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Functional development of mechanosensitive hair
cells in stem cell-derived organoids parallels native
vestibular hair cells
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Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to

the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate

and are limited in number. Here we investigate the potential to generate mechanosensitive

hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The

system faithfully recapitulates mouse inner ear induction followed by self-guided

development into organoids that morphologically resemble inner ear vestibular organs. We

find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair

cells in postnatal mice. The organoid hair cells also progress through a similar dynamic

developmental pattern of ion channel expression, reminiscent of two subtypes of native

vestibular hair cells. We conclude that our 3D culture system can generate large numbers of

fully functional sensory cells which could be used to investigate mechanisms of inner ear

development and disease as well as regenerative mechanisms for inner ear repair.
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H
earing and balance rely on proper functioning of
mechanosensitive hair cells in the inner ear sensory
organs, consisting of the cochlea (sensitive to sound

vibrations), the utricle and saccule (sensitive to head tilt and
linear acceleration) and the semicircular canals (sensitive to head
rotation). Hair cells transduce mechanical stimulation of their
apical hair bundles into graded electrical responses that drive
synaptic release onto afferent neurons. Unfortunately, hair cells
are easily damaged due to acoustic overstimulation, ototoxic
drugs, degeneration from genetic mutations and ageing1–8, and
have limited ability to regenerate in adult mammals9–13. An
in vitro method of producing functional hair cells could be
valuable therapeutically and serve as an accessible system for
studying hair cell disease, death and regeneration.

Previous attempts for generating hair cells in vitro used two-
dimensional culture methods which resulted in low efficiency,
heterogeneity and incomplete phenotypic conversion14. Three-
dimensional (3D) culture systems have allowed researchers to
generate tissues in vitro that resemble in vivo structures and
organs, with potential applications to tissue engineering, drug
screening, disease modelling and studies of development. We
recently adapted a 3D method to create tissues that resemble
inner ear sensory epithelia populated with hair cells15. These stem
cell-derived epithelia, designated as inner ear organoids, harbour
a layer of tightly packed hair cells whose structural and
biochemical properties are indistinguishable from native hair
cells in the mouse inner ear.

Here we assess functional properties of hair cell-like cells in
inner ear organoids using single-cell electrophysiology. We find
that organoid hair cells have mechanosensitivity and intrinsic
electrical properties that resemble native hair cells. Interestingly,
the organoid hair cells appear to develop the precise ion channel
complements appropriate for particular subtypes of vestibular
hair cells with distinct response properties. Vestibular hair cell ion
channel expression follows a stereotyped temporal pattern during
late-embryonic and early postnatal periods of development16,17,
possibly in response to a cascade of precisely timed
developmental signals. Organoid hair cells closely mirror this
developmental pattern characteristic of in vivo hair cells,
suggesting that the organoid microenvironment provides the
proper sequential cues for normal hair cell development.

Results
Generation of inner ear organoids from mouse ES cells. To
facilitate identification of hair cells in 3D cultures, we applied our
inner ear induction protocol15 to Atoh1/nGFP mouse reporter
embryonic stem (ES) cells (hereafter, Atoh1/nGFP cells; Fig. 1a),
in which Atoh1þ cells expressed nuclear-localized green
fluorescent protein (GFP)14,15,18,19. In the Atoh1/nGFP cell line,
early undifferentiated cells as well as inner ear hair cells were
nGFPþ (Fig. 1b). In comparison to R1 ES cells15, Atoh1/nGFP
cell aggregates grew at a similar rate and generated outer epithelia
that thickened following treatment with FGF2 and the BMP
inhibitor LDN-193189—an indication of pre-otic induction
(Fig. 1c,d). Following a pulse treatment with the Wnt agonist
CHIR99021 between days 8 and 10 (D8–10), we observed inner
ear organoids in 70–80% of the aggregates between D12 and 30
(Fig. 1b). The expression of GFP gradually diminished and was
extinguished by differentiation day 8. Later, nGFPþ cells
reemerged in organoid vesicles as early as day 12 of
differentiation (Fig. 2a,b). After further development, the
number of nGFPþ cells increased, forming organoid regions
densely packed with nGFPþ cells (Fig. 2c–e), similar to the
dense distribution of hair cells in the utricular macula. We noted
that most nGFPþ cells were also immunopositive for Anxa4a,

Myo7a, Calretinin(Calb2) and Sox2 with bundles
immunopositive for acetylated-Tublin, F-actin and Espin
(Fig. 2f–l). In three D20–24 organoids stained for hair cell
markers, Myo7a, Calb2 or Sox2, we found that 68±8.6%
(mean±s.e.m.) of nGFPþ were also positive for a hair cell
marker. Occasionally, we observed nGFPþ cells in the
supporting cell layer (Fig. 2g, arrowheads), likely indicating
cells transitioning to a hair cell fate20. Consistent with our
previous findings, the F-actinþ , Espinþ hair bundles had a
vestibular-like morphology (Fig. 2h–k). Together, these data
demonstrate several similarities between organoid hair cells and
native vestibular hair cells and indicate that Atoh1/nGFP reporter
expression can be used to identify hair cells in ES cell-derived
organoids.

Inner ear organoids contain cells that are mechanosensitive.
Further inspection of well-developed Atoh1/nGFP organoid
epithelia revealed many similarities to native utricle sensory
epithelia. In utricles, planar polarity of bundle orientation is
highly organized (Fig. 3a) and nuclei lie in a focal plane below the
bundles (Fig. 3b). In the ESC-derived sensory epithelia, hair
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Figure 1 | Generation of inner ear organoids from R1 and Atoh1/nGFP

ES cells. (a) Schematic overview of the inner ear induction protocol.

