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Abstract— State-dependent switched systems characterized
by piecewise affine (PWA) dynamics in a polyhedral partition
of the state space are considered. Sufficient conditions on
the vectors fields such that the solution crosses the common
boundaries of the polyhedra are expressed in terms of quadratic
inequalities constrained to the polyhedra intersections. A piece-
wise quadratic (PWQ) function, not necessarily continuous, is
proposed as a candidate Lyapunov function (LF). The sign
conditions and the negative jumps at the boundaries are
expressed in terms of linear matrix inequalities (LMIs) via cone-
copositivity. A sufficient condition for the asymptotic stability
of the PWA system is then obtained by finding a PWQ-LF
through the solution of a set LMIs. Numerical results with a
conewise linear system and an opinion dynamics model show
the effectiveness of the proposed approach.

I. INTRODUCTION

The asymptotic stability of continuous-time systems which
are piecewise affine (PWA) over a polyhedral partition of
the state space can be investigated by using Lyapunov
approaches. A common quadratic Lyapunov function does
not always exists and to find a more general Lyapunov
function is a nontrivial issue [1], [2]. In order to get less
conservative conditions a typical approach consists in using
piecewise quadratic (PWQ) Lyapunov functions (LFs) [3]. A
seminal work on the use of PWQ-LFs for PWA systems is [4]
where the S-procedure is employed to determine stability
conditions expressed in terms of linear matrix inequalities
(LMIs). A typical assumption for this technique is the
continuity of the PWQ-LF on the boundaries shared by
different polyhedra [5], [6].

A stability analysis with discontinuous PWQ-LFs for pla-
nar PWA systems with continuous vector fields is proposed
in [7]. The stability conditions proposed in [8] for the PWQ-
LF allows discontinuities but the apriori knowledge of the
sequence of modes and the S-procedure are required. By
using the copositive programming approach [9], in this paper
we translate polyhedra-constrained conditions on the PWQ-
LF into corresponding linear matrix inequalities (LMIs). The
proposed approach can be considered as a generalization
of the stability analysis presented in [10], [11] where the
continuity of the PWQ-LF was required and a more restric-
tive class of PWA systems was considered. We adopt the
cone-copositive approach in order to formulate a crossing
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condition of the system trajectory through the polyhedra
boundaries. This condition allows the analysis of existence
and uniqueness of solutions for a quite general class of PWA
systems and to express a non-increasing condition for the
candidate PWQ-LF in terms of LMIs.

The paper is organized as follows. In Sec. II some
definitions on polyhedra and cones are recalled and some
preliminary results on the sign analysis of a PWQ function
on a polyhedron is presented. The class of PWA systems is
presented in Sec. III. The main stability result with the condi-
tions for the existence of a possibly discontinuous PWQ-LF
is presented in Sec. IV. The numerical examples illustrated
in Sec. V confirm the effectiveness of the approach. Sec. VI
concludes the paper.

II. PRELIMINARIES

In this section some preliminary definitions and concepts
on (polyhedral) cones, polyhedra, homogenization procedure
and copositivity are recalled.

A. Cones and homogenization procedure

Definition 1: Given a finite number ρ of points {r`}ρ`=1,
r` ∈ Rn, ρ ∈ N, a conical hull

C = cone {r`}ρ`=1 (1)

is the set of points v ∈ Rn such that v =
∑ρ
`=1 θ`r`, with

θ` ∈ R+, R+ being the set of nonnegative real numbers.
The set C is also called (polyhedral) cone and the points
{r`}ρ`=1 are called rays of the cone. The matrix R ∈ Rn×ρ
whose columns are the points {r`}ρ`=1 in an arbitrary order
is called ray matrix. Any v ∈ C can be written as v = Rθ
where θ ∈ Rρ+.

Definition 2: Given a finite number λ of points {v`}λ`=1,
v` ∈ Rn, λ ∈ N, a convex hull, say conv{v`}λ`=1, is the
subset of points in a conical hull for which

∑λ
`=1 θ` = 1.

