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Abstract

Genetic mapping studies may provide association between sequence variants and disease susceptibility that can, with
further experimental and computational analysis, lead to discovery of causal mechanisms and effective intervention. We
have previously demonstrated that polymorphisms in immunity-related GTPases (IRG) confer a significant difference in
susceptibility to Chlamydia psittaci infection in BXD recombinant mice. Here we combine genetic mapping and network
modeling to identify causal pathways underlying this association. We infected a large panel of BXD strains with C. psittaci
and assessed host genotype, IRG protein polymorphisms, pathogen load, expression of 32 cytokines, inflammatory cell
populations, and weight change. Proinflammatory cytokines correlated with each other and were controlled by a novel
genetic locus on chromosome 1, but did not affect disease status, as quantified by weight change 6 days after infection In
contrast, weight change correlated strongly with levels of inflammatory cell populations and pathogen load that were
controlled by an IRG encoding genetic locus (Ctrq3) on chromosome 11. These data provided content to generate a
predictive model of infection using a Bayesian framework incorporating genotypes, immune system parameters, and weight
change as a measure of disease severity. Two predictions derived from the model were tested and confirmed in a second
round of experiments. First, strains with the susceptible IRG haplotype lost weight as a function of pathogen load whereas
strains with the resistant haplotype were almost completely unaffected over a very wide range of pathogen load. Second,
we predicted that macrophage activation by Ctrq3 would be central in conferring pathogen tolerance. We demonstrated
that macrophage depletion in strains with the resistant haplotype led to neutrophil influx and greater weight loss despite a
lower pathogen burden. Our results show that genetic mapping and network modeling can be combined to identify causal
pathways underlying chlamydial disease susceptibility.
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Introduction

The genus Chlamydia comprises a number of species of highly

related obligate intracellular prokaryotic pathogens that cause

clinical disease in humans ranging from blinding trachoma [1] and

sexually transmitted infection by Chlamydia trachomatis [2], com-

munity acquired pneumonia by Chlamydia pneumoniae [3] and life-

threatening respiratory and systemic zoonosis by Chlamydia psittaci

[4]. In a previous study, we determined that a known QTL on

chromosome 11 (Ctrq3) [5,6] containing two polymorphic innate

immune genes (Irgm2 and Irgb10) in the family of immunity-related

GTPases (IRG) were responsible for the innate difference in

susceptibility to a systemic infection to C. psittaci among the BXD

recombinant inbred strains [7]. Each member of this mouse

reference strain set inherits a unique and approximately equal

fraction of their genomes from two fully inbred progenitors—

strain C57BL/6J (B6 or B) and DBA/2J (D2 or D). These two

parental strains differ at roughly 5 million sites across the genome.

The set of 80 BXD strains is being used for systematic multiscalar

genetic studies of host-pathogen interactions [8,9,10]. This large

set of genetically related strains can provide comparatively high

precision mapping, with a resolution of 1–2 Mb in several cases

[7,11]. Characterization of the disease susceptibility differences

between the B6 and D2 parental strains revealed significant

differences in C. psittaci load, inflammatory responses, and cytokine

profiles. While the IRGs have been shown to control Chlamydia

load [6,7,12], alternative immunomodulatory functions of these

genes have also been reported [13,14,15] making it unclear if

IRGs influence disease outcome by regulating pathogen load or by

influencing other immunomodulatory functions [16].

Recent advances in high-throughput genomic technologies and

computational methods allow us to formulate and test genetic

network models without explicit data on molecular function.

Translating large-scale genomic data into network models with
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predictive power is a challenging task. The most valid approach is

to systematically evaluate the possible hypothetical network

models against data and then select the most probable models

for experimental validation. The probability of a genetic network

model conditioned on the data can be calculated using Bayesian

network methods. A Bayesian network is a graphic probabilistic

model representing the dependence structure among multiple

interacting variables [17,18,19]. The probabilistic modelling

provides a natural treatment for the stochastic aspects of biological

processes and noisy measurements [20]. Bayesian networks can be

used to integrate prior knowledge and new data to capture and

express causal relationships [21,22,23].

