

STUDY ON PHOTOCATALYTIC PERFORMANCE OF RUTILE PHASED TiO₂ MICRO SIZE RODS/FLOWERS FILM TOWARDS METHYL ORANGE DEGRADATION

NOOR KAMALIA BINTI ABD HAMED

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

STUDY ON PHOTOCATALYTIC PERFORMANCE OF RUTILE PHASED TiO₂ MICRO SIZE RODS/FLOWERS FILM TOWARDS METHYL ORANGE DEGRADATION

NOOR KAMALIA BINTI ABD HAMED

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master in Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

2017

Special dedication to My...

Beloved husband; Syaiful Ariff bin Amar@Omar

Son and daughter; Hazim Annas and Iman Ryhana

Mom and mother in-law

Supportive families

ACKNOWLEDGEMENT

I would like to express my modest thanks to ALLAH S.W.T for this wonderful journey in completing this thesis. A lot of beautiful experiences and priceless knowledge were gained during this journey.

I wish to express sincere appreciation to my supervisor, Dr Mohd Khairul bin Ahmad, my co-supervisor, Dr Rafidah bin Hamdan, and special thanks to Dr Hanis for their guidance throughout my research.

Special thanks are given to Microeletronics & Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia (UTHM) for allowing me to use FESEM, XRD, EDX, UV-vis and providing me with technical support whenever needed. I would also like to acknowledge all MiNT-SRC technicians, my friends, Mrs. Faezahana, Ms. Isrihetty and final year students for their kindness in helping me in my research.

Finally, I also like to express my heartfelt thanks to everybody who are involved direct or indirectly in helping me to complete my thesis.

ABSTRACT

Pure rutile titanium dioxide (TiO₂) film was fabricated at low temperature of 150° C by hydrothermal method. TiO₂ film was developed on Fluorine doped tin oxide (FTO) by using titanium butoxide (TBOT) as a precursor, hydrochloric acid (HCl) and deionized (DI) water. The surface morphology of rutile phased TiO₂ films were studied by Field Emission Scanning Electron Microscopy (FESEM). X-ray Diffraction (XRD) was used to analyze the structural property of the films. Energydispersive spectroscopy (EDX) was used to verify the elemental property of the films. The photocatalytic degradation of methyl orange (MO) was observed by using UV-vis spectroscopy. The photocatalytic analysis was conducted to compare the ability of rutile phased TiO₂ film and P25 film (commercial TiO₂). The pH solution was varied from pH 3 to 10 to study the favorable pH of TiO₂ film. The MO concentration was varied from 5 to 15 ppm to find the limited reaction of TiO₂ film. The optimum amount of HCl concentration was 15.88 mol/L while the optimum amount of TiO₂ loading was 0.123 mol/L. The optimize reaction time was obtained at 10 hours. No degradation was observed after 10 hours. The result shows, 0.123 mol/L TBOT concentration of 1225 mm² has the highest degradation of MO. The degradation was up to 65.6 % while P25 film was 8.07 % only. MO degradation became insignificant at high concentration. From the experiments, it was found that the rutile phased TiO_2 has the higher photocatalytic activity in lower MO concentration and favorable in acidic environment.

ABSTRAK

Fasa rutil filem nipis asli titanium dioksida (TiO_2) telah dihasilkan pada suhu rendah 150°C dengan kaedah hidroterma. Filem nipis TiO₂ telah dibangunkan pada florin atas didopkan timah oksida (FTO) dengan menggunakan titanium butoxide (TBOT) sebagai pelopor, asid hidroklorik (HCl) dan air ternyahion (DI). Permukaan morfologi fasa rutil filem nipis TiO₂ telah dikaji oleh Pancaran Medan Mikroskop imbasan Elektron (FESEM). Serakan sinar-X (XRD) digunakan untuk menganalisis ciri struktur filem nipis. Tenaga serakan spektroskopi (EDX) telah digunakan untuk mengesahkan unsur pada filem. Kemusnahan foto pemangkin metil jingga (MO) diperhatikan dengan menggunakan UV-vis spektrofotometer. Analisis foto pemangkin dijalankan untuk membandingkan keupayaan fasa rutil filem nipis TiO_2 dan filem nipis P25 (TiO₂ komersial). Larutan pH diubah daripada pH 3 hingga pH 10 untuk mencari pH yang terbaik untuk filem TiO₂. Kepekatan MO diubah dari 5 ppm hingga 15 ppm untuk mencari reaksi terhad untuk filem TiO₂. Jumlah optimum HCl adalah 15.88 mol/L manakala jumlah optimum TiO₂ adalah pada 0.123 mol/L. Masa tindak balas terbaik telah diperolehi pada 10 jam. Tiada penurunan diperhatikan selepas 10 jam. Hasil kajian menunjukkan 0.123 mol/L isipadu TBOT 1225 mm² mempunyai penurunan MO tertinggi. Penurunan adalah sehingga 65.6% manakala penurunan filem nipis P25 adalah 8.07% sahaja. Penurunan MO menjadi tidak penting pada kepekatan yang tinggi. Dari eksperimen, didapati bahawa fasa rutil TiO₂ mempunyai aktiviti foto pemangkin yang lebih tinggi dalam kepekatan MO yang lebih rendah dan positif pada persekitaran berasid.

TABLE OF CONTENTS

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
	LIST OF SYMBOLS AND ABBREVIATIONS	xiii
	LIST OF APPENDICES	xiv
	LIST OF PUBLICATIONS	XV
	LIST OF AWARDS	xvii
CHAPTER 1	INTRODUCTION	1
	1.1 Background of study	1

1.1	Background of study	1
1.2	Problem statements	3
1.3	Research objectives	4
1.4	Research scope	4

CHAPTER 2 LITERATURE REVIEW		
2.1 Titanium dioxide nanostructured	5	
2.2 Different metod for the preparation of na	nostucture	
TiO ₂ film	8	
2.2.1 Spray pyrolysis deposition metho	od 8	
2.2.2 Sol-gel method	9	
2.2.3 Hydrothermal method	9	
2.3 Photocatalysis	11	
2.3.1 Photocatalytic activity of TiO_2	13	
2.4 Immobilization of photocatalyst	15	
2.5 Dyes	16	
2.6 Working principles of devices used for c	haracterization	
2.6.1 XRD	19	
2.6.2 FESEM	20	
2.6.3 EDX	21	
2.6.4 UV-Vis Spectrophotometer	22	
2.7 Application of TiO_2	23	
CHAPTER 3 METHODOLOGY	24	
3.1 Overview of the experimental process	24	
3.1.1 Variation of experimental parame	eters 26	
3.2 Substrate Cleaning	26	
3.3 Fabrication of TiO ₂	27	
3.3.1 Effect of HCl concentration	27	
3.3.2 Effect of TiO_2 loading	28	
3.4 Characterization of TiO_2	30	
3.5 Photocatalytic analysis	30	
CHAPTER 4 RESULTS AND DISCUSSION	35	
4.1 Effect of HCl concentration	35	
4.1.1 Surface morphology	35	
	20	

	4.2	Effect of TiO ₂ surface area		38	
		4.2.1	250 mm^2	TiO ₂ film surface area	38
			4.2.1.1	Elemental property	41
			4.2.1.2	Surface morphology	41
			4.2.1.3	Structural property	42
		4.2.2	1225 mm	² TiO ₂ film surface area	43
			4.2.2.1	Elemental property	44
			4.2.2.2	Surface morphology	45
			4.2.2.3	Structural property	48
	4.3	Photoc	atalytic an	alysis	49
		4.3.1	Effect of	MO concentration	52
		4.3.2	Effect of	changing pH	53
CHAPTER 5	CONC	LUSIC	ONS AND	FUTURE WORKS	55
	5.1	Conclu	sions		55
	5.2	Future	works		57
	REFE	RENCI	ES		58
	APPE	NDIX			65
	VITAI	E			66

