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Abstract

An empirical test is presented by which one may determine whether a specified mul-
tivariate probability model is suitable to describe the underlying distribution of a set of
observations. This test is based on the premise that, given any probability distribution,
the Mahalanobis distances corresponding to data generated from that distribution will
likewise follow a distinct distribution that can be estimated well by means of a large
sample. We demonstrate the effectiveness of the test for detecting departures from the
multivariate normal and from the multivariate beta distributions. In the latter case, we
apply the test to real mulivariate data to confirm that it is consistent with a multivariate
beta model.

Keywords: Mahalanobis distance, multivariate beta distribution, multivariate goodness-
of-fit test, multivariate normal distribution

1 Introduction

In a recent paper [?], measurements of Instantaneous Coupling (IC) were computed be-
tween pairs of electroencephalogram (EEG) signals in the gamma frequency band at selected
tetrodes implanted in different regions of the brain of a rat. It was assumed that, upon
selecting one tetrode as a reference, the distribution of its IC measurements with respect to
any subset of the remaining tetrodes may be modeled with a multivariate beta distribution.
While this assumption was intuitively valid based on inspection of univariate histograms,
its validity was not verified. This was a consequence of the unavailability of a practical
goodness-of-fit test for a multivariate beta distribution.

In fact, the literature on the topic of general multivariate goodness-of-fit tests is scarce.
Tests for multivariate normality are abundant, beginning with the seminal work of Pearson
on the chi-square goodness-of-fit test [?, ?, ?] and continuing with a multitude of additional
approaches, e.g., application of the Rosenblatt transformation [?] to examine multivariate
normality [?], tests using multivariate measures of skewness and kurtosis [?, ?, ?, ?, ?], a
test based on the multivariate Shapiro–Wilk statistic [?], a radii and angles test [?], a test
based on the multivariate Box–Cox transformation [?], and many other creative methods
[?, ?, ?, ?]. But these tests do not extend readily to the general case. Proposals for ex-
tending the Kolmogorov–Smirnov (KS) goodness-of-fit test to multiple dimensions have been
published [?, ?, ?, ?], but the required test statistic in each proposed method is extremely
difficult to compute, even in the bivariate case, and a suggested simplification in [?] still
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requires a transformation whose derivation is analytically intractable for most multivariate
distributions. A multivariate goodness-of-fit test based on the empirical characteristic func-
tion has also been developed [?]. However, derivation of this test statistic is also not tractable
for most multivariate distributions, and one is additionally required to creatively choose a
weight matrix and a number of evaluation points.

What is needed is a goodness-of-fit test that is theoretically sound, is simple to implement
in scientific applications, is adaptable to any multivariate distribution of any dimension,
and has sufficient power. We propose below such an approach, with a focus on continuous
multivariate distributions. We compare the performance of the proposed test with that of
two established tests for multivariate normality to demonstrate its reliability in that setting,
and then demonstrate its effectiveness for testing suitability of the multivariate beta model.
Finally, we apply this test to the IC measurement data referenced above to confirm the
original multivariate beta assumption.

2 Method

Let X1, . . . ,Xn ∈ Rp be a sample from a population having known p-variate continuous
distribution F = Fθ, with θ ∈ Rk for some k ≥ 1, and set µ = µ(θ) = EF (X) and
Σ = Σ(θ) = VF (X). Recall [?] that the Mahalanobis distance ∆ ∈ R between X and µ is a
continuous function from Rp → [0,∞) computed as

∆ = ∆(X) =

√
(X− µ)′ Σ−1 (X− µ) .

Essentially this function assigns the same distance to all points in a p-dimensional ellipsoid
centered at µ whose shape is uniquely determined by Σ. Hence given X1, . . . ,Xn ∼ F we
obtain ∆1, . . . ,∆n, where ∆i = ∆(Xi). Let G denote the probability distribution underlying
∆1, . . . ,∆n, i.e., G(t) = P(∆i < t) for t ∈ R.