(b) Comparison of aggregate morphology during otic induction in R1 and

Atoh1/nGFP cells. Scale bars, 100mm. Inner ear organoids can be seen

protruding from the aggregates in the day 16 panels. (c) The mean

(±s.e.m.) diameter of R1 and Atoh1/nGFP cell aggregates increases at a

similar rate over time. (d) The mean (±s.e.m.) apparent thickness of outer

epithelia on day 7 aggregates is not significantly different between R1 and

Atoh1/nGFP aggregates.
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bundles often showed local alignment (Fig. 3c) with nGFPþ
nuclei visible in deeper focal planes (Fig. 3d). Hair cells that have
functional mechanotransduction can be labelled with brief
application of the vital dye, FM1–43, which enters through open
transduction channels (Fig. 3b). Due to spectral overlap between
nGFP and FM1–43, we used an alternative dye, FM4–64, which
also enters large cation channels and has excitation and emission
spectra shifted to longer wavelengths. To assay for functional
mechanosensitive channels in ESC-derived organoids, we applied
FM4–64 and imaged at the bundle level. nGFPþ nuclei were
visible at the cell body level (Fig. 3e,f) and FM4–64 fluorescence
was evident in cell bodies and hair bundles of nGFPþ cells
(Fig. 3g,h), suggesting the presence of functional mechan-
otransduction channels. While FM dyes are useful for visualiza-
tion of large numbers of cells, measurements from individual cells
are required to definitively identify mechanosensitive hair cells.

To more precisely assess the functionality of these ESC-derived
hair cells and their similarity to native hair cells, we performed
electrophysiological recordings using the whole-cell, tight-seal
technique (Fig. 3i–n). The following electrophysiology data are taken
from 153 cells in ESC-derived sensory epithelia, 10 derived from R1
embryonic stem cells and 143 from Atoh1/nGFP stem cells.

Hair cell mechanosensitivity depends on ion channels, located
in the hair bundle, that open in response to bundle deflection
towards the tallest stereocilia21,22. We examined 62 cells with
intact bundles and well-coupled stimulus probes. Forty-three of
the 62 cells (69%) were mechanosensitive (Fig. 3j–n), with
amplitudes (Fig. 3m), adaptation (Fig. 3j,k) and displacement
sensitivity (Fig. 3l) similar to native vestibular hair cells. Since the
properties of mechanotransduction vary by hair cell type and
region23, we performed a quantitative comparison of organoid
hair cells relative to utricle extrastriolar hair cells that had
morphological and electrophysiological properties typical of Type
II cells (Table 1). We found that mechanotransduction current
amplitudes and time constants of adaptation in organoid hair
cells were consistent with those of the P4 utricle hair cells in our
sample and those reported previously24–27. The time constants
for organoid hair cells (o10 ms for tfast and tens of ms for tslow)
were not significantly different than those of utricle hair cells
(P¼ 0.6 and 0.09 t-test, respectively; Table 1). In contrast,
adaptation in cochlea hair cells is an order of magnitude faster
(o1 ms for tfast and o10 ms for tslow (refs 28–32)). The 10–90%
operating range was also larger (P¼ 0.03) and extent of
adaptation smaller for ESC-derived hair cells (P¼ 0.02; Table 1)
than for utricle hair cells. The average maximal transduction
amplitude was 99±12 pA (n¼ 30), smaller than typically seen in
postnatal utricle (150–250 pA). However, the organoid
transduction current amplitudes appeared to increase between
D23 and D25 of culture, and attained amplitudes similar to native
hair cells by D25 (Fig. 3m, Table 1; P¼ 0.77), but at a slower rate.
The onset of mechanotransduction in native vestibular hair cells
is rapid, going from zero to mature current amplitudes over the
course of one day16. We confirmed that these stimulus-evoked
currents in organoid hair cells could be reversibly blocked by the
transduction channel blocker dihydrostreptomycin (Fig. 3n),
consistent with the pharmacology of native hair cells33.

Organoid hair cells express voltage-dependent currents. We
also examined other membrane currents seen in native utricle
hair cells. Ion channels present on the hair cell basolateral
membrane are critical for normal hair cell function and shape the
voltage signal that determines the synaptic output of the cells.
Voltage-dependent currents in ESC-derived hair cells resembled
vestibular hair cells and followed temporal patterns of ion
channel expression seen in developing vestibular hair cells. In
cells with morphology resembling hair cells, we observed negative
resting potentials, the presence of large outward Kþ currents,
and fast inward rectifying Kþ currents. The majority of these
cells had membrane currents resembling Type II vestibular hair
cells, but we observed six cells in five different organoids that
resembled Type I vestibular hair cells. Additionally, in some
nGFPþ cells that lacked hair bundles, we observed small out-
ward Kþ currents (771±121 pA at þ 35 mV; n¼ 7), but no fast
inward rectifying Kþ currents. These cells may represent very
immature hair cells as the outward Kþ current amplitudes were
similar to E15, but the lack of inward rectifier and hair bundles
suggested they were more similar to E14 vestibular cells17.
Alternatively they may have been destined for another cell fate
and thus were excluded from subsequent analysis. Capacitance of
hair cell-like cells (including Type I’s, D22–28) averaged
6.0±0.2 pF (n¼ 136), slightly higher but in the same range of
cell capacitance reported for neonatal utricle hair cells (Table 1;
P¼ 0.07).