We combined forward genetics and Bayesian network analysis

to model the biological pathway of how Ctrq3 or polymorphisms in

immunity-related GTPases (IRGs) confer susceptibility and

resistance to Chlamydia infection in strains of mice with different

genetic backgrounds. We then predicted how individual mice

would respond to different intervention and validated these

predictions. The model predicted that Ctrq3 confer protection

against disease through macrophage activation, which then

controls pathogen load and neutrophil influx. The factor with

the greatest impact on disease severity, as quantified by weight

change in strains infected with Chlamydia, was predicted to be

neutrophil influx rather than pathogen load. We validated these

predictions experimentally. Thus, our work provides an experi-

mentally validated model for an immune-regulatory function of

the IRG containing Ctrq3 locus in contributing to the control of

systemic C. psittaci infection.

Results

Immune responses and disease severity to Chlamydia
psittaci infection is controlled by two major genetic loci

We infected the C57BL/6J parental strain and 40 BXD strains

intraperitoneally, and measured peak C. psittaci load, levels of

macrophages and neutrophils in the peritoneal cavity, 32 cytokines

on days 3 and 6; and disease status as quantified by the weight

change from the day of infection. Strains exhibited a spectrum of

disease ranging from 30% weight loss to 10% weight gain over 6

days. Significant variation in cytokine protein expression was

detected for 17 of 32 cytokines (all results will be deposited and will

be accessible in GeneNetwork, www.genenetwork.org). We

confirmed that the previously mapped and cloned Ctrq3 locus on

chromosome 11 is a major controller of weight change,

macrophage activation status (MAS), level of neutrophil recruit-

ment, and C. psittaci load on day 6 (Figure 1). A novel secondary

locus was mapped to distal Chr 1 at ,190 Mb. This locus

modulates levels of several key cytokines—GM-CSF, IL1a,

MIP1a, MIP1b, MIP2—but has no effect on disease severity as

measured by weight changes (Figure 2). To further investigate the

influence of the genetic polymorphisms at Ctrq3, we analyzed the

expression pattern of the IRGM2 protein in the peritoneal lavage

specimens from infected BXD strains and found that it had two

distinct band sizes that are directly correlated with the Ctrq3

genotype [7].

Correlation network analysis reveals the immune
phenotypes associated with disease severity

We constructed a correlation network, including cytokines,

genotypes, immune parameters and disease phenotypes (Figure 3).

The network nodes clustered into two groups. The first group

correlated tightly with the Ctrq3 genotype, IRGM2 expression

pattern and several disease-related parameters, including weight

change, macrophage activation status (MAS), pathogen load, and

neutrophil recruitment. A single cytokine, G-CSF, had a high

correlation with weight change and neutrophil level, but was not

controlled by Ctrq3 (Figure 1E. no significant QTL). The second

group comprised the cytokines, many of which are highly

correlated with each other, and the genotype at rs13476293, a

marker located at ,190 Mb on Chr 1, but not directly with

disease-related parameters.

Bayesian network model identifies the central role of
macrophages in the disease pathway

We constructed a Bayesian network model to identify casual

pathways through which genotype at Ctrq3 influences disease

outcome after infection with C. psittaci (Figure 4). The Bayesian

network included variables that were highly correlated with weight

change and influenced by the genotype at Ctrq3: IRGM2

expression pattern, macrophage activation status, neutrophils,

and pathogen load. Because of the perfect correlation between the

Ctrq3 genotype and IRGM2 expression pattern, these variables

were combined into a single node. In the most likely model

structure, the genotype at Ctrq3 was the immediate parent of all of

the other variables in the model, signifying that each of these

variables is directly influenced by the genotype. However, the

model also suggests that Ctrq3 genotype was not sufficient in

explaining these variables, as there were additional conditional

dependencies in the model structure. Weight change, for example,

was directly influenced by neutrophil recruitment and macrophage

activation status (MAS) in addition to genotype at Ctrq3, indicating

that the levels of neutrophils and MAS influences weight change

independent of the Ctrq3 genotype. The model also suggested that

macrophage activation influences weight change via regulation of

neutrophil recruitment but not by pathogen load restriction.

