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Herpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infec-
tion and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease
probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and
inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of
visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring
2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any
clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly
associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical
signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings,
whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concen-
tration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess sur-
vival probabilities of frigatebird nestlings facing a herpesvirus outbreak.
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Introduction
Although organisms have evolved a range of specific and
non-specific mechanisms of protection against pathogens,
there are circumstances (e.g. food shortage, high stress level)
that make the organism unable to control the activity of a

given pathogen (Klimpel, 1996; van Boven and Weissing,
2004). Understanding the way in which free-living animals
modulate their response to cope with pathogens is therefore of
great ecological relevance and might even provide conserva-
tion practitioners with tools to predict the impact of a patho-
gen on fitness traits. For example, a previous study found that
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the concentration of haptoglobin (an inflammation-inducible
protein) was lower in Japanese quail (Coturnix japonica) that
died from Aspergillus fumigatus infection in comparison with
individuals that have survived (Goetting et al., 2013) and
showed how haptoglobin may be used to describe survival
probabilities (Goetting et al., 2013). Moreover, as the levels of
natural antibodies and complement in small blood samples pro-
vide information about immunocompetence (Matson et al.,
2005), these markers have been used to quantify the innate
immunity of vertebrates in stressful conditions (Hegemann
et al., 2013; Vermeulen et al., 2016).

Herpesviruses are one of the most common infectious
pathogens in humans and in both wild and domestic animals.
However, little is known about the causes and pathophysio-
logical consequences of herpesvirus infection in wild animals
(Goldberg et al., 1990). Decreased immunocompetence appears
to favour outbreaks of herpesvirus (Goldberg et al., 1990). The
causes of a reduction in immunocompetence might lie with
sources of environmental stress; for example, chronic secretion
of glucocorticoid hormones in response to a stressful situation
can reduce the individual’s capacity to mount an immune
response (Sapolsky et al., 2000). Specifically, environmental
stressful stimuli activate the hypothalamic–pituitary–adrenal
axis, which leads to the release of corticotrophin-releasing fac-
tors in the brain and glucocorticoids in the periphery (Romero,
2004). The action of glucocorticoids on the immune system is
dependent on the duration of the stress exposure. For example,
it was found that a short-term exposure to a stressful experience
enhanced the immune response, whereas a prolonged exposure
reduced immunocompetence (Dhabhar and McEwen, 1997;
Dhabhar, 2000). In birds, elevated concentrations of cortico-
sterone (CORT; the main avian glucocorticoid) have detrimen-
tal effects on nestling growth, behaviour and immunity
(Kitaysky et al., 2003; Rubolini et al., 2005) and can even
increase the generation of reactive oxygen species (Costantini
et al., 2011). Both chronic stressful conditions and generation
of reactive oxygen species via CORT negatively affect the
dynamics of the telomeres (von Zglinicki, 2002; Kotrschal
et al., 2007; Haussmann et al., 2012; Quirici et al., 2016),
long repetitive non-coding sequences of DNA located at the
ends of chromosomes, which can play a major role in ageing
processes (Blackburn, 1991). Telomeres, considered as valu-
able indicators of cell health (Counter, 1996), might also
reflect the individual’s ability to cope with stressful conditions
(Kotrschal et al., 2007) and predict lifespan, reproductive out-
come or survival perspective in birds (Haussmann et al.,
2005; Heidinger et al., 2012; Angelier et al., 2013).

In individuals exposed to a herpesvirus outbreak, chronic
activation of the hypothalamic–pituitary–adrenal axis might
favour viral activity (Padgett and Glaser, 2003); for example,
through an impairment of the immune response (Casto et al.,
2001; Stier et al., 2009; Vallverdú-Coll et al., 2016). The assess-
ment of stress-induced CORT is therefore of crucial importance
for the magnificent frigatebird (Fregata magnificens; hereafter
called frigatebird) population used in this study, which is

probably undergoing a strong exposure to environmental stres-
sors (Martinet and Blanchard, 2009; Sebastiano et al., 2016).
For instance, a study on experimentally infected mice found that
herpes simplex virus-associated morbidity and mortality during
development are increased by stress-induced CORT (Elftman
et al., 2010). However, there is a lack of studies addressing the
physiological consequences of a herpesvirus infection on indivi-
duals’ stress levels and its deleterious effect on immunity and tel-
omeres in wild animals. Furthermore, there is an urgent need to
identify markers associated with herpesvirus infections that can
be used for the assessment of health status in order to strengthen
conservation strategies. For instance, as infectious diseases may
induce inflammation (Eckersall et al., 2001; Gånheim et al.,
2007; Grau-Roma et al., 2009; White et al., 2012), inflamma-
tory markers might be a tool to diagnose and monitor animal
diseases (Jain et al., 2011; Goetting et al., 2013).

