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Clonify: unseeded antibody lineage 
assignment from next-generation 
sequencing data
Bryan Briney1,2,3, Khoa Le1,2,3, Jiang Zhu1,2,3 & Dennis R. Burton1,2,3,4

Defining the dynamics and maturation processes of antibody clonal lineages is crucial to understanding 
the humoral response to infection and immunization. Although individual antibody lineages have 
been previously analyzed in isolation, these studies provide only a narrow view of the total antibody 
response. Comprehensive study of antibody lineages has been limited by the lack of an accurate clonal 
lineage assignment algorithm capable of operating on next-generation sequencing datasets. To address 
this shortcoming, we developed Clonify, which is able to perform unseeded lineage assignment on 
very large sets of antibody sequences. Application of Clonify to IgG+ memory repertoires from healthy 
individuals revealed a surprising lack of influence of large extended lineages on the overall repertoire 
composition, indicating that this composition is driven less by the order and frequency of pathogen 
encounters than previously thought. Clonify is freely available at www.github.com/briney/clonify-
python.

Upon initial antigen encounter, a naïve B cell proliferates and accumulates somatic mutations in the antibody 
genes that strengthen the antibody-antigen interaction. The result is a family of clonally related B cells encoding 
similar but unique antibody genes. An antibody clonal lineage is then defined as the population of antibodies 
encoded by B cells that originate from a single naive B cell. Although genetically similar, individual members of 
an antibody clonal lineage often display functional differences that are important for a robust antibody response 
to a pathogen1.

Next-generation sequencing (NGS) platforms have dramatically increased our ability to perform detailed 
analysis of antibody repertoires and responses to immunization and infection2–5. While these platforms have ena-
bled vastly greater sequencing depth, their throughput still pales in comparison to the size of the total antibody 
repertoire. Therefore, although cross-sample comparisons may indicate great individual sequence variability, this 
may stem from insufficient sampling depth rather than from biologically relevant variation. Indeed, higher-level 
analyses show remarkable repertoire consistency between individuals and over time6–8, but the dynamics of indi-
vidual antigen-specific lineages are likely to be masked when analyzing from such a high level. In our view, the 
clonal lineage is likely the ‘sweet spot’ for analyzing and understanding antibody responses to immunization and 
infection, but, due to the lack of unseeded (see below) antibody clonal lineage assignment methods, these studies 
have not been possible.

When assessing the clonal relatedness of antibody sequences from NGS data, there are two types of antibody 
lineage assignment. The first type, ‘seeded’ lineage assignment, involves identifying sequences from a dataset that 
belong to the same clonal lineage as one or more known (or ‘seed’) antibody sequences. In the second assignment 
class, termed ‘unseeded’ lineage assignment, the clonal relationships of all sequences in a dataset are identified. 
Various forms of seeded lineage assignment have been previously used to study the maturation of individual line-
ages1,9–14. Owing to the difficulty of unseeded lineage assignment, however, there have been no large-scale studies 
of antibody repertoire clonality beyond individual lineages. Unseeded lineage assignment is much more compu-
tationally demanding than seeded lineage assignment, requiring pairwise comparisons between each sequence 
in the dataset with all other sequences in the dataset. Additionally, assignment accuracy becomes much more 
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important when considering unseeded lineage assignment. In seeded assignment, it is possible (and often, advan-
tageous) to use an overly inclusive algorithm since the single resulting lineage can be manually curated following 
assignment. In contrast, unseeded assignment would typically involve many thousands of lineages, making it 
unfeasible to manually correct the assignments in each lineage. Therefore, an unseeded lineage assignment algo-
rithm must be highly accurate as well as computationally efficient.

Sequencing errors are a very important consideration for the analysis of antibody NGS data. Since errors are 
essentially randomly distributed, it is extremely difficult to distinguish legitimate somatic mutations from appar-
ent substitutions that are the result of sequencing error. The most commonly used error correction method is to 
cluster sequences using a homology threshold and build a single consensus sequence for each cluster1,11,12. While 
this technique can effectively eliminate many sequencing errors, closely related antibodies will often be assigned 
to the same cluster, and legitimate antibody diversity will be lost. Other studies use single-molecule barcoding 
to uniquely label viral or antibody transcripts, sequence at high coverage and build consensus sequences from 
multiple reads of the same transcript15–17. An important criticism of such studies, however, involves their use of 
insufficient barcode diversity to produce truly unique transcript barcoding18.

