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Abstract—In this paper the use of a wearable device is 

considered in order to evaluate the performance of an athlete 

during her/his sport activities. The preliminary step consists of 

recording the motion variables at a sufficiently high sampling rate 

throughout the experimental campaign. The collected data are 

then elaborated by a PC-based application to identify the system 

dynamics and derive some synthetic performance indicators, by 

taking into account also the experience of the sport professionals. 

The extraction of the indicators is based on basic signal processing 

that can be implemented in algorithms run directly on the 

microcontroller unit (MCU) of the device. The key indicators 

values can be sent to other electronic devices by using one of the 

available wireless network connections at a reduced transmission 

rate. Some experimental data are also reported to illustrate the 

effectiveness of the approach. 

Keywords—wearable device; sport performance analysis; system 

identification; system synthetic indicators; experimental data. 

I.  INTRODUCTION 

A wearable device can be defined as a small electronic 
equipment, able to collect data from some on-board sensors and 
perform simple elaborations on them in order to extract 
meaningful output data. These data can be sent wirelessly to 
other electronic devices for evaluation purposes. Their 
technology development is characterized by a rapid evolution 
thanks to new materials, more powerful and miniaturized 
microcontrollers (MCUs), more efficient and durable batteries. 
However, the innovation has been undoubtedly driven by 
advances in microelectromechanical systems (MEMS) 
realization. As of today, MEMS devices can contain triaxial 
accelerometers, triaxial gyroscopes, and pressure sensors in a 
very small size packages [1]. 

In the last years, the number of applications of wearable 
devices has grown exponentially [2]. They are employed for 
health monitoring [3], human-machine interaction [4], 
educational tools [5]. In particular, an important case study is 
represented by the sport activity monitoring and performance 
evaluation [2]. The study of the human motion is based on the 
variables which describe the kinematics and the dynamics of the 
anatomic segments, i.e. displacements, velocities and 
accelerations [6]-[8], which are fundamental for any accurate 
classification as required in the analysis of sport performance 

[9],[10]. The measurement of the dynamic characteristics of 
athletes is commonly done in a laboratory environment, where 
rigorous testing of biomechanics and physiology can take place 
[11]. However, some drawbacks have to be considered, e.g. the 
controlled environment is different to the natural training 
environment and expensive and hardly transportable 
measurement tools have to be employed [11]. 

Recently, the extremely small size of the sensors and the low 
power wireless communication technologies have led to the 
creation of portable devices that can be easily worn by the 
athletes during their training programs or even integrated into 
their sport equipment and clothes (see [1],[2] and the 
bibliography therein for some interesting examples). Indeed, the 
accelerometers in the wearable devices, if suitably positioned on 
different parts of a human body, allow analyzing different 
motion situations, such as standing and sitting postures, sit-stand 
transitions, trunk inclination variations, walking and running 
movement features [12],[13]. 

In this paper, it is discussed the application of a dedicated 
wearable device for the motion study of an athlete during a race. 
Admittedly, there are numerous systems available 
commercially, but, unfortunately, the majority of them 
implements relatively simple algorithms for computing fitness 
tracking metrics, which do not exploit sport specific knowledge 
[2],[11]. The selected system is based on a 
STMicroelectronicsTM board, with storage capability via an SD 
card. The portable instrument consists of a 32-bit low power 
MCU, a tri-axis accelerometer, a tri-axis gyroscope, and a 
Bluetooth wireless transmission module, integrated with tri-axis 
magnetometer, barometric pressure and humidity sensors (see 
Fig. 1). The data are preliminarily collected in the SD-card, from 
the sensors available, at a predefined sample rate. They are then 
transferred to a PC, where more complex and sophisticated 
analyses are performed offline in the MatlabTM environment, in 
order to identify the system characteristics and derive synthetic 
indicators of the athlete’s motion features. Such indicators are 
used to design algorithms for preprocessing data directly on the 
same device, compatible with the limited MCU computational 
resources, to obtain the most relevant information to send, so 
that a reduced transmission rate is needed,  and the battery life is 
preserved. Some experimental data are also included to 
demonstrate the effectiveness of the proposed approach.  
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II. THE WEARABLE SYSTEM 

The adopted wearable device is the STEVAL-STLCS01V1 
by STMicroelectronicsTM. It is a comprehensive development kit 
for the SensorTile board illustrated in Fig. 1, which is provided 
with a cradle board (see Fig. 2).  The SensorTile is a tiny, square-
shaped (13.5 x 13.5 mm) IoT module equipped with a low power 
MCU and Bluetooth low energy connectivity as well as a 
complete set of motion and environmental MEMS sensors. The 
sensor data streaming is allowed via USB and logging on SD 
card, while sensor data transfer via Bluetooth Low Energy is also 
possible at lower sampling rate. Compared to other devices with 
the same characteristics, it has the advantages of being 
extremely small, portable and relatively cheap. 

