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Abstract

Contemporary digital design practice is reframing a creative dialogue between 

design and making. Empowered by an increasingly seamless interface between data 

and material, the domain of the architect is expanding to engage diverse processes 

across design and fabrication. New practices of prototyping are emerging in which 

architects creatively extend opportunities for custom production, exploring relationships 

of form, material, fabrication, and aspects of performance.

This research is driven by project work spanning such a broad domain across 

design and fabrication, through which I have developed a series of prototypes. In 

these projects I have created, used and appropriated numerous tools and techniques. 

In this dissertation, I focus on the ways in which I engage with such a diverse toolset, 

addressing the workflows of projects in order to frame a modularity of process. This 

modularity operates across multiple scales, from simple functions to more complex 

systems, and to varying degrees, from discrete elements to fuzzier arrangements. 

It is not derived from formulas for design but is instead grounded in expertise and 

experience. It emerges in response to specific demands for resilience and flexibility and 

frames a practice in which we plug together diverse processes to enable design and 

prototyping for architecture.

The first contribution of this doctorate is to demonstrate a modularity 

of process and highlighting its role at multiple scales through a set of diagrams. 

Furthermore, I frame a series of implications of this modularity of process for 

architecture practice. Modularity is here more than just a means of organisation 

across design and fabrication. Nor is it employed to improve efficiency, as it is in some 

areas. Rather this modularity of process is important to enabling the generation and 

control differentiation, collaboration across fields of knowledge, and exploration of 

interdependent design criteria. These underpin a plugin practice in which designers can 

interrogate the ways we calibrate process and outcome, and create and reuse diverse 

forms of knowledge.

I certify that except where due acknowledgement has been 

made, the work is that of the author alone; the work has not 

been submitted previously, in whole or in part, to qualify for 

any other academic award; the content of the project is the 

result of work which has been carried out since the official 

commencement date of the approved research program; any 

editorial work, paid or unpaid, carried out by a third party is 

acknowledged; and, ethics procedures and guidelines have 

been followed.

Nicholas Williams, December 2017
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Definitions

Module

A distinct but interrelated part, a collection of which can create a system. Herein I 

address modules in design process in distinction to the material modules found in many 

building systems.

Workflow

A repeatable arrangement of process connected for a purpose. Herein I discuss 

workflows for design, using further terms to denote specific levels of detail.

Allographic

Scripted by their authors in order to be materially executed by others, as defined by 

Mario Carpo in The Alphabet and the Algorithm.

Autographic

Handmade by an author , as defined by Mario Carpo in The Alphabet and the Algorithm.

Abbreviations

AEC	 Architecture, Engineering and Construction

CAD 	 Computer Aided Design

CAM 	 Computer Aided Manufacturing

CNC 	 Computer Numeric Control

NURBS	Non-Uniform Rational B-Spline

MC	 Mass Customisation
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1. Introduction

1.1  	 New Perspectives in a Potent Milieu 

“The revolution… is the ability to turn data into things and things into data”  

– Neil Gerschenfeld, How to Make (Almost) Anything, 2012.

Fundamental shifts are today taking place in the ways that goods are designed, 

manufactured and used. Underlying these shifts, digital technology has become 

ubiquitous across many industries, from the media we use for communication, to the 

machines we use to make things. The term Industry 4.0 is now widely recognised, 

describing an industry with, “end to end digitization… and integration into digital 

ecosystems with value chain partners” (Vedsø et. al., 2016). Through this digital 

ecosystem, concepts from manufacturing such as mass-customisation and digital 

supply chains are increasingly relevant to many fields of design, including architecture.

In the midst of these broad shifts, digital fabrication has become a vital field. 

There is much evidence at hand, from research groups to start-up businesses and 

online communities. Perhaps the most significant example is the global network of over 

700 FabLabs (Fig. 1.01). which have grown from a first iteration launched in downtown 

Boston in 2003. These labs now act as a global network to educate and to stimulate 

entrepreneurship in local communities (Gerschenfeld, 2012, 47).

Figure. 1.01. Map showing locations of over 700 FabLabs of the global Fab Foundation.

This image has not been reproduced for 

copyright purposes.
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This uptake of digital fabrication is significant among architects. Globally, 

Schools of Architecture now own suites of digital fabrication tools, with industrial 

robots sitting alongside off-the shelf 3D printers, CNC routers and other pieces of 

newly affordable digital kit. Conferences and peer-reviewed publications addressing 

digital fabrication for architects are also well established. Furthermore, major research 

initiatives in the field have been funded by governments and industry, highlighted by 

examples such as the National Competency Centre for Research in Digital Fabrication, 

established for “Switzerland to take a leading position within the global field of digital 

fabrication” (www.dfab.ch, Fig. 1.02). Architecture practices are also beginning to 

utilise digital fabrication to deliver challenging buildings. These design practices are 

connecting with leading fabricators and collaborating with other practices to enhance 

both the design and delivery of projects.

Figure. 1.02. Stratafications installation by the Chair of Digital Fabrication (Gramazio Kohler), ETH 

Zurich,  using robotics laser scanning and algorithms to assemble timber blocks, exhibited at the 

inaugural Fabricate conference, University College London.

The potential for architects lies not just in digital fabrication serving the delivery 

of design, but also in driving it. Through linking making with design, opportunities 

emerge across, “a creative and experimental process that occupies the full extent of 

architectural production” (Sheil and Glynn, 2012, 8). Today, connections between 

design and making are being engaged by a thriving community in practice and 

academia, creating new material systems, materialising non-standard forms, and 

exploring new fabrication techniques. A culture of prototyping is emerging which 

continuous design and evaluation drive innovation (Burry and Burry, 2016). This further 

engages fields beyond design, from structural design to acoustics and material science, 

among others.

While the relationships of design and making have long provided a rich milieu 

for architects, digital technologies provide, “a vast expansion on the remit, scope 

and potential of the designer” (Glynn and Sheil, 2011, p.156). This in turn creates 

significant challenges and opportunities to the way we practise design. We can 

harness knowledge across broad fields by connecting diverse collections of tools and 

techniques. In doing so, we must not lose a drive for novelty which compels designers, 

“to explore, to discover something new, rather than to return with yet another example 

of the already familiar” (Cross, 2006, 8). Here, architects must be more than just 

facilitators, acting as co-authors of systems and tools across multiple scales.

This research questions the ways we organise and integrate practice across 

this expanded domain. As we connect diverse tools and techniques, we must negotiate 

questions about how we constrain or enable design and make trade-offs between 

competing design drivers. The organisation of our workflows across design and 

fabrication bear significant influence on the outcomes of these workflows.

This image has not been reproduced for 

copyright purposes.
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1.2  	 Motivation and Aim

From its outset, this research has been motivated by a series of perceived 

limitations in contemporary architecture practice. The first of these comes from my 

experience in commercial practice, where for over 10 years I have contributed to 

projects from individual houses to large institutional buildings. In this practice, a 

contingency for the architect was consistently evident – that of designing around 

pre-existing construction systems which could be priced, procured and installed by 

a builder. There is much room for creativity in such a role, but design is nevertheless 

constrained. For example, on an institutional building in Hobart, Tasmania, only one 

contractor was capable of fabricating the precast concrete façade panels. As such, 

this company set limitations as to what could and couldn’t be built and how much they 

would cost, a role which was not just pragmatic but contractually accommodated. Such 

stories are common in contemporary practice.

Alongside this, in 2008 I was awarded scholarships to study in the Design 

Research Laboratory at the Architectural Association School of Architecture, London. 

My time there coincided with the start of the ProtoDesign research agenda in the 

course, a shift to engagement with making and fabrication. Here myself and classmates 

made numerous prototypes to connect digital models with material systems, most 

significantly through plaster poured into fabric (Fig. 1.03). This material “form finding” 

was both experimental, evocative, and with precedent in construction research (www.

umanitoba.ca/faculties/architecture/facilities/cast.html). However, the reach and scope 

of these projects was limited, removed from the realities of delivering a building.

With skills in writing code and a desire to use these to deliver 

challenging buildings, I then took up a position at DesignToProduction in Zurich 

(designtoproduction.ch). Here I contributed to detailed fabrication models for some 

significant timber structures and was further exposed to working for someone with a 

computer science background. This taught me much about organising information and 

the abstract structures of software. Frustratingly, however, we were generally engaged 

only after the design phases, left to help resolve complex challenges created by others.

These three perspectives – of an architect adapting a design to a specific 

set of construction resources, a designer using studio exercises to explore potential 

material systems for construction, and a fabrication consultant trying to resolve 

challenges created in early design stages – contributed to personal dissatisfaction 

around the ways we practise architecture. As such, this research is motivated by the 

belief that an integrated and expanded practice promised by digital fabrication remains 

unrealised in many situations today.

Furthermore, I seek to provide insights which are not formulas for design. 

Attempts to create and apply such rules sit awkwardly in the breadth of contemporary 

design practice, difficult to adapt to the specific constraints and opportunities of 

individual projects. They also run counter to fundamental aspirations of design practice 

Figure. 1.03. Fabric and plaster study from the SoftCast project undertaken in the Design Research 

Laboratory, Architectural Association School of Architecture, designed and fabricated by team 

Anon, Mustafa el Sayed, Sara Saleh, Omrana Ahmed and myself, 2010.
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to pursue the new and avant-garde (Hagan, 2008, 20) and to value difficulty over ease 

and efficiency (Willis and Woodward, 2010, 201). As a result, I pursue knowledge 

which is grounded in the pragmatic undertakings of practice and provides insights to 

our understandings of it.

1.3  	 Research-in-Action

Rather than pursue a conventional scientific research methodology, I here use 

a research-in-action methodology centred on a series of projects and the outcomes and 

reflections of these. This written component captures these reflections, produced to 

frame and contextualise the project work and subsequently to discuss implications of 

it. Unlike an approach which uses methodological conventions, project based research 

requires other heuristic methods including those from creative practice. This is an 

increasingly common model for research, with strong roots and a body of examples 

at RMIT University, and with significant uptake at Universities across Australia and 

internationally (www.architecture.rmit.edu.au/projects/adapt-r/).

Such a research-in-action methodology is underpinned by several key texts 

which highlight how knowledge is created through design. Peter Downton simply 

observes a principle of continuous learning through doing, asserting that designing is, 

“a way of producing knowledge for designing” (Downton, 2004, 56). Brian Lawson 

supports this idea of continuity, observing that a designer is “continually reflecting on 

the current understanding of the problem and the validity of the emerging solution or 

solutions” (1980, 299). Nigel Cross (2006) concurs that knowledge can be created 

through design, but challenges simple uncritical acceptance by highlighting the central 

importance of substantial reflection. Describing a designerly way of thinking, Cross 

asserts that by thinking through the objects created in design, re-useable knowledge 

can be gained and communicated, thus distinguishing a mode of research from 

conventional practice (2006, 102).

Further to highlighting that knowledge is created through design, this research 

methodology is particularly relevant to addressing questions about practice. Donald 

Schon frames a reflection-in-action approach in which a researcher’s, “inquiry is not 

limited to a deliberation about means which depends on a prior agreement about ends. 

He does not keep means and ends separate, but defines them interactively as he frames 

a problematic situation. He does not separate thinking from doing, ratiocinating his way 

to a decision which he must later convert to action. Because his experimenting is a kind 

of action, implementation is built into his inquiry.” (Schon, 1983, 68). This highlights 

an inherent interdependence between theory and practice, with the two developing 

alongside one another. While it is a problematic situation, as Schon describes it is 

nevertheless inherent to design. Through producing works of architecture, such 

as those discussed herein, we can inquire into challenges facing the practice of 

architecture. 

This research centres on a body of project work and reflection upon this. 

Central to this is a series of major projects are presented in this dissertation. Each 

pursues a hypothesis about a specific relationship between the design of form, 

performance, material and fabrication. A prototype is realised in each, with a specific 

focus in the design and execution of a system to realise this. These projects each 

stand alone as a research inquiry though which knowledge is created. Recognition of 

this knowledge lies in the numerous exhibitions and peer-reviewed publications of the 

work. Beyond these core projects, I present a series of trajectories to discuss tools and 

techniques which relate to the original projects and have been applied elsewhere.

The contribution of this doctorate lies beyond the outcomes of the individual 

projects within it. Across the project material, I focus on the modularity of workflows. I 

demonstrate this modularity at multiple levels of detail and to varying degrees. Far from 

a trivial mapping of process, this turns out to be a necessary, though rarely addressed, 

aspect of practice. It is complementary to key design ambitions, from enabling us to 

manage complexity to enhancing how we collaborate. It further poses questions about 

how we calibrate our design process and use and share multiple types of knowledge. 
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1.4  	 Structure of this Dissertation

To provide critical context for the project work undertaken in this research, 

in Chapter 2 I address three key issues around the relationship of digital fabrication 

tools to architecture. Firstly, digital fabrication technologies have expanded the role 

and scope of the architect beyond established practices of design and documentation. 

The technology presents opportunities at the service of design, providing improved 

capacity for delivering complex and challenging projects. Furthermore, new practices 

are emerging which help link architecture, engineering and fabrication through digital 

services. There is now a broad community who are actively engaging and exploring 

fabrication, materials and broad notions of performance to drive design. This community 

is now looking beyond technological novelty to seek broader innovation in industry.

Recognising the drive for relevance in industry, I then discuss two parallel 

practices of prototyping in which architects address products and design. I outline a 

historic trajectory, beginning with early industrialised building and the enthusiasm of 

many avant-garde architects towards mass production (Smith and Timberlake, 2011, 

3). This attitude stands in contrast to the gaps between many contemporary design 

communities and prefabricated building which exists today (Knapp, 2013). Alongside 

this prototyping for products is prototyping which drives design. This is finding a 

contemporary relevance as it enables forms of open innovation (Guggenheim, 2010) 

connecting diverse aspects of design and production. Falling between these two 

practices of prototyping are manufacturing trends which utilise increased means for 

customisation to explore new types of product.

The final background section addresses emerging workflows of architects 

in the context of a broadened set of tools and techniques. These workflows ground 

and enable process across design and production. I identify modularity as a key 

feature of process in other industries, one which has underpinned major changes over 

recent decades (Baldwin and Clarke, 2000). I highlight the roles of modularity in the 

electronics and software industries to provide a background to the study of design-led 

prototyping which ensues.

After framing key issues through the background material, in Chapter 3 I 

frame an overarching strategy across the project-led research. I introduce key drivers 

for each project including hypotheses around the relationships of form, material and 

performance, and specific hierarchies of customisation. To frame my interrogation of 

modularity, I also introduce a taxonomy covering levels of detail and ways in which 

modularity varies in degree. Finally,  I introduce conventions which underpin a series 

of diagrams which run through the project chapters and illustrate the workflows and 

modularity within them.

In the subsequent chapters, I present and discuss the project material in 

detail. Three investigations (Chapters 4-6) cover the design and fabrication of full-scale 

prototypes: the FabPod, the Sound Bites Shell, and The Music Room.  For each, a 

series of stories is used to describe key processes which are plugged together to 

create broader design systems. After outlining these aspects of systems, I then present 

an overview of each and discuss the large-scale prototypes which were produced. 

Following the three primary projects, I present a series of tools and techniques used in 

subsequent projects. These follow directly from the earlier prototypes and highlight the 

continuing development and interchangeability of workflow modules.

Looking across the breadth of project material, I reflect on modularity in 

workflows in Chapter 8. In the first instance, this is organised around the levels of 

detail which I introduced previously, discussing the degree of modularity at each 

and implications at each level. This feeds into a discussion around known benefits 

of modularity to consider how modularity can complement design practice. Citing 

examples from the project material, I discuss how modularity of workflow can enable 

differentiation, collaboration and exploration in architectural design. Finally, I consider 

some key issues of a ‘plugin practice’ which is underpinned by a modularity of 

workflows and which are emerging as important aspects in contemporary discourse.
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2. Background

2.1 	 Expanding the Domain of Architecture:			 

	 Reconnecting Design and Making

2.1.1 	 Architects Embrace DigiFab

The current groundswell of interest in digital fabrication among architects 

has been some time in the making. This year marks 20 since the completion of the 

Guggenheim Museum in Bilbao, a project which borrowed digital technology from the 

aerospace and automotive industries to use 3D digital models to connect between 

design and the fabrication of the steel structure and its cladding (Shelden, 2002). While 

this building was pioneering in its scale and ambition, the late 1990s also saw a number 

of emerging architectural practices begin to leverage access to computer numeric 

controlled (CNC) machines. SHoP Architects was established in New York in 1996 

and, using a CNC router, completed the timber Dunescape installation, a commission 

for the PS1 pavilion at the Museum of Modern Art in 2000 (Fig. 2.01). Practitioners 

such as Mark Goulthorpe of Decoi Architects (1998) and the research group Sixteen* 

(makers) (Groak, 1996) were explicitly engaging digital and material media, and writing 

about emerging design implications.

Figure. 2.01. Dunescape installation by SHoP Architect, New York, 2000.

This image has not been reproduced for 

copyright purposes.
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Beyond the turn of the millennium, the community of architects trumpeting 

the virtues of digital fabrication had grown to include research groups and books. Nick 

Callicott of Sixteen* (makers) authored Computer Aided Manufacture in Architecture 

(2001), providing an overview of contemporary processes for CAM and tracing these 

to a historic lineage of Charles Babbage’s mechanical Difference Engines of the early 

19th century (Callicott, 2001, 11). In 2002, Branko Kolarevic brought together a number 

of key figures for a symposium at the University of Pennsylvania and the subsequent 

publication from this event, Architecture in the Digital Age: Design and Manufacture 

(2003) has become seminal in outlining a vision of both “a very different kind of 

architecture and… significant redefinition of the architect’s role in the production of 

buildings”. 

In the same period, funding in academia began to support digital fabrication 

within schools of architecture.  In teaching programs such as the Emergent 

Technologies at the Architectural Association, London, course leaders Mike Weinstock, 

Achim Menges and Michael Hensel used relatively accessible machines such as laser-

Figure 2.02. Honeycomb Morphologies installation, Emergent Technologies Program, 

Architectural Association, London, 2004

cutters and powder-based 3D printers to fabricate pavilion-sized installations such as 

The Honeycomb Morphologies project (Fig. 2.02). At Ball State University, Kevin Klinger 

established iMade: Institute for Digital Fabrication in 2002 as a ‘catalyst’ to connect 

students with designers and the manufacturing industry (http://i-m-a-d-e.org/?page_

id=115). Klinger also served as President of the Association of Computer-Aided Design 

in Architecture (ACADIA) between 2003-04 and helped shape the association’s annual 

conference titled Fabrication (Beesley et. al, 2004). This framed the growing importance 

to the topic to the digital design community. In the following year at the ETH in Zurich, 

both the designtoproduction research group emerged within the CAAD chair, and a 

new Chair for Digital Fabrication (Gramazio Kohler) was established.

Outside the digital design community, emerging manufacturing capability was 

simultaneously drawing interest from a broader architecture audience. Taking a prompt 

from Gehry Partners, larger practices including Foster and Partners helped to develop 

digital supply chains for major public buildings such as the Smithsonian Centre (Fig. 

2.03). Emerging practitioners Stephen Kieran and James Timberlake received the 

inaugural Benjamin Latrobe Fellowship from the American Institute of Architects, using 

Figure 2.03. Smithsonian Institute courtyard, Washington, 2004 - 2007, architects Foster and Partners.

This image has not been reproduced for 

copyright purposes.

This image has not been reproduced for 

copyright purposes.
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the funding to research emerging cultures of digital manufacturing in the aerospace and 

automotive industries. They authored Refabricating Architecture: How Manufacturing 

Methodologies are poised to Transform Building Construction (2004) advocating for 

the adoption of practices around aircraft assembly. This addressed an audience beyond 

those explicitly interested in the digital, making bold claims to a mainstream audience 

about future changes to the profession.

This brief overview covers but a few notable examples over a decade of 

burgeoning interest in digital fabrication. It seeks to illustrate a geographic breadth and 

a diversity of practitioners experimenting with new tools and techniques. This diversity 

highlights differing attitudes to the role of technology, some of which are addressed 

herein. A uniting feature, however, is that the belief that the changes taking place are 

revolutionary (Corser, 2010) with those involved broadly proclaiming that architecture 

would be turned on its head by new connections between design and making.

Moving forward to 2011 and the communities of architects engaged in digital 

fabrication have continued to grow, highlighted by the first Fabricate conference held at 

the Bartlett School of Architecture, London. Here, the works presented were separated 

into those undertaken within academia and those in practice, a division which was 

glossed over by conveners as “typical of but problematic to the discipline” (Glynn and 

Sheil, 2011, 20). Though problematic, this division frames two ways in which architects 

relate to digital fabrication. On one hand, fabrication is a subset of construction and 

largely independent of the design process. Here, digital tools such as CNC routers 

are valuable for improving the quality of prefabrication, and for realising complex forms, 

such as parts with unique angles and curved faces. This is at the service of design, 

harnessed to deliver a design intent. On the other hand, digital fabrication is central to 

design, used for exploring design opportunities. Here, fabrication drives design, actively 

shaping the design process and outcomes through mock-ups and prototypes.

The understanding of digital fabrication by architects continues to mature. 

The number of annual events and publications around the topic are growing, with 

new niches emerging around sub-topics such as robotics and materials. However, 

distinctions between serving and driving design persist, with the technology 

transforming both “significant aspects of both design practice and delivery” (Corser, 

2010, p.13). The two sides of this duality are teased out in the following sections to 

provide further depth across current research and practice.

2.1.2 	 Serving Design

“In the world of hand-making that preceded the machine-made environment, imitation and 

visual similarity were the norm, replication and visual identicality were the exception. And 

in the digital world that is now rapidly overtaking the mechanical world, visual identicality 

is quickly becoming irrelevant.” 		

- Mario Carpo, The Alphabet and the Algorithm, 2011, 3

Architects have not taken up the technologies of digital fabrication in 

isolation. While the term ‘digital fabrication’ is popular amongst architects, the tools 

and techniques being referred to are more commonly situated within Computer Aided 

Manufacturing (CAM). CAM has major impacts in many industries, from automotive to 

aerospace to clothing and furniture, some of which are outlined further in section 2.2.2. 

For architects, the potentials of CAM have come to be appreciated in 

combination with other emerging digital tools and techniques. Writing in 2004, 

shortly after the ACADIA Fabrication conference and the publication of Refabricating 

Architecture, Todd Woodward and Dan Willis identify the roles of parametric modelling 

and BIM to complement digital fabrication, claiming “these three techniques are poised 

to significantly alter” the professional practice of architecture (p.182). Today, these three 

are established in architectural discourse and practice to varying degrees and in various 

combinations.

Parametric tools are  used in many industries for design and manufacturing 

and a suite of tools are being used by architects. Their potential is widely recognised 

and the term parametric has been used in many contexts and to many ends, including 

to denote emerging architectural style (Schumacher, 2008). I refer here to a narrower 

definition aligned to the technical workings of parametric models, those which are used 

to create a set of related outcomes defined by a set of parameters. Typically, architects 
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use these to create geometry, though the parameters can relate to many aspects of 

material and performance. These models are underpinned by graphs of constraints, 

to which designers “add, erase, relate and repair”, with geometry solved through 

the graph (Woodbury, p.11). This allows for geometry to be flexible in relation to the 

parameters, in contrast to being explicitly drawn or modeled by a designer.  A lineage of 

such parametric tools in CAD technology can be traced back to Ivan Sutherland’s 1963 

exposition of the Sketchpad (Sutherland, 1963, 1). 

For architects, parametric models and digital fabrication can complement 

each other well. Parametric models commonly produce collections of related but 

differentiated forms. Digital fabrication can provide an efficient and accurate means to 

materialise these. CNC machines respond to the data being fed to it, irrespective of 

whether it is repeated or different each time. Through using parametric tools, we use 

the variation in form to drive variation in machining programmes. This points to a synergy 

in which “CAM enables the production of parameterised individual parts for (almost) the 

cost of mass production” (Scheurer, 2007, p.1).

The second of the complementary technologies, BIM, has less straightforward 

relationships to fabrication. Centred on “accurate virtual models of a building” (Eastman 

et. al., 2008, 1) BIM reflects concepts and practices in other industries including 

automotive and aerospace design. Alongside geometry, these models can hold 

information on a broad range of aspects, from performance criteria, to specifications 

of material and fabrication. As such, BIM models can be considered parametric, and 

are ideally centred on highly structured databases of information (Kensek, 2014, xxvi). 

However, contemporary BIM practice falls short of an idealised position in which an 

entire project is defined by parametric components. There are many challenges to 

a continuous information flows across design and construction, and the prevailing 

sentiment is that BIM has not fulfilled its potential (Lau, 2016).

The related concept of integration from ‘file-to-factory’, promoted in many 

industries, has been often dismissed as irrelevant to the project-based construction 

industry (Scheurer, 2010, 91). In 2004, Scheurer established the company 

designtoproduction in response to these limitations, providing bespoke modelling 

services for challenging projects such as the Centre Pompidou, Metz (Fig. 2.04). 

They are not alone. A number of similar companies have emerged such as One:One in 

Germany (onetoone.net), Front Inc. in Hong Kong and North America (frontinc.com), 

and even in Australia (www.ar-ma.net). Much like Gehry Technologies, which spun off 

from Gehry Partners, these companies are offering services in parametric modeling and 

the management of detailed information for digital fabrication. They work for a range 

of clients, from architects to fabricators, and focus on high-budget projects seeking to 

exploit emerging fabrication offerings.

Alongside these small practices are those serving other aspects of design. 

For example, Evolute was established around the research of mathematician Helmut 

Pottman and specialises in geometry (evolute.at). ROB Technologies (rob-technologies.

com) and Odico (odico.dk) help designers connect with robotic fabrication. While these 

have grown from research in universities, commercial practices have also developed 

expertise in parametric modeling and fabrication workflows. Among engineers, the likes 

Figure 2.04. Construction image of the Centre Pompidou, Metz, France, Shigeru Ban Architects, 

digital fabrication consultants: designtoproduction

This image has not been reproduced for 

copyright purposes.
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of Thornton Tomasetti (www.thorntontomasetti.com) and Atelier One (www.atelierone.

com), seek to differentiate themselves through digital knowhow. Furthermore, specialist 

fabrication companies such as façade contractors Seele (seele.com) and timber 

contractors Blumer Lehmann (timber-code.ch) provide consulting services alongside 

their CNC manufacture.

These companies are representative of a rich and growing ecosystem of 

practices serving challenging projects. They reflect emerging roles for three techniques 

discussed here, with parametric modeling, BIM and digital fabrication complementing 

one another. However, while these companies have links and backgrounds in 

architecture, they operate distinct from architectural practice. This division underscores 

the deep knowledge and significant effort demanded by parametric design, BIM and 

digital fabrication, which are major hurdles to them being used in early stages of design 

to drive process and shape outcomes in architecture.

Figure 2.05. Robotic hot wire cutting of foam block in the Odico factory, Denmark.

2.1.3 	 Driving Design

“Tools cut materials which make form”

- Frank Barkow, Spielraum, 2014

We can now look back on several generations of digital design communities 

who have evoked the avant-garde. A spirit of experimentation within these communities 

has pushed limits beyond conventions of design and materialisation (Picon in Gramazio 

Kohler [eds.], 2014, p.59). Among a recent avant-garde, the scale of ambition is 

highlighted by exhibitions such as Architectures Non-Standard held in Paris in 2003-

04, which explicit aimed to shift the discourse (Benjamin, 2010, 78).  In her curatorial 

essay, Zeynap Mennan sets out a case for rejecting norms, eschewing stability for 

the unstable, and those in a state of constant becoming (2008, 172). Digital tools, 

she claims, are giving freedom to designers to follow intuition which “ensures a never-

completed space of creativity and non-identical reproduction, releasing an infinity of 

possibilities” (Mennan, 2008, 181).

Among the avant garde proposals exhibited in 2003, Greg Lynn’s 

Embryological House proposes serial variation in the form of houses. Greg Lynn 

is today regarded as a seminal figure in architectural design and describes that 

contemporary designers work with ‘families’ of components, defined through a set of 

rules and implemented through partial differential equations. Here, design at multiple 

scales is undertaken simultaneously, “the design of the many and the design of the one, 

at the same moment, is not only thinkable as a concept but can be instrumentalised” 

(2008, p.172). This is an evolution of ongoing relationship between part and whole. 

Such a focus on a series of related but differentiated elements is having broad impacts 

on many aspects of design culture. (Carpo, 2011, 10).

The Embryological House project was speculative and was not developed 

towards a built outcome, presented as a series of images and abstract models. In the 

decade subsequent to Architectures Non-Standard, many designers shifted attention 

to serial variation in building components, from structural elements to window systems, 

some of which I have discussed in the previous section. In design discourse, this is 

This image has not been reproduced for 

copyright purposes.
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again a rejection of emerging norms, here responding to the seemingly immaterial 

outputs of the digital. In the midst of this shift is a challenge to the primacy of form 

in design. Axel Killian asserts that “design exploration needs to move beyond the 

description of form” (2006, 27). He and others have highlighted opportunities for 

process to shape design outcomes, here using aspects of material, machining and 

assembly as design drivers which are more holistic than mere experiments in form.