Definition 3: Given a finite number λ of vertices {v`}λ`=1

and a finite number ρ of rays {r`}ρ`=1, v`, r` ∈ Rn, λ, ρ ∈ N,
the (convex) set

X = conv{v`}λ`=1 + cone{r`}ρ`=1 (2)

is a polyhedron in Rn. The expression (2) identifies the so-
called V-representation of the polyhedron. The conical hull
CX of X is obtained by interpreting the vertices also as rays,
i.e.

CX = cone{{v`}λ`=1, {r`}
ρ
`=1} (3)

and the corresponding ray matrix is

R =
(
v1 · · · vλ r1 . . . rρ

)
. (4)
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In the following we assume that in the polyhedron repre-
sentation (2) all possible redundancies of the set of vertices
and rays have been eliminated.

Definition 4: A partion of X ⊆ Rn is a family of full-
dimensional sets {Xs}Ss=1, S ∈ N, such that X = ∪Ss=1Xs
and int(Xs) ∩ int(Xm) = ∅ for s 6= m, where int(Xs)
denotes the interior of Xs. A polyhedral partition is a par-
tition {Xs}Ss=1 where each Xs is a closed full-dimensional
polyhedral and each intersection of two polyhedra is either
empty or a common face.

Note that the assumption that for a polyhedral partition
the intersection of two adjacent polyhedra is a common face
is not restricitve and can always be achieved with suitable
subdivision of the regions.

In order to utilize copositiveness and LMIs we will use
the homogenization procedure defined below.

Definition 5: Consider a polyhedron X ⊂ Rn with the
representation (2). For each vertex v` ∈ Rn, its vertex-
homogenization v̂` ∈ Rn+1 is defined as v̂` = col(v`, 1),
where col(·) indicates a vector obtained by stacking in a
single column the column vectors in its argument. For each
ray r` ∈ Rn its direction-homogenization r̂` ∈ Rn+1 is de-
fined as r̂` = col(r`, 0). The resulting conic homogenization
of X is then

CX̂ = cone{{v̂`}λ`=1, {r̂`}
ρ
`=1},

with corresponding ray matrix

R̂ =

(
v1 · · · vλ r1 . . . rρ
1 · · · 1 0 · · · 0

)
. (5)

We can now present some definitions and results on
copositivity and cone-copositivity.

Definition 6: A symmetric matrix P ∈ Rn×n is cone-
copositive with respect to a cone C ⊆ Rn if it is positive
semidefinite with respect to that cone, i.e., if x>Px ≥ 0
for any x ∈ C. A cone-copositive matrix will be denoted by
P <C 0. If the equality only holds for x = 0, then P is
strictly cone-copositive and the notation is P �C 0. In the
particular case C = Rn+, a (strictly) cone-copositive matrix
is called (strictly) copositive.

The notation P < 0, i.e., without any superscript on
the inequality, indicates that P is positive semidefinite, i.e.,
x>Px ≥ 0 for any x ∈ Rn.

The cone-copositivity evaluation of a known symmetric
matrix can always be transformed into an equivalent coposi-
tive problem and then to an LMI, as stated by the following
result.

Lemma 7: Let P ∈ Rn×n be a symmetric matrix, C ⊆
Rn be a polyhedral cone with ray matrix R ∈ Rn×ρ and
N be a symmetric (entrywise) positive matrix. Consider the
following constrained inequalities

P �C 0, (6a)

R>PR �Rρ+ 0, (6b)

R>PR−N < 0. (6c)

Then the following conditions hold
i) (6a)⇐⇒ (6b)

ii) (6c) =⇒ (6a).
Proof: i) This follows directly from Definition 1.

ii) From (6c) it is R>PR−N = Q with Q < 0 and hence

θ>R>PRθ = θ>(Q+N)θ, (7)

since θ>Nθ is strictly positive for θ ∈ Rρ+ −{0}, it follows
that also (7) is strictly positive for θ ∈ Rρ+−{0}. Then (6b)
holds and from i) the proof is complete.

