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ABSTRACT  

 

 Lipocalin-2 (Lcn2; also termed neutrophil gelatinase-associated lipocalin (NGAL)) 

is a proinflammatory factor which is elevated in obese individuals. It has also been 

implicated in the pathogenesis of heart failure and as a potential biomarker. This thesis 

exaimed: project 1: Regulation of autophagy by Lcn2 and its functional significance in 

leading to insulin resistance in cardiomyocytes, project 2: Changes in cardiac function, 

autophagy and cell death in wild type and Lcn2-knockout mice subjected to chronic 

myocardial ischemia, and project 3: Effect of iron on insulin sensitivity in 

cardiomyocytes and mechanistic role of oxidative stress. 

 

 Findings from project 1 indicated that Lcn2 treatment caused insulin resistance 

and use of gain and loss of function approaches elucidated a causative link between 

autophagy inhibition and regulation of insulin sensitivity in response to Lcn2. Project 2 

data demonstrated that Lcn2 attenuated autophagy to worsen the extent of apoptosis 

induced by chronic myocardial ischemia in mice. Finally, in project I showed that iron 

directly induced insulin resistance in cardiomyocytes and that this involved regulation of 

the crosstalk between autophagy and oxidative stress. 

	
In summary, my studies demonstrated that Lcn2 promoted cardiac dysfunction 

and that lack of Lcn2 in mice was protective against surgically-induced heart failure. 

Inhibition of autophagy played a central mechanistic role in mediating the detrimental 

effects of Lcn2 on the heart, which included elevated oxidative stress, cell death and 

insulin resistance. 
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Chapter One:  Introduction 

1.1. Heart failure in obesity and diabetes 

 

Obesity and the associated metabolic syndrome (a cluster of chronic symptoms 

including insulin resistance, hyperglycemia, dyslipidemia, hypertension, and systemic low-

grade inflammation) predispose individuals to developing cardiovascular dysfunctions [1-

3]. Heart failure is one potential cardiovascular outcome and the consequences in the obese 

and aging population can be devastating owing to the high risk for mortality or loss of 

quality of life. However, the mechanisms of obesity and diabetes-induced heart disease are 

multifaceted and remain to be fully defined [4, 5]. Accordingly, there is currently great 

interest in resolving the various ways, and stages, via which obesity can influence 

myocardial remodeling. Central to the pathogenesis of heart failure in obesity are changes 

in cardiac metabolism and cardiomyocyte cell death [4]. One potentially important 

mechanism for altered myocardial metabolism is due to altered circulating, or local, 

adipokine profiles [4, 6, 7]. Various adipokines have also been suggested as potentially 

useful biomarkers for various aspects of cardiovascular disease. They have proven useful 

in identifying those at risk for heart failure or its progression and improving prediction of 

complications.  

	

1.1.1. Lipocalin-2: introduction and changes in obesity, diabetes and heart failure 

Lipocalin-2 (Lcn2; also often termed neutrophil gelatinase-associated lipocalin or 

24p3) is a small, secreted adipokine and belongs to a diverse family of lipocalins [8-11] 

(fig1.1).  Lcn2 is abundantly produced from adipocytes and recent studies show that Lcn2 

is a proinflammatory marker associated with insulin resistance and obesity-related 
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metabolic disorders [12-17](Fig 1.2). An increased Lcn2 expression in adipose tissue is 

observed in various experimental models of obesity and in obese humans [14, 18-20].  In 

mice, the permissive role of Lcn2 in development of aging- and obesity-induced insulin 

resistance is highlighted by studies indicating that these processes are attenuated by 

knockout of Lcn2 [16]. Measurement of serum Lcn2 has also been proposed as a useful 

means for evaluating obesity-related cardiovascular diseases including heart failure, based 

upon reports of an association between elevated circulating Lcn2 levels and cardiac 

dysfunction [12, 14, 21]. For example, circulating Lcn2 levels have been shown to increase 

at an early stage of experimental autoimmune myocarditis and remain high until recovery 

phase [22]. Elevated Lcn2 content in the myocardium is also induced by ischemia 

reperfusion, likely via production from infiltrating polymorphonuclear cells [23]. Lcn2 

expression is significantly augmented in patients with coronary heart disease and 

myocardial infarction [15, 24]. Furthermore, measurements of Lcn2 within a few days after 

ischemic stroke can be used to stratify patients according to mortality risk during the 

following four-year period [25]. Plasma Lcn2 was increased after carotid artery injury in 

rats [26] and in a heterotopic mouse transplanted heart after ischemia/reperfusion (I/R) [23]. 

Finally, it is interesting to note that Lcn2 has bacteriostatic properties and may play a role 

in linking infection, innate immunity and heart disease [27, 28]. 
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Figure 1.1. The structure for Lcn2. Lcn2 family members have a well conserved 

structure; 3 dimensional, eight stranded antiparallel beta-barrel with a repeated +1 topology 

enclosing an internal ligand binding site. Taken from 

http://www.rcsb.org/pdb/ngl/ngl.do?pdbid=1NGL 
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Figure 1.2.  Altered profile of Lcn2 in obese individuals. 

Schematic diagram indicated that an increase in Lcn2 levels in the body, it altered various 

health disease such as inflammation, insulin resistance, lipotoxicity, cardiovascular disease 

and dyslipidemia [12] . (Reprinted from the Clinical and Experimental Pharmacology and 

Physiology, Vol. 39, Jang et al., Emerging clinical and experimental evidence for the role 

of lipocalin-2 in metabolic syndrome, Page No. 194, Copyright (2012), with permission 

from John Wiley and Sons) 
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1.1.2. Evidence linking Lcn2 with metabolic syndrome.  

1.1.2.1. Metabolism and inflammation 

Numerous human studies have highlighted that serum Lnc2 level was associated 

with various metabolic parameters and inflammatory markers [14, 18, 29, 30]. Increased 

Lcn2 concentration clearly correlated with body mass index, body fat percentage, 

hypertriglyceridaemia, hyperglycaemia and the insulin resistance [14]. Previous research 

also demonstrated that elevated serum Lcn2 levels occurred in obese patients with 

metabolic syndrome and there was strong correlation between Lcn2 and insulin resistane 

in these obese patients. Increased circulating LPS concentrations are sufficient to 

dysregulate the inflammatory status and initiate the onset of obesity and insulin resistance 

[31]. Indeed, LPS can induce increases in systemic Lcn2 by 150 fold within 24 hours [32]. 

Lcn2 deficient mice were shown to have delayed LPS-induced hypoferremia in induced 

sepsis, indicating a role for Lcn2 in limiting circulating iron levels by enhancing 

intracellular iron content during inflammatory states [32]. Mice deficient in Lcn2 also had 

exacerbated endotoxin-induced sepsis, increased immune cell apoptosis and increased 

mortality [32]. MyD88-dependent signaling is required for the induction of Lcn2 and iron 

sequestration to maintain the hypoferric response during endotoxemia [33]. Thus, Lcn2 

can act as an influencer for the development of endotoxemia and derived metabolic 

disease by its effect on LPS.  As indicated above, elevated Lcn2 levels associated with 

obesity and insulin resistance [12, 14]. In studies of diabetic patients, it was found that 

serum Lcn2 concentration significantly associated with fasting triglycerides and insulin 

and homeostasis model assessment of insulin resistance (HOMA-IR) [29]. Similarly, 

serum level or adipose tissue Lcn2 content was found to be elevated in overweight 
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pregnant women and associate with several insulin resistance markers including HOMA-

IR, fasting plasma insulin and glucose [34, 35]. Gene and protein expression of Lcn2 

increased in visceral adipose tissue of obese compared to lean subjects [36, 37]. Weight 

loss caused a significant reduction of circulating Lcn2 in overweight/obese women with 

polycystic ovary syndrome [38], but a similar response was not seen in pre-pubertal 

children with obesity [39]. One established mechanism via which Lcn2 leads to obesity 

induced insulin resistance may be its capacity to stimulate the expression of 12-

lipoxygenase, an enzyme that metabolizes arachidonic acid, and consequently induces 

TNFα in adipose tissue [16].  

 

1.1.2.2. Heart failure  

In clinical settings, Lcn2 is now regarded as one of the best biomarkers for acute 

kidney injury, and is also emerging as a promising biomarker for HF [40].  A close 

interdependent relationship means that renal dysfunction often accompanies cardiac failure; 

and that cardiac dysfunction is frequently seen with renal failure [40]. Therefore, many 

biomarkers for kidney or tubular dysfunction, for example, KIM-1 (kidney injury molecule 

1), NAG (N-acetyl-beta-D-glucosaminidase) and cystatic C, also predict prognosis and 

outcomes in patients with HF [41]. However, unlike other renal biomarkers, Lcn2 level 

was not affected by diuretic withdrawal in patients with chronic systolic HF [42]; and 

administration of Lcn2 in an animal model of acute ischemic renal injury actually 

attenuated tubular injury [43]. Moreover, in patients with chronic HF, Lcn2 has been 

shown to be a more effective marker than creatinine for cardiorenal syndrome; Lcn2 could 

detect renal injury earlier than creatinine, and was an independent and novel risk predictor 
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of mortality in chronic HF [44]. Indeed, the elevation of Lcn2 seen in HF and its 

association with different parameters of HF has affirmed its potential as a HF biomarker. 

Firstly, serum Lcn2 predicted the outcome of HF, for example, the GALLANT (Lcn2 

evaLuation Along with B-type NaTriuretic peptide in acutely decompensated heart failure) 

trial concluded that plasma Lcn2 at the time of discharge was a strong prognostic indicator 

of 30 days outcomes in patients admitted for acute HF [45]; it independently predicted 

worse short term prognosis in patients with acute HF [46] and Lcn2 levels correlated well 

with HF-related functional assessment parameters including the 6 min walk test [47]. 

Secondly, the CORONA (COntrolled ROsuvastatin multiNAtional trial in heart failure) 

study suggested that Lcn2 associated with the severity of HF [48]; the elevated serum Lcn2 

in patients with acute post myocardial infarction and chronic HF was found to be 

associated with more adverse outcome [28]; the Lcn2 level was shown to be correlated 

with HF severity and hemodynamic improvements after lefy ventricular assist device 

(LVAD) placement [49]. Thirdly, serum LCN2 predicted severity of chronic HF in terms 

of NYHA classification and mortality in elderly patients [50]; and plasma Lcn2 also 

predicted mortality in HF patients with or without CKD [51]. Clearly, there is strong 

evidence associating Lcn2 with HF in various individual cohorts in terms of HF severity, 

prognosis and mortality (figure 1.3).  

 

 

 

 

 



 

 
	

8	

 

 

 

Figure 1.3. Lcn2 is a useful biomarker for evaluating the outcomes in various clinical 

and basic researches in cardiovascular diseases. Developing clinical and animal model 

data have been shown that changes in Lcn2 levels in the heart and vasculature under a 

variety of ‘stresses’. This schematic diagram highlighted Lcn2 leads to damaging effects 

on the cardiovascular system [12]. (Reprinted from the Clinical and Experimental 

Pharmacology and Physiology, Vol. 39, Jang et al., Emerging clinical and experimental 

evidence for the role of lipocalin-2 in metabolic syndrome, Page No. 194, Copyright 

(2012), with permission from John Wiley and Sons) 
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1.2. Cellular mechanisms involved in pathogenesis of heart failure 

1.2.1. Insulin signalling  

Insulin binds to the insulin receptor (IR), inducing a conformational change that 

results in the autophosphorylation of tyrosine residues present in the β subunit [52]. 

Members of the insulin receptor substrate (IRS) family bind to IR via phosphotyrosine 

binding (PTB) domains [53]. Subsequently, this leads to the phosphorylation of tyrosine 

residues on IRS proteins and then bind to phosphatidlyinositol-3-kinase (PI3K) through the 

Src homology 2 (SH2) domain of the p85 regulatory subunit. The catalytic subunit p110 is 

then activated and phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-triphosphate (PIP3) at the plasma membrane. PDK1 and Akt are 

recruited to the plasma membrane by binding to PIP3 through their PH domains. 

Specifically, interaction with the activating kinase phosphoinositide-dependent kinase-1 

(PDK-1) phosphorylates Akt at threonine (308) in its kinase-domain activation loop, 

causing partial activation of Akt/protein kinase B (PKB). However the complete activation 

of Akt requires phosphorylation at serine (473), located in the hydrophobic C-terminal 

domain, by mammalian target of rapamycin complex 2 (mTORC2), previousy known as 

PDK-2. Another alternative is that Shc recruits Grb2/SOS, which stimulates the MAPK 

signaling pathway. Substrates activated by the MAPK and PI3K/Akt pathways mediate 

various downstream biological responses of insulin, including cell survival and glucose 

metabolism [53]. 
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Figure 1.4. Insulin signalling pathway. Insulin stimulates the autophosphorylation 

of its receptor leading to binding and tyrosine phosphorylation. Phosphorylated 

tyrosine residues on IRS act as docking sites with SH2 domains such as PI3K, which is 

central for AKT activation. AKT requires the phosphorylation of threonine residue in the 

catalytic domain, and serine residue in the hydrophobic motif by PDK1 and the 

mTORC2 complex, respectively [54]. (Reprinted from the Trends in Endocrinology & 

Metabolism, Vol. 23, Kim et al., Insulin resistance in nervous system, Page No. 133, 

Copyright (2012), with permission from Elsevier) 

 

 



 

 
	

11	

1.2.2. Autophagy 

Autophagy is a general term now used to describe the processes by which capture of 

cytoplasmic components for lysosomal degradation occurs [55]. Three types of autophagy 

have been characterized: macroautophagy, chaperone-mediated autophagy and 

microautophagy. Macroautphagy has been the most extensively studied form and involves 

firstly the formation of a double membrane vesicle called the autophagosome. Chaperone-

mediated autophagy involves the binding of proteins containing a KFREQ motif to a 

chaperon protein for translocation to lysosomes where it binds to lysosome-associated 

membrane protein type 2A (LAMP-2A) receptor and is subsequently internalized and 

degraded. Lastly, microautophagy involves the direct sequestration of cellular components 

via the lysosome through the invagination of the lysosomal membrane [56]. Autophagy has 

been called a “double-edged sword” [57] as it can either be beneficial or detrimental to the 

cell, depending on the context. The basal autophagy is essential for maintaining cellular 

homeostasis and for the turnover of cytosolic components, as it degrades long-lived 

proteins, defective organelles and intracellular pathogens, thus protecting the cell and 

replacing it with molecules for future anabolic purposes [55, 56].   

Autophagosome formation utilizes 18 different Atg proteins and is comprised of 

three major steps: initiation, nucleation and elongation/enclosure [56]. The initiation step is 

controlled by the ULK1 (UNC-51-like kinase 1)–FIP200 (FAK family kinase-interacting 

protein of 200 kDa) ATG13 ATG101 complex. The serine/threonine kinase mammalian 

target of rapamycin (mTOR) inactivates ULK1 by phosphorylation. Under starvation 

conditions, autophagy is induced via the inactivation of mTOR that results in ULK1 

(Ser757) activation and phosphorylation of Atg13 and FIP200 A. Another pathway is that 
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AMPK is activated by AMP and activates ULK (Ser555). Anti-apoptotic proteins from the 

BCL-2 family usually inactivate this complex, but when it is active it enables the 

nucleation of the isolation membrane. The final elongation and enclosure step requires the 

recruitment of two ubiquitin-like protein conjugation systems. Firstly, the conjugation of 

Atg12–Atg5 is mediated by ligases Atg7 and Atg10. Atg5 also associates with Atg16 to 

form the Atg12–Atg5–Atg16 complex. Second, the microtubule-associated protein light 

chain 3 (LC3), which is the mammalian homolog of yeast Atg8, is cleaved at its carboxyl 

terminus by Atg4, giving rise to the soluble, cytosolic form LC3-I, which is then 

conjugated to phosphatidylethanolamine (PE) through the actions of Atg7 and Atg3. This 

lipid conjugated form, LC3-II, is localized to the autophagosomal membrane, and allows 

the closure of the autophagic vacuole [56, 58]. LC3 is to date the only protein that has been 

identified on the inner membrane of the autophagosome and hence is the most commonly 

used experimental protein marker for autophagic vacuoles. An increase in LC3-II reflects 

an increase in autophagsome formation. Another protein important in the assessment of 

autophagy is P62, which delivers ubiquitinated proteins to the autophagosome for 

degradation by binding to the polyubiquitin chains and LC3 [56]. P62 is then preferentially 

degraded by autophagy [59]. Experimentally, autophagic flux is concluded to increase 

when LC3-II levels increase and P62 levels show a corresponding decrease. Two 

additional proteins which participate in the recruitment of molecules to the isolation 

membrane are the transmembrane proteins, ATG9 and vacuole membrane protein 1 

(VMP1), which recycle between the golgi, endosomes and autophagosomes, probably 

shuttling lipids for degradation [60]. 
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Figure 1.5. The major stages of autophagy. (a) The initiation step of autophagsome 

formation is controlled by the ULK1-FIP200-ATG13-ATG101 complex, and inhibited by 

mTOR. (b) VPS34-Beclin 1-class III PI3K complex, which is inactivated by anti-apoptotic 

BCL-2 family proteins. (c) Transmembrane proteins ATG9 and VMP1 recruit molecules to 

the isolation membrane. (d) The elongation and enclosure step of autophagosome 

formation requires two ubiquitin-like protein conjugation systems. (e) Fusion between 

autophagosomes and (f) various lysosomal enzymes hydrolyse proteins, lipids and nucleic 

acids in the autolysosome [60]. (Reprinted from the Nature Reviews Molecular Cell 

Biology, Vol. 15, Marino et al., Self-consumption: the interplay of autophagy and 

apoptosis, Page No. 2, Copyright (2014), with permission from Nature Publishing Group) 
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1.2.3. Apoptosis 

There are different processes that lead to cell death and they must be carefully 

controlled in order for the organism to survive, grow and carry out its necessary functions. 

In most cases, unwanted cells are destroyed by programmed cell death in a process called 

apoptosis.  Apoptosis is a highly regulated type of programmed cell death or cell suicide 

characterized by morphological changes [61]. There are two main pathways in the cell for 

the initiation of apoptosis: extrinsic pathway and intrinsic pathway [60]. The extrinsic 

pathways that recruit apoptosis involve transmembrane receptor-mediated interaction. 

These receptors are members of the tumor necrosis factor (TNF) receptor gene superfamily 

that contain a cytoplasmic domain of about 80 amino acids termed the “death domain”. 

This death domain plays a critical role in transmitting the death signal from the cell surface 

to intracellular signaling pathways. The binding of Fas ligand to Fas receptor results in the 

binding of the adapter protein FADD, and the binding of TNF ligand to TNF receptor 

results in the binding of the adapter protein TRADD with subsequent recruitment of 

proteins FADD and RIP. FADD then associates with procaspase-8, leading to caspase 8 

dimerization and activation [60]. Once active, caspase 8, an “initiator caspase” [62], can 

directly cleave and activate “effector or executioner caspases” caspase 3 and caspase 7 [61, 

63], leading to caspase-dependent apoptosis. The intrinsic pathway of apoptosis is 

characterized by one central injurious event – mitochondrial outer membrane 

permeabilization (MOMP) [60]. Non-receptor-mediated stimuli activate B cell lymphoma 

2 (Bcl-2) homology 3 (BH3)-only proteins, which stimulate MOMP by inducing the 

oligomerization of BCL-2 associated X protein (BAX) and/or BCL-2 antagonist or killer 

(BAK) in the outer mitochondrial membrane. Cytochrome c is released form damaged 
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mitochondria and binds apoptotic protease-activating factor 1 (APAF1). Via 

oligomerization a structure called the apoptosome is formed that recruits and activates an 

“initiator caspase”, caspase 9. Subsequently caspase 9 cleaves and activates “effector or 

executioner caspases”, caspase 3 and caspase 7, leading to caspase-dependent apoptosis.  
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Figure 1.6. The two main pathways for apoptosis. (a) The extrinsic signalling pathways 

that initiate apoptosis contain transmembrane receptor mediated interactions. (b) The 

intrinsic signalling pathways that initiate apoptosis involve a various array of non-receptor 

mediated stimuli that produce intracellular signals that act directly on targets within the cell 

and are mitochondrial-initiated events. Additional details about the specific information are 

given in the text [60]. (Reprinted from the Nature Reviews Molecular Cell Biology, Vol. 

15, Marino et al., Self-consumption: the interplay of autophagy and apoptosis, Page No. 2, 

Copyright (2014), with permission from Nature Publishing Group) 
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1.2.4. Oxidative stress 

Oxidative stress is a disturbance in the balance between the production of reactive 

oxygen species (free radicals) and antioxidant defenses [64]. It is thus an altered 

accumulation of reactive oxygen species (ROS). These ROS can cause pathological 

alterations in the cell due to DNA damage, oxidation of amino acids, proteins and lipids 

[64]. ROS designates not only a range of free radicals such as superoxide radical anion 

(O2
•–), carbonate radical anion (CO3

•–), hydroperoxyl radical (HOO•), hydroxyl radical 

(HO•), peroxyl radical (ROO•), and alkoxyl radical (RO•), but also non-radicals like 

hydrogen peroxide (H2O2), hypochlorous acid (HClO) and ozone (O3). Among them, H2O2 

and O2
•– are the major ROS in living organisms and are continuously produced by cells and 

in excess must simultaneously be removed by antioxidant enzymes. Neither H2O2 nor O2
•– 

are strong oxidizing agents, but extremely reactive hydroxyl radical HO• can be produced 

upon reacting with iron or iron-containing molecules through Fenton reaction [65]. H2O2 

oxidizes Fe2+ to Fe3+, producing hydroxyl radical HO• and hydroxide ion OH- (1); Fe3+ is 

then reduced back to Fe2+ by another H2O2 molecule, forming a hydroperoxyl radical 

HOO• and a proton H+ (2); or by superoxide radical anion (O2
•–) to produce oxygen (O2) 

(3). In this way, iron acts as a catalyst to generate plentiful amounts of ROS.  

Fe2+ + H2O2 → Fe3+ + HO• + OH–   (1)  

Fe3+ + H2O2 → Fe2+ + HOO• + H+   (2) 

Fe3+ + O2
•– → Fe2+ + O2                  (3)  

Although ROS has important physiological functions, for example, to combat 

invading pathogens, excess ROS can result in oxidative stress that damage intracellular 

protein, lipids and nucleic acid. Indeed, specific parts of the genome were found to be 
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damaged by Fenton reaction, and are termed “genomic sites vulnerable to the Fenton 

reaction” [65].  

 

1.3. Iron metabolism and regulation by Lcn2 in cardiomyopathy 

1.3.1. Systemic and myocardial iron metabolism   

Iron homeostasis is essentially a closed system - iron is acquired from food as 

inorganic or heme iron, which are primarily absorbed in the duodenum via processes 

mediated by divalent metal ion transporter 1 (DMT-1) and heme carrier protein 1 (HCP-1), 

respectively. Iron in the cytoplasm can either be stored as ferritin, or be released to the 

bloodstream via ferroportin (FPN), where ferrous iron (Fe2+) can be oxidized to ferric iron 

(Fe3+) by hephaestin to facilitate its binding to transferrin (Tf) and be transported in the 

circulation. Most cells express transferrin receptor 1 (TfR1) such that holo-Tf can be 

endocytosed to acquire iron, where the ferric iron gets reduced to ferrous iron by 

metalloreductase STEAP3. It is then transported across the cell membrane by DMT-1. 

Hepcidin is a peptide hormone that induces the intracellular degradation of FPN, the only 

know iron exporter, and therefore is a vital and major iron regulatory hormone that 

controls plasma iron concentration and tissue iron distribution by inhibiting intestinal iron 

absorption, iron recycling by macrophages and iron mobilization from hepatic stores [66]. 

Various processes mediate iron transport in the cardiovascular system. Iron deposition in 

the heart is a gradual process, and has been suggested to occur in the ventricular 

myocardium before the atrial myocardium [67]. Sequential appearance has been further 

documented, beginning initially in the epicardium, then myocardium and eventually 

endocardium. Myocardial iron levels are normally regulated through transferrin mediated 
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uptake mechanisms, mainly through TfR1 [68]; although in the case of iron overload 

where transferrin-mediated transport becomes saturated, non-transferrin bound iron (NTBI) 

in the circulation increases and can also enter cardiac myocytes through DMT-1, T-type 

calcium channels (TTCCs), L-type calcium channels (LTCC) [68, 69], ZRT/IRT-like 

protein 14 (Zip14 or Slc39a14) [70] and also Lcn2 receptor which facilitates the entry of 

LCN2 bound iron [71]. FPN1 is expressed in cardiomyocytes as an exporter of iron into 

circulation (Figure 1. 7.)[72].  
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Figure 1.7. Schematic overview of cellular iron transport in cardiomyocytes. The role 

of DMT-1 as well as other transporters such as LTCC and TTCC as possible portals for 

iron into cardiomyocytes. In addition Tf binds to TfRs o the external surface of the cell. 

The role of NGAL(Lcn2) is to donate iron to cell via the NGAL-R. Internalization of 

NGAL (Lcn2) and its receptor leads to the uptake of iron from siderophore-iorn complex, 

although the exact mechanism remains unclear. However, accumulation of iron 

subsequently induces mitochondrial dysfunction, oxidative stress, ER stress and autophagy 

in cardiomyocyte [73]  (Reprinted from Clinical Science, Vol. 129, Chan et al., Iron 

metabolism and regulation by neutrophil gelatinase-assocoated lipocalin in 

cardiomyopathy, Page No. 851, Copyright (2015), with permission from Portland Press) 
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1.3.2. Observational changes and diagnosis of iron status in cardiomyopathy  

Heart failure (HF) is a highly prevalent chronic progressive condition in which the 

heart is incapable of pumping enough blood to meet the body’s demand. The heart 

compensates with various remodeling measures including initial enlargement (hypertrophy) 

to increase pumping capacity [74]. Ejection fraction (EF), the measurement of the amount 

of blood the left ventricle pumps out in each contraction, is an important indicator for heart 

function and diagnosis of HF. In patients who have heart failure with reduced ejection 

fraction (HFrEF), EF drops from a normal range of between 55 and 70% to below 40%; 

yet half of the patients with HF are observed to have preserved EF (HFpEF) [75]. In the 

ongoing search for novel treatments of HF, there is strong emerging evidence showing the 

significance of disturbed iron homeostasis in HF regardless of the degree of change in EF 

[76], thus establishing excellent therapeutic potential if our understanding of the 

mechanisms responsible for the association of iron homeostasis and HF can be enhanced. 

The normal range of circulating ferritin is from 30-300 µg/L, where <30 µg/L is 

defined as iron deficiency. However, heart failure has an inflammatory component were 

serum ferritin, as an acute phase protein, is often elevated without changes in body iron 

store. Therefore, recently the European Society of Cardiology (ESC) guidelines for 

diagnosis and treatment of heart failure have recommended a systematic measurement of 

iron parameters in all patients suspected of having heart failure. Serum ferritin <100 µg/L 

is regarded as absolute iron deficiency; where serum ferritin 100-299 µg/L and a 

transferrin saturation of <20% is defined as functional iron deficiency [77]. On the other 

hand, a serum ferritin >300ug/L and a transferrin saturation of >55% is diagnosed as iron 

overload cardiomyopathy (IOC). The level of serum ferritin at which iron deposition is 
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detected in the heart has not yet been conclusively identified. Taking heart biopsy is not 

only invasive, but technical difficulty often renders the results variable and non-definitive. 

Both iron overload and iron deficiency have been linked to cardiomyopathy, with the 

former primarily associated with an enhanced oxidative stress and the latter with 

mitochondrial dysfunction, impaired heart efficacy [78], hypercoagulable state, increased 

cardiac burden and also oxidative stress due to anemia [79]. Cardiomyopathy associated 

with iron overload or deficiency will be reviewed in more detail in the following sections.  

 

1.3.2.1. Iron overload cardiomyopathy (IOC) 

IOC is defined as the presence of systolic or diastolic cardiac dysfunction 

secondary to increased deposition of iron in the heart independent of other concomitant 

processes [80]. IOC is typically associated with dilated cardiomyopathy with left 

ventricular hypertrophy and reduced EF [81]. The prevalence of IOC is increasing and is 

the leading cause of death in patients receiving chronic blood transfusion therapy [82]. 

While patients may remain asymptomatic in the early disease process, severely overloaded 

patients can rapidly experience terminal HF. Accumulation of iron in the myocardium may 

occur via increased iron absorption from gastrointestinal enterocytes (hemochromatosis); 

excess exogenous iron intake such as by dietary supplements, or blood transfusions 

(hemosiderosis). The association of IOC with hemochromatosis, an autosomal disorder 

involving mutation of specific genes involved in iron metabolism that leads to increased 

gastrointestinal absorption, is well characterized [83]. In fact, this accounts for one third of 

deaths in hereditary hemochromatosis, especially in young male patients [84]. Chronic 

blood transfusion is the treatment for hereditary and acquired anemia including 
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thalassemia and myelodysplastic syndromes. However, since excess body iron cannot be 

actively excreted, repeated blood transfusion can result in iron deposition in multiple 

organs. There are numerous mechanisms via which excess iron can reduce cardiac function. 

Once the antioxidant capacity of cardiomyocytes is exceeded, iron can produce excess 

oxidative stress by the Fenton reaction (see below) and lead to apoptosis [85]. In addition, 

excess free iron in blood is suggested to be responsible for the generation of insoluble 

parafibrin, which is highly resistant to proteolytic dissolution and initiates inflammatory 

reactions upon deposition on the arterial wall [86]. Association of iron and atherosclerosis 

is well established in animal studies, for example, iron accumulation is observed in 

atherosclerotic plaques [87] and decreasing tissue iron by chelating therapy, dietary iron 

restriction or phlebotomy showed decreased atheroma plaque size with improved stability 

[88-91]. Such association is also supported in clinical studies – a study involving 12033 

men showed increased ferritin concentration was associated with early coronary artery 

atherosclerosis, independent of traditional cardiovascular risk factors [92]; another study 

that involved 196 subjects showed a strong association between serum ferritin and pulse 

wave velocity or aortic stiffness in women [93]. The 6 years long Iron and Atherosclerosis 

STudy (FeAST) also established correlations between levels of ferritin, inflammatory 

biomarkers and mortality in a subset of patients with peripheral arterial disease [94]. Iron 

availability may have contributed to atherosclerosis by impairing nitric oxide action as 

demonstrated by improvement in nitric oxide mediated, endothelium-dependent 

vasodilation in patients with coronary artery disease by chelating iron with deferoxamine 

[95]. While further mechanisms are yet to be defined, the Atherosclerosis Risk In 

Communities (ARIC) study has rejected the hypothesis that excess iron stores would 
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promote low density lipoprotein (LDL) oxidation [96]. It was shown that dietary iron 

intake and body iron stores had no direct link to altered structure and function of large 

arteries in subjects free of cardiovascular disease, cancer or hemochromatosis [97].  