Macrophage and neutrophil influx levels defines disease
severity

We used the Bayesian network model to investigate the effect of

depletion of macrophages on neutrophil influx, C. psittaci load, and

weight change (Figure 5 network C and D). To discretize the

predictions of the model, a threshold was determined by averaging

the mean value of strains with a B genotype and the mean value of

strains with a D genotype for the original data sample. Then, the

probability that the predicted value for each variable was greater

than (High) or less than (Low) this threshold was calculated from

the conditional Gaussian distributions learned from the network

for the original data and after macrophage depletion (Methods).

Nodes with a yellow background have been assigned the value to

represent data for only a given genotype and status of intervention

on MAS. The magnitude of these changes is expected to be much

more pronounced in strains with a B genotype at Ctrq3 than in

strains with a D genotype at this locus. (Figure 5 and Figure S2)

Strains with the D genotype at Ctrq3 typically have innately low

macrophage activation, and as a result the model predicts only

slight changes in the levels of neutrophils, pathogen load, and

weight after depleting macrophages.

We tested these predictions by performing chemical depletion of

macrophages with clodronate before infecting B6 and D2 strains

with C. psittaci. The experiments validated many of the model’s

predictions (Figure 6). In the D2 strain, depletion of macrophages

increased neutrophil influx, C. psittaci load, and induced a more

rapid decline in weight and mice were therefore euthanized on day

4 post infection. Pathogen load in the liver was greater in

macrophage depleted mice by nearly 2 logs (PBS control:

1.216105 IFU/gram, Clodronate treated; 9.376106 IFU/gram,

p = 0.03). As predicted, in the resistant B6 strain, depletion of
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macrophages increased neutrophils and exacerbated the weight

loss. These mice were moribund 5 days post-infection. Pathogen

load in the liver was similar in B6 irrespective of whether

macrophages were depleted or not (PBS control: 4.266106 IFU/

gram, Clodronate treated; 3.816106 IFU/gram, p = 0.06) but

their peritoneal pathogen load was decreased after depleting

macrophages, suggesting that pathogen load restriction may not be

entirely responsible for controlling disease severity.

Ctrq3 confers genetic resistance and tolerance to
Chlamydia

Several reports have documented that IRGs reduce pathogen

burden in vitro and in vivo, which is expected to influence disease

severity [6,7,12,24]. To investigate the possibility that the status of

the Ctrq3 genotype switches disease modality, we performed the

Bayesian analysis for strains with the B genotype at the Ctrq3 locus

separately from strains with the D genotype. The influence of load

on weight change was much stronger for strains with the

susceptible D genotype than strains with the resistant B genotype

(described further in Methods). Because of the genotype-specific

switching between pathogen load and weight change in the model,

we expanded this analysis to 197 BXD mice and correlated the

weight loss with pathogen load in individual mice according to the

genotype at the Ctrq3 locus (Figure 7). Overall, mice with the B

genotype had lower pathogen load compared to mice with a D

genotype, although a considerable overlap existed. The mice with

the B genotype were tolerant of increases in pathogen burden

whereas mice with D genotype lost more weight with increases in

pathogen burden as demonstrated by the differences in the slope of

the load to weight linear regression lines (p = 0.02).