Remark 8: With similar arguments it can be shown that
for any symmetric (entrywise) nonnegative matrix N , the
LMI R>PR − N < 0 implies R>PR <Rρ+ 0 which is
equivalent by definition to P <C 0.

B. Sign of quadratic functions on polyhedra

Let us consider a polyhedron X ⊂ Rn represented as (2)
and a quadratic function

V (x) = x>Px+ 2ν>x+ ω, x ∈ X, (8)

where P ∈ Rn×n is a symmetric matrix, ν ∈ Rn is a vector,
ω is a real scalar with ω = 0 if 0 ∈ X . Define the symmetric
matrix P̂ ∈ R(n+1)×(n+1) as

P̂ =

(
P ν
ν> ω

)
. (9)

For the sign analysis of (8) we need the following prelim-
inary result.

Lemma 9 (cf. [12]): Consider (8), (9) and let CX̂ ⊂ Rn+1

be the conic homogenization of the polyhedron X ⊂ Rn.
Consider the following constrained inequalities

V (x) ≥ 0, x ∈ X, (10a)

P̂ <CX̂ 0, (10b)

R̂>P̂ R̂−N < 0, (10c)

with ω = 0 if 0 ∈ X and N any symmetric (entrywise)
nonnegative matrix. Then the following conditions hold

i) (10a)⇐⇒ (10b)
ii) (10c) =⇒ (10a).

Remark 10: If 0 /∈ X , the equivalence i) in Lemma 9
is valid also for strict inequalities; the implication ii) in
Lemma 9 is valid for strict inequalities if N is replaced
by a matrix N with (strictly) positive entries, i.e. for the
statements

V (x) > 0, x ∈ X, 0 /∈ X (11a)

P̂ �CX̂ 0 (11b)

R̂>P̂ R̂−N < 0, (11c)

we have

i) (11a)⇐⇒ (11b)
ii) (11c) =⇒ (11a)

To obtain a strict inequality also for the case that 0 ∈ X
an additional condition is required:



Lemma 11 ([13]): With the notation of Lemma 9 assume
0 ∈ X and ω = 0, i.e. V (x) = x>Px+ 2ν>x. Consider the
statements

V (x) > 0, x ∈ X \ {0}, 0 ∈ X (12a)

R>PR−N < 0 ∧
2ν>Rei ≥ 0, i = 1, . . . , λ+ ρ

}
(12b)

where ei ∈ Rλ+ρ denotes the i-th unit vector and N is a
matrix with (strictly) positive entries. Then the implication
(12b) =⇒ (12a) holds.

III. PWA SYSTEM AND SOLUTION CONCEPT

A. General setup and definitions

Let us consider a polyhedral partition {Xs}Ss=1 of Rn and
denote by Σ0 the subset of indices s such that 0 ∈ Xs and
Σ1 its complement, i.e., Σ0 ∪ Σ1 = {1, . . . , S} =: Σ. We
consider the PWA system

ẋ = Asx+ bs, x ∈ Xs, s = 1, . . . , S (13)

where As ∈ Rn×n, bs ∈ Rn with bs = 0 for all s
∈ Σ0. Each Xs is assumed to be a closed set, i.e. there
is some ambiguity in (13) on the polyhedra intersections.
This ambiguity can be resolved by considering solutions
in the sense of Caratheodory, i.e. absolutely continuous
(in particular, differentiable almost everywhere) functions x
which satisfy (13) for almost all times.

Definition 12: A solution x is called global iff it is defined
on the whole time interval [0,∞). A solution x : [0, ω) →
Rn, ω ∈ (0,∞], of (13) is called maximal iff either ω =∞
(i.e. x is global) or there is no solution x : [0, ω) with ω > ω
which coincided with x on [0, ω). A non-global solution x :
[0, ω), ω ∈ (0,∞), is called Zeno-solution iff it is maximal
and the limit of ẋ(t) as t→ ω does not exist.