 

1.3.2.2. Iron deficiency (ID) and cardiomyopathy  

ID is the most common nutritional deficiency worldwide [98]. It is frequent, has a 

high occurrence rate from 30% to 50% in patients with HF and presents as an important 

co-morbidity [99]. Two types of ID can be distinguished – absolute and functional ID. 

Absolute ID reflects depleted iron stores while iron homeostasis mechanisms and 

erythropoiesis often remain intact. Absolute ID development in humans can result from 

inadequate dietary iron intake, impaired gastrointestinal absorption/ transport, drug 

interactions and gastrointestinal blood loss [100]. On the other hand, functional ID 

presents a dysregulated iron homeostasis where cells and tissues might be rendered with 

inadequate iron supply despite normal whole body iron storage. This can be a result of 

elevated circulating hepcidin concentration, and had been reported in patients with acute 

phase myocardial infarction [101].  ID is often accompanied by anemia, although both can 

exist independently and ID usually appears before the onset of anemia. It is important to 

differentiate anemia from ID – while ID is marked by the insufficiency of iron, anemia is 

defined by insufficient hemoglobin. ID that is independent of anemia was reported to have 

a higher risk of death than those with anemia [102, 103]; it has been reported as an 

independent predictor of mortality and associates with disease severity [104]. In recent 

years there have been several clinical trials to test whether administration of intravenous 

iron could improve functional parameters related to HF. One of the most well-known 
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studies includes the Ferinject Assessment in patients with IRon deficiency and chronic 

Heart Failure (FAIR-HF). It involved 459 patients with iron deficiency and chronic heart 

failure of New York Heart Association (NYHA) functional class II or III. The treatment 

with intravenous ferric carboxymaltose over 24 weeks improved NYHA functional class, 

functional capacity and quality of life in terms of EQ-5D (EuroQol-5 Dimension) and 

KCCQ (Kansas City Cardiomyopathy Questionnaire) with an acceptable side effect profile 

[105]. A simplified ferric CarboxymaltOse evaluatioN on perFormance in patients with 

IRon deficiency in coMbination with chronic Heart Failure (CONFIRM-HF) trial that has 

enrolled 304 stable, symptomatic HF patients from 41 sites across 9 European countries is 

currently in progress to confirm the efficacy and safety of iron therapy using intravenous 

ferric carboxymaltose solution in chronic HF patients with iron deficiency as in the FAIR-

HF study [106]. Other clinical trials including the FERRIC-HF [107] and IRON-HF [108] 

trials have also showed encouraging results with iron therapy using intravenous iron 

sucrose in improving functional capacity in HF patients with ID. Thus, ID can serve in 

many cases as a promising therapeutic target for HF. Furthermore, the importance of ID as 

a marker in the context of HF and its assessment was highlighted and recommended by the 

ESC [77]. As for anemia, it has also been shown to have a relatively high prevalence (37%) 

in patients with HF [109]. With less oxygen availability during anemia, the heart 

compensates by increasing heart rate and stroke volume. Moreover, anemia has been 

reported to be an independent risk factor for adverse outcomes in HF, both in terms of 

morbidity and mortality rates [110-117]. Efforts have been made to restore hemoglobin 

levels as a potential therapeutic approach to HF using erythropoietin-stimulating agents 

(ESA) and this resulted in improvements in exercise tolerance, peak VO2, NT-proBNP and 
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left ventricular performance in patients with HF [118]. However, other studies have also 

distinguished anemia as being independent from HF [119] – the correction of anemia by 

ESA darbepoitin alfa demonstrated no difference in the primary end point for HF, and was 

even associated with elevated embolic and thrombotic events [120]. Thus, it is suggested 

that anemia may only serve as a surrogate marker instead of an endpoint target in HF.  

 

1.3.3. Cellular mechanisms that underlie the association of iron and cardiomyopathy  

1.3.3.1. Iron & oxidative stress  

Free iron is highly redox reactive and can participate in redox reaction that leads to 

generation of reactive oxygen species (ROS). Ferroptosis, as the name implies, is a 

recently identified form of cell death that is morphologically, biochemically and 

genetically distinct from apoptosis and necrosis and is found to be dependent on 

intracellular iron, and can be prevented by iron chelators and antioxidants [121]. The use 

of iron chelator deferoxamine has demonstrated significant reduction of neutrophil-

mediated free radical production and amplification of the inflammatory response during 

cardiopulmonary bypass in human [122] and in vivo studies [123-125]. In summary, iron 

can potently enhance oxidative stress and consequently contribute to cardiomyopathy. 

 

1.3.3.2. Iron and mitochondrial dysfunction     

In eukaryotic cells, mitochondria are the main consumers of intracellular iron [126]. 

With mitochondria being the respiratory centre of the cell, plentiful oxygen can rapidly 

react with unregulated free iron to produce ROS. To avoid ROS induced damage, 

mitochondrial iron level and homeostasis is tightly regulated by different transport, storage 
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and regulatory proteins [127]. Through different biosynthesis pathways, iron is transferred 

in the mitochondria to its bioactive forms, heme and iron sulphur cluster (ISC). Mitoneet is 

an ISC-containing protein tethered to the outer mitochondrial membrane that facilitates 

transfer of iron into the mitochondria [128]. Not only does it play an essential role in redox 

signaling [129], it also dictates metabolic functions of mitochondria [128, 130-132]. An 

increased level of mitoneet can lead to accumulation of iron within the mitochondria, 

which in turn results in dysfunction [133, 134], a hallmark of various diseases. Mitoneet is 

recognized as a target for the thiazolidinedione class of antidiabetic drugs [129, 135], and 

its genetic manipulation was shown to have striking antidiabetic effects [136]. 

Mitochondrial ferritin stores and supplies iron within the mitochondria. Its expression is 

restricted to highly metabolically active cells such as cardiomyocytes in order to supply 

iron when demand is increased during active respiration or intense metabolic activities. 

Frataxin is another mitochondrial protein that handles iron in the mitochondrial matrix 

assembling ISC [137]. It can either act as a chaperone for ferrous iron, or as an iron storage 

protein that can mineralize iron as ferrihydrite. There is great interest in improving 

mitochondrial dysfunction as a potential therapeutic approach for heart failure [138, 139] 

and the underappreciated contribution of iron homeostasis is worthy of more consideration. 

 

1.3.3.3. Iron & endoplasmic reticulum (ER) stress  

Various pathophysiological situations can elevate ER stress. One of the major 

functions of ER is proper protein folding, and accumulation of misfolded proteins can 

normally be relieved by cellular responses such as ER-associated protein degradation 

(ERAD) and unfolded protein response (UPR). These ER stress responses are important 
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defense mechanisms when the amount of unfolded protein exceeds the folding capacity of 

ER [140]. ER stress has been strongly implicated in cardiovascular disease. For example, 

ER stress can lead to cardiomyocyte death in vivo and ex vivo [141] and in patients with 

HF [142]. Interestingly, it was suggested that ER stress may be cardioprotective during 

constriction-induced hypertrophy [143], perhaps by inducing compensatory cellular 

mechanisms such as autophagy (see below). Similarly, ER stress induction protected 

cardiomyocytes from oxidative damage [144]. Iron overload induced ER stress was shown 

in vivo in heart under acute and chronic conditions [145], and had been demonstrated in 

other tissue types including neurons [146] and liver [147]. In reverse, ER stress can 

modulate iron metabolism. Hepcidin, as mentioned above, degrades the iron efflux 

transporter FPN, thus leading to a systemic hypoferremic environment. ER stress was 

found to induce hepcidin expression [148]; the UPR signaling pathway was further shown 

to increase the transcription of ferroportin and ferritin [149]. Thus, based upon available 

evidence, ER stress and iron homeostasis appear to have a reciprocal relation such that they 

can tightly regulate each other. ER stress and UPR related proteins will serve as interesting 

targets to be studied in future clinical studies    

 

1.3.3.4. Iron & autophagy  

Macroautophagy (hereafter referred to as autophagy) is an intracellular degradation 

system that involves the sequestration of cytoplasmic components within a double-

membrane vesicle termed autophagosome, in which the cargo content is degraded by the 

acidic hydrolases upon the fusion with a lysosome [55]. It has a wide variety of 

physiological and pathophysiological roles including energy homeostasis, cell survival and 
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host defense against pathogen invasion [150].  In the heart, autophagy typically occurs at 

low levels yet is nevertheless important in maintaining cellular homeostasis under normal 

conditions. Autophagy is typically upregulated in times of stress, for example during 

ischemia/reperfusion, pressure overload and cardiac toxicity induced by chemicals such as 

the athracycline doxorubicin [151]. While increased autophagy can promote cell survival 

by degrading damaged organelles such as mitochondria and protein aggregates to recycle 

catabolites and maintain ATP production; either excess or lack of autophagy can both 

result in cell death and cardiac dysfunction. Thus, the role of autophagy can often appear 

controversial among different studies when different degrees of autophagy, time course 

and pathological conditions being studied have led to variable observations. In vivo data 

has shown that expression of multiple autophagy related genes were altered in iron 

overload cardiomyopathy, possibly contributing to cardiac diastolic dysfunction [152].  

 

Specifically, it is now appreciated that iron can regulate autophagy and that 

autophagy has an important role in iron homeostasis. Nuclear receptor coactivator 4 

(NCOA4) was recently identified using quantitative proteomics to be the cargo receptor 

that mediates autophagy of ferritin - a process termed ferritinophagy. NCOA4 is required 

for the delivery of ferritin to the lysosome; without NCOA4 cells are malfunctional in 

ferritin degradation and this can result in a decreased bioavailability of intracellular iron 

[153]. However, excessive ferritinophagy may result in insufficient ferritin thus reducing 

its buffering effect on binding intralysosomal low mass iron and can lead to lysosomal 

fragility and increased sensitivity to oxidative stress [154]. Analysis of autophagy in iron 

associated cardiomyopathy is relatively new with limited mechanistic and clinical studies; 
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however we believe this must be rapidly developed since it is of great potential as a 

therapeutic target.  

 

1.3.4. Regulation of cardiomyopathy by Lcn2 

The maintenance of optimal iron levels in the body is largely controlled and 

influenced by endocrine regulation, and this is likely to be of major significance in 

cardiomyopathy. In this section I will introduce the importance of Lcn2 in the regulation of 

iron homeostasis and other possible mechanisms in the context of cardiomyopathy.  

 

1.3.4.1. Possible mechanisms via which Lcn2 may mediate cardiomyopathy  

1.3.4.1.1. Iron transport    

Lcn2 is most well-known for its participation in innate immunity to limit bacterial 

growth by sequestrating iron. One way to secure iron from the host by bacteria is by 

synthesizing and secreting siderophores to extract iron from iron containing compounds 

such as transferrin and lactoferrin. Lcn2 is secreted by the host to tightly bind to bacterial 

catecholate-type ferric siderophores to compete for iron and prevent such uptake [155]. 

Lcn2 saturated with iron (holo form) can increase intracellular iron level by transporting it 

then releasing iron in the cytoplasm; in contrast, when Lcn2 is iron free (apo-form) it can 

deplete intracellular iron and transport it to the extracellular space via its receptor LCN2-R 

[156]. Bacterial infection is often associated with hypoferremia that limits iron availability 

to pathogens; accordingly, mice deficient in Lcn2 exhibit elevated intracellular labile iron 

and lowered circulating iron level [32]. Overall, Lcn2, as an iron-trafficking protein, can be 

regarded as an alternative to transferrin-mediated iron-delivery pathway [157].  Although 
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limited studies are available, it is speculated that circulating Lcn2 levels may reflect the 

body iron status, especially in hemodialysis patients. Indeed, it was found that plasma Lcn2 

in hemodialysis patients was significantly lower within those who had ID – with transferrin 

saturation (TSAT) lower than 20%; and that the level of Lcn2 was positively correlated 

with circulating iron, TSAT and ferritin. Lcn2 was significantly increased after correction 

of ID with intravenous iron administration [158]. Similar results were also observed in 

another two studies supporting the potential use of Lcn2 to identify iron deficiency in 

hemodialysis patients [159, 160]. Likewise, a lowered Lcn2 level was also recorded in 

patients with iron deficiency anemia [161]; and in patients with chronic HF (both HFpEF 

and HFrEF), the significantly higher circulating Lcn2 levels also correlated with higher 

serum iron concentrations in the EPOCARES study [162]. As circulating Lcn2 is often 

recorded significantly increased in patients experiencing HF [28, 46, 49-51], and that local 

Lcn2 production in the heart is also increased significantly [22, 28], we believe it will be of 

great interest to further elucidate the role of Lcn2 in iron associated cardiomyopathy. 

Interestingly, we previously identified that Lcn2 led to cardiomyocyte apoptosis by causing 

intracellular iron accumulation [71]. Further mechanistic studies are definitely warranted.  

 

1.3.4.1.2. Proinflammatory actions of Lcn2 

As Lcn2 is involved in defending the host during bacterial infection, it comes as little 

surprise that Lcn2 is regarded as a proinflammatory cytokine. In the fourth Copenhagen 

Heart Study that involved more than 5000 patients and a follow up period of 10 years, it 

was shown that plasma Lcn2 strongly associated with all inflammatory markers 

investigated, including hsCRP, total leukocyte and neutrophil count; increased Lcn2 was 
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also shown to correspond to increased risk of all-cause mortality and major adverse 

cardiovascular events [163]. It was suggested that Lcn2 expression and secretion can be 

induced by IFNγ and TNFα, and that the transcription factors STAT1 and NF-kappa B 

were shown to bind to the human Lcn2 promotor [164]. Likewise, in elucidating the 

inflammatory mechanisms of Lcn2 with animal models, Lcn2 mRNA and proteins were 

upregulated upon vascular injury in an NF-kappa B dependent manner [26]. Lcn2 can 

enhance cardiac inflammation by promoting macrophage proinflammatory M1 phenotype 

polarization [165]. Thus, a vicious cycle exists whereby Lcn2 can intensify inflammation 

by inducing the expressions of TNFα and other pro-inflammatory mediators [166]. 

Interestingly, preventing the clearance of Lcn2 from the circulation was shown to promote 

vascular inflammation and endothelial dysfunction [167]. In both HFpEF and advanced 

HFrEF, elevated systemic and local inflammations with increased circulating TNFα have 

indispensable roles in disease pathogenesis [168]. It will be interesting to explore how 

Lcn2 contributes to cardiomyopathy in an inflammation dependent and independent 

manner.  
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1.4. HYPOTHESIS AND RESEARCH AIMS 

The preceding discussion indicating that a variety of remodeling events occur 

throughout the progressive development of heart failure in obesity [4, 169]. These include 

changes in inflammation, mitochondrial dysfunction, autophagy, fibrosis, cell death, 

endoplasmic reticulum (ER) stress, oxidative stress and insulin sensitivity. I hypothesized 

that Lcn2 is an important component of the cardiac response to myocardial infarction, 

directly regulates cardiac remodeling and contributes to development of heart failure. The 

research aim of this project was to elucidate the effects of Lcn2 on cardiac remodeling, 

the impact of these changes on cardiac function, and Lcn2 mechanism of action.  

 

My specific research objectives are: 

 

• Aim 1: To examine the effect of Lcn2 on cardiomyocyte insulin sensitivity and 

what is the mechanism of action.  

• Aim 2: To use Lcn2-knockout mice and investigate whether lack of Lcn2 protects 

against cardiac remodelling and dysfunction induced by chronic myocardial 

ischemia and the mechanisms via which this occurs. 

• Aim 3: To investigate whether iron directly caused insulin resistance in 

cardiomyocytes and the mechanisms via which this occurred, with a focus on 

oxidative stress. 
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2.1. Summary 

Lipocalin-2 (Lcn2; also known as neutrophil gelatinase associated lipocalin, NGAL) 

levels are increased in obesity and diabetes and associate with insulin resistance. 

Correlations exist between Lcn2 levels and various forms or stages of heart failure. Insulin 

resistance and autophagy both play well-established roles in cardiomyopathy. However, 

little is known about the impact of Lcn2 on insulin signaling in cardiomyocytes. In this 

study, we treated H9c2 cells with recombinant Lcn2 for 1 hour followed by dose- and 

time-dependent insulin treatment and found that Lcn2 attenuated insulin signaling assessed 

via phosphorylation of Akt and p70S6K. We used multiple assays to demonstrate that Lcn2 

reduced autophagic flux. First, Lcn2 reduced pULK1 S555, increased pULK1 S757 and 

reduced LC3-II levels determined by Western blotting. We validated the use of DQ-BSA 

to assess autolysosomal protein degradation and this together with MagicRed cathepsin B 

assay indicated that Lcn2 reduced lysosomal degradative activity. Furthermore, we 

generated H9c2 cells stably expressing tandem fluorescent RFP/GFP-LC3 and this 

approach verified that Lcn2 decreased autophagic flux. We also created an autophagy-

deficient H9c2 cell model by overexpressing a dominant-negative Atg5 mutant and found 

that reduced autophagy levels also induced insulin resistance. Adding rapamycin after 

Lcn2 could stimulate autophagy and recover insulin sensitivity. In conclusion, our study 

indicated that acute Lcn2 treatment caused insulin resistance and use of gain and loss of 

function approaches elucidated a causative link between autophagy inhibition and 

regulation of insulin sensitivity by Lcn2.  
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2.2. Introduction  

Lipocalin 2 (Lcn2), also termed 24p3 and neutrophil gelatinase-associated lipocalin 

(NGAL), is a proinflammatory hormone predominantly expressed by adipose tissue [12]. 

Various studies have previously reported the close association of circulating Lcn2 levels 

with hyperglycemia and insulin resistance [14, 16]. Elevated Lcn2 levels in obese or 

diabetic individuals were normalized by rosiglitazone and this correlated significantly with 

improved insulin sensitivity and inflammatory status [14]. Similarly, Lcn2 was also found 

associated with insulin resistance in other in vitro [18] or in vivo [17] studies and clinical 

settings [29, 170]. More recently, elevated Lcn2 was observed in patients with heart failure 

[51]. Furthermore, Lcn2 was shown capable of predicting the severity and mortality of 

acute and chronic heart failure [46, 50, 51, 171-173]. Lcn2 was also implicated in higher 

thrombotic risks in patients with atherosclerosis [26, 174]. Currently used as an excellent 

biomarker for acute kidney damage [175], Lcn2 has also been proposed as an attractive and 

promising biomarker for heart failure [171-173].  

 

Obesity and diabetes increase the incidence of myocardial infarction and heart 

failure at least in part via insulin resistance [74, 176]. Cardiac insulin resistance is well 

established to influence heart failure via multiple mechanisms, including regulation of 

glucose and fatty acid uptake and metabolism, protein synthesis and vascular function [176, 

177]. More recently, numerous studies have shown that autophagy can play a critical role 

in cardiac metabolic health [178] as well as regulating insulin sensitivity [179, 180]. 

Disruption of autophagy by cardiac-specific knockdown of Atg5 in adult mice leads to 

cardiomyopathy [181]. The dogma arising from studies in rodent or pig models is that 
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autophagy, triggered by various forms of cardiac stress, is a protective mechanism by 

which apoptosis is inhibited and the detrimental effects of cardiac ischemia are limited 

[182, 183]. However prolonged activation of autophagy can result in cell death [183] and 

cardiomyocyte dysfunction [184, 185]. Interestingly, patients with longstanding idiopathic 

cardiomyopathy show accumulation of autophagosomes in cardiomyocytes [186]. Aortic 

banding has been shown to induce autophagic activity which peaked at 48 hours and 

remained significantly elevated for at least 3 weeks [184]. This was attenuated by 

heterozygous disruption of the gene coding for Beclin 1, a protein required for early 

autophagosome formation. Subsequent studies have shown increases in markers including 

LC3-II and p62 levels in the heart 8 weeks post-banding [187, 188]. The role of autophagy 

in heart failure is clearly complex to study and is likely to influence cardiac remodeling in 

different ways depending on the magnitude of changes in autophagic flux and timing 

during the progression of heart failure. 

 

Although elevated Lcn2 levels correlate with heart failure and insulin resistance can 

contribute to development and progression of heart failure, the impact of Lcn2 on cardiac 

insulin sensitivity remains unclear. Furthermore, little is known about the mechanisms of 

action via which Lcn2 impacts upon cardiac function. In this study, we first established 

that Lcn2 blunted insulin signaling in H9c2 cells, derived from rat heart ventricle. We used 

multiple assays to assess the effect of Lcn2 on autophagic flux and then used gain and loss 

of function strategies to determine the functional significance of Lcn2-induced alterations 

in autophagy. These studies will be important in developing our understanding of cardiac 

insulin resistance in obesity and diabetes and other inflammatory conditions. 
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2.3. Materials and methods  

2.3.1. Cell culture  

H9c2 (ATCC® CRL-1446) rat cardiomyoblasts were grown in Gibco® normal 

glucose Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) and 1% (v/v) penicillin streptomycin at 37°C and 5% CO2. For 

microscopy assays (except TEM), cells were grown on cover slips and treated with or 

without recombinant apo-lipoclain 2 (Lcn2) (1µg/ml) in DMEM with 0% FBS mimicking 

starvation at approximately 80% confluency (unless specified otherwise) for 1 hour. A 

dose response using 1-5µg/ml was previously studied and 1µg/ml was selected based upon 

preliminary results and used in several publications since (Law, et al. 2010; Xu, et al. 

2012). For other assays, cells were grown and treated the same way on 6 or 12 well plates 

without coverslips. Where appropriate, rapamycin (Sigma) (250nM) was post treated for 

30 minutes after incubation with Lcn2. 

 

2.3.2. Recombinant Lcn2 production  

The expression of His-tagged Lcn2 (University of Hong Kong) in BL21 Competent 

E. Coli (NEB Biolab) was induced by SOC growth medium (NEB Biolab). Lcn2 was 

purified from bacterial lysates using the HIS-select® nickel affinity gel (Sigma) according 

to the manufacturer’s protocol. The purity of Lcn2 was confirmed using SDS-PAGE gel. E. 

Coli strain B21 lack siderophore enterobactin, thus Lcn2 derived from this strain lacks iron 

(apo-Lcn2), as contrast to those purified from E. Coli strain XL1 Blue that constitutively 

expressing siderophore enterobactin that could derive iron loaded Lcn2 (holo-Lcn2) [156].   
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2.3.3. Western blotting  

H9c2 cells were grown to 90% confluency in 6 well plates. After the experimental 

endpoint, cells were washed in PBS and solubilized in 1x Lysis buffer (50mM Tris, 

150mM NaCl, 0.1% SDS 1% Triton X-100 and 0.5% sodium deoxycholate) containing 

protease inhibitor cocktail – complete ULTRA Tablets, Mini (Roche). Lysates were 

centrifuged at 12,000 rpm for 5 min at 4°C. Supernatant was collected, heated at 90°C for 

5 min and equivalent amounts of lysate were loaded to an SDS-PAGE gel, followed by 

protein transfer onto PVDF membrane (Bio-Rad). Membranes were first blocked in 3% 

BSA for 1 hour, incubated in primary antibody at 4°C overnight, washed, incubated in 

appropriate horse-radish peroxidase (HRP)-linked secondary antibody for 1 hour, washed, 

then followed by chemiluminescence enhancement using Western Lightning Plus ECL 

(Perkin Elmer) before developing and exposing the membrane to CL-XPosure Film 

(Thermo Scientific). The band intensities were quantified using Image J. The following 

primary antibodies were used: pAkt T308, pAkt S473, pULK1 S555, pULK1 S757, LC3B, 

p70S6K T389 and β-actin (1:1000, Cell Signaling). The following secondary antibodies 

were used; anti-rabbit IgG HRP-linked antibody and anti-mouse IgG HRP-linked antibody 

(1:10,000, Cell Signaling).  

 

2.3.4. RT-PCR analysis of autophagy genes expression  

H9c2 cells were grown to 90% confluency in 6 well plates. After the experimental 

time point, RNA was isolated using the RNeasy® Mini Kit (Qiagen) following the 

manufacturer’s protocol, quantified using NanoDropTM (Thermo Scientific) followed by 

reverse transcriptionwith GoScript Reverse Transcriptase (Promega). The 20µl reaction 
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mixture containing a total of 60ng cDNA and primers at a final concentration at 5µM were 

prepared for real-time PCR using the iQTM SYBR® Green Supermix (Bio-Rad). Real-time 

PCR was conducted using Real-Time PCR Detection System (CFX96, Bio-Rad), with a 

hot start at 95°C for 2min, 40 cycles of denaturation at 95°C for 5s, annealing at 60°C for 

5s and extension at 72°C for 5s, followed by a final extension at 72°C for 1 min. The 

melting curve analysis was done by a serial increment of 1°C from 55°C to 95°C. 18S was 

used as the reference gene for calculating the relative target gene expression using the delta 

delta CT method. The primer sequences were in-house designed with the 5’ to 3’ 

sequences as follow: Atg5 – Forward: TAGAGCCAATGCTGGAAACC; Reverse: 

TGTTGCCTCCACTGAACTTG; Atg7 – Forward: CGAAGGTCAGGAGCAGAAAC; 

Reverse; AGGCACCCAAAGACATCAAG; Atg8 – Forward: 

GTCTGGAGCATTGGACTTGC; Reverse: AGCCACACCCTTTCACTCAG; Atg9 – 

Forward: GGAATCTACCATCGCATCC; Reverse: CGGGTGAAGAAGACAACCTC; 

and Atg12 – Forward: TGACCTGGAACAGGAGTGTG; Reverse: 

GGGATGAGCCAGAAATGAAC.  

 

2.3.5. Analysis of autophagic degradation by DQ-BSA assay using flow cytometry 

H9c2 cells were seeded in 6-well plates, and underwent starvation for 4 hours. 

DQ™ green BSA was added in each well at 20ug/mL and incubated for 15 minutes. Cells 

were harvested and fixed with 4% PFA, and run in flow cytometer machine (Gallios ™, 

Beckman Coulter Inc.) to analyze green fluorescent (BODIPY) signal intensity in each cell 

within a population of 10,000. 
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2.3.6. Analysis of DQ-BSA co-localization with autophagy and lysosomal markers 

H9c2 cells were seeded in 12-well plates with cover slips and underwent starvation 

for 4 hours. DQ™ green BSA was added in each well at 20ug/mL, and incubated for a 

minimum of 30 minutes after treatment. Cells were fixed with 4% paraformaldehyde (PFA) 

and quenched with 1% glycine then permeablized with 0.1% Triton X-100 for 5 minutes 

and blocked with 5% BSA for 1 hour. Cells were incubated with primary antibody at 

different concentration (LC3B, 1:400, p62, 1:400, and Cathepsin D, 1:250) for 1 hour. 

After three washes, cells were incubated with corresponding secondary antibody (Goat 

anti-Rabbit/anti-Mouse secondary antibody, AlexaFluor®594, 1: 800) before mounting on 

a glass slide. Confocal images were taken using a x60 objective (Olympus, BX51 

Microscope). 

2.3.7. Lysosomal cathepsin B activity measured using Magic Red  

 H9c2 cells were grown to 80% confluency on coverslips in 12 well plates. At the 

experimental endpoint, cells were fixed in 4% paraformaldehyde, quenched in 1% glycine, 

permeabilized with 0.1% Triton X-100 and blocked with 3% BSA before incubation of 

Magic red stain (Magic RedTM in vitro Cathepsin B kit, ImmunoChemistry Technologies) 

as per manufacturers’ instructions. Coverslips were mounted with Prolong® Gold antifade 

reagent and Vectashield with DAPI on glass slides. Images were captured at 600x with 

confocal microscope (Olympus, BS51). At least 6 images at different fields of view were 

taken per coverslip. Quantitative analysis of Magic Red or TRIC fluorescence intensity in 

the cytoplasmic area, normalized by the number of cells, was performed using Definiens 

Tissue Studio® 3 (Definiens). For FACS analysis H9c2 cells were grown to 90% 

confluency in 6 well plates. At the experimental endpoint, cells were fixed with 4% 
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paraformaldehyde, quenched in 1% glycine, permeabilized with 0.1% Triton X-100, 

blocked with 3% BSA before incubation with Magic red stain. Fluorescence intensities of 

10,000 cells per sample were measured by flow cytometry using GalliosTM Flow 

Cytometer (Beckman Coulter) and analyzed using Flowing Software 2 (Perttu Terho).   

 

2.3.8. Generation of H9c2 cells stably overexpressing tandem fluorescent RFP/GFP-

LC3 and analysis of autophagic flux 

 Stable H9c2 cells expressing tf-RFP/GFP-LC3 were created essentially as 

described by us previously for another cell type [179]. Cells were grown to 80% 

confluence on coverslips in 12 well plates. At experimental endpoint, cells were carefully 

washed with PBS before fixing at 4% paraformaldehyde and washing before mounting 

with Prolong® Gold antifade reagent and Vectashield with DAPI on glass slides. At least 6 

images at different fields of view were taken per coverslip with confocal microscope (LSM 

700, ZEISS). Quantitative analysis of the RFP:GFP ratio was performed using ZEN 

software (blue edition, 2012). 

 

2.3.9. Transmission electron microscopy (TEM)   

H9c2 cells were grown on 6 well plate to 80% confluency. After the experimental 

endpoint, cells were washed with PBS and immediately fixed with 2.5% glutaraldehyde in 

0.1M sodium cacodylate buffer followed by post-fixation with 1% osmium tetroxide for 1 

hour at room temperature. Cells were then dehydrated with ascending concentration of 

ethanol (50% to 100%) and embedded in Spurr’s Epoxy resin. Thin sections at 60 – 80nm 

were cut with an ultramicrotome (Porter Blum, Ivan Sorvall Inc.) and mounted on copper 
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mesh grids. The sections were contrasted with 1% uranyl acetate and lead citrate before 

examining with a transmission electron microscope (CM100, FEI). At least 10 random 

fields of view were taken per sample using the Kodak Megaplus camera.  

 

2.3.10. Generation of H9c2 cells stably overexpressing a dominant negative ATG5 

(K130R) mutant  

We generated an autophagy-deficient cell model by generating H9c2 cells stably 

expressing dominant negative ATG5 mutant in which lysine 130 was mutated to arginine, 

essentially as described by us previously for another cell type [179]. Cells were grown 

to >90% confluence in 6 well plate before treatment with insulin (10 or 100nM) for 10min 

and preparation of protein lysate for Western blotting as described above. 

  

2.3.11. Statistics  

Data are presented as mean ± SEM. Effect of Lcn2 was calculated with student 

unpaired t test and Mann-Whitney test for parametric and non-parametric data respectively 

(GraphPad Prism). Values of P<0.05 were considered significant.  
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2.4. Results  

 

2.4.1. Lcn2 attenuated dose- and time-dependent insulin signaling  

We first showed that H9c2 ventricular cardiomyocyte cells responded dose 

dependently to insulin as shown by increased phosphorylation of Akt T308 (Figure 2.1.A), 

Akt S473 (Figure 2.1.B) and 70S6K (Figure 2.1.C) and that these responses to insulin were 

attenuated in cells pretreated with Lcn2 (Figure 2.1.).  