All Type II-like ESC-derived hair cells had at least two
potassium current components, a large delayed rectifier (Fig. 4a),
and a smaller inward rectifier (Fig. 4e, arrowhead), both
characteristic of Type II utricle hair cells. The delayed rectifier
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Figure 2 | Inner ear organoids generated from Atoh1/nGFP ES cells

include nGFPþ cells that expressed multiple hair cell markers. (a,b) The

appearance of nGFPþ cells in the epithelium of organoid vesicles on day 12

of differentiation. (c) At later stages of differentiation (4day 14), numerous

nGFPþ cells populated the epithelium, typically in a regional cluster as

seen in d and e. (f,g) Most nGFPþ cells were also Anx4aþ and Calretinin
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bundles. (j,k) Most Calb2þ hair cells also had Espinþ hair bundles. (l)
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current was several nanoamps in size, consistent with that
observed during the first postnatal week in the utricle17,34,35. The
delayed rectifier current dominated the current–voltage
relationships, similar to those of native utricle hair cells
(Fig. 4b). Delayed rectifier Kþ current size increased with
number of days in culture (at nominal þ 95 mV, D22–23:
5.7±0.3 nA, n¼ 25; D24–25: 7.5±0.4 nA, n¼ 16; D26–28:
8±0.5 nA, n¼ 17) consistent with Kþ current development in
perinatal utricle hair cells17,34,35. The maximal chord
conductance approximated by fitting the linear region of the
averaged I–V curve (n¼ 27) was 54 nS. The activation time
course for the delayed rectifier current was slower in D22–25
ESC-derived hair cells than for P4 utricle recordings (Fig. 4c) and
slower than reports in the literature17,34,35. Between D26 and
D28, activation in 6/12 cells were very poorly fit by a single time
constant, but well fit by the sum of two exponentials. In the
remaining six cells that were reasonably fit, the time constants
were similar to values obtained in utricle hair cells (Fig. 4c).

The delayed rectifier showed minimal inactivation (o2% of peak)
during 50 ms voltage steps and was relatively uniform across the
population of ESC-derived cells, which contrasts with the presence
of subpopulations of hair cell-like cells with rapidly inactivating
outward current in Oshima et al.14. In response to another protocol
with a longer depolarizing step and a hyperpolarizing prepulse, ESC-
derived hair cells also exhibited similar voltage-dependent outward
current properties as utricle hair cells (Fig. 4d).

In response to hyperpolarization to � 125 mV, a rapidly activating
inward current was evoked (Fig. 4e) that can also be seen in the I–V
curves as an inwardly rectifying region in the hyperpolarized range
(Fig. 4f). This current resembled IK1, a fast inward rectifier Kþ

current, prominent in vestibular hair cells17,34,36,37. Notably, Levin
and Holt38 found an absence of inward rectifier current in vestibular
hair cells of Kir2.1-deficient mice. Comparison of current-clamp
recordings from Kir2.1-deficient and wild-type mice suggested the
current is active at rest, has a hyperpolarizing effect on the resting
membrane potential, and speeds up membrane responses from rest.
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Figure 3 | Organoid epithelia resemble sensory epithelia of native utricles and have functional mechanotransduction. (a–h) Left and right column

images in the same row are paired (same tissue and region). (a) DIC image of a utricle epithelium from a C57BL/6J mouse at the focal plane of the hair

bundles. (b) Fluorescence image of FM1–43 shown at the somatic plane. (c) DIC image of a day 25 organoid epithelium at the bundle plane. (d) Overlay of

DIC and nGFP fluorescence images focused at the somatic level. (e) DIC image focused at the somatic level. (f) Fluorescent image of the same field shown

in e showing Atoh1-nGFPþ cell bodies. (g,h) DIC and FM4–64 fluorescence images focused at the hair bundle level of the same D23 organoid epithelium

shown in e and f. Scale bar, 20mm applies to panels a–h. (i) Schematic of preparation for organoid electrophysiology. Organoids were dissected (left), and

the epithelium was flattened and pinned with hair bundles facing up (middle left). Single hair bundles (right) were mechanically stimulated during

whole-cell recording from the cell body (middle right). Scale bar, 10mm. (j) Families of mechanotransduction currents evoked by step bundle deflection

protocols shown below. (k) Single transduction current traces measured at the half-maximal deflection (0.4mm left, 0.8mm right), fitted with double

exponential curves (red). (l) Mean±s.e.m. current-displacement relations for 10 organoid and 8 utricle hair cells. (m) Transduction current amplitudes for

organoid hair cells plotted as function of days in culture. (n) Transduction currents before, during, after and following reapplication of the transduction

channel blocker 200mM dihydrostreptomycin (DHS).
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An inward rectifier current also appears transiently in developing
cochlear hair cells39. The near maximal conductance of IK1,
calculated between � 105 and � 125 mV from the average I–V
curves was 4.5 nS for P4 utricle (n¼ 8) and 4.7 nS for ESC-derived
hair cells (n¼ 27).

In addition to Kþ currents, we also observed other currents
typical of vestibular hair cells. Although mature hair cells do not
fire action potentials, small Naþ currents are transiently
expressed in developing hair cells and may play a developmental
role17,40. The currents consist of tetrodotoxin (TTX)-sensitive,
TTX-insensitive NaV1.5-like, or both, depending on hair cell type,
anatomical zone and developmental age23. In many ESC-derived
hair cells, we observed inward Naþ currents with rapid voltage-
dependent activation and inactivation (Fig. 4g,h). Utricle hair cell
Naþ currents peak in amplitude between E16 and P1 and then
decline into adulthood17,23,40. Remarkably, we observed the same
pattern of declining prevalence as the ESC-derived hair cells
matured (Fig. 4i).

Vestibular hair cells, but not cochlear hair cells express Ih, a
hyperpolarization-activated mixed cation current flowing through
channels whose subunits are encoded by the HCN1–4 genes34,36.
In vestibular hair cells, HCN1 is the main contributor to Ih based
on quantitative RT–PCR (PCR with reverse transcription) and
recordings from Hcn1� /� , Hcn2� /� and Hcn1/2� /� mice41.
Ih can be identified as an inward current that activates very slowly
upon hyperpolarization (Fig. 4j). Ih was evident in 25/67 ESC-
derived hair cells. Ih increases greatly in prevalence and size
between P3 and P8 (refs 34,41), and was not observed by Géléoc
et al.17 who recorded through P2. Likewise, the prevalence of Ih in
ESC-derived hair cells increased with number of days in culture
(Fig. 4k). At D28, Ih was prominent and a depolarizing ‘sag’
characteristic of cells with Ih could be seen in response to large
hyperpolarizations (Supplementary Fig. 1B). In D27–28 cells, the
major time-dependent component of Ih activation at � 125 mV
was well fit by a single exponential with t¼ 181±26 ms (n¼ 7),
slower than for P8–P10 hair cells41, but still within the range
reported for HCN1 and faster than for the other HCN subunits42.
Boltzmann fits of the voltage-dependent activation of Ih had
similar V1/2 and slope values as utricle hair cells (Supplementary
Fig. 1A).