To this end, Lisa Iwamoto identifies a collection of techniques “that reveal 

the design ingenuity that arises from digital fabrication” for projects, “whose method 

of making ultimately informs the design aesthetic” (2009, 4). The techniques – 

sectioning, folding, contouring and so on – are intentionally both literal and abstract 

tasks linked with creative concepts and targeted at architects. Aranda Lasch provides 

a similarly provocative taxonomy of techniques for designers, framed through the lens 

of machine tooling (2006, p.5). A further list of techniques is put forward by Barkow 

Leibinger. These are more directly connected to industrial processes – bending, 

casting, punching, welding – and are illustrated through commercial projects, including 

Figure 2.06. Models showing design variations in the Embryological House Project by Greg Lynn, www.

cca.qc.ca/en/issues/4/origins-of-the-digital/5/embryological-house

buildings designed for the metalworking machine manufacturer Trumpf (2009, 3). These 

techniques and processes do not provide ready formulas for design but rather point to 

possibilities for processes of fabrication to precede form, thereby shaping the process 

of design and the thinking of the designer from concept stage. This close coupling of 

fabrication with design continues and is today exemplified by several notable research 

groups. Proponents have put forward terms to denote the integration across the 

divisions between material and digital, including the terms digital materiality (Gramazio 

Kohler, 2008) material computation (Menges, 2012) and digital craft (Oxman, 2007). 

The ambition of these designers and researchers is for a symbiotic relationship between 

making and design, an imaginary “unified design and fabrication process based on a 

series of conversations between men… and machines” (Picon, 2014, 59). This evokes 

older discussions in architecture around the relationships of man and machine explored 

by the likes of Gordon Pask (Haque, 2007, 54) and Nicholas Negroponte (1976).

In contemporary research, these ideas are predominantly explored through 

small projects in which physical prototypes are fabricated to test and prove design 

concepts. The Gramazio Kohler Chair of Digital Fabrication (DFAB) at the ETH, Zurich, 

has been a leader in this context. Using familiar and simple materials such as bricks and 

timber blanks, design is driven through assembly in novel arrangements and sequences. 

By developing rules to vary the angle and positioning of these parts when glued 

together, arrays of highly dynamic geometries are produced (examples: Flexbrick, The 

Sequential Wall). Alternatively, customised joint shapes can be cut into blanks to vary 

arrangement between components. (example: The Catenary Pavilion). In each case, 

the convergence of designer, machine and material provides new ground for design 

exploration.

At the Institute of Computational Design (ICD) in Stuttgart, emphasis is 

more explicitly placed on material. Again, research is primarily undertaken through 

a series of pavilions, each exploring a novel application of specific materials - timber 

and fibre composites (Fig. 2.07). Achim Menges describes the aspiration for “innate 

characteristics, behaviour and capacities of the material systems… to play a more 

active role in design computation” (2012, 36). Computation is framed here as a process 

This image has not been reproduced for 

copyright purposes.
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occurring outside a digital computer but solved through material. This draws on the 

concepts of form-finding set out by Frei Otto and others in Stuttgart, seeking to extend 

such an approach using contemporary digital computers.

The work of the DFAB group in Zurich and the ICD in Stuttgart are two 

pertinent examples of digital fabrication being employed to help drive architectural 

design and design discourse in new directions. As with the previous section, this 

is not a comprehensive survey. Rather I seek to highlight key ideas, demonstrating 

that through addressing fabrication, design can tackle interactions with material and 

machines. Most significantly, this reaches beyond the disciplinary boundaries of 

architecture, regularly engaging with structural design, acoustics, and material sciences.  

This begins to highlight an expanded domain and remit for architects. Furthermore, 

driving design through fabrication raises aspects of performance in architecture, a topic 

I discuss more extensively in section 2.2 around practices of prototyping.

Figure 2.07. ICD / ITKE Research Pavilion 2011, Stuttgart.

http://www.arch2o.com/wp-content/uploads/2012/04/223.jpg

2.1.4 	 Beyond Novelty

Figure 2.08. Fabrication Hall in the Institute for Technology in Architecture (ITA) building,  a 

key facility for the National Competency Center in Research – Digital Fabrication, ETH Zurich 

(www.dfab.ch/wp-content/uploads/2014/08/rfl.jpg)

Before moving on, however, I want to note that the dichotomy of serving and 

driving of design is not an easy distinction. There are, unsurprisingly, many crossovers 

of people and ideas. Bob Sheil describes “a creative dialogue” between design and 

making, with the potential to foster convergence (2012, 9). When looking across this  

community of designers interacting with digital fabrication, we can see many instances 

of design pushing the limits of fabrication, and fabrication providing fertile ground for 

design. In the project chapters here, I will highlight ways that fabrication both serves 

and drives design as two sides of such interdependent relationships.

Beyond close relationships, there is palpable anticipation that this is a major 

shift for architecture. Architects have long found connections between design and 

making, but this goes beyond previous examples of architects engaging with craft 

practice. Historian Mario Carpo claims a change in paradigm in practice, from an 

This image has not been reproduced for 
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allographic to an autographic way of building. Carpo frames allography as prevalent 

in contemporary architecture and extending back to the seminal renaissance figure of 

Leon Battista Alberti (Carpo, 2011, 20). Here, design is codified through a consistent 

set of tools to denote geometry and scale (2011, 19), distinct from building. Through 

digital tools across design and fabrication, Carpo sees the reemergence of autographic 

practices and a potential to break centuries-old norms.

There is also evidence that the interest in digital fabrication, which only fifteen 

years earlier pursued novelty (Callicot, 2001), has now shifted to ambitions for broader 

innovation in industry, most immediately in the building industry. Investment is being 

made to drive this. For example, the National Competency Center in Research – Digital 

Fabrication in Switzerland is one of the largest examples of resources invested to 

“develop ground-breaking technologies for tomorrow’s construction” (dfab.ch, Fig. 

2.08). Other networks are similarly trying to link academia and industry, including the 

Innochain Network (innochain.net) and the Digital Fabrication Network (dfab.net). Large 

contracting firms such as Laing O’Rourke are also investing. These initiatives bring 

together experts from across disciplines and drive customised production. This ambition 

for innovation evokes older ambitions for architects to directly drive product innovation 

in the construction industry.

 

2.2 	 Practices of Prototyping:					   

		  Shifting Ideas of Product and Performance

Amidst the current enthusiasm for digital fabrication, it is possible to overlook 

a long history of architects attempting to innovate on the building site. Architecture 

has long been a potent milieu in which to question industrial production. There are 

reciprocal influences between architects and the building industry which contribute to 

complex interactions of supply capability and market demand. 

A simple trajectory by Hu (Fig. 2.09) provides an overview of major 

manufacturing paradigms and concepts, charted through changes in the relationship 

of production volume and variety. Enabled by enlightenment principles of the division of 

labour and the development of mechanisation for key tasks, high-volume manufacturing 

began to flourish in early 19th century Britain. By 1890, leadership had shifted across the 

Atlantic as the ‘American System’ became dominant, employing improved management 

structures and production line techniques that enabled degrees of flexibility (Pine, 1999, 

11). The increased production volumes not only serviced but created new markets, 

through the reach of products to service rapidly urbanizing populations. More recently, 

high volume has come to be complemented by higher levels of variety. So-called 

mass-customisation and personalisation have become dominant themes with a drive for 

customised products.

Figure 2.09. Paradigms in Manufacturing, taken from Hu, 2013, p.4

This image has not been reproduced for 

copyright purposes.
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2.2.1 	 Prototyping for Industry

“Prefabrication architecture is a tale of necessity and desire” 

– Smith and Timberlake, 2011, 3

Ryan Smith and James Timberlake outline a history of industrialised building 

(2011) which gained significant scale with the industrial revolutions in Britain and the 

US. By the early 20th century, models of mass production were making significant 

inroads into housing markets. Prefabricated kit homes found good market volume in the 

United States and as enthusiasm grew, prefabricated housing became, “a core theme 

of modernist architectural discourse and experiment, born from the union of architecture 

and industry” (Begdoll, 2008, 12). This was an ambition driven by recognised pioneers 

such as Le Corbusier who rallied architects to “create the mass production spirit...

the spirit of conceiving mass-production houses” (1931,62). Underlying this was a 

modernist notion of prototype for products. This prototyping was necessarily outside of 

markets, preceding products they served. In the same period, at the newly established 

Bauhaus attention focused in mass production for household products. Architect 

and founder Walter Gropius promoted the Bauhaus studios as “laboratories in which 

prototypes of products suitable for mass production and typical of our time are carefully 

developed and constantly improved” (1975, 1). The designers being trained were to act 

as collaborators equally adept in form and technology.

However, at the scale of buildings, this modernist notion does not easily fit 

with a history of false-starts and failures (Knapp, 2013). Some failures have become 

relatively famous, for example Thomas Edison’s Single Pour House in which concrete 

was poured into a formwork for a literally monolithic house. Edison’s full-scale 

prototypes were compromised by material issues in both the moulds and concrete. 

More broadly, the proposal was undermined by a lack of demand for an entirely 

concrete house (www.flyingmoose.org/truthfic/edison.html). Alongside bold failures 

such as this are more nuanced examples, including many ideas that appeared destined 

for success. The Packaged House System (Fig 2.10), for example, teamed visionary 

architect (Walter Gropius) with master technician (Konrad Wachsmann) and industrial 

partner (the Industrial Panel Company) around a system of panels which could be 

Figure 2.10. Prototypes for mass-produced housing which found limited success. 

Thomas Edison’s Single Pour House (patent 1908); Sectional drawing for the 

Packaged House System by Walter Gropius and Konrad Wachsmann (1942); 

The Loblolly House by Kieran Timberlake Architects (2006).

This image has not been reproduced for 

copyright purposes.
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flat-packed for transport and assembled with a patented four-way connection system. 

Despite the quality and brand, commercial failure followed, put down to both bad 

timing and marketing, with refinements to the production system delaying launch, and 

government subsidies withdrawn in this period. (Smith and Timberlake, 45).

Today, the prefabrication industry is centred on Fordist mass-production 

(Smith and Timberlake, 18). The influence of architecture in shaping this industry 

have been significant though somewhat indirect. There are relatively few examples 

of architects creating successful product systems. However, alongside the seminal 

names already mentioned, the likes of Mies van der Rohe and Lloyd Wright had clear 

influence on driving modernist aesthetics. These were highly relevant to the means of 

industrial production in the mid-20th century. Further examples such as Buckminster 

Fuller’s Dymaxion House, Jean Prouve’s sheet-metal systems, and the Case Study 

houses commissioned in California from 1945-64, had influence on both systems of 

manufacture and on architecture (Smith and Timberlake, 26). These individuals, while 

recognised as innovators, did not achieve significant commercial success through 

products for housing.

Amidst this modernist period is another historic development of similar 

significance to contemporary practice, around numeric control (NC) technologies. 

Beginning from the middle of the 19th century, NC sought “to abstract properties into 

numbers in order to regularize, routinize and quantify that which is otherwise irregular, 

aleatory, and qualitative” (Moe, 2010, 154). US Military Ordinance took on these 

principles in the 1930s, and by the 1950s NC was being used not only to automate 

tasks but entire manufacturing processes, thereby driving both production efficiency 

and quality. Electronic control of machines was enabled through motors first developed 

by the Servomechanics Laboratory at MIT (Moe, 2010, 160) and were used by industry 

to exploit opportunities for market share (Callicot, 2001, 50).

The abstraction and standardisation that drove NC was manifest in modular, 

repetitive building systems. As the size of buildings demands the assembly of multiple 

components, repetitive and standardised modules of parts and assemblies became 

synonymous with prefabricated systems. Early examples developed around cores for 

building services and grew to the scale of whole houses and larger building types. 

The drivers of cost and risk were clear “building in modules considerably reduces 

the overhead and onsite labour and can dramatically reduce initial cost” (Smith and 

Timberlake, 2011, 16).

The issues of cost and risk remain dominant forces in today’s prefabrication 

industry. However, as design and construction are commonly separate tasks, the cost 

and risk-drivers of different parties also differ. There are nowadays pronounced gaps 

between the products of industrial prefabrication and that which architects design 

(Knapp, 2013). The latter is often highly bespoke and today architects play only minor 

roles in industrial prefabrication.  In some contexts, this gap is widening.

2.2.2 	 Prototyping for Design

“Prototyping is not simply understood as the development of ‘first forms’ or ‘first 

strikes’ as beta-versions of products as in industrial design, but as a more general 

mode of doing culture: a mode that is tentative, based on bricolage, user involvement 

and ongoing change and improvements of products and practices, as ‘open 

innovation’, rather than an expert in a closed lab who turns out a finished product to be 

used by an unknowing user.” 

	 – Michael Guggenheim, The Long History of Prototypes, 2010

Many contemporary architects are framing prototyping as an essential element 

of their design practice. This is a cultural phenomenon broader than architecture, as 

highlighted by Michael Guggenheim’s quote. This centres on a desire to overcome the 

divergence of design practice and industry, however, the ambition for this practice lies 

beyond simply driving new products. Contemporary prototyping aids the representation 

of complex formal and spatial ideas, which are themselves enabled and fetishized 

through digital technologies in forums such as Architectures Non-Standard. It is also 

a key aspect of framing performance within design discourse, connecting empirical 

testing of material artefacts with digital models and simulations. As architects address 

issues across a broad array of disciplines – aesthetic, structural, acoustic and beyond 

– so prototyping simultaneously tests and interrogates multiple issues and specific 
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contexts. This goes beyond conventions of representation which are familiar to 

architects, providing persistent sites to question design ideas and intent (Ayres, 2012). 

Furthermore, prototyping can enhance design exploration by creating unexpected 

outcomes and events from novel combinations of material and fabrication process 

(Burry and Burry, 2016). 

These issues underpin paradigms in which prototypes can act as progenitors 

for further design iterations (Burry and Burry, 2016) and as archetypes, established 

models for design driving subsequent decisions and further design exploration (Burry 

M., 2012, 73). The relationship between prototype and product is blurred as the 

outcomes of design process themselves act as tools for design. In this frame, the work 

of two historic figures, Antoni Gaudi and Frei Otto, are revered for their relevance 

to contemporary digital practice. Each created analogue computers to drive design 

through prototypes.

Realising that the ambitious plans for the Temple Sagrada Família in Barcelona 

could not be completed within his lifetime, Gaudi designed and prototyped systems 

to describe the organic geometries of the basilica. These centred on families of ruled 

surface geometries (Burry, 2007), with forms responding to issues including fabrication, 

acoustics and structure, several of which are further expanded in subsequent project 

chapters herein. The use of geometric rules rather than fixed forms is generative, and 

these have come to be regarded as key forerunners of contemporary parametric models 

(Burry, 2011).

Gaudi made further notable contributions through ‘hanging chain models’ to 

define funicular forms in response to structural loading of the cathedral (ref.). These 

used weights hung from networks of chains to simulate loading from gravity, albeit 

upside down. Through adjustments in loading, the form of the network of chains 

changes. More than 50 years after Gaud’s death, Frei Otto directed the recreation of 

these models at his Institute for Lightweight Structures in Stuttgart (Tomlow, 1989). 

Otto extended the principles of these models to forge a broader field of ‘form-finding’, in 

which form is calculated through material models responding to loads, to the design of 

Figure 2.11. Models for form-finding (from top) Hanging Chain model of Antoni Gaudi; 

Design model for the roof structure of the Munich Olympic Stadium by Frei Otto, a 

contemporary digital model and representation in McNeel Rhinoceros.

This image has not been reproduced for 
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numerous lightweight structures and develop formal languages which derive shape from 

material performance. These are sophisticated parametric schema, computing results of 

interdependent constraints to design form (Killian, 2006, 8).

Alongside a blurring of tool and product is also a blurring of tool users and 

makers. Where commentators on digital practice once sought to distinguish between 

the two (Davis, D., 2013, 26), more recently this distinction has been questioned as 

architects embrace a range of platforms to write software code themselves. Architects 

are using scripting languages to create bespoke digital tools for productivity, problem 

solving and design exploration (Burry, 2011, 38). In the latter context, scripting 

languages provided an important outlet for designers of many disciplines to not only 

define forms but to generate them (Reas & McWilliams, 2010, 17). The hanging 

chain models of Gaudi and Otto have become a key example of such transition to 

code libraries. These analogue prototypes have been digitised, firstly by academics 

in structural design (Williams, 2001) and subsequently for design exploration with 

architects (Killian and Ochsendorf, 2006).

In rapid fashion, this digital tools being created by design communities have 

evolved from a fragmented array of individuals into well connected communities 

sharing tools made for key platforms. This is exemplified by the open-source 

community around McNeel Grasshopper, a visual programming platform with a rich 

ecosystem of components which can be combined graphically, with “no knowledge 

of programming or scripting” (Rutten, http://www.grasshopper3d.com/). The hanging 

chain model is again a poignant example, with the physics simulation plugin, Kangaroo, 

providing simulations of these and other phenomena, with stable and fast code (www.

kangraoo3D.com). This plugin is being regularly developed by Daniel Piker and applied 

to a plethora of projects by a global community of designers.

This lineage from Gaudi to Otto to contemporary practice highlights ways in 

which computation can cross digital and analogue media. Today’s designers now have 

access to a toolset which is sophisticated but constantly evolving, suitable for modelling 

complex systems from material deformation to simulations of natural phenomena. 

Further, this exemplifies a practice of prototyping which provide continuous drivers 

for design. While the community is a small cross-section of broader practitioners and 

academics, it is having increasing influence not only among architects but also in other 

disciplines such as structural engineering (Adriaenssens et. al., 2014, XII). 

2.2.3 	 Both Volume and Variation

“Customers are treated individually as in the customized markets of preindustrial economies” 

– Stan Davis, Future Perfect, 1987, p.XX

While digital fabrication is driving change within architecture, outside the 

discipline digital technologies are contributing to major shifts across industry. A 

new paradigm is emerging, with digitised assets and processes underpinning so-

called Industry 4.0 (PwC, 2016). Demand is becoming increasingly diversified, and 

distinctions between products and services increasingly blurred in supply, in particular 

within innovation-centred industries (McKinsey, 7). Here I touch upon just a few key 

concepts of this paradigm, focussing on customisation and relationships to currents 

practice of architecture.

The more recent shift towards customisation has been propelled by means 

to better tailor products to the needs and desires of customers. The term mass-

customisation (MC) was first coined by Stan Davis in Future Perfect (1987) and gained 

more significant attention through business literature such as B. Joseph Pine’s book 

Mass-Customization: A New Frontier in Business Competition (1993). Nowadays it is a 

broad field, recognised as an important concept across contemporary business sectors 

(Da Silvera et.al, 2001; Fogliatto et.al., 2012). It is commonly understood in distinction 

with the standardised and repetitive output of 20th century mass-production. 

MC is nowadays applied to varying degrees across most industries. Academic 

literature is dominated by research into strategies for technology and management 

structures to meet this (Piroozfar and Piller, 2011, 54). Much of this highlights the 

importance of digital technologies as enablers, “the technology and systems to deliver 

goods and services that meet individual customers’ needs with near mass production 

efficiency” (Jiao and Tseng, 2000, 225). At its core, customisation is enabled by 
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standardisation and numeric control, the same technologies which were instrumental 

to mass production as discussed in section 2.2.1. Here, however, MC is utilised by 

production systems which manage and exploit detailed and vast information flows 

describing variation within these systems.

The design and development of mass-customised products nowadays leans 

heavily on modular systems spanning design and production. These systems involve 

a continuous balancing between the internal simplicity of a production chain and the 

external variety of product offerings (Jiao and Tseng, 2000, 226). Concepts such as 

‘product families’ and ‘product platforms’ are nowadays well established (Simpson 

et.al., 2006, 3), and both top-down and bottom-up strategies are apparent in their 

design (Shapiro, 1998, 1). The former centres on the grouping of pre-existing parts and 

processes, based on shared aspects of production (Anzanello in Fogliato & da Silveira 

[eds.], 2011, 291) and levels of commonality between products (Jiao, J. and Tseng, M., 

2000, 228). The latter centres on the structuring and design of systems for new product 

systems. The core of a product family provides a structure around which variation can 

be incorporated. By making product systems modular, elements from a product feature 

to a specific supplier can be varied or exchanged. 

Architects first engaged with the terms and concepts around MC in the 

1990s and the term is nowadays often used by those advocating for design prototypes 

in which numerous, unique components are fabricated (Maxwell et.al, 2013, 312). 

While this understanding overlooks many cost aspects in a commercial manufacturing 

chain, the implications of broader productions systems are highlighted in the first book 

dedicated to MC in the architecture and construction industries (Piroozfar and Piller, 

2013). Many concepts associated with MC are familiar to architects. For example, ‘just-

in-time’ production describes the production of parts in response to a specific order, an 

increasingly common feature in the construction of complex buildings (Scheurer, 2008, 

63). Strategies to customise products late in production, so-called ‘form postponement’ 

and ‘time postponement strategies’ (Wong and Naim in Fogliato & da Silveira [eds.], 

2011, 305) are also well understood though not explicitly recognised. Architects 

commonly engage with form postponement when specifying products such as 

windows, which are most often different shapes and sizes, fabricated from a common 

set of extrusions (Willis and Woodward, 2010, 197). Designing within the constraints of 

such product systems is now common though architects rarely have insight into details 

of the manufacture process.

2.2.4 	 Beyond Technology

While many architects are exploiting the flexibility increasingly afforded through 

customisation in industry, some see it as imperative that the design and production 

are even more closely linked. Frank Piller and Poorang Piroozfar identify a series of 

increasing and competing pressures on construction, with improved performance and 

functionality encountering increased demands on cost (2013, i). They frame emerging 

paradigms of mass customisation and personalisation as indispensable. Others look 

further to advocate for bringing together the two practices of prototyping in industry 

product and in design practice (Burry M. and Burry J., 2017, 8). To date, the impact on 

industry of experimental, design-led prototyping is tentative, with enthusiastic rhetoric 

tempered by warnings that these tools and techniques have not been tested at large 

scales (Verebes, 2014, 128). Long-term advocates are questioning the promise of 

design and digital fabrication to drive revolutionary change (Corser, 2010, 11).

Meanwhile, building product systems are designed and prototyped in an 

industrial context dominated by cost and building codes. This is the domain of industrial 

designers, a practice which is normalised but stands in contrast to the modernist 

ambitions of the likes of Le Corbusier, and the aspirations of today’s design community 

which has engaged fabrication and recently shifted its focus to innovation in industry. 

Navigating this gulf between experimental practice and industry requires significantly 

greater connection across the parallel practices of prototyping discussed here.

To date, the common ground between these practices of prototyping in 

industrial products and for design practice has centred on technology. However, 

the perceived value of these technologies differs significantly. Industry sees value in 

efficient and flexible supply, with products that can be tailored to customer needs. For 
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designers on the other hand, digital technologies offer means to rapidly materialise 

ideas in a continuous process of development and with relatively low demands on skill. 

A number of commentators urge design practitioners to look beyond these simple 

opportunities. Kiel Moe asserts that “in architecture, digital fabrication technologies 

will not change building production without fundamental shifts in the social and market 

structures of design practice” (2010, 164). He points to broader histories of technology, 

citing historian David Noble who highlights the shortcomings of a ‘machine mentality’ 

which frames technology as capable of answering major problems (Moe, 2010, 162). 

In Building Systems (2012), Moe and Ryan Smith cite Lewis Mumford’s concept of 

‘technics’ to outline the historic primacy of cultural over technical concerns. Antoine 

Picon (2005) supports this hierarchy, describing that the history of construction is 

largely removed from the history of technology, with construction innovation influenced 

as much by cultural questions.

Looking beyond technology to unpick the organisation and practice of design 

holds many challenges. As described above, contemporary practices of prototyping 

for design can blur relationships of tool and product, and of tool-makers and users. 

Furthermore, in section 2.1, I highlighted the increased breadth of engagement enabled 

by digital technology, crossing established disciplinary boundaries of engineering, 

business, materials science and more. Transdisciplinary design is not easily embraced 

by architecture communities who fetishize individual designers. Furthermore, designers 

tend to resist formulas which might streamline process but constrain design. Indeed, 

Willis and Woodward (2010, 201) argue that difficulty is itself a source of design value, 

and that making design easier or more streamlined is not desirable.

Though broad answers are beyond a PhD such as this, the unfulfilled promise 

of an integrated practice across design and fabrication is a primary motivation for this 

research. To this end, I now shift from framing a broad contemporary context to address 

process across these fields. The broad notion of process is grounded in the workflows 

composed of tangible functions and information flows across fields of knowledge.

2.3 	 Designing Workflows

Process is a broad topic with different emphases and patterns in different 

contexts. In manufacturing, for example, production process is centred on supply chains 

and largely disconnected from design. Linear flows of materials and information (Fig. 

2.11) are common tropes, though the realities of contemporary industry nowadays 

commonly defies this through more complex information flow.  

In contrast to this linearity, discussion of process in architectural discourse 

includes many aspects of design. This captures a diverse range of activities, including 

many idiosyncratic traits of individual architects. As I have discussed previously, 

computation can complement design intuition, though details of these digital design 

processes are rarely quantified. I have also described that architects are addressing an 

expanded domain across design and prototyping. Workflows are increasingly important 

for these shifts in practice, providing tangible and reusable structures which underpin 

information flows and design exploration. Here I discuss some features of these 

workflows for architects and  relate key concepts around modularity which are broadly 

recognised and used in other fields.

2.3.1 	 Emerging Workflows and Platforms

“New digital capacities are restructuring the organization and hierarchy of design from 

autonomous processes to collective workflows.”

– Scott Marble, Digital Workflows in Architecture, 2013, p. 7

It is an old adage that an architect needs “not to know everything, but to know 

enough” (Davis and Peters, 2013, 131). In the context of a breadth of contemporary 

digital technologies this is not only apparent but recast, requiring architects to have 

more than just disciplinary knowledge about design and construction, and more than 

mere management skills. With the increased scope and remit of design comes an 

increased imperative for design collaboration and multiple layers of design. Independent 

of a specific project, a designer might create a tool, be it a script or plugin, which is 

then applied and adapted by others (Carpo, 2011, 126).
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To this end, contemporary design communities are congregating around key 

digital platforms. These include proprietary software packages, but are exemplified 

by more open platforms such as McNeel Grasshopper, a visual programming 

environment providing access to the NURBS geometry and functionality of its host 

program Rhinoceros. Through making itself extensible, Grasshopper has fostered a 

critical community across disciplines including architecture, structural engineering, 

environmental modeling and jewelery design. This community has created a vast 

ecosystem of plugins, developed and extended by individual contributors who share and 

support each other’s work.

Davis and Peters borrow terms from the open source software movement to 

describe such open platforms as a ‘bazaar’ in which the “collective action of individuals 

contributes to the larger community” (2013, 126). This is placed in opposition to 

monolithic ‘cathedrals’, software programs which are developed internally by a large 

vendor. Such established software programs are being usurped by these platforms for 

sharing, and the design communities who create and share tools on them. Their maturity  

is highlighted  by the use of such tools on commercial projects.

These platforms and communities highlight that designers co-author 

not only design outcomes but also systems and workflows for design. Smith and 

Timberlake borrow terms from computer science to describe that designers need both 

‘architectural knowledge’, related to the overall structure and relationships of a system, 

and ‘component knowledge’ of specific elements of a system (2011, 337). 

Addressing patterns of design, Axel Killian (2006) highlights that design 

exploration involves types of exploration which contrast linear flows elsewhere. Through 

research spanning multiple models and media he identifies circular, branching and 

parallel information flows. These patterns are in turn essential to establishing, refining 

and exercising constraints which drive relationships and underpin constraints within 

systems (2006, 3). That there are multiple and non-linear patterns will not surprise many 

designers, though such quantified representations of workflow are rare.

Scott Marble (2013) provides a more in-depth study of workflows. This aims 

to take discussions of process from a relative autonomous actions of individuals to the 

workflows which operate across them (p.8). The book addresses workflows across 

three themes within the AEC industry. Most immediately relevant to an architecture 

audience is the designing of design, a task which must negotiate the technical and 

cultural imperatives of design (Marble, 2013, 8). Beyond this, Marble addresses the 

design of assembly to interrogate workflows in an emerging construction paradigm of 

prefabricated elements which are assembled on site. Finally, Marble addresses the 

design of industry, framing both the influence and dependence of workflow upon the 

ways the AEC industry organises itself.

Marble’s book is a relatively rare attempt to capture and quantify workflows. 

It brings together contributions from both practitioners and academics including many 

already discussed here including Barkow and Leibinger, and fabrication consultants 

such as Fabian Scheurer from designtoproduction. From this broad set of contributors 

come a varied array of diagrams as these contributors attempt to communicate the 

relationships of the many tools and techniques they have used across a diverse set of 

projects.