LIST OF TABLES

2.1	The summarized of homogenous and heterogenous		
	photocatalysis	12	
2.2	List of Dyes	17	
3.1	Variation of experimental value	26	
3.2	The conversion of volume to concentration parameters		
	of HCl	28	
3.3	The conversion of volume to concentration parameters		
	of TBOT	29	
3.4	The summary of absorbance value of different Mo		
	concentration at 465 nm	32	
4.1	The summary of different morphology of TiO_2 by varyi	ng	
	the HCl concentration	36	
4.2	The summary of degradation for various TiO_2 surface		
	area	50	
4.3	The summary of degradation for various MO		
	concentration	53	
4.4	The summary of degradation for various pH	54	

LIST OF FIGURES

2.1	Crystal structure of (A) Anatase (B) Rutile and	
	(C) Brookite [20]	6
2.2	Valence band and conduction band for metal	
	semiconductor and insulator [21]	7
2.3	A typical spray deposition setup [23]	8
2.4	Autoclave for hydrothermal system in the oven	10
2.5	The growth mechanism of rutile phased TiO_2 by	
	hydrothermal method	11
2.6	The mechanism of photocatalytic activity of TiO_2	
	(reproduced image)	14
2.7	XRD machine	19
2.8	FESEM machine	20
2.9	UV-Vis spectrophotometer	22
3.1	Overview of the experimental process	25
3.2	Substrate cleaning process	27
3.3	(a) Hydrochloric acid (b) titanium butoxide (c) FTO	
	glass used as substrates place	29
3.4	The absorbance value of different MO concentration	32
3.5	The graph of absorbance against concentration	32
3.6	The apparatus used in the experiment (a) MO,	
	(b) cuvette, and (c) UV lamp	33
3.7	The experimental setup for photocatalytic degradation	
	of MO	34
4.1	FESEM result for the different morphologies by varying	g
	the HCl concentration at X10K (a) 20 ml, (b) 10.52 mo	1/L,
	(c) 13.58 mol/L, (d) 15.88 mol/L, (e) 17.69 mol/L and	
	(f) 19.13 mol/L	37

4.2	FESEM result shows for cross sectional images of different		
	concentration (a) 15.88 mol/L (b) 17.69 mol/L[73]	38	
4.3	XRD pattern for varying the HCl concentration	39	
4.4	EDX spectrum for 250 mm ² FTO size (a) 0.036 mol/L		
	(b) 0.054 mol/L	41	
4.5	FESEM images for 250 mm^2 FTO size (a) 0.054 mol/L (b)	cross	
	sectional 0.054 mol/L (c) 0.036 mol/L (d) cross sectional 0	.036	
	mol/L	42	
4.6	XRD pattern for different TBOT concentration	43	
4.7	EDX spectrum for 1225 mm2 FTO substrate size (a) 0.089		
	mol/L (b) 0.123 mol/L (c) 0.173 mol/L (d) 0.205 mol/L		
	(e) P25	44	
4.8	FESEM images for the different TBOT concentration of 1	225	
	mm^2 , surface morphology : (a) 0.089 mol/L , (b) 0.123 mol/L	l/L	
	(c) 0.173 mol/L (d) 0.205 mol/L, cross sectional : (e)0.089		
	mol/L , (f) 0.123 mol/L (g) 0.173 mol/L (h) 0.205 mol/L	46	
4.9	FESEM images for P25 (a) surface morphology and (b) cro	DSS	
	section	47	
4.10	XRD pattern for different TBOT concentration for		
	(1225 mm2) FTO size and P25 film	48	
4.11	The percentage degradation for various TiO ₂ loading		
	and P25 against time irradiation under UV light	49	
4.12	The degradation of MO for various concentration	52	
4.13	The degradation of MO for various pH	51	

LIST OF SYMBOLS AND ABBREVIATIONS

CB	-	Conduction band
CdS	-	Cadmium sulfide
CeO ₂	-	Cerium oxide
Cr_2O_3	-	Chromium oxide
CuO	-	Copper Oxide
DI water	-	Deionized water
XRD	-	Dispersion X-ray
DSSC	-	Dye sensitized solar cells
Fe ³⁺	-	Ferric
FESEM	-	Field emission scanning electron microscope
FTO	-	Fluorine doped tin oxide
HCl	-	Hydrochloric acid
H_2O_2	-	Hydrogen peroxide
InO ₂	-	Indium oxide
МО	-	Methyl orange
mm	-	Milimeter
ml	-	Milliliter
O ₃	-	Ozonation
POME	-	Palm oil Mill Effluent
ppm	-	Parts per million
pН	-	Potential of hydrogen
SPD	-	Spray pyrolysis deposition
SnO_2	-	Tin oxide
TBOT	-	Titanium butoxide
TiO ₂	-	Titanium dioxide
WO ₃	-	Tungsten trioxide
UV	-	Ultra violet

UTHM	-	Universiti Tun Hussien Onn Malaysia
VB	-	Valence band
V_2O_5	-	Vanadium oxide
ZnO	-	zinc oxide

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Table A.1: Gantt Chart of Research Activities	60	

LIST OF PUBLICATIONS

Journal / Proceedings:

- (a) Noor Kamalia Abd Hamed, Nafarizal Nayan, Mohd Khairul Ahmad, Noor Sakinah Khalid, Fatin Izyani Mohd Fazli, Muhammad Luqman Mohd Napi. "Influence of Hydrochloric Acid Concentration on Titanium Dioxide (TiO₂) Film by Using Hydrothermal Method."Conference on Nano-& Biosource Technology 2015 (NBT 2015), UKM Bangi, Selangor, 28-29 February 2015, concentration 45, pp. 1669-1673, Sains Malaysiana.
- Noor Kamalia Abd Hamed, Nur Ain Adam, Mohd Khairul Ahmad.
 "Effects of Annealing Temperature of TiO₂ Film Deposited by Spray Pyrolysis Deposition Method for Dye-Sensitized Solar Cell (DSSC) Application", Proceeding of International Integrated Engineering Summit (IIES 2014), UTHM, Batu Pahat, Johor, 1-4 December 2014, Advanced Materials Research Concentration 773-774, pp. 652-656, 2015, Trans Tech Publications, Switzerland.
- (c) Noor Kamalia Abd Hamed, Rizal Mahat, Noor Sakinah Khalid, Fatin Izyani Mohd Fazli, Muhammad Luqman Mohd Napi, Salina Mohammad Mokhtar, Ng Kim Seng, Soon Chin Fhong, Nafarizal Nayan, A.B. Suriani, Mohd Khairul Ahmad. "Fabrication Of Cobalt Doped Tin Oxide Film For Dye-Sensitized Solar Cell Using Spray Pyrolysis Deposition Method", Proceeding of Malaysian Technical Universities Conferences on Engineering and Technology (MUCET 2015), KSL Hotel, Johor, 11-13 October 2015, (pending publication in ARPN Journal of Engineering and Applied Sciences with Scopus indexed).

- (e) Noor Sakinah Khalid, Fatin Izyani Mohd Fazli, Noor Kamalia Abd Hamed, Muhammad Luqman Mohd Napi, Chin Fhong Soon, Mohd Khairul Ahmad. "Biocompatibility of TiO₂ Nanorods and Nanoparticles on Hela Cells." Proceeding of Conference on Nano-& Biosource Technology 2015 (NBT 2015), UKM Bangi, Selangor, 28-29 February 2015 (pending publication in Sains Malaysiana).
- (g) Fatin Izyani Mohd Fazli, Nafarizal Nayan, Mohd Khairul Ahmad, Noor Sakinah Khalid, Noor Kamalia Abd Hamed, Muhammad Luqman Mohd Napi. "Effect of Annealing Temperature on TiO₂ Film Prepared by Spray Pyrolysis Deposition Method." Proceeding of Conference on Nano-& Biosource Technology 2015 (NBT 2015), UKM Bangi, Selangor, 28-29 February 2015 (pending publication Sains Malaysiana).
- (h) Noor Sakinah Khalid, Indah Fitriani Hamid, Noor Kamalia Abd Hamed, Fatin Izyani Mohd Fazli, Soon Chin Fhong, Mohd Khairul Ahmad.
 "Application of TiO₂ Nanostructure Using Hydrothermal Method For Waste Water Treatment." Proceeding of International Conference on Electrical and Electronic Engineering 2015 (IC3E2015), Equatorial Hotel, Melaka, 10-11 August 2015 (pending publication in ARPN Journal of Engineering and Applied Sciences with Scopus indexed).