Organoid hair cells have normal voltage responses. To test the
membrane responses of the ESC-derived hair cells, we performed
recordings in current-clamp mode. The mean resting potential of
ESC-derived hair cells was � 63.2±0.7 mV (n¼ 38), similar to
P4 utricle hair cells (Table 1). Step current injections in
ESC-derived Type II-like hair cells produced relatively large
voltage excursions (Fig. 4l,m). In both cases, membrane potential
peaked near � 20 mV and then repolarized as outward Kþ

currents activated. The steady-state voltage in the hyperpolarizing
direction was larger than in the depolarizing direction (Fig. 4m),
due to small inward rectifier Kþ current and large outward
rectifying Kþ currents, respectively. The membrane voltage
followed sinusoidal currents (mimicking oscillating stimuli like
walking, vibration, or acoustic stimuli) and was also characterized
by an initial peak and larger deflections in the hyperpolarizing
direction (Fig. 4n, B5 Hz). A frequency modulated sweep
protocol spanning 1–30 Hz was sometimes applied; the organoid
hair cells all displayed high pass properties, presumably due to
activation of Kþ currents at lower frequencies (Supplementary
Fig. 1C). The responses were similar to those of P4 vestibular hair
cells (Fig. 4l,m) and to vestibular cells described previously38,43.

Inner ear organoids have features of functional synapses. In
day 20–30 organoids, we observed synapse-like CtBP2þ puncta
associated with TUJ1þ neural processes at the base of nGFPþ
cells (Fig. 5a,b; Supplementary Fig. 2; Supplementary Movies 1
and 2). To facilitate visualization, we plotted the spatial coordi-
nates of each nGFPþ cell and each CtBP2þ punctum and
found that 87% (223/256) of the puncta were closely associated
(o5 mm) with nGFPþ cells (Fig. 5c; Supplementary Fig. 2),
suggesting the presence of presynaptic release sites in organoid
hair cells.

Neurotransmitter release in hair cells is dependent on calcium
entry through voltage-gated Ca2þ channels, so we sought to
determine whether Ca2þ currents were present in ESC-derived
hair cells. Hair cells have a non-inactivating or weakly
inactivating L-type Ca2þ current; cochlear inner hair cells differ
from vestibular hair cells in having a much larger Ca2þ current
that is almost entirely dependent on CaV1.3 (refs 44–49). In inner

Table 1 | Properties of mechanotransduction and general electrophysiology in hair cells from organoids, utricles and values from
the literature.

ES cell-derived organoid Utricle P4 Utricle (Literature)

Transduction amplitude D24–27 (pA) 144±18 (13) 136±20 (7) 155±16 (36) (ref. 24)
164±76 (8) (ref. 16)

Transduction 10–90% range (mm) 1.6±0.1 (12) 1.2±0.1 (7) 1.3±0.4 (8) (ref. 16)
Transduction adaptation tfast (ms) 9.1±1.6 (7) 7.6±2.3 (6) B3 (15) (ref. 26)

5.2±0.7 (ref. 24)
Transduction adaptation tslow (ms) 83.4±8.7 (7) 62.3±6.2 (6) B50 (13) (ref. 26)

49±37 (8) (ref. 16)
49±6 (9) (ref. 27)

45.6±4.5 (41) (ref. 24)
Transduction extent of adaptation (%) 44.5±5.0 (7) 66.3±5.4 (7) B65% (17) (ref. 26)

65±3 (ref. 25)
Resting potential Type II (mV) � 63.2±0.7 (38) � 58.2±0.8 (6) �64±5.2 (98) (ref. 58)
Resting potential Type I (mV) � 79.3±1.6 (4) � 78.1, � 86.0 (2) � 77.2±3.1 (62) (ref. 58)

P5þ 2DIC
Input resistance Type II (MO) 1,228.7±119.9 (22) 934±85 (12) 1,390±830 (98) (ref. 17)
Input resistance Type I (MO) 49.7±11.2 (5) 57.7±14.8 (4) 55±41 MO (28) (ref. 17)

P5þ 2DIC through P9
Capacitance (pF) 6.0±0.2 (136) 4.8±0.2 (11) 5.0±1.3 (16) (ref. 17)
Type II

Organoid data are pooled for all ages D22–28. Our data are presented as mean±s.e.m. and n values are noted in parentheses. S.e.m. or s.d. are indicated for literature values where it could be
determined. Transduction comparisons are from extrastriolar Type II hair cells.
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hair cells, this current also participates in calcium-based action
potentials during development50–52. We isolated Ca2þ currents
with an external solution containing 140 mM TEA, 10 mM 4-AP
and 5 mM Ca2þ . In 12/17 cells, we observed inward currents that
activated with depolarization and displayed very little or no
inactivation (Fig. 5d). These currents were typically small
(15–35 pA), but within the range previously described for
vestibular hair cells44,46–48. The peak inward currents were
evoked by steps to between � 40 and 0 mV (Fig. 5e), as
previously described for vestibular hair cells44,46,48. The current
was blocked by a Ca2þ channel blocker, Cd2þ (Fig. 5f);
subtraction of the currents in Cd2þ revealed an inward current
with an activation time course similar to that reported previously
for vestibular hair cell Ca2þ currents (Fig. 5g)44. Therefore,
organoid hair cells have calcium currents that resemble those of
vestibular hair cells and may be sufficient for synaptic release
onto TUJ1þ neurites (Fig. 5a,b; Supplementary Fig. 2;
Supplementary Movies 1 and 2). Occasionally (n¼ 4), we
encountered nGFP-negative cells that had currents resembling
those typical of vestibular ganglion neurons (Supplementary

Fig. 3A). The cells had large rapidly activating and rapidly
inactivating inward currents (Supplementary Fig. 3B–D) with
properties similar to those of sodium currents previously
described in vestibular ganglion neurons53,54.