In this study, we measured the basal plasma concentration
of CORT, telomere length and an array of immune and inflam-
matory markers in frigatebird nestlings likely to be affected by a
severe herpesvirus infection (Sebastiano et al., 2016). The aims
of this study were as follows: (i) to investigate whether the
chances of showing visible clinical signs of the disease are higher
in immunosuppressed individuals; (ii) to assess whether indivi-
duals with visible signs have higher physiological stress and
inflammation than those individuals without any clinical
signs; (iii) to assess whether short-term survival probabilities
are related to physiological markers; (iv) to assess the sensi-
tivity and specificity of immunological and inflammatory mar-
kers for diagnosis of virus infections; and (v) to assess whether
telomere length might be associated with the infection status.

Materials and methods
Study site and sampling
Grand Connétable island is a protected area located off the
Northern Atlantic coast of South America (French Guiana,
4°49′30N, 51°56′00W). This island hosts a unique colony of
frigatebirds that is one of the most important in South
America and represents the only breeding site for frigatebirds
in French Guiana (Dujardin and Tostain, 1990). A total of
44 nestlings, including 22 nestlings without clinical signs of
herpesvirus infection and 22 nestlings with visible clinical
signs of a herpesvirus infection as previously described (de
Thoisy et al., 2009) of ~4months old (termed ‘sick’; Fig. 1),
were captured by hand during the breeding season of 2015,
on 5–7 June, and recaptured on 19–21 June. As sick nest-
lings vary in the severity of visible clinical signs (probably
because of a different stage of the infection), we chose sick
nestlings with the same severity of visible clinical signs. In
the second sampling period, of the nestlings that were previ-
ously blood sampled nine were found dead from the disease
and four were not found. In addition, six new nestlings were
sampled. Out of the 22 apparently healthy individuals
sampled during the first period, six nestlings showed the
occurrence of clinical signs in the second period.
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Within 3min after capture, 2 ml of blood was collected
from the brachial vein using a heparinized syringe and a 25
gauge needle. After removing the needle from the syringe (in
order to avoid haemolysis), blood was carefully transferred
into a 2ml tube and immediately kept cold (in a box with ice
packs). Blood was then brought back to the field station
within a few minutes of collection and was centrifuged
within 1 h to separate plasma from red blood cells. After cen-
trifugation, plasma and red blood cells were divided further
into several tubes in order to avoid repeated thawing for
laboratory analyses. All the tubes were kept on dry ice until
the end of the fieldwork and, when back at the laboratory,
were kept in a −80°C freezer until laboratory analyses.

Haemolysis–haemagglutination assay
To characterize constitutive innate humoral immunity, we
used the haemolysis–haemagglutination assay as described in
a previous protocol (Matson et al., 2005). In this assay, seri-
ally diluted plasma of frigatebird nestlings was evaluated for
its ability to lyse and agglutinate exogenous red blood cells
from rabbits (Matson et al., 2005). Lysis reflects the inter-
action of complement and natural antibodies, whereas agglu-
tination results from natural antibodies only. From the
digitalized images, lysis and agglutination were scored twice
for each sample and recorded as the negative log2 of the last
plasma dilution at which agglutination or lysis occurred.
Titres that showed intermediate agglutination or lysis values
were assigned half score. All plasma samples were scored
twice; the coefficient of variation was 4.9% for agglutination
and 4.3% for lysis, respectively.

Haptoglobin and nitric oxide assays
The concentration of plasma haptoglobin (an inflammation-
inducible protein; expressed as milligrams per millilitre) was
quantified using the manufacturer’s instructions of a

commercially available assay (PHASE Haptoglobin assay;
Tridelta Development Ltd), which quantifies the haem-
binding capacity of haptoglobin colorimetrically. In each
plate, a standard curve and an internal standard were run in
duplicate.

The plasma concentration of nitric oxide (in micromoles
per litre), used in immunoecological research for assessment
of the magnitude of the inflammatory response and potential
immunopathological damage (Sild and Hõrak, 2009), was
estimated from the concentration of nitrate and nitrite, the
stable end products of nitric oxide oxidation. The principle
of the assay is the reduction of nitrate to nitrite by copper-
coated cadmium granules, followed by colour development
with Griess reagent (Sild and Hõrak, 2009).