LIST OF AWARDS

(i) Silver Medal in Research and Innovation Festival 2014 (R&I Fest UTHM)

Noor Kamalia Abd Hamed, Wan Suhaimizan Wan Zaki, Mohd Khairul Ahmad. "Optimization of Rutile-phased TiO₂ Nanorods/nanoflowers film for Palm Oil Mill Effluent (POME) Treatment."

CHAPTER 1

INTRODUCTION

1.1 Background of study

Fabrication of nanostructured titanium dioxide (TiO₂) received great attention to many researchers due to their excellent potential in many applications. TiO₂ is widely used for a variety of application for example photo-catalyst, gas sensor, optical filter, antireflection and dye-sensitized solar cell (DSSC) [1]. In addition, TiO₂ with nanostructure provide more surface area and has a low recombination rate of electron-hole pair compared to nanoparticle TiO₂ [2]. Numerous fabrication techniques such as sol-gel [3], DC magnetron sputtering [4], spin-coating [5], spray pyrolysis deposition (SPD) method [6] and hydrothermal method [7] can be used to fabricate TiO₂ nanostructure. However, hydrothermal method shows a great ability to produce a homogenous film with a cost effective method.

TiO₂ exists in three minerals form which are brookite, anatase and rutile [1]. Anatase and rutile phase are most studied compared to brookite phase. This is because brookite has problems in preparing pure nanocyrstalline forms. Anatase is widely used as a catalyst in photocatalytic. However, rutile has a stable phase and has a smaller band gap than anatase phase. In some circumstances, rutile was discovered to be more active for photocatalytic activity than anatase [8]. First discovery of photocatalysis was the "Honda-Fujishima Effect" first described by Fujishima and Honda in 1972 [9]. Fujishima et al. discovered TiO₂ is an excellent photocatalyst material for environmental purification. They found TiO₂ could use light irradiation in breaking water molecules to hydrogen and oxygen gas.

Recently, nanotechnology of TiO_2 is a promising technology for waste water treatment. In order to overcome the increasing pollution, waste remediation and pollution control technology are on demand. An ideal waste water treatment process

should offer cost effective product and the process does not leave any hazardous residues. TiO_2 is widely known as a low cost, chemically stable and has large redox potential with respect to water [10].

These past two decades, photocatalysis process has been found as one of the most effective green technology for waste water treatment by removing the organic contaminants [11]. Photocatalytic degradation is a process where the ultra violet (UV) light will degrade the organic contaminant in water in the present of TiO_2 catalyst. The formation of highly oxidizing hydroxyl and superoxide radicals from the photocatalytic activity may oxidize and destroy organic pollutant. Generally, photocatalytic process was conducted in slurry system. However, several problems had risen by using slurry system which were the post separation between powder and treated water after treatment process, the powder became aggregate when applied at high concentration and the powder form is not suitable at continuous flow system [12]. The immobilization of the catalyst such as film gives outstanding advantages to the post separation in photocatalytic activity and overcome the difficulties. Therefore, photocatalytic activity of flowerlike rutile-phased titanium dioxide film was studied for degradation of methyl orange (MO) because it is a dominant practice in industrial waste water treatment.

The awareness on environmental issues related to the treatment of water pollutant has increased as the public become more affluent. Therefore, the regulations concerning the industrial effluent have been restricted towards the environment for the sake of future generations.

In this study, low temperature hydrothermal system was approached to fabricate rutile TiO_2 film on fluorine doped tin oxide (FTO) substrate. The temperature is set at 150°C. This study was the first report about the rutile film for photocatalytic application for MO degradation. The rods and the flowers structure of rutile TiO_2 film show an excellent photocatalytic activity on photodegradation of methyl orange (MO) under UV light irradiation. The rutile TiO_2 thin was characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and UV-Vis spectroscopy. This study serves to find the most favorable pH value and concentration of MO to achieve the optimum degradation by rutile TiO_2 film.

1.2 Problem statements

In this 21st century, the world is facing a severe environmental problem. The rapid development in science and technology lead many industries for examples chemical, textile, food and etc. producing polluted effluent and contaminate the natural water resources. The contaminated drinking water sources with the present of harmful organic substances are hazardous to health. Malaysia is one of the countries who faces serious water pollution [13]. Water is the most important thing to the living creatures and industrial development. The increasing of the population leads to the increasing in demand of water supply and safe water. The water pollution can cause inadequate supply of clean water to all users and future generation.

The conventional water treatment process cannot remove all the contaminants easily. There are varieties of conventional method such as physical, chemical and biological methods are used for waste water treatment. However, these conventional methods are inefficient enough to destroy the contaminants completely. Recently, numerous new technologies in waste water treatment have been invented. One of the new technologies are the use of photocatalytic effect of semiconductor metal oxide. Semiconductor metal oxide has shown a good performance of photocatalytic activity for environmental application. Normally, the photodegradation of organic compound were conducted in colloidal and powder catalyst suspension. The photocatalytic activity of powder catalyst shows a strong oxidative power. For example, P25 is a commercial powder TiO_2 which is widely used in the industries. However, the powder catalyst faced several practical problems which are separation of the catalyst from the suspension after the reaction is difficult, the suspension particle tend to aggregate especially when they are present at high concentration and particle suspension are not easily applicable to continuous flow system [14].

Thus, the preparing of rutile phased TiO_2 micro size rods/flowers film on FTO substrate may replace commercial P25 powder catalyst in photodegradation of waste water.

1.3 Objectives of the study

In this research, several objectives have been considered to make this research done successfully. The objectives are:

- 1) To grow a rutile phased TiO_2 micro size rods/flowers film using hydrothermal method.
- To determine the effect of HCl concentration on rutile phased TiO₂ micro size rods/flowers film in morphology and structural property.
- 3) To determine the effect of surface area on rutile phased TiO₂ micro size rods/flowers film in elemental, morphology, structural and photocatalytic property.
- 4) To compare the photodegradation of rutile phased TiO_2 micro size rods/flowers film with P25 film.
- To investigate the limitation of rutile phased TiO₂ micro size rods/flowers film on different MO concentration and pH.

1.4 Research scope

To achieve the objectives, the following scopes were investigated:

- The TiO₂ photocatalyst is fabricated by using hydrothermal method. The experiment was conducted under different amount of HCl concentration and different amount of TiO₂ surface area.
- The TiO_2 surface area was divided into two areas which is 250 and 1225 mm².
- The fabricated TiO₂ were characterized by using FESEM, EDX, XRD and Uv-Vis spectrophotometer to investigate the morphology, elemental, structural and photodegradation properties.
- The photodegradation activity of fabricated TiO₂ was investigated by degradation of MO by using UV-Vis spectrophotometer with different pH value (3-10) and different MO concentration (5-15 ppm).

CHAPTER 2

LITERATURE REVIEW

2.1 Titanium dioxide nanostructured

Titanium dioxide also known as TiO_2 is a semiconductor material widely used for a variety of application for examples photo-catalyst, gas sensor, optical filter, antireflection and dye-sensitized solar cell (DSSC) [7]. Titanium dioxide is known as a crucial material as it is extensively used as pigment in paints and coating materials in optical films. This is due to its high transparency and high refractive index and also its chemical durability in the visible and near infrared (IR) region [15]. The properties of TiO_2 like high stability, low cost and non-toxicity make TiO_2 widely used in many other fields [16]. Titanium dioxide films have useful electrical and optical properties and excellent transmittance of visible light [11].

Titanium dioxide occurs in nature as minerals rutile (tetragonal), anatase (tetragonal) and brookite (orthorhombic) [17]. Figure 2.1 shows the crystal structure of anatase, rutile and brookite. Generally, brookite phase is only stable at very low temperature and not so useful for many applications. Anatase and rutile belong to different space groups but both have tetragonal crystal lattice.

Rutile phase is more stable in high temperature region whereas anatase and brookite phases are metastable and they can transform into rutile phase when they are prepared at high temperature [18]. Each crystalline has a different physical properties such as surface state, band gap and etc. The energy gap between valence band and conduction band is band gap [19]. The band gap of TiO₂ is different between the phased. Rutile has a lower band gap compared to anatase phased. The values are 3.2 eV and 3.0 eV for anatase and rutile respectively [15-19]. The electrons must have equal or more energy than band gap energy to excite from the valence band (VB) to the conduction band (CB) for photocatalytic process. Figure 2.1 shows is the illustration of band gap energy of metal, semiconductor and metal.