Workflows are at the centre of this research and the perspectives brought 

together by Marble provide an important base. In this research, I add to this base by 

addressing a lack of understanding of the ways we creating and reuse a diversity of 

tools and techniques. In doing this I frame a modularity of process in these workflows, 

considering their breakdown of parts and relationships at multiple scales. I illustrate this 

through a consistent approach to diagramming across a series of projects. Though not 

directly discussed, modularity is implicit in many of the contributions in Marble’s book, 

apparent through the attempts to denote parts of the workflows, through boxes and 

circles in diagrams. As I highlight in the following section, modularity is critical in many 

contexts and has been discussed to varying degrees elsewhere.
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2.3.3 The Power of Modularity

“1. Rule of Modularity: Write simple parts connected by clean interfaces.” 

– Basics of the Unix Philosophy

Architects have long been urged to look to other disciplines to shape design. 

The automotive and aerospace industries have been highlighted as having similar size 

and complexity of product (Kieran and Timberlake, 2003, xi), and software engineering 

is more recently being framed as providing models for design (Davis, D., 2013, 5). As 

we turn attention to the workflows and process in achitecture, we can also draw from 

process in these industries.

 Standard and repetitive material components remain at the core of most 

products, from consumer electronics to household goods. In contemporary industry, 

however, modularity is discussed beyond products to the processes of design and 

delivery which underpin them. The popularising voice of Mass Customisation, B. 

Joseph Pine II, asserts, “you must modularize your capabilities. Take your offering… and 

break it apart into modular elements.” (2011, 2). I have already touched on increasing 

customisation in products, and modularity is a central strategy for this, through top-

down design of systems and bottom-up interrelating of existing parts and processes 

(Simpson et. al, 2006, 6). Modularity allows externally developed technologies to be 

implemented and for product families to develop specific aspects from one generation 

to the next without starting from scratch (Meyer and Utterback, 1992, 1).

The significance of modularity has been articulated through key texts over 

the past two decades. Perhaps the most widely acknowledged is the work of Carliss 

Baldwin and Kim Clark. They penned Design Rules: The Power of Modularity (2006)

to frame the development of the computer industry from the middle of the 20th century. 

They describe a modularity which is interconnected and nested. This modularity 

crosses scales (2006, 123) and operates across critical aspects of production, from 

the engineering design, to the people who implement and maintain the design and  the 

economic system around it. More broadly addressing engineering systems, they frame 

three key benefits of modularity: “to make complexity manageable; to enable parallel 

work; and to accommodate future uncertainty” (2004, 1).

Alongside such a perspective addressing broad scales of industry, are 

firsthand reflections from the software development community. Despite the promise 

of computation, in the 1970s a major crisis occurred in the software industry as the 

complexity of large development teams limited the software that could be realised 

(Davis, 2012, 51). Overcoming this required a reorganisation of the industry. The adage 

of modules which do “one thing and do it well” is framed as primary building block in 

the Basics of the Unix Philosophy, which was distributed to the open source community 

of developers to help reduce debugging time and simultaneously unlocking potentials 

for parallel work. Importantly, this philosophy is “pragmatic and grounded in experience” 

rather than the result of misplaced idealism (http://homepage.cs.uri.edu/~thenry/

resources/unix_art/ch01s06.html). 

Furthermore, modularity is an important consideration in modeling complex 

systems, from economies to climates. These require the interaction of experts from 

many independent fields of knowledge. The establishment of modular systems with 

consistent interfaces between them is an important to success. Bursting simplistic 

ideals of clean models, Eric Winsberg and Johannes Lenhard (2010, 261) highlight 

a “fuzzy modularity” in such systems, referring to climate models as a key example. 

Despite attempts to structure these models with clean structures and interfaces, there is 

inevitably a degree of “kludging” required to calibrate parts of the system and achieve a 

meaningful veracity in results. This fuzziness points to variability in degree of modularity, 

as system parts differ in their levels of internal cohesion and external clarity. The study 

of the degree of modularity has grown over the past decade, including to address 

engineering systems (Hölttä-Otto and de Weck, 2007).

While many parallels have been drawn between process in architecture and 

in other fields, it is somewhat surprising that modularity of process has received little 

explicit discussion among  architects. The practice I address here entails the design of 

systems to explore and prototype architecture. These systems connect digital models 

and material systems as architects confront an increased scope and remit in design. 

This research interrogates the modularity of these systems for design, addressing both 

the scale and degree of it.
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3. Research Strategy

3.1 	 Overview of Project Work

In the previous chapter I have framed a contemporary context of architects 

using digital fabrication. This includes those using digital fabrication to both serve and 

drive design, the latter exploring interdependencies of form, material, fabrication and 

performance. I have also discussed practices of prototyping as they relate to both 

volume production and bespoke outcomes centred on design. Finally, I have discussed 

workflows in architecture and introduced the concept of modularity as it relates to other 

fields. Each of the elements here are central to this dissertation.

I now turn to the project work of this research. This is undertaken as a strategy 

of reflection-in-action, involving iterative design, fabrication and reflections upon 

outcomes. This strategy is championed by authors such as Schon (2004) and seeks 

to rigorously extend current design knowledge through both critically engaging the 

state-of-the-art and creatively challenging and extending it by exploring new territory to 

reframe the contexts and grounds for argument. This is especially relevant to research 

such as this which engages technologies that are relatively new to architecture.

A number of prototype works of architecture have been created through 

these projects. These are first and foremost design prototypes, created through design 

exploration for testing ideas, gaining insight into the progress of experiments and for 

refining and recalibrating further experiments (Burry and Burry, 2016). These prototypes 

also hold simple aspirations of driving products, pointing to potentials for combining 

such design practices with industry.

The focus of this research is on the processes spanning design, fabrication 

and assembly of these prototypes. This covers a diverse array of tools and techniques, 

exemplified by the combination of acoustic simulations alongside the setting of bandsaw 

blades, and studies of geometric intersections of hyperboloids alongside scripts to 

automate the generation of CNC machine files. These combinations enable exploration 

of specific hypotheses and are necessary to specific outcomes. They go beyond ad-hoc 

experiments to be refined and resolved through iterative testing into robust workflows.
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3.1.1 	 Design Systems and Trajectories

The project material of this research is organised into four parts. The first three 

of these each address a project to create a full-scale piece of architecture. Each of 

these built works is considered a prototype and the workflow designed and created for 

it termed a design system. The fourth part addresses design trajectories, following the 

development of specific tools and techniques through further project-based research. 

These trajectories address finer levels of detail than the broad design systems.

Through the project work of this research I have inevitably engaged with a 

vast array of various types of system. I use the term Design System to describe project 

specific workflows. They run across many other systems from a diverse field. Kiel Moe 

and Ryan Smith (2012) highlight the multiple systems, ranging from the tangible building 

systems employed for elements such as facades, to the more abstract and immaterial 

systems of society and culture with which design engages. Alongside this are the 

so-called material systems being created and interrogated through contemporary 

practitioners such as Achim Menges (www.achimmenges.net/?page_id=18298).

These design systems do not draw distinction between processes engaging 

digital and material media and tools. They regularly connect information related to 

digital models with data from digital simulations and physical tests, to information for 

fabrication and assembly. In a broad context, this agnosticism towards medium leans on 

Neil Gershenfeld’s explication of the physical laws which underpin electronic information 

technologies, with bits manifest as atoms (2006).

3.1.2 	 Research Hypotheses, Drivers and Technologies

In the background chapters, I elucidated two parallel conditions in 

contemporary architectural discourse, those of design serving and driving design, and 

practices of prototyping addressing production and design. These are regularly returned 

to as themes throughout the project chapters. Within these, a number of further 

designerly ambitions are apparent. They include differentiation at multiple scales, the 

exploration of relationships between interdependent design drivers, and collaboration 

across disciplines. These are deeply ingrained through all of the project work herein.

To interrogate these themes and ambitions, I set up the major prototypes 

here to simultaneously address three forms of research driver (Table 3.01). In the first 

place, the research for each is underpinned by a hypothesis around interdependent  

relationship of geometry, material, fabrication and performance. These draw on 

theory from both within and outside architectural discourse, relating architecture with 

acoustics, structural design, robotics  and materials science. Through these hyptheses, 

we can creatively question attitudes to the ways we design and measure performance in 

architecture.

The system which is created for each prototype is also framed by a primary 

affordance. This frames the ways in which each system provides flexibility and constraint 

in the design of part and whole. Finally, the production of each prototypes involves a 

specific digital fabrication technology. The ability to design across these technologies 

helps highlight challenges and opportunities of designing for specific machines at the 

delivery end of projects.

Project Hypothesis on form, 

performance & material

Primary Affordance Fabrication 

Technology

FabPod That hyperboloid geometries 

are excellent for generat-ing 

acoustically diffuse spaces.

A system of 

customisation in both 

part and whole.

5-axis CNC 

router.

Sound Bites That an optimal structure is 

provided by a specific shell 

form responding to load cases.

A system of shared 

design models.

3-axis CNC 

router.

Music Room That robotic fabrication 

can enable the fabrication 

of customised and novel 

components.

A system which is 

driven by a novel and 

robust fabrication 

technique.

6-axis robot 

on a linear 

track.

Table 3.01 Key propositions used to form research hypotheses for investigation.
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Three primary design trajectories emerge from these primary prototypes. 

These are tools and techniques which are adapted and developed for further project 

work. They further highlight the breadth of activity which a body of project work like this 

can cover, and the many possibilities which are created through it.

3.1.3 	 Interfacing Diverse Parts

The prototypes in this research are of a select scale, large enough to produce 

habitable spaces (up to a floor area of 100 sq.m.) yet sufficiently small for a researcher 

like myself to have detailed input across them. However, the research demanded I 

engage design beyond the disciplinary bounds of architecture. It further demanded that 

I engage with quantitative performance to an extent well beyond the heuristic design 

knowledge of an architect.

To meet these demands I assembled and worked with teams of individuals with 

expertise across many fields. I was a leader and key decision maker in each, instigating 

specific conversations to build relationships, explore design opportunities and realise 

prototypes. The members of each team are named in each of the project chapters, and 

I further discuss key collaborations with individuals. The nature of these collaborations 

varies greatly, from longer term relationships developed over multiple projects to brief 

interactions, often at a distance.

Alongside the need to interface with many people is a need to link information 

related to a diverse array of machines and material parts. I address a diverse set of 

tools and techniques throughout the project material and I frame the interfaces between 

these as information between process steps. These interfaces are composed of specific 

information, the output of one process becoming an input to subsequent processes. 

Designing and implementing these interfaces is a key aspect of the ‘plugin practice’ 

being addressed here.

3.2 	 Framing a Modularity of Process 

I have already touched upon some basics of how process is understood in 

various fields, including contrasts between fields like manufacturing and design. Rather 

than appropriate the structures of any of these fields, in this research I develop an 

approach which draws on several key precedents. To communicate this approach, I 

create diagrams to describe multiple scales degrees of modularity in workflow.

3.2.1 	 Degrees of Modularity

It is overly simplistic to consider modularity as a discrete and binary condition. 

As I have already highlighted, examples such as complex digital simulations of climate 

models require a fuzzy modularity to relate and calibrate parts of a system (Lenhard and 

Winsberg, 2010, 261). In their seminal text Design Rules, Baldwin and Clark admit that 

“clearly there are degrees of connection, there are graduations of modularity” (2000, 

63). In software and engineering systems, there are numerous metrics to measure 

the degrees of internal coupling and the interrelationships between modules within a 

system.  Baldwin and Clark admit, however, that in many systems simple metrics for 

modularity break down.

In the design workflows presented here, modularity varies in degree. 

Quantifying these variations with strict or objective metrics is difficult given the diverse 

processes related through a complex array of factors. For example, while relationships 

in parametric schema can be readily quantified, translating this digital information to a 

fabrication process such as routing involves a range of parameters such as tool speed 

and material finish. These are themselves difficult to measure and are dependent on 

further details such as local imperfections in the material. It would be near impossible 

and somewhat irrelevant to drill down through every arrangement within the systems 

here. As a result, the degree of modularity is more simply measured and represented 

here on a linear scale. This measure ranges from a low degree with little cohesion and 

reliability, to highly robust elements which provide consistent results. This allows us to 

understand aspects relative to one another.



50 51

3.2.2 	 Levels of Detail

Alongside considerations of the degree of modularity are multiple levels of 

detail within workflows. These can be more easily distinguished and I draw on the PhD 

research of John Everett (1991). Everett’s research addresses potentials for robotic 

automation of construction processes and he identifies levels ranging from the broad 

organisation of the construction industry to orthopedic of individual actions, outlining 

types process and significant information at each level. As with my research, these 

levels span digital and material domains, as Everett addresses digital machinery and 

the automation of material processes, such as excavation. As such I appropriate these 

levels as a starting point for describing levels of detail in this research.

Of particular relevance are five levels of details within Everett’s taxonomy, 

running from the level of a Project to that of Elemental Motion. In appropriating these 

levels I have adapted names to suit specific concepts being addressed by this research. 

The new terms are compared to Everett’s taxonomy in Figure 3.01. Further to this, I 

briefly characterise and frame each of the five levels of detail below, listing a series of 

examples relevant to each. These are provided to assist in understanding each level and 

its relationship to digital tools and material.

Design System

A system created and used in pursuing a a single generation of an architectural 

prototype. This is equivalent to Project in Everett’s taxonomy, here renamed to highlight 

that all entities are specifically related and could be reused for further prototypes.

Examples: Entire workflows for the FabPod, Sound Bites and Music Room prototypes.

Division

Major areas of work within a Design System, commonly divided by conventional 

discipline and related to the expertise and leadership of key people.

Examples: Architectural Design, Structural Design, Acoustic design, Fabrication Design, 

Form Finding.

Elemental
Function

Activity

Basic Task

Elemental 
Motion

Orthopedics

Cell

Basic Task

Activity

Division

ProjectDesign System

Sector

Industry

Division

Levels of detail in the 
construction Industry

Everett, J., 1991

Levels of detail 
addressed in this 

research

Figure 3.01. The scales of detail for design systems compared to Everett’s 

levels of detail in construction.



52 53

Activity

Primary and broad processes which require significant effort and expertise.

Examples: Calculating reverberation time, simulating structural deflections, setting a 

bandsaw blade, defining a robot toolpath, vacuum forming plastic, flank cutting in a 

sheet material, glue-laminating timber, routing holes at  specific coordinates.

Basic Task

Elements of work requiring multiple inputs but in themselves relatively straightforward. 

These combine multiple Elemental Functions for more significant outcomes.

Examples: Calculating a geodesic curve, discretising a NURBS curve, moving an object 

through space along a given trajectory, planing a piece of timber, applying glue to a 

surface, picking up a Blank from Cradle.

Elemental Function

Basic motions and processes requiring simple and few inputs. The can be readily 

achieved without significant skill, preparation or research. While they can theoretically 

be further broken down, they stand along and produce consistent results.

Examples: offsetting a curve, lofting a surface, intersecting NURBS surfaces, setting the 

feedrate for a router, setting spindle speed for a router, drilling a hole, opening a glue 

bottle, actuating a pneumatic clamp.

At the finest end of this scale,  the Elemental Functions, we have a series 

of robust and reliable processes underpinning higher levels of detail. In his structure, 

Everett cites studies relating human motion to time units (p.71) thereby providing a 

reliable basis which can be applied and undertaken in specific time periods. Here, 

I draw explicit parallels between such elemental motions and functional blocks of 

executable computer code. Functions in libraries of computer code can be similarly 

applied and executed in discrete time periods. These tweo types of process underpin 

Elemental Functions and provide a base from which to build more complex processes.

The most coarse level of detail, the Design System, is easily identified around 

a specific piece of project work. Those addressed here are intentionally open with little 

internal connection. This allows for the design teams to respond to unforeseen issues, 

including pragmatic requirements of specific sites. As such, these systems contrast 

other systems which are highly resolved to ensure reliable and predictable outcomes.

3.2.3 	 Conventions of Diagrams

Throughout the project chapters that follow, a series of diagrams are used 

to describe the modularity of workflows. As with many fields, documenting these 

design systems in diagrams is largely a retrospective task. As Axel Killian notes, such 

diagrams, “require time to be created as well as insight into the process that may only 

develop during the exploration. Unfortunately, the diagramming process is unlikely to 

keep up with the associative brainstorming of designers” (2006, p.314). This does not 

diminish the significance of modularity but rather highlights that it is practised before it is 

recognised through reflection. It further highlights the interaction of both top-down and 

bottom-up forces in the genesis of the research.

Figure 3.02. Typical workflow module with inputs and outputs and typical left to right flow. The 

darkness of the indicates degree of modularity, black showing high degree.

Functional
Module

inputs

output (upstream)

outputs
(downstream)
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Figure 3.03. Typical arrangements across scales, showing a Basic Task composed of multiple 

Elemental Functions. The broader scale has a lower degree of modularity than the finer.

Basic Task

Elemental 
Function

Elemental 
Function

Elemental 
Function

Elemental 
Function

Elemental 
Function

To create a system of notation which is consistently applied across the project 	

material, the diagrams here follow a series of conventions:

•	 Workflow elements are represented through squares (Fig. 3.02). These have a 

size to indicate their level of detail, such as Function, Task, Activity and so on 

as listed above. 

•	 Each element is coloured with a shade of black to represent its degree of 

modularity, black being a complete module and light grey with little modularity. 

•	 As the workflows operate across multiple levels of detail, workflow modules 

are nested in larger modules (Fig 3.03). 

•	 To represent information flow, elements are linked by lines to describe 

specific relationships within the systems. Solid lines indicate information flow 

downstream and dashed lines show upstream information flow for feedback. 

These lines show linear chains of workflow and others that branch and 

converge through parallel blocks of process.

	 A final consideration in the diagrams here is to indicate the ways we reuse 

and re-purpose process. Throughout this research, we have used tools and techniques 

which were created outside this work. A reuse occurs in all black-boxed elements and 

from a level of Functions to more complex Tasks and Activites which are blackboxed. 

I have not indicated any particular feature of these as they are generic to all the 

workflows here. Some of these, however, have used tools created by others. Where 

this has occurred, I have indicated this through the use of a cyan coloured border (Fig. 

3.04, left). Within any module with such a border, all process scales use that tool.

	 I further re-purpose processes created within earlier project work within this 

research. Where this has occurred, I have indicated so using a red coloured border and 

red shading to indicate the degree of modularity in that process (Fig. 3.04, right). This is 

particularly apparent in the FabPod project in Chapter 7.

Figure 3.04. Process which has reused the specific functionality of a tool created by other (left) and 

process which is re-purposed from an earlier state within this research.
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4.1	 FabPod Background

4.1.1 	 Research Premise: Acoustic Performance of Hyperboloids

“We do not know if Gaudi had completed any in depth study of the acoustics of this church, 

but he was well aware that its structure, full of columns, pierced arches, broken volumes, and 

corners, was an effective way to avoid resonance. Furthermore, the hyperbolic paraboloid 

vaults disperse sound instead of concentrating it. We also believe, on the basis of our own 

experience, that such an internal structure avoids, to a great extent, the echoing that could be 

produced in the absence of extensive enough absorbent surfaces.”

			   - Puig I Boada quoted in Mark Burry, 2013, 118

The FabPod extends a line of research addressing the performance of 

hyperboloid geometries in scattering sound, and being employed to create acoustically 

diffuse spaces. This hypothesis draws on evidence from Antoni Gaudí’s Sagrada  

Basilica (Fig. 4.01), the completed interior of which is lined with these forms. While 

there is no direct evidence that Gaudi understood details of specific acoustic properties 

of such forms, Puig I Boada, who studied under Gaudi and went on to direct the 

basilica project, attests to Gaud’s awareness of how these forms might sound (Burry, 

M., 2013, 118).

The interior of the Sagrada Família is lined with several families of ruled 

geometries, including circular hyperboloids in prominent locations. These forms 

can be described as a hyperbola curve rotated around a single axis (Fig. 4.02). In a 

workshop titled Responsive Acoustic Surfaces (RAS) run at the SmartGeometry event 

in Copenhagen in 2011, a research team set out to explore the acoustic performance 

of circular hyperboloids. The FabPod which I discuss here extends directly from this 

research using circular hyperboloids.

The RAS research team used two, parallel prototyping approaches in their 

workshop. Firstly, they created patterns by distributing in a series of arrangements in 

digital models and then printing these in plaster at scale 1:10. Using a reverberation 

chamber, they then measured the scattering coefficients of these forms (Peters, 

2010). Alongside these tests at scale, the team built two cylindrical walls in order to 
Fig. 4.02. Intersections of circular hyperboloid surfaces.

Fig. 4.01. Circular hyperboloid forms along the ceiling of the Temple Sagrada Família, Barcelona.

This image has not been reproduced for 

copyright purposes.
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demonstrate the acoustic difference first-hand (Fig. 4.03). One of these walls was 

clad in plasterboard, the other with plaster components in hyperboloid forms. These 

hyperboloid forms were mounted on timber frames for stacking. When built, the team 

could readily hear the differing acoustics of each wall, with the plasterboard surface 

reflecting one’s voice in specific locations, echoes which were not apparent in the wall 

of stacked hyperboloids (Burry, J. et. al., 2011).

The experiments from the RAS cluster provided a basis for testing and 

demonstrating sound diffusion with hyperboloid forms. Drawing on these scaled tests, 

Brady Peters (2010) demonstrated that sound scattering can be controlled using the 

geometric properties of the surface, in particular the width and depth of features. For 

the FabPod, we assembled a team including several original collaborators from RAS 

and  set out to explore forms with aperiodic arrangements of circular hyperboloids.

4.1.2	 Functional Brief: A Semi-Private Space for Communication

Open-plan office spaces have been promoted as good for team environments, 

providing spatial and visual connection between individuals and informal interaction, 

chance encounters between individuals. Not surprisingly, however, there are drawbacks 

to these open environments including a lack of acoustic privacy and spaces for small 

groups to meet (Machner, 2011). The FabPod commission addresses such situations, 

providing enclosures which are not closed rooms but which provide excellent internal 

acoustics and good separation from their surrounds. It simply called for a space that 

could comfortably seat up to eight people. Complete acoustic privacy was not required 

but rather the enclosure was to provide a good barrier to sound transmission, combined 

with an internal acoustic that was conducive to small meetings.

Presenting an immediate opportunity for an installation, the Design Hub 

building at RMIT University was nearing completion without an agreed solution for 

meeting spaces within the large ‘warehouses’ of the building. A suitable commercially 

available product was not identified, and the client provided support to design and build 

a research prototype.
Fig. 4.04. Basic arrangement of a parts in a ‘cell’ for the FabPod - a hyperboloid and a 

flat face mounted on a timber frame.

Fig. 4.03. Two cylindrical walls built in RAS workshop, one sheeted with platerboard and 

the one articulated with with hyperboloids.

This image has not been reproduced for 

copyright purposes.
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Hyperbolids on common spheres intersect 
in planar curves

Mirror planes to acheive planar intersections of 
hyperboloids on di�erent spheres

Planar Intersections
Hyperboloids on Multiple Spheres

Interstitial Space

Sphere Union

Co-tangent Spheres

We identified from academic research that the FabPod should provide some 

sound reduction close to the source, good speech intelligibility without loud and quiet 

spots, and a space that would sound bright and lively rather than be deadened by 

too much absorption (Bradley, 2009). To achieve this, we recognised that the interior 

surfaces of the enclosure should combine partial acoustic absorption alongside 

harder materials which scatter sound. We also identified that by deploying absorptive 

materials and forms on the outside of the structure, we could also improve the auditory 

experience of the surrounding workspace (Petersen, 2008).

4.1.3	 Prototype Focus: A System for Customisation at Two Scales

I led initial conversations with the team in which we identified features and 

limitations from the earlier prototype which could drive this next iteration, including:

•	 An interior space enclosed by hyperboloid forms on enclosing walls

•	 Hyperboloid faces mounted on a frame as prefabricated, stacked components 

•	 Limited control and challenges to finishing hyperboloid forms made with plaster

•	 Poor geometric intersections between hyperboloid components, traced to 

geometric problems by component and overall wall form.

•	 Challenges in fabricating bespoke frames using 3-axis laser-cutting.

These background conversations highlighted a desire for customisation at the 

scales of both component and overall form of the FabPod prototype. This customisation 

could allow a design to respond to both acoustics and form as design drivers.

I set out some initial design concepts, beginning with a component system 

and its key elements: a hyperboloid face, timber frame and planar faces to the outside 

(Fig. 4.04). Materials for these elements were initially left open, though numerous 

options were apparent for each. I proposed that the frame was once again cut from 

sheet material, this time using a 5-axis CNC process to allow edges to align with the 

hyperboloid profile and joints between frame parts to meet as mitres at custom angles.

Fig. 4.05. Circular hyperboloids arranged with planar intersection curves - oriented on a sphere (left) and 

mirrored between spheres (right).

Fig. 4.06. Two families of geometry composed of intersected spheres  for the overall form of the FabPod.
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Considering this fabrication system, it was important that components have 

planar edges as they were made from sheet material. These planes are designed for 

easy stacking and to mark boundaries for trimming the hyperboloid faces. I identified a 

geometric schema with hyperboloids arranged on spheres (Fig. 4.05) and oriented to a 

common centre point. In this arrangement the intersection of neighbouring hyperboloids 

is planar. At a broader scale, spherical forms also intersect in a plane and we can mirror 

hyperboloids about this. These rules created a space of possibilities, with hyperboloids 

arranged on forms composed of intersected spheres (Fig. 4.06).

4.2 Modularity in the FabPod Workflow

4.2.1	 Creating Plugins as Design Tools

Drawing on the geometric schema discussed above, we set out to explore 

a broad design space across two scales of intersected spheres and trimmed 

hyperboloids. Working with Daniel Davis, an original member of the RAS team, we 

developed a workflow centred on two Activities to set out form (Fig 4.07). Each Activity 

centres on a parametric model in Grasshopper which enabled us to rapidly iterate 

through design by adjusting of key parameters. This exploration was important not only 

to better understand architectural expression, but to understand the implications of 

form and material on the acoustic performance of the structure. To increase iterations 

and breadth of our exploration, we engaged a class of students and invited external 

practitioners to generate design options (Fig. 4.08). For these novice users, our 

parametric models needed to be robust and allow them to simply plug-in and adjust 

parameters to reliably generate designs.

The first parametric model allowed a designer to set out spherical forms of a 

room. This required inputs to locate centre points of each sphere and to define a radius 

for each (Fig 4.09). Further, a designer needed to nominate either a convex or concave 

form. Daniel and I discussed several options for a robust solution, eventually using a 

Boolean union to intersect spheres and then selecting a point to nominated as inside the 
Fig. 4.08. The paramteric design tools being used in a week-long student workshop.

Fig. 4.07. The workflow arrangement of the two design activities of designing form and tessellating cell 

components across a form.
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space. The form of intersected spheres was then trimmed at planes representing the 

limits in relation to the existing floor and ceiling of the space. This arrangement appears 

straightforward and regularly produces valid solutions. There are cases where it fails, 

however, for example where spheres are not big enough or too far apart to intersect. 

We developed the parametric tool to check these cases and provide visual feedback to 

users in the form of red geometry to highlight problems.

The second design tool enabled the distribution of cells across the spherical 

surfaces. Again using a Grasshopper model, we proposed that circular hyperboloids 

be located as a point on these forms.  We use the normal of the base to define an 

orientation for the component. To provide an easy interface for design, we approximated 

the spherical surfaces as flat outline, allowing a designer to place points on a work 

plane. These points are then mapped back to the 3D form. We then calculate the 

trimming planes of each cell using a voronoi diagram. This Task is handled by a custom 

plugin component created by Daniel for voronoi patterns on spherical forms.

With a central axis and trimming edges defined, we could calculate sizes of 

each component. We measured the distance from the central axis to a corner, and 

the angles at these corners. Both of these are critical fabrication constraints, relating 

to the size of base hyperboloid we could manufacture and range angles of mitre 

joints in frames which we could cut and assemble. In a similar fashion to the first 

tool, problematic areas were flagged through coloured lines (Fig. 4.10), prompting a 

designer to edit them.

This workflow spanned two Activities. In each, the parametric models enabled 

us to undertake a sequence of Tasks. While they were built bottom up through 

connecting Functions, they had a relatively high degree of modularity at the scale of 

Activity. This was necessary to control design outcomes to fit with broader elements of 

the component system and means of fabrication. We created some Tasks for checking 

geometry, which branched off the sequential workflow at the end of each Activity. 

Fig. 4.09. A screenshot of the FabPod design tool for setting out wall forms.

Fig. 4.10. A screenshot of the FabPod design tool for tesselating cell components across a form.
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4.2.2	 Plugging In Acoustic Design

Another member of the RAS team engaged in the FabPod was Brady 

Peters who led the acoustic testing and was here engaged to lead research expertise 

in acoustics. Brady’s research expertise includes techniques for modelling sound 

scattering, which he employed alongside other simulation techniques here. This section 

addresses the interface of design models with Brady’s acoustic workflows.