We have developed a modified cDNA barcoding strategy with sufficient diversity to ensure truly unique tran-
script barcoding and have created an unseeded clonal lineage assignment algorithm capable of highly accurate 
antibody lineage assignment using large NGS datasets. With these tools we were able to perform, for the first time, 
a detailed analysis of clonality in the human IgG+  memory repertoire. The tools provide a framework for future 
analyses of antibody responses to infection and immunization.

Results
Error and bias correction with unique antibody identifiers. Since, by definition, the naïve B cell sub-
set does not contain any clonally related sequences, we focused our lineage analysis on the IgG+  memory B cell 
subset. We isolated IgG+  memory B cells from 8 healthy human donors and sequenced the encoded antibody 
heavy chains (Supplementary Table 1). To minimize sequencing errors and amplification bias, we adapted a previ-
ously used barcoding strategy17 that involves labeling transcripts with unique random sequence tags. Based on the 
estimated number of input B cells (15,000–50,000 per sample), we selected a random tag length of 20 nucleotides, 
which theoretically produces 420 (roughly one trillion) unique antibody identifiers (UAIDs) and provides a very 
high likelihood (97.2%) that each antibody transcript is uniquely labeled.

To investigate the degree to which amplification biases affect the sequenced antibody repertoire composition, 
we grouped sequences by UAID and determined the size of each UAID group (Fig. 1A). We discovered several 
UAID groups containing over 1000 sequences, indicating that amplification bias had skewed the representation 
of these transcripts by multiple orders of magnitude. Compounding the problem, sequencing errors are able to 
convincingly mimic the natural antibody maturation process9. To examine the effect of a lack of error correction 
on the generation of accurate clonal lineages, lineage assignments were made using raw sequences without UAID 
correction and a single lineage was selected from each donor (Fig. 1B). If UAID correction was now carried out, 
each of the lineages in Fig. 1B was found to originate from a single antibody transcript. In other words, all of the 
diversity contained in these lineages is due to sequencing error, not the antibody maturation process; sequencing 
errors and disproportionate amplification have combined to produce artifactual ‘lineages’ that contain no infor-
mation about naturally occurring antibody diversification.

Clonal lineage assignment. To permit unseeded lineage analysis of corrected antibody sequences, we 
developed the Clonify algorithm, which is shown schematically in Fig. 2A. Briefly, a distance matrix is calcu-
lated using an antibody-specific distance metric for each pair of sequences and the sequences are hierarchically 

Figure 1. Error and bias correction using unique antibody identifiers (UAIDs). (A) Separately for each 
donor, raw antibody sequences were binned by UAID and the size of each UAID bin was determined. Shown 
is a histogram of bin sizes, with each donor represented by a single, semi-transparent plot. (B) Force-directed 
network plots of ‘lineages’ built from raw sequences drawn from a single UAID bin. Each plot represents a single 
UAID bin, and one UAID bin per donor is shown. As the sequences in each network plot were taken from a 
single UAID bin, they represent multiple reads of the same RNA transcript. Therefore, the sequence diversity in 
each of the plots is due entirely to sequencing and amplification error.
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clustered into lineages. To determine an appropriate clustering threshold, we used Clonify to calculate distance 
scores for 1000 UAID-corrected sequences from each of the 8 donors. Scores were binned and the frequency of 
each bin was calculated. There was a distinct divide in the scoring frequencies, indicating clear separation between 
the scores of related and unrelated sequences (Fig. 2B). We next sought to test the accuracy of Clonify’s lineage 
assignments. Unfortunately, the sort of large, annotated datasets of clonal lineages that would allow robust accu-
racy assessment are not available. Instead, we assayed the accuracy of the Clonify algorithm using three-pronged 
resources: a relatively small dataset of known clonally-related antibody sequences, larger datasets of presumably 
clonally-related antibody sequences that were identified using a seeded lineage assignment algorithm19, and sev-
eral large NGS datasets from normal human donors for which antibody clonal relationships are unknown.