Some organoid hair cells have features of Type I hair cell. In the
vestibular system, there are two types of hair cells with different
protein expression profiles, cellular and bundle morphology,
electrophysiological properties, synaptic connectivity and zonal
distribution. Calbindin-2 (Calb2) expression is known to distin-
guish Type II (Calb2þ ) from Type I (Calb2� ) hair cells. In
D23–28 organoids, the majority of Myo7aþ hair cells were
Calb2þ ; however, a subset of hair cells was Calb2� , suggesting
a Type I identity (Fig. 6a–c) and several cells had broader hair
bundles typical of Type I cells. While the majority of organoid
hair cells had hair bundles (Fig. 6d,e) and electrophysiological
phenotypes typical of Type II vestibular hair cells, we recorded
from six cells with hair bundles (Fig. 6f) and morphologies that
resembled Type I hair cells. Type I hair cells can be identified
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Figure 4 | Electrophysiological properties of organoid hair cells. (a) Families of outward Kþ currents evoked by the voltage protocol shown below.

(b) Mean±s.e.m. peak current–voltage relations for 27 organoid hair cells (D22–28) and eight Type II utricle hair cells (P4). (c) Mean±s.e.m. time

constants of single exponential fits to Kþ current activation as function of membrane potential for D22–25 (n¼ 12), D26–28 (n¼6) organoid hair cells and

P4 utricle hair cells (n¼ 7). (d) Families of Kþ current evoked by a voltage protocol (below) with a prepulse to � 125 mV. (e) A family of fast inward

rectifier currents recorded from a D23 organoid hair cell evoked by the protocol shown below. (f) Mean±s.e.m. peak inward rectifier current–voltage

relations for 27 organoid hair cells and eight utricle hair cells. (g) Families of Naþ current activation (left) and inactivation (right). (h) The voltage

dependence of Naþ current inactivation extracted from the peak inward currents (panel g, right) plotted as a function of prepulse potential and fit by a

Boltzmann curve with V1/2inact¼ � 78.3 mV and s¼ 5.9 mV. (i) Prevalence of Naþ current in organoid hair cells as a function of days in culture. Total

number of cells for each age is indicated above the bars. (j) A family of slow hyperpolarization-activated currents (Ih) evoked by the protocol below.

(k) Prevalence of Ih in organoid hair cells as function of days in culture. Number of cells is indicated above each bar. (l) Representative membrane responses

of utricle and organoid hair cells to step current injections (below). (m) A family of voltage responses evoked by incremental current steps.

(n) Representative utricle and organoid hair cell membrane responses to sinusoidal current injections.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11508

6 NATURE COMMUNICATIONS | 7:11508 | DOI: 10.1038/ncomms11508 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


electrophysiologically by the presence of a large outward rectifier
Kþ conductance with a negative activation range referred to as
GK,L (refs 55–58), which is evident as early as E18 (ref. 17). GK,L

becomes prominent between P4 and P8 and is partially active at
the resting potential34, contributing to negative resting potentials,
low input resistances, linearization of voltage responses to
incremental current stimulation and fast membrane time
constants. Based on voltage dependence, kinetics and
pharmacology, GK,L may be composed of different ion channels,
with KCNQ-like currents at immature stages59 and an ether-a-
go-go (erg)-like current at more mature stages35. In the six Type
I-like cells, voltage steps resulted in instantaneous current
changes due to GK,L active at rest (Fig. 6g). A step to
� 125 mV produced an inward Kþ current that deactivated
with a primary time constant of 9.8±0.8 ms (n¼ 6) in accord
with Rüsch and Eatock58. Tail currents taken at � 35 mV
revealed Kþ current that activated very negatively (Fig. 6h),
possibly with two distinct contributors with half activation
around � 60 and � 80 mV, as previously described for GK,L

(refs 35,58). Consequently, the resting potentials were 10–20 mV
more negative and input resistances more than an order of
magnitude lower than for the Type II-like ESC-derived hair cells,
and in close agreement with utricle Type I hair cells (Table 1).
Membrane time constants, measured in current-clamp mode,
were more than tenfold faster for Type I-like hair cells (0.52 and
0.97 ms) than Type II-like hair cells (15±1.9 ms, n¼ 19),
consistent with the more than tenfold decrease in input
resistance. Current-clamp recordings showed Type I-like cells
(Fig. 6i) had smaller voltage responses to current injections than
Type II-like cells (Fig. 4l), consistent with a significant Kþ

conductance active at rest. Type I-like cells also had a more linear
input–output relationship for current injection (compare Figs 6j
and 4m), as previously shown for cells with GK,L. The speed and
linearity of responses is well-suited for vestibular compensatory
reflexes which show near unity gain and minimal phase lag across
a variety of stimulus parameters60–63.

Discussion
Stem cell-based therapeutics have great potential for treating
disorders caused by cell loss. Partial successes in treating retinal
disease64,65 and Parkinson’s disease66 with transplantation of
stem cell-derived cells form a proof-of-concept for the efficacy
and safety of the approach. Replacement of lost sensory hair cells
may be a viable treatment strategy for hearing and balance
disorders. However, because these cells exhibit great diversity in
their functional properties, which depend largely on their ion
channel complement, generation of suitable replacement cells
must precisely recreate the properties of native sensory cells.
Previously, Koehler et al.15 established a novel method for
generating hair cell-like cells from mouse ESCs. Rather than
directly stimulating various pathways in a monolayer, ESCs were
guided toward a placodal fate and then allowed to develop in 3D
culture into organoids in a self-organizing process. Here we show
that hair cells created with this method progressed with a
temporal pattern of ion channel expression that closely resembled
either of two types of native vestibular hair cells.