Figure 2.1: Crystal structure of (A) Anatase (B) Rutile (c) Brookite [20]

Even though the band gap energy of anatase is higher than rutile, many researchers claimed anatase phased has better response with ultraviolet photons used for photocatalysis [17]. Different opinion from Yawin wang. He claimed that rutile phased has a thermodynamically stable phase and has a smaller band gap than anatase phase [8].

Many reports have been reported on the nanostructures of TiO_2 in different area. There are varieties of TiO_2 nanostructured such as nanoparticles, nanorods, nanobelts, nanowires and nanoflowers. The structure and optical properties are depending to the application. Dense structure film is suitable for solar cell application while porous film is good for gas sensor application. Then, amorphous film is used in the biomedical field due to its biocompatibility in bloods while TiO_2 on the film is more convenient than powder form in photocatalysis application since it is very easy to remove from the solution [17]. In addition, the combination of rod and flower structure in rutile phased gives higher surface area and better electron mobility.

Several precursor are used to fabricate TiO_2 nanostructured such as titanium butoxide (TBOT), titanium isopropoxide(TTIP) and titanium tetrachloride. It was reported that the morphology of structure on film similar between TBOT and TTIP [7]. Titanium tetrachloride has a higher chemical reactivity and difficult to handle compared to other precursor. In order to fabricate rutile phase TiO_2 rods/flower film structure, TBOT is used as a precursor in this experiment.

Thus, the rutile phase TiO_2 rods/flower film structure was chosen to treat the waste water. This structure will be used as a photocatalyst agent to treat methyl orange dye (waste water model). It is expected that the combination of the rods/flowers TiO_2 will increase the degradation process of organics in MO due to the increase of surface area and better electron mobility compared to P25 (commercial TiO_2).

Figure 2.2: Valence band and conduction band for metal, semiconductor and insulator [21]

2.2 Different method for the preparation of nanostructure TiO₂ film

The preparation of nanostructured TiO_2 will be discussed in this section. TiO_2 film can be fabricated using many different methods such as hydrothermal [22], sol-gel [4] and spray pyrolysis deposition (SPD) method [25].

2.2.1 Spray pyrolysis deposition method

In spray pyrolysis deposition film process, at appropriate pressure the solution was atomized to deposit on the substrate in tiny droplets. The produced film is depending on spray rate, droplet size, distance of nozzle spray to substrate and deposition temperature [22]. The selection of the solution is important to ensure only unwanted elements will be evaporated during the deposition. Figure 2.3 shows a typical spray deposition setup.

Figure 2.3 : A typical spray deposition setup [23].

The fabricated TiO_2 film by using spray pyrolysis deposition method is producing high porosity but with anatase phased instead of rutile phased [24]. Thus, this method is suitable for gas sensor application.

2.2.2 Sol-gel method

Sol-gel process can be defined as the process of transiting solution into gel phase. A series of hydrolysis and condensation process of precursor will formed a sol. Then, the condensed sol particle will be formed a gel. Sol-gel process usually use condensation, hydrolysis and solvent reaction [25]. From the previous study reported that, nanostructured TiO_2 from sol-gel preparation only produce the anatase phase and the film was coarse [26]. In addition, it was reported that to obtain the anatase phase, the nanostructured TiO_2 must undergone calcination process at 300oC and rutile phase at 800°C [27]. This method has a difficulty in producing rutile phase. The calcination process at higher temperature will cause the surface morphology devastated.

2.2.3 Hydrothermal method

Hydrothermal is a process of a solution which is reacted under controlled pressure and temperature in a closed system and water as a solvent [28]. Normally, hydrothermal process is conducted in steel vessel pressure called teflon line stainless steel autoclave under controlled temperature or pressure with the chemical reaction happened in the aqueous solution. The temperature can be inflated above the boiling point of water, reaching the pressure of vapour saturation. The temperature and the amount of solution combined to the teflon autoclave determine the internal pressure produced. Figure 2.4 shows the autoclave for hydrothermal system in the oven.

Hydrothermal method gives a homogeneous film assisted with stable temperature and pressure. Hydrothermal synthesis is a simple yet effective method among other various strategies to produce a wide diversity of hierarchical TiO_2 architectures. The variation of hydrothermal conditions such as temperature, pH, concentration and molar ratio of reactants and additives imparts tunable morphologies and crystalline films of TiO_2 at the nano-scale and micro-scale [29]. In addition, hydrothermal method is an advantageous method to fabricate materials as it can synthesize at low temperature with high pressure in a closed system compared with other fabrication method.

Figure 2.4: Autoclave for hydrothermal system in the oven

For this experiment, the temperature was fixed at 150° C because from the previous study Meidan Ye proved that 150° C is an ideal temperature for TiO₂ nanorod/nanoflower to growth. If the temperature is below 100 °C, the flower morphological cannot be developed and if the temperature is too high the TiO₂ film started to detach from the substrate [30]. Then, reaction time was fixed for 10 hours. Previous study shows it takes 10 hours to grow nanoflower morphology. If the reaction time less than 10 hours the flower morphology cannot be grown [31]. Thus, if the reaction time extended more than 20 hours, the TiO₂ film will start to detach from FTO substrate because the competition between the crystal growth due to the hydrolysis rate of titanium [30].

As stated in the previous study, base environment will lead to anatase phased TiO_2 [32]. Thus, in this research, by using hydrothermal method in acidic solution will produce rutile phased TiO_2 .

The possible growth process of rutile phased TiO_2 can be proposed as follows. From the hydrothermal process, $[Ti(OH)_4]$ is produced from TBOT in the solution and becomes the important point of growth in the TiO_2 on the FTO (SnO₂) substrate. Since the SnO₂ layer also has the rutile phased crystallinity resulting in an epitaxial growth of the rutile phased TiO_2 [29]. SnO₂ and rutile phased TiO_2 has a similar tetragonal crystal and the lattice parameter for SnO₂ and rutile TiO_2 is SnO₂ a= 4.687Å, c=3.160Å and rutile TiO₂ a= 4.594Å, c=2.959Å, respectively. [Ti(OH)₄] also set off the growth of TiO₂ in the solution. The growth of the rutile phased TiO₂ could be originated from a high concentration of HCl. In high acidic solution, pH < 7, TiO₂ becomes soluble, which suggests that a dissolution-precipitation process can occur rapidly. Since the hydrothermal condition under the free space, the flourish rutile flower are grown and deposited on the top of the rutile rod TiO₂ due to gravity. Figure 2.5 show the growth mechanism of rutile phased TiO₂ using hydrothermal method.

Figure 2.5: The growth mechanism of rutile phased TiO₂ by hydrothermal method

2.3 Photocatalysis

Photocatalysis can be defined as a "catalytic reaction involving the production of a catalyst by absorption of light" [28-29]. In general, there are two types of photocatalysis which are homogenous photocatalysis and heterogenous photocatalysis. For homogenous photocatalysis, the catalysts that used in the process is Fe^{3+} (ferric), O₃ (ozonation) or H₂O₂ (hydrogen peroxide) under powerful irradiation of UV lamp [19]. While, heterogenous photocatalysis is the process of generation of electron and hole pair under light irradiation of semiconductor materials. There are lists of homogeneous photocatalysis such as ozonation and UV irradiation (O₃/UV), hydrogen peroxide and UV irradiation (H₂O₂/UV) and photofenton system ($fe^{3+/}H_2O_2/UV$). Table 2.1 summarized the advantages and disadvantages between homogenous photocatalysis and heterogenous photocatalysis.