Let φ denote the characteristic function of G, that is,

φ(t) = E(eit∆) = E
[
eit
√

(X−µ)′ Σ−1 (X−µ)
]

=

∫
Rp

eit
√

(x−µ)′ Σ−1 (x−µ) dF (x) .

This relationship shows that the distribution G of Mahalanobis distances is specified by the
distribution F of X, although not necessarily uniquely. That is, if F1 = F2, then G1 = G2,
and if G1 6= G2, then F1 6= F2.

Therefore, if we generate a sample X1, . . . ,Xn from a known distribution F , we may
compute ∆1, . . . ,∆n, then estimate G via the corresponding empirical distribution function

Gn(t) =
1

n

n∑
i=1

1(∆i ≤ t), t > 0 .

As n→∞, Gn(t)→ G(t), by well-established theoretical results.
Figure ?? displays plots of Gn(t) for samples randomly generated from four different

bivariate distributions, with n = 10000. The bivariate normal has a mean of µ = (−1, 2) and
a covariance of

Σ =

[
4 −2
−2 9

]
.

The bivariate uniform consists of two independent samples, one from a uniform distribution of
(0, 1) and the other from a uniform distribution on (0, 5). The bivariate Student’s-t also con-
sists of two independent samples, from t distributions with three and five degrees of freedom,

2



respectively. The bivariate beta likewise consists of independent univariate beta samples, the
Be(2, 3) and the Be(3, 2). For each bivariate distribution, we compute ∆1, . . . ,∆n based on
the respective values of µ and Σ, then obtain the corresponding functions Gn(t). Since the
sample size is quite large in each case, we have confidence that Gn(t) is very near G(t) for
each example. As the figure demonstrates, the values of Gn(t) among the four distributions
are quite different, reflecting the intrinsic distinction in the scatter structure of the samples
about their respective means. Note, however, that the distinction between the curves for the
bivariate normal and the bivariate beta is not as sharp.
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Figure 1: Plots of Gn(t), with n = 10000, for samples randomly generated from a bivariate
normal distribution, a bivariate uniform distribution, a bivariate Student’s-t distribution,
and a bivariate beta distribution.

Now, given any p ∈ (0, 1), let qp denote the p-quantile of G, i.e., G(qp) = P(∆ < qp) = p.
Given any partition 0 = p0 < p1 < · · · < pT = 1 of (0, 1), we then obtain a corresponding
partition 0 = qp0 < qp1 < · · · < qpT =∞ such that

Pj = G(qpj )−G(qpj−1
) = pj − pj−1, j = 1, . . . , T

where G(∞) = 1. Meanwhile, let qp,n denote the p-quantile of Gn, defined as

qp,n = min{t ∈ R | Gn(t) ≥ p} .

As n→∞, qp,n → qp, since Gn(t)→ G(t). So if we set

Pj,n = Gn(qpj ,n)−Gn(qpj−1,n)

for j = 1, . . . , T , it is clear that Pj,n → Pj as n → ∞. Thus, when n is very large, Pj,n is a
reliable estimate of Pj .

Consequently, given Gn(t) with n large, and a new set of observations y1, . . . , ym ∈ (0,∞),
one can test the null hypothesis that these data are realizations from the distribution G by
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1. selecting a partition {p0, p1, . . . , pT } as described above, with T large (but not so large
that mPj,n becomes too small for any j),

2. computing Ej = mPj,n, i.e., the (approximate) expected number of observations in the
interval (qpj−1

, qpj ] under the null hypothesis, for j = 1, . . . , T ,

3. counting the number Oj of observations among y1, . . . , ym in the interval (qpj−1
, qpj ],

for j = 1, . . . , T ,

4. calculating an appropriate test statistic to measure the global deviation of the counts
of observed data from the expected counts among the intervals, e.g.,

AT =

T∑
j=1

|Ej −Oj |
Ej

,

5. deciding whether AT is too large to be plausible under the null hypothesis.