In developing vestibular organs, expression of the basic-helix-
loop-helix transcription factor Atoh1/Math1 begins at E12.5
(refs 67,68) and is required for terminal differentiation of sensory
hair cells. In Atoh1/nGFP mice, nGFP is detectable in developing
hair cells beginning around E13.5 (ref. 19). Remarkably,
Atoh1-GFP expression followed a similar time course in
developing organoids, with Atoh1-nGFP signal appearing as
early as D12. If we take the first appearance of Atoh1-nGFP in
native vestibular organs and in ESC-derived organoids as
equivalent stages, then D22 through D25 in the organoids
corresponds to approximately the P2–P5 period in mouse
development, given the mouse gestation period of B20 days.

The development of organoid hair cells showed developmental
patterns reminiscent of native vestibular hair cells, although
slightly delayed. In the vestibular sensory epithelium, outward
rectifying Kþ currents appear around E14 and increase in
amplitude over the subsequent days, followed by the appearance
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of fast inward rectifier currents at E15; Naþ currents peak at E16
and then decline; transduction appears around E16; and GK,L

(in Type I hair cells) and HCN currents gradually become more
prominent over the first postnatal week (refs 17,34,41); Fig. 6k).
The temporal pattern of ESC-derived hair cell progression
between D22 and D25 was consistent with the sequence of native
vestibular hair cell development: we measured increasing Kþ

current amplitudes, presence of inward rectifier currents
throughout, decreasing Naþ currents, increasing HCN currents,
occasional GK,L, and functional mechanotransduction. That the
developmental sequence in organoid hair cells was similar to that
of native utricle hair cells lends confidence that our ESC-derived
cells are bona fide hair cells. The reason for the developmental
delay in the organoids is unclear, though we note differences in
mouse strains may provide an explanation. Alternatively, we
speculate that the bath culture system in which the organoids
were maintained may have diluted secreted signalling molecules
that would otherwise be more concentrated in the confined spaces
of the developing inner ear.

By D25, we found that hair cells from inner ear organoids had
fully functional mechanotransduction and voltage-gated currents,
including calcium currents required for synaptic release. The
inner ear contains multiple types of hair cells including cochlear
inner and outer hair cells and vestibular Type I and Type II hair
cells. The organoids morphologically resembled sensory epithelia
of the vestibular end organs, and their hair cells stained for Calb2
(ref. 15), which in mature vestibular organs is confined to Type II
hair cells57. However, Calb2 expression changes during
development and is initially present in all hair cells69. We
found, based on electrophysiology, most of the ESC-derived hair
cells resembled vestibular Type II hair cells. The complement of
voltage-gated currents in organoid hair cells included currents
known to be expressed in Type II hair cells, and were more
similar to those than to other types of hair cells. Voltage-gated
Kþ currents were fairly consistent across the population of our
ESC-derived hair cells in contrast to Oshima et al.14 who
observed greater heterogeneity in their stem cell-derived hair
cells. They hypothesized that the heterogeneity was due to lack of
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appropriate signalling required to promote maturation into
specific hair cell subtypes. Here we demonstrate that organoid
hair cells were capable of differentiating and maturing into at
least two hair cell subtypes. We recorded from six cells with an
electrophysiological phenotype typical of Type I hair cells; all six
cells expressed a large low-voltage-activated potassium
conductance that confers functional properties distinct from
those of Type II hair cells. Type I-like organoid cells resembled
utricle Type I hair cells in their resting membrane potential,
excitability, and speed of response. Correspondingly,
immunohistochemistry at D28 showed a population of hair
cells that were Myo7aþ but devoid of Calb2 and that had
prominent ‘necks’ in their morphology, providing further
similarities to vestibular Type I hair cells.

Relative to the appearance of Type II hair cells, Type I hair cells
become distinct later in development34 and during
regeneration70. The low prevalence of Type I hair cells in
organoids may simply reflect fewer days in culture. Alternatively,
cochlear hair cells and Type I hair cells appeared later in
evolution and expansion of their numbers may require additional
signalling factors. Nevertheless, it is possible that differentiating
hair cells transplanted into an existing cochlear or vestibular
epithelium would further refine their properties following local
signals from their immediate environment.

The amplitude, time course and sensitivity of mechanotrans-
duction in organoid hair cells were similar to those of vestibular
but not cochlear hair cells. In the utricle, the developmental
acquisition of mechanotransduction occurs rapidly, proceeding
from no mechanosensitivty at E15 to near mature amplitudes by
E17 (ref. 16). In the organoids, we saw a more gradual rise in
transduction current amplitudes. Operating range, time constants
of adaptation and extent of adaptation also seemed to mature
more gradually in ESC-derived hair cells than in native utricle
hair cells. While the absolute values of these
mechanotransduction parameters at later stages were similar to
those of utricle hair cells, the temporal pattern in the organoid
hair cells was more similar to the gradual maturation of
mechanotransduction in cochlear hair cells28.

One possible explanation is that the mean values for the
organoids were from pooled hair cell data acquired from cells that
may have been ‘born’ at different time points during organoid
growth, which may have led to temporal smearing of the data. In
the utricle, mechanotransduction onset appears to be tightly
synchronized among cells, perhaps due to an endogenous signal.
Another possibility for the extended development of bundle
structure and mechanotransduction in organoid hair cells is the
lack of a well formed otolithic membrane and otoconia, which are
present at embryonic stages in developing utricles. Perhaps the
structures serve to provide an appropriate stimulus and correct
developmental cues that synchronize hair cell development
in vivo.