Discussion

Individualized medicine requires the capability of predicting an

individual’s susceptibility to diseases and response to medical

treatments, based on genetic profile. Individual differences in

disease susceptibility and response to therapeutic interventions are

complex phenotypes modulated by genetic factors. We formulated

an approach using Bayesian networks to model the pathways

through which gene variants operate on phenotypes. Results of

our study demonstrate experimental validation of the combined

Figure 1. Association of the Ctrq3 locus with immune parameters and disease status. QTL mapping results for (A) day 6 weight, (B)
neutrophils, (C) macrophage activation status, (D) C. psittaci load, and (E) G-CSF on chromosome 11. Ctrq3 is located near 58 Mb on chr 11. Significant
(genome-wide adjusted p,0.05) and suggestive (adjusted p,0.63) QTLs are indicated by the solid red and grey lines, respectively. Blue lines indicate
the likelihood-ratio statistic (LRS) that the phenotype is associated with the genomic locus. The colored lines following the trend of the LRS show the
additive effect of the influence of the locus, with red lines indicating that D alleles increase trait values, while green alleles indicate that B alleles
increase trait values.
doi:10.1371/journal.pone.0033781.g001
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systems genetics and Bayesian network approaches to immune

pathway modeling and disease prediction. This approach provides

a way to develop models for designing genetic association studies

that can define causal pathways with the predictive power required

in individualized medicine.

We had previously demonstrated that Ctrq3 controls systemic C.

psittaci disease outcome and found an association with IRG

polymorphisms. While IRGs have cell autonomous functions of

pathogen restriction, the immunological pathway that links this

genotype to phenotype has not been defined. It has recently been

reported that infected hosts employ two different strategies to

defend themselves against pathogens—resistance and tolerance

[25,26,27]. Resistance is defined as the ability to limit pathogen

burden, whereas tolerance is defined as the ability to limit the

damage caused by a given pathogen burden [28,29]. While most

studies on genetic susceptibility to infectious diseases implicate

resistance as a mechanism of host protection, there are several

examples of genetic tolerance to infection in animal models

[29,30,31].

In this study, we predicted that Ctrq3 conferred resistance but

with relatively little impact on weight change. We also predicted

an expanded role for Ctrq3 that included macrophage activation

and weight change. Indeed mice with a B6 genotype at the Ctrq3

locus tended to have a lower pathogen load than mice with D2

genotype and thus were more resistant. However, there was

significant variability in the pathogen load within mice with the

same genotype suggesting the presence of other factors that affect

resistance. The mechanism of resistance by Ctrq3 is likely to be due

to the cell autonomous bactericidal functions of the B6 derived

Irgb10 and Irgm2 genes given results of our previous ex vivo siRNA

experiments [5,6,7]. On the other hand, we found that mice with a

B6 genotype at the Ctrq3 locus can maintain body weight over a

wide range of pathogen load and thus have tolerance to C. psittaci

infection. In contrast, mice with a D2 genotype lost weight as a

function of increased pathogen burden and were thus less tolerant.

The molecular basis of tolerance is still unclear.

An obvious limitation of our model is that we are assessing the

function of the 2 MB Ctrq3 locus. This locus encodes three IRGs

(Irgb10, Irgm2, and Irgm3), 18 other genes, as well as non-coding

regions with unknown functions. While IRGs remain a primary

candidate given its association with immunoregulatory functions

[13,14,15,16,32,33], it is possible that resistance and tolerance is

Figure 2. A QTL on chromosome 1 regulating cytokines. QTL mapping results for (A) GM-CSF, (B) IL-1a, (C) MIP-1a, (D) MIP-1b, and (E) MIP-2 on
chromosome 1. Significant (genome-wide adjusted p,0.05) and suggestive (adjusted p,0.63) QTLs are indicated by the solid red and grey lines,
respectively. Blue lines indicate the likelihood-ratio statistic (LRS) that the phenotype is associated with the genomic locus. The colored lines
following the trend of the LRS show the additive effect of the influence of the locus, with red lines indicating that D alleles increase trait values, while
green alleles indicate that B alleles increase trait values.
doi:10.1371/journal.pone.0033781.g002
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conveyed by one or more of the other genes in this interval.

Furthermore, the exact nature of the B6 and D2 Irgm2 alleles (e.g.

‘‘wildtype,’’ loss-of-function, hypomorph, constitutively active, etc)

is unclear and warrant additional biological validation.

While the mechanism of tolerance is unclear, our model

suggests that mice that do not recruit activated macrophages to the

site of infection have an increased number of recruited neutrophils

and more severe disease as evidenced by greater weight loss.