Telomere assay
Determination of telomere length was performed at the
Centre d’Etudes Biologiques de Chizé (CEBC) by Southern
blot using the TeloTAGGG Telomere Length Assay (Roche,
Mannheim, Germany) as previously described (Blévin et al.,
2016). After digestion with proteinase K and DNA extrac-
tion from red blood cells using the DNeasy blood and tissue
kit (Qiagen), DNA quality was carefully checked before telo-
mere analyses (Nussey et al., 2014). Following extraction,
DNA yield and purity were checked using a spectrophotom-
eter (Nanodrop ND-1000; Thermo Scientific, USA). All sam-
ple yields were >20 ng µl−1. Moreover, ranges for absorption
of all samples were within an acceptable range (between 1.8
and 2.0 for 260 nm/280 nm ratio and between 1.9 and 2.2
for 260 nm/230 nm ratio). DNA was digested with the
restriction enzymes HinfI and RsaI for 16 h at 37°C, and
DNA samples were subsequently separated using a pulse-
field gel electrophoresis (Bio-Rad) on a 0.8% agarose gel.
Samples were randomly assigned to a gel and run in four
gels, and inter-gel variations were measured. The gels were
run at 3.0 V/cm, with an initial switch time of 0.5 s to a final
switch time of 7 s for 14 h. The gels were then depurated and
denaturized in an alkaline solution. The gels were then neu-
tralized, and DNA was transferred onto a nitrocellulose
membrane by Southern blot (Hybond N+; Amersham Life
Science, Amersham, UK), which was incubated at 120°C for
20min in order to fix the DNA. The DNA was then hybri-
dized with a digoxigenin-labelled probe specific for telomeric
sequences and incubated with antidigoxigenin-specific anti-
body prior to visualization with a Chemidoc (Bio-Rad).
Estimation of telomere length was then performed using
ImageJ to extract telomere smear densities. The lane-specific
background was subtracted from each density value, and the
telomere length (mean value) was then calculated using a
window of 7–30 kb, and the inter-gel coefficient of variation
was 2.0%.

Sex determination
At the CEBC, DNA samples were used to determine the sex
of individuals by polymerase chain reaction amplification as

Figure 1: A healthy nestling, on the left, does not show visible
clinical signs of the disease (hyperkeratosis, body and head crusts) in
comparison to a sick nestling, on the right.
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previously detailed, with minor modifications (Griffiths
et al., 1998). Sex identification was carried out using the P8
(5′-CTCCCAAGGATGAGRAAYTG-3′) and P2 (5′-
TCTGCATCGCTAAATCCTTT-3′) primers. An initial
denaturing step at 94°C for 2min was followed by 40 cycles
of 94° for 30 s, 48°C for 30 s, and 72°C for 1min. A final
run of 94°C for 30 s, 50°C for 1min, and 72°C for 5min
completed the programme.

Corticosterone assay
Corticosterone concentrations were determined at the CEBC
following a previous protocol (Lormée et al., 2003) for steroid
hormones. Plasma CORT was measured in samples after ethyl
ether extraction by radioimmunoassays using a commercial
antiserum, raised in rabbits against corticosterone-3-(O-car-
boxy-methyl) oxime bovine serum albumin conjugate
(Biogenesis, UK). Corticosterone concentrations showed no
significant relationship with the hour of sampling (r = 0.18,
P = 0.10, n = 81), and were all collected within 3min after
capture, thus they were considered to reflect the baseline
levels. The intra-assay variation was 6.4% (n = 6 duplicates).

Statistics
All statistical analyses were performed using R (version
3.1.2). Given that out of the 22 healthy-looking nestlings
sampled during the first period, six nestlings showed visible
clinical signs (hyperkeratosis, body and head crusts) during
the second sampling period, our data set was divided into
three different groups. The first group included nestlings
without visible signs of the disease in both sampling periods
(hereafter called ‘healthy’; n = 16). The second group
included nestlings that manifested clinical signs only in the
second sampling period (hereafter called ‘activated’; n = 6),
and the third group contained nestlings that already showed
clinical signs during the first sampling period (hereafter
called ‘sick’; n = 22).

Haptoglobin, nitric oxide, CORT and telomere length
were included as dependent variables in separate linear mixed
models; group (healthy, activated and sick) and sampling peri-
od were included as fixed factors, and the factor ‘individual’
was included as a random effect because we had repeated
measurements. Outcomes of all models were unchanged if the
sampling time (calculated as minutes elapsed since midnight)
was included. Thus, we present outcomes of models that do
not take into account sampling time. In each model, we also
included the interaction between the group and the sampling
period. All individuals for which we had repeated measure-
ments (nestlings captured in the first sampling period and
recaptured in the second sampling period; n = 31) were
included. This approach was chosen in order to account for
differences among groups during the first and/or the second
sampling period, as well as to determine the ‘change’ (a signifi-
cant decrease or increase in the specific biomarker) of each
group from the first to the second period.

