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Abstract. In this work, a supervised learning strategy has been applied
in conjunction with a control strategy to provide anthropomorphic hand-
arm systems with autonomous grasping capabilities. Both learning and
control algorithms have been developed in a synergy-based framework
in order to address issues related to high dimension of the configuration
space, that typically characterizes robotic hands and arms with human-
like kinematics. An experimental setup has been built to learn hand-arm
motion from humans during reaching and grasping tasks. Then, a Neural
Network (NN) has been realized to generalize the grasps learned by im-
itation. Since the NN approximates the relationship between the object
characteristics and the grasp configuration of the hand-arm system, a
synergy-based control strategy has been applied to overcome planning
errors. The reach-to-grasp strategy has been tested on a setup consti-
tuted by the KUKA LWR 4+ Arm and the SCHUNK 5-Finger Hand.

Keywords: Postural Synergies, Supervised Learning, Hand-arm An-
thropomorphic Systems

1 Introduction

Grasp control of high Degree-of-Freedom (DoF) devices in unstructured environ-
ment presents several difficulties such as the need to have a good model of the
world and to develop a reliable and smart strategy in the case of underactuated
devices and redundant kinematics. The human being is a good example to learn
how to perform efficiently prehension tasks. For this purpose human observa-
tion is the first issue to be addressed. In this work, motion tracking strategies
using vision and a bio-kinetic suite have been used for the hand and the arm
to learn grasping by imitation. Supervised learning based on Multiple Neural
Networks (MNN) has been adopted in a synergy-based framework to generalize
the results obtained with imitation learning. To overcome the limits of the MNN
in generalizing grasps it is of great interest to use control strategies together
with learning strategies. The main idea is to use the control strategy, developed
in [1], to optimize the execution of planned grasps synthesized in the synergies
subspace. The synergy coefficients corresponding to the final grasp configuration
learned by human imitation are used to train the artificial neural network and,
in turn, to generalize grasp planning of unknown objects. The KUKA LWR 4+
Arm has been used to perform the reaching phase towards the object, because
its human-like kinematics allows replicating the human behavior accurately.
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2 Technical Approach and Motivation

The learning strategy relies on dimensionality reduction of the configuration
space of both the hand and the arm, and it is based on the imitation of hu-
man hand-arm motion during the execution of reach-to-grasp tasks commonly
performed in daily life. The supervised learning algorithm has the role of gener-
alizing the reach-to-grasp tasks, learned by imitation, to different object, grasp
type and different environment conditions, such as different shape and dimension
of the object as well as different orientation and position with respect to a de-
fined frame in the workspace. In order to learn by imitation, a mapping method
of the human hand-arm motion to the robotic system is needed. This procedure
is necessary to reproduce the configuration on the robotic system as close as pos-
sible to the human reference. Once a variety of hand-arm configurations, chosen
to cover a complete grasping taxonomy [2], have been mapped and stored in a
data base of robot grasps, it is possible to compute the synergy subspaces of
the hand and of the arm. Afterwards, dimesionality reduction will be used to
make possible the application of NN supervised learning to high-DoFs devices.
Indeed, synergies reduce the search space of the learning algorithm ensuring con-
vergence and performance and allowing generalization from mimicked examples.
The hand and arm synergies subspaces have been computed independently and
in two steps.

2.1 Experimental setup

The robotic system used for the experimental tests is constituted by the SCHUNK
5-Finger Hand (S5FH) [3] and the KUKA LWR 4+ Arm. The hand possesses
20 degrees of mobility and it is designed with mechanical synergies that regulate
the kinematic couplings between the finger joints while decreasing the number
of motors from 20 to 9. Thearm has 7 DoFs, thus it is one-degree redundant like
the human arm. The Robot Operating System (ROS) is used to control both the
SCHUNK 5-Finger Hand and the KUKA LWR 4+ Arm. A SVH Driver suite has
been developed by Forschungszentrum Informatik (FZI) for the low-level inter-
face and enables an easy control of the hand using a customized library written in
C++, while the KUKA LWR 4+ Arm is controlled by means of the FRI library.
For the motion acquisition, commercial low-cost RGB+Depth (RGBD) camera,
such as the Kinect from Microsoft Corp., has been used for 3D human hand fin-
gertips detection. For the arm, the Xsens MVN suite motion capture system has
been used. It consists essentially of 17MTx inertial and magnetic measurement
units and comprises 3D gyroscopes, 3D accelerometers and 3D magnetometers
sensors through which it is possible to obtain the position measurement and
orientation of parts of the body of the wearer.