Photocatalysis	Advantages	Disadvantages	Ref
Homogenous	 Minimum sludge generation. High absorption efficiency. 	 To remove irons salt and hydrogen peroxide residue after the process Has longer degradation process Expensive generation for ozone Ozone might be poisonous and must destroy before releasing to environment 	[34] (1996) [35] (2005)
Heterogenous	 The process is more environmental friendly which produces CO₂ and H₂O after degradation process. Low energy UV light/ solar light. Only used atmospheric O₂ other than expensive chemical. Cost effective process and reusable catalyst. 	• Huge amount of catalyst is needed for industrial purposes.	[36] (1999) [37] (2010)

Table 2.1: The summarized of homogenous and heterogeneous photocatalysis

2.3.1 Photocatalytic activity of TiO₂

Among the decontamination techniques, the heterogeneous photocatalytic processes have received an increasing attention in the last decades because they are potentially able to completely oxidize many organic compounds present in waste water. Many aspects take into account in producing high photocatalysis process such as ability to utilize in UV light or visible light, biological and chemical inertness, photostability, ecofriendly and low cost [19].

There are a few semiconductors exist such as titanium dioxide (TiO₂), zinc oxide (ZnO), cadmium sulfide (CdS), tungsten trioxide (WO₃), tin oxide (SnO₂), iron oxide (Fe₂O₃), chromium oxide (Cr₂O₃), indium oxide (InO₂), vanadium oxide (V₂O₅), cerium oxide (CeO₂) and Copper Oxide (CuO). From the previous study, ZnO is unstable because of inappropriate dissolution to produce yield Zn(OH)₂ on ZnO particle and make inactivated catalyst over time [9] [30-33]. TiO₂ is unique in its chemical and biological inertness, photostability, and low cost production. Photocatalytic water and air purification using TiO₂ is a predominant advanced oxidation process (AOP) because of its efficiency and eco-friendliness [33]. TiO₂ is a multifunctional semiconductor photocatalyst which can be an energy catalyst (in water splitting to produce hydrogen fuel), an environmental catalyst (in water and air purification), or an electron transport medium in dye-sensitized solar cells.

Fundamental research regarding the preparation of catalysts with high photocatalytic activity and the improvement of photocatalyst performance are priorities to be considered.

Figure 2.6 shows the mechanism of photochatalytic of TiO_2 in waste water treatment. TiO_2 will be exposed under the UV light. If the TiO_2 is irradiated with photons with energy equal or greater than the band gap energy, electrons can absorb this energy and be promoted from the valence band to the conduction band [19]. At valence band, the holes which are positively charged will react with the water molecules and produce hydroxyl radicals (·OH). At the conduction band, the electron will react with the dissolved oxygen and will produce superoxide anions (·O2–).

Thus, these active oxygen species which are (\cdot OH) and (\cdot O2–) will attack the organic substance and will produce carbon dioxide and water which are harmless to

environment. This cycle continues as long there is the presence of light. The mechanism of photocatalytic of TiO_2 is summarized by equation (2.1) to (2.5).

Figure 2.6: The mechanism of photocatalytic activity of TiO₂ (reproduce image)

The photocatalytic degradation of TiO_2 was started when the photon has equal or more energy than band gap of TiO_2 and thus leading the production of electron-hole pair: hv

$$\operatorname{TiO}_2 \longrightarrow \operatorname{TiO}_2(h^+ + e^{-})$$
 (2.1)

At conduction band, the electron will react with molecular O_2 to produce superoxide anion:

$$e^{-} + O_2 \longrightarrow O_2^{-}$$
 (2.2)

At valence band, the holes will react with H₂O or hydroxide ions to produce super hydroxyl radical:

$$h^+ + OH^- \longrightarrow OH$$
 (2.3)

$$h^+ + H_2 O \longrightarrow OH$$
 (2.4)

These superoxide anion and hydroxyl radical will attack the organic substance and produce carbon dioxide and water which is harmless to environment;

Organic substance +
$$\cdot O2^- + \cdot OH \longrightarrow CO_2 + H_2O$$
 (2.5)

In this study, the free radical produce from the photocatalytic activity will attack the organic substance in the contaminated water. MO will play as a model compound of waste water in evaluating the ability of rutile phased TiO_2 film [41].

2.4 Immobilization of photocatalyst

Generally, most of the reported work on heterogeneous photocatalysis has been performed by using it in powder form. Unfortunately, the post separation between the TiO_2 powder and treated water will lead to difficulty. It is difficult to control with high energy consumed and involve longer time. In order to overcome this problem, immobilized TiO_2 on various substrates are used.

There are various substrates which have been used in the photocatalysis degradation in different applications such as glass [42], stainless steel woven meshes [43], sponge [44], carbon [45], polymeric material [46] and silica [47]. Various immobilization techniques for example sol gel [43-44], solvothermal [50], chemical vapour deposition [51], sputtering [51] and electrospinning [52] has been used to fabricate immobilized TiO₂. From the previous study, the researcher claimed the powder form photocatalysis has larger surface area than immobilized TiO₂ [33]. Although, some other author claimed immobilized TiO2 does not affect the efficiency of photocatalysis degradation [9]. However, with flower-like rutile phased TiO₂ will contribute to high surface area due to the flower-like structured. This flower-like structure will provide more active surface area and enhanced the photocatalytic activity. High efficiency of photocatalysis degradation still remains elusive among the researchers. These differences may be caused by the preparation of fabricated catalyst, the condition of the photocatalysis environment and other factors. This study is aimed to fabricate the immobilize catalyst which is rutile phased TiO_2 film in order to overcome the stated problem above.

2.5 Dyes

Dyes are extensively utilized in various industries for example food, textile, plastics, cosmetic, leather and others for coloring purposes. Table 2.2 shows several types of dyes. The effluent from the industries that content dyes will introduce potential danger to the marine ecosystem. There are various methods used to eliminate the dyes from the waste water system such as chemical methods and biological method, flocculation, adsorption, reverse osmosis and ultrafiltration. However, dyes with the complex structure cannot be eliminated with the conventional method such as biological method for decolorization. In addition, some of the dyes are not degraded and adsorbed on the sludge. Toxic organic compound will release to the aquatic system without proper treatment. Improper waste management will lead to various health hazards.

In this experiment, methyl orange will be act as an organic compound and used to test the ability of rutile-phased TiO_2 for photocatalytic activity. Methyl orange is an azo dye which is mostly used in dyeing, printing textile, leather industries and paper. Unfortunately, the improper management of waste in the industries could contribute a serious pollution to the environment. Azo dye is known as a toxic waste and potential carcinogenic substance. Table 2.2 shows the types of the dyes exist in the industries. Conventional treatments available are nondestructive. Thus, the new improved treatment which is rutile phase TiO_2 microsize rods/flowers film may solve the problem.

Table 2.2: List of dyes

No	Dyes	Chromophoric groups	Example
1	Acridine dyes	Acridine ring	Acridine orange
2	Anthraquinone	Anthraquinone ring	Alzarin
	dyes		
3	Arylmethane	Methine group, C=N	Auramine
	dyes		NH
4	Azo dyes	Azo group	Methyl orange
		N N	
5	Nitro dyes	Nitro groups, NO2	Picric acid
			HO ₃ S NO ₂

6	Nitroso dyes	Nitro groups, NO2	Nephthol yellow S
			O ₂ N SO O _{Na} NO ₂
7	Ouinone-imine	Methine group, C=N	Indophenol
	dyes	5 F,	ини риски
8	Azin dyes	Methine group, C=N	Safranin O
			H ₂ N N CH ₃
			CI CI
9	Xanthene dyes	Xanthene ring	Erythrosin B
			NaO O O
10	Oxazin dyes	Oxazine group	Nile bue

2.6 Working principles of devices used for characterization

2.6.1 X-ray Diffraction (XRD)

XRD is a rapid analytical technique often used for phased analysis for crystalline material. The operation begins when the cathode X-ray generates the X-ray and filtered to produce monochromatic radiation, collimated to concentrate and directed toward the sample. The production of constructive interference is from the interaction between the sample and the incident rays when the condition follows the Bragg's Law as shown in equation (2.6).

$$\lambda = 2d \sin \theta$$
 (2.6)

Where d is the d-spacing, perpendicular distance between pairs of adjacent planes in the crystal, θ is the incident angle, n is the layer of planes, and λ is the wavelength of the X-rays.

The XRD system consists of three basic elements which are an X-ray tube sample holder and the x-ray detector. The process of X-Ray diffraction starts by heating the filament in the cathode ray tube to produce electrons. Then, the electrons will be accelerated toward the target by applying a voltage and bombarding the target material with electrons. When the electrons have sufficient energy to jump from the inner shell electrons of the target material, characteristic of X-ray spectra are produced.