 

2.4.2. Lcn2 inhibited initiation of autophagy   

As shown in Figure 2A and B, Lcn2 directly elicited significant up and down 

regulation of phosphorylation of ULK1 at Ser757 and Ser555, respectively (Figure 2.2. 

A&B). These observations on regulation of proteins involved in autophagy initiation 

corresponded with reduced levels of LC3-II after Lcn2 treatment (Figure 2.2. A&B). The 

short term time period of Lcn2 treatment used in this study had no significant effects in 

altering the gene expressions of various autophagy related genes (Figure 2.2. C).  

 

2.4.3. Measurement of lysosmal degradative activity with DQ Green BSA   

To further investigate the effects of Lcn2 on autophagic flux we developed a novel 

assay to investigate protein degradation via autolysosomal activity using DQ Green BSA. 

DQ-BSA is a derivative of BSA that is heavily conjugated with BODIPY® dye that 

confers self-quenching, yet releases fluorophores upon enzymatic cleavage in acidic 

intracellular lysosomal compartments. We first confirmed that BODIPY signals from 

exogenously added DQ-BSA strongly co-localized with autophagy markers LC3B and p62 
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as well as the lysosomal marker cathepsin D (Figure 2.3.A). This indicated that DQ-BSA 

de-quenching occurred at subcellular locations relevant to autophagosome and lysosome. 

The intensity of BODIPY signals from DQ-BSA was measured quantitatively by flow 

cytometry and also by immunofluorescence. The intensity of BODIPY signals in 10,000 

cells, with or without starvation to induce autophagy, was plotted and the population of 

green fluorescence shifted rightward in H9c2 cells with starvation (Figure 2.3.B). 

Importantly, this shift which reflects elevated levels of protein degradation was reduced in 

autophagy-deficient Atg5K130R cells. Immunofluorescent analysis of cells pulsed with 

DQ-BSA supported the conclusion that significant green puncta appeared in H9c2 cells 

after starvation yet this response was attenuated in ATG5K130R cells (Figure 2.3.B & C). 

 

2.4.4. Lcn2 decreased lysosomal enzyme activity and autophagic flux  

After verifying the use of DQ-BSA, it was observed using this approach that Lcn2 

significantly reduced the autolysosomal activity in H9c2 cells (Figure 2.4.A, B). Magic red 

dye was then used as a well-established approach to measure cathepsin B activity. Both 

immunofluorescence (Figure 2.4.C&E) and flow cytometry (Figure 2.4.D&E) analysis of 

MagicRed indicated a reduction in response to Lcn2. To further assess autophagic flux, we 

generated H9c2 cardiomyoctyes stably overexpressing tandem fluorescent RFP-GFP-LC3. 

Given that GFP and RFP have different pH stability, only GFP weakens in acidic 

environment, the degradation of autophagic vacuoles can be inferred from a lower 

RFP/GFP ratio. As shown in Figure 4F, an increase in yellow LC3 puncta was observed 

after the addition of Lcn2. In contrast, addition of rapamycin restored the autophagic flux 

as shown by a significant increase in red puncta (Figure 2.4.F).  
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The gold standard technique to visualize autophagic vacuoles in mammalian cells is by 

transmission electron microscopy (TEM). In H9c2 cardiomyocytes, plentiful autophagic 

vacuoles including autophagosomes and autolysosomes were observed in the control 

conditions (Figure 2.5.) yet only a few, and mostly autophagosomes were seen upon the 

treatment with Lcn2 (Figure 2.5.). This observation correlated well with our above 

mentioned results. 

 

2.4.5. Regulation of insulin signaling by alterations in autophagy and effect of Lcn2  

Based on the observations that Lcn2 inhibited both insulin signaling and autophagy, 

we investigated if crosstalk occurred between the two. We first generated autophagy-

deficient H9c2 cells by stably overexpressing a mutant inactive Atg5 (Atg5K). While we 

observed a dose dependent increase in phosphorylation of Akt T308 in wild type (WT) 

H9c2 cells upon stimulation with an increasing dose of insulin this response was 

significantly decreased in Atg5K cells (Figure 2.6.A&B). We then further examined the 

potential contribution of autophagy to insulin sensitivity regulation by restoration of 

autophagy with rapamycin in Lcn2 treated cells. As shown in Figure 2.6.C/D/E, while 

Lcn2 inhibited insulin-stimulated phosphorylation of Akt T308 and Akt S473, post-

treatment with rapamycin significantly increased their phosphorylation by insulin.  
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Figure 2.1. Insulin signaling in cardiomyocytes was decreased by Lcn2 as indicated by 

decreased dose-dependent insulin-stimulated phosphorylation of Akt T308, Akt S473 

and p70S6K. H9c2 cells pretreated without (con) or with Lcn2 (1µg/ml, 1 hour) were then 

treated with insulin (0, 10 or 100nM) for 10 minutes. Representative Western blots 

showing pAkt T308 (A), pAkt S473(B) and p70S60K T389 (C) and the respective 

reference protein β-actin and their quantification # indicates significant difference from 

control H9c2 cells without insulin; * indicates significant difference from the control with 

respective insulin dosage. # p<0.05, ## p<0.01, ### p<0.001; *p<0.05, **p<0.01. n ≥ 3.  
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Figure 2.2. Initiation of autophagy was inhibited by Lcn2 in cardiomyocytes. H9c2 

cells were treated with Lcn2 (1µg/ml ) (Lcn2) or without (Con) for 1 hour. Western blots 

showing pULK1 S555, pULK1 S757, LC3II and the reference protein β-actin (A) and their 

quantifications (B). Gene expression of autophagy related genes Atg5, Atg7, Atg8 (LC3), 

Atg9 and Atg12 by qPCR was quantified with 18S as the reference gene using the delta 

delta CT method (C). ***p<0.001. n ≥ 3. 
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Figure 2.3. Validation of DQ-BSA degradation as a measure of proteolytic autophagy. 

Representative confocal images of H9c2 cells labelled with LC3B/p62/Cathepsin D and 

DQ-BSA (20ug/mL) which was pulsed for ≥ 30 minutes (A). Distribution of green 

fluorescence (BODIPY) intensity of 10,000 H9c2 cells (WT, wild type, and ATG5K130R 

H9c2 cells) pulsed with DQ-BSA ± starvation (B). Representative confocal images of 

H9c2 cells (WT and ATG5K130R H9c2 cells) pulsed with DQ-BSA ± starvation (C) and 

quantification (D). Results are represented as mean ± SEM (n=10 images). *p<0.05 

**p<0.01 versus control. Scale bar = 20 um. 
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Figure 2.4. Lcn2 decreased lysosomal cathepsin B activities and autophagic flux. H9c2 

cells were treated with Lcn2 (1µg/ml) (Lcn2) or without (Con) for 1 hour. The overall 

proteolysosomal activity was examined by quantifying fluorophore released by DQ-BSA 

using flow cytometry and representative data are shown in (A) and quantified in (B).  The 

lysosomal cathepsin B activity was further examined using the Magic red dye with 

immunofluorescence microscopy (C), flow cytometry (D) and these data were both 

quantitated as shown in (E). Autophagic flux was further evaluated using the RFP/GFP 

ratio of LC3 puncta in the tf-GFP/RFP-H9c2 cell line. Rapamycin, an inducer of autophagy, 

was used as a positive control and both representative images and quantitative data are 

shown in (F). * indicates significant difference from the control. **p<0.01; ***p<0.001. 

Scale bar = 50µm in C; 20 µm in F. n ≥ 3. 

Con

A B

C
o
n

L
c
n
2

Con Lcn2

C

E

D60x 120x

**

IF FACS

Lcn2

***

Con Lcn2

1.2

1.0

0.8

0.6

1.5

1.0

0.5

0.0

M
e
a
n
 B

O
D

IP
Y

M
a

g
ic

 R
e

d
 I

n
te

n
s
it
y

100

C
o
u
n
t

Neg Ctrl

Con

Lcn2

FN1 INT Log

10
1

10
2

10
3

10
4

80

60

40

20

0

F

1
2
0
x

8
0
x

Con Lcn2 Lcn2 + Rap

*

**

Con Lcn2 Lcn2 + 

 Rap

1.5

1.0

0.5

0.0R
F

P
/G

F
P

 L
C

3
 f
lu

o
re

s
c
e
n
c
e

G

Figure 4



 

 
	

51	

 

 

Figure 2.5. Lcn2 decreased number of autophagosomes and autolysosomes in 

cardiomyocytes. H9c2 cells were treated with Lcn2 (1µg/ml) (Lcn2) or without (Con) for 

1 hour. Autophagy was evaluated using transmission electron microscopy. Selected areas 

from lower magnification (6500x) images were magnified to 29000x with white arrows 

indicating the presence of autophagic vacuole structures. Shown here is one representative 

image for each treatment, at different magnifications, from multiple independent samples.  
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Figure 2.6. Inhibiting autophagy decreased and elevating autophagy rescued insulin 

signaling in cardiomyocytes. Insulin sensitivity was decreased in autophagy deficient 

cells overexpressing mutant Atg5, as indicated by decreased phosphorylation of Akt T308; 

representative Western blots in (A) and quantification in (B). Wild type H9c2 cells were 

treated with Lcn2 (1µg/ml) (Lcn2) or without (Con) for 1 hour and rapamycin (Rap) 

(250nM) was added 30 minutes after Lcn2 treatment for the final 30 minutes of treatment. 

Rap elevated insulin signaling indicated by increased phosphorylation of Akt T308 and 

Akt S473 in Western blots (C) and quantification (D). * indicates significant differences. 

*p<0.05, **p<0.01, ***p<0.001. n ≥ 3 
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2.5. Discussion   

Strong rationale for this study comes from observations of an increased circulating 

Lcn2 level and increased expression in adipose tissue of various experimental models of 

obesity and in obese humans [12]. For instance, a study with 2519 subjects showed that 

serum Lcn2 was significantly higher in those with impaired fasting glucose and/or 

impaired glucose tolerance even after adjusting for anthropometric measures, genetic 

predispositions, life style and other diabetic associated biomarkers [189]. Type 2 diabetic 

patients were shown to have a significant elevation of serum Lcn2 that associated with 

declining pancreatic beta cell function [190] and a cross sectional study showed that insulin 

resistance and hyperglycemia were positively correlated with elevated circulating Lcn2 

[14]. Rosiglitazone treatment decreased circulating Lcn2 and this correlated significantly 

with improved insulin sensitivity [14]. Further studies in mice demonstrated the permissive 

role of Lcn2 in the development of obesity- and aging-induced insulin resistance since 

these processes were attenuated in Lcn2-KO mice [16]. Measurement of serum Lcn2 has 

also been proposed as a useful means for evaluating obesity-related cardiovascular diseases 

including heart failure [171-173], however the direct effects of Lcn2 on cardiomyocyte 

insulin sensitivity and its possible mechanisms of action remain unclear. 

 

We first investigated whether Lcn2 altered insulin sensitivity in a cell line derived 

from rat heart ventricle and found that 1 hour treatment with Lcn2 reduced insulin 

sensitivity. Cardiac insulin resistance is well established to influence heart failure via 

multiple mechanisms such that exacerbated cardiomyopathy may occur in an insulin-

insensitive myocardium [176]. In fact, in type 2 diabetes insulin resistance can be present 
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for several years before hyperglycaemia develops and at this time contribute to adverse 

cardiac remodeling [191]. We observed that Lcn2 reduced insulin stimulated signaling to 

Akt and  p70S6K.  

 

Although little is known about the mechanisms of Lcn2 action in cardiomyocytes, 

previous work has included evidence for a role of increasing intracellular iron levels [71]. 

Our current study indicates that inhibition of autophagy, by Lcn2 or by generating an 

autophagy-deficient cell line, can serve as an important contributor to insulin resistance in 

cardiomyocytes. This is important both from the perspective of our current realization of 

the critically important role autophagy plays in heart failure [192] and also in emerging 

evidence that autophagy can regulate insulin sensitivity and metabolism [179, 180].   

 

Autophagy is the major intracellular degradation process where cytoplasmic 

materials get delivered to lysosomes for degradation and recycling [178, 181, 183, 193]. 

The entire dynamic process of autophagosome synthesis, fusion with lysosome and the 

degradation of the autophagic substrates is termed “autophagic flux”, and is important to 

measure as a reliable indicator of autophagic activity [194]. Several studies have now 

shown that the degree of autophagy changes in the failing heart and directly in response to 

ischemia and/or reperfusion [195-198], although the functional significance is still 

somewhat uncertain. Indeed, autophagy may be regarded as a double edged sword with 

potential beneficial and detrimental effects in the heart [199]. At low levels autophagy is 

important in recycling damaged organelles and nutrients, however excessive autophagy 

contributes to tissue dysfunction [184, 199-202]. Our current study is the first to 
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demonstrate attenuation of autophagy by Lcn2 in cardiomyocytes and only one previous 

study examined Lcn2-induced changes in autophagy [203]. These authors investigated 

autophagy as one potential mechanism underlying its tumorigenic effects. They generated 

mouse embryonic fibroblasts (MEFs) from WT and Lcn2-/- mice, and immortalized these 

cells. By Western blotting  they found a significant decrease in total LC3 in Lcn2-/- MEFs 

compared to the WT MEF cells. No further markers of autophagy were analyzed and the 

authors concluded that Lcn2 is an important regulator in autophagy, possibly via an 

indirect mechanism. Accurate experimental analysis is critical to allow conclusions on 

alterations in autophagic flux [192, 200]. Thus, we took an extensive approach using 

numerous assays designed to examine different stages of autophagic flux in order to 

carefully characterize the effect of Lcn2. Our conclusion of reduced flux is based on 

several lines of evidence; increased pULK1 S757, reduced pULK1 S555 and reduced 

LC3II levels detected by Western blotting, reduced degradation of DQ-BSA, reduced 

cathepsin B activity, reduced appearance of red puncta in cells stably expressing tandem 

fluorescent RFP/GFP-LC3, and an overall of reduction in autophagosome and 

autolysosome content observed by transmission electron microscopy. Thus, our data 

showing that Lcn2 inhibits autophagic flux are of great interest given the above evidence 

on the critical role of autophagy in the heart and our need to further understand its 

regulation and significance. 

 

We further investigated the mechanistic role of autophagy in cardiac insulin 

sensitivity. First, we stably transfected H9c2 cells to overexpress a dominant-negative Atg5 

mutant (Atg5K) [204] to create an autophagy-deficient cell line. This is accepted as a 
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preferred means of generating reduced levels of autophagy [200] and we confirmed these 

cells had lower basal LC3II levels (data not shown). Furthermore, disruption of autophagy 

by cardiac-specific knockdown of Atg5 in adult mice leads to cardiomyopathy [202]. In the 

current study, we found that when autophagy was impaired in Atg5K H9c2 cells, insulin 

signaling was subsequently reduced. This was in keeping with the observation that 

inhibition of autophagy by Lcn2 correlated with insulin resistance. Similarly, defective 

insulin signaling was observed as a result of Atg7 suppression, the restoration of which 

enhanced systemic glucose tolerance in obese mice [205]. Numerous studies have shown 

that increased autophagy improved insulin sensitivity [179, 201, 206, 207]; for example 

resulting in insulin-stimulated glucose transport in cardiomyocytes [208]. These are in 

keeping with our observations that reducing autophagic flux led to insulin resistance and 

when we used rapamycin, commonly used as an activator of autophagy [192] post-Lcn2 

treatment we found that increased autophagy correlated with increased insulin signaling.  

 

The results of this study are likely to have important physiological significance. It 

is likely that the elevated circulating Lcn2 levels found in obesity, diabetes and upon 

inflammation contribute to adverse cardiac remodeling leading to heart failure by virtue of 

reducing levels of autophagy and inducing insulin resistance. Furthermore, it is 

conceivable that elevated Lcn2 is both a causative factor in inducing myocardial infarction 

and a primary constituent of the response to it. Indeed, Lcn2 levels have been shown to be 

elevated rapidly after myocardial ischemia [23, 24]. Future studies to determine whether 

Lcn2 influences stress-induced alterations in cardiac autophagy and their functional 
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significance will need to be performed. Use of both Lcn2-KO and autophagy deficient 

mice will be necessary to further establish the significance of these effects.  

 

In conclusion, we treated H9c2 cells with recombinant Lcn2 and observed reduced 

insulin-stimulated Akt and p70S6K. With autophagy initiated using a serum starved 

condition, we used multiple approaches, including Western blotting for LC3II, TEM, DQ-

BSA degradation, MagicRed assay of cathepsin B activity and tandem fluorescent 

RFP/GFP-LC3, to demonstrate that Lcn2 reduced autophagic flux. We also generated an 

autophagy deficient H9c2 cell line by overexpressing a dominant-negative Atg5 mutant 

and again found that reduced autophagy correlated with lower insulin sensitivity and that 

adding rapamycin to acutely stimulate autophagic flux restored insulin action. This 

indicated that autophagy can be beneficial to the myocardium in terms of its insulin 

sensitizing effect. Thus, an acute effect of Lcn2 on H9c2 cells is to decrease insulin 

sensitivity and this can occur via its inhibitory effect on autophagic flux.  
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3.1. Summary  

Lipocalin-2 (Lcn2; also termed neutrophil gelatinase-associated lipocalin (NGAL)) 

levels correlate positively with heart failure yet mechanisms via which Lcn2 contributes to the 

pathogenesis of HF remian unclear. In this study we used coronary artery ligation surgery to 

induce ischemia in wild type (wt) mice and this induced a significant increase in myocardial 

Lcn2. We then compared wt and Lcn2 knockout (KO) mice and observed that wt mice 

showed greater ischemia-induced caspase-3 activation and DNA damage measured by 

TUNEL than Lcn2KO mice. Analysis of autophagy by LC3 and p62 Western blotting, LC3 

immunohistochemistry and transmission electron microscopy (TEM) indicated that Lcn2 KO 

mice had a greater ischemia-induced increase in autophagy. Lcn2KO were protected against 

ischemia-induced cardiac functional abnormalities measured by echocardiography. Upon 

treating a cardiomyocyte cell line (h9c2) with Lcn2 and examining AMPK and ULK1 

phosphorylation, LC3 and p62 by Western blot as well as tandem fluorescent RFP/GFP-LC3 

puncta by immunofluorescence, MagicRed assay for lysosomal cathepsin activity and TEM 

we demonstrated that Lcn2 suppressed autophagic flux. Lcn2 also exacerbated hypoxia-

induced cytochromc c release from mitochondria and caspase-3 activation. We generated an 

autophagy-deficient h9c2 cell model by overexpressing dominant-negative Atg5 and found 

significantly increased apoptosis after Lcn2 treatment. In summary, our data indicate that 

Lcn2 can suppress the beneficial cardiac autophagic response to ischemia and that this 

contributes to enhanced ischemia-induced cell death and cardiac dysfunction. 
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3.2. Introduction 

Sustained ischemia leads to myocardial infarction (MI) which is often fatal [209], [210, 

211]. Lcn2 levels have been positively associated with heart failure [12, 14, 21]] yet little is 

known about direct effects of lipocalin-2 on cardiac remodeling, and in particular autophagy 

[8-11, 13, 212]. Lcn2 has been shown to have pro-inflammatory effects and to induce insulin 

resistance and metabolic dysfunction [15, 16, 23, 24, 213, 214]. Ischemia and/or reperfusion 

elevated Lcn2 content in the heart, most likely via production from infiltrating neutrophils and 

macrophages [215]. Lcn2 expression is also significantly augmented in patients with coronary 

heart disease and myocardial infarction [156, 216]. Lcn2-KO mice showed improved 

functional recovery and reduced infarction size after hypoxia compared to wild type [179].  

 

During prolonged ischemia, lack of oxygen and nutrients leads to myocardial cell 

death [217]. Cardiac regeneration is rare and so irreversible loss of cardiomyocytes will lead 

to reduced ability to sustain contractile function and progression to heart failure. Extensive 

research and clinical efforts have developed our understanding of structural and functional 

changes in the heart after MI, yet the role of Lcn2 and mechanisms via which it acts remain to 

be fully defined. Previous work has shown that Lcn2 can directly induce cardiomyocyte 

apoptosis [71] and attenuate autophagy leading to insulin resistance in h9c2 cells [218]. 

Numerous studies have shown that autophagy plays an important role in heart failure [219]. 

Autophagy is induced by various stressors and maintains an optimal cellular environment 

through removing protein aggregates and damaged organelles [55, 57, 60, 220]]. Inadequate 

autophagy leads to adverse effects in the myocardium and subsequent cardiac dysfunction 

[221, 222].  
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 In this study, we hypothesized that Lcn2 is induced by ischemia and is an important 

regulator of cardiac remodeling, including inhibition of autophagic flux in cardiomyocytes. 

Lcn2-KO or wt mice underwent coronary artery ligation (CAL) to induce chronic myocardial 

ischemia in the left ventricle, or sham surgery, then we performed analysis of cardiac function, 

apoptosis and autophagy. We also exposed H9c2 cells to hypoxia in the presence or absence 

of Lcn2 to test direct effects on autophagy and apoptosis. The functional significance of 

changes in autophagy was investigated via generating autophagy deficient H9c2 cells by 

overexpressing a dominant-negative mutant of Atg5. Our data contribute to elucidating the 

role of Lcn2 in ischemia-induced cardiac remodeling and function as well as the mechanisms 

via which it acts. 
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3.3. Materials and methods 

3.3.1. Animal models  

In house bred lipocalin2 knockout (Lcn2KO) mice and age matched C57BL/6 (wild 

type, WT) mice (The Jackson Laboratory, USA) were fed ad libitum on regular chow diet 

until 6-8 weeks of age and randomly separated into treatment groups (n=4-8 per group) (C57 

Sham, n=6; C57 CAL, n=6; Lcn2KO Sham, n=6, Lcn2KO CAL, n=8). All animals were kept 

in temperature and humidity-control rooms (21 ± 2°C, 35-40%) with a daily 12:12h light-dark 

cycle in the animal care facility of York University in accordance to the guidelines of the 

Canadian Council on Animal Care. All study protocols were approved by the Animal Care 

Committee of York University.  

 

3.3.2. Induction of ischemia via coronary artery ligation surgery  

Myocardial infarction (MI) was induced with ligation of the left anterior descending 

coronary artery (CAL) as previously described [213]. Briefly, left anterior descending 

coronary artery was ligated with a 8-O suture at 3mm below the tip of the left atrium for 24 

hours, resulting in an infarct area of ~30-40% of the left ventricle. The sham animals 

underwent the same procedure except for the suture ligation around the coronary artery. Mice 

were sacrificed 24hours after MI.   

 

3.3.3. Analysis of cardiac function using echocardiography  

Echocardiography was performed as we previously described [214] using the 

Vevo2100 system (Visual Sonics, Canada) equipped with an MS550D transducer. Mice were 

lightly anesthetized using 2.0% isofluorane mixed with 1000% O2 during the time of imaging. 

M-mode images of parasternal short-axis view at papillary level was used to calculate cardiac 
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systolic and diastolic functions. B-mode movie files of parasternal short-axis view were used 

to perform Speckle-tracking cardiac strain rate analysis. All parameters were averaged at least 

5 cardiac cycles for analysis. 

 

3.3.4. Immunofluorescent analysis of LC3 puncta and caspase-3 activation in heart 

tissue sections 

Heart were fixed with 10% buffered formalin and embedded in paraffin. 

Immunofluorescence staining was performed on 5-µm-thin sections using Abs against cleaved 

caspase 3 and LC3B (Cell Signaling). Images were captured and analyzed under an Olympus 

IX71 inverted fluorescent microscope (Olympus Canada, Richmond Hill, ON, Canada).  

 

3.3.5. Cell culture  

H9c2 rat embryonic cardiac myoblasts (ATCC® CRL-1446TM) were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco®) supplemented with 10% fetal 

bovine serum and 1% (vol/vol) streptomycin/penicillin (Gibco, Invitrogen) at 37°C and 5% 

CO2. When cells reached approximately 80% confluence they were incubated in 0.5% fetal 

bovine serum-DMEM with or without Lipocalin2 (Lcn2) at 1µg/ml in normoxia and hypoxia 

condition. Lcn2KO was produced as we previously described [223].  

Hypoxia condition was achieved by placing cells in hypoxic chamber filled with pre-analyzed 

gas mixture of 5% CO2 and 95% N2, and supplemented with Anaeropouch ™(Mitsubishi™, 

Japan) [215]. 
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3.3.6. Recombinant Lcn2 production 

The expression of His-tagged Lcn2 (a kind gift from Aimin Xu and Yu Wang, 

University of Hong Kong) in BL21 Competent E. Coli (NEB Biolab) was induced by SOC 

growth medium (NEB Biolab). Lcn2 was purified from bacterial lysates using the HIS-

select® nickel affinity gel (Sigma) according to the manufacturer’s protocol. The purity of 

Lcn2 was confirmed using SDS-PAGE gel.  

 

3.3.7. Western blotting 

LV heart tissue was snap frozen and pulverized with mortar and pestle in liquid 

nitrogen. The powdered tissue was then suspended in RIPA lysis buffer as we previously 

described [216]. H9c2 cells were grown to 90% confluency in 6 well plates. After the 

experimental endpoint, cells were washed in PBS and solubilized in 1x Lysis buffer (50mM 

Tris, 150mM NaCl, 0.1% SDS 1% Triton X-100 and 0.5% sodium deoxycholate) containing 

protease inhibitor cocktail – complete ULTRA Tablets, Mini (Roche). Lysates were 

centrifuged at 12,000 rpm for 5 min at 4°C. Supernatant was collected , heated at 90°C for 5 

min and equivalent amounts of lysate were loaded to an SDS-PAGE gel, followed by protein 

transfer onto PVDF membrane (Bio-Rad). Membranes were first blocked in 3% BSA for 1 

hour, incubated in primary antibody at 4°C overnight, washed, incubated in appropriate horse-

radish peroxidase (HRP)-linked secondary antibody for 1 hour, washed, then followed by 

chemiluminescence enhancement using Western Lightning Plus ECL (Perkin Elmer) before 

developing and exposing the membrane to CL XPosure Film (Thermo Scientific). The band 

intensities were quantified using Image J. The following primary antibodies were used: 

pAMPKα T172, pULK1 S555, LC3B, Caspase 3, β-Actin and GAPDH (1:1000, Cell 
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Signaling), P62 (BD Biosciences), Lcn2 (University of Hong Kong). The following secondary 

antibodies were used; anti-rabbit IgG HRP-linked antibody and anti-mouse IgG. 

 

3.3.8. Generation of H9c2 cells stably overexpressing tandem fluorescent RFP/GFP-LC3 

and analysis of autophagic flux and autophagy-deficient H9c2-ATG5K130R cells 

Stable H9c2 cells expressing tf-RFP/GFP-LC3 were created essentially as described 

by us previously for another cell type [179]. Cells were grown to 80% confluence on 

coverslips in 12 well plates. At experimental endpoint, cells were fixed in 4% para 

formaldehyde (PFA) and quenched with 1% glycine before mounting on a glass slide. 

Confocal images were taken using a x60 objective (Olympus, BX51 Microscope). Pearson 

and Overlapping coefficients were calculated using ImageJ with the JACoP plug-in to 

quantify the extent of GFP and RFP co-localization. To generate H9c2 cells stably over-

expressing mutant ATG5 proteins (ATG5K130R), H9c2 cells were transduced with retroviral 

vector carrying pmCherry-ATG5K130R.  

 

 

3.3.9. Transmission electron microscopy (TEM) 

TEM was performed as described previously [224]. Briefly, LV tissues were cut into 

small pieces (roughly 1 mm3) and H9c2 cells were grown on 6 well plate to 80% confluency. 

After the experimental endpoint, cells were washed with PBS and immediately fixed in 2.5% 

glutaraldehyde in 0.1M sodium cacodylate buffer followed by post-fixation with 1% osmium 

tetroxide for 1 hour at room temperature. The specimens were then dehydrated with ascending 

concentrations of ethanol in series (50%–100%) and embedded in Spurr’s Epoxy resin. 
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Afterwards, thin sections (60–80 nm) were cut with an ultramicrotome and mounted on 

copper mesh grids. The sections were then contrasted with 1% uranyl acetate and lead citrate, 

and examined with a FEI CM100 TEM and Kodak Megaplus camera.  

 

3.3.10. Analysis of cellular caspase-3/7 activity using immunofluorescence 

H9c2 cells were seeded in 12-well plates with cover slip, and treated with/without 

Lcn2 (1ug/mL) in normoxia or hypoxia condition for 24 hour. After treatment, cells were 

loaded with CellEvent® Caspase-3/7 Green Detection Reagent according to manufacturer’s 

protocol. Cells were fixed in 4% PFA, quenched with 1% glycine before mounting. Nuclei of 

cells were countered stained with Vectashield Antifade Mounting Medium with DAPI (Vecotr 

Laboratories). Images were taken using a 60X objective with confocal microscope (Olympus, 

BX51). 

 

3.3.11. Analysis of cytochrome C release from mitochondria 

H9c2 cells were seeded in 12-well plates with cover slip, and treated with/without 

recombinant globular Ad (1ug/mL) in normoxia or hypoxia conditions for 48 hour, after 

treatment, cells were incubated with mitoTracker® Red CMXRos (ThermoFisher Scientific) 

at 250nM for 30 minutes. Then, Cells were fixed in 4% PFA and quenched with 1% glycine 

then blocked with 5% BSA. After blocking, cells were incubated with cytochrome C (clone 

6H2.B4, BD Pharmingen™, 1:400) followed by Goat anti-Mouse IgG, Alexa Fluor 488 

(ThermoFisher, 1:800). Pearson or Manders’ Coefficients (M1 & M2) were calculated using 

ImageJ with the JACoP plug-in to quantify the extent of GFP and RFP co-localization. 
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Images were taken using a 60X objective with Laser Scanning Microscope (ZEISS, LSM700) 

and 3D images were using Imaris 3D/4D analysis sofeware. 

 

3.3.12. Statistics  

Data was presented as mean±SEM. Statistical significance between treatment groups 

were calculated using the unpaired Student t test when comparing 2 groups. For comparisons 

of more than 2 groups, One Way ANOVA followed by Dunnett’s posttest and Two Way 

ANOVA with Bonferroni post-test were performed to adjust multiple comparisons. P value 

<0.05 was considered statistically significant. 
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3.4. Results  

3.4.1. Lipocalin-2 deficiency attenuated ischemia-induced apoptosis  

We first assessed the expression of Lcn2 and found a significant increase in the total 

expression of Lcn2 in the ischemic myocardium (Figure 3.1.A&B). Using both Western 

blotting and immunofluorescent detection we showed that myocardial cleaved caspase 3 was 

significantly increased after ischemia in wt, although to a lesser extent in Lcn2KO mice and 

was further decreased with the Lcn2KO (figure 3.1.A-C).  