2.2 Methods for observation and synergies computation

Different methods can be used for synergies computation. The first issue to ad-
dress consists in evaluating the more effective solution between two separated
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synergies subspaces for the hand and the arm rather than the whole subspace.
As a matter of fact, the hand and the arm have two different workspaces, i.e. the
hand is a redundant branched device and presents a behavior (small motions)
different from that of the arm (large motions) involving not only different joint
motions and velocities, but also different inertia and kinematics. Furthermore,
despite the smaller workspace, the hand has the possibility to take a higher num-
ber of combinations of joint values than the arm, thus the motions related to
the various grasps are differentiated from each other and may require a greater
number of synergies to be reproduced while ensuring a small error. Accord-
ing to this, we have decided to compute two separated synergies subspace for
dimansionality reduction. Starting from synergy-based planning and control al-
gorithms, developed for anthropomorphic hands [4], [1], [5] an incremental work
to extend previous studies to the arm has been addressed.

2.3 The hand

A data set of grasps, measured on five human subjects and available from [6], is
used. For this purpose, a synergies Jacobian can be computed and suitably used
in the Closed-Loop Inverse Kinematics (CLIK) algorithm to map the grasps
from the human hand to the robotic hand. The method developed in [6] has
been adapted and tested to evaluate the first three synergies on the S5FH
under-actuated five-fingered hand. The details of the grasping data and mapping
method can be found in [6], [1].

2.4 The arm

In order to map movements from the human to the robotic arm, several solu-
tions can be adopted. The MTx sensors, mounted on the Xsens suite, provide
position and orientation, in the global frame of the motion capture system, of
the segments of the human body on which they are positioned. For this reason,
an immediate solution would be to map directly the position and the orientation
of the human hand palm into the base frame of the robotic arm and afterwards
to apply the CLIK algorithm, based on the robot kinematics, to reconstruct the
arm configuration. In this way, the hand trajectory is accurately reproduced. On
the other hand, due to kinematic differences between the human and the robotic
arm and to the one degree of redundancy, the mapped motion is not human-like.

To reproduce human-like motion, an alternative mapping method has been
implemented. Two different CLIK algorithms have been used, taking respectively
the elbow and wrist orientation as reference input. The first CLIK algorithm uti-
lizes the kinematics of the first three joints of the robot corresponding to the
spherical joint of the human shoulder. To compute the elbow orientation refer-
ence for the CLIK algorithm, the orientation matrix of the elbow Re, provided
by MVN in the global frame, has been expressed with respect to the sternum
frame to overcome changes due to sternum rotation:

Rs
e = RT

z (α)R
T
s Re, (1)
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where Rs is the sternum rotation matrix expressed with respect to the global
frame and Rz(α) represents a rotation of α = π about z axis, that is required to
align the global reference frame of the MVN with the base frame of the KUKA
LWR 4+ Arm.

However, the initial configurations of the KUKA LWR 4+ Arm and of the
human arm cannot be the same. Therefore, the mutual rotation matrix between
the initial and the current frame of the human arm has been evaluated:

Rme = Rs
eR

T
ie , (2)

where Rie represents the initial arm orientation expressed into the sternum
reference frame. Finally, the desired CLIK reference has been obtained by pre-
multiplying the initial KUKA LWR 4+ Arm elbow rotation matrix Rke , ex-
pressed in the robot base frame, by the mutual rotation matrix (2):

Rde = RmeRke , (3)

The second CLIK algorithm is related to the last four joints of the elbow and
wrist. In this case, the reference is constituted by the rotation matrix between
the initial and the current human hand frame, reported in the elbow frame:

Rs
h = RT

z (α)R
T
s Rh Rmh

= Rs
hR

T
ih Rdh

= RT
da
Rmh

Rkh
, (4)

where Rh is the hand orientation matrix provided by MVN, Rih represents the
initial hand orientation expressed into the sternum reference frame and Rkh

is
the initial robotic hand rotation matrix expressed into the base frame of the
robotic arm.

Thus, the manipulator is seen as constituted by two kinematic chains with
three and four DoFs. Since only the orientation is given as input to the two CLIK
algorithms, the second kinematic chain has a redundant DoF. Thus, the angle
between the arm and the forearm, computed using MVN measurements and
geometric properties, has been mapped in the null space of the Jacobian matrix
of the second kinematic chain in order to reproduce the forearm flexion/extension
movements.

About the arm, as preliminary study, we have chosen the Cartesian space for
synergies computation since it has 6 DoFs despite the 7 DoFs of the configuration
space. Moreover, the pose of the hand palm has a crucial role on the successful
execution of the grasp. Nevertheless, in future works we reserve to make further
evaluations on the convenience of choosing the Cartesian space rather than the
configuration space for synergies representation.