Figure 2.7: XRD Machine

In this experiment, the XRD is used to determine the crystal structure of the TiO_2 nanorods/nanoflowers film. The intensity and quantization at certain angle, XRD spectra will be recorded by scanning 20 in the range of 20-80.

2.6.2 Field Emission Scanning Electron Microscopy (FESEM)

Field Emission Scanning Electron Microscopy or FESEM is used to analyze the surface morphology, cross sectional area and uniformity of the film sample. FESEM is a microscope that uses the field emission cathode in the electron gun which provides narrower probing beam at low and high electro energy thus resulting in both improved spatial resolution and minimized sampling charging and damage on the sample. Figure 2.8 shows the FESEM used for characterization of the samples.

The specialty of FESEM which are combination of higher magnification, larger depth of focus, greater resolution and simple observation on the sample make FESEM machine usually used by the researcher to characterize their sample. FESEM has a wider range in magnification which can produce image 100 times to 10 million times of the normal size. FESEM can produce clearer image, less electrostatically distorted images with spatial resolution down to 1 nm which six times better compared to Scanning Electron Microscopy (SEM).

Figure 2.8 : FESEM machine

2.6.3 Energy dispersive X-ray analysis (EDX)

Energy dispersive X-ray analysis (EDX) is used to analyze the elemental or chemical properties of the samples. It depends on the interaction of some source of X-ray excitation and a sample. The capabilities to characterize the sample are due to the large part to the fundamental principle for each element and unique atomic structure allows a unique set of peak on its X-ray spectrum. A high energy beam of charge particles for example electrons and protons or beams of X-ray is focused into the sample being analyzed to stimulate the emission of characteristic X-ray from the specimen.

An atom within the sample contains unexcited electrons in discrete energy levels or electron shell bound to the nucleus. The incident beam may excite an electron in an inner shell, ejecting it from the shell while creating an electron hole where the electron was. An electron from an outer, higher-energy shell then fills the hole, and the difference in energy between the higher-energy shell and the lower energy shell may be released in the form of an X-ray. The number and energy of the X-rays emitted from a specimen can be measured by an energy-dispersive spectrometer. As the energies of the X-rays are characteristic of the difference in energy between the two shells and of the atomic structure of the emitting element, EDX allows the elemental composition of the specimen to be measured.

2.6.4 Ultraviolet visible (UV-Vis) Spectrophotometer

Ultraviolet visible (UV-Vis) spectrospotometer is spectrometer measurements which refer to the absorption of spectroscopy reflectance or transmittance in the ultraviolet visible spectral region. The wavelength of the ultraviolet region is in between the range of 190-380 nm while the visible region is in between 380-750 nm. In the measurement process, it uses the light in the visible and adjacent ranges from near ultraviolet (UV) until near infrared (NIR) ranges in order to indicate the intensity of absorbance and transmittance of the film sample. In this experiment, UV-Vis is used to measure the absorbance value of TiO_2 film and determining the percentage degradation concentration of methyl orange. Figure 2.9 shows the UV-Vis that used for characterization of the samples.

Figure 2.9 : UV-Vis Spectrophotometer

2.7 Application of TiO₂

Nowadays, a nanotechnology of TiO_2 has received a great attention from the worldwide. This is because the strength of the technologies distributes numerous benefits to the society. TiO₂ has been used for Dye Sensitized Solar cell (DSSC) [48-49]. Malaysia has an abundant solar energy since it has a hot climate all year round. Thus, DSSC can be replaced as a new source of electrical energy because the natural source has been depleted. Then, TiO₂ was found to have an ability in killing bacteria [50-53]. This was an interesting area and could help in medication field. For gas sensor application, TiO₂ has an ability to sense various types of gas such as oxygen and ammonia [54-55]. In addition, it is found that the TiO₂ has an ability in self-cleaning for the building which make a cost effective technology for the industries [56-57]. Furthermore, TiO_2 has a greater of photocatalytic activity than other semiconductors. This advantage can be implemented to the current waste water treatment technology to improve the system before releasing to the environment. TiO₂ has a huge ability to destruct a various types of polluted water such as dyes, palm oil mill effluent (POME) and paper mill effluent [28], [58-63]. The aim of this study is to improve the photocatalytic activity of rutile phased TiO₂ film towards degradation of MO before applying to the real waste water.

CHAPTER 3

METHODOLOGY

In this chapter, the experimental procedure is divided into three main stages. Detailed information about the process of the experimental procedure is reported in this chapter. Figure 3.1 shows the flow chart of the research methodology.

3.1 Overview of the experimental process

The overall experimental work was summarized in a flow chart shown in Figure 3.1. The experimental work was conducted in three main stages which is the cleaning substrates process. Then, the cleaned FTO was used to fabricate rutile phased TiO_2 by varying parameter and characterize the fabricated TiO_2 samples. Finally, the optimized samples will undergo verification stage with photocatalytic analysis.

REFERENCES

- [1] M. Koelsch, S. Cassaignon, J. F. Guillemoles, and J. P. Jolivet, "Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol – gel method," *Thin Solid Films*, vol. 404, pp. 312–319, 2002.
- [2] M. K. Ahmad, C. F. Soon, N. Nafarizal, A. B. Suriani, A. Mohamed, M. H. Mamat, M. F. Malek, M. Shimomura, and K. Murakami, "Optik Effect of heat treatment to the rutile based dye sensitized solar cell," *Opt. Int. J. Light Electron Opt.*, vol. 127, no. 8, pp. 4076–4079, 2016.
- [3] K. P. Biju and M. K. Jain, "Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 films," *Thin Solid Films*, vol. 516, no. 8, pp. 2175–2180, Feb. 2008.
- [4] J. Domaradzki, "Structural, optical and electrical properties of transparent V and Pd-doped TiO2 films prepared by sputtering," *Thin Solid Films*, vol. 497, no. 1–2, pp. 243–248, Feb. 2006.
- [5] U. Diebold, "Structure and properties of TiO 2 surfaces: a brief review," *Appl. Phys. A Mater. Sci. Process.*, vol. 76, no. 5, pp. 681–687, Mar. 2003.
- [6] P. S. Shinde, S. B. Sadale, P. S. Patil, P. N. Bhosale, a. Brüger, M. Neumann-Spallart, and C. H. Bhosale, "Properties of spray deposited titanium dioxide films and their application in photoelectrocatalysis," *Sol. Energy Mater. Sol. Cells*, vol. 92, pp. 283–290, 2008.
- [7] B. Liu and E. S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells," *J. Am. Chem. Soc.*, vol. 131, no. 9, pp. 3985–3990, 2009.
- [8] Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou, "Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructures," J. Phys. Chem. C, vol. 111, no. October, pp. 2709–2714, 2007.
- [9] S. M. Gupta and M. Tripathi, "A review of TiO2 nanoparticles," *Chinese Sci. Bull.*, vol. 56, no. 16, pp. 1639–1657, May 2011.
- [10] S. Malato, M. I. M. Pilar Fernandez-Ib ' a'nez, I. M. Oller, and I. Polo-Lopez, "Functional nanostructured materials and membranes for water treatment risk analysis of water pollution photocatalysis activated carbon for water and wastewater treatment biological wastewater treatment ozonation of water and waste water," in *Photocatalysis and Water Purificatio*, 2013, pp. 377–397.
- [11] K. H. Ng, M. R. Deraman, C. H. Ang, and S. K. Chong, "Phototreatment of

Palm Oil Mill Effluent (POME) over Cu / TiO 2 Photocatalyst," *BCREC*, vol. 9, no. 2, pp. 121–127, 2014.