 

3.4.2. Lipocalin-2 contributes to suppression of autophagy during ischemia 

Autophagy flux was assessed by examining cardiac expression of key proteins 

involved in autophagy: LC3II and P62. LC3II, a marker of autophagosome content, was 

increased after ischemia in wt mice (Figure 3.2.A&B). Lcn2KO mice showed higher basal 

levels of LC3II with no further change induced by ischemia (Figure 3.2.A&B). We also 

examined autophagic flux by testing p62 expression and found this was unaltered in wt mice, 

but significantly decreased in Lcn2KO mice after ischemia (Figure 3.2.A&C). We used LC3 

immunofluorescence to study autophagosome content. The presence of LC3-positive puncta 

reflects the presence of autophagic vacuoles, whereas a diffuse cytoplasmic staining is 

indicative of an absence of autophagic vacuoles [225]. We found greater induction of LC3 

puncta in Lcn2KO mice (Figure 3.2.D&E). To further investigate whether autophagic 

structures are altered in wt or Lcn2KO mice hearts after ischemia we used transmission 

electron microscopy (TEM). Autophagic vacuole content did increase somewhat after 

ischemia in wt mice, yet this increase was further enhanced in Lcn2 KO mice, as shown in 

representative images in figure 3.2.F. Another striking change was the markedly increased 
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mitochondria damage after 24 hours of ischemia in WT mice, which was evidently attenuated 

in Lcn2 KO mice (Figure 3.2.F).  

 

3.4.3. Adverse remodeling with cardiac dysfunction in Lcn2KO mice after ischemia 

Wt and Lcn2KO mice were subjected to ligation of the left anterior descending 

coronary artery (CAL) to induce MI, and compared with sham surgery. 1 day after the surgery, 

wt mice developed systolic dysfunction, increase in end systolic diameter and volume. 

However, changes in end systolic diameter and volume are comparable between sham and 

ischemic groups in Lcn2KO mice (Figure 3.3.A). To provide additional details on regional 

cardiac dysfunction induced by ischemia, we used speckle tracking echocardiography to 

calculate 3-dimentional strain rate, an indicator of how much the myocardial tissue has 

physically disabled. Radial strain rate at systole and diastole significantly decreased after the 

surgery in wt mice yet such change was not observed in Lcn2KO mice (Figure 3.3.B). As 

visualized clearly in representative images of circumferential strain rate of six segmented wall 

regions, the synchronicity of two opposing walls (anterior/posterior) of endocardium were 

disrupted in wt mice whereas the synchronicity was maintained in Lcn2KO mice after 

ischemia (Figure 3.3.C). 

 

3.4.4. Lipocalin-2 attenuated autophagic flux in cardiomyocytes 

As seen in Figure 3.4.A-C, Lcn2 was shown to decrease autophagy initiation by its 

down regulation of phosphorylation of AMPK and ULK1 S555. Furthermore, Lcn2 decreased 

the amount of LC3II (Figure 3.4.A&D), the lipidated form of LC3 that is a marker of 

autophagosome formation. In a complete autophagic pathway or autophagic flux, 
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autophagosomes will eventually fuse with lysosomes to form autolysosomes where cargo 

materials get degraded. We used P62 which is a widely used marker as autophagic cargo 

protein and we found that hypoxia induced P62, and this was exacerbated after treatment with 

Lcn2 (Figure 3.4.A&E). To directly assess autophagic flux, we transfected H9c2 

cardiomyoctyes with tandem fluorescence (RFP-GFP)-LC3. GFP-loses fluorescence due to 

lysosomal acidity but RFP does not. Thus, increased degradation of autophagosomes can be 

interpreted via a lower RFP/GFP ratio and appear more red in colour. Under the control 

conditions, most LC3 punctae appeared red; while an increase in yellow punctate was 

observed with the addition of Lcn2 (Figure 3.4.F&G). To visualize autophagic structures, 

mitochondria and endoplasmic reticulum (ER) we used transmission electron microscopy 

(TEM) of H9c2 cardiomyocytes. Numerous autophagic vacuoles including autophagosomes 

and autolysosomes were observed after 24 hours of hypoxia conditions (Figure 3.4.H). In 

particular, we found a large number of autophagic vacuoles, swollen ER and a large number 

of damaged mitochondria after 24 hours hypoxia with Lcn2 treatment (Figure 3.4.H).  

 

3.4.5. Regulation of apoptosis by alterations in autophagy and effect of lipocalin-2 

We investigated Lcn2-induced apoptosis and the role of reduced autophagy in 

cardiomyocytes via generating autophagy-deficient H9c2 cells by stably overexpressing a 

mutant inactive Atg5 (ATG5K130R). Cells transduced with retrovirus with empty vector (EV) 

were used as control. EV and ATG5K130R H9c2 cells underwent 48hr hypoxia treatment, 

with or without Lcn2 and then we observed caspase 3 levels by Western blotting and activity 

of caspase-3/7 using activatable fluorescent substrates, respectively (Figure 3.5.A-D). After 

48 hours of hypoxia, the expression of cleaved forms of capsase-3 was significantly increased 



 

	 71	

in both EV and ATG5K130R cells, especially in the latter and with Lcn2 treatment (Figure 

3.5.A&B). As indicated by representative confocal images and quantification of green 

intensity, there was a significant increase in caspase-3 activity in ATG5K130R cells following 

long term hypoxia and Lcn2 treatment (Figure 3.5.C&D). We then further examined the 

cellular mechanisms of Lcn2-induced caspase-3 activation by studying cytochrome C 

colocalization with mitochondria (Mitotracker) (Figure 3.5.E&F). Upon hypoxia treatment 

(48 hour) or Lcn2, cytochrome C and mitochondrial colocazation decreased (Figure 3.5.H&I). 

In ATG5K130R cells neither hypoxia nor Lcn2 alone caused significant release of 

cytochrome c from mitochondria. 
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Figure 3.1. Myocardial infarction induced cell death and apoptosis in Wt but less in 

Lcn2KO mice. (A) Western blotting was performed to examine the protein levels of Lcn2 

and apoptosis was analyzed by examining the protein expression of cleaved caspase 3 in heart 

tissue homogenates from from WT and Lcn2KO mice that have undergone either sham or 

CAL surgery. (B, C) Densitometric quantifications of Wwestern blots in A. (D) 

Immunofluorescence was performed for cleaved capase 3 in heart tissue sections collected 

from WT and Lcn2KO mice subjected to either sham or CAL surgery and (E) quantification. 

Quantitative data in graphs are shown as mean ± SEM (n=3-5). *P<0.05 versus corresponding 

Wt sham, # P<0.05 versus corresponding Lcn2KO sham. Scale bar = 50 µm. 
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Figure 3.2. Lcn2 deficiency accelerated autophagy. (A) Autophagic flux was analyzed by 

examining the protein expression of LC3II and P62 in heart tissue lysates from WT and 

Lcn2KO mice that have undergone either sham or CAL surgery. (B) Densitometric 

quantifications of Western blots in A. (C) Immunofluorescence was performed for LC3II in 

heart tissue sections collected from WT and Lcn2KO mice subjected to either sham or CAL 

surgery. (D) Densitometric quantifications of Western blots in C. (E) Autophagic vacuoles 

were evaluated using TEM from heart tissue of WT and Lcn2KO mice that had undergone 

either sham or CAL surgery. Quantitative data in graphs are shown as mean ± SEM (n=3-5). 

*P<0.05 versus corresponding Wt, # P<0.05 versus corresponding Lcn2KO. Low: 6,500 and 

high magnification 19,000, Scale bar = 2 µm and 500nm. 
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Figure 3.3. Ischemia-induced cardiac dysfunction was reduced in Lcn2KO mice. A. 

Cardiac function parameters ejection fraction and fractional shortening analyzed 24hrs  after 

CAL surgery using echocardiography. B. Changes in radial strain and peak strain rate (/s) at 

systole and diastole 24hrs after CAL. C. Representative images of radial strain rate changes 

between two segments (anterior/posterior apex) during four cardiac cycles. PL: pre-ligation. 

Results are presented as mean ± SEM (n=4 for wt and n=4 for Lcn2KO mice). aP<0.05 vs 

corresponding sham. bP<0.05 vs PL. *P<0.05, vs corresponding sham. #p<0.05 vs wt CAL 
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Figure 3.4. Lcn2 and hypoxia reduced autophagic flux in cardiomyocytes. H9c2 cells 

were treated with recombinant Lcn2 (1ug/ml) or without (Con) for 24hour in normoxic or 

hypoxic conditions. (A) Western blots showing protein expression of pAMPK, pULK1S555, 

LC3II, P62, GAPDH and (B-E) their quantifications. (F) Autophagic flux was evaluated by 

looking at the RFP/GFP ratio of the LC3 puncta in the tf-GFP/RFP-H9c2 cells and (G) 

quantification. Scale bar = 20µm. (H) Autophagy was evaluated using transmission electron 

microscopy. Selected areas were magnified, with white arrows indicating the presence of 

autophagolysosome.  Low: 6,500 and high magnification 19,000, Scale bar = 2 µm and 

500nm. 
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Figure 3.5. Reduced autophagy exacerbated cell death in H9c2 cells. (A) Western blot 

analysis of cleaved caspase 3 level in WT and ATG5K cells after long-term hypoxia (48 hour) 

± treatment with Lcn2 (1ug/mL) and (B) quantification. (C) Representative confocal images 

of caspase 3/7 activity and (D) quantification. (E) Representative 3D confocal images of WT 

and ATG5K cells immunolabeled with cytochrome C (green), stained with mitotracker (red) 

and (F, G) quantifications. (H) Representative confocal images of WT and ATG5K cells 

showing cytochrome C and mitotracker ± hypoxia and ± Lcn2 and (I) quantitative and 

statistical analysis of green/red co-localization coefficients. Experiments were performed at 

least three times and results are presented as mean ± SEM. *P<0.05 versus EV normoxia 

control and # P<0.05 versus ATG5K130R normoxia control, Scale bar = 20µm. 
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3.5. Discussion 

Although clinical studies have established a strong correlative relationship between 

Lcn2 levels and cardiac dysfunction [12, 73] there have been few studies examining the direct 

effects of Lcn2 action on the myocardium. In this case we first of all used an ischemic model 

of heart failure and using echocardiography confirned that mice lacking Lcn2 fared better than 

wt mice [23], suggesting an important permissive role for Lcn2 in ischemia-induced cardiac 

dysfunction. Importantly, we showed here that cardiac Lcn2 content increased significanctly 

after ischemia but not sham surgery. 

 

To investigate mechanisms via which Lcn2 may induce heart failure we focused on 

autophagy, and cardiomyocyte cell death as an end point. Rationale for this focus comes from 

recent work by ourselves and others showing that Lcn2 inhibited autophagic flux in H9c2 

cells or hepatic chaperone-mediated autophagy [218, 226]. Translating our previous in vitro 

studies to the animal model of cardiac ischemia used here, we found that ischemia-induced 

autophagy was exaggerated in mice lacking Lcn2, perhaps reflecting endogenous suppression 

of autophagy by Lcn2. This is significant since cardiac autophagy is thought to be induced in 

response to various stressors and act as a protective cellular mechanism [227, 228]. Indeed, 

we found that the reduced levels of ischemia-induced autophagy correlated with enhanced cell 

death. Collectively, the data indicated that Lcn2KO mice had enhanced autophagic flux with 

reduced cell death and cardiac dysfunction after ischemia.  

 

To further investigate this relationship between autophagy and cell death and their 

regulation by Lcn2 we again used H9c2 cardiomyoblasts and exposed them to hypoxic stress, 
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with or without presence of Lcn2. Via observing responses such as reduced AMPK(Thr172) 

and ULK1(Ser555) phosphorylation, reduced LC3-II and increased P62 levels and less 

evident autophagosomal structures using TEM we concluded that autophagic flux decreased 

when Lcn2 and hypoxia were used in combination.  These data supported our observations in 

cardiac tissue of mice with ischemia, and to more accurately conclude that these conditions 

restricted autophagic flux we transduced cells with tandem fluorescent RFP/GFP-LC3 [218] 

expressing retroviral constructs. Using this approach, cells express LC3 tagged with both GFP 

and RFP and thus autophagosomes appear as yellow puncta. Upon fusion with lysosome, the 

acidic pH quenches green but not red fluorescence allowing flux to be viewed by more red 

puncta. Confocal microscopy analysis showed that Lcn2 reduced appearance of red puncta, 

indicating that Lcn2 reduced autophagic flux by attenuating autophagosome to lysosome 

fusion. This suppression of autophagic flux by Lcn2 was also evident when we used a 

pharmacological stimulant of autophagy, rapamycin [229]. Overall, these multiple approaches 

also support the conclusion that Lcn2 attenuates autophagic flux. 

 

Apoptosis is established as a cardiac remodeling event which contributes to heart 

failure and as such is a potentially important therapeutic target [230, 231]. Indeed, previous 

research [232] showed attenuation of myocardial injury brought by a caspase inhibitor. We 

next further investigated the mechanistic role of autophagy in Lcn2- and hypoxia-induced 

cardiomyocyte cell death. To do so, we stably transfected H9c2 cells to overexpress a 

dominant-negative Atg5 mutant to create an autophagy-deficient cell line [179, 218]. Previous 

studies showed that Lcn2 induced Bax translocation to mitochondria, caspase-3 activation and 

apoptosis in primary cardiomyocytes and H9c2 cells [71]. Hypoxia has also been shown to 



 

	 81	

independently cause activation of intrinsic apoptotic cell death [233]. First of all, we observed 

that autophagy deficiency mimicked Lcn2 in that elevated caspase-3 activation was observed, 

and no further increase was observed when Lcn2 was added. Interestingly, hypoxia-induced 

caspase-3 activation was still observed in autophagy-deficient cells. We also analyzed 

cytochrome c release from mitochondria as a measure of intrinsic apoptosis and found that in 

normal cells this was induced by both Lcn2 and hypoxia which together had a synergistic 

effect. Autophagy-deficiency reduced cytochrome c and mitochondria colocalization and 

although there was an apparent further reduction by Lcn2 or hypoxia, these were not 

statistically significant. Therefore, we conclude that attenuation of cardiomyocyte autophagy 

by Lcn2 or molecular engineering of cells confers increased susceptibility to stress-induced 

cell death. This is in keeping with literature in which mouse models of autophagy deficiency 

develop agre-related cardiomyopathy [234], show enhanced hemodynamic stress induced 

dysfunction [202] and angiotensin-II stimulated inflammation and injury [235]. 

 

In summary, our study indicates that Lcn2 is an important suppressor of 

cardiomyocyte autophagic flux and that this contributes to intrinsic apoptosis.  In a mouse 

model of cardiac ischemia, Lcn2 levels increase and contribute to attenuation of cardiac 

autophagy with increased cell death and dysfunction. Mice lacking Lcn2 are able to elicit a 

higher autophagic response after ischemia and are protected from cell death and cardiac 

dysfunction. These dats suggest that further studies are warranted to investigate the usefulness 

of Lcn2 as both a biomarker and therapeutic target in heart failure. 
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4.1. Summary 

Inadequate supply of iron can elicit health defects yet there is also strong evidence that 

too much iron induces detrimental cellular effects. Accordingly, disturbed iron homeostasis is 

associated with various pathological conditions, including diabetes and heart failure.  Insulin 

resistance is an established contributor to heart failure and in this project I tested the 

hypothesis that iron induces cardiomyocyte insulin resistance via oxidative stress. In primary 

adult and neonatal cardiomyocytes as well as H9c2 cells, derived from rat heart ventricle, iron 

(FeSO4, 100µM/ml 4hours) induced insulin resistance as determined by Western blotting and 

immunofluorescent detection of Akt phosphorylation. Using CellROX Deep Red assay we 

also observed that iron increased generation of reactive oxygen species (ROS), and that anti-

oxidant pretreatment attenuated iron-induced insulin resistance. I used multiple assays to 

monitor autophagic flux and observed that iron suppressed autophagy. First, we determined 

pULK1(S757), LC3II and P62 levels by Western blotting and immunofluorescence.  The 

increase autopahgosome content was validated by an increase in puncta detected using Cyto 

ID assay. To study the functional significance of changes in autophagy we created an 

autophagy-deficient cell model by overexpressing a dominant-negative Atg5 mutant in H9c2 

cells and autophagy deficiency both induced insulin resistance. In conclusion, our study 

indicated that iron reduced autophagy and stimulated ROS production, causing insulin 

resistance in cardiomyocytes. Future studies will further investigate mechanisms via which 

iron regulates cardiac remodeling and their physiological significance. I anticipate that our 

findings will provide new knowledge relevant to current diagnostics and therapeutics related 

to altered iron status in clinical settings.  
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4.2. Introduction  

Iron is an essential micronutrient and its crucial role in many physiological functions 

is often underestimated [236]. Altered iron metabolism is implicated in a vast array of 

diseases, including type 2 diabetes [236], neurodegenerative diseases [237], cardiovascular 

diseases [79], cancer [238], osteoporosis [239] and many more. In particular, both iron 

deficiency (ID) and iron overload (IO) have been associated with cardiomyopathy [79, 81]. 

Recently iron overload cardiomyopathy (IOC) has been presented to define a secondary form 

of cardiomyopathy resulting from the accumulation of iron in the myocardium mainly 

because of genetically determined disorders of iron metabolism or multiple transfusions [81, 

240]. Iron is a vital structural component of haemoglobin, myoglobin, oxidative enzymes and 

respiratory chain proteins that are collectively responsible for oxygen transport, storage and 

energy metabolism [78]. Iron-overload cardiomyopathy is the most common reason of 

mortality in patients with secondary iron-overload or patients with genetic hemochromatosis 

[241-247]. In essence, altered iron homeostasis leads to uncontrolled iron deposition in 

different organs, including the heart, leading to progressive tissue damage [67, 248]. Iron-

induced oxidative stress plays an important role in the pathogenesis of iron-overload mediated 

heart disease [249-251]. The formation of labile NTBI alters the pro-oxidant/antioxidant 

balance, leading to a pro-oxidant state with increased free radical production, oxidative stress 

and cellular damage [250, 252, 253]. Previous studies indicated that oxidative stress can lead 

to mitochondrial dysfunction and accumulation of lipotoxic metabolites which have been 

shown to contribute to insulin resistance. 
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Autophagy is the major intracellular degradation process where cytoplasmic materials 

get delivered to lysosomes for degradation and recycling [178, 183, 193, 254]. Several studies 

have now shown that the degree of autophagy changes in the failing heart and directly in 

response to ischemia and/or reperfusion [195] [196-198], although the functional significance 

is still somewhat uncertain. Indeed, autophagy may be regarded as a double edged sword with 

potential beneficial and detrimental effects in the heart [199]. At low levels autophagy is 

important in recycling damaged organelles and nutrients, however excessive autophagy 

contributes to tissue dysfunction and non-apoptotic programmed cell death in pathological 

myocardial remodeling [184, 199-202]. Recent evidence indicated that dysregulation of 

autophagy resulted in ER stress, insulin resistance and glucose intolerance [255]. Our own 

research also has shown that induction autophagy can be beneficial to the myocardium in 

terms of its insulin sensitizing effect and reducing apoptosis [218, 256]. In various tissue 

types it has been found that ROS production results in increased autophagy [257]. In the heart, 

elevated autophagy is activated post-ischemia in association with ROS upregulation and this 

is thought to be an endogenous self-protective mechanism [258]. ROS also play an early role 

in the development of insulin resistance [259, 260]. Evidence suggested that downstream of 

the PI3K/Akt insulin signaling pathway may be the target of exogenous inducers of autophagy 

[261]. 

The precise molecular mechanisms of iron-overload cardiomyopathy have not been 

elucidated yet. In this study, I test the hypothesis that iron induces insulin resistance in 

cardiomyocytes, and that this involves regulation of autophagy and/or oxidative stress and 

crosstalk between them. To do so I used primary adult or neonatal cardiomyocytes, human 
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stem cell derived cardiomyocytes and H9c2 cells as cellular models and treated with iron for 

up to 24h and tested ROS production, autophagic flux and insulin sensitivity. 

 

4.3. Materials and methods  

4.3.1. Cell culture  

H9c2 (ATCC® CRL-1446) rat cardiomyoblasts were grown in Gibco® normal glucose 

Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS) and 1% (v/v) penicillin streptomycin at 37 °C and 5% CO2. For microscopy assays 

(except TEM), cells were grown on cover slips and treated with or without recombinant 

FeSO4 2 (100 µM/ml) in DMEM with 0% FBS mimicking starvation at approximately 80% 

confluency (unless specified otherwise) for 1, 4 and 24hrs.  

Primary cells; The left ventricles of 1-3 day Wistar rat pups were isolated by 

decapitation, and a small ventricle incision through the sternum. Hearts were perfused in 

CFBHH (Calcium and Bicarconate Free Hanks with Hepes) buffer, and torn apart into small 

pieces with fine tweezers. Samples were transferred to a flat bottom 50ml conical tube with 

10ml of trypsin (1:250) and a small stir bar. Heart pieces were stirred in the fume hood for 10 

min. The supernatant was collected and neutralized with 10ml of 10% FBS DMEM (1% 

PenStep, 50mg/L gentamycin sulfate). 10ml of trypsin was added to the remaining sample and 

was repeated until all tissue was digested. Supernatant was spun down at 2000RPM for 10min, 

supernatant was removed, and pellet was resuspended in 101%FBS DMEM. Cells were plated 

in a regular coated 10cm2 culture dishes for 1 hour in order to separate fibroblasts from 

cardiomyocytes. After incubation in a CO2 incubator at 37ºC, supernatant containing 
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cardiomyocytes was filtered through a 70µm strainer. Filtrate was supplemented with 

additional 10%FBS DMEM, and plated on primaria coated culture dishes. 24 hours after 

isolation, cells were washed with PBS, and treatment media was added to begin experiments.  

4.3.2. Colorimetric Intracellular Iron Assay  

H9C2 cells were grown to 80% confluency on 24-well plates in 10% FBS DMEM 

with 1% w/v streptomycin/penicillin where they were treated with 100uM of FeSO4 for 1, 4 

and 24 hour durations ending simultaneously. After the treatment had ended, each well was 

washed 3 times with 0.5ml PBS, lysed with 200ul of 50mM NaOH followed by 200ul of 

10mM HCL and 200ul of freshly prepared iron releasing agent thereafter. The 24 well plates 

were sealed in aluminum foil and incubated at 60°C for a duration of 2 hours. Afterward, 60ul 

of iron detecting reagent was added to each well and left to incubate for 30 minutes at room 

temperature (RT). 280ul of each mixture was transferred to a 96 well plate and the absorbance 

of each well was measured at a wavelength of 550nm using a spectrophotometer. Data was 

normalized by the control treatment without iron. 

4.3.3. PG SK Intracellular Iron Assay  

H9C2 cells were grown to 80% confluency on coverslips in 12-well plates in 10% 

FBS DMEM with 1% w/v streptomycin/penicillin where they were treated with 100uM of 

FeSO4 for 1, 4 and 24 hour durations 30 minutes after treatment with 3uM of PG SK 

diacetate. Coverslips were washed 4 times with 0.5 ml PBS++, fixed by covering coverslips 

with 10% formalin solution for 30 minutes, washed again 3 times in PBS++, quenched by 

covering coverslips in 1% glycine solution for 15 minutes, washed once more 3 times in 

PBS++ and transferred on slides using DAPI Mounting Media for fluorescence nuclear 
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staining and ProLong antifade gold standard reagent (in a 1:2 ratio respectively). Prepared 

slides were viewed via laser scanning microscopy. PG SK fluorescence was viewed using 

FITC and quantified by average fluorescent intensity per cell by dividing the total green 

fluorescence by cell number using ImageJ. 

4.3.4. Western blotting 

H9c2 cells were grown to 90% confluency in 6 well plates. After the experimental 

endpoint, cells were washed in PBS and solubilized in 1× Lysis buffer (50 mM Tris, 150 mM 

NaCl, 0.1% SDS 1% Triton X-100 and 0.5% sodium deoxycholate) containing protease 

inhibitor cocktail – complete ULTRA Tablets, Mini (Roche). Lysates were centrifuged at 

12,000 rpm for 5 min at 4 °C. Supernatant was collected, heated at 90 °C for 5 min and 

equivalent amounts of lysate were loaded to an SDS-PAGE gel, followed by protein transfer 

onto PVDF membrane (Bio-Rad). Membranes were first blocked in 3% BSA for 1 h, 

incubated in primary antibody at 4 °C overnight, washed, incubated in appropriate horse-

radish peroxidase (HRP)-linked secondary antibody for 1 h, washed, then followed by 

chemiluminescence enhancement using Western Lightning Plus ECL (Perkin Elmer) before 

developing and exposing the membrane to CL-XPosure Film (Thermo Scientific). The band 

intensities were quantified using Image J. The following primary antibodies were used: pAkt 

T308 and β-actin (1:1000, Cell Signaling). The following secondary antibodies were used; 

anti-rabbit IgG HRP-linked antibody and anti-mouse IgG HRP-linked antibody (1:10,000, 

Cell Signaling). 

 

 



 

	 89	

4.3.5. CellROX® deep Red Oxidative Stress assay 

CellROX® deep Red Oxidative Stress Reagents (Life Technologies) was utilized. The 

cell-permeable reagents are non-fluorescent or very weakly fluorescent while in a reduced 

state and upon oxidation exhibit strong fluorogenic signal. Fluorescence signal was then 

detected with confocal fluorescence microscopy. H9c2 cells were seeded in 6-well plates, and 

treated 100uM of FeSO4 for 1, 4 and 24hr. CellROX® deep Red was added in each well at 

10 ug/mL and incubated for 15 min. Cells were harvested and fixed with 4% PFA, and run in 

flow cytometer machine (Gallios ™, Beckman Coulter Inc.) to analyze red fluorescent signal 

intensity in each cell within a population of 100,000. Confocal images were taken using 40 or 

60X objective (LSM 700). 

 

4.3.6. Generation of H9c2 cells stably overexpressing tandem fluorescent RFP/GFP-LC3 and 

analysis of autophagic flux and autophagy-deficient H9c2-ATG5K130R cells 

Stable H9c2 cells expressing tf-RFP/GFP-LC3 were created essentially as described 

by us previously for another cell type [179] Cells were grown to 80% confluence on 

coverslips in 12 well plates. At experimental endpoint, cells were fixed in 4% para 

formaldehyde (PFA) and quenched with 1% glycine before mounting on a glass slide. 

Confocal images were taken using a x60 objective (Olympus, BX51 Microscope). Pearson 

and Overlapping coefficients were calculated using ImageJ with the JACoP plug-in to 

quantify the extent of GFP and RFP co-localization. To generate H9c2 cells stably over-

expressing mutant ATG5 proteins (ATG5K130R), H9c2 cells were transduced with retroviral 

vector carrying pmCherry-ATG5K130R.  
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4.3.7. Cyto-ID® Green autophagy dye staining procedure for autophagy detection 

The Cyto-ID® Green autophagy dye was prepared following the protocol from the 

manufacturer. The 10X assay buffer was allowed to warm to room temperature and then 

diluted to 1X with 9 ml of deionized H2O and 1 ml of the buffer. The Cyto-ID® Green 

autophagy dye solution was prepared by mixing 8 µl of the dye and 4 ml of 1× assay buffer. 

The sample is shielded from exposure to direct light and incubated for 30 min at 37°C, 

followed by a wash and resuspension with 500 µl of 1X assay buffer before imaged-based 

analysis. Confocal images were taken using 40 or 60X objective (LSM 700). 

 

4.3.8. hiPS-CMs cell culture 

hiPS-CMs (iCell Cardiomyocytes), cell culture thawing, and maintenance media were 

purchased from Cellular Dynamics International (Cat. No. CMM-100-120-005). hiPS-CMs 

were cultured on gelatine-coated 384 well according to the manufacturers protocol. Briefly, 

iCell cardiomyocytes (hiPS-CMs) were supplied cryopreserved at a density of more than 

1.0 × 106/ml and stored at −150°C until use. Cryopreserved cells were thawed in a 37°C water 

bath without shaking for 5 min, transferred to a 50 ml falcon tube in a drop wise manner, 

before addition of 9 ml iCell thawing media. Viability was determined using a manual 

hemocytometer and total cell count determined taking into account the cell lot plating 

efficiency. Cells were seeded at 4000/well in gelatine-coated 24 well plates, or 

120 × 103/coverslip, in iCell thawing media and incubated at 37°C with 5% CO2 for 48 h. 

Following this, cells were washed twice with 50 µl iCell maintenance media per well and 
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returned to the incubator for a further 48 h. Following this, iCell maintenance media were 

then removed and replaced with 50 µl fresh iCell maintenance media.  

 

4.3.9. Analysis of glucose uptake and metabolism 

To determine glucose uptake cardiomyocytes were seeded in 24well plates and 

treated with or without FeSO4 (100µM) for periods of 1, 4 and 24 hr. Where indicated 

insulin was used at 100 nM for 10 min. Subsequently, glucose transport was assayed 

essentially as we previously described [262] and results are calculated as pmol of glucose 

uptake per min per mg protein.  

4.3.10. Statistics  

Data was presented as mean±SEM. Statistical significance between treatment groups 

were calculated using the unpaired Student t test when comparing 2 groups. For comparisons 

of more than 2 groups, One Way ANOVA followed by Dunnett’s posttest and Two Way 

ANOVA with Bonferroni post-test were performed to adjust multiple comparisons. P value 

<0.05 was considered statistically significant. 
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4.4. Results  

4.4.1. Intracellular iron accumulation induced insulin resistance in H9c2 cells 

I first determined iron accumulation in H9c2 cells after treatment with 100uM FeSO4 

for 1, 4 and 24 hours. PGSK was preloaded into cells 30 minutes before iron treatment and 

compared to cells cultured for the same time period but not treated with iron. Images of cells 

were captured after being fixed onto coverslips with mounting solution including DAPI, via 

confocal microscopy (Figure 4.4.1.A). Total green fluorescence per cell was quantified 

(Figure 1B) using ImageJ software and by subtracting background signal. Another method 

was also used to measure intracellular iron accumulation in H9c2 cells treated with 100uM of 

FeSO4 for 1, 4 and 24 hours (Figure 4.4.1.C). This colorimetric intracellular iron assay was 

conducted by adding ferrozine to H9c2 cell lysates after iron was liberated from ferritin. 

Absorbances of lysates were measured using a spectrophotometer set at a wavelength of 

550nm. Both assays showed an increase in intracellular iron accumulation after 100uM FeSO4 

treatment for 1, 4 and 24 hours. I next examined the effects of iron via Western blotting 

detection of Akt phosphorylation and the data indicated that the response to insulin was 

attenuated after iron overload (Figure 4.4.1. D&E). 