The main components of the board are summarized as 
follows:  

• a 32-bit ultra-low-power MCU with Cortex®M4F;  

• an iNEMO inertial module: 3D accelerometer and 
3D gyroscope;  

• an ultra-compact high performance eCompass 
module: ultralow power 3D accelerometer and 3D 
magnetometer;  

• a MEMS nano-pressure sensor: 260-1260 hPa 
absolute digital output barometer;  

• a BlueNRG-MS – Bluetooth low energy network 
processor.  

The SensorTile board is used to record the main physical 
data of the athlete, for the activity monitoring of the system. The 
combination of the tri-axis accelerometer and the tri-axis 
gyroscope allows obtaining a complete MEMS IMU (iNEMO), 
with 6 degrees of freedom, for sensing the athlete’s motion. The 
accelerometer measures linear acceleration with a full-scale 
acceleration range selectable within the set: {±2g, ±4g, ±8g, 
±16g}. A FIFO memory of 4kB allows dynamic data batching 
(i.e. external sensors, timestamp, etc.) and the overall power 
saving of the system. An SPI interface is used for 
communication with the microcontroller.  

 

  

Fig. 1. SensorTile. 

 

Fig. 2. SensorTile cradle board with SensorTile footprint. 

III. THE GAIT CYCLE 

The gait cycle represents the functional reference unit in the 
walking and running analysis. It is defined as the interval of time 
between two consecutive contacts of the same foot (stride) and 
represents the time reference for all the biomechanical events 
and muscle activity [14]. In Fig. 3 a schematic representation of 
the gait cycle is shown, where the main stance and swing phases 
are indicated. The first phase denotes the interval of time during 
which the foot is in contact with the ground; the second phase 
denotes the interval of time during which the leg is suspended 
and its forward progression is produced. A typical characteristic 
of walking is the period of time where both feet touch the ground 
(double support), which is normally lacking during running. The 
parameters related to both walking and running mechanics 
commonly considered by the sport specialists are: ground 
contact time, swing time (also known as flight time), stride 
length, and stride frequency/period [14].  

Among the gait parameters, the contact time is of particular 
importance, as it is shown to be strictly related to the metabolic 
cost of locomotion, i.e. to the running economy [15]. 
Additionally, according to sport scientists, the reduction of 
ground contact time can produce a notable (positive) effect on 
race time and performance [15]. Accurate measurements of the 
ground contact time can be obtained by imbedding force plates 
beneath a treadmill belt. However, this solution is usually very 
expensive and not widely employed, also because the mechanics 
of running on a treadmill can differ from the one on the actual 
track. In [16], body-mounted accelerometer measurements are 
alternatively analyzed and shown to be sufficiently in 
accordance with laboratory force platform results. The main 
difficulty when using accelerometers data is to accurately 
determine the exact time points of foot landing and take-off, 
needed to compute the contact time. Several criteria have been 
proposed in the literature (see e.g. [16]), which are mainly 
empirical and based on extensive testing on a large number of 
athletes. Typically, the contact time is estimated from the 
vertical acceleration signal only, as in Fig. 4 (see [17]), or by 
computing the acceleration magnitude vector and empirically 
setting up an acceleration values threshold to identify the time 
interval of the foot ground contact (see e.g. [18]). The same 
accelerometer data can be used to compute the flight time, the 
stride frequency, and the stride length, if the space covered is 
known.  



 

Fig. 3. A typical gait cycle.  

 

 

Fig. 4. A typical unbiased vertical acceleration profile for contact time 

estimation [17]. 

Remark 1: Note that all the gait cycle parameters may be 
different for different sport players and/or environmental 
conditions, and different reference values have to be considered 
when a walking rather than a running performance is 
investigated.  

IV. GAIT MEASUREMENTS 

Adopting a single-subject design procedure, a SensorTile 
board is placed on a runner’s right ankle to obtain the 
accelerations along the three orthogonal leg axes: vertical, 
longitudinal and transverse (see Fig. 5). In order to reduce the 
relative movement between the device and the ankle, a neoprene 
rubber sheet is applied under the board. Even though the main 
content of human activity occurs below 20Hz, all the signals are 
acquired at a sampling frequency of 1 kHz , with a 12-bit 
resolution and a ±16g full scale range, which are typical choices 

for identification purposes on running experimental trials (see 
also [11]).  