We first assembled a panel of HIV broadly neutralizing antibody (bnAb) sequences that contains multiple 
groups of known clonally related sequences10,20–28. Overwhelmingly, Clonify correctly grouped sequences into 
lineages (Fig. 2C) and appropriately segregated singletons (sequences without known clonal relatives in the bnAb 
dataset). Notably, although the bnAb dataset contains several genetically similar ‘VRC01-class’ lineages10,20,21 from 
multiple donors, Clonify correctly assigns these lineages. Further, the two cases in which Clonify made putatively 
incorrect assignments, that is excluding PGT153 from the PGT151 lineage26 and assigning PGT130/131 and 
PGT125-128 to separate lineages23 are the lineages for which evidence of a clonal relationship is weakest. In 
the case of the PGT150 lineage, PGT153 has very low HCDR3 homology to other PGT150 lineage members 
(39–46%; Figure S2) and shares very few somatic mutations with other PGT151 members26. In fact, the variable 
region of PGT153 is so distinct that it is assigned a different DH gene and VH allele to the rest of the PGT150 
family by both IMGT and IgBLAST (Table S3). PGT130/131 and PGT125–128 are a similar case, with substantial 
divergence in the HCDR3 and minimal shared somatic mutation23. If these sequences are true somatic relatives, 
they appear to have diverged from the rest of the lineage very early and matured independently.

We next compared Clonify to a previously published seeded lineage assignment algorithm19. Using two 
data sets, in which sequences were identified by the seeded assignment algorithm as clonally related to the HIV 
bnAbs PGT141 or PGV04, Clonify was run on putative PGT141- or PGV04-like sequences. For both datasets, we 
found that Clonify closely reproduced the results of the seeded lineage assignment algorithm. In the case of the 
PGT141 lineage, 274 putative PGT141-like sequences were identified by the seeded algorithm and 259 of those 

Figure 2. The Clonify algorithm for antibody lineage assignment. (A) Schematic of the Clonify algorithm, 
which consists of two major parts: the calculation of an antibody-specific edit distance for each sequence pair 
and the assembly of these scores into a pairwise distance matrix, followed by hierarchical clustering of the 
antibody sequences. (B) Separately for each of the eight donors, 1000 sequences were randomly selected and 
the pairwise distance was calculated for each sequence pair. Performing all-versus-all comparisons on 1000 
sequences results in the computation of 499,500 pairwise distance scores. The frequency of each distance 
score is shown (the X-axis is truncated at 3.0 for clarity). The trough in score frequencies, which was used to 
assign the clustering threshold, is indicated. (C) Clonify was used to group a panel of HIV broadly neutralizing 
antibody (bnAb) sequences into clonal lineages. The pairwise distances computed by Clonify were used to 
create a distance matrix, with dark grey indicating high similarity (low distance score). Known clonal lineages 
are indicated by color on the top and left sides of the distance matrix and known singletons (sequences without 
any clonal relatives in the bnAb panel) are all colored light grey. Sequences were clustered by Clonify score, and 
the resulting dendrogram is shown above the distance matrix. The clonality threshold is indicated with a dashed 
line across the clustering dendrogram.
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sequences (94.5%) were assigned to a single lineage by Clonify. Lineage sizes and representative junctions for each 
Clonify-assigned lineage are shown in Table S4. Similar results were seen for the PGV04 lineage. Of 4267 puta-
tive PGV04-like sequences identified by the seeded algorithm, 4002 were assigned to a single lineage by Clonify 
(93.8%; Table S5).

Since clonal lineages, by their most literal definition, must originate from a single naive B cell, true lineages 
should not be shared between individuals. It follows, then, that an accurate lineage assignment algorithm, when 
given a pool of sequences from multiple donors, should build clonal lineages consisting of sequences exclusively 
from a single donor. We randomly selected two datasets, containing either 1000 or 7000 sequences, from each 
of our donors, assigned the sequences from each dataset to clonal lineages, and determined the frequency of 
sequences that belonged to a lineage with at least two members. As expected, due to the deeper sampling in 
the 7000 sequence datasets, the level of clonality was significantly higher in the larger dataset in each instance 
(Fig. 3A). We then made 8 leave-one-out cross-validation (LOOCV) sequence pools containing 1000 sequences 
from 7 of the 8 donors such that each of the 8 donors was left out of one of the sequence pools. Analysis of the 
LOOCV sequence pools provides a simple test for lineage assignment accuracy: if, at one extreme, the line-
age assignment algorithm makes no distinction between sequences from multiple donors, the increased depth 
provided in the LOOCV pool should result in a frequency of clonally-related sequences equivalent to the 
single-donor pool of 7000 sequences. At the opposite extreme, if assigned lineages exclusively contain sequences 
from a single donor, the frequency of clonally related sequences in the LOOCV pool will be equivalent to the 
frequency seen in the single-donor datasets containing 1000 sequences. As shown in Fig. 3A, the frequency of 
clonally related sequences in the LOOCV pools is statistically indistinguishable from the single-donor pools con-
taining just 1000 sequences, indicating a high level of algorithmic distinction between sequences from different 
donors.