- [12] I. M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M. C. Bernard, and P. Falaras, "Preparation, characterization and photocatalytic activity of nanocrystalline film TiO2 catalysts towards 3,5-dichlorophenol degradation," *J. Photochem. Photobiol.* A Chem., vol. 149, no. 1–3, pp. 237–245, 2002.
- [13] R. Afroz, M. M. Masud, R. Akhtar, and J. B. Duasa, "Water pollution challenges and future direction for water resource management policies in Malaysia," *Environ. Urban. ASIA*, vol. 5, no. June, pp. 63–81, 2014.
- [14] I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, and A. Fujishima, "An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation," *J. Photochem. Photobiol. A Chem.*, vol. 98, no. 1– 2, pp. 79–86, 1996.
- [15] M. K. Ahmad, M. L. M. Halid, N. A. Rasheid, A. Z. Ahmed, S. Abdullah, and M. Rusop, "Effect of annealing temperatures on surface morphology and electrical properties of titanium dioxide films prepared by sol gel method," *Sustain. Energy Environ.*, vol. 1, pp. 17–20, 2010.
- [16] Y. Zhao, C. Li, X. Liu, and F. Gu, "Highly enhanced degradation of dye with well-dispersed TiO2 nanoparticles under visible irradiation," J. Alloys Compd., vol. 440, no. 1–2, pp. 281–286, Aug. 2007.
- [17] N. R. Mathews, E. R. Morales, M. a. Cortés-Jacome, and J. a. Toledo Antonio, "TiO2 films – Influence of annealing temperature on structural, optical and photocatalytic properties," *Sol. Energy*, vol. 83, no. 9, pp. 1499–1508, Sep. 2009.
- [18] M. C. Mathpal, A. K. Tripathi, M. K. Singh, S. P. Gairola, S. N. Pandey, and A. Agarwal, "Effect of annealing temperature on Raman spectra of TiO2 nanoparticles," *Chem. Phys. Lett.*, vol. 555, pp. 182–186, Jan. 2013.
- [19] J. Kumar and A. Bansal, "Photocatalysis by nanoparticles of titanium dioxide for drinking water purification : A Conceptual and state-of-art review," *Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.*, vol. 764, pp. 130–150, 2013.
- [20] S. Riyas, "TiO2 and its Application," 2012.
- [21] M. A. Lazar, S. Varghese, and S. S. Nair, "Photocatalytic water treatment by titanium dioxide: recent updates," *Catalyst*, vol. 2, pp. 572–601, 2012.
- [22] G. E. Patil, D. D. Kajale, V. B. Gaikwad, and G. H. Jain, "Spray Pyrolysis Deposition of Nanostructured Tin Oxide Films," *ISRN Nanotechnol.*, vol. 2012, p. 5, 2012.
- [23] L. J. Gauckler, "Film Deposition Using Spray Pyrolysis," *Electroceramics*, vol. 14, no. February, pp. 103–111, 2005.
- [24] A. R. Rao and V. Ã. Dutta, "Low-temperature synthesis of TiO 2 nanoparticles and preparation of TiO 2 films by spray deposition," *Sol. Energy Mater. Sol. Cells*, vol. 91, pp. 1075–1080, 2007.
- [25] R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L. M. Ilharco, and M. Pagliaro, "The Solâ€"Gel Route to Advanced Silica-Based Materials and Recent Applications," *Chem. Rev.*, vol. 113, no. 8, pp. 6592–6620.

- [26] P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, "Sol gel preparation and properties study of TiO 2 film for photocatalytic reduction of chromium (VI) in photocatalysis process Sol gel preparation and properties study of TiO 2 film for photocatalytic reduction of chromium (VI) in photocatalytic reduction of chromium (VI) in photoc," *Sci. Technol. Adv. Mater.*, vol. 6, p. 352, 2005.
- [27] N. Venkatachalam, M. Palanichamy, and V. Murugesan, "Sol-gel preparation and characterization of nanosize TiO2: Its photocatalytic performance," *Mater. Chem. Phys.*, vol. 104, no. 2–3, pp. 454–459, Aug. 2007.
- [28] S. Chowdhury, P. C. M. M. Zulfiqar, and D. Subbarao, "Development of Ionothermal Synthesis of Titania Nanomaterial for Waste-Water Treatment," *Adv. Mater. Res.*, vol. 1133, no. January, pp. 537–541, 2016.
- [29] P. Sirimanne, M. Rusop, T. Shirata, T. Soga, and T. Jimbo, "Characterization of CuI films prepared by different techniques," *Mater. Chem. Phys.*, vol. 80, no. 2, pp. 461–465, May 2003.
- [30] M. Ye, H.-Y. Liu, C. Lin, and Z. Lin, "Hierarchical rutile TiO2 flower clusterbased high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates.," *Small*, vol. 9, no. 2, pp. 312–21, Jan. 2013.
- [31] M. K. Bin Ahmad and K. Murakami, "Influences of Surface Morphology of Nanostructured Rutile TiO2 Nanorods/Nanoflowers as Photoelectrode on the Performance of Dye-sensitized Solar Cell," *MAKARA J. Technol. Ser.*, vol. 17, no. 2, pp. 73–76, Sep. 2013.
- [32] C. W. Lai, S. Bee Abd Hamid, T. L. Tan, and W. H. Lee, "Rapid formation of 1D titanate nanotubes using alkaline hydrothermal treatment and its photocatalytic performance," *J. Nanomater.*, 2015.
- [33] M. Lazar, S. Varghese, and S. Nair, "Photocatalytic water treatment by titanium dioxide: recent updates," *Catalysts*, vol. 2, no. 4, pp. 572–601, Dec. 2012.
- [34] N. Modirshahla, M. A. Behnajady, and F. Ghanbary, "Decolorization and mineralization of C. I. Acid Yellow 23 by Fenton and photo-Fenton processes," *Dye. Pigment.*, vol. 73, pp. 305–310, 2007.
- [35] M. S. Lucas, A. A. Dias, A. Sampaio, and C. Amaral, "Degradation of a textile reactive Azo dye by a combined chemical – biological process : Fenton 's reagent-yeast," vol. 41, pp. 1103–1109, 2007.
- [36] P. S. De Almeria, "Large solar plant photocatalytic water decontamination:Effect of operational parameters," *PERGAMON*, vol. 56, no. 5, pp. 421–428, 1996.
- [37] R. A. Al-Rasheed, "Water treatment by heterogeneous photocatalysis an overview," *Saline Water Convers. Corp.*, vol. 5, no. 6, pp. 221–226, 2005.
- [38] M. I. Litter, "Heterogeneous photocatalysis Transition metal ions in photocatalytic systems," *Appl. Catal. B Environ.*, vol. 23, pp. 89–114, 1999.
- [39] S. A. Rashid, "Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis : A review," *Appl. Catal. A Gen.*, vol. 389, pp. 1–8, 2010.

- [40] R. J. Tayade, P. K. Surolia, R. G. Kulkarni, and R. V Jasra, "Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO 2," *Sci. Technol. Adv. Mater.*, vol. 8, pp. 455–462, 2007.
- [41] E. Puzenat, C. Bernard, C. Bernard, C. O. G, M. Red, C. Red, and M. Blue, "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methyele Blue) in Water by UVirradiated titania," *Appl. Catal. B Environ.*, vol. 39, pp. 75–90, 2002.
- [42] I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, and P. Falaras, "Silver-modified titanium dioxide films for efficient photodegradation of methyl orange," *Appl. Catal. B Environ.*, vol. 42, pp. 187–201, 2003.
- [43] S. F. Ahmed, L. C. Rietveld, and P. W. Appel, "Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor," *Drink. Water Eng. Sci*, vol. 7, pp. 41–52, 2014.
- [44] Shabnam Shoabargh, A. Karimi, G. Dehghanb, and A. K. C, "A hybrid photocatalytic and enzymatic process using glucose oxidase immobilized on TiO2 / polyurethane for removal of a dye," *Ind. Eng. Chem. Res.*, no. January 2013, pp. 2–9, 2016.
- [45] C. G. Joseph, L. Puma, A. Bono, D. Krishnaiah, and J. G. Collin, "Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition : A review paper," *Hazard. Mater.*, no. November, pp. 44–53, 2008.
- [46] K. Haitham, "Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye," *Appl. Surf. Sci.*, vol. 319, no. March, pp. 90–98, 2015.
- [47] R. van Grieken, J. Aguado, M. J. López-Muñoz, and J. Marugán, "Synthesis of size -controlled silica-supported TiO2 photocatalysts," *Photochem. Photobiol.*, vol. 5, no. 148, pp. 315–322, 2002.
- [48] C. Lidija, I. Fiamengo, and N. Tomas, "Synthesis, characterization and photocatalytic properties of sol – gel TiO2 films," *Ceram. Int.*, pp. 55–72, 2010.
- [49] R.S. Sonawane, B. B. Kale, and M. K. Dongare, "Preparation and photocatalytic activity of Fe – TiO2 films prepared by sol – gel dip coating," *Mater. Chem. Phys.*, no. 85, pp. 52–57, 2004.
- [50] B. Kim, S. Lee, M. Kang, S. M. Cho, G. Y. Han, B. Kim, K. J. Yoon, and C. Chung, "Synthesis of TiO2 photocatalyst film by solvothermal method with a small amount of water and its photocatalytic performance," *Photochem. Photobiol.*, vol. 146, pp. 121–128, 2001.
- [51] N. Rausch and E. P. Burte, "Thin TiO2 films prepared by low pressure chemical vapor deposition," *J.Electrochem.Soc*, vol. 140, no. 1, pp. 145–149, 1993.
- [52] W. E. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," *Nanotechnology*, vol. 17, pp. 89–106, 2006.