The accelerometer-derived data are preprocessed on a PC using 
a 5th order Butterworth filter (100 Hz cut-off frequency), in order 
to reduce the signal noise produced by the device vibrations due 
to an imperfect body fixing.  

 

A. Features Extraction and Activity Recognition 

In this section, some characteristic features are extracted 
from running and walking experimental tests in order to derive 
synthetic activity indicators. The signals shown in Fig. 6 are 
related to three orthogonal (one vertical and two horizontal) 
filtered ankle accelerations. It is clear the contribution of the 
gravity acceleration (vertical acceleration) and the standing, the 
running, and the walking phases are visibly distinguishable. 

Say 𝑎𝑧 the segment of the vertical acceleration signal related 
to a walking or a running phase, and N the number of samples in 
each walking/running instance, the mean value can be computed 
as: 

 

  𝜇(𝑎𝑧) =
1

𝑁
∑ 𝑎𝑧(𝑖)
𝑁
𝑖=1  , (1) 

 

while the root mean square value as:  

 

𝑅𝑀𝑆(𝑎𝑧) = √
1

𝑁
∑ |𝑎𝑧(𝑖)|

2𝑁
𝑖=1  . (2) 

 

The separation between the two phases can be performed 
through a threshold on the mean (and/or the root mean square) 
values, which can be set from the evaluation of the parameter (1) 
(and/or (2)). 

 

Fig. 5. A SensorTile mounted on the right ankle of an athlete’s foot. Positive 

directions of the accelerometer local axes are indicated. 



 

Fig. 6. Ankle accelerations experimental results during a running and walking 

test.

 

Fig. 7. Occurrence histograms for the walking and running instances. 

 The occurrence histograms for the vertical acceleration 
during the walking and the running phases are reported in Fig. 
7. It is possible to discriminate the two activities by evaluating 
the corresponding mean values and/or root mean square values. 

 The initial standing phase (see Fig. 6) needs to be 
discriminated through a different statistical parameter, since the 
mean (root mean square) values are now close (see Fig. 8). The 
standard deviation is a more suitable feature in this case, and it 
is computed as: 

 

 𝜎(𝑎𝑧) = √
1

𝑁−1
∑ |𝑎𝑧(𝑖) − 𝜇|2𝑁
𝑖=1 . (3)  

 

Indeed, for the standing phase a standard deviation of 0.057 is 
obtained, compared to a 5.08 value for the walking phase. The 
discrimination between the two situations can be performed by 
setting a threshold on the standard deviation parameter (3). 

 

Fig. 8. Occurrence histograms for the standing and walking phases. 

Remark 2: To detect very similar situations, such as walking 
upstairs or downstairs, the considered statistical parameters can 
be not adequate and a more sophisticated analysis can be needed, 
e.g. a better insight can be obtained by evaluating the power 
spectral density of the accelerometers signals. However, these 
issue is beyond this paper scopes.   

Remark 3: Instead of using a (constant) threshold based 
classification criterion, which suffers from the variability of the 
data, the computed statistical features can be used to train an 
artificial neural network (ANN) in order to perform an automatic 
activity recognition (AAR). To this end, a recorded accelerations 
data set is used in [19], which is made available in [20] for 
research purposes. Starting from the experimental data, the 
MatlabTM environment is employed to design an ANN as first 
step before transferring the AAR system to the MCU (see also 
[21]).  

B. Gait Parameters 

Once the activity of the athletes has been recognized by 
using one of the synthetic statistical parameters described above 
(or an ANN has been trained in order to discriminate among 
some possible activities), the acquired acceleration data can be 
segmented into instances, each one related to a particular 
classified activity. The main gait parameters, associated to the 
detected activity, can now be determined from the accelerations 
frame data and numerical procedures can be designed for their 
computation.  

There are several methods available in the literature 
concerning the gait parameters determination based on 
accelerometric data. In [22] four different criteria are compared 
for the stride time calculation starting from leg accelerations 
measurements. All the considered approaches are aimed to 
identify the impact times by a time domain analysis and provide 
very similar results. Remarkably, one of the proposed methods 
is particularly suitable for real time implementation, but requires 
a low pass filtering of the acquired signals with a custom 
designed cut-off frequency.   