For a characterization on existence and uniqueness of
solution for bimodal PWA systems see [14]. Note that we
are not considering sliding modes or Filippov solutions, this
is a topic of future research; furthermore, if the accumulation
of switching times in finite time occurs in a global solution,
we do not call such a behavior Zeno-behavior. Finally, note
that in general there may be non-global solutions which are
not Zeno-solutions.

B. The crossing condition

Recall that we assumed that the intersection

Xij := Xi ∩Xj

of two polyhedral sets Xi, Xj of the polyhedral partition
{Xs}Ss=1 is either empty or a common face. In particular,
any nonempty Xij is again a polyhedron and has a V-
representation (2) which simply consists of the common
vertices and rays of the V-representations of Xi and Xj

(under the nonrestrictive assumption that the rays in the V-
representations of Xi and Xj are normalized). Let

Σ∩ := { (i, j) | Xij 6= ∅ }

In the following we will introduce a crossing condition for
which we focus on n − 1-dimensional intersections, i.e. on
the set

Σn−1
∩ := { (i, j) ∈ Σ∩ | dimXij = n− 1 } .

Note that (i, j) ∈ Σ∩ if, and only if, (j, i) ∈ Σ∩. Each
facet Xij , i.e. with (i, j) ∈ Σn−1

∩ , is contained in a unique
hyperplane Hij = Hji which is given by

Hij =
{
x ∈ Rn

∣∣ h>ijx+ gij = 0
}

for some normal vector hij ∈ Rn and offset gij ∈ R. The
hyperplane Hij can be also defined by taking the pairs of
common rows of the H-representations of Xi and Xj [4].
For any normal vector hij of Hij also λhij for any λ ∈
R \ {0} is a normal vector of Hij . Hence it is no restriction
of generality to assume that hij is chosen such that it points
from Xi to Xj , i.e. we can assume that

h>ijx+ gij > 0, x ∈ Xj −Xij , (14a)

h>ijx+ gij < 0, x ∈ Xi −Xij . (14b)

We can now formulate the following crossing condition
for any (i, j) ∈ Σn−1

∩ (cf. [15, Sec. 4.3] which presents a
slightly weaker assumption):

(x>A>i + b>i )hij · h>ij (Ajx+ bj) > 0, ∀x ∈ Xij . (15)

An extension of the crossing condition on facets when (15)
is zero can be obtained by considering possibly nonzero
higher order derivatives [13]. Since Xij is connected, (15)
implies that each factor (x>A>i +b>i )hij and h>ij (Ajx+ bj)
in (15) has constant sign. It is easily seen that the crossing
condition for (i, j) ∈ Σn−1

∩ is satisfied if, and only if, the
crossing condition for (j, i) ∈ Σn−1

∩ is satisfied, the only
difference is that the positive product in one case results from
two positive factors and in the other case from two negative
factors. This redundancy can be eliminated by introducing
the direction aware index set

Σcross
∩ =

{
(i, j)∈ Σn−1

∩

∣∣∣∣∣ (15) holds ∧ ∃x ∈ Xij :

h>ij(Ajx+ bj) > 0

}
. (16)

While the index set Σ∩ is independent of the actual PWA
dynamics, the index set Σcross

∩ depends on the specific system
and maybe empty if no facet Xij satisfies (15). If (i, j) ∈
Σcross
∩ then any solution of (13) which crosses int(Xij) does

this from Xi to Xj .
In practice it may be difficult to verify the crossing

condition (15) because formally it has to be tested for all
x ∈ Xij . However, the following lemma shows that (15) can
be verified by finding a solution of an LMI.

Lemma 13 ([13]): Consider the PWA system (13) and
define for every pair (i, j) ∈ Σn−1

∩

Qij = A>i hijh
>
ijAj (17a)

µij =
1

2
(A>j hijh

>
ijbi +A>i hijh

>
ijbj) (17b)

ζij = b>i hijh
>
ijbj , (17c)



and

Q̂ij =

(
Qij µij
µ>ij ζij

)
. (18)

Furthermore, let Rij ∈ Rn×(λij+ρij) be the ray matrix of the
cone CXij and let R̂ij be the ray matrix of the cone CX̂ij .
Assume that for all (i, j) ∈ Σn−1

∩ with 0 ∈ Xij the following
inequalities hold:

2µ>ijRije` ≥ 0, ` = 1, . . . , λij + ρij .