4.4.2. Iron overload induced insulin resistance in primary cardiomyocytes 

After the initial observation that iron induced insulin resistance in H9c2 cells, I 

examined whether iron blunted insulin signaling in primary cells. I first treated with 100 µM 

FeSO4 for 1, 4 and 24hr in primary neonatal cardiomyocytes and observed that the response to 

insulin was attenuated in cells treated with iron by immunofluorescent (Figure 4.4.2. A&B) 

and Western blotting detection of Akt phosphorylation (Figure 4.4.2.C&D). In addition, the 
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metabolic significance of these effects was examined by measuring glucose uptake and data 

indicated that iron reduced insulin-stimulated glucose uptake and metabolism in neonatal 

cardiomyocyte (Figure 4.4.2. E). Then I further confirmed insulin sensitivity was attenuated 

in primary adult cardiomyocyte cells via immunofluorescent analysis of Akt phosophorylation 

(Figure 4.4.2. F&G) 

4.4.3. Iron induced reactive oxygen species 

I then investigated the effect of iron (1 and 4 hours) on the alteration of intracellular 

reactive oxygen species (ROS). ROS production was measured in H9c2 cells by confocal 

microscope (Figure 4.4.3. A&B) and flow cytometry (Figure 4.4.3.C&D) with 

CellROX® reagent. The result showed that intracellular ROS significantly increased in the 

H9c2 cells treated with 100 µM FeSO4 as early as 1 hour and more significantly at 4 hours. A 

similar response was observed in human stem cell derived cardiomyocytes (Figure 4.4.3. D& 

E).  

4.4.4. Iron induced insulin resistance via increased generation of reactive oxygen species 

(ROS), and enhanced by antioxidant (MnTBAP) 

I next evaluated whether iron-induced oxidative stress had an effect on insulin 

sensitivity. To do so I first verified the effectiveness of the antioxidant reagent MnTBAP 

(100mM). To H9c2 cells were exposed to iron overload conditions for 4hr with 100 µM 

FeSO4 and antioxidant 100mM MnTBAP. The data from confocal microscopy (Figure 4.4.4. 

A&B) and flow cytometry experiments (Figure 4.4.4. C&D) suggested that iron overload 

conditions led to an increase in ROS which was diminished by MnTBAP. I then examined 

iron (FeSO4, 100µM) induced insulin resistance via Western blotting detection of Akt 
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phosphorylation (Figure 4.4.4.F&G) and iron significantly induced insulin resistance and 

attenuated by MnTBAP in H9c2 cells. 

4.4.5. Iron reduced insulin signaling due to inhibition of autophagy  

I next examined the regulation of autophagy by iron and it’s significance in 

determining insulin sensitivity. As seen in Figure 4.4.5A, iron caused a significant up 

regulation of phosphorylation of ULK1 at Ser757 (Figure 4.4.5.A). Furthermore, iron 

increased the amount of LC3II (Figure 4.4.5.B), the lipidated form of LC3 that is essential for 

closure of the autophagosome and is widely used as a marker for autophagy. The increase 

autopahgosome content after iron treatment was validated by a increase in puncta detected 

using Cyto ID assay and confocal microscopy (Figure 4.4.5.D&E). I also examined 

autophagic flux by testing p62 expression (Figure 4.4.5.C) and found this was elevated by 

iron, and chloroquine which is well known inhibitor of late stage autophagy flux. LC3-II and 

p62 data collectively suggests iron attenuates flux.  

Based on the observations that iron both induced insulin resistance and inhibited 

autophagy, I investigated if there were any causation effects between the two. First, I 

examined if insulin resistance may be caused by the impairment of autophagy.  With the use 

of Atg5K autophagy deficient H9c2 cells, as expected, there was a does dependent increase in 

phosphorylation of Akt Thr308 was observed in wild type (WT) H9c2 cells upon stimulation 

with an increasing dose of insulin, yet the response was significantly decreased in the ATG5K 

cell line (Figure 4.4.5.F&G). This indicated that an impairment of autophagy could lead to 

insulin resistance in cardiomyocytes. 
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Figure 4.1. Intracellular iron accumulation induced insulin resistance in cardiomyocyte.  

H9c2 cells were treated with FeSO4 (100µM) or without (Con) for 4 and 24 hr. Characterizing 

intracellular iron by PGSK assay (A), quantification (B) and Colorimetric assay was evaluated 

using spectrophotometer (C). H9c2 cells without (con) or with FeSO4 (100µM) were treated 

with insulin (100nM) for 10 minutes before experimental endpoint. Western blots showing 

phosphorylation of AKT Thr308 and the reference protein total AKT in H9c2 cells (D) and its 

quantification (E). *indicates significant difference from control *p<0.05, **p<0.01. n = 5 . 

Scale bar = 20µm, n ≥ 3. 
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Figure 4.2. Insulin signaling in cardiomyocyte indicated by increased phosphorylation of 

AKT Thr308 was all decreased by iron. In primary adult and neonatal cardiomyocytes, with 

FeSO4 (100µM) or without (con) were treated with insulin (100nM) for 10 minutes before 

experimental endpoint.  Representative confocal images of phosphorylation of pAKT Thr308 

in neonatal (A) and adult cardiomyocyte cells (F) and their quantifications (B&G). Western 

blots showing phosphorylation of AKT Thr308 and the reference protein total AKT in 

neonatal cardiomyocyte cells (C) its quantification (D). We examined the effect of FeSO4 

(100µM) for 1, 4 and 24 h on glucose uptake (Insulin: 28.30, 1hr FeSO4: 15.62, 4hr FeSO4: 

12.00, 24hr FeSO4: 14.48 (pmol/mg/min) (E). * indicates significant difference from control 

without insulin; # indicates significant difference from the control with respective insulin 

100nM. # p<0.05, ## p<0.01; *p<0.05, **p<0.01. Scale bar = 20µm, (A &D n = 3, E n=5, 

F&G n=3).  
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Figure 4.3. Iron increased reactive oxygen species (ROS) in H9c2 cells at 1 and 4hr. 

H9c2 cells with FeSO4 or without (con) were treated at 1 and 4hrs by CellROX Red assay by 

confocal microscope. Representative confocal images of 1hr control and FeSO4 (100µM) in 

H9c2 cells and quantification (A). 4hr control and FeSO4 (100µM) in H9c2 cells (B). The 

reactive oxygen species (ROS) production was examined by CellROX red assay using flow 

cytometry(C) and its quantification (D). Iron increased reactive oxygen species (ROS) in 

hiPS-CMs (human cardiomyocyte cells). Representative 3D confocal images showed in hiPS-

CMs cells (E) and its quantification (F). * indicates significant difference from control p<0.01; 

*p<0.05, **p<0.01. Scale bar = 20µm, n = 4.  
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Figure 4.4. Iron induced insulin resistance via increased generation of reactive oxygen 

species (ROS), and enhanced by antioxidant (MnTBAP, 100µM).  H9c2 cells were treated 

at 4hr with FeSO4 (100µM) and ± antioxidant (MnTBAP, 100µM). Representative confocal 

images of CellROX Red assay (A), flow cytometry (C) and their quantifications (B&D 

respectively). Western blots showing phosphorylation of pAKT Thr308 and the reference 

protein total AKT in H9c2 cells (E) its quantification (F). * indicates significant difference 

from control # indicates significant difference from the FeSO4 (100µM). # p<0.05, ## p<0.01; 

*p<0.05, **p<0.01. Scale bar = 20µm, (A-C n = 3, E&F n=4). 
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Figure 4.5. Iron reduced insulin signalling via inhibition of autophagy. H9c2 cells were 

treated with FeSO4 (100µM) with chloroquine (60nM) and without chloroquine for 4 hr. 

Western blots showing protein expression of pULK1 S757 (A), LC3II (B), P62(C) and the 

reference protein GAPDH and their quantifications. The increase autopahgosome by iron was 

validated by a Cyto ID assay using confocal microscope (D) and its quantification (E). 

Autophagy was verified essential for insulin signalling by decreasing phosphorylation of AKT 

T308 in autophagy impaired Atg5K cells dose dependently by western blots (F) and its 

quantification (G). * indicates significant difference from control # indicates significant 

difference from the FeSO4 (100µM). # p<0.05, ## p<0.01; *p<0.05, **p<0.01. Scale bar = 

20µm, (A-E n = 4, F&G n=3). 
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4.5. Discussion  

Iron may play an underappreciated role in the development of insulin resistance and 

insulin resistance-induced heart failure. Cardiac insulin resistance is well established to 

influence heart failure via multiple mechanisms such that exacerbated cardiomyopathy may 

occur in an insulin-sensitive myocardium [34]. In fact, in type 2 diabetes insulin resistance 

can be present for several years before hyperglycaemia develops and at this time contribute to 

adverse cardiac remodeling and iron both with insulin resistance and insulin deficiency [263-

268]. I first investigated whether iron altered insulin sensitivity in cardiomyocytes and found 

that iron reduced insulin sensitivity via increased oxidative stress. Iron accumulation in H9c2 

cells was done by treating them with 100uM of FeSO4. Using a colorimetric intracellular iron 

and PGSK assay, it was shown that there was significantly increased intracellular iron after 

treatment with iron for 1 4 and 24 hours. To assess the effect of iron overload on insulin 

resistance, pAKT T308 was examined in H9c2 cells after treatment to induce iron overload 

conditions by Western blotting. We observed same effect of iron in neonatal and adult 

cardiomyocyte cells and the data showed that reduced phosphrlation of AKT T 308 at 1,4 and 

24hours by Western blotting and immunofluorescence.  

Although little is known about the mechanisms of iron action in cardiomyocytes, 

previous work has included evidence iron induced oxidative stress is a key driver in the 

pathogenesis of myocardial tissue injury and progressive development of iron overload 

cardiomyopathy [251, 269, 270]. Excess iron promotes oxidative stress via the Fenton 

reaction, which plays a key pathogenic role in myocardial injury and heart failure [270-273]. 

Although many studies have described positive relationships between modulation of 

adipokines and insulin resistance, much importance has been placed on iron-mediated oxidant 
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stress and the role it plays in the development of insulin resistance [274].  Our study 

suggested that using CellROX Deep Red assay we also observed that iron increased 

generation of reactive oxygen species (ROS), and that using anti-oxidant (MnTBAP) to 

attenuate ROS production reduced iron effect.  

Autophagy is the major intracellular degradation process where cytoplasmic materials 

get delivered to lysosomes for degradation and recycling [178, 181, 183, 193] and many 

studies have now indicated that the degree of autophagy changes in the failing heart and 

directly in response to I/R [275-278]. Autophagy typically upregulated in times of stress, for 

example during ischemia/reperfusion, pressure overload and cardiac toxicity induced by 

chemicals such as the athracycline doxorubicin [151]. Previous in vivo studies also have 

shown that expression of multiple autophagy related genes were altered in iron overload 

cardiomyopathy, possibly contributing to cardiac diastolic dysfunction [152].  

To do so to study the functional significance of changes in autophagy we created an 

autophagy-deficient cell model by overexpressing a dominant-negative Atg5 mutant. Our data 

suggested that iron or autophagy deficiency both induced insulin resistance and autophagy is 

very important role of regulation insulin resistance in cardiomyocyte. Numerous studies 

suggested that dysregulation of autophagy leads to increases in oxidative stress [279-283]. For 

example inhibition of autophagy increased ROS by lysosome inhibitor chloroquine or the 

cathepsin D inhibitor pestatin A [284-288]. Additionally, disorder of initiation autophagy 

leads to accumulation of ubiquitiated proteins, induced ROS and mitochondrial dysfunction 

[289]. Reduction of Atg5 and Atg10 promote ROS via starvation[280].  
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In conclusion, our study indicated that iron induced insulin resistance in 

cardiomyocytes and this involved regulation of the crosstalk between autophagy and oxidative 

stress. Further studies will investigate mechanisms via which iron regulates cardiac 

remodeling and their physiological significance. We anticipate that our findings will provide 

new knowledge relevant to current diagnostics and therapeutics related to altered iron status in 

clinical settings.  
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Chapter Five:  Discussion & Conclusions 

5.1 Research summary  

Obesity and diabetes increase the incidence of myocardial infarction and heart failure 

[74, 176]. Lcn2 is most abundantly produced from adipocytes and neutrophils and previous 

studies showed that Lcn2 is a proinflammatory marker associated with insulin resistance and 

obesity-related metabolic disorders [7, 10, 155]. My working hypothesis was that Lcn2 

induction is an important component of the cardiac response to myocardial infarction, directly 

regulates cardiac remodeling and contributes to development of heart failure. A variety of 

remodeling events occur throughout the progressive development of heart failure in obesity 

[74]. During my PhD studies, I have examined direct effects of Lcn2 on cardiomyocytes and 

in the heart using mouse mdoels to determine mechanisms via which Lcn2 changes cardiac 

structure and function. In this concluding chapter I revisit the main results and conclusions 

from each chapter and bring these together in a unifying discussion. 

 

Project 1: Lcn2 inhibits autophagy leading to insulin resistance in cardiomyocytes.  

 Data from my first PhD project has been published in the Journal of Molecular 

Endocrinology [218] and forms a strong foundation for the continuation of related work in my 

thesis. Briefly, I treated H9c2 cardiomyocytes with recombinant Holo-Lcn2 for 1 hour 

followed by dose and time dependent insulin treatment and found that Holo-Lcn2 induced 

insulin resistance; assessed via Western blotting for phosphorylation of Akt, ERK and 

p70S6K. I used multiple assays to monitor autophagic flux and observed that Holo-Lcn2 

reduced autophagy. For example, we generated H9c2 cells stably expressing tandem 

fluorescent RFP/GFP-LC3 and this approach allowed me to demonstrate that Holo-Lcn2 
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decreased autophagic flux. Importantly, our lab created an autophagy-deficient H9c2 cell 

model by overexpressing a dominant-negative Atg5 mutant and using this I found that 

reduced autophagy levels also induced insulin resistance. In summary, this study indicated 

that Holo-Lcn2 treatment caused insulin resistance and use of gain and loss of function 

approaches elucidated a causative link between autophagy inhibition and regulation of insulin 

sensitivity by Holo-Lcn2. Cardiac insulin resistance is well established to influence heart 

failure via multiple mechanisms such that exacerbated cardiomyopathy may occur in an 

insulin-insensitive myocardium [176]. In fact, in type 2 diabetes insulin resistance can be 

present for several years before hyperglycaemia develops and during this time contribute to 

adverse cardiac remodeling [191]. More recently, numerous studies have shown that 

autophagy can play a critical role in cardiac metabolic health [178], including regulating 

insulin sensitivity [179, 180]. Several signalling pathways are also involved in the regulation 

of autophagy, including insulin signalling via PI3K/Akt/mTOR which leads to the inhibition 

of autophagy [57]. Indeed, disruption of autophagy by cardiac-specific knockdown of Atg5 in 

adult mice leads to cardiomyopathy [181]. Furthermore, measuring circulating Lcn2 was 

shown to be capable of predicting the severity and mortality of acute and chronic heart failure 

[46, 50, 51, 173, 174, 290], thus making it an attractive and promising biomarker for heart 

failure. The novel observation from my work that Holo-Lcn2 attenuated autophagy then led 

me to test the significance of this mechanism in mediating another important effect of Lcn2 in 

cardiomyocytes that our lab previously established, namely cell death [71].  

 

 



 

	 109	

Project 2: Lcn2 regulates autophagy to control apoptosis upon chronic myocardial ischemia. 

Another manuscript, containing data from this project, has been published in Journal 

of Cellular Physiology [256]. In this paper I showed that Holo-Lcn2 attenuates autophagy to 

worsen the extent of apoptosis induced by chronic myocardial ischemia in mice. Briefly, I 

used coronary artery ligation surgery to induce ischemia in wild type (wt) and Lcn2 knockout 

(KO) mice. Lack of Lcn2 protected against ischemia-induced cell death and cardiac 

dysfunction measured by echocardiography. I used multiple assays to monitor autophagic flux 

and observed that Lcn2 KO mice had a greater ischemia-induced increase in autophagy versus 

wt mice. Importantly, these changes correlated with increased cell death and reduced insulin 

sensitivity in response to Holo-Lcn2. A previous study indicated that Lcn2 KO mice had 

significantly decreased fasting glucose while their insulin level and sensitivity improved [16]. 

Moreover, fat mass enlargement, inflammation and accumulation of lipid peroxidation 

products were significantly attenuated in the adipose tissues of aging or HFD Lcn2 KO mice 

[16]. As I indicated above, measurement of serum Lcn2 has been proposed as a useful means 

for evaluating obesity-related cardiovascular diseases including heart failure. Previous 

literature indicated that mouse models of autophagy deficiency develop age-related 

cardiomyopathy [234], show enhanced hemodynamic stress induced dysfunction [202] and 

elevated levels of angiotensin-II stimulated inflammation and injury [235]. This study and 

project 1 collectively indicated that Holo-Lcn2 attenuated autophagic flux and induced both 

insulin resistance and cell death in cardiomyocytes; effects which collectively may play an 

important role in the pathogenesis of heart failure in obesity. 

Project 3: Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. 
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 Data from my first PhD project indicated that Holo-Lcn2 caused insulin resistance and 

use of gain and loss of function approaches elucidated a causative link between autophagy 

inhibition and regulation of insulin sensitivity by Lcn2 [218]. My second project showed that 

Holo-Lcn2 regulates autophagy to control apoptosis upon chronic myocardial ischemia [256]. 

Together with our labs previous observation that Lcn2 induced cardiomyocyte apoptosis via 

elevating intracellular iron levels [71], this led me to appreciate the extensive literature 

showing that both iron overload and deficiency have been strongly associated with heart 

failure [92, 101, 106, 109, 179]. Importantly, as I indicated during my thesis introduction, 

Lcn2 plays important role in regulation of iron homeostasis, promoting iron accumulation in 

cardiomyocytes, and I thus hypothesized this could be an important mechanism in the context 

of cardiomyopathy. Circulating Lcn2 is often recorded to be significantly increased in patients 

experiencing HF [81, 238-240, 291] local Lcn2 produced in the heart is also increased 

significantly [256]. Hence, I believed it was of great interest to further elucidate the 

mechanisms of iron-associated cardiomyopathy.  

 Therefore, in my third project I investigated whether iron caused insulin resistance in 

cardiomyocytes and the mechanisms via which this occurred, with a focus on oxidative stress. 

Although little is known about the mechanisms of iron action in cardiomyocytes, previous 

work has included evidence iron induced oxidative stress is a key driver in the pathogenesis of 

myocardial tissue injury and progressive development of iron overload cardiomyopathy [251, 

269, 270]. Briefly, I used primary adult and neonatal cardiomyocytes as well as H9c2 cells, 

and observed that iron induced insulin resistance, as determined by Western blotting and 

immunofluorescent detection of Akt phosphorylation as well as glucose uptake. Using 

CellROX Deep Red assay I also observed that iron increased generation of reactive oxygen 
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species (ROS), and that anti-oxidant pretreatment attenuated iron-induced insulin resistance. 

Furthermore, various complementary assays indicated that iron suppressed autophagy. 

Although many studies have described positive relationships between modulation of 

adipokines and insulin resistance, much importance has been placed on iron-mediated oxidant 

stress and the role it plays in the development of insulin resistance [274]. Autophagy is the 

major intracellular degradation process where cytoplasmic materials get delivered to 

lysosomes for degradation and recycling [178, 181, 183, 193] and many studies have now 

indicated that the degree of autophagy changes in the failing heart and directly in response to 

I/R [275-278]. Autophagy typically upregulated in times of stress, for example during 

ischemia/reperfusion, pressure overload and cardiac toxicity induced by chemicals such as the 

athracycline doxorubicin [151]. Previous in vivo studies also have shown that expression of 

multiple autophagy related genes were altered in iron overload cardiomyopathy, possibly 

contributing to cardiac diastolic dysfunction [152]. This is in keeping with my Project 3 study 

which indicated that iron reduced autophagy causing insulin resistance in cardiomyocytes.  
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5.2 Future directions 

Future studies to expand the work presented in this thesis will continue to explore and 

focus on the mechanistic role of autophagy. Ultimatley, I expect this will have implications in 

i) establishing Lcn2 as a potential biomarker for the diagnosis of heart failure or it’s 

susceptibility and ii) validating Lcn2 and autophagy as potentially important therapeutic 

targets in the treatment of heart failure. 

 

As explained above in project 1 and 3, my data led me to place a strong emphasis on 

the study of autophagy and whether it is regulated by Lcn2 and iron. The pro-apoptotic effect 

of Lcn2 involved increased intracellular iron levels. It will great interesting point to 

investigate the role of altered intracellular iron on H/R-induced changes in apoptosis, 

authopagy, oxidative stress and ER stress. The role of iron in H/R mediated apoptosis is 

unclear [233, 292] although iron chelation has been proposed as a therapy for various 

cardiomyopathies [293]. Another study suggested that H/R damage in primary neonatal 

cardiomyocytes involves oxidative stress via the production of hydroxyl radicals mediated by 

iron [294]. Similarly to project 3, it would be possible to determine if elevated iron levels 

contribute to oxidative stress, whether this is part of the mechanism of Lcn2 or H/R-induced 

cell death and if chelating iron attenuates the apoptotic effects of Lcn2 or H/R. Interestingly, 

sustained autophagy upon transgenic Atg7 overexpression decreased cardiac fibrosis, 

hypertrophy and dysfunction [295]. Interestingly, one study showed that patients with 

longstanding idiopathic cardiomyopathy increased cardiac accumulation of autophagosomes 

[295]. Accordingly, my experiments are now designed to examine temporal and spatial 

changes in cardiac autophagy based on the hypothesis that autophagy is induced in the heart 
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as a protective mechanism in response to I/R and that Lcn2 suppresses this beneficial effect. 

Lack of Lcn2 may prevent this and allow autophagy to become elevated and confer protection. 

Furthermore, Atg7 is required for ATG conjugation mechanism and autophagosome formation. 

This has important consequences such as amino acid supply in neonates, and starvation-

induced bulk degradation of proteins and organelles in mice [296, 297]. Atg7 deficiency in 

mice led to multiple cellular abnormalities, such as appearance of concentric membranous 

structure and deformed mitochondria, and accumulation of ubiquitin-positive aggregates 

[296]. To examine the autophagy-deficient phenotype, I am currently breeding Atg 7F/F with a 

line of transgenic mice that express the Cre recombinase under the control of a cardiomyocyte 

specific promoter. These mice will be crossbred onto a background of Lcn2KO mice to create 

a completely novel mouse model to test our hypothesis. We will subject these mice to 

surgically induced heart failure (coronary artery ligation to induce ischemia and reperfusion 

(I/R)) then examine changes in autophagy, cell death, oxidative stress, mitochondrial function, 

inflammation and fibrosis as well as heart function using techniques well established in our 

lab [218, 256]. These will allow me to further explore the hypotheses that presence of Lcn2 is 

permissive in development of cardiac dysfunction whereas lack of Lcn2 may protect mice 

from I/R-induced dysfunction. Autophagy deficiency is also expected to exacerbate I/R 

induced heart failure, and we have promising preliminary evidence that lack of autophagy 

induced cardiac dysfunction. Furthermore, interestingly, whereas I/R induced a large increase 

in myocardial Lcn2 content in wt mice, it did not in this autophagy-deficient mouse model. 

This is an unexpected observation and clearly suggests further crosstalk between Lcn2 and 

autophagy. Previously my study indicated that Lcn2 attenuates autophagy to worsen the 

extent of apoptosis induced by chronic myocardial ischemia in mice and we observed 
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significantly increased Lcn2 level after chronic myocardial ischemia. We will also use in vitro 

studies to further examine direct cellular mechanisms of Lcn2 action with gain and loss of 

function approaches. 

 

One of the important discoveries made in my thesis was that Lcn2 regulates autophagy 

and apoptosis upon chronic myocardial ischemia. Now, to further advance this study we will 

use wt and Lcn2KO mice in which will also restore normal Lcn2 levels by adenoviral delivery, 

with the specific hypothesis that presence of Lcn2 is permissive in development of cardiac 

dysfunction whereas lack of Lcn2 may protect mice from I/R-induced dysfunction. This 

sytudy will be designed to examine mechanisms including autophagy, cell death, oxidative 

stress, mitochondrial function, inflammation and fibrosis. For example, a novel approach that 

our lab is developing over the last few months is the use of fluorescent molecular tomography 

to non-invasively measure autophagy in mice. This is based on the use of a cathepsin-

activatable near infra-red probe, is quantitative and will provide spatial and temporal readouts 

of changes in autophagy in the same mouse over the period of our experimental protocol. We 

anticipate that in wt, but not Lcn2-KO, there will be sufficient induction of autophagy to limit 

damage such as cell death or insulin resistance. Reintroduction of Lcn2 to Lcn2-KO by 

adenovirus will attenuate I/R-induced autophagy and promote dysfunction. This future study 

also will consider the alternative hypothesis that lack of Lcn2 may allow either too much or - 

if autophagy is transiently elevated only in the early period or I/R, as was suggested in one 

recent study - prolonged autophagic induction, both of which may also be detrimental to 

cellular events such as apoptosis [212]. In addition to examining autophagy, the following 

experimental measures will also be made: i) Echocardiography to examine cardiac function ii) 
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Insulin sensitivity iii) Cell death and iv) Fibrosis, all using methods that are established in our 

lab [9, 10]. 

 

5.3 Conclusion  

For my PhD studies, I examined effects of Lcn2 on the heart to determine changes in 

cardiac structure and function. Rationale for this work was based on the fact that obesity and 

the associated metabolic syndrome (a cluster of chronic symptoms including insulin resistance, 

hyperglycemia, hypertension, and inflammation) predispose individuals to developing heart 

failure. The consequences on an obese and aging population can be devastating owing to the 

high risk for mortality or loss of quality of life.  

The most significant observation that I made was that regulation of autophagy was an 

important mechanism via which Lcn2 altered insulin sensitivity as well as cell death in 

cardiomyocytes. Furthermore, I demonstrated that iron induced insulin resistance via 

oxidative stress. These novel cellular mechanistic discoveries led me to propose that future 

studies will continue to explore and validate the physiological significance of Lcn2-induced 

heart failure. As I explained above, Lcn2 is a hormone that previous research has suggested 

could be potentially useful as a biomarker or therapeutic target for heart failure, however 

much more research is needed to validate either of these possibilities. Knowledge produced 

by my research will thus have potential to impact improved diagnosis or treatment of heart 

failure in future.  
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Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has recently become established as an important contributor to
the pathophysiology of cardiovascular disease. Accordingly, it is now viewed as an attractive candidate as a
biomarker for various disease states, and in particular has recently become regarded as one of the best diagnostic
biomarkers available for acute kidney injury. Nevertheless, the precise physiological effects of NGAL on the heart
and the significance of their alterations during the development of heart failure are only now beginning to be
characterized. Furthermore, the mechanisms via which NGAL mediates its effects are unclear because there is no
conventional receptor signalling pathway. Instead, previous work suggests that regulation of iron metabolism could
represent an important mechanism of NGAL action, with wide-ranging consequences spanning metabolic and
cardiovascular diseases to host defence against bacterial infection. In the present review, we summarize rapidly
emerging evidence for the role of NGAL in regulating heart failure. In particular, we focus on iron transport as a
mechanism of NGAL action and discuss this in the context of the existing strong associations between iron
overload and iron deficiency with cardiomyopathy.

Key words: 24p3, autophagy, cardiomyopathy, ER stress, heart failure, iron deficiency, iron overload, lipocalin 2 (Lcn2), mitochondrial dysfunction, NGAL, oxidative stress.

INTRODUCTION

Iron is an essential micronutrient and its crucial role in many
physiological functions is often underestimated [1]. Altered iron
metabolism is implicated in a vast array of diseases, including
neurodegenerative diseases [2], cardiovascular diseases [3], can-
cer [4], osteoporosis [5] and many more. In particular, both iron
deficiency (ID) and iron overload have been associated with car-
diomyopathy [6,7]. With the heart being a highly metabolically
active organ, optimal iron homoeostasis is especially vital. Iron
is a vital structural component of haemoglobin, myoglobin, oxid-
ative enzymes and respiratory chain proteins that are collectively
responsible for oxygen transport, storage and energy metabolism
[8]. Although epidemiological studies investigating the role of
iron in various diseases are often inconsistent, this is not entirely
surprising given the differences in experimental criteria and nu-
merous methods used for assessment of iron status [3]. In the
present review, we aim to assess the altered iron status in cardi-

Abbreviations: CKD, chronic kidney disease; DMT-1, divalent metal ion transporter 1; EF, ejection fraction; ER, endoplasmic reticulum; ESA, erythropoietin-stimulating agent; ESC,
European Society of Cardiology; FAIR-HF, Ferinject Assessment in patients with IRon deficiency and chronic Heart Failure; FPN, ferroportin; Hb, haemoglobin; HCP-1, haem carrier
protein 1; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; ID, iron deficiency; IFN-γ , interferon γ ; IOC, iron
overload cardiomyopathy; ISC, iron-sulfur cluster; Lcn2, lipocalin 2; LTCC, L-type calcium channel; NCOA4, nuclear receptor co-activator 4; NF-κB, nuclear factor κB; NGAL, neutrophil
gelatinase-associated lipocalin; NYHA, New York Heart Association; RED-HF, Reduction of Events with Darbepoetin α in Heart Failure; ROS, reactive oxygen species; Tf, transferrin; TfR,
transferrin receptor; TNF-α, tumour necrosis factor α; TREAT, Trial to Reduce cardiovascular Events with Aranesp (darbepoetin α) Therapy; TSat, transferrin saturation; TTCC, T-type
calcium channel; UPR, unfolded protein response.

Correspondence: Dr Gary Sweeney (gsweeney@yorku.ca).

omyopathy, to discuss the possible cellular mechanisms involved,
and to highlight the importance of regulation of iron metabolism
by neutrophil gelatinase-associated lipocalin (NGAL).