We used two acoustic simulation packages, firstly the Pachyderm plugin for 

Rhinoceros with which we ran a series of conventional simulations on the native model. 

We also used Odeon for more detailed simulations and to verify results from Pachyderm 

(Fig. 4.12). The primary tests undertaken in each package were for Reverberation Time, 

Sound Pressure Levels and Speech Transmission Index.

As I have described above, our design tools provided geometry at two scales, 

for the setout and surface articulation of a design. To interface with acoustic simulations, 

we needed workflows to abstract these designs for specifics of each tool (Fig. 4.11). 

Both packages use a combination of image source and raytracing algorithms for 

simulations, requiring a mesh geometry of spaces and forms. To use Pachyderm, the 

NURBS surfaces of design models were converted into mesh representations using 

internal procedure in Rhinoceros. To use Odeon, we needed to manually undertake this 

translation, approximating the NURBS surface models with triangular mesh faces. Brady 

deemed that a relatively coarse mesh was appropriate for undertaking simulations, 

these calculated over approximately ten minutes. Creating more detailed mesh 

representations, though theoretically achievable, would have required further processing  

power without necessarily  improving accuracy. We created triangular faceted meshes 

by connecting vertices at each corner with the centre of each component (Fig. 4.13).

A third strand of Brady’s acoustic investigation addressed the scattering 

coefficients of the hyperboloid forms. For this, I provided to Brady digital models 

showing typical arrangements of cells. These showed the intended scale and density of 

components. He in turn created two-dimensional section profiles through these models 

Fig. 4.12. An example of an acoustic simulation in Odeon.

Fig. 4.11. The workflow for analysing acoustic performance with three types of digital simulation.
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to calculate scattering coefficient using the Boundary Element Method in Matlab. 

This workflow connected across two Divisions of designing form and 

simulating acoustics. With these connections we could iterate rapidly, proposing design 

arrangements, simulating acoustics and gaining feedback on the performance of a 

proposal. Rather than lead to a singular solution, this improved our understanding of a 

specific design problem and situated acoustics as a primary driver in the design of form 

and distribution of material around this.

These three lines of simulation were each an Activity within a Division of 

acoustic simulation (Fig. 4.11). They were undertaken in parallel, and simulation highly 

modular. Both the simulations with Pachyderm and Odeon were run through modular 

software routines. We fed back results to inform our iterative design process, learning 

about the acoustic implications of our design models. Pulling together results from all 

three strands, Brady undertook an Activity of providing direction on forms and material 

distributions. This was again highly modular, drawing on his experience and expertise in 

acoustics to make decisions and provide design direction.

4.2.3	 Plugging Design into Fabrication Models

 Alongside acoustics, we also needed to create a clear and consistent 

interface between our design models and those for fabrication. A pipeline to create 

fabrication models was developed in collaboration with another of the original RAS 

team, Alexander Pena de Leon. His preferred platform for detailed parametric modelling 

is Dassault Systemes’ CATIA, a platform which excels at handling complex geometry 

and parametric parts. We created a workflow to connect our design models in 

Grasshopper to become inputs to models in CATIA (Fig. 4.14).

Creating minimal models to unambiguously describe intent for fabrication 

(Scheurer, 2013, 116), we identified a succinct and robust means to represent the 

design intent. The design is composed of an array of standalone cells, and we captured 

information for the setout of each of these, composed of:

Fig. 4.14. The workflow for translating design information to detailed information for fabrications.

Fig. 4.13. A mesh tesselation of an interior form, showing crude triangular faces suitable for acoustic 

simulation in Odeon.
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	 an index to identify the component

	 a point and vector for the orientation of the hyperboloid face;

	 the definition of a series of planes at the outer boundaries where the cell was 

to be trimmed;

	 an index to identify the material for the hyperboloid face;

	 an index to identify the material for the planar face.

	 an index to identify the material for the oculus of the hyperboloid.

To generate the detailed geometry of each cell component, we addressed 

three aspects of the workflow in parallel. We created custom routines to write and read 

simple comma-separated files on the either side of the interface between design and 

fabrication Divisions of the project (Fig. 4.15). In Grasshopper the routine was scripted 

in python. These files could be opened and read through scripts written for CATIA. 

Alongside this, we selected a hyperboloid form to be used across all components. We 

selected a size and shape which was suitable for acoustic effect and which could be 

readily fabricated. We defined this hyperboloid form through an equation requiring nine 

parameters. Finally, we nominated thickness of all materials for the frame and facing 

materials. In doing so,  we partially constrained our material selection on the project but 

kept open choices of colour and finish. 

We input information of cell geometry and material parameters to a parametric 

model, through which we could generate detailed geometry of all elements. I worked 

with Alex to clarify details to inform the detailed models. He then created scripts for 

the Tasks of modelling each type of component. This workflow followed rules to offset 

and intersect planes and surfaces, and to locate necessary fixings. This enabled 

us to automate this detailed modelling through a combination of procedural code 

and parametric relationships, the latter defined manually on a sample part and then 

instantiated across others (Pena de Leon et al., 2013, 649). With all parts in a single 

3D model, we checked for errors and clashes (Fig 4.16). As a final Task, Alex applied 

further rules to his parametric models in order to arrange all parts flat on a single plane 

(Fig. 4.17). These Tasks run through scripts and parametric relationships were highly 

modular, allowing for quick and accurate production of geometry.

Fig. 4.16. A screenshot of the detailed model in CATIA.

Fig. 4.15. A sample of the plain text description of a design, interfacing with a detailed fabrication 

model. 

file_format(1)
4_0,cell_type(hard_soft),cell_cen-
trepoint(30746.011224645,16805.8048008938,2818.0004760241),cell_normal(0.940777332785021,-0.22015394102315,0.257818254531905),plane(-0.
308637656882682,-0.95114558375284,-0.00805451807608928,25040.137213465),plane(0.0241207793662103,-0.562803716366636,-0.82623856412
4593,10679.7644628362),plane(0.831752720468409,0.514475831959087,-0.208571403417164,-33842.3857337226),plane(-6.14783257084988E-09,-
1.40512803145212E-08,1,-3049.99961270147)
4_1,cell_type(hard_soft),cell_cen-
trepoint(29861.06659235,14673.6491930273,2222.1770362498),cell_normal(0.779878359219291,-0.607818608813699,0.1494867338636),plane(-0.16
1436447824419,-0.370367591521796,-0.914749211786585,12081.6428978711),plane(0.465766130309833,0.514874260774069,-0.719698831073498,
-20179.1801240227),plane(0.569327382508825,0.822020425787303,0.0121963565916532,-29385.8197754674),plane(0.0411626169571043,0.34442
0257425911,0.937912749268242,-8570.97716896914),plane(-0.0671851635086327,-0.908301149484717,0.412886395572752,14087.1438077325)
4_2,cell_type(hard_soft),cell_cen-
trepoint(29598.851220434,14270.6758913761,1402.51840614393),cell_normal(0.732202837052742,-0.681086481841189,0.000457892026168875),pla
ne(-0.0436065370428038,0.0377539176492543,-0.998335169985145,1832.56489578195),plane(0.385365175537096,0.493710598189975,-0.7795790
70215562,-17658.05749633),plane(0.612640840047276,0.760999499892233,-0.213426714049438,-29078.1550027945),plane(0.359351529571905,0.
459510936246224,0.812229141107638,-18605.2115230579),plane(-0.0671851635086327,-0.908301149484717,0.412886395572752,14087.14380773
25),plane(0.0469659639816113,-0.953697938996019,-0.2970764874271,12294.9675284978)
4_3,cell_type(hard_soft),cell_cen-
trepoint(29570.9824539497,14294.8042718022,764.48632168669),cell_normal(0.727135788601051,-0.676699503581893,-0.115547941511511),plane(
0.0436065370428038,-0.0377539176492543,0.998335169985145,-1832.56489578195),plane(0.0469659639816113,-0.953697938996019,-0.29707648
74271,12294.9675284978),plane(0.368753465203026,0.577530709748457,-0.728340003843126,-18815.1596665674),plane(0.627500365089366,0.65
878626886448,0.415022823189677,-28496.4280343364)
4_4,cell_type(hard_soft),cell_cen-
trepoint(29829.6703661745,14566.3898420682,935.580067012688),cell_normal(0.774169954460101,-0.62732030898808,-0.0844399878158747),plan
e(-0.385365175537096,-0.493710598189975,0.779579070215562,17658.05749633),plane(-0.627500365089366,-0.65878626886448,-0.415022823189
677,28496.4280343364),plane(-0.208495399291337,-0.0546679238839489,-0.976494283942597,7683.61416059882),plane(0.385512210878229,0.69
3478285898885,-0.608660991234467,-21500.2475744765),plane(0.49699849721475,0.598697788523605,0.628134899351425,-24375.032466235)
4_5,cell_type(hard_soft),cell_cen-
trepoint(30581.3220677845,15946.3328616028,468.429201720931),cell_normal(0.910833900207383,-0.376421578163605,-0.169376508778012),plan
e(0.0675440448668497,-0.156449211660463,0.98537375963329,-288.050790871066),plane(-0.467918129934943,-0.875075219430367,-0.123676934
054336,27904.5517176878),plane(-1.82119431924282E-15,7.40417609922739E-16,-1,50.0000000000438),plane(0.831752720468409,0.51447583195
9087,-0.208571403417164,-33842.3857337226)
4_6,cell_type(hard_soft),cell_cen-
trepoint(30154.6116202344,14998.1441904101,1768.59314577819),cell_normal(0.833250182470998,-0.548819518380464,0.0670169355960354),plan
e(-0.465766130309833,-0.514874260774069,0.719698831073498,20179.1801240227),plane(-0.597494705922868,-0.791906802817595,0.126030520
293142,29370.0428435036),plane(-0.153359611871186,-0.257324567904971,-0.954078034648759,9893.50777056096),plane(0.340682084975985,0.
51334517741154,-0.78766264720674,-16857.865682178),plane(0.515233147588251,0.856117031005979,-0.0399804057984773,-28543.7954893208)
,plane(0.0885921133001076,0.330479268617952,0.939646151737325,-9535.08853584268)
4_7,cell_type(hard_soft),cell_cen-
trepoint(30598.2323788816,15815.5280287996,1773.3437839844),cell_normal(0.913908502225036,-0.400204275036915,0.0678806879971646),plane
(-0.435163905243785,-0.898846766942749,-0.0520275420286802,27394.9438828543),plane(-0.125284992292374,-0.335630064706566,-0.93362526
2282125,10557.759989499),plane(0.290218043271953,0.66640147381464,-0.68679149896972,-18466.1941156347),plane(0.221600151282318,0.775
802996678928,0.590781756061956,-20471.1671957042),plane(-0.145154626278699,-0.0663579727298945,0.987181216355472,3525.35049550907)
4_8,cell_type(hard_soft),cell_cen-
trepoint(30190.9118334411,15216.2087231484,365.238626878819),cell_normal(0.839850221235846,-0.509171421518955,-0.188138431476578),plan
e(-0.385512210878229,-0.693478285898885,0.608660991234467,21500.2475744765),plane(-0.561832074745356,-0.819932491215234,0.109797220
533625,28985.7431493728),plane(-1.82119431924282E-15,7.40417609922739E-16,-1,50.0000000000438),plane(0.467918129934943,0.87507521943
0367,0.123676934054336,-27904.5517176878),plane(0.431076973499947,0.659497561590906,0.615821085359843,-23767.4736759215),plane(0.156
788059285847,0.0693847971701507,0.985191988592597,-6638.69329682642),plane(-0.127512755556309,-0.378896794377739,0.916612086097881
,8803.91706679478)
4_9,cell_type(hard_hard),cell_cen-
trepoint(30464.0989327417,15937.0202392244,2810.64340989698),cell_normal(0.889520602926861,-0.378114782232403,0.256480619981269),plane
(-0.454567764978173,-0.887888987224307,0.0708610852904713,27521.667676822),plane(0.112945177946335,-0.236271341225392,-0.9651006372
8827,2719.75508668645),plane(0.370189871894759,0.565498590839381,-0.737001222865482,-18622.9868784043),plane(0.308637656882682,0.951
14558375284,0.00805451807608928,-25040.137213465),plane(-6.14783257084988E-09,-1.40512803145212E-08,1,-3049.99961270147)
4_10,cell_type(hard_hard),cell_cen-
trepoint(30198.0572458529,15160.2114224042,2229.39618344778),cell_normal(0.84114938712891,-0.519352748926991,0.150799306081415),plane(-
0.569327382508825,-0.822020425787303,-0.0121963565916532,29385.8197754674),plane(-0.0885921133001076,-0.330479268617952,-0.93964615
1737325,9535.08853584268),plane(0.350311521497769,0.425810747378415,-0.834246393652951,-15461.8125182348),plane(0.473917856511349,0.
879454467790038,-0.0442911318869833,-27901.7192388638),plane(0.0201929271500691,0.416154297272513,0.909069769904782,-9286.77283373
217),plane(-0.531509982050118,-0.574698600076775,0.622268959575262,23074.60061416)
4_11,cell_type(hard_hard),cell_cen-
trepoint(30538.2096998291,15654.731310169,1326.05406118529),cell_normal(0.902995287851839,-0.42944004206067,-0.0134447161481292),plane(
0.185124704831242,0.504465328155856,-0.843352581278881,-12642.0424264172),plane(0.379783691890002,0.912921867146955,0.149459064159
11,-26368.7660153515),plane(0.125284992292374,0.335630064706566,0.933625262282125,-10557.759989499),plane(-0.271482264375224,-0.48867
8535761441,0.82915057065394,14585.8127849211),plane(-0.463383643470314,-0.886113197022956,0.00888825213033408,27801.8731640071)
4_12,cell_type(metal_soft),cell_cen-
trepoint(30069.4177151606,14855.1959621003,1238.58636938402),cell_normal(0.817760381548481,-0.574810105345883,-0.0293479328392695),pla
ne(-0.612640840047276,-0.760999499892233,0.213426714049438,29078.1550027945),plane(-0.49699849721475,-0.598697788523605,-0.628134899
351425,24375.032466235),plane(0.127512755556309,0.378896794377739,-0.916612086097881,-8803.91706679478),plane(0.531268999007728,0.82
8685683169048,0.176162678237969,-28762.2393245666),plane(0.153359611871186,0.257324567904971,0.954078034648759,-9893.50777056096),p
lane(-0.369231570813361,-0.449045043210736,0.813650168243432,16393.0699445834)
4_13,cell_type(metal_soft),cell_cen-
trepoint(30615.8611153241,15866.3316302623,972.305912026014),cell_normal(0.917113727032758,-0.390967256589153,-0.0777625614498153),pla
ne(-0.185124704831242,-0.504465328155856,0.843352581278881,12642.0424264172),plane(-0.369253522038179,-0.79196026223845,0.486262048
177324,23030.1586530939),plane(-0.431076973499947,-0.659497561590906,-0.615821085359843,23767.4736759215),plane(-0.0675440448668497,
0.156449211660463,-0.98537375963329,288.050790871066),plane(0.831752720468409,0.514475831959087,-0.208571403417164,-33842.38573372
26),plane(0.247610434578133,0.549750915374154,0.797786314581359,-17353.4000862865)
4_14,cell_type(metal_soft),cell_cen-
trepoint(30763.6352095538,16394.5890580998,2214.30456039476),cell_normal(0.943981744165425,-0.294920451527786,0.14805537461723),plane(
-0.0241207793662103,0.562803716366636,0.826238564124593,-10679.7644628362),plane(-0.370189871894759,-0.565498590839381,0.7370012228
65482,18622.9868784043),plane(-0.350971190266223,-0.936042241385501,-0.0253800304396404,25874.8214203319),plane(-0.221600151282318,-0
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4.2.4	 Plugging In CAM Technology to Fabricate Frames

With a workflow to generate detailed 3D models of all parts in each frame, 

we seemed to be close to beginning fabrication. I earlier described that we had 

designed our components for machining with a 5-axis machine. I identified several 

suitable machines, initially a 6-axis robot at RMIT and subsequently two Biesse Rover 

5-axis routers. However, we had trouble selecting  a specific fabricator and details of 

which machine and a suitable CNC file format remained unclear until late in the project 

programme. Instead, we designed a workflow to prepare fabrication information in an 

agnostic format which could later be post-processed for various machines.

To translate this digital geometry to fabrication files we needed to identify two 

types of feature for fabrication, holes for bolt fixings, and ruled surfaces at the edges 

of parts. Again, we sought ways to describe these in minimal and unambiguous terms, 

choosing  specific geometry to represent each as outlined in table 4.1. Due to limited 

information associated with the geometry in CATIA, we decided that Rhinoceros would 

offer a better environment to create these fabrication files. We exported the parts as 

NURBS surface models and then modelled geometry of features in Rhinoceros using 

scripts to automate the process (Fig. 4.18).

Type of Feature Geometry to be Cut Abstracted Geometry for Fabrication

Drilling Cylindrical hole Centreline axis.

Flank cut Ruled surface Two rail curves – tip location and angle.

Table 4.1. Geometric definitions used to abstract feature for fabrication for MDF frames.

From these geometric representations of edge surfaces and holes, we then 

created generic descriptions for machine toolpaths. We identified the Automatically 

Programmed Tool (APT) language as a suitable, text-based format for this type of 

fabrication information. Our files describe toolpath locations defined in cartesian 

coordinates relative to a given work plane. They also describe a sequence for the 

machine to follow, including rapid movements for efficient operation where the tools 

are free from material. We also describe actions such as loading a tool and setting 

parameters of feed and speed rates to describe movement across a sheet and of the 
Fig 4.18. A screenshot of abstracted geometry describing fabrication features in Rhinoceros.

Fig 4.17. The workflow for translating detailed geometry of frames to parts cut from MDF sheets.
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spindle rotation respectively. 

To write these files, we designed an Activity in which a user selects geometry 

in a desired sequence. In each case we specified drilling operations prior to cutting, in 

order to avoid the risk of cut parts moving and drilled holes therefore being incorrectly 

located. The manual input we used was chosen as a pragmatic response to a two-day 

window to produce a functioning workflow. It allowed us to check quality, and for 80 

sheets, we only needed a few hours to create files.

To create these files we followed approaches which are available through 

a number of off-the-shelf software packages. We followed a series of Functions to 

divide curves and create toolpaths from the geometry in 3D models. Toolpaths were 

represented as a sequence of locations and orientations. These were identified by 

dividing curved elements into discrete lengths which deviated from a curve less than a 

nominated tolerance of 0.1mm. 

With a collection of APT formatted files, we could postpone the final step of 

producing files with specific machine information until those machines were identified. 

The last step of writing these files required that we transform the locations and 

orientation vectors of the toolpaths to specific coordinate systems for each machine. 

We outsourced this Task to one of the machine operators, who themselves had custom 

scripts to automatically  create machine programmes in Numeric Control (.nc) format. 

For fabrication we ran these programmes in parallel on two Biesse Rover machines (Fig 

4.19), requiring just under 15 hours of cutting time.

As with the workflow to create the detailed model, this ran through a series of 

scripted routines. The Activity of creating toolpath files involved a series of Functions 

which we manually worked through. By creating a series of scripts, we made Tasks 

highly modular, with basic manual selection of inputs (Fig. 4.17). The second Activity 

of fabricating Tasks involved similarly modular Tasks to create file for machining. The 

Tasks of cutting parts was manual and linear, and ran without errors.  We subsequently 

assembled frames, working through further Activities with John Cherrey to ensure 

frames were within tolerances of 0.2mm across any assembly (Fig. 4.20).

Fig. 4.20. Frame parts assembled to test assembly workflow and tolerance.

Fig. 4.19. Cutting frame parts from mdf sheet using a Biesse Rover 5-axis router.
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4.2.5	 Plugging In Industry to Fabricate Hyperboloids

I described earlier that the hyperboloid components were based on a common 

shape and trimmed to the unique outline of a cell. The volume of parts, 180 in total, was 

suitably large for us to engages external fabricators to create these repetitive elements. 

We created these from three materials to drive a variety of interior finish which could be 

arranged to help tune acoustic performance. 

Working once again with John Cherrey, we set about identifying suitable 

materials and fabrication processes for these curved forms. We selected two – spinning 

metal using a lathe, and vacuum forming heated plastics. Both processes can form 

doubly-curved parts by stretching a sheet material over a form. We found local suppliers 

with capacity to produce our order and negotiated with them to check geometric limits 

related to material stretching and finish.

In our digital models, we represented hyperboloid geometries using an 

equation with nine parameters. We could not communicate this mathematical 

representation to external fabricators in industry. Instead we created surface models 

of  these hyperboloid components, representing the interior faces of each, representing 

these surfaces in unique terms to each fabricator (Fig. 4.21).

The metal-spinning company specified that they make the tool which was to be 

mounted on a lathe. We supplied a digital CAD drawing to them describing the desired 

cross-section hyperbola curve. We then sent them a laser-cut template for checking 

accuracy of the shape. The company fabricated a tool from laminated sheets of MDF, 

manually machining a rough blank in to the specified shape. Once this was checked 

for accuracy, flat discs of aluminium were readily formed across this into the desired 

shape (Fig 4.22). Once fabricated, these hyperboloids subsequently anodised for a high 

quality of finish.

The plastic forming company were happy to use a female tool which we made 

at RMIT and supplied to them. We created this from laminated layers of plywood, using 

a CNC router to machine a blank to a deviation of less than 0.2mm from the desired Fig. 4.22. Comparing our lasercut guide with the tool created for spinning aluminium hyperboloids.

(image: John Cherrey).

Fig. 4.21. The workflow for fabricating hyperboloid components from three materials.
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shape (Fig 4.23). We finished this with a small amount of hand sanding and applied a 

coat of shellac to the surface.

Two types of plastic were formed on this mould. Firstly, a matt white acrylic 

was selected to provide an acoustically reflective surface (Fig. 4.24). Alongside this, we 

selected an acoustic felt product called WovenImage Echopanel. This is manufactured 

from PET and is absorptive (Fig. 4.27). As such it is permeable and our supplier used 

a silicone rubber membrane for forming this under vacuum. We worked alongside the 

company to resolve details such as the best temperature for softening the PET.

This workflow has contrasting degrees of modularity in each of the two 

Activities undertaken. Our selected suppliers provided hyperboloid parts through a 

series of highly modular Tasks. They worked to agreed tolerances as is conventional 

for industry suppliers. In contrast, the in-house fabrication of the mould demanded that 

we work through a sequence of Functions. This reflects that our workshop did not have 

specific tools and systems in place for producing mould  nor did we have any routines 

for creating 3D models of these.

Fig 4.24. Four component cells with white acrylic hyperboloid faces. Each cell has the same hyperboloid 

form with a unique trimming shape.

Fig. 4.23. Milling a finish to a plywood hyperboloid mould, subsequently used for 

forming plastic hyperboloids.
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Fig. 4.26. Information flow between form and acoustics, with divisions aligned 

to the roles of key individuals. 

Fig. 4.27. Cells with hyperboloid faces fabricated from WovenImage Echopanel, arranged in the 

workshop during fabrication of the FabPod prototype.

4.3 	 The FabPod Design System

Over a three-month period, we developed the range of Activities and Tasks 

discussed above. Like all projects, this discrete period introduced constraints to the 

project. Contrary to a conventional approach in which a form is conceived and to 

which detail is incrementally added, here we developed and refined workflow and detail 

without making a design model. Our efforts centred on the design of process and 

integration of these into a Design System to deliver a FabPod prototype (Fig. 4.25).

At a broad scale, the Design System is composed of three loosely bounded 

Divisions, addressing the design of form, fabrication and acoustic simulation. These Divisions 

capture multiple further levels of detail related to distinct project roles. I have introduced 

a series of collaborators and each took leadership within a single Division to implement 

workflow drawing on their specific expertise. The leadership of these individuals helped 

to define boundaries, albeit fuzzy, between Divisions. I have discussed two workflows 

above which span Divisions, connecting architectural design models with acoustic 

simulation and fabrication. In these cases, I have aligned Divisions to the engagement of 

individual collaborators, though this could be debated. For example, specific Tasks such 

as creating custom mesh representations of design models could be argued to be part 

of the acoustic Division, though they were not created by Brady.

The Design System holds many moments where fabrication drives design. I 

have described earlier that we began design with a concept for a component system. 

This responded to both opportunities and limitations of earlier research as well as 

available tools and techniques for fabrication. For example, I proposed early that the 

frame of each component be cut with a 5-axis machine. This helped to enable us to 

design tesselation patterns in which component shapes were varied within limits. This 

flexibility further helped drive relationship between component and whole, enabling us to 

explore spherical geometries at the scale of the enclosure.

We were similarly able to use acoustics simulation to drive design, though this 

differed from the quantified and hard limits of fabrication. Through iterative design and 
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testing in a one-week workshop, we refined our understanding of the acoustic performance 

of spherical wall surfaces, hyperboloid tessellations and various distributions of material. In 

total, with a team of students we produced over 500 design versions. We realised relatively 

early that the concave surfaces internally would better serve a diffuse interior. As such 

we focused on various configurations and scales of these. The proportions of various 

material finishes and the distribution of these around a design form required much more 

detailed analysis and a nuanced design response. As such, we did not converge to a 

solution but rather found sweet spots between form, material and acoustic performance 

to create more sophisticated designs.

At times alongside this, fabrication also served design. We sought techniques 

which were suitable to forming hyperboloids, finding suppliers for both metal spinning 

and plastic forming. We similarly built chains of digital information to model detail 

and generate machine files for parts. These created workflows to meet specific 

demands  of the design. This bottom up approach to fabrication can result in a low 

degree of modularity at the scale of Task and Activity. To control the quality of parts, 

we implemented strict sequences, thereby increasing the degree of modularity through 

these core workflows for delivery.

4.4 	 The FabPod Prototype

The full-scale prototype was designed and constructed over a 6-month period. 

It is composed of 180 cells, with frames held over 1000 unique sub-components, 

themselves cut from 84 sheets of MDF. We assembled cells in a workshop and 

transported them to site (Fig. 4.28) for installation by a small team. This team fixed 

components together within desired tolerances using off the shelf bolts and t-nuts. 

We assembled all 180 cells in just over two days, with further time needed to install 

electronics and fix final panels to the exterior (Fig. 4.29).

The FabPod sits as a sculptural presence within the open-plan office space of 

the Design Hub, two-thirds of its exterior is covered in Echopanel to absorb sound in 

this large environment. The remaining 60 components are clad in a translucent acrylic, Fig. 4.29. Assembly of the FabPod on site in the Design Hub was completed by a small team.

Fig. 4.28. All 180 cells on site in the Design Hub, ready for assembly of the FabPod prototype.
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to highlight lights which are distributed around the walls. The internal space is big 

enough to hold existing furniture and seat eight people (Fig. 4.31). This has inverse 

proportions of hard and soft surfaces to the exterior. One third of components are clad 

in Echopoanel, with a cluster around the entry, designed to reduce sound transmission 

through this open doorway. The other two-thirds of components are clad with reflective 

surfaces of spun aluminium and formed acrylic.

Through the FabPod I explicitly sought to prototype a design approach 

which could support customisation at the scales of both component and overall form. 

The geometric and material customisation is evident here and shaped through the 

exploration of relationships between form and material with acoustics, and further 

with fabrication and the FabPod has provided a persistent model for testing inquiry. 

Research has addressed architecture and technology audiences, as well as acoustics 

(Alambeigi et. al., 2016) and ethnographic studies of behaviour and attitudes (Pink et. 

al., 2017). This has extended understandings of the FabPod, it’s role in the Design Hub 

space and within the larger identity of the institution which owns it. I have been involved 

in the design of a subsequent FabPod, as discussed in Chapter 7.3.

To deliver the enclosure, we also prototyped many aspects of production. We 

refined workflows to a degree which enabled a linear flow from the design of a form. I 

have highlighted three aspects of this, in the parametric models to design forms, and 

subsequently to generate detailed design models, through to the workflow to create files 

for CNC fabrication. As I have described, such modular but resolved process underpins 

systems for mass-customisation. Here, however, our experience highlights the gaps to 

larger scale production. We experienced a series of delays in delivering the prototype. 

These range from problems within the team such as incompatible software files, to 

problems beyond our control including  the accidental destruction of MDF frame parts in 

transport. This highlights that despite producing specific knowledge, major gaps remain 

to this research having impact beyond the one-off project.Further detail on the acoustic 

simulation and design tools used for the FabPod prototype has been published (Peters 

et. al, 2013). Further detail on the connections between design and fabrication can also 

be accessed through publications (Williams, N. et.al., 2015). Fig.4.30. Images of the FabPod, installed in the Design Hub at RMIT. (images: John Gollings).