Then the crossing condition (15) holds if the following LMIs
hold for all (i, j) ∈ Σn−1

∩

R>ijQijRij −Nij < 0, 0 ∈ Xij (19a)

R̂>ijQ̂ijR̂ij −Nij < 0, 0 /∈ Xij , (19b)

for some symmetric matrix Nij with (strictly) positive en-
tries.

IV. ASYMPTOTIC STABILITY OF PWA SYSTEMS

Let us consider the quadratic functions

Vs(x) = x>Psx+ 2ν>s x+ ωs, x ∈ Xs (20)

with s = 1, . . . , S, Ps ∈ Rn×n symmetric matrix, νs ∈
Rn, ωs ∈ R with ωs = 0 if s ∈ Σ0. Define the (possibly
discontinuous) candidate Lyapunov function V : Rn → R as

V (x) = Vs(x), x ∈ int(Xs) (21)

with s = 1, . . . , S and arbitrary elsewhere.
Lemma 11 can be applied to the different polyhedra of

the polyhedral partition of Rn in order to get a set of
LMIs which provides a sufficient condition for the positive
sign of each (20) and negative sign of each corresponding
time derivative along the system solution. Then we exploit
Lemma 9 for providing a sufficient condition on the nega-
tive sign of the possible jumps of the candidate Lyapunov
function when the solution crosses the boundaries shared by
different polyhedra.

Theorem 14: Consider the system (13) with the polyhe-
dral partition {Xs}Ss=1 where each Xs is expressed according
to (2) with corresponding matrices {Rs}s∈Σ0 and {R̂s}s∈Σ1

as in (4) and (5), respectively. Assume that all maximal
solutions are global, furthermore let Σcross

∩ ⊆ Σ∩ be given
by (16). For s ∈ Σ0 consider the set of LMIs

R>s PsRs −Ns < 0, (22a)

−R>s (A>s Ps + PsAs)Rs −Ms < 0, (22b)

and, for s ∈ Σ1,

R̂>s P̂sR̂s −Ns < 0, (23a)

−R̂>s (Â>s P̂s + P̂sÂs)R̂s −Ms < 0, (23b)

where

Âs =

(
As bs
0 0

)
(24)

and P̂s ∈ R(n+1)×(n+1) are symmetric matrices in the
form (9); Ns, Ms are symmetric (entrywise) positive ma-
trices of appropriate dimensions. Furthermore, for (i, j) ∈
Σcross
∩ consider the nonincreasing-jump-LMI

−R̂>ijP̂ijR̂ij −N ij < 0, (25a)

and, for (i, j) ∈ Σ∩ \ (Σcross
∩ ∪ { (i, j) | (j, i) ∈ Σcross

∩ }),
the continuity equality constraint

R̂>ijP̂ijR̂ij = 0, (25b)

where R̂ij is the ray matrix corresponding to the cone CX̂ij ,
N ij is a symmetric matrix with nonnegative entries and

P̂ij :=

(
Pj − Pi νj − νi

(νj − νi)> ωj − ωi

)
.

Assume that the LMIs (22), (23), (25), and, for s ∈ Σ0, the
inequalities

2ν>s Rsei ≥ 0,

−2ν>s AsRsei ≥ 0,

}
i = 1, . . . , λs + ρs, (26)

have a solution {Ps, νs, ωs, Ns,Ms}Ss=1 with ωs = 0 for
s ∈ Σ0. Then all solutions of the PWA system (13) converge
asymptotically to zero.

Conditions (22)–(23) are similar to those in [16] where
Lyapunov stability via copositive matrices over convex sets
is applied to linear evolution variational inequalities.

The proof of Theorem 14 is based on the following Lemma
highlighting specific properties of the functions Vs.