The target hand pose for a set of objects and grasps has been learned from
demostration, by teleoperating the KUKA LWR 4+ Arm with the Xsens suite,
as shown in Fig. 1. Let pobj

h the hand position and Qobj
h = {ηh, εh} the unit

quaternion representation of the hand orientation with respect to the object
rereference frame, the robotic hand pose can be represented with a vector x ∈
IR7:

x =

⎡
⎣p

obj
h

ηh
εh

⎤
⎦ . (5)
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For synergies computation, two matrices have been built: the position matrix
P = {pobj

hi
| i = 1, . . . , 38} and the matrix of the quaternions E = {εobjhi

| i =
1, . . . , 38}, where 38 is the number of the learned grasps from human demon-

stration. Then, the matrices F P = {pobj
hi

− p̄obj
h | i = 1, . . . , 38} and FE =

{εobjhi
− ε̄objh | i = 1, . . . , 38} have been computed, where p̄obj

h and ε̄objh are the
mean vectors. The PCA has been performed on the matrices F P and FE and
two bases of eigenvectors, Sp ∈ IR3×3 and Sε ∈ IR3×3, ordered in decreasing
order of variance, have been found. By considering only the first principal com-
ponent of the two bases, ep ∈ IR3 and eε ∈ IR3 , the position and orientation
of the hand can be found in the synergies subspaces, by specifying only two
parameters, namely αpi and αεi :

pobj
hi

= p̄obj
h + epαpi (6)

εobjhi
= ε̄objh + eεαεi , (7)

while the scalar part of the quaternion can be found as follows:

ηhi =

√(
1−

(
ε2hix

+ ε2hiy
+ ε2hiz

))
. (8)

Fig. 1. Snapshots of the experimental set-up during the telemanipulation control of
the robot.

3 Supervised learning for the hand-arm system

To confer autonomy to the grasping method, two Multilayer Neural Networks
(MNNs) with the same architecture have been designed for the hand and for the
arm. A multilayer feedforward neural network with nonlinear transfer function
has been adopted thanks to the ability to learn any function with a finite number
of discontinuities.
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In order to train the MNNs, a library of grasp examples is needed. The train-
ing set is constituted by eleven spherical objects, whose diameters are included
in a range between 2.7 [cm] and 9.6 [cm], eleven cylindrical objects, with height
between 16 [cm] and 25 [cm] and diameters included in a range between 1.2
[cm] and 7.5 [cm]. Since the input patterns must have the same dimension for
all the objects, about the spheres a second parameter, namely the height, has
been introduced and obviously it is chosen equal to the diameter. Finally, a third
object category of parallelepiped-shaped objects has been considered. For this
category a further input it is needed, i.e. the length, and it has been included
in a range between 8.5 [cm] and 12 [cm], while, for both cylinders and spheres,
this parameter has been set to zero. Furthermore, in order to identify the type
of the grasp, an additional binary input has been introduced.

Diameter

Height

Length

Grasp Type

α1

α2

α3

Hidden
layer 1

Hidden
layer 2

Object
Features Synergies

Weight

Fig. 2. Schematic representation of the implemented neural network for the hand.

The latter, for both cylinders and spheres, assumes unitary value for precision
grasp and zero value for power grasp. Instead, for the parallelepiped-shaped
objects this input assumes unitary value for a lateral grasp and zero value for
the other cases. The use of synergies reduces the search space of the learning
algorithm addressing a simplification in the neural network architecture design,
especially regarding the number of hidden layers and the neurons in each of
them. In the same way, a simplified representation of the hand pose reduces the
output number hand MNN.

Therefore, the networks receive as input four parameters: diameter, height
and length of the object and the “grasp type input”. The outputs of the hand
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MNN are the three coefficients of the S5FH motor synergies coefficients that
determine the fingers configuration, while the output of the arm MNN are the
two coefficients of Cartesian space synergies that determine the hand palm pose
relative to the target object. The MNNs have been implemented in Matlab using
the Neural Network Toolbox (NN Toolbox). The network architecture has been
experimentally chosen by changing the number of neurons and hidden layers,
and in turn by analyzing the corresponding NN performance in terms of Mean-
Squared Error (MSE). As a result of those experimental evaluations, the network
model has been chosen as a feedforward NN with two hidden layer and ten
sigmoid neurons for each layer. The complete scheme of the implemented NN
is shown in Fig. 2, where the hand NN is represented. Furthermore, in order

Fig. 3. Performance comparison between NN outputs and averaged output for the
hand (left) and for the arm (right).

to improve the generalization, multiple neural networks have been trained and
an average of their outputs has been considered for the experiments. Precisely,
in this work fifty neural networks have been trained and their MSEs have been
compared to the MSE of their average. The result of this comparison is reported
in Fig. 3 for the NN of the hand and reveals a striking result, i.e. the average
MSE is at least an order of magnitude less if compared with all the individual
performance. Therefore, the use of multiple neural networks greatly improves the
network generalization. In this way, it is possible to find the synergies coefficients
corresponding to the object geometric features with higher accuracy.