The basis for determining what constitutes “too large” must be established empirically, since
the distribution of AT cannot be determined analytically.

However, our interest in this paper is not in deciding whether observed univariate data are
realizations fromG, but rather in deciding whether observed multivariate data are realizations
from Fθ. Moreover, while we shall assume that the mean and covariance of Fθ exist, we
shall not assume that θ, µ or Σ are known. We only require that the maximum-likelihood
estimate (MLE) of θ can be computed based on a sample drawn from Fθ. Consequently, let
X1, . . . ,Xn ∈ Rp denote a sample from some unknown p-variate continuous distribution Φ.
We wish to test

H0 : Φ = Fθ for some θ

against
H1 : Φ 6= Fθ for any θ

at some specified significance level α. Of course, this assumes that X1, . . . ,Xn lie within
the support of Fθ. Let X and S denote the sample mean and sample covariance matrix,
respectively. Then define the sample Mahalanobis distance Di between Xi and X by the
familiar form

Di =

√
(Xi −X)′ S−1 (Xi −X) , i = 1, . . . , n .

Since X
P−→ µ and S P−→ Σ as n → ∞ under the null hypothesis, the continuous mapping

theorem guarantees that Di
P−→ ∆i as n → ∞. Now consider the empirical distribution

function Ĝn(t) given by

Ĝn(t) =
1

n

n∑
i=1

1(Di ≤ t), t > 0 ,

which is the sample version of Gn(t). Under the null hypothesis, at each t > 0, 1(Di ≤ t)
P−→

1(∆i ≤ t) as n→∞, so that the difference between Ĝn(t) and Gn(t) will tend to zero as n

increases. Since Gn converges to G as n→∞, we conclude that Ĝn likewise converges to G
when H0 holds.

Our test of H0 is thus linked to a test of H0
′: D1, . . . , Dn ∼ G. If we reject H0

′

we must also reject H0. But we cannot proceed exactly as before when Fθ was completely
specified. Instead, we follow a longer, modified procedure. Let x1, . . . ,xn denote the observed
multivariate data, and d1, . . . , dn the corresponding observed sample Mahalanobis distances.
Then execute the following steps:
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1. Assuming H0 is true, estimate θ with its MLE θ̂ based on x1, . . . ,xn;

2. Generate a very large sample u1, . . . ,uN of size N � n from Fθ̂ (we use N = 10000);

3. Determine the sample mean µ̂ and sample covariance Σ̂ for this very large sample;

4. Compute the sample Mahalanobis distances d̂1, . . . , d̂N for this very large sample, where

d̂i =

√
(ui − µ̂)′Σ̂

−1
(ui − µ̂) ;

5. Compute

ĜN (t) =
1

N

N∑
i=1

1(d̂i ≤ t), t > 0 ,

our estimate of G(t), using very small increments of t from 0 to a sufficiently large value

(we use 2maxi d̂i);

6. Select a partition {p0, p1, . . . , pT } of [0, 1], with p0 = 0 and pT = 1 (where T is selected
so that a sufficient number of observations are expected per bin, e.g., T = 5). Then
estimate the corresponding p-quantiles of G(t) by setting

q0 = 0, qj = min{t ∈ R | ĜN (t) ≥ pj}, j = 1, . . . , T − 1 , and qT =∞

7. Compute Ej = n(pj − pj−1), i.e., the expected number of observations in the interval
(qj−1, qj ] under H0, for j = 1, . . . , T ;

8. Count the actual number Oj of observations among d1, . . . , dn in the interval (qj−1, qj ],
for j = 1, . . . , T − 1, and in the interval (qT−1,∞) for j = T ;

9. Calculate an appropriate test statistic to measure the global deviation of the counts of
observed data from the expected counts among the intervals, e.g.,

AT =

T∑
j=1

|Ej −Oj |
Ej

.

10. Determine whether AT is too large under H0, based on an empirical p-value which can
be obtained using a procedure to be described below.