A first indication about the stride frequency can be 
alternatively derived by examining the magnitude Fourier 



spectrum of one of the acquired accelerations frame. In Fig. 9 
the magnitude Fourier spectrum of the longitudinal acceleration 
related to a walking frame is reported. A first significant 
component at about 0.77Hz is present, which indicates a stride 
period estimation of about 1.30s.   Analogously, in Fig. 10 the 
magnitude Fourier spectrum of the longitudinal acceleration 
related to a running frame is reported. A first significant 
component at about 1.75 Hz is present, which indicates a stride 
period estimation of about 0.57s.  To improve the parameter 
estimation, high-pass and low-pass filters can be adjusted so as 
to limit the frequency range of the sensors to the range of interest 
only, aiming at reducing the contribution from high (vibrations) 
and low (gravitational field where not needed) frequency noise.  

The determination of the ground contact time requires a 
more complex and in-depth analysis. Obviously, both the swing 
and the stance phase can be assessed once the time instants of 
the foot landing (heel or forefront strike) and take-off (toe-off) 
events have been recognized.   

When the foot impacts the ground, with either a heel strike 
(walking) or a forefoot strike (running), an abrupt change in 
velocity occurs, i.e. a prominent peak in the accelerations arises 
(see e.g. [22],[23]). In [23], the foot landing event is identified 
by the maximum peak of the acceleration resultant vector 
modulus, while the toe-off time instant is found by locating, after 
each ground impact, the instant where the longitudinal and 
transverse accelerations simultaneously present a local 
maximum and minimum respectively (coherently with the axes 
orientation assumed in Fig. 5).  However, such an approach 
gives an overestimation of the ground contact (see Fig.2 in [23]).  

By considering the gait mechanism in detail (see [7]), the 
foot landing and take-off events are also characterized by the 
triggering of damped oscillations of the leg muscle-skeleton 
system, whose starting point can be recognized by one of the 
ankle acceleration signals (the phenomenon is particularly 
evident in the foot landing case and during running).  

 

 

Fig. 9. Magnitude spectrum of the longitudinal acceleration of a walking 

instance. 

 

Fig. 10. Magnitude spectrum of the longitudinal acceleration of a running 

instance. 

 As a result, the foot landing event can be identified by 
the minimum peaks of the longitudinal acceleration only (or by 
the minimum/maximum peaks of the transverse/vertical 
accelerations). For the foot take-off, the toe-off event may be 
discriminated by the local minimum of the longitudinal 
acceleration (or by the local minimum/maximum of the 
transverse/vertical accelerations). 

In Fig. 11 the assessment of the stance phase and of the swing 
phase durations is reported for the walking phase. The stance 
phase lasts about 0.72s, while the swing phase lasts about 0.57s. 
A stride period of about 1.29s is then calculated, which is in 
accordance with the stride period value previously estimated 
through the frequency domain analysis.  

In Fig. 12 the assessment of the stance phase and of the swing 
phase durations is reported for the running phase. The stance 
phase lasts about 0.11s, while the swing phase lasts about 0.46s. 
A stride period of about 0.57s is then calculated, which in 
accordance with the stride frequency values previously 
estimated through the frequency domain analysis.  

 

 

Fig. 11. Walking gait parameters estimation from the accelerometers data. 



 

Fig. 12. Running gait parameters estimation from the accelerometers data. 

 

V. CONCLUSIONS 

In this paper, the potential of a wearable device for the 
monitoring and the performance analysis of running athletes has 
been examined. Tri-axial accelerometers (MEMS) have been 
adopted to generate the data to elaborate for assessing the main 
gait parameters during  walking or running road-tests. The 
analysis of the experimental results related to a series of walking 
and running trials has led to the definition of some synthetic 
(statistical) parameters which have been used to discriminate 
among the standing, walking and running activities of the 
athletes.  

Moreover, the study of the gait mechanism has allowed 
defining a procedure to detect the ground contact time 
parameter, by identifying the time points of the foot landing 
(heel or forefoot strike) and take-off (toe-off).  Both a frequency 
domain and a time domain approach have been implemented for 
the computation of the stride frequency during the walking and 
the running phase, providing comparable results. The 
computation of the ground contact time has been performed by 
using a simple elaboration of the longitudinal acceleration only, 
that can be implement in the MCU of the considered device 
without effort.  

In our future developments, an experimental campaign 
involving athletes of different sex, age, training and health 
conditions will be carried out in order to derive possible 
(statistical) relationships with the computed gait parameters. 
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