Figure 3. Accuracy of the Clonify algorithm. (A) For each donor, either 1000 or 7000 sequences were 
randomly selected and assigned to lineages. The clonality of each sample was determined, which represents 
the frequency of sequences belonging to a lineage with at least two members. Eight sequence pools were then 
constructed, containing 1000 randomly selected sequences from seven of the eight donors such that each donor 
was left out of a single pool. Lineages were assigned and the level of clonality was determined for each pool. The 
mean clonality for the multi-donor sequence pools was statistically indistinguishable from the single donor 
sequence sets containing 1000 sequences. Clonality of single donor sequence sets containing 7000 sequences 
was found to be significantly higher than both the single donor sequence sets with 1000 sequences (P <  0.0001) 
and the multi-donor pools (p <  0.0001) by two-tailed Student’s T-test. (B,C) Multi-donor sequence pools of 
increasing size were created by randomly selecting an equal number of sequences from each donor. Lineages 
were iteratively assigned for each multi-donor pool, and the frequency of ‘incorrect’ assignments, which we 
define as sequences assigned to a lineage containing primarily sequences from a different donor, was calculated. 
The frequency of ‘correct’ and ‘incorrect’ assignments is shown in (C). The frequency of short HCDR3 regions 
(< 15 amino acids) was calculated for the ‘correct’ and ‘incorrectly’ assigned sequences for each donor (B). 
Incorrectly assigned sequences encoded significantly shorter HCDR3s than did correctly assigned sequences 
(p <  0.0001, two-tailed Student’s T-test).
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To more precisely calculate the frequency of assignments to lineages containing sequences from multiple 
donors, we iteratively selected increasing numbers of sequences from each of the single-donor sequence sets. The 
sequences were pooled into multi-donor sequence sets, lineage assignments were made, and the frequencies of 
‘correct’ assignments (sequences belonging to lineages containing sequences from a single donor) and ‘incorrect’ 
assignments were calculated (Fig. 3C). Even using this overly strict definition of clonality, the vast majority of 
sequences (> 97%) are ‘correctly’ assigned. Indeed, among incorrectly assigned sequences, we found a HCDR3 
length distribution that skewed toward short HCDR3s (Fig. 3B). Since there is less junctional diversity among 
sequences with short HCDR3s, the likelihood of multiple donors coincidentally expressing very similar antibod-
ies with short HCDR3s is much higher. Therefore, even though a strict definition of clonal lineages (one in which 
cross-donor lineages are impossible) would suggest that all lineages containing sequences from multiple donors 
are the result of incorrect assignment, the low diversity of the short HCDR3 population results in a higher fre-
quency of inter-donor sequences that are genetically indistinguishable from clonally related sequences.

Comparison between Clonify and other unseeded lineage assignment algorithms. To gauge the 
accuracy of Clonify relative to other unseeded lineage assignment algorithms, we evaluated the performance of 
each algorithm in two ways. The first, which determines the accuracy of lineage assignment on highly mutated 
HIV-1 bnAbs of known clonal relationships, is designed to test the inclusiveness of each algorithm. The second 
test compares the stringency of each algorithm using a pool of antibody sequences isolated from eight healthy 
donors. Five algorithms were selected for comparison and are referred to by the senior author and year of publi-
cation: Quake2013a29, Quake2013b16, Boyd201430, Church20148, and Martinez-Bernetche201531. Details of each 
algorithm can be found in the Supplementary Methods.