Fig.4.31. Interior of the FabPod prototype. Image: John Gollings.
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5.1 	 The Sound Bites Shell Background

5.1.1 	 Research Premise: Bending-Active Material Performance

Sheel structures have received much research attention for their perceived 

efficiencies in structural performance, being self-supporting and capable of carrying 

external loads and transferring within the surface of shell (Adriaenssens et. al., 2014, 

1). Gridshells are a subset of shell structures. They are created from elastic, anisotropic 

materials such as wood, with all members finding an equilibrium state, a so-called 

bending-active condition (Lienhard et.al., 2013, 138). 

Many fundamental terms and concepts around gridshells are attributed to 

Frei Otto. Otto’s built research is exemplified by projects such the Multihalle of the 

Garden Exposition in Mannheim (1975, Fig. 5.01), which still stands today and spans 

over 35m to create a large hall.  It is a post-formed gridshell, a type with potential for 

rapid installation on site through the simple bending on-site of a network of straight 

members into a desired form (Fig. 5.02). Timber is regularly used for both its relatively 

low torsional stiffness, making it suitable for bending into such doubly-curved shapes, 

and for relative ease in fabricating joints (Harris, et. al., 2004). Over the decades since 

the Mannheim project was completed, a number of notable timber gridshells include 

the Japan Pavilion for the Universal Exposition in Hanover (Germany, 2000), the Weald 

and Downland Museum in West Sussex (United Kingdom, 2002), and the Savill Garden 

Building in Windsor (United Kingdom, 2006). 

I have already made reference to Frei Otto’s research and built structures as 

exemplars of analogue computation, with connections to antecedents such as Antoni 

Gaudi. Interest in gridshells has blossomed recently through digital platforms which 

allow the simulation of loads. In his design process, Otto used scaled, material models 

to simulate and generate form (Fig. 5.02), and the term form-finding has become 

synonymous with such a design process. Nowadays, digital form-finding has become 

accessible to a broad community of designers exemplified by examples such as Kilian 

Fig 5.01. The Multihalle Mannheim, a post-formed timber gridshell by structural engineer Frei Otto.

Fig 5.02. Aerial view of the curved form (left) and the form-finding model used for design (right) of the of 

the Multihalle Mannheim.

This image has not been reproduced for 

copyright purposes.

This image has not been reproduced for 

copyright purposes.
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and Ochsendorf (2005) and the physics simulation plugin for Grasshopper named 

Kangaroo (Piker, 2013).

Using digital form-finding tools, researchers have recently sought to explore 

the formal possibilities and rapid assembly of these systems. Leading examples include 

the gridshell tectonic investigations by Cabrinha (2008) and Cabrinha and Kudless 

(2012, Fig. 5.03). This latter work was designed and built in a four-day workshop at 

SmartGeometry in 2012, highlighting the potential to rapidly iterate through design and 

prototype such a complex form.

5.1.2 	 Functional Brief: A Device for Art Soundscapes

The Sound Bites City exhibition was the inaugural presentation of a major 

collective of sound art works owned by RMIT University, opening in September 2013 

(Davies, 2013). The sound art collection includes works by several major international 

artists created for a spatial sound experience and played through multiple channels 

arranged in space. Many museums are beginning to feature such shows, though they 

typically have minimal architectural features (Fig. 5.04). In contrast, for the Sound Bites 

City show I was commissioned to design a temporary installation to provide a spatial 

device to complement the aural performance of works.

A simple brief called for spaces for audiences to experience the art works in 

several modes. The primary technology was a 24-channel audio system and a primary 

performance space was required in which groups could gather while a piece was 

played, listening in relatively passive modes. A more active space was also requested to 

enable individual audience members to move around the space while a piece played. 

The exhibition was hosted by RMIT Gallery. This has two exhibition spaces, 

and I proposed a major installation for the larger of these, covering approximately 14m x 

11m of floor space. The installation needed to be free-standing, with existing walls and 

floors left undamaged. Suspended lighting tracks located at just higher than four metres 

above floor level constrained the height of the installation. Furthermore, a series of 

Fig 5.03. A timber gridshell designed and prototyped through the four-day workshop led by Mark 

Cabrinha and Andrew Kudless at SmartGeometry, 2011.

Fig 5.04. The space and sound equipment arranged for a performance of The Portal.

This image has not been reproduced for 

copyright purposes.
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access ways needed to be maintained for safety through the duration of the exhibition. 

These constraints suggested a lightweight installation which could be rapidly installed.

5.1.3 	 Prototype Focus: A System for Shared Design

I identified that a gridshell would be both a pragmatic solution and one with 

significant research potential. The driver for this research prototype lies in the cross-

disciplinary collaboration required for design and delivery. Beyond a simple trade-off 

of form, performance and fabrication, this demanded an intimate rellationship between 

the three. The curators were intrigued by parallels of this to the composition process of 

sound art (Davies, 2013, 3) and I was able to propose a compelling arrangement of a 

significant size which promised to complement the aural ambitions of the exhibition.

Through discussion with the exhibition technical staff, we identified a preferred 

speaker layout using radial grids to set out speakers equidistant from the centre of 

the performance space (Fig. 5.05). By arranging speakers at consistent distances, 

the staff aimed to provide a good listening experience while enabling relatively easy 

tuning. Speakers were arranged at three heights, with large speakers and subwoofers 

concealed under a raised central platform and other layers to be suspended within the 

space. We further clarified key audience modes: a passive, seated area near the centre 

of the speaker arrangement; a series of individual listening stations where audience 

stood; and an active mode in which audience moved through the soundscape. These 

modes were arranged as a central performance space surrounded by a promenade 

along which listening and reading material could be arranged (Fg 5.06).

This arrangement of speakers and audience modes was matched with an 

architectural response described as a torus. I proposed that this sit in the gallery space 

with the audience moving through and around it. To tackle the project, I assembled 

a design team spanning three key areas of expertise: architecture, structural design 

and material craft. We surveyed post-formed gridshells and found few examples 

which pursued asymmetric forms. With this ambition in mind, we made further design 

decisions such as using a double-layered system of laths between two curved edge 

Fig 5.05. The proposed arrangement of 24 audio speakers in a radial pattern and at three heights.

Fig 5.06. The proposed torus design, with timber laths spanning between inner and outer edge beams.

Fig 5.07. A concept drawing for the torus design showing a plan view of the gallery.
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beams (Fig. 5.07). With a supporting team of students, we had a six-week period to 

design and prototype the structure in time for the opening of the exhibition.

5.2 	 Modularity in the Sound Bites Workflow

5.2.1 	 Plugging a Sketch into Formfinding

To win the commission from the curators and gallery team, I produced a series 

of visualisations for a schematic design, describing key spaces and sound equipment. 

The digital model used for these visualisations had little connection downstream to 

detailed design of the gridshell. To begin detailed design, I stripped out much detail 

from existing models to reach minimal definition of a simple set of curves . This formed 

a diagram which we could use to drive form-finding processes and generate more 

detailed geometry. The transition from schematic models to this detailed setout involves 

us shifting scales in Workflow, from Tasks to finer grain Functions for a generative 

design approach (Fig. 5.08).

To create a detailed design model of a gridshell, we started from two curves 

defining inner and outer edges of the Torus form. I could manipulate these curves 

in plan dimensions to control form and then generate a further series of four curves 

interpolated between these extremes. This was a two step process of interpolation in 

a single ground plane and then manually editing the height of these by manipulating 

control points. In manipulating these and the perimeter curves, I was designing both 

form and access points around the structure. 

From these six setout curves, I developed a workflow in Grasshopper to drive 

the process through a flexible model. I first lofted the setout curves to create a rough 

setout surface for the shell (Fig. 5.09). Using the base surface and edge curves, I could 

then create a rough setout for laths. For this, I divided the two edge curves evenly 

along their length to locate an even set of end points for lath axes. I generated geodesic 

curves between a point along each of the outside and inside edge curves, describing 

the shortest paths across the base surface. Through offsetting the lists of end points to 

Fig 5.08. The workflow arrangment for setting out data for detailed design of the gridshell.

Fig 5.09. Steps in the setout of surface and geodesic curve (top) and the edge curves and control 

surface generated as a starting condition for detailed design of the gridshell (bottom).
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avoid those opposite each other, I defined axes running diagonally across the surface 

and intersecting with others to form a network of three- and four-sided subdivisions 

within the surface.

5.2.2 	 Plugging in Tools to Relax a Surface

With the setout geometry as a base for the detailed design of the gridshell, 

we could embark on form-finding exercises to generate a suitable form. This 

process connected architecture directly to considerations of structure and material. 

I collaborated on this form-finding with a small engineering team, led by Sascha 

Bohnenberger at Bollinger Grohmann Engineers. Sascha has strong skills working with 

parametric models and Bollinger Grohmann have developed a suite of structural design 

tools which we used through the Karamba3D plugin for Grasshopper.

We considered several broad approaches to designing funicular gridshells 

in which loads act as compression within a structure (Adriaenssens et. al., 2014). 

Some approaches use dynamic relaxation to deform a network of member under load 

(Kilian and Ochsendorf, 2005). This results in irregular spacing between nodes within 

the network. Alternatively, techniques have been developed to adapt the form of a 

mesh to a target while constraining distances between connecting nodes. We used a 

mixed method in this case, with distances between connections varied to an extent but 

constrained within limits.

The workflow to engage dynamic relaxation spanned two Tasks (Fig. 5.10), 

once again created in Grasshopper. The first of these was composed of a series of 

Functions to complete tasks to create specific inputs for simulation. From the setout 

surface and lath axis curves, we calculated a network of points of intersection between 

laths. This served as a starting condition for our simulations, to which we applied simple 

loads. These loads included an assessment of self-weight, evenly distributed across 

this network of points, and local loads of speakers which we applied to specific points 

within the network. We fixed in place the location of points along edges (Fig. 5.11).

Fig 5.10 The workflow for developing the form of the gridshell from a setout surface to a funicular form, 

spanning two activities to applying loads and relax a network of curves.

Fig 5.11. The digital model with loads applied to the curve network including point loads of speakers 

(red) and points along edges constrained in place (green).
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Several plugins have been developed for Grasshopper which offer form-finding 

processes. Some, such as Daniel Piker’s Kangaroo plugin are underpinned by simple 

engines which simulate networks of particles connected by springs. This approach 

has direct, though simple, parallels to the hanging models of Frei Otto (see Section 

2.3.3). Working with Bollinger Grohmann’s tools here, we used an alternative approach, 

calculating deflection through their Karamba plugin. 

To use this tool, we represented our axis curves as polyines, with straight 

segments connecting nodes. We applied loads and then ran the Large Deformation  

routine which comes with Karamba. This was handled as a discrete Activity by the 

plugin. This simplicity, however, belies a large set of Functions being undertaken in 

parallel on each point, with individual loads applied locally at points. Through iteratively 

calculating deformation and moving this network of points, the shape of the network of 

polylines changes dynamically. With a sufficiently constrained example, the simulation 

finds a point of equilibrium. This linear workflow has a relatively high degree of 

modularity, with the Tasks for dynamic relaxation handled by discrete code modules.

5.2.3 	 Plugging Form-Finding into Analysis

Taking results from our form-finding simulations, we embarked on three parallel 

types of analysis (Fig. 5.12). We extended our use of the Karamba plugin to structural 

analysis. Tools such as this have been described as lightweight, providing rapid results 

from within the design software (Fischer, 2012). These results can readily feed back 

to drive subsequent iterations. While this analysis does not always have the rigour and 

accuracy of commercial tools, Karamba and others come with interfaces to export files 

to commercial tools for verification.

At regular intervals through the detailed design process, we analysed the 

performance of the structure for deflections and areas of high stress. We sorted local 

results taken across the structure to identify worst cases, likely areas of failure (Fig. 

5.14). This workflow was designed and executed by Sascha and team, following a 

similar chain in Grasshopper across three Basic Tasks. Linking directly to the resulting 
Fig 5.12. The parallel workflow for analysing for structure, material and space.
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geometry from form-finding allowed us to incorporate this structural analysis into quick 

iteration cycles. We verified results using the structural analysis package Dlubal RSTAB 

for which Karamba exported native files. Further to this, members of Sascha’s team 

used RSTAB for detailed analysis of stress within the proposed material. This Task 

branched from the main design workflow.

In parallel to structural analysis, we used a further parametric workflow to 

generate more detailed geometry of components in the proposed gridshell form. Taking 

the network of members generated through form-finding, we created a further control 

surface through a two-step process of interpolating curves through parallel points within 

the network, and then lofted a surface through these. We then needed to regenerate 

axes for laths of the gridshell, modelled as geodesic curves on this new driver surface. 

The Tasks of generating this geometry involved a series of approximate representations 

of existing geometry and we needed to control tolerances through this. We kept within 

nominal 20mm distances at each step but as with many such parametric arrangements, 

our workflow was difficult to control within these bounds.

With new curves representing lath axes, we could quickly analyse our designs 

in relation to fabrication constraints. Two geometric features were particularly significant, 

the overall length of laths and the bending radius at points along them. We identified 

maximum length with suppliers and appropriate bending limits identified through simple 

empirical tests (Fig 5.14). Through a series of Functions, we measured our curves and 

identified areas where a proposed form would not work. This relatively simple analysis 

was again part of a parametric schema, allowing us to automatically make checks in 

response to changes in form or in nominated material limits.

Our third analysis Activity centred on evaluating architectural qualities of a 

design. Some requirements were quantifiable, such as creating suitable clearances 

for the audience to walk through openings at key circulation points. The other Task of 

judging formal expression were qualitative and centred on decisions made by myself in 

conversation with various collaborators. I cannot break down this discursive process 

into finer process.

Fig 5.13. Images from the digital model showing a range of structural behaviours analysed with Karamba.

Fig 5.14. Analysing axes of laths for areas bending greater than a specified limit (left). Identifying a limit 

to bending laths through empirical testing (right).
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5.2.4 	 Plugging Driver Geometry into Lath Fabrication

A further workflow extended from our form-finding process to generate 

information from our digital models to inform the fabrication of timber laths (Fig. 5.15). 

We used the detailed geometry of lath axes as a base for each of the 144 members 

in the detailed arrangement. We arranged laths in four layers with two running in each 

direction, with each layer on a surface offset parallel to the driver surface. Through 

a sequence of Functions, we created these offset surfaces and pulled laths to the 

relevant layers, thus producing parallel curves. We then split each axis curve where it 

intersected with those crossing it, and measuring the lengths of individual segments. 

Through the design of fabrication details for the gridshell I collaborated closely 

with John Cherrey. Our design to fix laths where they overlap used simple, bolted 

connections. To fabricate each lath, we needed to drill holes at a series of points along 

their length. Using measurements of lath axes from our digital models, I creates a list 

of lengths between nodes. This again used a simple linear chain of Functions which 

provided us with a table of lengths for fabrication.

John was central to identifying a timber suitable to bending and available in 

lengths of up to six meters. He suggested Western Red Cedar and we tested samples 

before ordering blanks. John then created several jigs to control fabrication. These are 

exemplified by the  simple device for routing slotted holes into laths (Fig. 5.16). This 

jig constrained the path of a router, allowing students without skills or experience with 

a router to accurately cut slotted holes. We tasked pairs of students with measuring 

and marking hole locations using the tables of lengths discussed above. A second pair 

then checked these measurements and, where correct routed holes using the jig. We 

offset the final measurement on each list to mark and cut the lath to the desired length. 

We finalised laths for installation by adding spacer blockers at centres between holes. 

These blocks held pairs of laths in parallel trajectories when bent in place (Fig. 5.17). 

Fig 5.15. The workflow across Activities to fabricate laths from simple straight timber members.

Fig 5.16. Routing slotted holes into laths with a simple jig (left). The jig was designed to simply slide 

along the blank (right), fixed at marked locations and then slots routed by hand.
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5.2.5 	 Connecting Software Plugins to Fabricate Edge Beams

In contrast to the relatively simple extraction of tables of lengths to fabricate 

laths, fabricating edge beams required more complex transfer of information from 

digital models to material part. From a linear chain of Tasks in the digital models, the 

fabrication workflow required us to bring together three Tasks into another chain for 

assembly. Once again I worked closely with John Cherrey.

John and I designed edge beams as box sections which twisted around a 

central axis curve. We designed this as a consistent section around these curves, at 

any point oriented perpendicular to the tangent plane of the driver surface at its edge. 

Rather than model surfaces of these beams, we created a linear chain of Functions to 

model the edges of these beams. These were consistently offset along axes and twisted 

around the axis curve  relative to the driver surface. A parametric modelling environment 

is well suited to quickly modelling this type of detail and I once again drove this through 

a Grasshopper model.

We then divided the curves for these beams into segments for prefabrication. 

We designed these to be fabricated from a thin plywood. We constrained  segment 

sizes to within a 1200 x 2400mm frame in response to available sizes of both plywood 

sheets and a CNC router for fabrication. At each proposed joint in segments, I modelled 

a plane perpendicular to the central axis. I then split the edge curves with these planes, 

providing four curve segments to define the outside shape of each segment. 

In place in the 3D model, I then lofted developable surfaces between rail 

curves. I then flattened these surfaces into planar shapes without distorting the shape of 

the part (Fig 5.19). Each face of each segment was unrolled. Continuing a linear chain 

of functions in a parametric Grasshopper model, we then used two software plugins 

for the Tasks of nesting parts and generating CNC machine programs (Fig 5.18). 

The Rhinonest plugin was used to arrange parts efficiently without tool collisions. The 

RhinoCAM plugin was then used to create machine files for 3-axis cutting. Using these 

commercial plugins, each task was modular and reliable. The CNC fabrication Activity 

Fig 5.17. Routing slotted holes into laths with a simple jig (left). The jig was designed to simply slide 

along the blank (right), fixed at marked locations and then slots routed by hand.

Fig 5.18. The workflow arrangement for fabricating parts and assembling segments of edge beams.
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was outsourced to technicians running the 3-axis CNC router in the RMIT workshop. 

Beyond the fabrication of these parts, it took several attempts for us to find 

a suitable technique to assemble beam segments.  John Cherrey led this process, 

navigating challenges including inconsistency of bending in some plywood samples 

(Fig. 5.23). He also sought to discretely fix parts with glue rather than exposed 

mechanical fixings. As well as the te unique CNC-cut faces of each segment, a series of 

standard cross plates were fixed at regular intervals along the length of each segment. 

These stiffened up the assembly and helped to control tolerances. We further cut 

custom jigs with the router, each designed to hold a specific segment in a specific place 

during assembly.

We introduced jigs only after identifying errors in the shape of the assembled 

parts. Once complete, the shape of each segment was checked by measuring between 

a series of corner points and checking these back to the digital model. Through this 

Activity of assembling beam segments, we relied heavily on the skill of John and he had 

to closely execute a sequence of Functions to achieve acceptable results.

Fig 5.19. A diagram of a beam segment (top and left) and nested face parts for CNC cutting (right).

Fig 5.23. John Cherrey tests a jig to fabricate edge beam segments with bent plywood faces. The 

assembly of these segment parts required numerous tests to find a sucessful technique.
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5.3 	 The Sound Bites Design System

As with all projects, the workflows I have presented here have covered 

aspects of form, performance, material and fabrication.  Here the research centred on 

the potential to not just make trade-offs between these but collaborate through shared 

design models. As I described earlier, shell structures are known for their form-finding 

processes in which dynamic simulations of material, structural loads and material are 

negotiated to find a stable state between the three.

Once again, the Divisions within the Design Systems have fuzzy boundaries, 

defined primarily through the expertise and leadership of an individual collaborator. 

This leadership was clear, as Sascha led structural analysis, John conceived and 

tested fabrication details and I produced schematic design arrangements. In this case, 

however, our form-finding led to the emergence of a fourth Division within the Design 

System. We interfaced the three other Divisions to this.

I have already discussed the intention for material and structural performance 

to drive design and this Division developed around shared digital models, allowing us to 

quickly share data and iterating rapidly through design options. This Division acted as 

the single converging element of the workflow. Form-finding simulations required input 

from each of the other Divisions: from formal design, the quantities and arrangements 

of laths and edge beam trajectories, from structural design the loadcases suitable for 

simulation, and from fabrication, the material bending limits for edge beam and laths. 

Together these helped define a starting condition for the dynamic relaxation routine.

This central Division follows a largely linear sequence of Functions and Tasks 

to create geometry and execute form-finding routines. While we worked at a relatively 

fine grain through this Division, it had a relatively high degree of modularity as the 

sequence and Tasks followed one another. At the end of a linear sequence of form-

finding process were three analysis Activities which I discussed in 5.2.3. This analysis 

is closely coupled through parametric models and feedback thereby occurs over a 

broad scale. This allowed us to use material and structural performance to drive design 
Fig 5.23. Preassembly of multiple segments to test connections and shape.

Fig 5.22. Assembling an edge beam segment. CNC cut faces were arranged in around square bracing 

plates, with all parts glue fixed and taped in place for curing.
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outcomes.

This feedback and iteration stands in contrast to a conventional, downstream 

flow of information in design and delivery. Such states of fabrication serving design 

occured elsewhere in the System, notably through the fabrication of edge beams (Fig. 

5.22 & 5.23) and the construction of the central platform structure. I have already 

described the former, and the latter followed a simple workflow to design, fabricate and 

assemble parts. We conceived this platform as circular in plan and 600 mm high. We 

fed this design information downstream to fabrication where we specified a set of off-

the-shelf floor joists arranged radially and with conventional timber flooring as an upper 

lining (Fig. 5.24). Drawings of this arrangement were used to procure parts and the 

platform was built by a team, independent to the gridshell team.

5.4	 The Sound Bites Prototype

With a team including a class of students, we successfully designed and 

installed the full-scale prototype in the six-week period, in time for the exhibition opening 

(Fig. 5.25). The prototype includes 144 laths, bolted together in a network with over 

1200 nodes. We produced 22 segments in the edge beams, themselves composed of 

numerous parts, and connecting continuously into the central platform. Our team also 

hit a series of interim deadlines for finalising gridshell design, procuring material and 

prefabricating parts. 

As a prototype for design, the final installation resulted through much 

negotiation. We faced a number of challenges in driving deep connections between 

material limits, structural performance and providing for key spaces. These were 

resolved through many iterations, taking over 80 versions of setout geometry and loads 

before we could create a form in which laths were not bent too tightly, while at the same 

time providing  circulation spaces which were sufficiently generous.

Our structural simulations produced some unexpected results, especially in 

Fig 5.24. Assembling the plinth at the centre of the Torus. Parts were prefabricated and installed 

by an external team.

Fig 5.25. Installation of the edge beams and laths, with the inside beam connecting the platform. The 

interconnectedness of the structure meant that beams needed be propped until all laths were installed.
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the apparent behaviour at the edges of the shell, at the major entry to the structure (Fig. 

5.26). Some simulations suggested that the laths might in fact lift the edge beam in 

this area. After a series of detailed investigations, we came to a form which appeared 

relatively stable. The prototype proved this to be the case, with this beam segment 

dropping 5mm with the removal of the key prop which provided support through 

assembly.

As a prototype for production, fabrication of the laths proved straightforward. 

Our relatively unskilled workforce was able to measure and cut slots with out a 

single error among more than 1200 holes. As I have already mentioned, however, 

we encountered a series of challenges in prefabricating edge beam segments. The 

assembly of CNC cut parts, fixed in a range of complex curved shaped with glue and 

pins, required a high degree of input from John Cherrey (Fig. 5.23). His experience and 

skill were important to producing a relatively consistent result.

We undertook installation of the edge beams and laths over a 5-day period. 

Segments of beam were arranged on site, bolted together and propped where 

necessary. Regular checks of location of parts in space were made to ensure the 

structure would adequately connect. Laths were installed from the outside beam and 

connected to neighbours moving inwards. We bolted together layers of lath with spacer 

blocks to avoid collision and maintain a specific distance between layers. Parts were 

fabricated to allow for onsite adjustment through features such as slotted holes in 

laths. As more of the structure was assembled, we increasingly needed to adjust the 

previously installed parts to fit new. While the western red cedar laths proved sufficiently 

forgiving, this manual adjustment highlights that we need much further control if we 

were to consider further prototypes. Further detail on the collaborative design and 

prototyping process has been published (Williams, N. et.al., 2014).

Fig 5.27. Details of fixings between laths and a fabric cladding applied in select areas.

Fig 5.26. The installed structure with major entrance under the cantilevered edge beam.



Fig 5.28. The central performance space of the Sound Bites 

Shell and views to the surrounding promenade.
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6.1	 Music Room Background

6.1.1	 Research Premise: Robotic Performance in Fabrication

Industrial robots have long been on the factory floors of manufacturing 

companies. They are today used in many industries as a flexible, tireless and precise 

workforce. The construction industry also has notable examples, with trials run in Japan 

from the 1970s onwards (Bock and Langenberg, 2014, 98). As this type of robots has 

become more affordable, they have recently received great interest from architects. 

This has added to and extended the discourse on the generative potential of digital 

fabrication for architecture (Gramazio et. al., 2014). More than other machines for digital 

fabrication, however, these robots have been celebrated by designers as performative in 

their movement, to the point of being likened to a ballet (Picon, 2014, 57).

Countering these perceptions are pragmatic limitations to utilising these robots. 

When compared to many other CNC machines, robots move more slowly, are harder 

to program, and are less dimensionally accurate. Many tasks can be more quickly and 

reliably undertaken with another type of machine. For example, to cut timber joinery, 

a gantry-based CNC machine is the common solution amongst leading fabricators. 

To date there are few direct and tangible examples of industrial robots in construction 

supply chains. This conflict reflects broader challenges throughout this research.

Amidst this tension, over the past decade a significant international community 

of researchers has grown around robotics in architecture, for example, through the 

association for Robots in Architecture. This community is applying these machines 

in a range of novel applications such as applying carbon strands to membranes (Fig. 

6.01), to weaving material and to more conventional tasks such as milling and routing. 

This diversity of task is driven by their wide range of movement, the openness to apply 

multiple end effectors, and the ability to combine them with other equipment. As such, 

they have been described as generic machines, ready to be engaged as an active 

aspect of design (Menges and Schwinn, 2012, 121).

Fig 6.01. Reseach into robotic fabrication by, for example, the Institute for Computational Design in 

Stuttgart is driving a broad community at the intersection of robotics and architecture. 

Fig 6.02. Robots combined with bandsaws for butchery (top) and in research for cutting stone.

This image has not been reproduced for 

copyright purposes.

This image has not been reproduced for 

copyright purposes.
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23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 3

In their study in determining the optimum reverberation times 
and minimum acceptable size for music teaching studios and 
practice rooms, Lane et al (1955) concluded that for small 
practice rooms a reasonable design for the reverberation time 
would be between 0.4 to 0.5 seconds. A slight rise to 0.6 or 
0.7 sec at 100 Hz is acceptable. For the teaching studios with 
a volume of approximately 60 m3, a reverberation time of 0.5 
to 0.6 seconds with a rise to approximately 0.8 seconds at 
100 Hz is satisfactory. As a relative comparison with larger 
spaces, Kuttruff (1989) considers an RT of 1.8 to 2.1 sec. a 
sensible target for concert halls and an RT of 1.4 to 1.6 sec as 
appropriate for recital halls (for solo and chamber music 
performances). 

In their White Paper on Acoustic Criteria and specification, 
the British Broadcasting Corporation [Walker, 2002] stated 
that “the reverberation time is the only objective measure of 
the internal acoustic conditions within a small studio or room 
that is reasonably well understood, but it is, at best, a poor 
guide to the subjective acoustic environment. Many proposals 
for alternative or additional measurements have been made 
over the years but none can, at present, be interpreted subjec-
tively, at least in small rooms. There is some good evidence 
that these alternatives are meaningful in concert halls and 
other large spaces.” 

Table 1.2 Recommended Reverberation Times for Small Music Rooms 

Music Activity Space  Area m2  Height m  Volume m3   AS2107,2000 DfES,2002 BB93,2003 OCPS,2003 ANSI S12.60

Music theory classroom   50-70   2.4-3.0   120-210      0.5-0.6    0.4-0.8      <1.0      N/A      <0.6 

Ensemble /music studio   16-50   2.4-3.0    38-150      0.7-0.9     0.5-1.0     0.6-1.2    0.5-0.7      <0.6 

Recital rooms  50-100   3.0-4.0   150-400      1.1-1.3    1.0-1.5     1.0-1.5      N/A       N/A 

Teaching/practice room    6-10   2.4-3.0     14-30      0.7-0.9    0.3-0.6       <0.8      <0.5      <0.6 

Studio Control room    8-20   2.4-3.0     19-60      0.3-0.7    0.3-0.5       <0.5      <0.6       N/A 

RT is the reverberation time in seconds. For ANSI S12.60, DfES,2002 and BB93,2003 the RT is the mid-frequency value of Re-
verberation Time of the mean of the values in the octaves centred on 500Hz, 1000Hz and 2000Hz. (N/A means Not Available) 
(from AS2107,2000, ANSI S12.60, 2002, DfES,2002, DfES(BB93),2003 and OCPS,2003)  

Table 1.2 above shows the typical dimensions and the rec-
ommended mid-frequency (Tmf) reverberation times for the 
various music rooms normally found in educational facilities. 