4 Demonstration of synergy-based autonomous grasping

In this section, the experimental results obtained using the Multiple Neural
Network method are reported. A Matlab ROS node, to connect the MNNs to a
control ROS node, has been implemented using ROS Toolbox. The control node
communicates with the SCHUNK S5FH control node and to the KUKA LWR
4+ Arm control node using a specific topic on which the synergies coefficients
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are published. Therefore, the outputs of the MNNs are used as a reference for
the hand control node and for the KUKA LWR position control.

The hand control allows the S5FH to reach the final grasp, starting from an
open-hand configuration. The control of the hand is constituted by a kinematic
algorithm that simply moves the hand in the synergies subspace toward the tar-
get. The control strategy uses the motor current measurements and introduces
thresholds to avoid finger configurations that can cause high contact forces on
the object. Once the feature and the pose of the object are known, the MNNs
provides the control commands in terms of synergies coefficient of the desired
hand configuration and hand palm pose. The arm control is a first-order kine-
matic control law based on the right pseudo-inverse of the geometric Jacobian
matrix, since the unit quaternion has been used as end-effector orientation rep-
resentation. The planned path is a linear segment in the operational space which
connects the initial end-effector position pi to the final position pf learned with
the MNN, whose parametric representation is the following:

p(s) = pi +
s

||pf − pi||
(
pf − pi

)
, (9)

where the time law s (t) is given by:

s (t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0, (10)

whose coefficients have been computed by imposing the conditions for t = 0
and t = tf on the end-effector position and on its first two derivatoves. The
end-effector orientation trajectory is given by:

Re (t) = RiR
i (t) , (11)

where Ri is the initial end-effector orientation and Ri (t) is the rotation matrix
that describes the transition from Ri to Rf . The latter is the rotation matrix
computed using the output of the MNN, i.e. the αεi synergy coefficient related
to the palm orientation, as well as (7) and (9). The hand palm trajectory for the
orientation is expressed in terms of angle axis representation:

Ri (t) = Ri
(
θ (t) , ri

)
, (12)

where ri is fixed and the timing law of θ(t) is given by a fifth-order polynomial
as in (10). The learning method has been tested for a total amount of 10 grasps,
5 cylinders and 5 spheres, including objects that the networks have never seen
before, i.e not included in the training set. Both precision and power grasp have
been tested for each object. The learned hand position and orientation is used
as a reference for a simple arm control strategy described above. When the palm
of the hand reaches the desired position the hand starts to move. While the
arm control relies only on the reference output of the learning process, without
adjustment of the planned position, the hand follows a different strategy. The
planned desired configuration output of the MNN is further improved using a
synergy-based control strategy described in [1]. The combination of an initial
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learned position with a control strategy in the synergy subspace allows overcom-
ing planning errors due to the approximation of the relationship between the
object features and the system configuration introduced by the hand and the
arm MNNs. Moreover, the arm planning errors affect the hand synergies that
can change even for the same object. This inconvenience is overcome by inte-
grating learning and control in the synergies subspace. Some of the results are
shown in Figs. 5 and 6.

Fig. 4. Tripodal precision grasp.

5 Conclusions and future work

The experiments demonstrate that multiple neural networks are able to approxi-
mate with a high quality level the relationship between the synergies coefficients
and the geometrical object features. Thus, MNN is a useful tool to plan grasps
directly in the synergies subspace, with obvious advantages both from a compu-
tational and algorithmic point of view. Indeed, on the basis of object shape and
size information, the synthesized synergies coefficients produce the desired grasp
distinguishing among precision and power grasps, and also the number of fin-
gers involved. Moreover, the use of combined synergy-based control and learning
strategies for the hand allows overcoming planning errors due to uncertainties
introduced by the learning process. As future experiments we plan to integrate
this method to an object recognition algorithm using an RGB-D Vision sensor
and to improve the coordination between the hand and the arm using human-
like control strategies for the arm taking into account the motion of the hand.
Moreover, we intend to explore different synergies subspaces for the arm, such as
synergies of the configuration space as for the hand, and comparing the results.
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Fig. 5. Cylindrical power grasp.

Fig. 6. Other examples of performed grasps.
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