Haemagglutination and haemolysis scores were included
as dependent variables in two separate generalized linear
mixed models with a binomial error distribution; in these
models, we included the same fixed and random factors as
for the linear mixed models. Generalized linear mixed mod-
els were used because the dependent variables were
expressed as count data. Laboratory analyses were not suc-
cessful for three individuals that were therefore excluded
from the statistical analyses. All individuals for which we
had repeated measurements (nestlings captured in the first
sampling period and recaptured in the second sampling peri-
od; n = 28) were included.

We removed the interaction term from each full model
when it was not significant in order to attain the best-fit
model, which therefore included fixed factors only.

Sex differences in the specific biomarker were evaluated
for both sampling periods separately, in order to include the
individuals that were sampled only in one period. The model
for data collected in the first sampling period also included
the individuals that were found either dead because of the
disease or that were not been found (n = 44; 22 healthy and
22 sick), whereas the second model included individuals
sampled in the second period only (n = 37; 31 recaptured
plus six new individuals). In this model, we also included the
interaction between sex and group to test whether any differ-
ences between males and females depended on the health sta-
tus. This model also enabled us to assess whether there were
any differences among groups within each sampling period.
In both the first and the second sampling period, two groups
were present (‘with’ or ‘without’ clinical signs). In these mod-
els, the activated group was not present because individuals
from this group did not show clinical signs at the first sam-
pling period (and were therefore included in the ‘without
clinical signs’ group), and in the second sampling period they
showed clinical signs (and were therefore included in the
‘with clinical signs’ group). The significant differences that
were found between individuals ‘with’ or ‘without’ clinical
signs are reported in the Results section. Dependent variables
were tested for normality with a Shapiro–Wilk test and were
logarithmically transformed when necessary. Models were
also tested for heteroscedasticity and normality of residuals.
For each model, we removed non-significant interaction first,
and then each non-significant factor in order to attain the
best-fit model.

The probabilities of each marker to predict the occurrence
of clinical signs and short-term survival were estimated using
a generalized linear model with a logit link function and a
binomial error variance. To predict the occurrence of clinical
signs, we used the 22 healthy individuals in the first sampling
period (six of which showed clinical signs during the second
sampling period). The survival perspectives within our study
period were estimated using two different models, as follows:
the first model included 22 sick individuals sampled during
the first period, and the second model included all the 44
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individuals sampled during the first period. In survival mod-
els, individuals that have been found in the second period
(n = 4) were not considered as dead in the model (thus, the
comparison was made by using the nine nestlings that died
from herpesvirus disease, eight of which were already show-
ing clinical signs in the first sampling period). In these mod-
els, we have considered as ‘1’ those individuals that were
alive in the second sampling period and ‘0’ those individuals
that were found dead. An estimation of overdispersion has
been performed to minimize the risk of type I error (Hilbe,
2011), and any data transformation to achieve normality is
reported when needed.

Furthermore, haptoglobin and nitric oxide values were
also used for diagnosis of herpesvirus. Haptoglobin was cho-
sen because previous studies have shown that the concentra-
tion of haptoglobin changes significantly in response to an
infection, injury or malignancy (Quaye, 2008) and can
increase or decrease depending on the type of infection
(Georgieva et al., 2010; Goetting et al., 2013). For those rea-
sons, haptoglobin has recently been proposed as a predictor
of both clinical signs and survival in diverse diseases in
humans and birds (Goetting et al., 2013; Sun et al., 2016).
We chose nitric oxide because its concentration is related to
that of haptoglobin (Schaer et al., 2016) and because previ-
ous studies suggested the use of nitric oxide as a measure of
innate immunity (Bourgeon et al., 2007) and a condition
index during pathogenesis (Lillehoj and Li, 2004). The idea
of a diagnostic test is to increase (or decrease) the suspicion
that an individual has a particular disease (Parikh et al.,
2008). The sensitivity reflects the ability of a test to classify
an individual correctly as ‘diseased’, and in this study sensi-
tivity was expressed as the percentage of nestlings correctly
identified as showing the occurrence of clinical signs over
time. The specificity reflects the ability of a test to classify an
individual correctly as disease free, and in this study specifi-
city was expressed as the percentage of nestlings correctly
identified as not showing clinical signs over time, calculated

on apparently healthy individuals. The use of these tests in
animals affected by infectious diseases is increasing (Goetting
et al., 2013).