Table 1.3 below shows actual reverberation time measure-
ments (sec) made in unoccupied rooms by the acoustic con-
sultants of some completed Music Building Projects [McCue 
& Talaske, 1990] [Blankenship, Fitzgerald & Lane, 1955]. 

Table 1.3 Measured Reverberation Times in Music Practice Rooms 

Space Type 63Hz 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz 8kHz Building

Choral Rehearsal Rm 1.6 1.1 0.9 0.8 0.8 0.7 0.7 n.a. 
Davis Middle School, Dub-
lin,Ohio - CA 

Choral Rehearsal Rm 1.2 0.9 0.7 0.8 0.7 1.1 1.0 0.6 
Tachikawa School Bldg 3, 
Tokyo - NHK 

Choral Rehearsal Rm n.a. 1.1 1.0 1.0 1.1 1.2 1.2 0.8 
Doshisha Women's College, 
Kyoto - MNA 

Ensemble Room 0.7 0.6 0.4 0.3 0.2 0.2 0.2 0.1 
Berklee College of Music, 
Boston - CTKM 

Ensemble Room 0.9 1.1 1.1 0.9 1.0 1.1 1.0 0.8 
University of Texas Music 
Building - BFL 

Percussion Rm 0.4 0.3 0.1 0.1 0.2 0.2 0.2 0.1 
Tachikawa School Bldg 3, 
Tokyo - NHK 

Practice Room n.a. 0.6 0.4 0.3 0.3 0.3 0.3 0.2 
Doshisha Women's College, 
Kyoto - MNA 

Practice Room 0.8 0.7 0.4 0.3 0.3 0.2 0.2 n.a. 
Olin Arts Centre, Maine - 
CTA

Practice Room n.a. 0.7 0.3 0.3 0.3 0.3 0.3 0.3 
Suka Tomasa Hall, Tochigi 
- NHK 

Practice Room n.a. 0.6 0.4 0.5 0.6 0.7 0.8 0.6 
University of Texas Music 
Building - BFL 

Teaching Studio n.a. 0.7 0.6 0.6 0.6 0.7 0.6 0.5 
Doshisha Women's College, 
Kyoto - MNA 

Teaching Studio 1.0 0.7 0.6 0.8 0.9 1.0 0.9 0.8 
University of Texas Music 
Building - BFL 

CA- Campanella Associates CTKM - Cavanaugh Tocci/Klepper Marshall  
CTA - Cavanaugh Tocci Associates MNA - Minoru Nagata Acoustic 
NHK - NHK Engineering Services BFL – Blankenship, Fitzgerald & Lane (1955) 
(from McCue & Talaske, 1990 and Blankenship, Fitzgerald & Lane, 1955) 

6.1.2	 Music Room Brief: A Space for Music Pedagogy

The teaching of music within primary and secondary schools has some widely 

accepted benefits. In Australian schools, however, there is a documented lack of 

spaces for teaching music (Lyons, 2013, 9). Finding suitable spaces is challenging, 

requiring both appropriate internal acoustics and good separation to provide acoustic 

privacy to adjacent classrooms. The Music Room research centres on this challenge, 

responding to a commission from a local school to develop a prototype teaching facility 

to be used and tested within an existing building on their campus.

Performing and practising music in large spaces such as concert halls has 

been widely researched. Small spaces, however, have received less attention, though 

strategies for the design of small music practice spaces have been outlined by Osman 

and Fricke (2003) and further by Riduan Osman (2010). Among the key issues they 

identify are:

•	 The proportions of a space should be designed so as to avoid reverberant 

modes. To achieve this, ratios between length, width and height are analysed.

•	 Preferred reverberation times are identified per instruments and per frequency. 

The primary means to shape this reverberation time is through varying 

materials and their proportional areas across the interior walls.

•	 The interior acoustic should be diffuse to avoid flutter echoes and specular 

reflections. Diffusers are a common sight in music performance spaces such 

as recording studios, providing variation to depth and shape of the wall.

Further to this are acoustic privacy concerns focused on airborne noise 

coming from instruments rather than impact vibrations. Common measures for airborne 

articulation are weighted Sound Reduction Index (Rw) and Sound Transmission Class 

(STC). In this case, an STC of 60 was identified as a suitable target level. This provides 

a high level of privacy, well above that in common buildings and was driven by the need 

to provide quiet teaching spaces, including a library, directly adjacent to the Music 

Room. Activities as sonically different as learning a trumpet and reading a book were to Table 6.01. Ideal reverberation times of small Music Room (Osman, 2010, 3).

Fig 6.03. A rendering of the space for the Music Room with a timber frame designed to fill the space. 

While length and width were set, ceiling height was adjusted in response to testing of room modes.

This image has not been reproduced for 

copyright purposes.



130 131

be juxtaposed with only a single building partition between them. 

Through early discussions with acoustics experts, we identified that sound 

transmission and interior acoustic articulation needed be treated separately. To 

create an acoustically private box we proposed a system of frames and panels to 

be prefabricated and on site. The room form was designed to maximise interior floor 

space on site, with the ceiling adjusted to avoid reverberant modes. We then turned 

our attention to the design of a system for the interior lining, with aspiration for a novel 

interior aesthetic and acoustic for the room. 

6.1.3	 Prototype Focus: Inventing Fabrication to Drive Design

Addressing precedent research in robotic fabrication we recognised both 

design opportunities and potential efficiencies in cutting material with a linear blade. 

In industry, robots are paired with bandsaws in a number of situations (Fig. 6.02). 

Contemporary butchery uses this combination for cutting up animal carcasses 

(Khodabbandehloo, 1993, 1). The Motoman company in Japan uses robots to undertake 

common cutting tasks for more common timber parts, ranging from stair stringers to 

guitar bodies (www.youtube.com/watch?v=M3rjmC8XTPo). The potential advantages 

of the robot in these cases are not in cutting difficult geometry but rather in controlling 

the trajectory and speed of the workpiece as it moves through the bandsaw blade. 

In recent reserach by architects, a material blank has been moved with a robot 

arm through a blade to cut a curved surface shape. Exemplars include the use of a hot 

wire to cut foam (Feringa and Sonnegaard, 2014), a wire diamond blade to cut stone 

(Feringa, 2014) and a bandsaw blade to cut timber (Johns, 2014, Fig. 6.04).  These 

researchers exploit the flexibility offered by industrial robotic arms to cut volumetric 

materials with the blade. The last example by Ryan Johns was intriguing for its use of 

timber, though Johns admits limitations in the freedom of cutting (2014, 22). These 

limitation fed into our design concept here.

Through conversation between myself and collaborator John Cherrey, we 

Fig 6.04. Johns and Foley (2014) develop a fabrication technique with a robot and bandsaw to cut 

timber, a similar combination of tools to the Music Room research.

Fig 6.05. The concept for interior wall panels showing a rectilinear blank cut with a ruled surface (left), 

with both resulting parts showing profiles of material layering in the blanks (right).

This image has not been reproduced for 

copyright purposes.
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proposed a design concept for a series of linear panels, cut from rectilinear blanks (Fig. 

6.05). These blanks were to be cut with a ruled surface, the shape of which would be 

defined by rail curves running along the planar sides of the piece. Both parts of the 

cut blank could then be applied as wall panels with curved faces shown. Furthermore, 

through customising the blanks by using laminated layers of varied materials, curved 

profile shapes could be generated when cut, with multiple materials and finishes 

revealed.

6.2	 Modularity in the Music Room Workflow

6.2.1	 Plugging a Robot into a Parametric Model

The connection of design with robot occured through a parametric model 

created in McNeel Grasshopper and Rhinoceros. This model spans two Activities to 

generate and edit geometry, and to creating programs for the robot (Fig. 6.06).  This 

process begins with a series of curves running in parallel planes which define the 

joints between adjacent panels. Between any two adjacent curves, we can generate 

the geometry of a ruled surface for a part, lofted through a series of ruling lines. A 

linear chain of Functions enables this, begun by dividing curves at discrete intervals. In 

parallel, we use this ruled surface to create further geometric elements, for example the 

intersections between the ruled cutting surface and layers of material in a part. Through 

this we can visualise the profile curves between proposed layers of material in a blank 

(Fig. 6.07). 

Using this same Grasshopper model, we can analyse the ruled surface 

geometry to identify features such as the curvature of the surface in a given plane at a 

given point. This Task occurs in parallel to the generation of profile curves. It identifies 

the rate at which the surface curves around two planes, which I will later relate to a 

bandsaw blade. Arranging Functions in such parallel Tasks for manipulating geometry is 

straightforward in Grasshopper. I was able to quickly create a robust parametric model 

which related this geometric setout and analysis to a pair of input curves as drivers (Fig. 

Fig 6.06. Two Activities of modelling detail for fabrication and using a software plugin to generate a 

program to run a robot.

Fig 6.07. Geometry for details of the each panel including of ruling lines and surface and 

between two planar edge curves. 
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6.07).

Turning from detailed geometry to fabrication, I extended the Grasshopper 

model to define a trajectory for a part to move through a linear blade and following the 

ruled surface. I arranged a linear sequence of Functions to define planes parallel to 

the ruling surface and perpendicular to the original driver curves. In parallel I defined a 

further reference plane on the volume of where the part will be connected to the robot 

end-effector. Using the planes from the ruling surface, I then located this connection 

relative to a series of steps along the cutting surface, creating a trajectory for the robot 

to move. I completed this trajectory by adding further points for safely picking up and 

dropping off a part in a given sequence.

We then need to translate this trajectory into a program to drive a robot, 

covering three Tasks:

	 Identifying the dimension of the robot and specific limitations.

	 Creating a program file with specific information to interface with the robot.

	 Translating the tool trajectory to rotations of axes on the robot.

Rather than develop workflows from scratch, I instead utilised the Kuka 

PRC plugin for Grasshopper. This plugin offers functionality which covered the first 

two  Tasks listed above. Information regarding the robot at RMIT was captured and 

implemented by Johannes Braumann, the plugin’s creator. I could  use the plugin to 

further create a program to drive for the robot, relative to the trajectory I have described  

here. The final Task of translating the robot program to drive the six rotary axes and one 

linear axis is handled internally by the robot (Fig. 6.08). As such, we needed to test 

tool paths to ensure that we avoided geometric singularities or other errors. We further 

needed to check that we avoided collisions between the robot, bandsaw and walls. The 

PRC plugin provides visualisation which we used as a first pass before further verifying 

our results with the robot.

Fig 6.08. The robot with rotation axes highlighted.

Fig 6.09. The workflow across two Activities for purchasing and modifying bandsaw blades. The first 

was undertaken by John Cherrey, the second followed a series of shared Functions and Tasks.
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6.2.2	 Plugging Craft Knowledge Into Technology

I have already mentioned the other machine used for fabrication, a conventional 

bandsaw. We salvaged a reliable machine which was due to be  decommisioned but 

which was suitable for a broad range of bandsaw blades. We then set about identifying 

an appropriate blade. This was a key Activity for which I relied on the experience 

of collaborator John Cherrey, who has both used and designed many blades. We 

sought initially to maximise the flexibility in our cut forms and John set out to identify 

key suppliers with blades suitable for cutting curved, ruled-surfaces. The detail of this 

Activity was largely unknown to me. Nevertheless, John identified a spiral blade which 

seemed suitable and we purchased one for testing.

Our first test of the blade in combination with the robot was to cut a sample 

piece of 600mm in length. At this point, the relatively straightforward progress of our 

research quickly came to a halt as the test proved a failure. We identified a series of 

problems, including significant friction and burning during cutting caused by material 

becoming stuck in the blade (Fig. 6.10). Despite assurances from the manufaccturer, 

the blade was poorly suited to cutting materials as soft as timber. Furthermore, the 

narrowness of the blade meant that it distorted easily under load. As a result, we could 

only cut at slow speeds, the test taking some 20 minutes to cut the part. We realised 

that this pace was unsuitable for the job. 

We returned to the Activity of finding a suitable blade, looking this time at more 

conventional blades. John soon discovered a relatively narrow set of options. In order to 

maximise the rate of curvature when cutting, we needed a blade with a wide kerf. such 

blades are not readily available, however, as blades are designed almost exclusively to 

have narrow kerfs in order to minimise waste. As we could not find a suitable blade, we 

realised that we needed to identify one which could be modified. This modification to 

achieved a wider kerf needed to be acheived without diminishing the quality of cut finish.

Led by John, we  undertook an extended, iterative process of modifying and 

testing blades. We purchased several blades with a consistent depth of 12mm and 

Fig 6.10. The first sample cut using the spiralled blade with visible burning to the cut face.

Fig 6.11. A custom set bandsaw blade. The blade was tempered and set to a pattern 

with teeth set to spcific angles.
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large gullet, and then worked through a process of setting teeth in a suitable pattern 

(Fig. 6.11). This involved a sequence of Tasks and Functions to prepare the metal and 

setting tools. Test cuts using the robot were used to verify the limits of curvature and 

the quality of cut from each blade design. Through extensive tests, we identified a limit 

to twist around the blade, proportional to the depth of blade, width of piece being cut, 

and kerf of the blade. Where twist limits are reached, the blades distorts to create a so-

called “washboard” effect, an effect regarded in literature as an error but which holds 

design potential for applications such as wall panels.

6.2.3	 Plugging in Industry for a Custom Tool

Through a third, parallel series of Activities, we needed to design and fabricate 

an end effector for the robot. We had used a simple vacuum gripper through testing, 

which proved to be a suitable solution for relatively short parts up to 600mm in length. 

We recognised that to cut longer parts and to cut these quickly, however, would involve 

much larger loads and would require that parts be gripped mechanically.

We approached an engineering company to work with us to create a suitable 

end effector. This process required us to prepare a brief, specifying limits in the size 

of parts, geometric limits required to avoid collisions between blade and end effector 

when rotating parts, and details of the robot related to interfacing. The company took 

this brief and developed it, helping to add detail where needed. They provided a series 

of suggestions for available parts and product which could provide required functionality 

and through discussion design with selected parts was approved. As such, the design 

of the end effector centred a linear series of Tasks with loops to iterate and refine the 

design and selection of components (Fig. 6.12).

The final design of the end-effector is composed of a series of finger grippers 

which, when actuated, rotate and move to clamp a part in place. Pairs of these grippers 

are mounted along an aluminium extrusion which acts as a boom (Fig. 6.14). We can 

move the grippers along the boom and we spaced them so that their arcs of movement 

did not overlap. This was a key feature needed for a cutting sequence, providing us with 

Fig 6.12. Two Activities to design, fabricated and install the custom end-effector.

Fig 6.13. The bandsaw and robot with custom designed end effector featuring pneumatic “finger” 

clamps to hold parts for fabrication and retract as they pass by the bandsaw blade.
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areas where one pair can close and another open without hitting the bandsaw blade. A 

standard plate for mounting an end effector was mounted to the back of the boom and 

provided a standard tool interface to the robot.

Our industry supplier drove the manufacture and mounting of the tool. 

My input was needed to support interfacing of the tool and the robot, through both 

hardware, to connect pneumatics to actuate the clamps, and through implementing 

software interfaces to program the actuation of the tool. The end-effector included 

electronic switching gear which split existing air lines into multiple channels. Working 

with our supplier, we then mapped these channels to digital signals in the robot control, 

providing a series of custom commands which we could include in a pragram.

To complete the installation we undertook two Tasks composed of looped 

Functions to calibrate precise location of a part gripped by the tool. First, we manually 

adjusted air pressure to checked the speed and pressure in the movement of finger 

clamps. When this was seemingly balanced and movement was reliable, we then 

adjusted the software definition of the robot’s tool plane. This allowed us to control 

minor rotations of the tool, relative to the bandsaw blade. Gripping a 2.4m long part, 

rotations of one-tenth of a degree effected the precision at the end of a part by 3-4mm.

6.2.4	 Plugging in Local Suppliers for Custom Blanks

A fourth line of parallel workflow for designing wall panels centred on the 

creation of custom material blanks. After testing of many blades and looking at our 

available budget, John Cherrey and I identified that timber would the primary material, 

being easily cut and cheaply available. We contacted several suppliers to discuss 

available stock. Rather than prepare a strict brief our enquiries were exploratory, 

seeking opportunities amidst a diverse set of available products.

With a tight budget and a desire to minimise waste, sizes of timber were 

critical. Our search drew on John’s experience of standard sizes from local saw mills, 

alongside further ranges of imported timber. After some negotiation, we agreed upon 
Fig 6.15 The linear chain of manufacture and installation activities to deliver a suitable robot end effector.

Fig 6.14. Two Activities to source and prepare timber, and to fabricate timber blanks.
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two cedars to provide a base, a blonde ‘Alaskan’ cedar and a darker, Western Red 

cedar. Both were available in 150mm wide boards, a size to which we could further add 

layers of veneer in standard sizes. This width also aligned well with our curved cutting 

technique.

With timber to hand, the Activity of making blanks followed a linear series of 

manual functions to dress and size pieces (Fig 6.15). We completed this Task in parallel 

for each type of timber to prepare pieces for lamination. These parts then converged 

to the Task of laminating pieces into blanks. Again, this converged to a linear set of 

Functions, as we applied glue to each part and these then arranged them in layers. We 

used a vacuum table with membrane to apply pressure to parts as the glue set, over a 

minimum period of two hours.  With rough, laminated parts to hand, we then finished 

these through a final Task of dressing them to size (Fig 6.16). 

For final fabrication, we noted that the colour of the Western Red Cedar 

was particularly varied across the blanks. We paid attention to this and identified 

bookmatched pairs, arranging them  in consecutive blanks to provide a level of visual 

continuity in the finished wall pattern.

6.2.5	 Plugging In Sound for a Generative Design Process

As I have touched upon in the preceeding sections, our design approach to 

the form and pattern running across the interior panels responded to both acoustics and 

fabrication technique. I have already outlined four aspects of fabrication which directly 

informed the design across the ruled surface shapes of panels, and the quantities of 

each material exposed as finishes through cutting. Each of these aspects also affects 

acoustics. As with the FabPod discussed earlier, we sought walls which were non-

parallel and  aperiodic in articulation. The surface area of each material also directly 

contributes to the reverberation time of the space.

We were supported in acoustic design by Prof. Xiaojun Qui. He assisted 

initially to identify suitable reverberation times and room proportions, as oulined earlier 

Fig 6.16. Timber being glue laminated under vaccuum press and rubber membrane.

Fig 6.17. The setting out of driver curvedgeometry across two Activities to capture data from audio 

samples and to subsequently create and arrange curves in a 3D model.
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(section 6.1.2). At the scale of wall articulation, he did not specify specific targets for 

each type of timber or specifics, nor targets for curvature rates and shapes. Rather, he 

indicated that at the scale of articulation which we could achieve with our fabrication 

technique, a broad range of curved form would be suitable. As a result, our primary 

drivers for the detailed design of walls were strictly architectural considerations of form 

and pattern.

Earlier I described that the geometry of wall forms was generated from a series 

of parallel, planar curves. We positioned these curves at gaps between panels, with 

each panel defined by two adjacent curves. With this system in place and panel widths 

determined by available timber, we considered a series of approaches to generate wall 

patterns. Through a workshop with students we explored over twenty techniques - from 

algorithms which recursively divided curves, to mapping  a curve profile based on an 

image. While this exercise had some good pedagogical outcomes, this litany of digital 

techniques did produce particularly surprising or novel results.

We turned our attention to potential to plug in music software to generate 

pattern. We created a linear chain of software to manage a series of Activities to 

transform data from sound files into geometry. Our design workflow (Fig. 6.17) began 

with an Activity to generate and capture amplitude curves at regular time intervals. We 

abstracted these curves as comma-separated files, representing each as a series of 

points through which we subsequently interpolated a curve. We then plugged these files 

into a Grasshopper model, created curves, and then arranged these at relevant spacing 

along a length of wall (Fig. 6.19). 

After numerous experiments, we settled on a sound sample of a tuning 

harmonics. Using our workflow we could easily connect through the geometric model 

in Rhinoceros. We could, in turn, plug this into the Activities which created detailed 

geometry for fabrication (section 6.2.1). As such we could move from sound sample 

to identifying fabrication problems in a matter of seconds. This allowed us to rapidly 

explore design options and find a desirable pattern.

Fig 6.19. an aerial perspective showing the intended layout of a sample patterns of panels.

Fig 6.18. Early digital studies looking at patterns generated by using the relief through multiple layers of  

material. We considered implications of symmetry and colour before settling on a final pallette.
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Fig 6.22. The washboarding effect on the cut surface of a piece occurs where the twisting action 

through the blade reaches a limit to deflect the blade.

6.3	 The Music Room Design System

Much of the discussion of modularity above focusses on the Activities to 

design a fabrication technique for interior timber panels. Within the broader Design 

System for the Music Room (Fig. 6.20), these four chains ran in parallel and converged 

in a final activitiy to fabricate panels. In contrast to other Systems here, this has two 

parallel Divisions capturing fabrication of the room enclosure and internal lining. This 

pair of Divisions addressing fabrication reflects the independence of the base shell and 

interior lining, both in process and in built outcome. Alongside these are Divisions for 

formal design and acoustic simulation, again reflecting activity and key expertise leading 

them.

 Once again, there are clear ways in which fabrication and performance 

drove the design of form. The parallel development of the four aspects related to the 

robotic fabrication was necessitated by the dependency of each process upon others. 

For example, the curved surfaces to be cut are actuated through the toolpath of the 

robot. and constrained in two planes by the width of the material blanks and kerf of the 

bandsaw blade. We could only identify these limits through combining blade and robot 

to cut a specific shape into a sample part. Furthermore, the combination of material, 

bandsaw blade and cutting speed affected the quality of cut finish. Negotiating these 

interdependent activities to achieve an acceptable outcome required significant trial and 

error and the cutting process was developed to a relatively high degree of modularity 

within this division.

We passed feedback from robotic fabrication to the design of form through 

geometric limits to the curvature rates which could be successfully cut. This allowed us 

to avoid areas where limits were exceeded and to drive further curvature in other areas. 

Through extensive testing, we identified the geometric limits at which the bandsaw 

blade would deflect. Quantifying these as a ratio between rotation per 100mm of travel 

and the width of the part being cut, we were able to produce a washboarding effect 

at the cutting surface. This occurs where the back of the blade catches the material, 

deflecting locally. We produced a series of parts to control this effect.

Fig. 6.21. The final fabrication process with robot guiding a timber part through the bandsaw.
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I established several interfaces to underpin connections between robotic 

fabrication and other Divisions. I have already introduced the set of planar curves 

generated through design, connecting through to the parametric model for fabrication 

and robot cutting. Flexibility in the shape and arrangement of these curves allowed us to 

design wall patterns in parallel to the fabrication technique.

We also established interfaces to a team focussing on acoustic performance, 

led by collaborator Prof. Xiaojun Qui. His team were engaged in early design 

discussions and we identified simulations to address independently the reverberation 

time of the interior space and acoustic attention of the enclosure. We suppllied them 

with 3D models and data on materials to support this, as well as drawings showing 

typical sections to help calculate the attenuation of the enclosure. As such, this 

feedback on performance helped to guide design improvements, though it followed a 

largely conventional process of design review.

Aspects of fabrication also served design here, most clearly in the delivery of 

the enclosing room. A system of prefabricated panels was designed, and the workflow 

followed a downstream flow of converging Tasks. Framing was fabricated, with a series 

of steel frames designed and ordered for the floor, and timber used for wall and ceiling 

components. In parallel to this, cladding panels were cut to size. Components were 

assembled, with sizes suitable for handling by two people. All components were then 

assembled on site in sequence, though a low degree of modularity in these Activities 

caused some mistakes and inefficiencies when assembling the panels.

6.4	 The Music Room Prototype

The full breadth of work on the Music Room extended across almost three 

years, and split over three distinct phases. Initial design and fabrication of the room 

enclosure was completed within six months. We undertook prefabrication of panels in a 

University workshop, with some components supplied already cut to size. On site, steel 

floor frames laid first, followed by wall panels (Fig. 6.25). We arranged cladding panels 

in a staggered fashion, overlapping at corners to similarly minimise sound transmission 

Fig. 6.23. A group of adjacent panels checked for tolerance once cut. Both sides of each part 

were used and applied as panel on opposite walls.

Fig 6.24. Panels mounted to battens are laid in matching pairs and prepared for transport. 
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in these potentially weak areas. We also extruded a synthetic mastic where panels met 

to ensure joints did not transmit undue sound. Ceiling frames were installed last with the 

air handling units and ducting installed on site.

We subsequently installed services and doors over a further six-month period. 

Baffles were required in ducting lengths to dampen airborne sound and John Cherrey 

made two custom glazed doors to acoustic specifications (Fig. 6.26). These allowed 

for the space to be closed and acheive the high levels of acoustic privacy desired. At 

this point, we had reached a state where the room could be used for teaching. The final 

step of installing the interior lining was completed over several further months. Once 

cut, we lacquered parts and then mounted these on battens which could be hung off 

the interior lining. Pairs of panels were matched for ease of transport and storage. 

These pairs of panels were then hung in place opposite one another, providing a rough 

symmetry of pattern but inverse form as a finish to the space.

Through this prototype we explicitly sought to invent a fabrication technique 

which could drive a unique design outcome. The system of panels and their form 

capture this and embody both opportunities and limitations of this fabrication. While the 

approach was consistent, the many unknowns of fabrication kept the design open until 

just before final production, reflecting layers of design decision through the project.

As a prototype for production, we pushed the robotic fabrication technique to a 

robust state in which panels could be fabricated rapidly and accurately. With a suitable 

bandsaw blade, the final cutting of parts ran in continuous sessions of up to 8 hours, 

with each program cutting a blank in approximately 8 minutes, with the part moving 

through the blade at a rate of 10mm per second (Fig 6.21). At this speed, we have 

clear geometric limits for these ruled surfaces at two widths. For 140mm wide parts, 

we could achieve a maximum twist across the blade of 15 degrees per 100mm travel. 

For parts half that width, we could twist twice as much. This is a speed and quality 

of production which suggest that the technique could be a cost effective approach in 

further situations. Further detail on the connections between design and fabrication can 

also be accessed through publications (Williams, N. and Cherrey, J., 2016).
Fig 6.26 Exterior view of the Music Room showing entry doors and wall to adjacent library.

Fig 6.25 Timelapse images showing installation of room shell floor and walls panels over two days.



Fig 6.27. The interior of the completed Music Room with panels arranged vertically around the space.



The workflows developed through small architectural commissions provide discrete 

examples of modular systems, assembled from diverse activities. Many design ideas 

from these systems have been extended into further project work, with development 

undertaken at different levels of detail. The following section captures three trajectories 

of this development focused on the scales of activity, task and function.

Collaborators:

Dharman Gersch

Kristof Crolla

Richard Blythe

Paul Miniufie

Amaury Thomas

Pantea Alambeigi

Chen Can Hui

Jane Burry
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7.1 	 The Termite Plugin:

	 Functions for Plugging Design into 5-Axis Routing

7.1.1	 Termite Background

Termite is a plugin for Grasshopper, offering tools to generate programs to 

run CNC routers and linking these to parametric models. It directly extends the set of 

code functions created using Rhinoscript libraries developed to generate cutting files 

for MDF frames in the FabPod project (see 4.2.4). These libraries translate specific 

input geometry to generic toolpaths which were subsequently processes to machine 

programs. Termite extends this functionality to broader inputs and outputs. An alpha 

release has been developed and we have published on the use of the plugin for 

research (Williams and Gersch, 2016).

The code development has been led by Dharman Gersch, a former student 

assistant on the FabPod. It has been developed in the Python language and uses 

the RhinoCommon platform to access functionality and datatypes within McNeel 

Rhinoceros. I have contributed high-level input to the development, to organise and 

structure code, and to design workflows at several scales.

7.1.2 	 First Functions for Workflows

We conceived Termite as a simple tool, targeting designers with only basic 

knowledge of CNC machine programming. Many CAM packages present a complex 

set of options, with excessive detail creating challenges for novice users. Building on 

the modularity in other example,  our ambition is manifest as a simple chains of workflow 

components to translate information geometry into machine files. Five basic steps have 

been outlined: defining tool and material to be machined; defining geometry; defining 

machining operations; defining a machine; and generating a program file. A reverse 

flow of information, from machine file to geometry is further enabled by ‘parsing’ a file to 

preview a tool’s trajectory. These cover two tasks in simple workflows (Fig. 7.01).

Fig. 7.01. Two basic workflows to cover Tasks of writing CNC machine programs (top) and visualising 

existing programs (bottom).

Fig. 7.02. The first release of Grasshopper components  spanning all functions in typical workflows.
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Between the functions outlined above are a series of custom datatypes, 

created to interface functions:

•	 Tool: A class representing the physical tools which are plugged into a router 

spindle. Key parameters include physical dimensions (length, diameter etc.) 

and preferences for operating speeds.

•	 Toolpath: A class representing a movement of a tool. It is composed of a series 

of point locations, orientation vectors and operating speeds.

•	 Stock: A class representing a material blank. Key parameters include either 

simple dimensions (length width height) or a custom shape, and information for 

suitable operating speeds.