Our findings suggest that the journey of normal development
may be important for arrival at a particular phenotypic
destination. The temporal pattern of sequential and transient
ion channel expression that we observed in developing organoids
may be incidental or may play a key role in development itself.
Our results also suggest that many aspects of native hair cell
development and cellular phenotype are normal in these
organoids, validating their usefulness for the in vitro study of
development and disease modelling. For instance, with genome
editing tools, such as CRISPR/Cas9, inner ear organoids could
provide a useful model to assay the role of genes and proteins
involved in hair cell development, structure, function and
dysfunction without the expense and time needed to generate
transgenic mouse lines. The method could also be expanded to
yield large numbers of ESC-derived hair cells in vitro, which may

facilitate biochemical and high-throughput screens that are
typically limited by the paucity of hair cells in native inner ear
tissue. Lastly, we have not overlooked the fact that our
ESC-derived organoids closely resemble native vestibular organs
and may provide a source of replacement hair cells or possibly
replacement of entire sensory end organs for patients who suffer
vestibular dysfunction.

Methods
ES cell culture. ES cells were maintained in feeder-free conditions using 2i-LIF
medium18. The R1 and Atoh1/nGFP (Tg(Atoh1-GFP)1Jejo) were a gift from Stefan
Heller14,19. ES cells were maintained under identical conditions. Briefly, ES cells
were grown on gelatin-coated plates in N2B27 medium consisted of a 1:1 mixture
of Advanced DMEM/F12 and neurobasal medium (Invitrogen) supplemented with
1 mM GlutaMax (Invitrogen) and 1 mM penicillin/streptomycin (STEMCELL
Technologies). 2i-LIF medium was made by supplementing N2B27 medium with
1,000 U ml� 1 leukemia inhibitory factor (LIF; Millipore), 3 mM CHIR99021
(Stemgent) and 1 mM PD0325901 (Santa Cruz).

ES cell differentiation was performed as described previously, with slight
modifications18. Briefly, ES cells were dissociated with 0.25% Trypsin-EDTA,
resuspended in differentiation medium and plated 100 ml per well (3,000 cells) on
96-well low-cell-adhesion U-bottom plates (Lipidure Coat, NOF). Differentiation
medium was G-MEM supplemented with 1.5% knockout serum replacement (KSR;
Invitrogen), 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 1 mM
penicillin/streptomycin and 1 mM 2-mercaptoethanol. On day 1, half of the
medium in each well was exchanged for fresh differentiation medium containing
Matrigel or Geltrex (2% v/v final concentration). On day 3 of the protocol, BMP4
(10 ng ml� 1) and SB-431542 (1 mM) were added to each well at 5� concentration
in 25 ml of fresh media. On day 4–5, FGF2 (25 ng ml� 1) and LDN-193189
(100 nM) were added to each well at 6� concentration in 25 ml of fresh media. The
concentration of Matrigel was maintained at 2% (v/v) throughout days 1–8. On day
8 of differentiation, cell aggregates were washed twice with PBS before being
transferred to 96-well plates (Lipidure Coat, NOF) in N2 medium containing 1%
Matrigel (v/v) and 3 mM CHIR99021 (Stemgent). N2 Medium contained Advanced
DMEM/F12, 1X N2 Supplement, 1 mM penicillin/streptomycin or 50 mg ml� 1

Normocin (Invivogen) and 1 mM GlutaMax. After 48 h the cell aggregates were
transferred to 24-well plates (Lipidure Coat, NOF; 1–2 aggregates per well) in N2
medium. Half of the medium was changed every other day during long-term
floating culture for up to 30 days.

Signalling molecules and recombinant proteins. The following small molecules
and recombinant proteins were used: recombinant human BMP4 (10 ng ml� 1;
Stemgent), human FGF2 (25 ng ml� 1; Peprotech), SB-431542 (1 mM; Tocris
Bioscience), and LDN-193189 (100 nM; Stemgent). Notably, we have obtained
comparable results using concentrations of up to 1 mM LDN-193189.

Immunohistochemistry. Aggregates were fixed with 4% paraformaldehyde for
20–30 min. The fixed specimens were cryoprotected with a graded treatment of 10,
20 and 30% sucrose and then embedded in tissue freezing medium. Frozen tissue
blocks were sectioned into 10 or 12 mm cyrosections. For immunostaining, a 3%
Goat or Horse Serum and 0.1% Triton-X100 solution was used for primary anti-
body incubation. An Alexa Fluor 488, 568 or 647 conjugated anti-mouse IgG or
anti-goat IgG and an Alexa Fluor 568 or 647 conjugated anti-rabbit IgG (Invi-
trogen) were used as secondary antibodies. A DAPI counterstain was used to
visualize cellular nuclei (ProLong Gold antifade reagent with DAPI, Life Tech-
nologies). Microscopy was performed on a Nikon TE2000 Inverted Microscope or
an Olympus FV1000-MPE Confocal/Multiphoton Microscope.

Wholemount immunostaining was performed using the Scale clearing method
as previously described14 3D volume rendering and segmentation was performed
by loading Olympus oif image files in Imaris 8 software (Bitplane) at the Indiana
Center for Biological Microscopy. For the segmentation analysis in Fig. 5a–c and
Supplementary Movie 1, nGFPþ nuclei and CtBP2þ puncta were processed
using the Imaris ‘Spots’ module. Classification was based on estimated size, quality
and signal intensity. Objects touching the border of the image were excluded. The
following build parameters were used for nGFP nuclei: estimated XY
diameter¼ 3.50 mm; estimated Z diameter¼ 7.00 mm; ‘Quality’ above 20.0;
‘distance to image border XYZ’ above 0.001 mm; ‘intensity centre Ch¼ 1’ above
1,500. For CtBP2 punta: estimated XY diameter¼ 2.00 mm; estimated Z
diameter¼ 5.00 mm; ‘Quality’ above 70.0; ‘distance to image border XYZ’ above
0.001 mm; ‘intensity centre Ch¼ 2’ above 1,500. Of note, these parameters excluded
CtBP2þ nuclei and lower intensity CtBP2þ puncta. XY position analysis was
performed using the Imaris ‘Vantage’ module.