Since the sample Mahalanobis distances computed in Step 4 depend on the sample
u1, . . . ,uN generated in Step 2, which in turn affects all subsequent computations, we do not
obtain consistent output at Step 9 for the statistic AT unless we repeat Steps 2 through 5
R times, where R is not too small (we use R = 100, although smaller values are probably

sufficient). Then at Step 6 we use the pointwise average of ĜN (t) over these R repetitions in
order to obtain consistent values for the quantiles q0, . . . , qT , and ultimately for AT .

Step 10 requires a simulation to obtain the empirical p-value. The idea is to obtain an
empirical distribution of values for AT when H0 holds with θ unspecified, and determine
whether our statistic AT computed in step 10 is plausible under this distribution. This must
be done in the setting where a sample of the same size n indeed comes from Fθ for some
arbitrarily selected θ, but after the sample is generated from Fθ we proceed as if we do not
know θ, i.e., we use the sample mean and sample covariance as we did with the original data.
Hence we first choose some sensible θ∗ ∈ Rk that lies within the interior of the parameter
space of F . For example, if F is multivariate normal, it would be sensible to choose the zero
vector for the location parameter and the identity matrix for the scale parameter. Then, for
b = 1, . . . , B, where B is quite large, repeat the following procedure:
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A. Generate a sample x∗1, . . . ,x
∗
n from Fθ∗ ;

B. Obtain the sample mean and sample covariance, then compute the sample Mahalanobis
distances d∗1, . . . , d

∗
n;

C. Estimate θ∗ with its MLE θ̂
∗

based on x∗1, . . . ,x
∗
n;

D. Follow steps 2 through 9 (substituting θ̂
∗

for θ̂ at step 2, and substituting d∗i for di at
step 8) to obtain test statistic AT,b. Again, we repeat Steps 2 through 5 R times and

use the average for ĜN (t) at Step 6.

Having obtained AT,1, . . . , AT,B , the empirical p-value is then

pe =
1

B

B∑
b=1

1(AT,b > AT ) .

Therefore, step 10 becomes: Reject H0 if and only if pe < α.
We demonstrate the simplicity and effectiveness of this method in the next section.

3 Results

To illustrate the effectiveness of the method in multivariate goodness-of-fit testing, we first
conduct a test of the null hypothesis

H0 : Φ = N2(µ,Σ) for some (µ,Σ)

against the alternative
H1 : Φ 6= N2(µ,Σ) for any (µ,Σ)

based on samples of size n = 100, where Φ denotes the true distribution family from which
the data are sampled. We conduct this test using the method presented above and, for com-
parison, two established methods: the multivariate Shapiro–Wilk test [?, ?] and the energy
test for multivariate normality [?]. We generate samples from ten distinct bivariate normal,
bivariate uniform, and bivariate Student’s-t distributions, with the parameters randomly
selected for each of the thirty samples. We implement our method for each sample with
N = 10000, R = 100, T = 20 and B = 100. We then compute the mean p-value for each
method over the ten samples corresponding to each distribution family. We expect large
p-values for samples from the bivariate normal family, and small p-values for the samples
from the other two families. We also compute the false detection rate for each method, based
on a significance level of 0.05, for the bivariate normal samples, and the true detection rate
for the bivariate uniform and Student’s-t samples. Our results are as follows:

Mean p-value
True distribution Our Method Shapiro–Wilk Energy Test
Bivariate Normal 0.504 0.320 0.487
Bivariate Uniform 0.044 0.356 0.005
Bivariate Student’s-t 0.148 0.025 0.015

Detection Rates
True distribution Our Method Shapiro–Wilk Energy Test
Bivariate Normal 0.1 0.1 0.0
Bivariate Uniform 0.7 0.0 1.0
Bivariate Student’s-t 0.6 0.9 0.9
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The energy test performs the best in detecting (and not falsely detecting) departures from
normality for all three bivariate distribution families, while the Shapiro–Wilk test outper-
forms our method in the case of the Student’s-t distribution. But our method performs
reasonably well in the case of the Uniform distribution, while Shapiro–Wilk does very poorly.
Overall, our method shows more promise than the multivariate Shapiro–Wilk test in this
setting.