Lemma 15: Let Vs be given by (20), let

V̇s(x) := x>(A>s Ps + PsAs)x+ (2b>s Ps + ν>s As)x+ ν>s bs

and assume that (22), (23), (25) and (26) hold. Then Vs is
positive and V̇s is negative definite in the following sense:

Vs(x) > 0 ∀x ∈ Xs \ {0}, (27a)

V̇s(x) < 0 ∀x ∈ Xs \ {0}. (27b)

Furthermore, each Vs is radially unbounded in the following
sense: for all v ∈ Vs(Xs) ⊆ R+ the preimage

V −1
s ([0, v]) := { x ∈ Xs | Vs(x) ≤ v } is compact (28)

and for all ε > 0 exists v > 0 such that

V −1
s ([0, v]) ⊆ { x ∈ Xs | ‖x‖ ≤ ε } . (29)

Note that for s ∈ Σ1 and for sufficiently small v > 0 the set
V −1
s ([0, v]) will be empty.

Proof: From Remark 10 and Lemma 11 together with
(23a), (22a) and (26) we conclude that Vs is positive definite
and the same Remark and Lemma together with (23a),
(22a) and (26) ensure that V̇s(x) is negative definite. Radial
unboundedness (28) follows from the quadratic nature of
Vs and (29) is a consequence of continuity and positive
definiteness of Vs.



Proof of Theorem 14. Choose the PWQ function V as
in (8) as a candidate Lyapunov function; in fact, V can be
defined also on X \

⋃
s intXs =

⋃
(i,j)∈Σ∩

Xij as follows:

V (x)=

{
Vj(x), x ∈ Xij with (i, j) ∈ Σcross

∩ ,

Vi(x) = Vj(x), x∈Xij with (i, j), (j, i) /∈Σcross
∩ ,

where the equality Vi(x) = Vj(x) in the second case is a
consequence from condition (25b). Note furthermore, that
due to condition (25a) we have for all x ∈ Xij with (i, j) ∈
Σcross
∩ :

V (x) = Vj(x) ≤ Vi(x). (30)

Step 1: We show V is decreasing along solutions.
Let x : [0,∞) → Rn be any (global) solution of the PWA
system (13) and let v(t) := V (x(t)). By definition x is
differentiable almost everywhere, in particular for almost all
t ∈ [0,∞) there exists s ∈ Σ, such that

ẋ(t) = Asx(t) + bs and x(t) ∈ Xs

and invoking (27b) we have

d
dtv(t) = d

dtV (x(t)) = V̇s(x(t)) < 0. (31)

It remains to show that v does not jump upwards at those
time points where v is not continuous. Therefore let t∗ ∈
[0,∞) be some point where v is discontinuous. Since x is
continuous it follows that x(t∗) ∈ Xij for some (i, j) ∈ Σ∩.
If (i, j) ∈ Σcross

∩ [or (j, i) ∈ Σcross
∩ ] then the solution crosses

Xij from region Xi towards region Xj [or vice versa] and
(30) ensures that v(t−∗ ) = Vi(x(t∗)) ≥ Vj(x(t∗) = v(t+∗ )
[or v(t−∗ ) = Vj(x(t∗)) ≥ Vi(x(t∗) = v(t+∗ )]. For all other
cases, V is continuous on Xij by (25b) which contradicts
our assumption that v is discontinuous at t∗.
Step 2: We show that all solutions converge to zero.
Let v := limt→∞ v(t), which is well-defined because v is
monotonically decreasing. Seeking a contradiction assume
v > 0 then x evolves within the set

K :=

S⋃
s=1

V −1
s ([v, v(0)])

which, due to positive definiteness of all Vs does not contain
the origin. Furthermore, K is compact because of (28) and
continuity of Vs. Hence, for almost all t ≥ 0

d
dtv(t) ≤ min

s∈Σ
min

x∈K∩Xs
V̇s(x) =: δ < 0

which implies that v(t) ≤ v(0)− δt, contradicting v(t) ≥ v
for all t ≥ 0 and hence v(t)→ 0 as t→∞. Seeking again a
contradiction assume x(t) 6→ 0. Then there exists ε > 0 and
an increasing unbounded sequence {tk}k∈N with ‖x(tk)‖ ≥
ε. Since V (x(tk))→ 0 as k →∞, this contradicts (29).