To compare algorithmic inclusiveness, we used the same panel of HIV bnAb sequences shown in Fig. 2C, 
except that all singleton antibody sequences (those belonging to a lineage with only a single member) were 
removed. These sequences were assigned to lineages by each algorithm, and the number of correctly assigned 
antibody sequences was determined (Fig. 4A). Clonify performed the best, correctly assigning 41 of 44 anti-
bodies (93%). Quake2013b assigned 24 antibody sequences correctly (55%). Church2014, Quake2013b and 
Boyd2014 each assigned approximately one third of the sequences correctly (39%, 34% and 30%, respectively). 
Martinez-Bernetche2015 performed the least well, assigning each antibody to a separate lineage. We next meas-
ured assignment accuracy at the level of the lineage. For a lineage to be counted as correct, every member of the 
lineage must be correctly assigned. This is a distinct measurement from that shown in Fig. 4A, because at the 
antibody level, a partially correct lineage earns partial credit; when measuring accuracy at the lineage level, com-
pletely correct lineages are required. Of the 12 lineages, Clonify assigned 10 of them completely correctly (83%; 
Fig. 4B). Interestingly, although Quake2013b performed better than Church2014 when looking at individual 
antibody sequences, Quake2013b and Church2014 performed identically at the lineage level, with each assign-
ing 4 lineages completely correctly (29%), Quake2013a correctly assigned 3 lineages (21%), Boyd2014 correctly 
assigned 2 lineages (14%), and Martinez-Bernetche did not assign any lineages completely correctly. It is impor-
tant to note that the HIV bnAb inclusiveness test is extremely difficult and, in many cases, is a scenario for which 
these previously published algorithms were not designed. We provide these results not to diminish the usefulness 
of these algorithms, which have previously been shown to be highly accurate on data sets for which they were 

Figure 4. Comparison of unseeded lineage assignment algorithms. (A) HIV bnAb sequences were assigned 
to lineages with each of 6 algorithms. Antibody sequences that were correctly assigned are indicated with blue 
squares, incorrectly assigned sequences are gray. (B) For each algorithm, correctly assigned lineages (lineages 
for which every antibody is correctly assigned) are indicated in blue, incorrect lineages are indicated in gray.  
(C) For each unseeded lineage assignment algorithm, the frequency of sequences assigned to lineages 
containing sequences from multiple donors (‘incorrect’ sequences) is shown.
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designed, but only to demonstrate the difficulty of performing unseeded lineage assignment when lineages con-
tain highly divergent antibody sequences.

Our second comparison uses a pool of sequences derived from eight healthy donors. As in Fig. 3C, lineages 
are assigned from the cross-donor pool, and the fraction of incorrectly assigned sequences (sequences assigned 
to lineages containing sequences from multiple donors) is computed. Strikingly, although Clonify is inclusive 
enough to correctly assign nearly all of the HIV bnAbs, it assigns cross-donor lineages at approximately the same 
rate as the much less inclusive algorithms Church2014, Quake2013a and Boyd2014 (Fig. 4C). The second-highest 
scoring algorithm on the inclusiveness test (Quake2013b) is the least discriminating algorithm by a large margin: 
over 2% of sequences in the 8,000 sequence cross-donor pool are assigned to lineages containing sequences from 
multiple donors, compared to approximately 1% for Clonify. These results definitively show that Clonify is more 
inclusive than other unseeded lineage assignment algorithms and, critically, accomplishes this inclusiveness while 
retaining high stringency.

Antibody repertoire clonality. The combination of error correction and unseeded lineage assignment 
allows us to broadly characterize clonal lineages in human IgG+  memory B cell repertoires for the first time. 
We first analyzed the overall level of clonality in the IgG+  memory population for the set of 8 donors. From 
each donor, increasing numbers of sequences were randomly selected, clonal lineages were assigned, and the 
frequency of sequences belonging to lineages with at least two members was determined (Fig. 5A). Following a 
rapid increase in the frequency of clonally related sequences, clonality reaches a plateau at approximately 75%, 
suggesting that the IgG memory population consists of a relatively small number of frequently occurring lineages 
combined with a much larger number of less common lineages. To verify this, we determined the distribution of 
lineage sizes for lineages containing at least two members (Fig. 5B). Across all lineages with at least two members, 
nearly 50% contain more than 10 members. When considering all lineages, ‘singleton’ lineages containing only a 
single member comprise 84.5% of the lineage pool.