SYSTEMIC AND MYOCARDIAL IRON
METABOLISM

Essential concepts of systemic iron metabolism are briefly re-
viewed (see Figure 1), although readers are referred to some
excellent review articles for further details [9,10]. Iron homoeo-
stasis is essentially a closed system: iron is acquired from food as
inorganic or haem iron, which is primarily absorbed in the duo-
denum via processes mediated by divalent metal ion transporter 1
(DMT-1) and haem carrier protein 1 (HCP-1), respectively. Iron
in the cytoplasm can be either stored as ferritin or released to
the bloodstream via ferroportin (FPN), where ferrous iron (Fe2+)
can be oxidized to ferric iron (Fe3+) by hephaestin to facilitate
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Figure 1 Schematic overview of cellular iron transport in cardiomyocytes
The role of DMT-1 as well as other transporters such as LTCC and TTCC as possible portals for iron into cardiomyocytes.
In addition Tf binds to TfRs on the external surface of the cell. The role of NGAL is to donate iron to cells via the NGAL-R.
Internalization of NGAL and its receptor leads to the uptake of iron from the siderophore–iron complex, although the exact
mechanism remains unclear. However, accumulation of iron subsequently induces mitochondrial dysfunction, oxidative
stress, ER stress and autophagy in cardiomyocytes. Additional details about the specific information are given in the text.

its binding to transferrin (Tf) and transport in the circulation.
Most cells express transferrin receptor 1 (TfR1) such that holo-
Tf can be endocytosed to acquire iron, in which the ferric iron
is reduced to ferrous iron by the metalloreductase STEAP3. It is
then transported across the cell membrane by DMT-1. Hepcidin
is a peptide hormone that induces the intracellular degradation of
FPN, the only known iron exporter, and therefore it is a vital and
major iron-regulatory hormone controlling plasma iron concen-
tration and tissue iron distribution by inhibition of intestinal iron
absorption, iron recycling by macrophages and iron mobilization
from hepatic stores [11].

Various processes mediate iron transport in the cardiovas-
cular system. Iron deposition in the heart is a gradual process,
and has been suggested to occur in the ventricular myocardium
before the atrial myocardium [12]. Sequential appearance has
been further documented, starting initially in the epicardium,
then the myocardium and eventually the endocardium. Myocar-
dial iron levels are normally regulated through Tf-mediated up-
take mechanisms, mainly through TfR1 [13], although in the
case of iron overload, when Tf-mediated transport becomes satur-
ated, non-Tf-bound iron in the circulation increases and can also

enter cardiac myocytes through DMT-1, T-type calcium chan-
nels (TTCCs), L-type calcium channels (LTCCs) [13,14], zinc-
regulated transporter (ZRT)/iron-regulated transporter (IRT)-like
protein 14 (Zip14 or Slc39a14) [15] and also NGAL receptor,
which facilitates the entry of NGAL-bound iron [16]. FPN1
is expressed in cardiomyocytes as an exporter of iron into the
circulation [17].

OBSERVATIONAL CHANGES AND DIAGNOSIS
OF IRON STATUS IN CARDIOMYOPATHY

Heart failure (HF) is a highly prevalent chronic progressive con-
dition in which the heart is incapable of pumping enough blood to
meet the body’s demand. The ejection fraction (EF), the measure-
ment of the amount of blood that the left ventricle pumps out in
each contraction, is an important indicator for heart function and
diagnosis of HF. In patients who have HF with reduced ejection
fraction (HFrEF), the EF falls from a normal range of between
55 % and 70 % to <40 %, yet half of the patients with HF are

852 C© 2015 Authors; published by Portland Press Limited



Iron metabolism and regulation by NGAL in cardiomyopathy

NFκB

NGAL

TNF-α, IFN-γ

MΦ M1

Increase expression

Activation

Promote polarization of macrophage to its M1 inflammation phenotype

Figure 2 Schematic overview of pro-inflammatory actions of
NGAL
NGAL expression is induced by IFN-γ and TNF-α, and one potential
mechanism is via an NF-κB-dependent pathway. NGAL itself can also
induce NF-κB activation, and further induce IFN-γ and TNF-α expression.
In addition it enhances cardiac inflammation by promoting macrophage
pro-inflammatory M1 phenotype polarization. Additional details of the
various phenomena illustrated are provided in the text.

observed to have preserved EF (HFpEF) [18]. In the ongoing
search for novel treatments of HF, strong evidence is emerging
to show the significance of disturbed iron homoeostasis in HF,
regardless of the degree of change in the EF [19], thus establish-
ing an excellent therapeutic potential if our understanding of the
mechanisms responsible for the association of iron homoeostasis
and HF can be enhanced.

The normal range of circulating ferritin is from 30 μg/l to
300 μg/l. In healthy individuals, iron deficiency is defined when
the circulating ferritin concentration falls to <30 μg/l. However,
HF has an inflammatory component in which serum ferritin, as
an acute-phase protein, is often elevated without changes in body
iron stores. Therefore, it should be noted that there is a differ-
ence in the diagnostic criteria for ID between healthy individuals
and those with HF (and other chronic diseases). Recently the
European Society of Cardiology (ESC) guidelines for diagnosis
and treatment of HF have recommended a systematic measure-
ment of iron parameters in all patients suspected of having HF.
Serum ferritin <100 μg/l is regarded as absolute iron deficiency;
if serum ferritin is 100–299 μg/l and Tf saturation (TSat) <20 %
this is defined as functional iron deficiency [20]. On the other
hand, TSat >55 % and serum ferritin >200 μg/l or >300 μg/l
in women and men, respectively, is diagnosed as iron overload
cardiomyopathy (IOC), as proposed by 2005 American College
of Physicians guidelines [21]. The level of serum ferritin at which
iron deposition is detected in the heart has not yet been conclus-
ively identified. Not only is it invasive to take a heart biopsy,
but technical difficulty also often renders the results variable and

non-definitive. Both iron overload and ID have been linked to
cardiomyopathy, with the former primarily associated with an
enhanced oxidative stress and the latter with mitochondrial dys-
function, impaired heart efficacy [8], hypercoagulable state and
increased cardiac burden, and, in addition, oxidative stress due
to anaemia [3]. Cardiomyopathy associated with iron overload or
ID is reviewed in more detail below.

Iron overload cardiomyopathy
IOC is defined as the presence of systolic or diastolic cardiac dys-
function secondary to increased deposition of iron in the heart
independent of other concomitant processes [22]. It is typically
associated with dilated cardiomyopathy with left ventricular hy-
pertrophy and reduced EF [7]. Although patients may remain
asymptomatic in the early disease process, severely overloaded
patients can rapidly experience terminal HF. Accumulation of
iron in the myocardium may occur via increased iron absorp-
tion from gastrointestinal enterocytes (haemochromatosis), ex-
cess exogenous iron intake, such as via dietary supplements, or
blood transfusions (haemosiderosis). The association of IOC with
haemochromatosis, an autosomal disorder involving mutation of
specific genes involved in iron metabolism, leading to increased
gastrointestinal absorption, is well characterized [23]. In fact, this
accounts for a third of deaths in hereditary haemochromatosis,
especially in young male patients [24]. Chronic blood transfu-
sion is the treatment for hereditary and acquired anaemia, in-
cluding thalassaemia and myelodysplastic syndromes. However,
as excess body iron cannot be actively excreted, repeated blood
transfusions can result in iron deposition in multiple organs, of
which the heart is one of the most sensitive organs to iron toxicity
[7]. As the cardiac clinical presentations can vary widely among
these patients, a recent review has provided recommendations and
clinical guidelines with regard to a decision on chelation therapy
by stratifying patients based on the presence or absence of heart
dysfunction and heart magnetic resonance imaging T2-weighted
values [25].

There are numerous mechanisms via which excess iron can
reduce cardiac function. Once the antioxidant capacity of cardio-
myocytes has been exceeded, iron can produce excess oxidative
stress via the Fenton reaction (see below) and lead to apoptosis
[26]. In addition, excess free iron in the blood is suggested as
responsible for the generation of insoluble parafibrin, which is
highly resistant to proteolytic dissolution and initiates inflam-
matory reactions on deposition on the arterial wall [27]. The
association of iron and atherosclerosis is well established in an-
imal studies, e.g. iron accumulation is observed in atherosclerotic
plaques [28], and decreasing tissue iron via chelating therapy, di-
etary iron restriction or phlebotomy showed decreased atheroma
plaque size with improved stability [29–32]. Such association is
also supported in clinical studies: a study involving 12 033 men
showed that increased ferritin concentration was associated with
early coronary artery atherosclerosis, independent of traditional
cardiovascular risk factors [33]; another study involving 196 par-
ticipants showed a strong association between serum ferritin and
pulse wave velocity or aortic stiffness in women [34]. The 6-year-
long Iron and Atherosclerosis STudy (FeAST) also established
correlations of levels of ferritin, inflammatory biomarkers and
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mortality in a subset of patients with peripheral arterial disease
[35]. Iron availability may have contributed to atherosclerosis by
impairing nitric oxide action, as demonstrated by improvement
in nitric oxide-mediated endothelium-dependent vasodilatation
in patients with coronary artery disease, by chelating iron with
desferrioxamine [36]. Although further mechanisms have yet to
be defined, the Atherosclerosis Risk In Communities (ARIC)
study has rejected the hypothesis that excess iron stores would
promote low-density lipoprotein (LDL) oxidation [37]. It was
shown that dietary iron intake and body iron stores had no direct
link to altered structure and function of large arteries in individu-
als free of cardiovascular disease, cancer or haemochromatosis
[38].

Iron deficiency and cardiomyopathy
Iron deficiency (ID) is the most common nutritional deficiency
worldwide [39]. It is frequent, has a high occurrence rate of
30–50 % in patients with HF and presents as an important co-
morbidity [40]. Two types of ID can be distinguished: absolute
and functional. Absolute ID reflects depleted iron stores, whereas
iron homoeostatic mechanisms and erythropoiesis often remain
intact. Absolute ID development in humans can result from in-
adequate dietary iron intake, impaired gastrointestinal absorp-
tion/transport, drug interactions and gastrointestinal blood loss
[41]. On the other hand, functional ID presents a dysregulated
iron homoeostasis in which cells and tissues might receive inad-
equate iron supplies despite normal whole body iron storage. This
can be a result of elevated circulating hepcidin concentrations,
and has been reported in patients with acute-phase myocardial
infarction [42].

ID is often accompanied by anaemia, although both can ex-
ist independently and ID usually appears before the onset of
anaemia. It is important to differentiate anaemia from ID; al-
though ID is marked by the insufficiency of iron, anaemia is
defined by insufficient haemoglobin (Hb). ID that is independ-
ent of anaemia was reported to have a higher risk of death than
that dependent on anaemia [43,44]; it has been reported as an
independent predictor of mortality and is associated with disease
severity [45].

In recent years there have been several clinical trials to test
whether administration of intravenous iron could improve func-
tional parameters related to HF. One of the most well-known
studies includes the Ferinject Assessment in patients with IRon
deficiency and chronic Heart Failure (FAIR-HF). This involved
459 patients with ID and chronic heart failure of New York Heart
Association (NYHA) functional class II or III. The treatment
with intravenous ferric carboxymaltose over 24 weeks improved
NYHA functional class, functional capacity and quality of life in
terms of EuroQol-5 Dimension and Kansas City Cardiomyopathy
Questionnaire with an acceptable side-effect profile [46]. A sim-
plified ferric Carboxymaltose evaluatioN on perFormance in pa-
tients with IRon deficiency in combination with chronic Heart
Failure (CONFIRM-HF) trial, which has enrolled 304 stable
symptomatic HF patients from 41 sites across nine European
countries, is currently in progress to confirm the efficacy and
safety of iron therapy using intravenous ferric carboxymaltose
solution in chronic HF patients with iron deficiency, as in the

FAIR-HF study [47]. Other clinical trials including the FERRIC-
HF (FERRIC iron sucrose in Heart Failure) [48] and IRON-HF
[49] trials have also shown encouraging results with iron therapy,
using intravenous iron sucrose in improving functional capacity
in HF patients with ID. Thus, ID can serve in many cases as a
promising therapeutic target for HF.

Furthermore, the importance of ID as a marker in the context
of HF and its assessment was highlighted and recommended by
the ESC [20]. As for anaemia, it has also been shown to have a
relatively high prevalence (37 %) in patients with HF [50]. With
less oxygen availability during anaemia, the heart compensates
by increasing heart rate and stroke volume. Moreover, anaemia
has been reported to be an independent risk factor for adverse
outcomes in HF, in terms of both morbidity and mortality rates
[51–58]. Efforts have been made to restore Hb levels as a poten-
tial therapeutic approach to HF using erythropoietin-stimulating
agents (ESAs) and this resulted in improvements in exercise toler-
ance, peak V̇ O2, N-terminus of the prohormone brain natriuretic
peptide (NT-proBNP) and left ventricular performance in patients
with HF [59]. However, some major clinical trials that evalu-
ated the effect of treating anaemia with the ESA darbepoetin α

for cardiovascular events or HF have consistently suggested that
darbepoetin α did not significantly improve HF outcomes. One of
the earlier trials was the STudy of AneMIa in Heart Failure Trial
(STAMINA-HeFT), which involved 319 patients with systemic
HF, left ventricular EF <40 % and Hb level between 9.0 g/dl and
12.5 g/dl, in which they found a 1-year treatment with darbepoetin
α failed to associate with any significant clinical benefits [60].
The Trial to Reduce cardiovascular Events with Aranesp (darbe-
poetin α) Therapy (TREAT) was initiated in 2004 to provide
a robust estimate of the safety and efficacy of darbepoetin α

[61]. This event-driven study continued to grow until it reached
approximately 1203 patients with Type 2 diabetes, chronic kid-
ney disease (CKD) and anaemia, who have experienced primary
events, including the composite end-point of death, cardiovascu-
lar morbidity or the need for long-term renal replacement therapy.
TREAT initially showed that ESA treatment in diabetic and an-
aemic patients with CKD did not demonstrate clinical benefits in
terms of mortality, morbidity or quality of life [62]; instead, car-
diovascular risk was most strongly predicted by age, HF history,
and several other established renal and cardiovascular biomark-
ers [63]. In addition, most of these patients were able to maintain
a stable Hb level without having any long-term ESA therapy
[64], and long-term (2 years) ESA therapy to treat anaemia did
not confer significant benefits [65]. The most recent update from
TREAT suggests that the cardiovascular or non-cardiovascular
mortality rates, particularly those from sudden death and infec-
tion, were associated with lower baseline glomerular filtration
rate and higher protein/creatinine ratio in diabetic CKD patients
[66].

Another large-scale clinical trial, the Reduction of Events
with Darbepoetin α in Heart Failure (RED-HF) trial, was also
launched to evaluate the effect of darbepoetin α on mortality and
morbidity, and quality of life in patients with HF and anaemia
[67]. Over 2600 patients with NYHA class II–IV, EF �40 % and
Hb between 9.0 g/dl and 12.0 g/dl were subcutaneously admin-
istered darbepoetin α or placebo until the primary end-point was
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met [67]. The RED-HF study, compared with other recent clin-
ical trials in HF, had patients who were older, with moderately
to markedly symptomatic HF and extensive co-morbidity [68].
The study showed that darbepoetin α did not significantly alter
primary or secondary outcomes, concluding that darbepoetin α

did not improve clinical outcomes in patients with systolic HF
and mild-to-moderate anaemia [69]. Thus, based on all available
evidence, it has been suggested that anaemia may serve only as a
surrogate marker rather than an end-point target in HF.

CELLULAR MECHANISMS THAT UNDERLIE
THE ASSOCIATION OF IRON AND
CARDIOMYOPATHY

Iron and oxidative stress
Free iron is highly-redox reactive and can participate in a redox
reaction that leads to the generation of reactive oxygen species
(ROS). ROS include not only a range of free radicals such as su-
peroxide radical anion (O2

•−), carbonate radical anion (CO3
•−),

hydroperoxyl radical (HOO•), hydroxyl radical (HO•), peroxyl
radical (ROO•) and alkoxyl radical (RO•), but also non-radicals
such as hydrogen peroxide (H2O2), hypochlorous acid (HClO)
and ozone (O3). Among them, H2O2 and O2

•− are the major
ROS in living organisms and are continuously produced by cells
and must simultaneously be removed by antioxidant enzymes.
Neither H2O2 nor O2

•− is a strong oxidizing agent, but the ex-
tremely reactive hydroxyl radical HO• can be produced on reac-
tion with iron or iron-containing molecules through the Fenton
reaction. H2O2 oxidizes Fe2+ to Fe3+, producing the hydroxyl
radical HO• and hydroxide ion OH− (eqn 1); Fe3+ is then re-
duced back to Fe2+ by another H2O2 molecule, forming a hy-
droperoxyl radical HOO• and a proton H+ (eqn 2), or by super-
oxide radical anion (O2

•−) to produce oxygen (O2) (eqn 3). In
this way, iron acts as a catalyst to generate plentiful amounts of
ROS.

Fe2++ H2O2 → Fe3++ HO•+OH− (1)

Fe3++ H2O2 → Fe2++ HOO•+H+ (2)

Fe3+ + O2
•− → Fe2++ O2 (3)

Although ROS have important physiological functions, e.g. to
combat invading pathogens, excess ROS can result in oxidative
stress that damages intracellular proteins, lipids and nucleic acids.
Indeed, specific parts of the genome were found to be damaged
by the Fenton reaction, and are termed ‘genomic sites vulnerable
to the Fenton reaction’ [70]. Ferroptosis, as the name implies, is a
recently identified form of cell death that is morphologically, bio-
chemically and genetically distinct from apoptosis and necrosis,
and is found to depend on intracellular iron; it can be preven-
ted by iron chelators and antioxidants [71]. The use of the iron
chelator desferrioxamine has demonstrated significant reduction
of neutrophil-mediated free radical production and amplification
of the inflammatory response during cardiopulmonary bypass in

humans [72] and in in vivo studies [73–75]. In summary, iron can
potently enhance oxidative stress and consequently contribute to
cardiomyopathy.

Iron and mitochondrial dysfunction
In eukaryotic cells, mitochondria are the main consumers of intra-
cellular iron [76]. With mitochondria being the respiratory centre
of the cell, plentiful oxygen can rapidly react with unregulated
free iron to produce ROS. To avoid ROS-induced damage, mi-
tochondrial iron level and homoeostasis are tightly regulated by
different transport, storage and regulatory proteins [77]. Through
different biosynthesis pathways, iron is transferred in the mito-
chondria to its bioactive forms, haem and iron–sulfur cluster
(ISC). MitoNEET is an ISC-containing protein tethered to the
outer mitochondrial membrane that facilitates transfer of iron
into the mitochondria [78]. Not only does it play an essential
role in redox signalling [79], but also it dictates the metabolic
functions of mitochondria [78,80–82]. An increased level of mi-
toNEET can lead to accumulation of iron within the mitochon-
dria, which in turn results in dysfunction [83,84], a hallmark
of various diseases. MitoNEET is recognized as a target for the
thiazolidinedione class of anti-diabetic drugs [79,85], and its
genetic manipulation was shown to have striking anti-diabetic ef-
fects [86]. Mitochondrial ferritin stores and supplies iron within
the mitochondria. Its expression is restricted to highly metabol-
ically active cells such as cardiomyocytes, in order to supply iron
when demand is increased during active respiration or intense
metabolic activities. Frataxin is another mitochondrial protein
that handles iron in the mitochondrial matrix assembling ISC
[87]. It can act either as a chaperone for ferrous iron or as an iron
storage protein that can mineralize iron as ferrihydrite. There
is great interest in improving mitochondrial dysfunction as a
potential therapeutic approach for HF [88,89], and the underap-
preciated contribution of iron homoeostasis is worthy of more
consideration.

Iron and endoplasmic reticulum stress
Various pathophysiological situations can elevate stress in the
endoplasmic reticulum (ER). One of the major functions of the
ER is proper protein folding, and accumulation of misfolded
proteins can normally be relieved by cellular responses such as
ER-associated protein degradation (ERAD) and unfolded protein
response (UPR). These ER stress responses are important defence
mechanisms when the amount of unfolded protein exceeds the
folding capacity of the ER [90]. ER stress has been strongly im-
plicated in cardiovascular disease, e.g. ER stress can lead to car-
diomyocyte death in vivo and ex vivo [91], and in patients with
HF [92]. Interestingly, it was suggested that ER stress may be
cardioprotective during constriction-induced hypertrophy [93],
perhaps by inducing compensatory cellular mechanisms such as
autophagy (see below). Similarly, ER stress induction protec-
ted cardiomyocytes from oxidative damage [94]. Iron overload-
induced ER stress was shown in vivo in hearts under acute and
chronic conditions [95], and had been demonstrated in other tis-
sue types, including neurons [96] and liver [97]. In reverse, ER
stress can modulate iron metabolism. Hepcidin, as mentioned
above, degrades the iron efflux transporter FPN, thus leading to
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a systemic hypoferraemic environment. ER stress was found to
induce hepcidin expression [98]; the UPR signalling pathway
was further shown to increase the transcription of FPN and fer-
ritin [99]. Thus, based on available evidence, ER stress and iron
homoeostasis appear to have a reciprocal relationship such that
they can tightly regulate each other. ER stress and UPR-related
proteins will serve as interesting targets for future clinical studies.

Iron and autophagy
Macroautophagy (hereafter referred to as autophagy) is an in-
tracellular degradation system that involves the sequestration
of cytoplasmic components within a double-membrane vesicle
termed an ‘autophagosome’, in which the cargo content is de-
graded by the acidic hydrolases on fusion with a lysosome [100].
It has a wide variety of physiological and pathophysiological
roles including energy homoeostasis, cell survival and host de-
fence against pathogen invasion [101].

In the heart, autophagy typically occurs at low levels, yet it
is nevertheless important in maintaining cellular homoeostasis
under normal conditions. Autophagy is typically up-regulated in
times of stress, e.g. during ischaemia/reperfusion, pressure over-
load and cardiac toxicity induced by chemicals such as the ath-
racycline doxorubicin [102]. Although increased autophagy can
promote cell survival by degrading damaged organelles, such as
mitochondria and protein aggregates, to recycle catabolites and
maintain ATP production, either excess or lack of autophagy can
result in cell death and cardiac dysfunction. Thus, the role of
autophagy can often appear controversial between different stud-
ies when different degrees of autophagy, time course and patholo-
gical conditions being studied have led to variable observations.
In vivo data have shown that expression of multiple autophagy-
related genes was altered in IOC, possibly contributing to cardiac
diastolic dysfunction [103].

Specifically, it is now appreciated that iron can regulate auto-
phagy and that autophagy has an important role in iron homoeo-
stasis. Nuclear receptor co-activator 4 (NCOA4) was recently
identified using quantitative proteomics as the cargo receptor
that mediates autophagy of ferritin, a process termed ‘ferritino-
phagy’. NCOA4 is required for the delivery of ferritin to the
lysosome; without NCOA4, cells are malfunctional in ferritin
degradation and this can result in a decreased bioavailability of
intracellular iron [104]. However, excessive ferritinophagy may
result in insufficient ferritin, thus reducing its buffering effect on
binding intralysosomal low-mass iron, and can lead to lysosomal
fragility and increased sensitivity to oxidative stress [105]. Ana-
lysis of autophagy in iron-associated cardiomyopathy is relatively
new with limited mechanistic and clinical studies; however, we
believe that this must be rapidly developed because it has great
potential as a therapeutic target.

REGULATION OF CARDIOMYOPATHY BY NGAL

The maintenance of optimal iron levels in the body is largely con-
trolled and influenced by endocrine regulation, and this is likely
to be of major significance in cardiomyopathy. In this section,

we highlight the importance of NGAL in the regulation of iron
homoeostasis and other possible mechanisms in the context of
cardiomyopathy (see Figure 2).

Neutrophil gelatinase-associated lipocalin
Lipocalins are a diverse family that generally bind small and
hydrophobic ligands, but can also bind soluble extracellular
macromolecules and specific cell surface receptors [106,107].
NGAL (human orthologue), also termed ‘lipocalin 2’ (Lcn2)
or ‘24p3’ (murine orthologue), is a 25-kDa secretory protein.
NGAL was originally identified as a component of neutrophil
granules that bound to and prevented the degradation of matrix
metalloproteinase-9, and was later found to be secreted by a num-
ber of cells including macrophages, endothelial cells [108], epi-
thelial cells [109], cardiomyocytes (Chan, Y.K., Sung, H.K. and
Sweeney, G., unpublished work), hepatocytes [110] and adipo-
cytes [111].

Epidemiology of NGAL and heart failure
In clinical settings, NGAL is now regarded as the best biomarker
for acute kidney injury, and is also emerging as a promising
biomarker for HF. The heart and kidney have numerous similar-
ities and their interdependent relationship makes it understand-
able that renal dysfunction often accompanies cardiac failure,
and that cardiac dysfunction is frequently seen with renal failure
[112]. Therefore, many biomarkers for kidney or tubular dys-
function, e.g. kidney injury molecule 1 (KIM-1) and N-acetyl-
β-D-glucosaminidase, rather than just serving as a means to assess
kidney function, also provide insights into the cardiac prognosis
in patients with HF. However, unlike other renal biomarkers, the
NGAL level was not affected by diuretic withdrawal in patients
with chronic systolic HF [113], and administration of NGAL in
an animal model of acute ischaemic renal injury actually attenu-
ated tubular injury [114]. Moreover, in patients with chronic HF,
NGAL has been shown to be a more effective marker than cre-
atinine for the cardiorenal syndrome; NGAL could detect renal
injury earlier than creatinine, and was an independent and novel
risk predictor of mortality in chronic HF [115]. Indeed, the el-
evation of NGAL seen in HF, and its association with different
parameters of HF, has affirmed its potential as a HF biomarker.
First, serum NGAL predicted the outcome of HF, e.g. the GAL-
LANT (NGAL evaluation Along with B-type NaTriuretic peptide
in acutely decompensated heart failure) trial concluded that, at the
time of discharge, plasma NGAL was a strong prognostic indic-
ator of 30-day outcomes in patients admitted for acute HF [116];
it independently predicted worse short-term prognosis in patients
with acute HF [117], and NGAL levels correlated well with HF-
related functional assessment parameters, including the 6-min
walk test [118]. Secondly, the CORONA (COntrolled ROsuvast-
atin multiNAtional trial in heart failure) study suggested that
NGAL was associated with the severity of HF [119], the elevated
serum NGAL in patients with acute post-myocardial infarction
and chronic HF was found to be associated with more adverse
outcome [120], and the NGAL level was shown to correlate with
HF severity and haemodynamic improvements after placement
of a ventricular assist device [121]. Thirdly, serum NGAL pre-
dicted severity of chronic HF in terms of NYHA classification and
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mortality in elderly patients [122], and plasma NGAL also pre-
dicted mortality in HF patients with or without CKD [123], and
in community-dwelling older adults independent of traditional
risk factors and kidney functions [124]. Clearly, there is strong
evidence for NGAL being a useful biomarker to assess severity,
prognosis and mortality in HF suggested by various individual
cohorts.

Possible mechanisms via which NGAL may mediate
cardiomyopathy
Iron transport
NGAL is most well known for its participation in innate im-
munity to limit bacterial growth by sequestrating iron. One way
to secure iron from the host by bacteria is by synthesizing and
secreting siderophores to extract iron from iron-containing com-
pounds such as Tf and lactoferrin; NGAL is secreted by the host
to tightly bind to bacterial catecholate-type ferric siderophores,
competing for iron and preventing such uptake [108]. NGAL
saturated with iron (holo-form) can increase intracellular iron
levels by transporting and then releasing iron into the cytoplasm;
in contrast, when NGAL is iron-free (apo-form), it can deplete
intracellular iron and transport it to the extracellular space via
its receptor NGAL-R [125]. Bacterial infection is often associ-
ated with hypoferrinaemia [126] which limits iron availability to
pathogens; accordingly, mice deficient in NGAL exhibit elevated
intracellular labile iron and lowered circulating iron levels [127].
Overall, NGAL, as an iron-trafficking protein, can be regarded
as an alternative to a Tf-mediated iron-delivery pathway [128].

Although limited studies are available, it is speculated that
circulating NGAL levels may reflect the body’s iron status, at
least in haemodialysis patients [129]. In haemodialysis patients,
it was found that plasma NGAL was significantly lower within
those who had ID, with TSat <20 %, and that the level of NGAL
was positively correlated with circulating iron, TSat and fer-
ritin. NGAL was significantly increased after correction of ID
with intravenous iron administration [130]. Similar results were
also observed in another two studies supporting the potential use
of NGAL to identify iron deficiency in haemodialysis patients
[129,131]. Likewise, a lowered NGAL level was also recorded in
patients with iron deficiency anaemia [132] and, in patients with
chronic HF (both HFpEF and HFrEF), the significantly higher
circulating NGAL levels also correlated with higher serum iron
concentrations in the EPOCARES (ErythroPOietin in the CAr-
dioREnal Syndrome) study [133]. As circulating NGAL is often
recorded as significantly increased in patients experiencing HF
[117,120–123], and local NGAL production in the heart is also
increased significantly (Chan, Y.K., Sung, H.K. and Sweeney,
G., unpublished work) [120,134], we believe that it will be of
great interest to elucidate the role of NGAL in iron-associated
cardiomyopathy further. It is interesting that we previously iden-
tified NGAL leading to cardiomyocyte apoptosis by causing in-
tracellular iron accumulation [16]. Further mechanistic studies
are definitely warranted.

Pro-inflammatory actions of NGAL
As NGAL is involved in defending the host during bacterial
infection, it comes as no surprise that NGAL is regarded as

a pro-inflammatory cytokine. In the fourth Copenhagen Heart
Study, which involved more than 5000 patients and a follow-up
period of 10 years, it was shown that plasma NGAL strongly as-
sociated with all inflammatory markers investigated, including
high-sensitivity C-reactive protein, and total leucocyte and neut-
rophil count; increased NGAL was also shown to correspond to an
increased risk of all-cause mortality and major adverse cardiovas-
cular events [135]. It was suggested that NGAL expression and
secretion can be induced by interferon γ (IFN-γ ) and tumour nec-
rosis α (TNF-α), and that the transcription factors, signal trans-
ducer and activator of transcription 1 (STAT1) and nuclear factor
κB (NF-κB), were shown to bind to the human NGAL promoter
[136]. Likewise, in elucidating the inflammatory mechanisms of
NGAL with animal models, NGAL mRNA and proteins were
up-regulated on vascular injury in an NF-κB-dependent manner
[137]. NGAL can enhance cardiac inflammation by promoting
polarization of the macrophage pro-inflammatory M1 phenotype
[138]. Thus, a vicious cycle exists whereby NGAL can intensify
inflammation by inducing the expression of TNF-α and other
pro-inflammatory mediators [139]. It is of interest that preven-
tion of the clearance of NGAL from the circulation was shown
to promote vascular inflammation and endothelial dysfunction
[140]. In both HFpEF and advanced HFrEF, elevated systemic
and local inflammation with increased circulating TNF-α have
indispensable roles in disease pathogenesis [141]. It will be in-
teresting to explore how NGAL contributes to cardiomyopathy
in an inflammation-dependent and -independent manner.

