTIONS AFTER PROCESSING OF THE 
TRIAL TEST DATA 

 

 

Figure C.1: Speed difference distribution for Novatel ProPak-V3-L1 GPS receiver 

 

Figure C.2: Speed difference distribution for Novatel OEM6 GPS + GLONASS receiver 
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Figure C.3: Speed difference distribution for VBox GPS receiver 

 

Figure C.4: Speed difference distribution for Columbus GPS receiver 
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Appendix D: EXAMPLES OF THE ENVIRONMENTS WHERE GPS SPEED OUTLIERS 
WERE GENERATED DURING A TRIAL TEST 

 

 

Figure D.1: Example of the environment where an outlier was generated by Novatel OEM6 

 

Figure D.2: Example of the environment where an outlier was generated by VBox 
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Figure D.3: Example of the environment where an outlier was generated by Columbus 

 

 



  

160 
 

Appendix E: SPEED DIFFERENCE DISTRIBUTIONS FOR A TEST CONDUCTED AT 
MONASH FWY WITH OVERPASSES 

 

 

Figure E.1: Speed difference distribution for the Novatel GPS ProPak-V3-L1 with 5º mask angle 

 

Figure E.2: Speed difference distribution for the GPS Novatel GPS ProPak-V3-L1 with 10º mask 
angle 
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Figure E.3: Speed difference distribution for the Novatel GPS ProPak-V3-L1 with 15º mask angle 

 

Figure E.4: Speed difference distribution for the Novatel OEM6 GPS + GLONASS receiver with 15º 
mask angle 
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Figure E.5: Speed difference distribution for VBox 

 

 
Figure E.6: Speed difference distribution for Garmin 

 

 
Figure E.7: Speed difference distribution for Columbus 
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Figure E.8: Speed difference distribution for G-Log 
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Appendix F: EXAMPLES OF THE ENVIRONMENTS WHERE GPS SPEED OUTLIERS 
WERE GENERATED DURING A TEST DRIVE AT MONASH FWY 

 

 

Figure F.1: An outlier of Novatel with a 10º elevation mask around a road gantry (Speed error = 12.6 
km/h, Number of satellites in view = 5, HDOP = 3.5) 

 

Figure F.2: An outlier of Novatel with 15º elevation mask (Speed error = 4.6 km/h, Number of 
satellites in view = 7, HDOP = 1.4) 
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Figure F.3: An outlier of Novatel OEM6 GPS + GLONASS with a 15º elevation mask (Speed error = 
9.8 km/h, Number of satellites in view = 7, HDOP = 9.9) 

 

Figure F.4: An outlier of VBox with a 7º mask angle (Speed error = 11.5 km/h, Number of satellites in 
view = 10) 
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Figure F.5: An outlier of Garmin (Speed error = -9.1 km/h, Number of satellites in view = 11, HDOP = 
0.8) 

 

Figure F.6: An outlier of Columbus (Speed error = 13.4 km/h, HDOP = 1.1) 

 
 
 



  

167 
 

Appendix G: EXAMPLES OF THE ENVIRONMENTS WHERE GPS SPEED OUTLIERS 
WERE GENERATED ON ROADS WITH TREE FOLIAGE 

 

 

Figure G.1: An aerial view for an outlier of Novatel OEM6 with 15º mask angle (Speed error = 12.74 
km/h, Number of satellites in view = 7, HDOP = 3.9) 
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Figure G.2: An aerial view for an outlier of VBox (Speed error = 15.1 km/h, Number of satellites in 

view = 9) 

 
Figure G.3: Street view for an outlier of Garmin GPS (Speed error = 2.3 km/h, Number of satellites in 

view = 8. HDOP = 0.8) 
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Figure G.4: An aerial view for an outlier of G-Log (Speed error = 4.11 km/h, Number of satellites in 
view = 8, HDOP = 0.95) 

 
Figure G.5: An aerial view for an outlier of Columbus (Speed error = 5.9 km/h, HDOP = 0.9) 

Two selected examples where VBox GPS receiver generated enormous speed outliers are shown 

in Figure G.6 and Figure G.7. 
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Figure G.6: Street view for an enormous outlier of VBox (Speed error = -176.9 km/h, Number of 

Satellites = 4) 

 
Figure G.7: Street view for an enormous outlier of VBox (Speed error = -21.8 km/h, Number of 

Satellites = 6) 
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Appendix H: SPEED DIFFERENCE DISTRIBUTIONS FOR TESTS CONDUCTED IN 
TREE FOLIAGE ENVIRONMENTS 

 

 

Figure H.1: Speed difference distribution for Novatel ProPak-V3-L1 GPS receiver with 5º mask angle 

 

Figure H.2: Speed difference distribution for Novatel ProPak-V3-L1 GPS receiver with 10º mask 
angle 
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Figure H.3: Speed difference distribution for Novatel ProPak-V3-L1 GPS receiver with 15º mask 
angle 

 

Figure H.4: Speed difference distributions for Novatel OEM6 GPS + GLONASS receiver with 15º 

mask angle 
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Figure H.5: Speed difference distribution for Garmin 

 
Figure H.6: Speed difference distribution for Columbus 

 
Figure H.7: Speed difference distribution for G-Log 
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Appendix I: SPEED ERROR AS A FUNCTION OF HDOP FOR KINEMATIC TESTS 
AND SELECTED GNSS RECEIVERS 

 

 
Figure I.1: Speed error as a function of HDOP for Novatel ProPak-V3-L1 GPS receiver with 5º mask 

angle 

 
Figure I.2: Speed error as a function of HDOP for Novatel ProPak-V3-L1 GPS receiver with 10º mask 

angle 
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Figure I.3: Speed error as a function of HDOP for Novatel OEM6 GPS + GLONASS receiver with 15º 

mask angle 

 