•	 Machine: A class representing a CNC machine. It is composed of parameters 

and generic information required by program files for that machine.

Using these data types and working through simple steps, the first release of 

Termite has been developed to test workflows (Fig. 7.02). Components for key machine 

operations have been implemented for flank cutting (using the flank of a tool, common 

for routers), drilling (using the tip of a tool), cutting with a saw (Fig. 7.03), and surface 

milling (Fig. 7.04). Data for a library of some 20 tools has been imported and two types 

of machines have been implemented.

Workflows using Termite range in complexity. Using default values functions 

to set parameters such as a tool’s cutting speed, are relatively quick and simple. For 

example, to cut out a shape from a board using a 5-axis machine, a tool and a pair of 

curves can be added to a ‘Flank Milling’ component. By connecting this further to a 

‘Core’ component, a valid machining file can be generated. Alternatively, more detailed 

workflows can be created to control and refine detail of the machining. For example, 

if the cut result described above is of poor quality, a user can work through further 

functions to manually set parameters of the tool, toolpath and stock. This requires that a 

user implements further functions, with interdependencies highlighted through trade-offs 

between parameters. 

Fig. 7.03. Screenshot of Termite components for flank cutting parts with a saw from a sheet. The pink 

lines highlight proposed toolpaths and are flexible with the parametric model.

Fig. 7.04. Screenshot of a workflow using Termite components to mill a form from a block of material.. 

Again, pink lines highlight proposed toolpaths and provides feedback to a designer.
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7.1.3	 Modular Code for Generic Functions

The modularity of the code Functions here directly relates to the term as it is 

used in computer science. These provide a robust base layer of functionality with each 

component doing one thing accurately and reliably. At a broader scale of Tasks, a user 

is able to manipulate the order of functions and adjust key parameters. This flexibility is 

essential to meeting project needs, providing trade-offs between function and flexibility 

for users. This demands, however, a looser coupling of functions at this scale.

Through this package we can also clarify distinctions between modular 

workflows and object-oriented programming (en.wikipedia.org/wiki/Modular_

programming). The code for Termite is written in an object-oriented language Python, 

and we have created custom datatypes as described above. These datatypes are 

important to the usabi;lity of the Termite tools, however, are distinct from the functionality 

of the workflows created with them.

7.2 	 Approximating Freeform Surfaces with Planar Facets:

	 Creating Tasks to Tessellate Form

7.2.1 	 Introduction to Planar Facets

Over the past two decades, freeform surfaces have become intrinsically linked 

to non-standard architecture (Mennan, 2008, 171). Irregular and doubly-curved forms 

have, however,  presented challenges to construction. A common approach to solving 

this tension is to approximate freeform shapes with a series of facets, a continuous array 

of planar surfaces. These planes provide references for managing geometry, and allow 

a designer to easily fabricate with sheet materials.

Through several pieces of research I have, with collaborators, attempted to 

approximate freeform surfaces with planar facets. These have had different constraints 

and a series of appraches are discussed here. In each case we have aspired to 

maximise the modularity of the workflow as a Task. Where calculations are linear this is 

Fig. 7.05. Timber components being fabricated on a Biesse Rover router, programmed using Termite.

Fig. 7.06. A delanay triangulation (grey) of points (red) with the circles (in blue) showing inverse 

arrangement of Voronoi cells.

This image is not reproduced due to 

copyright.
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relatively straightforward. Where goemetry requires alternative approaches, this is more 

difficult.

7.2.2 	 Linear Solutions for Simple Surfaces

In Cartesian space, the simplest facet is three-sided, a triangle. Triangulations 

of complex shapes have long been used in computer graphics, with common 

approaches including the ‘Delaunay Triangulation’, a solution in which the angles 

of triangles are at most regular, avoiding overly acute angles.  This solution can be 

calculated linearly for any distribution of points, the modularity of which is underscored 

by a component in Grasshopper.  The inverse geometry of the Delaunay triangulation 

cells is a set of Voronoi cells, with each edge of a cells perpendicular to the edge of a 

triangle (Fig. 7.06).

For two-dimensional arrangements of points, a Grasshopper component can 

be used. For freeform shapes, however, the rules for setting out Voronoi cells cannot be 

readily applied.  There are exceptions of three-dimensional surfaces and I have already 

discussed the Voronio algorithm applied to spherical geometries for the FabPod (see 

Section 4.1.2). Here, planar facets were distributed across surfaces using a Voronoi 

algorithm which was further oriented to the centre point of a given sphere. An algorithm 

was created by Daniel Davis (Fig. 7.07) and is applicable to any sphere.

A further example comes from the Penumbra project on which I collaborated 

with Richard Blythe, Paul Minifie and Amaury Thomas. Here we designed freeform 

surfaces for a prototype panel. A series of component ‘cells’ was designed across 

these surfaces. We began by projecting these surfaces to a plane and finding a Voronoi 

solution for a given set of points, representing the centres of the component cells. 

We then created a second order of triangular facets, with each triangle defined by the 

centre of each cell and an edge of a Voronoi cell. When projected these back onto the 

freeform surfaces. Each cell component therefore had faceted faces meeting at shared 

edges with neighbouring cells (Fig 7.08). This chain of Functions formed a Task to 

reliably facet the design surfaces, within limits. A primary constraint was that a surface 

Fig. 7.07. A screenshot of a spherical voronoi tool developed by Daniel Davis for the FabPod.

Fig. 7.08. The triangulated surfaces for the Penumbra prototype, with cell components triangulated to 

ensure they meet neighbours at shared, linear edges.
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be projected onto a plane without overlapping. As such, this cannot be applied to 

surfaces which are more three dimensional.

7.2.3 	 Non-Linear Solutions for Unconstrained Surfaces

For unconstrained, freeform surfaces, techniques have been proposed and 

implemented across communities in mathematics, computer graphics and architectural 

geometry. Working with Kristof Crolla on the SmartNodes project (Williams et. al, 

2015), we explored techniques for creating planar facets with pentagonal and hexagonal 

boundaries. This project proposed a shell structure, with facets conceived as divisions 

of a driver surface, creating a series of flat, easy to fabricate panels between structural 

members (Crolla et al., 2014, 311). We selected the tangent plane intersection method 

(Cutler and Whiting, 2007, 12) in which a series of planar facets are adjusted in location 

and orientation. This requires a sequence of looped Functions to adjust the orientation 

of planar facets until a solution is found.

Our methods proved successful when applied to areas of synclastic and 

anticlastic geometry with relatively good degrees of curvature. However, where a 

surface transitioned between the two conditions and became flat or singly curved, 

results were unreliable. After several months of intermittent work, we grudgingly 

surrendered and moved on without resolving this aspect of the problem.

Shortly after this, two alternative approaches were published within the 

computational design community. The first of these used an agent-based approach 

to locate suitable points on a surface in which to locate each facet (Schwinn et. al., 

2014, Fig. 7.9). This was developed and applied to a design of the Landesgartenschau 

pavilion by the Institute of Computational Design, Stuttgart. These researchers had 

some success, although the technique similarly has problems where forms are singly-

curved or close to flat (Schwinn et. al., 2014, 182).

The second solution has been provided by Daniel Piker, using his Kangaroo 

plugin (Fig. 7.10). Here locally hexagonal forms can each be flattened by local 

Fig. 7.09. A screenshot of the freeform surface, approximated with facets. Over two-thirds of the facets 

were planar, while others were left with curvature to accommodate overall form.

Fig. 7.10. A faceted freeform ‘egg’ which with planar hexagonal facets defined using Daniel Piker’s 

Kangaroo plugin for Rhinoceros. Indiviual parts are laid out for cutting (right).
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constraints, starting from a non-planar condition and responding to local forces while 

retaining links within the network of members. This physics-based approach can be 

implemented through plugging together Kangaroo components within Grasshopper. 

The non-linear task of flattening is handled by Kangaroo’s solver component and has 

been developed to be a most solutions. Through teaching a workshop with Dharman 

Gersch, we applied this technique to a range of freeform surfaces.  We then linked 

these facets to our Termite tools to fabricate prototypes (Fig. 7.11).

7.2.4	 Creating Tasks of Varying Degrees of Modularity

In the workflows discussed here, algorithms to approximate freeform surfaces 

with planar facets are implemented as Tasks. Some of these are composed of a linear 

arrangement of Functions. Once these are created, they can be implemented with a 

high-degree of modularity, providing robust and predictable ourtcomes. Others require 

a non-linear algorithm (Fig. 7.12) and the added difficulty in finding solutions demands 

that these are of a lower degree of modularity. In these modules, key functions are 

separated by evaluations, often in the form of conditional statements to decide how to 

proceed. While this can be handled by code blocks it is more loosely coupled and the 

workflow more easily broken.

These brief accounts of several research projects covers situations which 

share the challenge of approximating a freeform shape with planar facets. This is a 

broad field of research including much work from others not mentioned here, notably 

Helmut Pottman and colleagues (Wallner et. al., 2011, 74). This recurring challenge 

highlights an area where reuse and sharing of algorithms has clear benefit both to the 

individual designer and potential to contribute back to a broader community.  When 

facing the same challenge in a new situation, I have looked to a range of solutions, 

including those previously used. A further example is discussed in the second FabPod 

project (see section 7.3). Over the short period of this research, several new solutions 

have been shared among online digital design communities, commonly through 

online forums. This ability to package and share solutions, whether as Grasshopper 

components or elsewhere, is a primary feature of modularity.
Fig. 7.12. Two examples of Tasks to facet freeform surfaces. With linear functionality (left), modularity 

can be to a higher degree than where non-linear (right).

Fig. 7.11. The faceted egg form fabricated as a series of 5-axis cut plywood panels.
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7.3 	 FabPod 2 :

	 Re-purposing Activities to Transform a Design System

7.3.1 	 FabPod 2 Introduction

Following the successful completion of the first FabPod project, funding for 

further prototype meeting room enclosures was attained. Many of the team from the 

original project were not available and new research collaborators were added to the 

team. After acoustic testing of the original FabPod (Fig. 7.13), I led the development of 

the Design System with the ambition for this next iteration not to refine or repeat what 

was done previously but to propose a new design, only loosely related to the original.

Some basic principles remained, such as the design of component ‘cells’ 

for prefabrication and onsite installation (Fig. 7.14). We further worked across the 

three Divisions of the original, addressing form, acoustic performance and fabrication. 

However, through identifying limitations we replaced a series of Activities from the 

original system and designed new ones as needed. Through a series of mockups and 

tests, I established these new Activities and their role within the Design System. I then 

stepped aside to leave the final design prototyping to a team led by Chen Can Hui. I 

have made occasional input to clarify aspects of the workflow.

7.3.2 	 Modifying Activities for Designing Form

In the original FabPod, the relationship between component form (hyperboloid) 

and overall form (intersected spheres) provided a clear solution space for formal design 

exploration. While this constraint proved productive to creating a space of design 

solutions and  extending existing research, here we proposed to revisit and remove this 

constraint.

The first scale addressed was of the component hyperboloid. Informal 

feedback from acoustic experts indicated that alternative forms could be used to create 

a similarly articulated wall surface with varied depth and material. Further, I sought to 

Fig. 7.13. Researchers Sipei Zhang and Pantea Alambeigi measure sound levels in the FabPod.

Fig. 7.14. An exploded view of components for the FabPod 2. A metal frame has a freeform oculus at its 

centre. The frame is clad with parts which span joints to neighbouring cells.
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move beyond trimming of a repeated form to create a set of unique but related forms. 

I turned my attention to developable geometry, those which can be created from one 

surface to another without stretching or compressing. While it is relatively common to 

develop flat sheets into other forms, however, other developable forms can equally be 

reshaped. I looked into cones as a suitable starting point and identified that conical 

shape could be developed into a series of unique, tapered extrusions. These forms can 

be described through a planar profile curve and fixed taper angle. From this information, 

a second profile curve can be mapped in an offset plane to that of the first curve, giving 

the form of a unique component (Fig. 7.15).

To identify how this can be developed from a cone required mapping the 

two profile curves to the cone form. I created some parametric models and achieved 

approximate solutions to a tolerance on 1mm. Collaborator Daniel Prohasky was then 

engaged on the problem. He developed an algorithm which iteratively refines a result, 

producing a form to within a defined tolerance. In real-time, this algorithm can calculate 

a result to within a tolerance of a few microns. This was developed as a Grasshopper 

component which could be plugged in for robust use by the design team.

Unconstrained by the relationship of hyperboloid to sphere, the overall form 

of the new FabPod moved away from the spherical forms of the original. Part of this 

shift was toward the relative simplicity of planar surfaces. These can offer efficiency 

where the Pod meets existing building structure, and allow for standard elements such 

as doors to be incorporated into the design. Alongside this, freeform surfaces were 

proposed and tested for acoustic performance. For detailed design, these forms were 

approximated through continuous arrangement of planar faces. This approximation 

required us to evaluate synclastic and anticlastic geometry, with solutions discussed 

in 7.2.3. At the point of handing the project leadership to Chen Can Hui, a number of 

options were in play.

Fig 7.15. Cone forms with custom shapes within them (top). These can be cut out using a robot and 

roboting table (bottom). (Images: Chen Can Hui)

Fig 7.16. Studies for the form of the FabPod2 by myself (bottom) and Chen Can Hui (top). 
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7.3.3 	 Replacing Activities for Acoustic Analysis

The first FabPod prototype provided a productive site for acoustic testing 

(Alambeigi et.al., 2016, 632). Feedback on the acoustics covered two primary issues – 

the internal acoustic quality and the level of acoustic privacy to surrounding spaces. As 

mentioned above, acoustic performance of the specific hyperboloid forms in scattering 

sound was not easily measured. Furthermore, the acoustic diffusivity of the space could 

not be readily tested in place. The significance of the hypothesis around sound diffusion 

was also challenged by some colleagues and further research in this area put aside.

The attention of acoustics experts interested in the project shifted to issues 

of privacy, primarily the transmission of sound between interior and exterior of the 

enclosure. Pantea Alambeigi provided leadership in acoustic analysis and she 

implemented a series of new Activities. These include the simulations of speech privacy 

measure Sound Transmission Index (STI), at multiple locations both within and outside 

the proposed form. These simulations required multiple iterations in simulation package 

Odeon. I did not have direct involvement with this acoustic work, however, as with the 

first FabPod, mesh approximations of the design form were needed. I was involved in 

providing some of these through techniques for approximating design surfaces using 

quadrilateral mesh faces at several scales of detail.

7.3.4 	 Modifying Activities for Fabrication

Where I continued to have a peripheral role in acoustics, my role focused on 

designing Activities for fabrications, suited to the new geometry of component cells. 

Incorporating the conical forms as reveals in each cell, a configuration of parts for each 

cell component was designed (Fig. 7.14). As with the original FabPod, this consists of a 

frame with a formed reveal and cladding attached to each side. Each of these elements 

have in turn been redesigned and these changes are manifest in re-purposed Activities.

In a similar vein to the FabPod, the fabrication of conical forms required two 

activities: manufacturing material blanks of a common base form; and subsequently 

Fig 7.17. Acoustic simulations of design proposals for  FabPod2 in Odeon (images: Pantea Alambeigi)

Fig 7.18. Frames are lasercut from sheetmetal and folded into specific shapes, with overlapped holes 

locking in correct locations and arrangements.
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trimming these to a specific shape. Within these activities, however, are different types 

and arrangements of tasks. The blank parts have been fabricated through thermoformed 

plastic, with the mould made by the contractor. Trimming parts, requires blanks to be 

mounted to a further jig, in parallel to programming both the robot and rotating table. 

Using an end milling tool on the robot, blanks are then cut to unique shapes (Fig. 7.19). 

As with much of the research here, this activity has been through an extended period to 

refine it in terms of speed and accuracy. It is planned that a further task of painting the 

parts will finish these parts.

The activity of cutting frames shifts in technique from routing mdf parts with a 

5-axis machine lasercutting metal. While the first technique provides significant flexibility 

in the shape of parts, the subsequent activity of assembling cells faced challenges in 

controlling quality for the original FabPod. This required numerous jigs and checks 

to ensure frames were assembled within acceptable tolerances. As an alternative, 

I proposed a system of sheet metal frames, laser cut from sheet material. These 

lasercut parts are designed to be folded around perforated lines, overlapping back on 

themselves with fixings (rivets or bolts) placed through overlapping holes to lock in place 

a specific form (Fig. 7.18). As with the fabrication of custom reveals, the fabrication 

of frames follows the same sequence of Activities in each FabPod. This begins with 

creating a detailed model, moving to the fabrication of parts which are then assembled. 

The Tasks within the fabrication sequence are replaced (Fig 7.20). 

Similar repurposing of Activities continues through the fabrication Division of 

the project. Fabricated parts converge into a linear chain of assembly Activities, with 

offsite prefabrication once again demanded. While some aspects of the project are 

still being finalised, this sequence of Activities will remain consistent, with any changes 

made at finer levels of detail.

7.3.5 	 A Re-purposed Design System

As these examples show, the Design System for the second FabPod maintains 

explicit ties to that of the original project, despite some significant changes across many 

Fig 7.19. Cutting a plastic part from a cone with a robot.

Fig 7.20. Modified and replaced Activities and Tasks for fabricating frames.
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of the tools and techiques of design (Fig. 7.23). This continuity is both desired and 

necessary, with an arrangement of process created at a broad scale of workflow, and 

then refined through multiple prototypes. A key example of this continuity lies in the part-

whole relationship of components and overall form of the enclosure and is manifest in 

the workflow chain running through formal design and fabrication. Activities here follow 

the sequence of the original and changes occur at a finer level of detail through Tasks 

and Functions.

This repurposing of a Design System also highlights differences in degree of 

modularity at which I access knowledge and design process. In both FabPod projects, I 

have had little engagement with acoustic analysis beyond the scale of Activity. In moving 

from the first to second projects, Activities are replaced, and follow a shift in individual 

leadership and research focus within this Division.  In contrast, I have driven the design 

of form and fabrication process from the bottom up. Activities with these have been 

edited through replacing Tasks and Functions.

Fig. 7.22. Full scale test made to test techniques for fabrication of the FabPod2 prototype.

Fig7.21. A prototype of metal frames and reveals, assembled for testing. (images: Chen Can Hui).



Fig 7.23. Replaced and modified Activities (in red) 

of the Design System from the original FabPod.
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This research set out to interrogate the changing practice of architecture 

in the context of a broadened domain spanning the design form and material, digital 

and conventional fabrication techniques, and the simulation of specific aspects 

of performance. This focus on practice fits alongside other research into digital 

technologies which highlights specific tools, techniques and design representations. 

I do not wish to diminish or gloss over the importance of such outcomes within this 

research or others. Indeed, the individual projects herein have been regularly exhibited 

and presented through peer-reviewed conference papers and journal articles (see10.3).

Through this interrogation of practice, I am not aiming to scale individual 

results into generalised formulas for design. Such generalisations would inevitably 

be incomplete and obsolete, and add constraints to design which would be resisted 

by designers who value difficulty (Willis and Woodward, 2010, 201). To better 

understand design practice, I have addressed the modularity of process at multiple 

scales and applied to varying degrees. This operates across processes which use 

digital computers and those which are manual. It also spans the technically precise and 

constrained demands of digital tools, and ambiguity which is embedded in design.

Building on the project material in the previous chapter, I here review 

the various scales of process and discuss the degree of modularity in each. This 

demonstrates a modularity of process and articulates typical roles which have emerged 

across this research. As well, these scales and degrees help to frame key priorities 

for design. I will discuss here ways that through modularity we create standards to 

manage complexity and differentiation, we undertake work in parallel to enhance design 

collaboration, and we navigate unknown outcome to enrich exploration.  Through 

explicitly recognising modularity in our design process, we can consider some key 

issues for a practice in which we plug together a diverse set of tools and techniques for 

design.

8. Discussion
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8.1 	 Levels of Detail, Degrees of Modularity

Through the project chapters, I discussed key modules at varying levels of 

detail from a base level of Functions to broad Design Systems created to produce 

full-scale architectural prototypes. In this section I provide an overview of the type and 

degree of modularity at each level,  illustrated with examples from the project material 

of key roles emerging through this modularity of practice (table 8.1). This addresses a 

primary aim of this research, to demonstrate a modularity of process.

Beyond simply demonstrating modularity, I wish to articulate the character of 

this modularity. There is clear pattern across the project material of high degrees of 

modularity at finer levels of detail, diminishing of this degree as we look more broadly. 

While Elemental Functions are always highly modular, Design Systems are always fuzzy. 

Between these scales are varying degrees of modularity, with internal coupling and 

robustness dependent on specific flows of information in design process.

Level of Detail Degree of Modularity Emerging Roles

Elemental Function High Easily understood and integrated into 

systems, limited functionality.

Basic Task Medium - High Easily learnt, high potential for 

automation.

Activity Medium – High Requiring skill, potential for 

outsourcing.

Division Medium - Low Requiring specific leadership, 

Potential for services.

Design System Low - None Potential for products.

Table 8.1. Overview of scales in workflow showing and with emerging roles for practice.

It is important to re-emphasise that the modularity described here has a level 

of subjectivity. The finest level of detail which is addressed also varies from case to 

case in the project material. In a few extreme cases, Activities are discrete modules 

from which greater detail cannot be distinguished. More commonly, however, we have 

addressed the finer detail of Basic Tasks and Elemental Functions. This reflects the 

level of detail to which we had to explore in the course of design. For example, when 

we purchased components, we did not understand Elemental Functions which were 

undertaken in manufacture. Similarly, the details of calculations for acoustic simulations 

were not always available to us. Naturally, knowledge of this level of detail is available 

to someone, be it a supplier or software developer. Interrogating process to this level 

of detail was deemed unnecessary in undertaking the research and indeed would have 

unnecessarily burdened the teams. As such, I frame the modularity of process as it 

pertains to design, inevitably with a level of subjectivity.

8.1.1	 Elemental Functions

As I have already described, Functions are a base level of detail beyond 

which we do not need to address in contemporary design practice. In digital design 

environments such as Grasshopper and in scripting libraries such as Rhinoscript, a 

base level of detail is presented and apparent. These are code functions, each with 

clearly defined input, function and output. Further to this are methods and functions in 

Software Development Platforms for Rhinoceros and other software from Mathworld 

Matlab to CATIA to Odeon, which are accessed variously to connect workflow 

and where scripting interfaces are not available. It is possible to drill down to more 

fundamental levels of code. The benefits of doing so, however, centre not on increased 

functionality but on improved speed in functions. With the processing speed of 

contemporary computers, and the relatively low volumes needed for the prototypes 

here, the speed of executing code is negligible.

For the fabrication and assembly of customised components we must control 

individual motions. Jigs were designed to control manual cutting, CNC operations are 

captured in discrete blocks of code and ordered in an efficient and effective order. 

As outlined by John Everett (1991, 74), where such individual motions have been 

central concerns to manufacturing, they have not traditionally been of much interest in 

construction, where an array of established tasks are used for relatively small volumes 

of production. However, to control the quality of fabrication within acceptable limits, 
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processes need to be conceived for varying shapes of part as input and varied shapes 

produced as outputs, requiring a higher level of detail. Again, we can consider finer 

levels of detail, and in the highly repetitive field manufacturing these are important to 

efficiency. In contrast, in the context of these prototypes with low volumes, they are 

negligible. 

8.1.2	 Basic Tasks

Elemental Functions are only of limited use in design. In the project material 

presented here, we have used literally hundreds of such Functions, organised in various 

arrangements to meet specific ends. In the context of parametric schema, Davis et al 

(2012) have identified that in design, simple organisation of functions into groups at this 

scale improves the legibility of scripts, with implications in the speed of modifying and 

sharing these among multiple users. In the projects presented here, we often needed to 

share scripts and we attempted to implement good practices in grouped functions. For 

example, in the FabPod the Tasks of connecting spheres and tessellating with Voronoi 

patterns across these were instantiated as compound Grasshopper components which 

students couldn’t accidentally break.

In the material domain, the level of expertise of individuals was also a key 

consideration in designing Tasks. Specific Tasks could be handled by experienced 

collaborator John Cherrey, however the size of our architectural prototypes demanded 

support, often relatively unskilled labour. In these cases, such as drilling holes in laths 

for the Sound Bites Shell (see 4.2.2), we needed to implement training and checking to 

complement the tools and jigs. In other cases, we could use CNC machines and robots 

for fabrication and routing parts from a sheet, for example, involved creating a program 

of a linear sequence of Functions. These Tasks involving digital fabrication address the 

transfer of information to material.

Everett identifies Tasks as the most suitable level of detail for automation in 

construction (1991, 102). It is easy to imagine a Task such as drilling holes being done 

by a machine. We can similarly automate tasks such as running acoustic simulations, 

coding routines to execute batch across multiple conditions. Indeed, with time and 

incentive we could have automated many Tasks across the various workflows here. 

Such automation requires time to engineer quality and speed, often beyond the needs of 

the prototypes here.

Some Tasks, however, are not easily automated. I have already described 

that in approximating freeform surfaces with planar facets (see Section 7.2.4), linear 

arrangements of Functions create more modular Tasks than those which branch or 

are parallel. This is apparent across many of the Tasks discussed here and reflects 

the circular, branched or parallel workflows for design (Kilian, 2007). Where non-

linear arrangements occur, automation is more difficult as complex decisions must be 

embedded in algorithms. Beyond the bounds of this research, there is much recent 

interest in fields such as machine learning which might conceivably be applied at this 

scale to provide highly modular solutions for designers. 

8.1.3	 Activities

In construction, the level of Activities is the basis for much process and for 

commercial relationships. Codes and manuals exist for installation and assembly of 

standard products and systems, with fabrication typically outsourced to a supplier. 

For more bespoke fabrication, the relationships with external suppliers need to be well 

controlled, requiring unambiguous descriptions of custom parts (Scheurer, 2013). In the 

project material I have presented here, good examples are the fabrication of hyperboloid 

components for the FabPod. To each fabricator, for pinning metal and thermoforming 

plastics, a hyperboloid form was communicated to a fabricator, through clear but 

minimal sets of information.  These Activities have a high degree of modularity, largely 

autonomous from the design team.

In contrast, many Activities related to fabrication here were not readily 

available from commercial suppliers, for instance in utilising an industrial robot to cut 

custom parts. Demonstrating effective ways to acheive novelty is a central ambition 

of this research and as such we undertook Activities in-house and used significant 
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design and testing. A prime example is the cutting of timber blanks for the Music Room 

(see Section 6.3.2). This Activity was developed over almost three years to achieve 

a situation where production could run continuously and smoothly. Further examples 

include the assembly of edge beams for the Sound Bites Shells, involving the design of 

many jigs and strategies for gluing together parts. In these cases, it was necessary to 

make finer levels highly modular in order to consistently execute an activity.

In the space of acoustics, a similar contrast is apparent between different 

conventional and unconventional analysis. Common measures such as reverberation 

time can be undertaken with off-the-shelf software, rendering such an activity highly 

modular. Less conventional measures such as calculating acoustic diffusion, a feature of 

the FabPod (see 4.1.2), required that we work at finer levels of detail.

8.1.4	 Divisions

Divisions are the level of detail at which key expertise is typically engaged. In 

practice, consultants are conventionally engaged for key disciplinary knowledge and 

compliance.  Construction is divided into key trades among contractors and in various 

types of organisation (Everett, 1991, 63). 

In the project material here, each of the large prototypes include three 

Divisions for the design of form and material, the analysis of performance (acoustic 

or structural), and the fabrication of prototypes. For both the Music Room and Sound 

Bites prototypes, a fourth Division was created alongside these. Wherever possible, 

these Divisions engaged the skills and experience of individuals to provide leadership. In 

contrast to a commmercial context, this research blurs the boundaries of these Divisions 

to explore interdependencies between them. I worked across all Divisions, providing 

expertise where needed within each and in providing leadership to connect them.

For the three major prototypes, we created variations on the three Divisions to 

enable the research. Key features are illustrated in each:

•	 For the FabPod, responsibility was assigned to individuals to build aspects of 

the system related to form, acoustics and fabrication. Interfaces between these 

became a key design activity of the research with information flowing between 

each of the three modules in agreed formats.

•	 In the Sound Bites project, a fourth Division  emerged to enable collaboration 

on the detailed design of the gridshell. This Division became central to the 

workflow, connected to each other division for form, structural analysis and 

fabrication.

•	 In the Music Room, a Division was developed to invent and develop the 

fabrication process combining robot and bandsaw. This sat alongside other 

Divisions for the detailed development of a fabrication technique.

A degree of modularity is necessary to enable parallel work in various 

Divisions. Indeed, this parallel work is essential to exploring interdependencies through 

design. As with complex models elsewhere (Winsberg, 2010, 262), fuzziness of 

modularity is important to calibrating these in relation to each other.

8.1.5	 Design Systems

At the completion of each prototype, we were inevitably asked questions 

around how long each took to make, how much each costs, and whether we would 

consider transitioning to larger volume production. These questions sometimes caught 

exhausted design teams off-guard. 