Several prominent pathogens, including influenza virus and RSV, have been shown to elicit antibody responses 
with biased germline gene use32–35. Since the majority of the population has been repeatedly exposed to such 
pathogens, we attempted to isolate the effect of large clonal lineages on the composition of the IgG+  memory 
repertoire. We first compared the germline composition of lineages to the germline composition of individual 
sequences. To calculate the germline composition of lineages, we determined the germline gene family used by 
each lineage, counting each lineage only once regardless of size. In this way, we eliminate the influence of lineage 
size on the use of germline genes to determine the extent to which large lineages are able to bias the total IgG 
memory repertoire. The frequency of variable, diversity and joining germline gene family use at the lineage level 
(Fig. 5C–E) is statistically indistinguishable from the frequency of germline gene family use at the individual 
sequence level. We next sought to determine additional features related to lineage size. We sorted all lineages by 
size and compared CDR3 length, nucleotide mutation frequency and amino acid mutation frequency to the line-
age size (Fig. 5F–K). None of these features correlated with lineage size, indicating that several prominent genetic 
features are not skewed by the size of the lineage.

Discussion
In this report, we describe Clonify, an antibody clonal lineage assignment algorithm capable of operating on large 
NGS data sets. The Clonify algorithm was benchmarked and the lineage assignments were found to be highly 
accurate. When applying the Clonify algorithm to error-corrected IgG+  memory B cells, we found a surprising 
lack of influence of the largest lineages on the total repertoire composition. Together with previous studies6–8 
showing conservation of high-level repertoire features, the lack of correlation between lineage size and several 
important antibody genetic features provides mounting genetic evidence for a global control mechanism that 
regulates overall antibody repertoire composition.

More broadly, the means to perform accurate unseeded lineage assignment will have a profound impact on 
our ability to study humoral responses to infection and immunization. First and most significantly, it enables 
the large-scale analysis of antibody clonal lineages as a functional unit of the immune response, as shown in this 
report. Studying the humoral response at the level of the clonal lineage makes sense both practically and philo-
sophically. In the case of HIV infection, a single or a small number of lineages are typically able to recapitulate 
serum neutralization activity among donors with broad and potent serum neutralization capacity23,36. Although 
lineage members typically display similar functional characteristics, members are often complementary, with 
lineages displaying broader or more potent activity than any single member of the lineage37. Thus, there are 
substantial advantages to analyses performed on lineages, as opposed to studies with a more narrow focus on 
individual antibody sequences. Practically, studying the antibody response at the lineage level provides a means 
for mitigating one of the largest problems in antibody repertoire sequencing: insufficient sampling depth. Typical 
antibody repertoire sequencing experiments involve obtaining hundreds of thousands or millions of sequencing 
reads from an aliquot of 5–10 million PBMCs. While this sequencing depth can provide adequate coverage of the 
antibody genes in such an aliquot, the aliquot itself represents a tiny fraction of the antibody diversity encoded 
in the circulating B cell repertoire. Attempts at direct comparison between antibody repertoires at the individual 
sequence level are nearly impossible at such a shallow sampling depth, because observed repertoire differences 
are overwhelmed by sample variability. Since actively maturing antibody lineages are typically present in sufficient 
frequency that many members of a single lineage are observed in aliquots of 5–10 million PBMCs, analysis at 
this level reduces sample-to-sample variability and produces results that are more reproducible and biologically 
informative.