Remark 16: The nonincreasing-jump-LMIs (25a) does not
exclude continuity on the corresponding facet. Moreover, on
all facets where the crossing condition (17) is not satisfied
and on all intersections Xij which are not facets, i.e. in-
tersections of dimension lower than n − 1, the continuity
constraint (25b) is used.

Remark 17: Local stability in a bounded (polyhedral)
region which is an invariant set containing the origin, can be
proved with straightforward reformulations of Theorem 14.

V. SIMULATION RESULTS

Consider the switched second order system ẋ = A(x)x
with A(x) = [ 1 -5

0.2 1 ] for x being in the first and third
quadrants of the state space, and A(x) = [ 1 -0.2

5 1 ] when x
is in the second and forth quadrants. In [17] it was shown
that this system does not admit a continuous PWQ-LF with
the four quadrants partition. The set of LMIs (22) with the
nonincreasing-jump-LMIs (25) was solved by considering a
uniform partition into 108 cones. It easy to verify that the
crossing conditions (15) are satisfied for all the common
boundaries. Figure 1 shows the state space trajectory and
a level curve of the Lyapunov function.
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Fig. 1: State space trajectory (blue line) for the switched second order system
and a Lyapunov function level curve (black line).

In Figure 2 are reported the time evolutions of the Lya-
punov function computed along the trajectory and the state
variables. The PWQ-LF is discontinuous at some switching
time instants, according to Remark 16.
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Fig. 2: Time evolutions of the state variables (blue and red lines) and
Lyapunov function (black line) with a zoom around a jump (dashed line).

As a second example let us consider the opinion dynamics
model in [18] which can be represented in the form (13) with
the partition reported in Figure 3.
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Fig. 3: State space for the opinion dynamics model: a state trajectory (black
line) and some level curves of the PWQ-LF.

The system matrices are

A1 =
[−3 0

0 −3

]
, A2 = A3 =

[−3 0
−1 −2

]
,

A4 = A5 =
[−2 −1
−1 −2

]
, A6 =

[−2 0
0 −3

]
,

A7 =
[−2 0

1 −3

]
, A8 =

[−3 1
0 −2

]
,

A9 = A10 =
[−1 0

1 −3

]
, A11 = A12 =

[−3 1
0 −1

]
,

and bs = 0 for all s ∈ {1, . . . , 12}. Depending on the initial
conditions, the convergence to an equilibrium or a clustering
with different steady state values can occur [19].

The local asymptotic stability of the origin of (13) can
be analyzed by using the proposed PWQ-LF approach. By
applying Remark 17, we found a PWQ-LF for the PWA
dynamics in the polyhedral region shown in Figure 3 which
is contained in the feasibility domain.

0 0.5 1 1.5 2
−0.5

0

0.5

1

[s]

x
(t
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V
(t
)

Fig. 4: Time evolutions of the state variables and discontinuous PWQ-LF
(dashed line).

In the same region, which is an invariant set, the crossing
conditions are satisfied and hence the origin is asymptotically
stable for any initial condition belonging to that region. Fig. 4
shows the time evolutions of state variables and PWQ-LF.
It is evident the discontinuity of the PWQ-LF when the
trajectory crosses the polyhedra boundaries.

VI. CONCLUSIONS

Piecewise quadratic Lyapunov functions (PWQ-LFs) have
been used in the literature for the analysis of the asymptotic

stability for piecewise affine (PWA) systems. In this paper,
by exploiting the cone-copositivity approach, the problem
of finding a PWQ-LF has been formulated in terms of a
set of LMIs. The resulting PWQ-LF is not required to be
continuous and non-increasing conditions at the polyhedra
boundaries are included in the problem in terms of further
LMIs. Simulation results have shown the effectiveness of the
proposed approach.
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