Specifically, Bayesian analysis predicted that mice with a D

genotype at the Ctrq3 locus would lose less weight if neutrophils

were depleted (day 6 to day 0 weight ratio: 0.83 for mice without

neutrophil depletion and 0.89 with neutrophils depleted) without

any change in pathogen load. This prediction was consistent with

our previous observations where Cxcr2 knockout mice that cannot

recruit neutrophils to the site of infection, survived challenge

without any detectible changes in pathogen load. In contrast, the

BALB/c wild type strain succumbed to infection with significant

neutrophil recruitment in a manner similar to the D2 strain [7].

We speculate that in our model, loss of tolerance leads to

uncontrolled inflammation and severe disease high-lighted by

neutrophil influx.

Interestingly, we found that macrophage depleted B6 mice have

a reduced number of C. psittaci in the infected peritoneal cavity;

whereas macrophage depleted D2 mice had a greater number. We

also found that after macrophage depletion, C. psittaci load in the

liver of D2 mice increased by 2 logs whereas loads were similar in

the liver of B6 mice. We speculate that in B6 mice, loss of a growth

niche led to a decrease in pathogen load, whereas the apparent

increase in pathogen load in the peritoneal cavity in D2 mice is

being supported by an increase in C. psittaci growth in the

surrounding tissues. While this indicates there may be a difference

in tissue/cell tropism between B6 and D2 mice, the underlying

mechanism is unknown at this point.

There are clear limitations of our model and approach. First, we

are limited by the variables we chose to screen, which did not

account for various other cell types, cytokines, physiological

parameters, etc. Second, we are limited by the dynamic process of

infectious diseases, which include the important variable of time,

where our longitudinal analyses were limited (,1 week) due to the

severity of disease in D2 mice. Third, we are limited by the nature

of the intervention we can employ. In our model, we found that

macrophage activation, which occurs gradually over the course of

infection, was an important variable that determines disease

outcome. In our validation experiment, we eliminated macro-

phages prior to infection in order to simulate the extreme end of

this variable, which may have led to activation of alternative

pathways or immune cells. Despite these limitations, our results

demonstrate a proof of principal model of how genetic mapping

and network modeling can be combined to identify causal

pathways underlying infectious disease susceptibility.

Figure 3. The correlation network of immune parameters during Chlamydia infection in BXD mice. Correlation network linking BXD
genotypes (Ctrq3 and rs13476293), C. psittaci load, inflammatory responses, cytokine profiles, IRGM2 protein expression pattern, and weight change
after C. psittaci infection in BXD strains. Positive (red) and negative (blue) correlations between variables with magnitudes of Pearson’s correlation
coefficient greater than 0.6 (dashed lines) and 0.7 (solid lines) are shown.
doi:10.1371/journal.pone.0033781.g003

Figure 4. Structure of Bayesian network (BN) model of C.
psittaci infection. The number next to each directed arc of the BN
indicates the confidence (posterior probability) in the arc after model
averaging as described in the Methods.
doi:10.1371/journal.pone.0033781.g004
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Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol (internal protocol number 1709R1) was approved by the

Animal Care and Use Committee of the University of Tennessee

Health Science Center (PHS assurance# - A-3325-01). No

surgical procedures were performed. All efforts were made to

minimize suffering.

Infection and sample collection
Chlamydia psittaci infection: C. psittaci 6BC was propagated in L

cells, titrated and stored at 280Cu. Intraperitoneal infection with

C. psittaci 6BC (104 IFU) was performed using the same stock

source to minimize variations across experiments. 8–16 week old

male mice (C57BL/6J, and 40 BXD strains) were infected in

groups of 2 mice/strain. Infected mice were monitored daily for

weight changes. On days 3 or 6-post infection, mice were

euthanized to obtain peritoneal lavage samples for pathogen load,

flow cytometry, and cytokine analysis. Additional mice, totaling

197 mice representing 56 BXD strains, were infected with C.

psittaci 6BC (104 IFU) and monitored for weight changes and

euthanized on day 6 for IFU analysis.