CONCLUSION

Iron is a micronutrient that is integral to the function of many pro-
teins required in cells with high metabolic activity. It is involved
in regulating various cellular mechanisms including oxidative
stress, mitochondrial dysfunction, ER stress and autophagy, all
of which can contribute to cardiac dysfunction when perturbed.
NGAL, an adipokine that mediates iron transport through asso-
ciation with a siderophore, can increase or decrease intracellular
iron content based on the body iron store and its iron satura-
tion, making it a malleable factor in the maintenance of iron
homoeostasis. Indeed, elevation of NGAL is well documented in
various instances of HF with strong association to severity of HF
and resulting morbidity and mortality. Furthermore, NGAL is an
inflammatory biomarker that can be induced by endotoxaemia
and myocarditis. It can also contribute to atherosclerosis and in-
sulin resistance. Future work to fully characterize the association
of NGAL with iron overload and deficient cardiomyopathy, and
in particular to understand the precise mechanisms of NGAL ac-
tion contributing to cardiac dysfunction, are needed. These would
both validate the potential use of NGAL as a biomarker and allow
the development of novel therapeutic targets for the treatment of
heart failure.
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Review

Introduction

Iron is an essential trace element required for various critical pro-

cesses in the human body. The majority of the iron is used for eryth-

ropoiesis in the bone marrow, and any remaining iron can be used 

for other functions or stored as ferritin in various organs. Disturbed 

iron homeostasis is associated with various pathological conditions, 

including obesity. In this review, we will summarize the current lit-

erature pertaining to iron overload or deficiency in obesity and dis-

cuss endocrine regulatory mechanisms, with a focus on lipocalin-2 

(Lcn2) (Fig. 1). We also highlight current diagnostics and therapeu-

tics related to altered iron status in clinical settings. 

1. Iron transport

An average adult human contains approximately 3-4 g of iron1, of 

which the single largest component is the hemoglobin in erythro-

cytes. Approximately 90% of iron in the body is recycled by old and 

damaged erythrocyte phagocytosis with release of iron for new red 

blood cells synthesis. A small proportion of iron is lost in urine, feces 

and menstrual blood (1-2 mg/day), and this must be replaced via di-

etary iron intake. The recommended dietary allowance (RDA) for 

iron varies with gender and age, with an average of 8 mg/day re-

quired by an adult male and 18 mg/day and 8 mg/day for premeno-

pausal and postmenopausal women, respectively.1 Dietary iron, 

while coming in many forms, is usually classified as either heme or 

non-heme iron. Animals are the biggest source of heme iron whereas 

non-heme iron encompasses many forms of iron from both animal 

and plant sources. The latter can be better absorbed along with ascor-

bic acid or vitamin C.2 The duodenum is the primary site for iron ab-

sorption, where divalent metal ion transporter 1 (DMT-1), expressed 
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on the apical side of duodenal enterocytes, is responsible for the ab-

sorption of non-heme iron or inorganic iron. Ferric iron (Fe3+) is re-

duced by the adjacent duodenal cytochrome B (DcytB) to ferrous 

iron (Fe2+), which is the substrate of DMT-1 and is internalized in en-

terocytes. On the other hand, heme iron is likely absorbed through 

the transporter heme carrier protein 1 (HCP-1). Ferrous iron in the 

cytoplasm is either stored as ferritin, or transported to the basolateral 

membrane and released to the bloodstream via ferroportin (FPN). 

Hephaestin facilitates the conversion of ferrous iron to its ferric form, 

which is then bound to transferrin (Tf) and transported in circula-

tion. Tf contains two ferric iron binding sites and is approximately 

30% saturated with iron under physiological conditions. The high 

unsaturated apo-Tf confers a high buffering capacity to accommo-

date any increase in plasma iron and prevent build-up of non-trans-

ferrin bound iron (NTBI), which would otherwise promote oxidative 

injury.3 At extracellular pH (~7.5), iron-transferrin has a high affinity 

for transferrin receptor 1 (TfR1). The Tf-TfR1 complex is endocytsed, 

and ferric iron released from transferrin at the endosomal pH (~6.2). 

Ferric iron is reduced by Steap family reductases and transported 

across the endosomal membrane by DMT-1 to reach the ferrous pool 

in the cytoplasm. Ferrous iron can now be stored as ferritin, incorpo-

rated into heme for erythropoiesis, or exported by FPN to circulation 

to repeat the iron-transferrin cycle described. With FPN as the only 

known exporter of inorganic iron in mammalian cells, hepcidin, a 

liver-derived hormone that promotes FPN internalization and lyso-

somal degradation, plays a key role in iron trafficking and regulation.4

2. Iron & obesity 

1) Evidence of an association between obesity and iron levels

The first evidence of an inverse correlation between plasma iron 

and adiposity was reported more than 40 years ago.5 Subsequent 

work has validated this phenomenon, for example a study involving 

321 children and adolescents showed that low iron levels were pres-

ent in 38.8% of obese children, in 12.1% of overweight and only 4.4% 

of those of normal weight children.6 Another study that involved al-

most 10,000 children also reported a higher prevalence of iron defi-

ciency in children with increased BMI, concluding that children who 

were overweight are twice as likely to be iron-deficient than those 

who were not.7 Furthermore, obesity or excessive weight gain during 

pregnancy was found as an independent risk factor for iron deficien-

Fig. 1. An imbalance of iron homeostasis has been observed in obesity. Iron overload (blue box, right) and iron deficiency (ID; blue box, left) have both been reported and 
the latter can be either absolute or functional. Both iron overload and ID have been associated with development of complications which occur in obesity (green box, top). 
Various therapeutic strategies commonly used to correct iron overload or ID and restore normal iron homeostasis are shown (orange boxes). 
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cy in the newborn.8

2) Iron deficiency in obesity

Iron deficiency (ID) is the most common nutritional deficiency 

worldwide and affects more than one-third of the population.9 In 

particular, ID is observed at a high prevalence (between 30% to 50%) 

in patients with heart failure, and this is often associated with poorer 

clinical outcomes and greater risk of death, independent of anemia.10 

There are two distinct types of ID – absolute and functional ID.11,12 

Absolute ID reflects depleted iron stores even when iron homeosta-

sis mechanisms and erythropoiesis often remain intact. Absolute ID 

development in humans can result from inadequate dietary iron in-

take, impaired gastrointestinal absorption/transport, drug interac-

tions and gastrointestinal blood loss.11 In contrast, in functional ID 

iron homeostasis is malfunctional and this renders cells and tissues 

with an inadequate iron supply despite normal whole body iron stor-

age. For example, iron may be trapped inside cells, especially of the 

reticuloendothelial system, and thus be unavailable for cellular me-

tabolism.

Serum ferritin, a biomarker that is used to reflect iron store, was 

found enhanced in obese subjects.13 Yet, ferritin is an acute phase 

protein that is elevated during inflammation that does not corre-

spond to iron store, and it was suggested that correction to inflam-

mation should be made if this parameter was to be used to reflect 

iron deficiency.14 Soluble transferrin receptor (sTfR), on the other 

hand, should be preferably used as it is not an acute-phase reactant 

and is not dynamically affected by the confounding pathologies in 

obesity.15 When iron delivery to target tissues does not meet the met-

abolic demand, expression of TfR increase, leading to a consequent 

increase in circulating sTfR. Thus, sTfR reflects tissue iron demand 

and has been found to be significantly higher in obese subjects.16 

Thus, taking transferrin saturation into account will give a better in-

dication to the type of ID present. In that sense, absolute ID is de-

fined when serum ferritin is lower than 100 μg/L, while functional 

ID is defined as a serum ferritin of 100-299 μg/L accompanied by a 

transferrin saturation less than 20%.12

3) Iron deficiency anemia

ID usually appears before the onset of anemia, yet anemia and ID 

can exist independently.17 As mentioned above, ID is related to iron 

insufficiency in regard to body demand, and can be defined with 

iron related parameters like ferritin and transferrin saturation; ane-

mia, on the other hand, is related to oxygen carrying capacity and is 

defined as a blood hemoglobin level less than 13 mg/dL and 12 mg/

dL in men and women, respectively.18 While ID anemia may be the 

most common form of anemia, there are different forms of anemia, 

such as those related to vitamin deficiency, chronic disease, bone 

marrow disease, or those that are inherited such as hemolytic and 

sickle cell anemia. In general, the main causes of anemia include de-

ficiency in iron, deficient production of erythropoietin (EPO) and 

resistance to endogenous EPO.19 EPO resistance may be initiated via 

the upregulation of proinflammatory cytokines that exert inhibitory 

effects on erythroid progenitor cells; act negatively on EPO receptors 

that result in their defective activation and decrease in numbers and 

elevate hepcidin, thus disrupting iron homeostasis, as well as neocy-

tolysis.19

Several theories have been proposed to explain why ID is associat-

ed with obesity. Firstly, there may be increased consumption of ener-

gy dense but nutrient poor foods with inadequate iron level.6 It was 

found that the diet of severely obese patients was unbalanced, with 

high calorie intake paralleled by insufficient micronutrient intake – 

only 66.2% of the severely obese patients had an adequate intake of 

iron.20 Secondly, obesity inherently translates to increased body mass 

and blood volume, thus a higher iron requirement. The higher iron 

need was not met, despite greater food consumption, indicating 

obese subjects have higher susceptibility to ID.21 Another widely ac-

cepted mechanism is increased hepcidin production as a result of 

chronic inflammation in obesity.22 Indeed the iron abnormality in 

obesity is often characterized by hypoferremia, higher iron body 

store, lower iron bioavailability and high to normal concentration of 

serum ferritin that mimics anemia of chronic inflammation.23 In the 

obese state, cytokines such as IL-624 and leptin25 increase and elicit 

upregulated hepatic gene expression and production of hepcidin, 

such that iron release from macrophages, hepatocytes and entero-

cytes were blocked, resulting in a functional ID. Mice fed with high 

fat diet for 24 weeks were shown to display increased hepcidin ex-

pression in adipose tissue.26 While both liver and adipose hepcidin 

mRNA expressions were increased during obese states, the hepatic 

expression was ~700 times greater than that of the adipose tissue and 

is thought to be primarily responsible for the elevated circulating 

hepcidin levels.27 Moreover, mRNA and protein expression of the 

membrane bound hemojuvelin, which can stimulate hepcidin ex-
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pression through the bone morphogenetic protein (BMP) pathway, 

was found to be high in adipose tissue from obese individuals.28 In-

deed, this was positively correlated with hepcidin expression levels.28 

Obesity has long been viewed as a major contributor to the develop-

ment of insulin insensitivity and type 2 diabetes and although many 

mechanisms have been proposed29, the role of iron may be underes-

timated. Iron was found to interfere with insulin action in the liver, 

such that ferritin levels correlate positively with blood glucose and 

fasting serum insulin30 and negatively with insulin sensitivity.31 Re-

ciprocally, insulin was also shown to cause rapid stimulation of iron 

uptake by fat cells and hepatocytes.32

3. Iron overload 

Iron overload is diagnosed when plasma transferrin saturation is 

greater than 55% and serum ferritin more than 200 μg/L or 300 μg/L 

for women and men, respectively.33 Accumulation of iron in tissues 

may occur via increased iron absorption from the gastrointestinal 

enterocytes (hemochromatosis); excess exogenous iron intake such as 

by dietary supplements, or blood transfusions (hemosiderosis). While 

obesity is primarily associated with ID, it was recently proposed that 

obesity was a potential consequence of increased availability of iron 

supplement and fortification in the last several decades.34 Iron over-

load, without direct evidence as a cause or result of obesity, is associ-

ated to many obesity-related metabolic conditions. For example, iron 

overload was shown to cause insulin deficiency in ob/ob mice of type 

2 diabetes, and upon feeding an iron restricted diet or iron chelator, 

insulin sensitivity and beta cell functions was significantly in-

creased.35 An early initiation of removal of iron through phlebotomy 

in patients with hereditary hemochromatosis, an autosomal disorder 

involving mutation of specific genes involved in iron metabolism that 

leads to increased gastrointestinal absorption, was shown effective in 

ameliorating defective insulin secretion.36

1) Iron and bacterial infection

Besides being essential in maintaining daily metabolic functions, 

iron is also a key regulator of host-pathogen interactions at times of 

infection. Iron is one of the most important macronutrients required 

for microbial growth. Iron acts as the global regulator for many cellu-

lar and metabolic processes in microbes, including DNA synthesis, 

electron transport system, heme formation and oxygen transport.37 

The competition for iron between microbes and the human host is a 

crucial factor for the success of bacterial invasion. Bacteria can ac-

quire iron from the host by either synthesizing high iron affinity 

binding compounds such as siderophores, or directly capturing iron 

from iron binding proteins such as transferrin or ferritin. In defend-

ing the battle over iron, factors such as lipocalin-2 (Lcn2; also called 

siderocalin, 24p3, neutrophil gelatinase associated lipocalin [NGAL]) 

are secreted by the host to sequestrate siderophores and thus limit 

bacterial growth.38 Lcn2 is internalized into bacterial infected cells, a 

process mediated by its putative receptor 24p3R or megalin, where it 

then intercepts bacterial siderophores and trafficks them to extracel-

lular space. Lcn2 helps to supply iron for non-bacteria infected cells of 

the host, the Lcn2:mammalian siderophore-iron complex binds to 

24p3R, and is endocytosed to the intracellular space then releases 

iron.39 Interestingly, an increase in circulating Lcn2 is not only seen in 

acute immune response, but is also regarded as a biomarker for cardi-

ac disease and other features of metabolic syndrome.40,41

4. Endocrine regulation of iron levels in obesity 

Iron homeostasis, especially in obesity, is controlled to a large ex-

tent by the endocrine system. Here we will highlight and discuss the 

importance of Lcn2 and hepcidin in iron regulation.

1) Lipocalin-2 (Lcn2) 

Lipocalins are a diverse family that generally bind small and hy-

drophobic ligands, but can also bind soluble macromolecules and 

specific cell surface receptors.42 Lcn2 is a 25 kDa secretory protein 

predominantly expressed in adipose tissue and plays an important 

role in innate immunity and inflammation, including defense against 

bacterial invasion by sequestering iron, although more widespread 

actions in metabolic diseases are now emerging.41

Of particular importance here, Lcn2 is crucial in maintaining iron 

homeostasis during infectious conditions such as endotoxemia or 

myocarditis. Dysbiosis of the gut microbiota has been found in vari-

ous disease states, including obesity.43 In such cases, gut microbial 

diversity tends to decrease with a relative increase of Gram negative 

bacteria. Gut epithelial integrity is also disrupted, increasing the 

chances of bacteria and bacterial products leakage to the circulation, 

and thus endotoxemia. It has been postulated that increased circu-

lating LPS concentrations are sufficient to dysregulate the inflam-

matory status and initiate the onset of obesity and insulin resis-

tance.44 Indeed, LPS can induce increases in systemic Lcn2 by 150 
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fold within 24 hours.45 Lcn2 deficient mice were shown to have de-

layed LPS-induced hypoferremia in induced sepsis, indicating a role 

for Lcn2 in limiting circulating iron levels by enhancing intracellular 

iron content during inflammatory states. Mice deficient in Lcn2 also 

had exacerbated endotoxin-induced sepsis, increased immune cell 

apoptosis and increased mortality.45 MyD88-dependent signaling is 

required for the induction of Lcn2 and iron sequestration to main-

tain the hypoferric response during endotoxemia.46 Thus, Lcn2 can 

act as an influencer for the development of endotoxemia and derived 

metabolic disease by its effect on LPS. 

As indicated above, elevated Lcn2 levels are associated with obesity 

and insulin resistance. In studies of diabetic patients, it was found that 

serum Lcn2 concentration significantly associated with fasting tri-

glycerides and LPS binding protein, acutely increased after fat admin-

istration and associated with fasting insulin and homeostasis model 

assessment of insulin resistance (HOMA-IR).47 Similarly, serum level 

or adipose tissue Lcn2 content was found to be elevated in overweight 

pregnant women and associate with several insulin resistance mark-

ers including HOMA-IR, fasting plasma insulin and glucose.48 Gene 

and protein expression of Lcn2 increased in visceral adipose tissue of 

obese compared to lean subjects.49 Inversely, weight loss caused a sig-

nificant reduction of circulating Lcn2 in overweight/obese women 

with polycystic ovary syndrome.50

One established mechanism via which Lcn2 leads to obesity in-

duced insulin resistance may be its capacity to stimulate the expres-

sion of 12-lipoxygenase, an enzyme that metabolizes arachidonic 

acid, and TNFα in adipose tissue.51 We propose that Lcn2 can also 

alter iron homeostasis in adipose tissue, particularly in macrophages, 

and that this may contribute to iron overload in adipose tissue. As in-

dicated above, obese adipose tissues are marked by infiltration and 

accumulation of macrophages with a M1, or proinflammatory, phe-

notype. When comparing to the nonpolarized M0 macrophages, M1 

macrophages had repressed ferroportin and induced H-ferritin gene 

expression that promoted iron sequestration in the reticuloendothe-

lial system.52 On the contrary, M2 macrophages that possess an anti-

inflammatory profile had upregulated ferroportin as well as down-

regulated H-ferritin and heme oxygenase that enhanced efficient 

FPN- mediated iron export.52 Moreover, it was shown that in obesity, 

the percentage of adipose tissue macrophages rich in iron was de-

creased due to impaired capacity to handle iron, and this coincided 

with adipocyte iron overload in obese mice.53 Lcn2 can have differ-

ent effects on macrophages depending on the physiological condi-

tion. For example, Lcn2 can amplify M1 polarization in brain mi-

croglial cells54, but can also deactivate macrophages and exacerbate 

bacterial pneumonia.55 To our knowledge, the role of Lcn2 on the 

iron homeostasis of adipose tissue macrophages in obese states has 

not yet been studied. We hypothesize that the elevated Lcn2 in 

chronic inflammatory states hampers iron metabolism in macro-

phages in adipose tissue, and potentially other tissues, and this is as-

sociated with iron-induced insulin resistance.

2) Hepcidin

Hepcidin is a systemic iron-regulatory hormone that is primarily 

produced in liver, but also in other tissues including heart, adipo-

cytes and macrophages.56-58 It functions to maintain a stable iron 

concentration through the degradation of the cellular iron exporter 

– FPN. FPN is found in duodenal enterocyptes and thus increased 

hepcidin will limit dietary iron absorption. Hepcidin is abundantly 

expressed in reticuloenothelial macrophages and is particularly im-

portant in regulating iron concentration in liver, spleen and bone 

barrow. While body iron content and hematopoiesis are the princi-

pal endogenous regulators of hepcidin synthesis59, inflammation 

also acts as a pathological regulator.60 LPS, IL-6 and leptin are also 

direct stimulants of hepcidin secretion.25 Moreover, as mentioned 

earlier, hepcidin can be upregulated by BMP. Increased expression of 

hemojuvelin, a co-receptor of BMP, associated with increased hepci-

din expression in adipocytes in obesity.28 As FNP on adipocytes61 is 

internalized and degraded by hepcidin, the efflux of iron is reduced, 

leading to iron overload in adipocytes.62 Iron overloaded adipocytes 

can induce dysfunctional endocrine regulation, with one important 

example being a reduction in adiponectin expression.61

5. Iron diagnostics and therapeutics

1) Current diagnostics for iron status - Serology

There are several blood tests that reflect the amount of iron in the 

body; ferritin level, iron level, total iron binding capacity (TIBC) and 

transferrin saturation.63 Blood ferritin levels usually are low in pa-

tients with ID anemia and are high in patients with hemochromato-

sis and other conditions that cause an increase in body iron levels. 

Since ferritin can also be elevated in certain infections like viral hep-

atitis and other inflammatory conditions, an elevated ferritin level 

alone is not sufficient to accurately diagnose chronic iron overload.64 
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Serum iron, TIBC and transferrin saturation are often performed 

together instead. TIBC is a measure of the total amount of iron that 

can be carried in serum by transferrin, a protein that carries iron in 

serum from one anatomical location to another. Transferrin satura-

tion value is calculated by dividing serum iron by TIBC, thus reflect-

ing the percentage of the transferrin that is being used to transport 

iron. In healthy individuals the transferrin saturation is between 20 

and 50 percent.65

2) Therapeutics - iron deficiency

ID anemia describes a scenario where iron stores have been de-

pleted and the body is unable to maintain levels of haemoglobin in 

the blood. Too little iron can interfere with these vital functions and 

lead to morbidity and death. ID patients exhibit symptoms of weak-

ness, fatigue, glossitis, stomatitis, Plummer Vinson syndrome, pica 

and restless legs syndrome while extreme cases lead to morbidity 

and mortality.66

Oral iron supplementation is commonly recommended as a front 

line treatment of ID. There are two types of iron supplements; fer-

rous iron is the most efficiently absorbed form and the majority of 

iron supplement pills contain ferrous iron in the forms of ferrous sul-

fate, ferrous fumarate, and ferrous gluconate.67 Absorption requires 

an acidic gastric environment and is therefore limited in patients re-

ceiving acid-suppression therapy. Hence, although oral iron supple-

ments are commonly used, poor absorption and gastrointestinal in-

tolerance in some individuals limit their use.68 Blood transfusion is 

useful in more severely ill patients with chronic ID and Hb less than 

7 g/dL.69,70 However, blood transfusion is not recommended as long-

term therapy due to risks such as infection and iron overload.70 Intra-

venous iron therapy has been adopted in management of patients 

with ID and although animal studies showed a resultant increase in 

indicators of oxidative stress, this has not been observed in clinical 

trials.69 Another option for treatment of anemia is erythropoietin 

stimulating agents (ESAs).71 As an example, meta-analysis of 11 ran-

domized clinical trials, 9 placebo-controlled and 5 double-blinded, 

of a total of 794 patients with anemia and heart failure treated with 

ESAs concluded that there were improvements in functional capacity 

and a reduction in clinical events. However, another study did not 

demonstrate an impact of ESAs on heart failure in anemia.72 Fur-

thermore, ESAs can cause serious side effects, including blood clots, 

and they are now approved only for treating severely ill anemic pa-

tients, such as those with cancer or chronic kidney failure.

3) Therapeutics - iron overload

A common treatment for iron overload in otherwise healthy indi-

viduals consists of iron removal via regularly scheduled phleboto-

mies.12 When first diagnosed, phlebotomies may be performed once a 

week until iron levels can be brought to within normal range. Once 

iron and other markers are within the normal range, phlebotomies 

may be scheduled every other month or every three months depend-

ing upon the patient’s rate of iron loading. Some patients treated with 

phlebotomy are given erythropoietin to maintain erythropoiesis.72 

However, phlebotomies are not recommended for many patients, 

such as those with Hb level <10 g/dL, who may develop symptoms of 

anemia after phlebotomy. Instead, a second approach for removing 

iron, iron chelating therapy, is recommended for these individuals. 

Nevertheless, the decision to initiate chelation therapy depends upon 

several factors, including the patient’s overall health, hematologic val-

ues and tissue iron level determination. There are three main iron 

chelating drugs in clinical use at present and these are mainly used for 

the treatment of transfusional iron overload, namely deferoxamine 

(DF), deferiprone (L1) and deferasirox (DFRA).73 DF binds with iron 

in the bloodstream and enhances its elimination via urine and faeces. 

Typical treatment for chronic iron overload requires subcutaneous 

injection over a period of 8-12 hours daily. The other two, L1 and 

DFRA are newer iron chelating drugs that are licensed for use in pa-

tients receiving regular blood transfusions to treat thalasaemia.74 

Beneficial aspects of iron chelation therapy have been shown, such as 

prevention of complications and early death in iron loading anemia 

in patients with thalassaemia.74
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Abstract: Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known 
regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) 
mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial 
damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of 
these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies 
in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, 
detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-
deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 
from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of 
increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. 
Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of 
cardiac dysfunction.

Keywords: Lipocalin-2, pressure overload, NLRP3 inflammasome, HMGB1, toll-like receptor (TLR)-4

Introduction

Heart failure (HF) incidence is increased in 
patients with obesity and diabetes and inflam-
mation is one underlying mechanism [1]. 
Lipocalin-2 (LCN2) is a proinflammatory adipo-
kine which is elevated in obesity and diabetes 
[2] and clinical studies have also established 
strong positive correlations between circulating 
LCN2 and various types of HF [3]. Thus, LCN2 
has been proposed as an important contributor 
to the pathophysiology of HF and potentially a 
useful biomarker for HF. Neutrophils are a 
major source of LCN2 which is also known  
as neutrophil gelatinase-associated lipocalin 
(NGAL) [4]. Mice lacking LCN2 were first shown 

to exhibit an increased susceptibility to bacteri-
al infections due to lack of antibacterial innate 
immune response [5] and subsequently shown 
to be protected from obesity- and aging-associ-
ated insulin resistance, endothelial dysfunction 
and hypertension [6-9]. However, the precise 
mechanisms via which LCN2 can regulate the 
progression of HF remain to be resolved.

In contrast to the paucity of information on car-
diac effects of LCN2, the pathophysiological 
role of LCN2/NGAL in kidney dysfunction is 
much better understood and measurement of 
LCN2/NGAL has recently become established 
as a common clinical diagnostic test for acute 
kidney damage [10]. Inflammation, including 

http://www.ajtr.org
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NLRP3 (nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-contain-
ing-3) inflammasome activation, and autopha-
gy have recently been established as important 
mechanisms regulating cardiac dysfunction 
[11, 12] although their regulation by LCN2 is 
unclear. We have recently shown that LCN2 
attenuates cardiomyocyte autophagy [13].

We hypothesized that LKO mice would have 
less pressure overload-induced cardiac dys-
function than wild type (WT) and that reduced 
autophagy or elevated NLRP3 inflammasome 
activation may be potential mechanisms of 
action. To examine this, we induced cardiac 
pressure overload (PO) in WT and LCN2 knock-
out mice (LKO) ± restoration of normal circulat-
ing LCN2 levels using adenovirus (L2AV). We 
first examined functional outcomes using echo-
cardiography, then analyzed mechanisms via 
which LCN2 contributed to cardiac dysfunction 
by focusing on fibrosis, autophagy and NLRP3 
inflammasome activation in these animal mod-
els as well as in primary cells isolated from 
heart of WT and NLRP3-deficient mice.

Material and methods 

Animals, induction of pressure overload and 
analysis of cardiac function

Male WT and LKO mice aged eight weeks with 
C57BL/6J background were studied using pro-
tocols approved by the Animal Care Committee 
at York University and the Committee on the 
Use of Live Animals for Teaching and Research 
of the University of Hong Kong and all methods 
were performed in accordance with these 
guidelines and regulations. Pressure overload 
was induced by transverse aortic banding as 
described previously [14]. Briefly, surgery was 
performed on the transverse aortae of mice 
under general anesthesia (ip; xylazine 0.15 

mg/g; ketamine 0.03 mg/g) with a titanium 
microligation clip using banding calipers cali-
brated to a 27-g needle. Sham surgery was per-
formed as outlined above without the place-
ment of a ligation clip. The recombinant adeno-
virus for LCN2 (108 plaque-forming units) was 
injected via tail vein of mice one day prior to 
surgery to achieve normal circulating levels [7] 
and echocardiography was performed using 
the Vevo2100 system (Visual Sonics) [15]. Sera 
were collected every week from tail vein and 
hearts were harvested at the ends points (four 
weeks). 

Cardiac biopsy from human subjects with or 
without heart failure (HF) 

Patients with end-stage dilated cardiomyopa-
thy (DCM) who met institutional criteria for 
LVAD device implantation as a bridge to trans-
plant or as destination therapy at the New York 
Presbyterian-Columbia Campus were included 
in this study and processed as previously 
described [14, 16]. Cardiac biopsy tissue used 
in this study (n=5) were all male, aged 
41.0±21.4 years and HF etiology ischemic or 
diabetic cardiomyopathy. All tissue obtained at 
LVAD implantation represented a decompen-
sated heart failure state. Normal patients were 
subjects with no known cardiopulmonary dis-
ease whose organs were listed but were unable 
to be placed at the time of organ recovery for 
heart transplantation and who consented to 
tissue for research purposes by the New York 
Organ Donor Network were included in this 
study. This study met all institutional guidelines 
of the Institutional Review Board of Columbia 
University and New York State organ donation 
guidelines regarding the use of clinical data, 
ethical treatment of patients adhering to the 
Declaration of Helsinki principles, and procure-
ment of tissue for research. All subjects were 
recruited at the New York Presbyterian Hospital-
Columbia University campus between 2008-
2014, and informed consent was waived for 
use of discarded, de-identified tissue.

Analysis of cardiac function using echocar-
diography

Echocardiography was performed using the 
Vevo2100 system (Visual Sonics, MS550D 
transducer) as previously described [15]. 
Cardiac systolic functions of ejection fraction, 
fractional shortening and strain rate calcula-

Table 1. Genes detected in fibrosis PCR array
Col1a1 Mmp8
Col3a1 Mmp9
Col4a1 Mmp13
Timp1 Mmp14
Timp2 Gapdh
Timp3 Actb
Mmp1a MGDC
Mmp2 PPC
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tion were based on M-mode images of the 
parasternal short-axis view at papillary level. All 
parameters were averaged over at least 3 car-
diac cycles for analysis.

Histological analysis of cardiac structure

Animals were sacrificed and hearts were iso-
lated and perfused with ice-cold cardioplegic 
solution (30 mM KCl in PBS) and stored in 10% 
neutral-buffered formalin 24 hours for further 
processing. Paraffin sections (5 μm) were pre-
pared for trichrome staining and immunostain-
ing using antibodies against HMGB1, desmin, 
vimentin or α-SMA as described previously [17]. 

Immunofluorescent analysis in cultured cells

Rat neonatal fibroblast cells were cultured in 
12-well plates, after treatment with or without 
murine recombinant LCN2 (1 μg/ml) protein for 
48 hours. Cells were fixed in 4% paraformalde-
hyde (PFA) for 15 minutes, quenched with 1% 
glycine for 10 minutes, and permeabilized with 
0.1% Triton X-100 for one minute. After blocking 
with 3% BSA, cells were incubated with murine 
LCN2 (1:200) and HMGB1 primary antibody 

(1:100) overnight at 4°C, and incubated with 
Alexa Fluor 488 goat anti-rabbit IgG (Life 
Technologies) at 1:1000 for one hour at room 
temperature. Images were taken using a 60 
objective with confocal microscope (Olympus, 
BX51).

Transmission electron microscopy (TEM)

TEM was performed as described previously 
[15]. In brief, LV myocardium was cut to 1 
mm3 and fixed with 2.5% glutaraldehyde in 
0.1 M cacodylate buffer (pH 7.4) overnight at 
4°C. After brief washing, the specimens were 
post-fixed in 1% osmium tetroxide, dehydrat-
ed, embedded in epoxy resin, and polymer-
ized overnight at 60°C. Ultra-thin sections 
(100 nm) were cut and post-stained with 
Reynold’s lead citrate and uranyl acetate to 
increase contrast. Sections were viewed and 
photographed using a P FEI CM100 TEM and 
Kodak Megaplus camera. 