The following antibodies were used: anti-Sox2 (mouse 1:100, BD Biosciences,
561469); anti-myosinVIIa (rabbit 1:100, Proteus, 25–6790); anti-acetylated-a-Tubulin
(mouse 1:100, Sigma, T6793); anti-TuJ1 (mouse 1:500, Covance, MMS-435P);
anti-Calretinin (Calb2; mouse 1:100, Millipore, MAB1568); anti-CtBP2 (mouse 1:50,
BD Biosciences, 612044); anti-Annexin A4 (mouse 1:50, R&D Systems, AF4146);
Espin (rabbit 1:100, a generous gift from James Bartles). For most antibodies, mouse
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embryonic tissue sections were used as positive controls. Mouse embryos were
dissected from timed pregnant ICR mice using a protocol approved by the
Institutional Animal Care and Use Committee at Indiana University School of
Medicine. The embryo fixation and processing procedure was identical to that used
for cell aggregates. All secondary antibodies were check for non-specific labelling in
the absence of primary antibodies.

Electrophysiology. On D21 or D22, organoids were shipped overnight from the
Hashino Lab in Indianapolis to the Holt Lab in Boston with a small ice pack in
Hibernate A medium supplemented with B27, Glutamine, and Normocin (Invi-
voGen). Upon arrival, they were returned to N2 medium and maintained in culture
for up to 6 days, with a partial medium change every other day. Vesicles were
dissected from the aggregate and opened with fine dissection scissors, forceps and
sharp tungsten needles (Fine Science Tools). For Atoh1/nGFP tissue, the organoids
were first visualized on an Axiovert 25 inverted microscope equipped with
epifluorescence to identify vesicles containing hair cell epithelia and to determine
orientation of the patch within the vesicle. After flattening, organoids were stabi-
lized under nylon strands on a glass coverslip.

For utricle hair cells recordings, utricles were excised from P4 (P0 date of birth)
Swiss Webster mice, or P3 and cultured overnight in DMEM (Invitrogen)
supplemented with 10 mM HEPES, 0.05 mg ml� 1 ampicillin, and 10 mg l� 1

Ciprofloxacin (NaOH to pH 7.4) in 5% CO2 at 37 �C. The otoconial gel was
removed after 5 min of treatment with 0.1 mg ml� 1 of protease XXIV at room
temperature. Hair cells were visualized using DIC microscopy on a Zeiss Axioskop
FS with a 63� water immersion lens. nGFP fluorescence was detected by a filter
set with a 495 long-pass filter. To isolate FM4–64 fluorescence, we used the filter
set: BP 545/25; FT 570; BP 605/70.

Epithelia were bathed and recorded in artificial perilymph solution containing
(in mM): 137 NaCl, 5.8 KCl, 0.7 NaH2PO4, 10 HEPES, 1.3 CaCl2, 0.9 MgCl2,
5.6 Glucose, vitamins and essential amino acids (Invitrogen, Carlsbad, CA, USA),
adjusted to pH 7.4 with NaOH, B310 mmol kg� 1. Recording pipettes (4–5 mO)
were pulled from R6 capillary glass (King Precision Glass) and filled with
intracellular solution containing (in mM): 135 KCl, 5 HEPES, 5 ethylene glycol
tetraacetic acid, 2.5 MgCl2, 2.5 K2-ATP, 0.1 CaCl2, adjusted with KOH to pH 7.4,
B285 mmol kg� 1. In some cases we used an internal solution intended to reduce
current through Kþ channels to better isolate other currents; this internal
contained: 137 CsCl, 5 EGTA, 5 HEPES, 2.5 Na2-ATP, 0.1 CaCl2, 3.5 MgCl2, pH
adjusted with CsOH, B290 mmol kg� 1. A few cells were recorded with 137 TEA-
Cl replacing CsCl in the preceding internal solution, to further block Kþ channels
for Ca2þ current isolation. Recordings were obtained at room temperature with an
Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA, USA); signals were
low-pass filtered at 5 or 10 kHz (Bessel filter) and sampled at 20 kHz with a 16-bit
acquisition board (Digidata 1322A) and pClamp 8.2 software (Molecular Devices).
Series resistance was compensated at 40%. Voltages were corrected for a calculated
liquid junction potential of 5 mV (K internal), 5.9 mV (Cs internal), or � 2 mV
(TEA internal). Cells held at � 65 or � 75 mV were included in calculations of
prevalence of various currents and transduction, but only cells held at � 65 mV
were averaged for I–V curves. Hair bundles were stimulated by drawing the
kinocilium into a pipette filled with extracellular solution and held in place with
gentle suction. Movement of the stimulus pipette was actuated by a piezoelectric
bimorph controlled by a piezo driver (ThorLabs, model MDT694) and filtered at
1 kHz.

Analysis. Statistical significance was determined using a Student’s t-test for
comparison of two groups or a one-way ANOVA (analysis of variance) followed by
Tukey’s post hoc test for multiple comparisons, unless stated otherwise. All data
were analysed using Prism 6 or Microsoft Excel software.

Electrophysiology data were analysed with Clampfit and ORIGIN 2015
(OriginLab) and means are presented±s.e.m. In some cases, multiple files were
averaged to improve the signal to noise ratio, data were filtered at 0.5 kHz and
capacitive transients were removed for clarity. Input resistance was measured in
voltage-clamp as the current change for a 5 mV depolarization. The membrane
time constant was measured in current-clamp for a hyperpolarizing step of 5 or 10.
For Kþ current analysis, recordings were accepted if Rs was no greater than
15 MO. As PK/PCs is 1.17, cells recorded in Csþ and Kþ internals (depending on
other currents being examined) were pooled. Not all measurements could be made
in every cell, and n values indicate sample size for each measure. Adaptation time
constants and extent of adaptation were calculated at half-maximal displacement.
Because fast adaptation is sensitive to quality of bundle coupling; cells with poor
coupling were excluded from adaptation time course analysis for native and
organoid hair cells.
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