- [53] G. P. Demopoulos, "Further understanding of the adsorption mechanism of N719 Sensitizer on anatase TiO2 films for DSSC applications," *langmuir*, vol. 12, pp. 9575–9583, 2010.
- [54] D. S. Cell, R. Jose, K. Fujihara, A. Kumar, R. Jose, and S. Ramakrishna, "SpraydDeposition of electrospun TiO2 nanorods spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell," *Nanotechnology*, no. 18, pp. 2–7, 2007.
- [55] C. Hu, J. Guo, J. Qu, and X. Hu, "Photocatalytic degradation of pathogenic bacteria with AgI/ TiO2 under visible light irradiation," *langmuir*, no. 23, pp. 4982–4987, 2007.
- [56] W. Chen, P. Tsai, and Y. Chen, "Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria," *Small*, pp. 485– 491, 2008.
- [57] M. R. Elahifard, S. Rahimnejad, S. Haghighi, and M. R. Gholami, "Apatitecoated Ag / AgBr / TiO2 Visible-Light photocatalyst for destruction of bacteria," J. Am. Chem. Soc., vol. 129, pp. 9552–9553, 2007.
- [58] C. Hu, Y. Lan, J. Qu, X. Hu, and A. W. State, "Ag/AgBr/TiO2 Visible light photocatalyst for destruction of azodyes and bacteria," *J. phys. Chem. B*, vol. 110, pp. 4066–4072, 2006.
- [59] B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E. Suh, "TiO2 film gas sensor for monitoring ammonia," *Mater. Charact.*, vol. 58, pp. 680– 684, 2007.
- [60] E. Comini, G. Sberveglieri, C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, "TiO2 films by a novel sol gel processing for gas sensor applications," *Sensors Actuators, B Chem.*, vol. 68, pp. 189–196, 2000.
- [61] R. Benedix, F. Dehn, J. Quaas, and M. Orgass, "Application of titanium dioxide photocatalysis to create self-cleaning building materials," *LACER*, vol. 5, pp. 157–168, 2000.
- [62] X. Zhang, A. Fujishima, M. Jin, A. V. Emeline, and T. Murakami, "Double-Layered TiO2 SiO2 nanostructured films with self-cleaning and antireflective properties," *J. phys. Chem. B*, vol. 110, pp. 25142–25148, 2007.
- [63] T. Ohno, T. Tsubota, K. Nishijima, and Z. Miyamoto, "Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light," *Chem. Phys. Lett.*, vol. 33, no. 6, pp. 750–751, 2004.
- [64] S. Kim, S. Hwang, and W. Choi, "Visible light active platinum-ion-doped TiO2 photocatalyst," *J. phys. Chem. B*, vol. 109, pp. 24260–24267, 2005.
- [65] S. Lee and S. Park, "TiO2 photocatalyst for water treatment applications," *J. Ind. Eng. Chem.*, vol. 19, pp. 1761–1769, 2013.
- [66] Y. Yang, H. Wang, J. Li, B. He, T. Wang, and S. Liao, "Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment," *Environ. Sci. Technol.*, vol. 46, pp. 6815–6821, 2012.
- [67] A. S. Stasinakis, "Use of selected advanced oxidation process (AOPs) for wastewater treatment-A mini review," *Glob. Nest Int. J.*, vol. 10, no. 3, pp. 376–385, 2008.

- [68] M. O. Tadé, "Facile Synthesis of Carbon-Doped Mesoporous Anatase TiO2 for the Enhanced Visible-Light Driven Photocatalysis," *Chem. Commun.*, vol. 50, no. October, pp. 13971–13974, 2014.
- [69] W. Zhou, X. Liu, J. Cui, D. Liu, J. Li, H. Jiang, J. Wang, and H. Liu, "Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties," *CrystEngComm*, vol. 13, no. 14, p. 4557, 2011.
- [70] J. Wu, S. Lo, K. Song, B. K. Vijayan, W. Li, K. a. Gray, and V. P. Dravid, "Growth of rutile TiO2 nanorods on anatase TiO2 films on Si-based substrates," *J. Mater. Res.*, vol. 26, pp. 1646–1652, 2011.
- [71] G. Rodr, "Phase-pure TiO2 nanoparticles: anatase ,brookite and rutile," *Nanotechnology*, vol. 19, pp. 145605–145615, 2008.
- [72] W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, and Z. L. Wang, "Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells," *J. Am. Chem. Soc.*, vol. 12, pp. 517–562, 2012.
- [73] N. N. & M. K. A. NOOR KAMALIA ABD HAMED*, NOOR SAKINAH KHALID, FATIN IZYANI MOHD FAZLI, MUHAMMAD LUQMAN MOHD NAPI, "Influence of Hydrochloric Acid Concentration on the Growth of Titanium Dioxide (TiO 2) Nanostructures by Hydrothermal Method," *Sains Malaysiana*, vol. 45, no. 11, pp. 1669–1673, 2016.
- [74] Á. A. R.-S. P. Acevedo-Peña and E. M. Córdoba, "Enhanced photocatalytic activity of TiO2 film by modification with polyethylene glycol," *Quim. Nov.*, vol. 35, no. 10, pp. 1931–1935, 2012.
- [75] T. R. Pauly, Y. Liu, T. J. Pinnavaia, S. J. L. Billinge, and T. P. Rieker, "Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures," *J. Am. Chem. Soc.*, vol. 121, no. 7, pp. 8835–8842, 1999.
- [76] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, "Solar/ UV-induced photocatalytic degradation of three commercial textile dyes," *Hazard. Mater.*, vol. 89, pp. 303–317, 2002.
- [77] S. Al-qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound," *Photochem. Photobiol.*, vol. 148, pp. 161–168, 2002.
- [78] R. J. Davis, J. L. Gainer, and G. O. Neal, "Photocatalytic decolorization of wastewater dyes," *Water Environ. Res.*, vol. 66, no. 1, pp. 50–53, 1989.
- [79] Z. Haddadian, M. A. Shavandi, Z. Zainal, M. Halim, and S. Ismail, "Removal methyl orange from aqueous solutions using dragon fruit (hylocereusundatus) foliage," *Chem. Sci. Trans.*, vol. 2, no. 3, pp. 900–910, 2013.
- [80] M. Kosmulski, "The significance of the difference in the point of zero charge between rutile and anatase," *Adv. Colloid Interface Sci.*, vol. 99, pp. 255–264, 2002.
- [81] A. P.Davis and C. p. Huang, "The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide," *Water Res.*, vol. 24, no. 5, pp. 543–550, 1990.

- [82] N. Abdurahman, N. Azhari, and Y. m. Rosli, "Ultrasonic membrane anaerobic system (UMAS) for palm oil mill effluent (POME) treatment," in *Ultrasonic membrane anaerobic system (UMAS) for palm oil mill effluent (POME) treatment*, 2013, pp. 107–121.
- [83] L. Lim, L. I. K. Pueh, and Z. Ujang, "Critical flux of membrane Bioreactor for Palm Oil Mill Effluent (POME) Treatment Under Aerobic Conditions," J. *Teknol.*, vol. 24, pp. 55–70, 2004.
- [84] N. Abdullah and F. Sulaiman, *The oil palm wastes in Malaysia*. 2013.