Next we increase the dimension and test the null hypothesis

H0 : Φ = N3(µ,Σ) for some (µ,Σ)

against the alternative
H1 : Φ 6= N3(µ,Σ) for any (µ,Σ)

based on samples of size n = 100, where Φ denotes the true distribution family from which
the data are sampled. We repeat the above simulation in this trivariate setting, and obtain
the following results:

Mean p-value
True distribution Our Method Shapiro–Wilk Energy Test
Trivariate Normal 0.431 0.225 0.447
Trivariate Uniform 0.000 0.577 0.007
Trivariate Student’s-t 0.061 0.004 0.011

Detection Rates
True distribution Our Method Shapiro–Wilk Energy Test
Trivariate Normal 0.2 0.4 0.1
Trivariate Uniform 1.0 0.0 1.0
Trivariate Student’s-t 0.9 1.0 0.9

While the energy test again yields the best overall performance, the performance of our
method is almost identical. Shapiro–Wilk is once again unable to distinguish the uniform
family from the normal family, while the other two methods succeed in all 10 samples.
Our conclusion is that, with respect to goodness-of-fit tests for multivariate normality, the
accuracy of our method is comparable to that of existing tests, and better in some situations.
But our goodness-of-fit test is easily extended to other multivariate distribution families,
while the other tests are not in general so versatile.

Being now confident that our method is sufficiently reliable, we investigate its performance
in evaluating the goodness of fit of a sample from the p-variate beta (MVBp) distribution.
The MVBp distribution is defined by a (p+ 1)-dimensional parameter θ = (θ0, θ1, . . . , θp) for
random vectors U = (U1, . . . , Up) in the p-dimensional cube (0, 1)p according to the density

f(u1, . . . , un) =
Γ
(∑p

j=0 θj

)
∏p
j=0 Γ(θj)

 p∏
j=1

u
θj−1
j

(1− uj)θj+1

1 +

p∑
j=1

uj
1− uj

−
∑p

j=0 θj

,

where Γ(·) denotes the gamma function [?, ?]. Given θ, an observation U = (U1, . . . , Up)
from the MVBp distribution of dimension p can be randomly generated by first generating in-
dependent samples X0, X1, . . . , Xp from p+1 univariate gamma distributions with respective
shape parameters θ0, θ1, . . . , θp. Then, for j = 1, . . . , p, set

Uj =
Xj

X0 +Xj
.
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We therefore generate a sample of n = 200 observations from the MVB3 distribution with
θ chosen arbitrarily as (4.2, 5.8, 1.9, 3.6). We wish to test the null hypothesis

H0 : Φ = MVB3(θ) for some θ

against the alternative
H1 : Φ 6= MVB3(θ) for any θ ,

where Φ denotes the proposed distribution underlying the sample. We implement our pro-
cedure, with N = 10000, R = 100, B = 100 and T = 20, to compute our test statistic AT .
This involves numerical optimization to obtain the MLE θ̂ of θ based on the sample, and
then generating R samples of size N as a basis for computing ĜN (t) and its quantiles. We
obtain AT = 14. We then derive an empirical distribution for AT by generating B samples
from the MVB distribution with θ = (2, 2, 2, 2) and computing AT for each sample using the
same procedure. The subsequent empirical p-value is 0.42, so that H0 is correctly affirmed.