A further important consideration is that accurate unseeded lineage assignment can be used to provide crit-
ical feedback in the design and testing of candidate vaccines. In cases of chronic viral infection such as HIV 
and HCV, much effort is currently directed toward a greater understanding of the longitudinal co-evolution of 
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Figure 5. Lineage assignments on the IgG+ memory population of eight healthy donors. (A) Separately 
for each donor, increasing numbers of error-corrected sequences were selected, lineages were assigned, and the 
frequency of sequences belonging to a lineage with at least two members was calculated. The clonal sequence 
frequency was plotted, with the dark line indicating the mean clonality of all eight donors, and increasingly 
transparent bands indicating 1 or 2 standard deviations. (B) Using all error-corrected sequences from each 
donor, lineages were assigned and the size of each lineage was calculated. Lineage size frequencies were then 
plotted, with the dark line indicating the mean for all eight donors, and the transparent bands representing 1 or 
2 standard deviations (in this plot, it is virtually impossible to identify the band that represents 1 SD). Variable 
(C) and diversity (D) gene family and joining (E) gene use were determined for all sequences (counting each 
sequence once) and for all lineages (counting each lineage only once, regardless of size). Plots represent the 
mean ± SEM for each of the eight donors. No significant differences in gene use between sequences and lineages 
were observed (ANOVA). Lineages were binned by average nucleotide mutation count (F), average amino acid 
mutation count (G) and HCDR3 length (H), counting each lineage only once. Histograms displaying the lineage 
frequency for each of the above characteristics were plotted, with lineages from each donor represented as a 
single, semi-transparent plot. Lineage size was then plotted against three genetic features: average nucleotide 
mutation count (I), average amino acid mutation count (J) and HCDR3 length (K). No statistically significant 
correlation was observed between lineage size and any of the three genetic features that were tested (ANOVA).
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virus and antibody and knowledge gleaned from such experiments is expected to provide valuable guidance for 
rational vaccine design. Although previous work has detailed the longitudinal maturation of individual neutral-
izing lineages, the effectiveness of such studies can be greatly enhanced by considering the maturation of many 
anti-viral antibody lineages in parallel, similar to the process described for the healthy donors here. In addition 
to defining the natural maturation pathway of potentially protective lineages, we must also define the maturation 
characteristics of lineages that fail to develop broad and potent HIV or HCV neutralizing activity. Inasmuch as 
the analysis of protective lineages defines a path by which desirable antibodies can be generated, studying the 
development of lineages with undesirable function enumerates maturation patterns that should be avoided or 
blocked by a successful vaccine. Complementing the benefit to immunogen design, unseeded lineage assign-
ment is extremely useful when probing antibody responses to immunization. In such experiments, analyzing the 
total polyclonal response to the vaccinating immunogen is crucial, and can help identify unexpected antibody 
responses. Especially in the case of rationally designed immunogens, comprehensive analysis of the polyclonal 
response can highlight immunogenic off-target regions and guide optimization efforts to minimize unwanted 
responses. Thus, accurate lineage assignment with the Clonify algorithm represents a substantial advance in our 
ability to study antibody responses to infection and immunization and is a useful tool to aid the rational design 
and testing of human vaccines.

Methods
RNA isolation from IgG+ memory B cells. Peripheral blood was obtained from healthy adult donors fol-
lowing informed consent, under a protocol approved by the Scripps Institutional Review Board. All methods were 
carried out in accordance with the approved protocol guidelines. Peripheral blood mononuclear cells (PBMCs) 
were isolated from the whole blood of eight healthy donors by gradient centrifugation (Histopaque-1077; Sigma-
Aldrich). From each donor, IgG+  memory B cells were separated from approximately 10 million PBMCs by 
selective depletion (Switched memory B cell isolation kit; Miltenyi Biotec) and total RNA was extracted (RNeasy; 
Qiagen).

Library preparation and sequencing. Approximately 10% of each total RNA sample was subjected to 
reverse transcription (Superscript III; Life Technologies) using barcoding primers that contain unique antibody 
identifiers (UAIDs; primer sequences can be found in Supplementary Table 2). The resulting cDNA was purified 
(Qiaquick; Qiagen) and eluted into 50 uL of water. 10 uL of cDNA was used to amplify antibody heavy chains 
(HotStarTaq Plus; Qiagen) in a 50 uL total reaction volume using the following thermal cycling program: 94 C for 
5 minutes; 30 cycles of 94 C for 30 seconds, 55 C for 30 seconds, 72 C for 2 minutes; 72 C for 7 minutes. Following 
initial amplification, PCR products were purified using 45 uL of SPRIselect beads (Beckman-Coulter Genomics) 
per 50 uL PCR reaction and eluted in 50 uL of water. Illumina sequencing adapters and sample-specific indexes 
were added during a second round of PCR using 1 uL of purified PCR product in 100 uL of total reaction volume 
and using the following thermal cycling program: 94 C for 5 minutes; 10 cycles of 94 C for 30 seconds, 55 C for 
30 seconds, 72 C for 2 minutes; 72 C for 7 minutes. Indexed PCR products were purified using 75 uL of SPRIselect 
beads and eluted in 50 uL of water. Samples were quantified using fluorometry (Qubit; Life Technologies), pooled 
at approximately equimolar concentrations and the sample pool was requantified. Samples were loaded onto an 
Illumina MiSeq sequencer with a target loading concentration of 40pM and 10% PhiX and sequenced (MiSeq 
600-base v3 reagent kit; Illumina).