Results
Haptoglobin and nitric oxide
The model of haptoglobin concentration in plasma showed
significant differences among groups and between sampling
periods (Fig. 2 and Tables 1 and 2), but the interaction
between group and sampling period was not significant (Fig. 2
and Tables 1 and 2). The haptoglobin concentration was high-
er in the sick group than in the healthy group (P < 0.01) and
the activated group (P < 0.01), whereas there were no signifi-
cant differences between the healthy group and the activated
group. The haptoglobin content generally increased over time
(P < 0.01). Males and females did not differ in haptoglobin
concentration both in the first (F = 0.06, P = 0.81) and in the
second sampling period (F = 0.01, P = 0.93). Individuals with
clinical signs had significantly higher concentrations of hapto-
globin than individuals without clinical signs both in the first
(t = 6.24, P < 0.01) and in the second sampling period
(t = 3.64, P < 0.01).

The nitric oxide concentration did not differ among
groups, nor did it show any significant changes over time
(Fig. 2 and Tables 1 and 2). Males and females did not differ
in nitric oxide concentrations both in the first (F = 0.06,
P = 0.80) and in the second sampling period (F = 0.54,
P = 0.47).

Sensitivity and specificity were used to compare the diag-
nostic power of haptoglobin and nitric oxide, and results are
shown in Table 3. The haptoglobin test had higher sensitivity
and specificity than nitric oxide for herpesvirus infection.
Taken together, haptoglobin and nitric oxide reached a sen-
sitivity of 100%, while specificity dropped (Table 3).

Figure 2: Mean values ± SEM of the haptoglobin and nitric oxide concentrations between the first and the second sampling period. Groups
are shown in the following order: healthy, activated, and sick.
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Table 2: Full and final linear mixed models of inflammation markers, telomere length and corticosterone, and full and final generalized linear
mixed models of the immune response markers

Full model Final model

Variable Effect d.f. F-value P-value d.f. F-value P-value

Inflammation

Haptoglobin Group 2,28 12.83 <0.01 2,28 12.83 <0.01

Period 1,28 13.30 <0.01 1,30 8.04 <0.01

Group*period 2,28 2.89 0.07

Nitric oxide Group 2,28 0.49 0.62 2,28 0.50 0.62

Period 1,28 4.77 0.04 1,30 2.48 0.13

Group*period 2,28 2.31 0.12

Immunity

Haemagglutination Group 2,25 0.45 0.64 2,25 0.45 0.64

Period 1,25 0.11 0.75 1,27 0.11 0.75

Group*period 2,25 0.01 0.99

Haemolysis Group 2,25 0.01 0.99 2,25 0.01 0.99

Period 1,25 <0.01 0.99 1,27 <0.01 0.99

Group*period 2,25 0.05 0.95

Damage

Telomere length Group 2,28 2.72 0.08 2,28 2.72 0.08

Period 1,28 0.09 0.76 1,30 0.11 0.74

Group*period 2,28 1.14 0.33

Hormone

Corticosterone Group 2,28 3.36 <0.05 2,28 3.36 <0.05

Period 1,28 0.69 0.41 1,30 0.44 0.51

Group*period 2,28 0.59 0.56

Significant P-values are shown in bold.

Table 1: Mean values ± SD of the inflammation markers, immune response, corticosterone and telomere length of each group in both
sampling periods

Biomarker

First sampling period Second sampling period

Healthy
(mean ± SD)

Activated
(mean ± SD)

Sick
(mean ± SD)

Healthy
(mean ± SD)

Activated
(mean ± SD)

Sick
(mean ± SD)

Telomere length (kb) 11.0 ± 0.5 11.1 ± 0.2 11.3 ± 0.4 10.9 ± 0.4 11.2 ± 0.3 11.4 ± 0.4

Haemagglutination 6.0 ± 1.6 6.5 ± 1.0 6.4 ± 1.5 5.7 ± 1.0 6.3 ± 0.4 6.4 ± 1.5

Haemolysis 4.6 ± 1.5 4.7 ± 0.9 5.0 ± 1.3 4.4 ± 0.9 5.1 ± 0.4 5.3 ± 1.3

Haptoglobin (mg/ml) 0.32 ± 0.10 0.41 ± 0.30 0.95 ± 0.55 0.40 ± 0.13 0.67 ± 0.28 1.09 ± 0.48

Nitric oxide (µmol/l) 5.0 ± 1.5 5.4 ± 1.8 5.3 ± 3.6 3.9 ± 1.7 3.6 ± 2.5 6.0 ± 4.8

Corticosterone (ng/ml) 27.3 ± 20.7 21.9 ± 26.3 16.9 ± 9.1 49.4 ± 33.6 22.0 ± 14.1 20.4 ± 18.9
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Haemolysis and haemagglutination tests
Haemolysis and haemagglutination scores did not differ
among groups or between sampling periods (Fig. 3 and
Tables 1 and 2). The interaction between group and sam-
pling period was not significant for both markers (Table 2).
Males and females did not differ for both scores in the first
(F < 0.02, P > 0.89) and in the second sampling period
(F < 0.36, P > 0.55).