Assessment of immune phenotypes
Chlamydia psittaci load. Titration was performed by a cell

culture based IFU assay for day 6 samples as previously

described [7]. DNA was extracted from 1 ml of peritoneal

lavage fluid from day 3 and C. psittaci load was measured as a

ratio of C. psittaci ompA DNA/host GAPDH by quantitative

DNA PCR.

Flow cytometry. Standard methods were used as described

previously [7]. Briefly, murine peritoneal exudates were

blocked with Fc block and incubated with fluorochrome-

conjugated antibodies. The following antibodies were used:

Macrophage marker; F4/80-APC, Neutrophil marker; Ly6G

(clone IA8)-PE, and MHC class II marker; IA/IE-PE. Data was

expressed as percent of macrophages or neutrophils in the

entire population. MHC class II expression was used as a

marker for macrophage activation status and data was

expressed as percent of F4/80 positive cells that were also

positive for IA/IE.

Cytokine analysis. Peritoneal lavage supernatants were

analyzed using the Luminex based Mouse 32-plex kit to analyze

levels of 32 cytokines (CATALOG).

Western blot analysis. Peritoneal lavage specimens were

analyzed by Western blot analysis using standard methods with

GTPI antibody (M-14) Santa Cruz (sc-11088) and secondary

antibody using Goat true blot (eBioscience 18-8814-31).

Figure 5. Predictions of the BN as a function of genotype and macrophage intervention. (A and B) Discretized p of the BN as a function of
genotype at Ctrq3. BXD strains with the susceptible, D, genotype at the IRG locus tend to have lower MAS and weights and higher levels of
neutrophils and pathogen load. (C and D) Discretized p effect of interventional depletion of macrophages on the values of variables in the BN.
doi:10.1371/journal.pone.0033781.g005
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Data analysis
QTL mapping. Quantitative trait locus (QTL) mapping was

performed for 17 cytokine profiles that exhibited variation across

strains; immune responses including levels of neutrophils,

macrophages, and macrophage activation status (MAS); and

weight change of BXD strain infection with C. psittaci with the

GeneNetwork (www.genenetwork.org). Single marker regression

was performed across the entire mouse chromosome at 3795

markers typed across BXD strains. A likelihood ratio statistic

(LRS) was calculated at each marker comparing the hypothesis

that the marker is associated with the phenotype with the null

hypothesis that there is no association between marker and

phenotype. Genome-wide significance was determined by

performing 1000 permutations. Two significant (genome-wide p-

value,0.05) QTLs were found: one QTL was located near 55 Mb

on chromosome 11 and was associated with weight change, MAS,

pathogen load, and neutrophil levels (Figure 1), while the other

significant QTL was located on chromosome 1 near 190 Mb and

was associated with several cytokines (Figure 2).

Bayesian network modeling. Structural learning of the

Bayesian network was performed using the R package deal (http://

cran.r-project.org/web/packages/deal/index.html). The network

was constructed from data for C57BL/6J and 40 BXD strains

using one discrete node, representing the Ctrq3 genotype and

IRGM2 protein expression pattern, and four continuous nodes

(neutrophils, C. psittaci load, macrophage activation status, and the

ratio of the weight of the mice 6 days after infection to the weight

before infection), which were modeled with conditional Gaussian

distributions. The Bayesian network score [34], which is basically

a version of the BDe scoring metric [35] extended to include

conditional Gaussian distributions, was calculated in deal for all,

except those that violated two restrictions. First, potential models in

which the genotype node was the child of any other nodes in the

network were not considered. This restriction does not require that

the genotype node be the parent of the other nodes, as model

structures in which continuous nodes were independent of genotype

were allowed. Second, the weight node could not be the parent of

any other node. The Bayesian score metric inherently handles the

problem of over fitting data to complex models [36]. However,

selecting a single best network model and ignoring all other models

may still lead to over-fitting the data. Model averaging can be used

to reduce this risk [37]. An indicator function f is defined as: if a

network G learned from data D has the feature (here a feature is a

directed edge representing a regulatory relationship), f (G)~1,

otherwise, f (G)~0. The posterior probability of a feature is

P(f (G)DD)~
X

G

f (G)P(GDD). This probability reflects our

confidence in the feature f . We calculated the posterior

probability of features by averaging over all possible models, with

the restrictions noted above. All features with a posterior probability

greater than 0.5 were included in the network.