We also generate samples of the same size from the trivariate normal distribution with
mean µ = (0.5, 0.5, 0.5) and covariance Σ = 0.01I, where I is the identity matrix, and from a
combination of three independent samples from univariate χ2

3, Γ(5, 2) and F4,3 distributions.
In both samples we then apply a linear transformation to ensure that all observations fall
within the unit cube. We implement our multivariate goodness-of-fit test for each sample, and
obtain an empirical p-value of 0.07 for the first sample, and 0 for the second sample. Hence
there is strong grounds for concluding that the latter sample is not a trivariate beta sample,
but we are not strongly convinced of the same conclusion regarding the former sample.
It seems that the distinction between the distributions of Mahalanobis distances for the
multivariate beta and the transformed multivariate normal is not very sharp, corresponding
to our earlier observation concerning Figure ??. But there are still reasonable grounds to
reject H0 under our method, since the empirical p-value is below 0.10.

We are unable to identify any other tractable goodness-of-fit test with which to com-
pare the performance of our method in this setting, but we are convinced that the proposed
goodness-of-fit test procedure has sufficient power to detect departures in data from a multi-
variate beta model. Hence we return to our earlier investigation of Instantaneous Coupling
(IC) measurements from the brain of a rat, as introduced in [?]. In particular, our null hypoth-
esis is that the n = 746 four-dimensional observations may be modeled with a quadrivariate
beta distribution. Under H0, the MLE of θ is approximately (1.7, 3.6, 1.8, 1.8, 1.4). We im-
plement our goodness-of-fit procedure to compute our test statistic AT , with N = 10000,
R = 100 and T = 20, and obtain AT = 55.4. We then generate B = 100 samples of size n
from the quadrivariate beta distribution with arbitrarily-chosen parameter θ = (2, 2, 2, 2, 2),
and compute the test statistic for each sample using the same settings. Given the distribution
of AT over these samples, we arrive at an empirical p-value of 0.13, so that we do not reject
our null hypothesis. Based on our test there is no basis to dispute our assumption that the
multivariate beta distribution is a suitable model for the IC data.

To confirm the validity of this test we implement it on two samples also of size n, one
from a quadrivariate normal and the other from a combination of independent samples from
the χ2

4, Γ(2, 3), F3,2 and U(0, 1) distributions. The respective p-values are 0.07 and 0, just
as we found using the three-dimensional versions of these samples. The power of our test is
not diminished with the increase of dimension. We are thus confident in the trustworthiness
of our conclusion regarding the real data.

The computational burden for our goodness-of-fit procedure is quite reasonable. The
choices for the settings R and B have the greatest impact on the time demand. With R = 100
the computation of our test statistic in each of the provided examples was under five minutes
using the R statistical environment [?], for samples sizes up to 750 and dimensions up to four.
Increasing the dimension significantly will force one to increase R to maintain an accurate
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estimate of G(t), while increasing the sample size will allow one to decrease R. Setting
B = 100 adds an additional 500 minutes to obtain a sufficient empirical distribution of the
test statistic under the null hypothesis, but one can break up these B computations into
smaller chunks that can run in parallel. Once an empirical distribution of the test statistic
has been obtained, it can be retained for further use when testing the same hypotheses based
on different samples of the same size and dimension. Moreover, the computational burden
can certainly be further reduced in the hands of skilled programmers using a more powerful
programming platform.

4 Discussion

We present a goodness-of-fit test for multivariate distributions that is simple to implement,
involves a reasonable computational burden, does not require analytically intractable deriva-
tions, and proves to have sufficient power to detect a poor fit in most situations. One must
be able to compute the MLE θ̂ of θ corresponding to the hypothesized distribution Fθ, and
be able to generate samples from Fθ̂. While we have focused here on continuous Fθ, the
method should easily extend to the discrete case. We anticipate that this straightforward
test procedure will prove widely useful in many statistical applications involving multivariate
data analysis.

References

[1] Cochran, W.G. (1952). The χ2 Test of Goodness of Fit. Ann. Math. Statist. 23(3),
pp. 315–345.
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Figure captions

Figure 1: Plots of Gn(t), with n = 10000, for samples randomly generated from a bivariate
normal distribution, a bivariate uniform distribution, a bivariate Student’s-t distribution,
and a bivariate beta distribution.
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