Telomere length
Telomere length did not differ among groups or between per-
iods, and the interaction between group and sampling period
was not significant (Fig. 4 and Tables 1 and 2). Furthermore,
telomere length did not differ between males and females
both in the first (F < 0.01, P = 0.93) and in the second sam-
pling period (F = 1.74, P = 0.19). However, in the second
sampling period, healthy nestlings had shorter telomeres
than activated and sick nestlings grouped together (t = 2.67,
P = 0.011).

Plasma corticosterone
The plasma concentration of CORT did not differ between
sampling periods, and the interaction between group and
sampling period was not significant (Fig. 4 and Tables 1
and 2). Plasma CORT differed significantly among groups
(Fig. 4 and Tables 1 and 2), with the sick group having less

CORT than the healthy group (t = 2.51, P = 0.02; Fig. 4
and Table 1), whereas the activated group had similar
CORT to that of the healthy group (t = 1.70, P = 0.10;
Table 1) and of the sick group (t = 0.30, P = 0.77;
Table 1). Corticosterone concentration did not differ
between males and females both in the first (F = 0.90
P = 0.35) and in the second sampling period (F = 0.21,
P = 0.65). Individuals with clinical signs had lower baseline
CORT than individuals without clinical signs in the second
sampling period.

Markers as a tool to predict the occurrence
of clinical signs and short-term survival
Haptoglobin did not predict the occurrence of clinical signs
(Z = 1.15, P = 0.25) or the short-term survival probabil-
ities of sick nestlings (Z = −1.19, P = 0.23), but a higher
concentration of haptoglobin meant lower survival per-
spectives for all nestlings regardless of their health status
(Z = −2.6, P = 0.01; Fig. 5). Haemolysis and haemagglu-
tination scores did not predict the occurrence of clinical
signs (Z < 1.21, P > 0.23) or the short-term survival prob-
abilities (sick group only, Z < 0.14, P > 0.89; and all
groups, Z < 0.47, P > 0.64). Nitric oxide, corticosterone
and telomere length did not predict the occurrence of clin-
ical signs (Z < 0.80, P > 0.11) or the survival probabilities
(sick group only, Z < −0.34, P > 0.63; and all groups,
Z < 0.27, P > 0.65).

Table 3: Diagnostic sensitivity and specificity of inflammatory markers for herpesvirus infection

Marker Positive test value Sensitivity (%) Specificity (%)

Haptoglobin >0.39 mg/ml 67 73

Nitric oxide <0.05 µmol/l 67 45

Haptoglobin + nitric oxide Haptoglobin >0.39 mg/ml or nitric oxide <0.05 µmol/l 100 45

Figure 3: Mean values ± SEM of the haemagglutination and haemolysis scores between the first and the second sampling period. Groups are
shown in the following order: healthy, activated, and sick.
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Discussion
Our results showed that the plasma concentration of hapto-
globin was greatly increased during a disease probably
caused by herpesvirus infection and might predict the short-
term probability of survival of frigatebird nestlings. Thus,
haptoglobin might be a tool for assessment of the impact of
herpesvirus on frigatebird nestlings. Our results also
showed that individuals with clinical signs were not
immunosuppressed, because the levels of complement and
natural antibodies were similar among tested groups.
Furthermore, contrary to our expectation, the basal plasma
concentration of CORT did not increase in the ‘activated’
group and, generally, sick individuals had lower CORT
than healthy nestlings. Finally, telomere length and nitric
oxide did not seem to be affected by the viral activity, nor
did they prove useful as markers to predict both the

occurrence of visible clinical signs and short-term survival
during this disease.

Previous studies have shown that haptoglobin can
increase or decrease depending on the type of infection. For
instance, an increased plasma concentration of haptoglobin
was found in chickens infected by Escherichia coli and
Eimeria tenella (Georgieva et al., 2010) or Salmonella enteri-
ca (Garcia et al., 2013), in domestic canaries exposed to
Plasmodium relictum (Cellier-Holzem et al., 2010) or in
wandering albatrosses (Diomedea exulans) with a higher
density of Ixodes uriae on the head plumage (Costantini
et al., 2015). Likewise, broiler chickens infected by bron-
chitis virus showed significantly higher haptoglobin than
healthy individuals (Asasi et al., 2013), whereas Japanese
quails (Coturnix japonica) infected by aspergillosis had a
lower haptoglobin concentration than control birds
(Goetting et al., 2013). However, irrespective of the direction
of the change, there is a general consensus that haptoglobin
concentrations change significantly in response to an inflam-
matory stimulus such as infection, injury or malignancy
(Quaye, 2008). For those reasons, haptoglobin has recently
been proposed as a predictor of both clinical signs and sur-
vival in humans and birds (Goetting et al., 2013; Sun et al.,
2016). In our study, short-term survival probabilities of nest-
lings decreased drastically when the plasma concentration of
haptoglobin exceeded 0.32mg/ml (corresponding to −0.5 on
the x-axis of Fig. 5). Thus, a quantification of haptoglobin in
plasma could be a valuable tool to predict short-term sur-
vival perspectives of frigatebird nestlings facing a herpesvirus
disease and, possibly, in other wild animals. Although most
of the individuals with clinical signs are likely to die within a
few weeks (personal observations, Pineau K.), the identifica-
tion of a marker associated with survival probabilities might
indicate which systems that regulate the physiological homeo-
stasis are disrupted by the disease. In doing so, it is, for
example, possible to define a more specific pharmacological