The reproducibility of the structure learning method was

investigated with the use of simulated data. Briefly, the model

learned for the original network was used to generate simulated

data sets. Then, the structure learning method was repeated with

the simulated data sets and the network structures learned from

the simulated data sets were compared to the structure of the

original network. A high correspondence between the simulated

structures and the original structure indicates that the size of the

original data set was sufficient to learn the structure of the

network. To create the simulated data, parameter learning of the

network was performed with the maximum likelihood estimator

provided in the Bayes Net Toolbox [38], available for download

at: http://code.google.com/p/bnt/. Before the parameters of the

network were learned, the data for the four continuous nodes was

normalized to have a mean of 0 and standard deviation of 1.

1000 simulated data sets with 41 samples were then generated

with the sample_bnet function of the Bayes Net Toolbox. The

structure learning method used to learn the original network was

then used for each of the simulated data sets. The edges in the

original network were highly reproduced in the simulated data

(Figure S1).

Prediction of effects of macrophage depletion. We

predicted the effects of intervention using a hybrid Bayesian

network including both the discrete genotype node and continuous

nodes modeled with conditional Gaussian distributions with the

Bayes Net Toolbox. The parameters of the network were learned

with a maximum likelihood approach. Macrophage depletion is an

external intervention to the model. The intervention sets the value

of the MAS node and relieves it from the influence of its parent

node. Therefore, prediction was performed by removing the link

Ctrq3/IRGM2RMAS and setting macrophage activation status to

the minimum value observed in the data used for parameter

learning [action do (MAS = MIN), where MIN = 0,032 is the

minimum observed MAS value]. The probabilistic inference was

executed using the Bayes Net Toolbox. The effects of macrophage

depletion on the parameters of the conditional Gaussian

Figure 6. Impact of macrophage depletion on the course of C. psittaci infection in B6 and D2 strains. B6 and D2 mice received either
liposome clodronate or liposome PBS iv (day 21 post infection) and i.p. (day 21, 1, and 3 post infection) and infected with C. psittaci 104 IFU
intraperitoneally (N = 5/group). Mice were monitored daily for weight (A) and appearance. Data points where differences in weight met statistical
significance are indicated in asterix (* p = 0.003, ** p = 3.7610E-5, p = 0.04). Clodronate treated D2 strain became moribund on day 4 and B6 on day 5
post infection and were euthanized. Brackets and p values are provided to indicate differences in, number of neutrophils (B), and C. psittaci load (C)
between clodronate (black) and liposome (white) treated mice for both B6 and D2 strains. Data is representative of two experiments.
doi:10.1371/journal.pone.0033781.g006

Figure 7. Genetic resistance and tolerance to Chlamydia
infection in mice. Plot of weight change as a function of IFU for
197 BXD mice infected with C. psittaci. Mice with the susceptible D
genotype at the Ctrq3 (open symbols) lose weight as pathogen load
increases, while mice with the resistant B genotype at the Ctrq3 marker
(filled circles) do not. The slopes of the linear regression lines for the B
(solid line) and D (dashed line) data are significantly different (p = 0.02).
doi:10.1371/journal.pone.0033781.g007
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distributions for each node are compared in Table S1 and Figure

S2. Depletion of macrophages causes increases in the levels of

neutrophils and pathogen load and decreased weight. The

magnitude of these changes is larger for mice with the D

genotype at Ctrq3.
Bayesian network cross-validation. Leave-one-out cross

validation was also used to test the performance of the hybrid

Bayesian network. For each test strain, parameter learning of the

remaining 40 strains and inference was performed with the Bayes

Net Toolbox with the methods mentioned above. To evaluate the

quality of the continuous predictions, we used the Q2 parameter

[39], which is given by:

Q2~1{

X
(yi{ŷyi)

2

X
(yi{�yy)2

where yi is the value of the ith sample, y^i is the predicted value of

the ith sample, and �yy is the sample mean. The values of Q2 for

MAS, neutrophil level, pathogen load, and weight were 0.51, 0.59,

0.45, and 0.68, respectively. Additionally, we discretized the

original data and the predictions from the leave-one-out-cross

validation for each strain and used this discretized data to test the

accuracy of the predictions. A threshold for each of the continuous

variables was determined by averaging the mean value of the

original data for all strains with the B genotype and the mean

value for all strains with the D genotype. Then, the continuous

variables for the original data and the predictions were classified as

being either High or Low through comparison with these

threshold values for each strain. The accuracy was then

determined by dividing the number of predictions that matched

the original data by the total number of strains. For MAS,

neutrophil level, pathogen load, and weight, the accuracy was

accuracy 85%, 93%, 80%, and 88%, respectively.

Strain dependent influence of pathogen load on weight change

after infection: To test if the arc from pathogen load to weight

ratio was genotype dependent, the data for mice with B and D

genotypes at the Ctrq3 locus were separated. As each data set only

contained data from strains with one genotype, the genotype node

was removed from the network, and the structure of the network,

using model averaging of an exhaustive search of possible

structures with deal, was learned for both the B and D data. For

strains with the D genotype, a directed edge from pathogen load to

weight ratio had a posterior probability of 0.64, while the same

edge for strains with the B genotype had a posterior probability of

only 0.16, indicating that weight change was dependent on C.

psittaci load only for strains with the susceptible D genotype. This

conclusion was confirmed by grouping the pathogen load and

weight ratio for a total of 197 mice into B and D groups using the

genotype at Ctrq3. Slopes of the linear regression lines of pathogen

load vs. weight ratio for each group were calculated and compared

using the analysis of covariance tool in Matlab 7.8 (R2009a). The

slopes of the lines were significantly different with a p-value of

0.02.

Validation experiments
B6 and D2 mice were each grouped into two groups (N = 5) that

received clodronate containing liposome or PBS containing

liposome injections on day 21, 1, 3, 5 (day 21: 200 uL iv,

200 uL i.p., day 1, 3, 5: 200 uL i.p.) [40]. All mice were infected

on day 0 with C. psittaci 6BC at 104 IFU i.p. and monitored daily

for weight changes. On day 6 post infection, mice were euthanized

and peritoneal lavage was obtained. The peritoneal lavage was

processed for pathogen load, cell population (number of

neutrophils and macrophages) and macrophage activation status

by flow cytometry as described before. The total number of cells in

the lavage was enumerated by cytometer and total numbers of

neutrophils were calculated.

Supporting Information

Figure S1 Reproducibility of network structures. The

number next to each edge is the fraction of times that the edge was

present in the structure of 1000 simulated data sets. The simulated

data sets were generated from the parameters of the original

network and contained 41 samples, the same number of samples as

in the original data set. The structure learning method used for the

simulated data sets was the same as that used for the original

network. No edges not present in the original network occurred in

more than 0.29 of the simulated data sets.

(TIF)

Figure S2 Effect of macrophage depletion on predic-
tions of continuous data by Bayesian network. Probability

density functions for Gaussian distributions describing the

predicted values of macrophage activation status (A), pathogen

load (B), neutrophils (C), and weight (D) in normal mice (solid

lines) and in mice with depleted macrophages after treatment with

clodronate (dashed lines). The effect of macrophage depletion has

a much larger effect on predictions for mice with the resistant B6

genotype (blue lines) than with the susceptible D2 genotype

(orange lines).

(TIF)

Table S1 Mean values of Bayesian network predictions
as a function of genotype and macrophage intervention.
(DOC)
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