Western blot analysis

Heart tissue was snap frozen and then lysed 
in modified RIPA buffer by the Tissue Lyser II 
(Qiagen) for two minutes at full speed. The 
lysates were then centrifuged at full speed for 

Table 2. Sequences of QPCR primers
Gene Name Primer Sequences
Murine Forward 5’CAGAACATCATCCCCTGCATC3’
Gapdh Reverse 5’CTGCTTCACCACCTTCTTGA3’
Murine Forward 5’GGTCACCCATGGCACCATAA3’
Nfκb1 Reverse 5’AGCTGCAGAGCCTTCTCAAG3’
Murine Forward 5’GCCACCTTTTGACAGTGATGAG3’
Il1β Reverse 5’AAGGTCCACGGGAAAGACAC3’
Murine Forward 5’GACACGAGTCCTGGTGACTT3’
Nlrp3 Reverse 5’GTCCACACAGAAAGTTCTCTTAGC3’
Murine Forward 5’AACGCCATGGCTGACAAGA3’
Casp1 Reverse 5’TGATCACATAGGTCCCGTGC3’
Murine Forward 5’CTG CGC TTG CAG AGA TTA AA3’
Tgfβ1 Reverse 5’GAA AGC CCT GTA TTC CGT CT3’
Rat Forward 5’ATGTGCCGGACCTTGGAAG3’
Gapdh Reverse 5’CCTCGGGTTAGCTGAGAGATCA3’
Rat Forward 5’CACTGCTCAGGTCCACTGTC3’
Nfkb1 Reverse 5’CTGTCACTATCCCGGAGTTCA3’
Rat Forward 5’CACCTCTCAAGCAGAGCACAG3’
Il1β Reverse 5’GGGTTCCATGGTGAAGTCAAC3’
Rat Forward 5’CCAGGGCTCTGTTCATTG3’
Nlrp3 Reverse 5’CCTTGGCTTTCACTTCG3’
Rat Forward 5’AGGAGGGAATATGTGGG3’
Casp1 Reverse 5’AACCTTGGGCTTGTCTT3’

10 minutes. Supernatants were harvested and 
quantified by BCA assay. Tissue lysates (30 or 
50 μg) were incubated with Laemmli sample 
buffer at 95°C for 10 minutes and then resolved 
by SDS-PAGE. After transferring to polyvinyli-
denedifluoride (PVDF) membranes, Western 
blotting was performed by incubating with anti-
bodies. The following antibodies were used for 
immunoblot analysis: LC3-II (1:1000), BECLIN-1 
(1:1000), Caspase-1 (1:1000), HMGB1 (1: 
1000), phospho-NF-κB p65 (Ser536) (1:750), 
NF-κB p65 (1:750), GAPDH (1:2000) and β-actin 
(1:2000) from Cell Signaling; p62 (1:1000) 
from BD Transduction Laboratories; LCN2 
(1:2000) from Antibody and Immunoassay 
Services; IL-1β (1:1000) from R&D systems. 
IL-18 (1:1000) from MBL Life science. After 
incubation with secondary antibodies, the imm- 
une complexes were detected with enhanced 
chemiluminescence (ECL) reagents from GE 
Healthcare (Uppsala, Sweden).

Quantitative reverse-transcription polymerase 
chain reaction

The custom fibrosis PCR array was purchased 
from SABiosciences-61 (QIAGEN Inc.). Total 
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RNA was isolated from heart tissues or cultured 
mice and rat fibroblasts using TRIzol® Reagent 
according to the manufacturer’s instructions, 
and purified using the RNeasyMinElute Cleanup 
Kit to attain an A260/A280 ratio between 1.9 
and 2.0. First-strand cDNA, synthesized from 
0.5 μg RNA using the RT2 First Strand kit, was 
used in a custom PCR array comprising of 
96-well plates pre-coated with primers listed in 
table 1. Quantitative real-time PCR was con-
ducted using a Chromo4™ Detection system 
(Bio-Rad Laboratories Canada Ltd., Mississ- 
auga, ON, CA) according to cycling conditions 
outlined by the PCR array manufacturer. Data 
were analyzed using RT2 Profiler PCR Array Data 
Analysis software (Version 3.5; QIAGEN Inc.) 
and normalized to GAPDH mRNA expression. 

For other genes detected listed in the table 2, 
they were analyzed through real-time PCR using 
the following cycling conditions: 95°C/15 min, 
followed by 35 cycles of [95°C/30 sec, 55°C/30 
sec, 72°C/30 sec], then 72°C/10 min. Melting 
curve analysis was used to ensure primer spec-
ificity. Data were then analyzed using the 2-ΔΔCt 
method.

Cultured adult fibroblasts from mice, adult and 
neonatal rat fibroblasts from rats

Mice (male, 8 weeks) or rat heart (Wistar rats 
male, 6 months) was isolated from anesthe-
tized animal and perfused with Ca2+ free  
K-H buffer for 6 minutes and then with 
LiberaseBlendyzme 4 (Roche) contained K-H 

Figure 1. Inflammasome activation is attenuated in LKO mice challenged with PO. (A) IL-1β levels were determined 
by ELISA in serum collected from WT and LKO mice subjected to either sham or PO surgery. (B) qPCR was per-
formed for gene expressions of inflammasome markers (Caspase-1, IL-1β, NLRP3 and NF-κB) in heart tissues col-
lected from WT and LKO mice subjected to either sham or PO surgery. (C, D) Western blotting and densitometric 
quantifications was performed to analyze HMGB1 protein levels in the heart tissues from the above treated mice. 
(E) Immunofluorescence was performed for HMGB1 in heart tissue sections collected from WT and LKO mice sub-
jected to either sham or PO surgery. Protein levels of LCN2 in heart tissue (F), densitometric quantification (F, left 
panel) and LCN2 level in circulation (F, right panel) were determined by Western blotting and ELISA, respectively. (G) 
Western blotting was performed to examine the protein levels of inflammation markers (LCN2, HMGB1, NF-κB and 
Caspase-1) in heart tissue lysates from healthy human subjects (Con) or patients with HF, with quantification shown 
in (H). *, P<0.05 vs. WT Sham or healthy human subjects and, #, vs. LKO PO, n=5-6.



Lipocalin-2 regulates NLRP3 inflammasome

2727	 Am J Transl Res 2017;9(6):2723-2735

buffer for 3 times (10 ml per heart for mice, 20 
ml per heart for rat). The hearts were perfused 
with 5% BSA K-H buffer before mincing. After 
stabilization for 3 hours, fibroblasts were stimu-
lated with LCN2 (1 μg/ml) for 24 hours. Hearts 
were collected from 1- to 2-day-old neonatal rat 
pups, promptly after euthanasia by decapita-
tion, and primary cultures of neonatal rat car-
diomyocytes were performed as described pre-
viously [17]. After stabilization for 24 hours, 
neonatal rat fibroblasts were stimulated with 

LCN2 (1 μg/ml) for 48 hours. Samples were col-
lected to examine the expression levels of 
HMGB1 by western blot analysis and mRNA by 
quantitative RT-PCR. 

Statistical analysis

All results were derived from at least three sets 
of repeated experiments. The statistical calcu-
lations were performed by one-way analysis of 
variance followed by Tukey’s multiple compari-

Figure 2. LCN2 deficiency protects against loss of mitochondrial morphology and autophagy flux disruption induced 
by PO. A: Mitochondria integrity was evaluated using TEM from heart tissue sections of WT and LKO (±L2AV) mice 
that had undergone either sham or pressure overload (PO) surgery. Autophagosomes were indicated by arrows. 
B: Autophagic flux was analyzed by examining the protein expression of P62, LC3-II and BECLIN-1 in heart tissue 
lysates from WT and LKO (±L2AV) mice that have undergone either sham or PO surgery. C: Densitometric quantifica-
tions of western blots in b. D: Autophagic flux was analyzed by examining the protein expression of P62, LC3-II, and 
BECLIN-1 in heart tissue lysates from healthy human subjects (Con) or patients with heart failure (HF). E: Densito-
metric quantifications of western blots in d. *, P<0.05 vs. WT Sham or healthy human subjects and, #, vs. LKO PO, 
n=5-6.
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son post-test using Prism version 5 (Graph- 
PadSoftware; San Diego, CA, USA). Independent 
t tests were performed when there are compar-
isons between two groups. All values are pre-
sented as means ± SD and where arbitrary and 
not absolute value were involved the final graph 
displays fold over control values. For all statisti-
cal comparisons, a P value less than 0.05 was 
accepted to indicate significant differences.

Results

PO-induced inflammasome activation is at-
tenuated in LKO mice

We examined NLRP3 inflammasome in WT and 
LKO (±LCN2 restoration using L2AV) mice four 
weeks after transverse aortic banding surgery. 
Serum interleukin (IL)-1β measurement by 
ELISA demonstrated increased IL-1β in WT  
and LKO+L2AV with PO, although IL-1β was 
increased in LKO, the magnitude of change 
under PO was greatly reduced (Figure 1A). 
Inflammasome-priming, measured via expres-
sion levels of caspase-1, NLPR3, IL-1β and 
nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) showed similar signifi-

cant increases in WT and LKO+L2AV after PO at 
the mRNA level (Figure 1B) [18]. Having shown 
that LCN2 positively regulates inflammasome 
activation in PO, we sought to decipher the 
mechanism of this action. NLRP3 inflamma-
some activation was previously shown to be 
regulated by the release of HMGB1 (high mobil-
ity group box chromosomal protein 1) from 
cells, after HMGB1-BECLIN-1 complex dissocia-
tion, via a mechanism involving toll-like recep-
tor (TLR)4-mediated signaling [19-21]. Both 
Western blotting of heart homogenates (Figure 
1C and 1D) and immunofluorescent detection 
in tissue sections (Figure 1E) demonstrated 
that HMGB1 was significantly decreased in WT 
but not LKO mice after PO. Under PO, restoring 
LCN2 in LKO mice with L2AV decreased cellular 
HMGB1 to amount similar as WT mice (Figure 
1E). After four weeks PO, a significant increase 
of LCN2 in both serum and heart tissue was 
detected in WT mice with PO (Figure 1F). In 
agreement with our mouse data, HMGB1 levels 
were significantly decreased in heart tissues of 
HF patients compared to healthy individuals 
(Figure 1G and 1H). Furthermore, cardiac con-
tent of LCN2, NF-κB and Caspase-1 were all sig-
nificantly increased in HF patients.

Figure 3. Development of PO-induced fibrosis is at-
tenuated in LKO mice. A: Masson’s trichrome staining 
of heart tissue taken from WT and LKO (±L2AV) mice 
four weeks following PO or sham surgery. Cardiomyo-
cytes are stained red, nuclei are stained black, and 
collagen is stained blue. B: Fibrosis PCR array was 
performed using heart tissues. Genes detected in this 
array are shown in Table 1. MMP-1, MMP-8, MMP-9 
are present. C: Fibroblast to myofibroblast differen-
tiation was assessed by co-staining with vimentin, 
α-SMA, and desmin in heart tissue sections from WT 
and LKO (±L2AV) mice that have undergone either 
sham surgery or PO. *, P<0.05 vs. WT Sham and, #, 
vs. LKO PO, n=4.
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LCN2 exacerbates mitochondrial deterioration 
and attenuates autophagic flux in response to 
PO 

Transmission electron microscopy indicated 
LCN2 deficiency greatly attenuated PO-induced 
mitochondria damage in cardiomyocytes, as 
shown by the presence of clear well-structured 
cristae in LKO mice before and after PO (Figure 
2A). This protective effect was partially lost 
with the administration of L2AV (Figure 2A). 
Transmission electron microscopy is a gold-
standard approach for analysis of autophagic 
structures, and our data indicated induction  
of autophagy in mice lacking LCN2 after 
PO-treatment (Figure 2A, arrow), with less 
observed in WT mice. Next, autophagic flux was 
evaluated by examining cardiac protein expres-
sion levels of P62, LC3-II, BECLIN-1. Western 
analysis showed increased protein expression 
of P62 and decreased LC3-II and BECLIN-1, 
suggesting less flux in WT versus LKO mice 
after PO (Figure 2B and 2C). Analysis of cardiac 
biopsy tissue samples obtained from human 
subjects with or without HF indicated increased 
P62 plus decreased LC3-II and BECLIN-1 levels 
(Figure 2D and 2E), indicative of less autopha-
gy when compared with control. It is conceiv-

able that signals such as reactive oxygen spe-
cies or mitochondria DNA released from dam-
aged mitochondria might be responsible for 
priming or activation of NLRP3 inflammasome 
[22, 23], whereas LCN-2 deficiency preserved 
mitochondria morphology and autophagic flux 
under PO.

LCN2 deficiency protects mice from PO-in-
duced development of fibrosis

Fibrosis is an established component of ven-
tricular remodeling in HF patients [14, 24]. Ma- 
sson’s trichrome staining revealed enhanced 
accumulation of collagen after PO in WT and 
LKO+L2AV, but not in LKO mice (Figure 3A). 
Assessing mRNA levels of fibrosis-related ge- 
nes showed matrix metalloproteinases (MMP)-
1, MMP-8 and TGF-β1 increased significantly 
after PO in WT and LKO+L2AV mice but not in 
LKO mice (Figure 3B). MMP-9 levels increased 
after restoring LCN2 in LKO with L2AV under 
both sham, and to a greater extent, PO condi-
tions (Figure 3B). Immunofluorescence staining 
showed that LKO mice were somewhat protect-
ed against PO-induced occurrence of vimentin-
positive fibroblasts (Figure 3C). Administration 
of L2AV to LKO mice negated these protective 

Figure 4. Temporal analysis of car-
diac dysfunction using echocardiog-
raphy after thoracic aorta banding 
or sham surgery. A: Ejection Fraction 
(EF); B: Fractional Shortening (FS); C: 
Circumferential systole strain rate; D: 
Circumferential diastole strain rate; 
E: Circumferential strain change 
percentage. *, P<0.05 vs. WT Sham 
and, #, vs. LKO PO, n=5-7. L2AV, li-
pocalin-2 adenovirus. LKO PO, lipo-
calin-2 knock-out mice with pressure 
overload surgery.
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effects; however, there was much less accumu-
lation of fibroblasts compared to WT mice with 
PO (Figure 3C). Immunostaining for smooth 
muscle actin (SMA) showed that there was no 
interstitial activation of myofibroblast after PO 
in all six groups, as expected from this model of 
mild PO (Figure 3C).

LCN2 deficiency protects mice from PO-in-
duced development of cardiac dysfunction

Cardiac function of WT and LKO (±LCN2 resto-
ration using L2AV) mice was evaluated by echo-
cardiography four weeks after transverse aortic 
banding surgery. Consistent with previous 
reports [9], LKO mice demonstrated a higher 
ejection fraction (EF) and fractional shortening 
(FS) compared to age-matched WT mice that 
showed significant PO-induced cardiac dys-
function (Figure 4A and 4B). This heart protec-
tive effect in LKO mice was abolished by admin-
istration of LCN2 (Figure 4A and 4B) as the 
basal level of EF and ES in LKO mice treated 

with L2AV was similar to WT mice (Figure 4A 
and 4B). Importantly, we validated the effec-
tiveness of adenoviral LCN2 delivery by show- 
ing that circulating LCN2 produced by L2AV 
reached a peak above normal level observed  
in WT mice one week after virus injection 
(Supplementary Figure 1) [7]. An inherent limi-
tation of this approach is that levels gradually 
decline after 2 and 4 weeks yet we did not per-
form a second adenovirus injection to avoid 
confounding effects from immune system acti-
vation and inflammation. As visualized in repre-
sentative short axis images of M-mode and 
speckle tracking echocardiography (Supple- 
mentary Figure 2), ventricular wall constriction 
and both systole (Figure 4C) and diastole 
(Figure 4D) circumferential strain rate in WT 
and LKO+L2AV mice under PO dropped signifi-
cantly four weeks after PO, but were preserved 
in LKO mice (Figure 4E; Supplementary Table 
1). PO induced increased LV mass and the 
response was similar in both genotypes and in 
LKO with LCN2 replenishment (Supplementary 

Figure 5. LCN2 treatment of rat neo-fibroblasts interrupts autophagic flux and induces inflammasome activation by 
releasing HMGB1. Rat neo-fibroblasts were isolated and treated with recombinant LCN2 (1 μg/ml) or control for 48 
hours. Immunofluorescence (A) and Western blotting (B) were performed to examine the localization and protein 
expression levels of HMGB1 fibroblasts and IL-18 and IL-1β in medium. Expression levels of inflammasome markers 
showed in the graph (C) were examined by qPCR. (D) Western blotting was performed to examine the protein levels 
of autophagic markers (LCN2, LC3-II, P62 and BECLIN-1) with quantification shown in (E). (F, G) Co-immunoprecipita-
tion (Co-IP) was performed in neonatal fibroblast cells to evaluate the binding status between BECLIN-1 and HMGB1. 
*, P<0.05, **, P<0.01 vs. corresponding control, n=3.
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Figure 3). In summary, these data indicate a 
detrimental role of LCN2 in the development of 
cardiac dysfunction.

LCN2 acts directly on primary cardiac fibro-
blasts to decrease intracellular HMGB1 levels, 
induce NLRP3 inflammasome activation and 
attenuate autophagy

During pathological conditions, cardiac fibro-
blasts play a crucial role in maintaining normal 
cardiac function by modulating the synthesis 
not only via deposition of extracellular matrix, 
but also upon autocrine and paracrine cell-to-
cell communication [25]. We observed accumu-
lation of fibroblasts after PO model and these 
may play a role in NLRP3 inflammasome com-
plex formation. To test this possibility, we iso-
lated primary cardiac fibroblasts from neonatal 
rats and treated with recombinant LCN2 for 48 
hours. Immunofluorescent staining indicated 
increased LCN2 signal in the cytosol and 
reduced cytosolic HMGB1 levels in cells treated 
with LCN2 (Figure 5A). Western blotting data 
also confirmed that total cellular HMGB1 levels 
were decreased after LCN2 treatment (Figure 
5B, lower). Meanwhile, HMGB1 was detected in 
concentrated conditioned medium after LCN2 
treatment (Figure 5B, top). Protein levels of 

IL-1β and IL-18 were also increased in this 
medium after LCN2 treatment (Figure 5B, top). 
Gene expressions of Caspase-1, IL-1β, NLRP3 
and NF-κB in fibroblasts (Figure 5C) were 
induced by LCN2 treatment. We found that 
LCN2 also had direct effects on protein mark-
ers of autophagy with decreased LC3-II and 
elevated P62 levels and a reduction in BECLIN-1 
(Figure 5D and 5E). HMGB1 also regulates 
autophagy by competing for BECLIN-1 binding 
with Bcl-2. To determine whether the interrup-
tion of autophagy is due to decreased binding 
between HMGB1 and BECLIN-1 after LCN2 tre- 
atment of cells, we immunoprecipitated BEC- 
LIN-1 and observed less association of HMGB1 
after LCN2 treatment (Figure 5F and 5G).

LCN2 induced inflammasome activation is 
attenuated by NLRP3 deficiency and TLR4 
inhibition

Primary cardiac fibroblasts from WT and NLRP3 
knockout (NLRP3-/-) adult mice were treated  
in culture with recombinant LCN2 or NLRP3 
inflammasome activator lipopolysaccharide/
adenosine triphosphate (LPS/ATP) for 24 h 
[26]. LCN2 treatment increased mRNA levels of 
inflammasome related genes Caspase-1 and 
IL-1β in WT mice but not in NLPR3-/- mice 

Figure 6. LCN2 induced inflammasome activation is attenuated by NLRP3 deficiency. Wild type and NLRP3-/- mice 
heart fibroblasts were isolated and treated with recombinant LCN2 (1 μg/ml) or ATP plus LPS for 24 hours. Expres-
sion levels of inflammasome markers, Caspase-1 (A), IL-1β (B), NF-κB (C) and NLRP3 (D) were examined by qPCR. 
Adult rat heart fibroblasts were isolated and treated with recombinant LCN2 (1 μg/ml) or ATP (5 μM) plus LPS (2.5 
μg/ml) for 24 hours in the presence or absence of NLRP3 inhibitor MCC-950 (0.1 μM). (E) Western blotting was per-
formed to examine the protein levels of LCN2 and inflammatory markers in medium (IL-1β) and fibroblasts (HMGB1, 
Caspase-1, pNF-κB, tNF-κB). Caspase-1 (F) and IL-1β (G) mRNA levels were checked by qPCR. *, P<0.05, **, P<0.01 
vs. corresponding control, n=3.
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(Figure 6A-D). When treat-
ed with LCN2 and LPS/ATP 
in the presence or absence 
of NLRP3 inhibitor (MCC-
950) or TLR4 inhibitor (Cli-
095), mRNA levels of Ca- 
spase-1 and IL-1β were sig-
nificantly attenuated (Fig- 
ures 6F, 6G, 7B and 7C). 

Figure 7. LCN2 induced inflammasome activation is attenuated by TLR4 inhibition. Adult rat heart fibroblasts were 
isolated and treated with recombinant LCN2 (1 μg/ml) or ATP (5 μM) plus LPS (2.5 μg/ml) for 24 hours in the pres-
ence or absence of TLR4 inhibitor Cli-095 (1 μg/ml). (A) Western blotting was performed to examine the protein 
levels of LCN2 and inflammatory markers in medium (IL-1β) and fibroblasts (HMGB1, Caspase-1, pNF-κB, tNF-κB). 
Caspase-1 (B) and IL-1β (C) mRNA levels were checked by qPCR. *, P<0.05, **, P<0.01 vs. corresponding control, 
n=3.

Figure 8. Schematic model depicting mechanisms via which LCN2 regulates 
NLRP3 inflammasome. LCN2 disrupts the association of BECLIN-1 and HMGB1, 
one consequence of which is altered autophagic flux (left side). Another is 
HMGB1 release from cells which can then induce an inflammatory response 
by binding to TLR4 receptors (right side). LCN2 also induced mitochondrial 
dysfunction and we propose that consequent increases in ROS or mtDNA may 
contribute to priming and activation of the NLRP3 inflammasome. The end re-
sult of NLRP3 inflammasome activation is production and cleavage of proin-

flammatory cytokines (IL-1 β 
and IL-18) via Caspase-1 acti-
vation. Together these effects 
may dictate cardiac remodel-
ing events such as fibrosis. 
ASC, apoptosis-associated sp- 
eck-like protein; Bcl-2, B-cell 
lymphoma 2; CARD, caspase 
activation and recruitment 
domain. IL-1β, interleukin-1β; 
IL-18, interleukin-18; NF-κB, 
transcription factor nuclear 
factor kappa-light chain-en-
hancer of activated B cells; 
NLRP3, NACHT, LRR and PYD 
domains-containing protein 3; 
TLR-4, toll-like receptor 4.
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MCC-950 and Cli-095 also attenuated the level 
of LCN2 induced IL-1β release into the media, 
as well as Caspase-1 and phospho-NF-κB p65 
(Ser536) content in rat adult fibroblasts 
(Figures 6E and 7A). Consistently, the protein 
expression level of HMGB1 decreased after 
LCN2 treatment, but not LPS/ATP treatment, 
indicating the role of LCN2 in releasing HMGB1 
from the cytosol (Figures 6E and 7A). 

Discussion

Our analysis of the contribution by LCN2 to car-
diac dysfunction, and in particular the discov-
ery of novel mechanisms of LCN2 action has 
wide-ranging diagnostic and therapeutic impli-
cations, not only in heart failure but also other 
conditions such as kidney dysfunction. A princi-
pal novel discovery of this study was that LCN2 
induced NLRP3 inflammasome activation via 
release of the danger-associated molecular 
pattern (DAMP) protein HMGB1 and subse-
quent TLR4-dependent signaling. Our results 
revealed that lack of LCN2 in mice mitigates 
maladaptive fibrotic remodeling and facilitates 
adequate induction of autophagic flux in 
response to PO, in keeping with our previous 
work indicating that LCN2 directly attenuated 
autophagic flux [13]. Thus, we have validated 
the functional consequences of cardiac LCN2 
actions and provided new insight into the 
mechanisms involved (Figure 8).

An important impact of NLRP3 inflammasome 
activation in diabetes and cardiovascular dis-
ease is well documented [11, 27, 28]. Previous 
studies showed that serum LCN2 levels corre-
late positively with various cardiovascular dis-
eases including HF [2]. Basal expression of 
LCN2 in heart tissue is low and we found that 
direct administration of LCN2 accelerated the 
progression of HF [6]. One of the best charac-
terized DAMPs is HMGB1 which promotes 
NLRP3 inflammasome and NF-κB activation 
[29]. Effects of HMGB1 can be mediated via 
several mechanisms, including HMGB1 binding 
to receptor for advanced glycation end prod-
ucts (RAGE) and toll-like receptors TLR2 and 
TLR4 [21, 29]. In astrocytes, the inhibition of 
TLR4, rather than RAGE or TLR2 attenuated 
HMGB1-induced IL-18 production [30]. We 
found decreased intracellular HMGB1 levels in 
rat adult and neonatal fibroblasts treated with 
LCN2, suggesting that LCN2 induces release  
of HMGB1 into the extracellular space by an  
as yet unknown mechanism. Furthermore, we 

found decreased HMGB1 levels in WT and 
LKO+L2AV, but not LKO mice after PO as well 
as in cardiac biopsy samples of human HF 
patients. Our data indicated that NLRP3 inflam-
masome was initiated by LCN2 via the release 
of HMGB1 followed by TLR-4 activation and 
mitochondria damage, thus assembling various 
lines of evidence in the literature into a detailed 
cohesive mechanism of LCN2 action. The 
induction of the NLRP3 inflammasome complex 
and subsequent inflammatory effects are then 
reasonably considered to contribute to cardiac 
dysfunction.

Reciprocal crosstalk between NLRP3 inflam-
masome activation and LCN2 action was sug-
gested by studies showing that stimulation of 
TLR4 induces the formation of the inflamma-
some complex and production of LCN2 [31]. 
Many studies have now indicated that the 
degree of autophagy changes in the failing 
heart although the functional significance is 
still contentious [32]. Disruption of autophagy 
by cardiac-specific knockdown of Atg5 in mice 
leads to cardiomyopathy [33]. We believe that 
LCN2 is an important suppressor of cardiac 
autophagy and have recently shown reduced 
autophagic flux in cardiomyoblast cells treated 
with LCN2 [13]. Our current study provides evi-
dence that the increase in cardiac autophagy 
normally seen in response to PO, and which is 
generally regarded as a beneficial adaptive 
response, is enhanced in LKO mice and attenu-
ated by adenoviral delivery of LCN2 to these 
mice. Together, these data indicate that LCN2 
acts to suppress cardiac autophagic flux and 
this likely contributes to cardiac dysfunction. 
Interestingly, sustained autophagy upon trans-
genic Atg7 overexpression in mice decreased 
cardiac fibrosis and dysfunction [34]. We 
showed that LKO mice were somewhat protect-
ed against PO-induced induction of vimentin-
positive fibroblasts and fibrosis, while adminis-
tration of L2AV to LKO mice negated these pro-
tective effects. In addition to the classic role of 
extracellular matrix regulation, MMP-9 activity 
can also contribute to inflammation in the fail-
ing heart via activation of inflammatory cyto-
kines such as IL-1β, IL-8 and tumor necrosis 
factor alpha (TNF-α) [35].

In conclusion, our study confirms the detrimen-
tal role of LCN2 in development of cardiac dys-
function and provides new mechanistic insight 
on mechanisms of LCN2 action. Indeed, the 
effects which we have observed in this study 
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could well be at least in part mediated via sys-
temic effects of LCN2 in other tissues which 
causes crosstalk with the heart. A principal 
novel discovery of this study was that LCN2 
induced NLRP3 inflammasome activation via 
release of the danger-associated molecular 
pattern (DAMP) protein HMGB1 and subse-
quent TLR4-dependent signaling. This study 
also provided further evidence that LCN2 acts 
to suppress stress-induced autophagic flux. 
Our focus was on the heart yet this data has 
potentially wide-ranging diagnostic and thera-
peutic implications, since the physiological sig-
nificance of LCN2, also commonly referred to 
as NGAL, is perhaps most well established in 
kidney. Nevertheless, potential for suppressing 
neutrophil-derived LCN2-mediated inflamma-
tion must be balances by potential adverse 
effects of over-suppression due to the benefi-
cial role of neutrophils in cardiac repair by 
polarizing macrophages towards a reparative 
phenotype [36]. This work will also likely stimu-
late interest in new avenues of research on the 
regulation of NLRP3 inflammasome, autophagy 
and fibrosis by LCN2 in other target tissues. In 
summary, we have characterized the cardiac 
functional consequences of LCN2 deletion, 
with or without readministration, in mice and 
provided new insight into the mechanisms 
involved.
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Supplementary Figure 1. Sera were collected in both 8- and 12-weeks-old WT mice and LKO mice with L2AV restora-
tion for 1, 2 and 4 weeks. Sera LCN2 were evaluated by Elisa. n=3-5.
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Supplementary Figure 2. Representative M-mode images of short-axis view of LV and representative images of 
circumferential strain rate during 5 cardiac cycles. 

Supplementary Table 1. Analysis of cardiac parameters of mice heart four weeks after thoracic aorta 
banding surgery

WT SHAM WT PO LKO SHAM LKO PO LKO+L2AV SHAM LKO+L2AV PO
Cardiac output (ml/min) 21.12±3.16 21.14±4.24 21.98±3.97 22.26±6.79 20.83±3.14 17.35±3.20*
LVEDD (mm) 3.21±0.31 3.71±0.39* 3.23±0.32 3.66±0.32 3.51±0.29 3.87±0.31*

LVESD (mm) 1.86±0.25 2.42±0.29* 1.70±0.26 2.22±0.35 2.04±0.24 2.68±0.27*

LVEDV (μl) 42.23±9.77 59.25±14.35* 42.63±10.28 57.34±11.03* 51.96±10.98 65.72±12.56*

LVESV (μl) 11.22±3.75 23.15±4.83* 8.78±3.42 17.36±6.71* 13.88±4.20 27.90±11.56*,#

LV mass (mg) 89.03±17.01 117.85±6.72* 94.05±32.04 121.99±4.62* 88.99±18.50 114.02±8.77*

StrokeVolume (μl) 31.00±6.57 38.57±8.45* 33.85±6.86 39.96±7.51* 38.07±6.94* 37.80±3.10*
Left ventricular end-systolic diameter (LVESD); Left ventricular end-diastolic diameter (LVEDD); Left ventricular end-systolic volume (LVESV); Left 
ventricular end-systolic volume (LVEDV). *, P<0.05 vs. corresponding WT shamand, #, vs. LKO PO, n=5-7.
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Supplementary Figure 3. Protein level of ANP (A, 
B) and gene expression level of ANP, BNP (C) were 
checked from heart tissues collected from each 
group. (D, E) WGA staining were performed to 
checked the cardiomyocytes remodeling in heart tis-
sue sections collected from WT and LKO mice chal-
lenged with pressure overload. *, P<0.05 vs. corre-
sponding WT sham, n=4.
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Appendix E 

COPYRIGHT PERMISSION 

Copyright Permission to reproduce figure 1.2 & 1.3 
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Copyright Permission to reproduce figure 1.4  
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Copyright Permission to reproduce figure 1.5 & 1.6  
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