Figure 4: Mean values ± SEM of the telomere length and baseline corticosterone concentrations between the first and the second sampling
period. Groups are shown in the following order: healthy, activated, and sick.

Figure 5: Survival probability of nestling frigatebirds (survival = 1
and non-survival = 0) in relationship to the concentrations of
haptoglobin expressed as milligrams per millilitre.
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treatment of the disease. Finally, the general increase in the
haptoglobin concentrations that occurred from the first to
the second sampling period is probably attributable to an
inflammatory status resulting from the infection, which
results in the increased synthesis of haptoglobin (Quaye,
2008). Indeed, individuals with clinical signs, and especially
individuals from the activated group, were probably under-
going an aggressive stage of the disease during this period.
It has been shown that cells facing an herpesvirus outbreak
increase the expression of interleukins (Kuhnle et al., 1996;
An et al., 2002), which in turn stimulate the expression of
haptoglobin (Quaye, 2008).

Haptoglobin is also able to prevent nitric oxide scaven-
ging from haemoglobin and to preserve nitric oxide signal-
ling (Schaer et al., 2016). Nitric oxide is a small molecule
that is highly reactive and diffusible, synthesized by oxida-
tion of L-arginine by the inducible nitric oxide synthase or
type 2 nitric oxide synthase (Bogdan et al., 2000). Given that
the expression of these enzymes is remarkably increased
when induced by inflammatory cytokines, microorganisms
and reactive oxygen species (Arzumanian et al., 2003), the
level of nitric oxide has been used in ecological studies as a
measurement of innate immunity (Bourgeon et al., 2007)
and a condition index during pathogenesis (Lillehoj and Li,
2004). Bourgeon et al. (2007) found an increase in the nitric
oxide concentrations from 106 to 179 µmol/l in the common
eider (Somateria mollissima) after lipopolysaccharide injec-
tion (Bourgeon et al., 2007), and a more recent study has
found a significant increase in serum nitric oxide concentra-
tions following virus infection in chickens and ducks
(Burggraaf et al., 2011). However, although a previous
review has highlighted a major role of nitric oxide during
viral infections (Akaike and Maeda, 2000), in our study indi-
vidual nitric oxide concentrations did not differ significantly
between healthy and sick nestlings. For diagnostic purposes,
nitric oxide also showed lower sensitivity and specificity than
haptoglobin. Moreover, the combination of haptoglobin and
nitric oxide, despite being efficient in identifying 100% of
individuals from the activated group, lacked specificity.
Possibly, for future studies, the combination of several mar-
kers could help to achieve a good balance between specificity
and sensitivity, providing an efficient diagnostic tool for viral
diseases.

In addition to haptoglobin and nitric oxide concentra-
tions, we tested the capacity of frigatebird blood to agglutin-
ate and lyse exogenous blood, which is a measurement of
immunocompetence (Matson et al., 2005). Our study clearly
showed that there were no significant differences among
groups for both tests. This is surprising because viral infec-
tion is well known to stimulate the immune system in
humans and laboratory animals (Vollstedt et al., 2004;
Chew et al., 2009). Thus, we would have expected an
increase in the immune response in the activated group in
order to counteract the virus spread, or at least a difference
in the immune markers between the healthy and the sick