The aims of these prototypes are far from those of volume products. This 

echoes the contrast in practices of prototyping which I discussed in 2.2. In the 

research, modularity at the scale of the Design System was fleeting. Processes 

were arranged and related for a brief period and drawing on teams of collaborators. 

Furthermore they were open to be extended as conditions demanded. In this frame, 

modularity was largely dependent on my role connecting parts and instantiating 
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interfaces.

Nonetheless, it is conceivable for each Design System to lead to a type of 

product. Each addresses a particular need and could conceivable find a broader 

market. This is particularly true for both the FabPod and Music Room which developed 

out of commissions for day-to-day spaces and respond to documented needs. This 

would naturally demand clarify on the types and degrees of customisation. The demands 

of reliable and quick production at volume would demand a significantly higher degree 

of  modularity at the broad scale of the Design Systems.

8.2 	 Pros and Cons of a Modularity of Process

Addressing the design of engineering systems, Carliss Baldwin and Kim 

Clarke identify three purposes of modularity: “to make complexity manageable; to enable 

parallel work; and to accommodate future uncertainty” (2004, 1). In the projects of this 

research, the relevance of these purposes of modular thinking to architectural design 

and prototyping processes is examined in detail and through example. In this section, 

I explicitly relate these purposes to key design ambitions: for differentiation at multiple 

scales; for the exploration of interdependent aspects of form, material, fabrication and 

performance; and for cross-disciplinary collaboration for design. Through addressing 

these purposes and ambitions, here I articulate some of the benefits and challenges of 

modularity of process and relate them to examples from the research here.

8.2.1 	 Managing Complexity for Differentiation

Standardisation has become an anathema to many architects, especially 

among those practicing and commentating on digital design. As exemplified in forums 

like the Architectures Non-standard exhibition, digital technologies can enable organic 

design outcomes through seemingly organic design process, driven by intuition 

which “ensures a never-completed space of creativity and non-identical reproduction” 

(Mennan, 2008, 11). With more recent use of digital fabrication, architects have 

sought to “overcome the repetitive build-up of standard building elements in favour of 

a differentiated assembly of bespoke elements” (Gramazio Kohler, 2014, 18). At both 

scales, these architects are explicitly resisting specific constraints.

As a counter this, I have already noted Greg Lynn’s use of the term family to 

describe the collections of unique but related components “defined both individually and 

collectively at the same instance” (2008, 175). Lynn further cites the biologist Gregory 

Bateson to address the process of differentiation from a generic primitive to a specific 

part in nature. These structured relationships are underpinned by standards. Following 

this vein, in each of the workflows here component families are differentiated from a 

standard starting point. For example, in the FabPod, a hyperboloid primitive is assigned 
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a material and trimmed by a series of planes as an external border. In the Sound Bites 

project, curves defining axes of the timber laths are generated and differentiated through 

locating intersections with other axes. The ruled surfaces for faces of the robot-cut 

panels for the Music Room are created from control curves between panels, defined 

through a modular process.

In fabrication, the differentiation of material components is similarly organised 

around discrete process steps. Standard blanks are procured as off-the-shelf material 

parts. These are then differentiated through processes at the scale of Functions and 

Task. At each step, specifics of form and finish are imbued through constrained and 

repetitive process (Fig. 8.01). A similar sequence of standards steps is apparent in 

transforming digital representations into material parts.  These are underpinned by 

interfaces of structured information between modules, describing specific planes, 

dimensions and features for fabrication. When using CNC machines, such information 

is used to generate and execute machine programs. A similar translation of information 

occurs in manual processes where tools and jigs are used to define form and control 

the finishing of parts.

The formal differentiation enabled by these systems extends beyond 

components to the scale of a piece of architecture. With flexibility in components, at this 

scale we are engaging with continuous and differentiated forms enabled by NURBS 

geometry. Varying relationships of part-to-whole are explore. For example, in both the 

FabPod and Music Room projects, individual components are legible, the overall form 

read as  an aggregation of parts. In the Sound Bites shell, the continuous perimeter 

beams are broken into components at arbitrary points, with each segment not read in 

comparison to the whole. In each of these outcomes, differentiation is enabled through 

a careful of standards in a modular process.

Embedded in these modular process steps standardised interfaces defining 

flows of information. Where design demands high degrees of differentiation, these are 

particularly critical to managing an increased amount and complexity of information. 

When defining a family of component parts, we are specify types of information such as 

planes and other features relative to these. In the FabPod, for example, there are 180 

components cells, made up of over 1000 timber frame elements. The toolpaths to cut 

each of these parts have between 200 and 300 points.  We would struggle to address 

this quantity of information without standards in modules and interfaces.

The relocation of standards from defining dimensions of parts to defining more 

diverse and complex types of geometric information has enabled a major shift in the 

forms we can design and fabricate. However, it has not removed the need for repetitive 

process and in some cases has encouraged a proliferation in the number of functions 

demanded across design and fabrication. With better means to manage complexity, we 

face new decisions around the quantities and types of differentiation we pursue.

8.2.2 	 Accommodating Future Uncertainty for Design Exploration

Beyond creating difference for its own sake, in the projects here I present 

a series of hypotheses around how architecture might perform. The workflows we 

have designed here are systems composed of a combination of specific tools and 

techniques. Through designing these workflows, we define domains within which we 

Hyperboloid Part

Beam Segment

Wall Panel

Plastic sheet Forming Rough Trim Finish cut

Plywood sheet Profile Cuts Pre-Assembly

Timber Dressing Lamination Curved cut Lacquering

Fig 8.01. Steps in differentiating families of components, showing different orders in the numbers of 

differentiated parts.
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can accommodate uncertainty in order to explore specific design outcomes within useful 

limits, defined through constraints inbuilt in the workflow. The scope for exploration 

directly relates to the degree of modularity at each level of detail within the workflow.

In a first instance, we have accommodated uncertainty in the overall form and 

performance of the piece of architecture. At the broad scale of Divisions in projects I 

have already highlighted that form, performance and fabrication are only loosely coupled 

and impart loose constraints on one another. For example, in the FabPod, we were 

able to explore a range or materials and formal effects, constrained only by the need 

to use spherical forms. To a further extent, in the Music Room, the fabrication process 

combining robot with bandsaw related to both form and acoustic performance. By 

establishing low levels of modularity across a Design System we could explore a range 

of geometry without definitive constraint in panel sizes, materials or shapes.

Looking at finer levels of detail, we accommodate uncertainty through discrete 

interactions of Tasks and Functions. In digital chains for fabrication, we translate 

geometric information into instructions for a machine. It is possible to identify several 

levels of specificity in this process. A useful example from the projects lies in the 

fabrication of frames for the FabPod where the exact CNC machines for fabrication 

were only identified after the detailed modeling was complete. In response to this 

uncertainty, tool path information was captured in a generic vector-based format and 

later post-processed into two different formats for two machines to fabricate parts. 

Specific types of uncertainty is also accommodated through the flexibility of parametric 

models. However, as Davis and Peters describe, designers must be aware of the 

flexibility created and limited when defining relationships between parts. Ideally, this 

flexibility is correctly allocated, “the designer must ensure the relationships between 

components are flexible enough to accommodate unexpected changes” (p.131). At a 

technical level these models are dependency graphs which can become incomputable. 

In such cases, a designer is left with little option but to simply rebuild it (Davis, 2013, 5). 

These different levels of detail frame two modes of uncertainty. Highly modular, 

‘black-boxed’ systems are predictable in their function and are common in contexts such 

as manufacturing where reliability and volume are essential. It warrants little explanation, 

however, that such systems are of limited use for design exploration. Conversely, 

while a fine grain of modules can enable flexibility, to many parts at these scales can 

be undesirable. Accommodating too much uncertainty which overly burden individual 

design decisions.

In the projects here, design directions evolved through the development of 

workflows. As such, the uncertainty accommodated was iterative reducedreduced. 

Initially, design was framed through concepts which established at the outset of each 

project. In the FabPod, for example, we established a system by which architectural 

would be composed of  intersecting spherical elements. While these forms are 

sufficiently generic to enable a level of exploration of form and acoustic performance, 

further constraints quickly became necessary. We identified that spheres should all 

be a common radius and be combinations of concave and convex forms, limiting 

designers exploring certain responses. Later still, we reduced uncertainty in the design 

by identifying good arrangements for the entry and other key points around the space, 

using these to compose iterations of form.

Through this iterative narrowing of form and material in in designs here, many 

aspects of the detail of prototypes were certain before the form of the architecture. This 

runs counter to common design approaches in which a detail is iteratively added to a 

given form.

8.2.3 	 Parallel Work for Distributed Design

It is commonplace for architects to work alongside experts from other 

disciplines. A distinctive feature of the project work here, however, are the 

multidisciplinary teams working on design across all stages from conception to 

fabrication of prototypes. This demanded ongoing collaboration with design distributed 

across teams and design stages, with myself working at various levels of detail across 

almost all aspect. 
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I have already outlined many Activities which were led by various collaborators 

through the project chapters, which in many cases were undertaken in parallel. 

For example, in the development of the FabPod, parametric models for detailed 

models of frames were developed simultaneous to parametric models for designing 

spherical forms and tessellating cells across these. Further developed alongside were 

acoustic simulation models and techniques and processes to assemble frames. For 

the Sound Bites project, a shared Division was developed to enable collaboration 

between architects and structural engineer. Interfaces with this Division, we engaged 

in parallel Activities for setting out form, for detailed structural and material tests, and 

for fabrication processes. For the Music Room, four parallel strands of investigation 

were undertaken to design a new fabrication technique, spanning the programming of 

a robot, the design of the bandsaw blade, the design of a gripper and the preparation 

of blanks. Each informed the forms and patterns of panels, the selection of timbers, 

and the installation of the modular enclosing shell of the room. In each of the examples 

above, Activities of our modular workflows were dependent upon others. As such, 

beyond simply speeding the prototyping process, it was necessary for these to happen 

in parallel in order to inform each other as interdependent parts. 

This parallel work is manifest in many tools and techniques which were co-

authored by a range of individuals in project teams. Beyond these teams we used a 

further array of others, from the relatively rare tools from the KukaPRC plugin developed 

primarily by Johannes Braumann at the Association for Robots in Architecture, to 

larger software packages for the simulation of structures of acoustic. Alongside these 

are those made freely available through online communities, exemplified by Daniel 

Piker’s Kangaroo plugin for Grasshopper. Further again are the tools and machines for 

fabrication, from simple hand tools to industrial CNC machines.

These tools and techniques naturally have many layers of contributors in their 

design, highlighting the distribution of design across scales extending beyond the 

project work here. This is not unique to the project work here, though it highlights a 

modularity of process which is inherent to the ways we work.  Often this features a high 

degree of modularity in process, with the design of a tool distinct from its use. In other 

cases, such as the plugins shared among collaborators, the modularity is much blurrier 

as tools are developed and used in parallel.

Much has been written about the benefits of collaboration in design.  An 

individual designer can impart only limited knowledge across the broad disciplines 

demanded by design, from structures to materials to acoustics. Similarly, experts in 

these fields will likely have limited understanding of systems for fabrication and the 

composition of form, in which I have strong experience. Distributing design across of 

expert collaborators is important to successful design outcomes and demands ready 

sharing of tools and techniques 

Conversely, the sharing of tools and techniques inevitably increases risks 

as they are used by a broad arrays of users in many contexts. This is increasingly 

relevant to online communities creating and sharing tools.  Where we might simulate 

an aspect of performance, for example, techniques can be easily misused and results 

misinterpreted without a deep understanding of their internal function. As a range of 

tools are increasingly accessible to designers, distinguishing between them in terms of 

their technical function is often difficult. Similarly, identifying how particular information 

has been created is presents many challenges. As such, harnessing the benefits of 

distributed design requires careful consideration of the degree of modularity at each 

level of detail in a workflow.
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8.3  	 Key Issues of a Plugin Practice

In the previous section I related known purposes of modularity to key ambitions 

of design research. It is important to clarify that there is not simple causation. Families 

of differentiated components, for example, are not an inevitable outcome from a 

modularity of process. Nor do they cause it. Rather there are intricate relationships 

between the two. These reflect broader tensions between design practice and 

technology. I introduced some of these tensions in the Background chapter, including 

between serving and driving design, and across parallel practices of prototyping. I 

have also explicitly addressed each of these dichotomies in each of the major projects 

undertaken herein. 

In this section, I build upon this background and discussion to frame a ‘plugin 

practice’, underpinned by a modularity of process. As I have already touched upon, 

in this practice we create specific tools and techniques as well as adopt and adapt 

those of others. Here I discuss two key issues of this practice, in order to enrich  

understandings of modularity in processes of design and prototyping, and to frame 

directions for future research. For each case, I refer both to key examples from within 

my project work and to emerging bodies of literature outside it.

A plugin practice explicitly requires us to  consider how we calibrate a 

diverse set of processes with one another. Calibration is related both to the control of 

dimensional tolerances as well as the level of constraint in process which can enable 

design exploration. In both regards, process is manifest in the material prototypes. 

Alongside this are the ways we use, share and potentially create knowledge. Again this 

is multifaceted, related to  knowledge created through design research such as this, as 

well as other forms of knowledge at finer grains. Finally, modularity of process invites us 

to consider the organisation of systems beyond the scale of an individual project. These 

are both broader, in the industry and economies around design, and finer looking at 

underlying logic and function of systems we use, both in computation and material craft.

8.3.1 	 Calibration and Tolerance

Through this research, I have worked with teams to create and appropriate 

a collection of tools and techniques, relating these to one another in Design Systems. 

In doing so, we both enable design exploration at an architectural scale and place 

constraints on possible outcomes. This is not to say that systems are overly constrained, 

and the projects demonstrate exploration through a broad space of such results. 

Often there is little precedent in the relationships between processes and little time to 

understand relationships in detail, reflecting the practice of prototyping pursued in this 

research. As such, these Design Systems sit in contrast to the systems of other fields 

such as computer science and manufacturing which are commonly refined to function in 

a predictable manner.

I have already discussed exploration of the interdependent aspects form, 

performance, and fabrication and material. At broad scales of process, between 

Activities, the calibration of these aspects is intentionally loose. For example, the 

acoustic simulations of the FabPod provided loose guidelines for the design of form and 

material. We made assumptions as to scattering coefficients of the various cladding 

materials and modeled hyperboloid forms as a series of triangular mesh faces. The large 

tolerances in these assumption do not provide conditions for detailed research into the 

acoustic performance, and such outcomes were not drivers of this research. Rather 

we were able to compare variations in form and material through acoustic simulation in 

order for performance to drive iterative design research. That over 500 designs were 

explored illustrated the flexibility in the system.

In contrast to this broad scale, the ways we work at fine scales are tightly 

controlled through discrete tolerances. We confront issues of calibration immediately in 

using digital modeling software such as Rhino and subsequently using CNC machines, 

which operate within strict tolerances. Looking once more at the FabPod, our cell 

components were modeled to a tolerance of 1/10,000 of millimeter, a rounding figure 

required for computing the underlying NURBS mathematics. The shapes of component 

parts were subsequently approximated as polylines within a 0.1mm tolerance, and 
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trimmed by a CNC router operating at a similar tolerance. In manual fabrication, the 

accuracy and control of individual motions is similarly important and is dependent on 

the design and tools and jigs. A level of precision at this scale is immediately evident in 

the built FabPod with component cells meeting at controlled and consistent 3mm joints 

(Fig. 8.02).

Beyond discrete tolerances in machining parts, in fabrication we must further 

consider tolerances in multiple scales of assembly. Tolerance here is conventionally 

controlled through similarly discrete standards, for example through oversized holes 

in connection joints. When assembling components of differentiated forms, however, 

control of tolerances must be reconsidered in order to achieve an outcome in which 

all parts fit. The cells of the FabPod again provide a good example of this, with parts 

assembled to within a 0.5mm tolerance. Here cells were loosely placed and then 

connections tightened in parallel. In contrast, once the main cells were assembled, the 

exterior panels could be fixed in sequence and adjusted by eye. Beyond visual finish 

quality, error in this process has no impact on adjacent parts and overall form.

As we address processes of fabrication alongside design, we are forced to 

engage calibration of these multiple scales in parallel. A common approach is a duality, 

apparent in the projects here, between a loose calibration of process at a broad scale, 

and a higher degree at finer scales. This broadly reflects differences in the degrees of 

modularity of process and allows design exploration at an architectural scale and ensure 

a successful fabrication process at finer scales.

This duality, however, is not inevitable but rather presents a set of questions 

for architects which are only beginning to be considered in the context of contemporary 

technology (Sheil, 2014). From one perspective, it is challenged by some practitioners 

who use fabrication as a generative tool for design. I have highlighted such an approach 

in Section 2.1.1, though the generative design work and final production are typically 

distinct. From another perspective, a loose calibration of process at an architectural 

scale will be inevitably challenged where we which to refine systems. This could be 

driven by a desire to scale up manufacture. Similarly, in future research, metrics around 

Fig. 8.02. The semi-open entry to the FabPod.
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the performance of aspects such as acoustics and structures might take precedence, 

further demanding higher calibration with form and materiality of a design. Both of these  

reflects a practice of prototyping for industry which I have touched on in section 2.2.1.

Further emphasising a central role of negotiating tolerances, Branko 

Kolarevic demands that architects not forget the construction industry (2014, 131). 

In the “Beyond Novelty” of the Background chapter (Section 2.1.4) I highlighted that 

innovation and transformation of the construction industry are now in the sights of 

groups like the NCCR (Digital Fabrication) at the ETH, Zurich. While tackling such 

ambitions lies beyond the scope of a doctorate such as this, we can nevertheless 

speculate on what changes might be needed. These might occur either across the 

projects of individual design practices, across specific services offered by new types 

of practice, or alternatively across new types of customisable product. Changes of all 

three types are already apparent in emerging forms of practice (see section 2.1), and 

in the application of concepts such as mass-customisation to apartments (Piroozfar and 

Piller, 2013, 4). Beyond this are likely other forms and organisations, some of which are 

yet to emerge. In any of these contexts, the relationships between dimensional tolerance 

in material and the calibration of process are inextricable. As such, futures scenarios 

will demand that calibration of process be considered across these broad scales, and 

require us to consider modularity.

Kolarevic also highlights (2014, 130) that tolerances are associated with 

specific manufacturing processes and materials. These point to finer levels of detail than 

we have considered in the projects here, though we nevertheless engage with them. 

In an example such as a cutting process, the speed and trajectory of cut must relate to 

the shape of tool for the flutes to displace material to ensure ongoing cutting motion. 

Calibration at this scale of process is rarely considered by designers and negative 

impacts are typically considered as errors. With increasing control of machinery, we 

might imagine opportunities to more substantially explore calibration at fine scales as 

exemplified by the emerging work of practitioners such as the Soft Tolerance Approach 

of Marta Male-Alemany and Jordi Portell (2014, 122). Here, material deformation and a 

low level of control are being used to challenge current limits of generative design work.

8.3.2 	 Creating and Reusing Knowledge

In the Introduction of this dissertation, I outlined a series of perspectives on 

how knowledge is created through design. These cover Peter Downton’s observation 

that design creates knowledge about designing, to the importance of discovering new 

territory through design described by Nigel Cross, to the reflection-in-action approach 

framed by Donald Schon, highlighting that theory and practice interact in response 

to a problem. This body of theory underpins the value placed on design research in 

programs such as the one in which this doctorate is undertaken.

Through the project work I have further emphasised  how knowledge can be 

created through the exploration of interdependent aspects of form, material, fabrication 

and performance.   The Design Systems which I have developed do not prescribe 

outcomes or drive convergence to singular, optimal solutions. Rather, using these 

systems we can make trade-offs and identify sweet spots. This is a mode of creating 

knowledge which is specific to design and which is centered on exploration. Through 

exploring broad spans of possible outcomes we can deepen understandings of various 

aspects of architecture, from impacts of form, to the ways to perceive material finish and 

space. As I have already discussed, this demands that modularity at the scale of project 

Division is relatively low.

Through design exploration we also find opportunities to further create 

knowledge by challenging conventions in other disciplines. I have already touched on 

the research outputs in the fields of acoustics and anthropology which were created 

around the first FabPod prototype (see Section 7.4.1). While an architect might appear 

impotent in challenging the deep technical knowledge in fields, opportunities exist to 

make contributions through driving research into new areas.

Beyond these form of knowledge at a relatively broad scale, we can create and 

reuse other forms at finer levels. In the design and prototyping discussed here we are 

continually required to invent and adapt tools and techniques. Examples can be found 

throughout, from the combination of bandsaw and robot, to algorithms to approximate 
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freeform surfaces with planar facets, to polygonal sheet metal frames which are laser 

cut and folded into a specific three dimensional form. In the taxonomy of scales used 

here, this knowledge resides largely at the scale of the Basic Task. At this scale, 

process needs to be precise in order to interact with other modules for design.

I have already discussed that the scale of Basic Task is a primary scale for 

automation and the ways we interact with knowledge at this scale is rapidly changing. 

There are today significant online communities which have formed around software 

platforms such as McNeel Grasshopper. Individuals share code as part of an extended 

toolset which extend and customise software environments. As I have already 

highlighted, these are often shared and used by others, with code designed to be highly 

modular for exchange and reuse. Such sharing of code reflects the shared authorship 

that is necessitated by the practices of design and prototyping and which I have 

discussed throughout the project work here. Beyond the bounds of academic research, 

such shared authorship through software code is becoming apparent in commercial 

practice as well. A global community of digital toolmakers is exerting increasing 

influence on design practice, with their algorithms nested in design process (Fok 

and Picon, 2016, 6). This challenges conventions around ownership and intellectual 

property as an individual’s code is applied in a situation beyond that which they had 

considered when releasing it.

I have also already highlighted that shared authorship is evident in the 

fabrication of prototypes. Significant experience and skill contributed by colleagues such 

as John Cherrey, an individual who has many decades’ experience making furniture 

and models. John led broad Activities such as selecting and identifying timber, involving 

a complex mix of first hand experience and knowledge of the specific marketplace.  

He also used his knowledge to design simple Functions for students to participate in 

making. This built on craft knowledge at finer levels, the expertise of which Is, at times, 

easy to overlook amidst a seeming ease of execution.

The aspects above demonstrate a breadth of ways in which we have extended 

and reused knowledge through the project work. This ranges from broad knowledge 

of space and form created through architecture, to detailed and disciplinary knowledge 

in fields of acoustics and structures. Reuse is explicit in both the shared code of digital 

tools, and in the use of physical tools and jigs for fabrication.

As with the previous section, an image from the project material captures 

many layers simultaneously. A detailed image of Music Room wall panels (Fig. 8.03) 

shows timber elements separated by a 6mm gap. We see evidence of craft experienced 

applied to dress timber parts which are book-matched timber,  the grain and colour of 

the panels mirrored either side of the gap. The parts are finished in a square cut despite 

visible variability in the anisotropic material. The rough cut texture of the timber faces 

provides a contrast, a finish which is imperfect yet controlled. Together these reflect a 

deep knowledge of material craft and the development of tools and techniques used to 

finish the panels. Alongside the apparent control of finishes, the image has a layering 

of colour and form which are accentuated by black curves running across the pieces. 

These curved, asymmetric forms and layers of material are unfamiliar and their control 

is evidence of digital simulation both in design and fabrication. This further reveals the 

design exploration which has underpinned them, which are driven by both aesthetic 

outcomes and acoustic performance. 

In these multiple aspects of the image we can identify ways in which we have 

created and reused many types of knowledge in differing forms. This knowledge is at 

multiple levels of process, from that used to control the fine movements of tools and 

material parts, to the broader processes of defining form and colour. I have discussed  

five levels of process which I have appropriated from the taxonomy set out by John 

Everett (1991). Beyond these levels, Everett articulates finer levels of detail which 

underlying the Elemental Functions of our design systems. While I have presented  

Functions as discrete and robust modules, I do not wish to pretend that these cannot 

be further unpacked.

John Everett identifies that Orthopedic and Cellular operations underpin 

motions (1991, 71). Such control is extensively discussed in literature on material craft, 

highlighting muscle memory and skill of an experienced practitioner which develops 
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Fig. 8.03. A detail from a wall of the Music Room, showing two adjacent panels.

through considerable experience (Sennett, 2008, 20). Similarly clear are the lower 

levels of computer algorithm which underpin software tools. The computer programming 

languages we use for design are themselves built on further levels of code. Platforms 

such as Microsoft’s .NET framework provide flexible and robust coding environments 

which provide modular code libraries. Concepts around the design of such layers of 

code are necessary to navigate and influence the ways we work.

Though finer levels of process detail are intuitively navigated by designers, 

they are rarely discussed amongst literature from the digital design and fabrication 

community. In this mode, craft has been used by many scholars and practitioners, 

though there is relatively little research which draws on the extensive literature around 

either material craft, nor the fundamental concepts of software engineering such as 

design patterns. Furthermore, little of it considers modularity at these scales. Future 

research in design can explicitly connect with the knowledge which is embedded at 

these scales.

 In a similar fashion, knowledge of the broader scales of industry is intuitively 

considered but often insufficiently understood by designed. In a ‘plugin practice’ in 

which design is distributed across experts from a range of disciplines, architects will 

face challenges to conventional roles and services. There is evidence that modularity 

at the scale of broad services will play a significant role in shaping future industry. 

For example, in the computer industry which is the focus of research by Carliss and 

Baldwin, modularity is at the heart of transformation, “a financial force that can change 

the structure of an industry” (Carliss and Baldwin, 2004, 1). In today’s architecture 

and construction industries, we see both a diverse series of small start-up companies 

offering new services, as well as a consolidation of larger contractor and consulting 

firms.  There is much opportunity in both research and practice to further understand 

a modularity of process beyond individual projects, in order to better frame its role in 

future design practice.
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9. Conclusion

It is more than 50 years since Plugin City was conceived by Archigram. This 

speculative proposal for a future urbanism contributed to debates about the future 

relationships of design, technology and society. In the years since, this vision of 

plugging modular building components into an infrastructure, promoted by Archigram, 

the Metabolist movements in Europe and Japan and many others, has endured a 

chequered history. Understandings of modular design are widely applied. However, 

significant gaps now exist between the modular mass-production of the prefabrication 

industry, and the interests of a design-focused architecture community.

Today’s architects are well versed in creating, sharing and using a diversity 

of tools and techniques to reach beyond the conventional domain of their discipline. 

This is underpinned by a modularity of process, a modularity which sits in contrast to 

the modular components of Archigram. Here, modularity is apparent in the function 

of discrete processes, doing one thing and doing it well. This echoes practices from 

industries as diverse as computer science and automotive design, and in complex 

systems such as climate and economic models.

In this research, I have demonstrated a modularity of process across a series 

of projects spanning a broad spectrum of design and prototyping for architecture. 

In these projects, some modules are literally software plugins. Others plug digital 

machines into workflows. Others still embedding information into material through 

plugging together simple fabrication processes. In each case, the modules add 

functionality at multiple levels of detail and to varying degrees, with modular Design 

Systems created for individual projects which are both flexible and robust. I have 

represented process up to the scale of these Design Systems through a series of 

diagrams, mapping the level of detail and the degree of modularity in each. 

Through articulating a modularity within a body of project work, I have identified 

key features of modularity related to multiple levels of detail and varying degrees. It is 

useful for a low degree of modularity to be employed at a broad level of detail, allowing 

us to loosely calibrate activities of designing form, tuning performance and fabricating 

material components. It is similarly important for details of process to be highly modular, 
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providing consistent and reliable functionality. Between these extremes I employ 

modularity to varying degrees, nesting function with greater degree of modularity at finer 

levels of detail.

This modularity underpins a “plugin practice” with key features across the 

design and prototyping of architecture. It allows us to manage complexity which is 

necessary to the design and fabrication of differentiated components. It further allows 

individuals to work in parallel, allowing design to be distributed across a broad set of 

experts. Further again, it allows us to maintain a level of future uncertainty, thus enabling 

design exploration across interdependent aspects of form, material and performance.

Finally, I have framed two key issues into which we can gain further insights 

through a modularity of process. As we create workflows for design, we must consider 

the levels to which these are calibrated and the tolerances with which they can function. 

This must vary at different levels of detail, highly calibrated where control is needed 

and more loosely coupled to allow diverse processes to interrelate. Furthermore, we 

must be conscious of the depth and breath of knowledge necessary to design and 

utilise these systems. An architect will have only partial knowledge in many fields, and 

will have to reuse and create knowledge in specific cases when pursuing design. Both 

of these issues are directly linked to a degree modularity in process, and are manifest 

in many types of outcomes from design, both immaterial and material. Future research 

into the relationship between modularity and each of these issues would be of value 

to a community of researchers in architectural design and prototyping . Furthermore, 

future research could more deeply consider a modularity of process beyond the bounds 

of individual projects, adding to our understandings of both the fine grain of processes 

underlying design and the broad function of industry. This would benefit those in the 

design research community seeking to drive innovation beyond the disciplinary bounds 

of architecture with which we are familiar.
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