Initial sequence analysis and UAID processing. Paired-end MiSeq reads were merged with 
PANDAseq38. Germline assignment, junction identification, and other basic antibody information was deter-
mined using an in-house antibody sequence analysis pipeline based on IgBLAST39. As part of the analysis pipe-
line, non-functional antibody sequences and other sequencing artifacts were removed and frameshift indels were 
corrected. Additionally, the initial analysis pipeline was run with the UAID option set to 20 nucleotides (-u 20), 
which parses UAIDs from each sequence and populates the appropriate field in the JSON output. Output was 
stored in a MongoDB database for querying and further analysis. The complete initial analysis pipeline, includ-
ing compiled binaries of IgBLAST for Linux and OSX, is available at www.github.com/bryanbriney/abanalysis. 
Antibody sequences were then binned by UAID, and all bins containing only a single sequence were discarded. 
For each bin containing two or more sequences, the appropriate germline variable gene region was added to 
the bin to serve as a consensus tiebreaker. The bins were then separately aligned with Muscle40 and consensus 
sequences were generated using Biopython (www.biopython.org). Consensus sequences were re-processed with 
the initial analysis pipeline and stored in a separate MongoDB database.

Network graphs. Starting with a set of sequences belonging to a single clonal lineage, sequences were 
organized into nodes with each node representing a unique antibody sequence. Pairwise comparisons were made 
between each node and all other nodes, and edges were built between each node and the nearest neighbor node. 
In cases with more than one nearest neighbor, separate edges were constructed for each nearest neighbor node. 
Node size was adjusted so that node area was proportional to the number of identical sequences represented by 
the node. Network graphs were plotted in Python using the NetworkX package (https://networkx.github.io/).

Clonal lineage assignment. Sequences were assigned to clonal lineages using Clonify, a software package 
specifically developed for antibody lineage assignment. Clonify uses an antibody-specific distance metric, which 
incorporates length-normalized CDR3 edit distance, variable and joining gene use, and shared somatic mutations 
to determine the relatedness of each pair of antibody sequences. Clonify was designed to integrate smoothly with 
our initial analysis pipeline, able to directly query and update a MongoDB database containing pipeline output.

To determine the CDR3 edit distance, Levenshtein edit distance is calculated for each pair of CDR3 sequences, 
with insertion or deletion (indel) edits penalized twice as heavily as substitution edits, based on the relatively 
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infrequency of indel mutations compared to substitution mutations in the antibody repertoire41,42. When comput-
ing the edit distance for pairs of sequences of the same length, gaps can be introduced which result in incorrectly 
low distance scores. To compensate for this possibility, Clonify forces gapless distance calculations when com-
paring CDR3 sequences of the same length. The variable and joining genes are then compared, and a penalty is 
applied to sequence pairs that encode different variable or joining genes. While clonally related sequences should 
virtually always encode the same germline variable and joining genes, erroneous germline assignments can occa-
sionally cause clonally related sequences to appear to encode different germline genes. The penalties for different 
variable gene use (10) and joining gene use (8) were determined based on the estimated frequency of variable and 
joining gene miss-assignment by IgBLAST39,43. Each sequence pair is then examined for the presence of shared 
mutations. For each shared mutation, defined as the same substitution event at the same position, a bonus of 0.35 
is applied. This bonus is critical for correct lineage assignment of highly mutated antibody sequences. In highly 
mutated clonally related sequences, the CDR3 regions may diverge by more than 25%. Clustering such sequences 
using only CDR3 distance would either miss such related sequences or be so broad as to incorrectly cluster many 
unrelated sequences. The bonus value was determined based on the estimated ratio of non-CDR3 mutations to 
CDR3 mutations. Finally, the adjusted pairwise distance score is normalized to the length of the shorter of the 
two CDR3 sequences.

In order to be able to rapidly process large numbers of sequences, two methods are used to speed sequence 
processing. First, if a pair of sequences encode different variable gene families, it is extremely unlikely that they 
are clonally related. Therefore, Clonify screens each pair of sequences and only computes the full distance score if 
the sequence pair encodes germline genes from the same variable gene family. Second, Clonify has a user-defined 
option to pre-cluster sequences by variable gene or variable gene family. When using the option to pre-cluster 
by variable gene, sequences are grouped by variable gene and separate distance matrices are calculated for each 
group. This allows Clonlify to calculate several smaller distance matrices, which requires far fewer calculations 
than a single larger distance matrix and can result in dramatically reduced runtime. Clonify is written in Python 
and the source code is available at www.github.com/briney/clonify-python.

Graphics. Plots were generated either in Prism (GraphPad) or in Python using the Matplotlib (matplotlib.
org), Bokeh (bokeh.pydata.org) and Seaborn (stanford.edu/~mwaskom/software/seaborn/) graphing packages.
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