birds. The reason for an absence of up-regulation of the
immune system might lie in the immunosuppressive action of
glucocorticoids (Coutinho and Chapman, 2011) that are
secreted in the event of infection in order to avoid both over-
stimulation of the immune defenses and immunopathology
(Besedovsky and del Rey, 1996). However, our results did
not support this explanation because plasma concentrations
of CORT were not higher in sick than in healthy nestlings.
On the contrary, CORT was higher in healthy than in sick
nestlings, and this difference was more pronounced in the
second sampling period. Here, we propose two explanations
for the apparent lack of differences in the immune status
between healthy and sick nestlings. First, it is possible that
the immune traits we measured in apparently healthy nest-
lings might not reflect the true and basal immunocompetence
of nestlings. In another study, we have shown how some
healthy nestlings were positive for circulating herpes viral
copies (Sebastiano et al., unpublished observations). Thus, it
could be that any differences in immune traits between
healthy and sick birds (including nestlings with the presence
of herpes viral copies) have been masked because immune
activity might have been up-regulated in some healthy nest-
lings. The information on the presence of circulating copies
of herpesvirus, however, was obtained from a pilot study
carried out to develop a new technique to assess the presence
of the virus in individuals without visible clinical signs of a
herpesvirus outbreak. Although these preliminary results
confirm the presence of viral copies also in nestlings without
clinical signs, the methodology is not yet well developed;
therefore, some caution is still needed in drawing definitive
conclusions. Second, the immune traits we have measured in
our study might not have been responsive to this specific
infection. Given the several mechanisms involved in the
immune response, the simultaneous use of multiple immune
metrics might help to cover the complexity of the immune
system (Legagneux et al., 2014). Although the levels of
complement and natural antibodies are amongst the most
used in avian immunology, it would be interesting in future
work to include additional markers, such as heterophile-to-
lymphocyte ratio, avian immunoglobulin and basophils
(Legagneux et al., 2014).

Regarding CORT, it is possible that the low CORT con-
centration in sick nestlings compared with healthy nestlings
reflects an attenuation of the stress response with chronic
stress. Chronic stress generally produces a chronic activation
of the hypothalamic–pituitary–adrenal axis, which in turn
leads to increased baseline CORT concentrations. A previous
study carried out on captive European starlings (Sturnus vul-
garis) has, however, shown a decrease in basal and stress-
induced CORT concentrations with the onset and progres-
sion of chronic stress (Rich and Romero, 2005). As we lack
information on the acute stress response of frigatebirds, we
cannot explain whether the among group differences in
CORT concentrations result from the attenuation of the
stress response in sick nestlings or from an increase in basal
CORT concentrations in healthy individuals.
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Finally, our study showed that telomere length was not
associated with the infection status. As stressful events can
increase the rate at which telomeres shorten in both in vivo
and in vitro studies (Epel et al., 2004; Boonekamp et al.,
2014; Trusina, 2014), we expected that telomeres would be
shorter in sick than in healthy nestlings. The lack of telomere
loss might indicate that the time elapsed from the first to the
second sampling period (14 days) was too short to cause a
detectable shortening of telomere length. However, previous
work found evidence of telomere shortening over both short
(Meillère et al., 2015; Salmón et al., 2016) and long periods
(Kotrschal et al., 2007; Boonekamp et al., 2014). If the dis-
ease were to cause telomere shortening, we should at least
observe those individuals with visible clinical signs to have
shorter telomeres than healthy nestlings. However, we also
did not find evidence for a link between telomere length and
infection status. A previous study has underlined a major
role of chronic infection in telomere shortening, showing
how great reed warblers (Acrocephalus arundinaceus)
infected with chronic malaria have an accelerated telomere
shortening in comparison with uninfected individuals
(Asghar et al., 2015). Additionally, studies on humans have
found herpesvirus to integrate into host telomeres and to
cause telomere shortening and instability (Deng et al., 2014;
Huang et al., 2014), in order to facilitate the release of viral
genome from the chromosome (Huang et al., 2014). In our
study, we found longer telomeres in individuals with visible
clinical signs in the second sampling period. A possible
explanation might lie with the fact that individuals with vis-
ible clinical signs of the disease were subjected to slower
development in comparison to apparently healthy nestlings
(field observation, Pineau K.). Indeed, previous studies have
shown how telomeres might be shortened in individuals with
faster development (Ringsby et al., 2015). Thus, a lower
metabolic rate attributable to slower growth might have
masked any effects of infection on telomere erosion. Further
work will be needed to clarify whether the lack of associ-
ation between infection status and telomere length we found
in our study is dependent on growth rate.

Conclusions
Our work provided strong evidence that the plasma concen-
tration of haptoglobin is associated with clinical signs of the
disease, and it is effective to predict short-term survival of fri-
gatebird nestlings during a herpesvirus outbreak, supporting
the use of haptoglobin as a diagnostic tool for viral diseases.
Our study also showed that a single measurement of inflam-
matory and/or immune response might not be enough to
assess the impact of viral infection on the health status of
birds. Finally, our results suggested that there might be
down-regulation of CORT during chronic viral infection. As
with telomere length, although it did not appear to be linked
to infection status, further study will be needed to assess
whether this is attributable to a general slow growth rate
and low metabolism of sick nestlings.
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