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Abstract

Introduction: Although lymph node negative (LN-) breast cancer patients have a good 10-years survival (,85%), most of
them still receive adjuvant therapy, while only some benefit from this. More accurate prognostication of LN- breast cancer
patient may reduce over- and under-treatment. Until now proliferation is the strongest prognostic factor for LN- breast
cancer patients. The small molecule microRNA (miRNA) has opened a new window for prognostic markers, therapeutic
targets and/or therapeutic components. Previously it has been shown that miR-18a/b, miR-25, miR-29c and miR-106b
correlate to high proliferation.

Methods: The current study validates nine miRNAs (miR-18a/b miR-25, miR-29c, miR-106b, miR375, miR-424, miR-505 and
let-7b) significantly correlated with established prognostic breast cancer biomarkers. Total RNA was isolated from 204
formaldehyde-fixed paraffin embedded (FFPE) LN- breast cancers and analyzed with quantitative real-time Polymerase
Chain Reaction (qPCR). Independent T-test was used to detect significant correlation between miRNA expression level and
the different clinicopathological features for breast cancer.

Results: Strong and significant associations were observed for high expression of miR-18a/b, miR-106b, miR-25 and miR-505
to high proliferation, oestrogen receptor negativity and cytokeratin 5/6 positivity. High expression of let-7b, miR-29c and
miR-375 was detected in more differentiated tumours. Kaplan-Meier survival analysis showed that patients with high miR-
106b expression had an 81% survival rate vs. 95% (P = 0.004) for patients with low expression.

Conclusion: High expression of miR-18a/b are strongly associated with basal-like breast cancer features, while miR-106b can
identify a group with higher risk for developing distant metastases in the subgroup of Her2 negatives. Furthermore miR-
106b can identify a group of patients with 100% survival within the otherwise considered high risk group of patients with
high proliferation. Using miR-106b as a biomarker in conjunction to mitotic activity index could thereby possibly save 18%
of the patients with high proliferation from overtreatment.
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Introduction

For breast cancer in general lymph node status is still the

strongest prognostic factor. Lymph Node negative (LN-) breast

cancer patients constitute ,60% of all breast cancer cases.

Nowadays almost all of them receive adjuvant treatment despite

the fact that ,75% have a good 10-years survival. Over the past

decade, especially lymph node negative breast cancer has been

intensively investigated by array-based gene expression profiling.

These studies have identified new subtypes like luminal A and -B,

basal-like and Her2/neu-overexpressing cancers that correlate

with different survival outcome [1,2]. Luminal type constitutes the

biggest group of breast cancers and is associated with oestrogen

receptor alpha (ERa) positivity which can be further subdivided

into luminal A with low and luminal B with high proliferation.

Approximately 7–12% of all breast cancers have a Her2

amplification and form the Her2/neu-overexpressing subtype. In

contrast, basal-like breast cancers express no hormonal receptors,

are cytokeratin 5/6 or 14 positive, associated with poor prognosis

and constitute 14–20% of all breast cancer cases [3–5]. Specific

gene signatures have also been found to predict therapy response

or resistance, hormone receptor status and for identification of

patients at risk of distant recurrence following surgery.

In the majority of the prognostic signatures, proliferation

associated genes are strongly represented. This confirms numerous

studies which have shown that proliferation is the strongest

prognostic factor in lymph node negative breast cancer, either

measured by mitotic activity index (MAI), Ki67 or phosphohistone

H3 (PPH3) [6–8]. In comparison with several prognostic

signatures, single genes related to proliferation had similar or

even better prognostic value [9]. Although gene expression

signatures and proliferation can add prognostic value to the
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established prognostic markers for LN- breast cancer, still many

breast cancer patients are under- and over-treated. Therefore a

better understanding of the complex biology of the different breast

cancer subtypes is required.

miRNAs have recently been described as a new mechanism for

posttranscriptional regulation of protein transcription. miRNAs

are a group of small non-coding RNAs (19–25 nt) that regulate the

degradation (perfect match) and translation (imperfect match) of

their target mRNA. One miRNA can target up to 200 different

mRNAs, tend to be pathway specific [10–12] and are involved in a

wide range of biological and pathological processes [13]. In

contrast to mRNA, miRNAs are much more stable in formalin

fixed paraffin embedded tissue [14] which makes them easy to

investigate and increase their potential use as biomarkers in

routine diagnostics for breast cancer.

In a previous publication we investigated miRNA expression by

microarray analysis in total RNA isolated from fresh frozen

tumour from 104 LN- breast cancers, and showed amongst others

that miR-106b, miR-18a/b, miR-25, miR-29c and miR-505 were

strongly correlated to high proliferation [15] while others

correlated with both ERa negativity and CK5/6 positivity. As

with all microarray data, these previously published data need to

be validated by other methods and in an independent study

cohort. In order to achieve this, nine selected microRNAs (let-7b,

miR-18a, miR-18b, miR-106b, miR-25, miR-29c, miR-375, miR-

424, miR-505) were tested by qPCR in total RNA isolated from

204 new LN- breast cancers patients under the age of 71 and

investigated correlations with classic clinicopathological features

like proliferation (measured by MAI, PPH3 and Ki67), ERa,

progesteron receptor (PR), Her2, and CK5/6.

Materials and Methods

Patients and Pathology
The study was approved by the Regional Ethics Committee

before the study started. All 240 patients were diagnosed with

first onset invasive operable (T1,2N0M0) breast cancer at the

Stavanger University Hospital, between January 1, 1996 and

December 31, 1998. The following samples were excluded; 34

cases without enough tumour material, one sample had bad

fixation and one had too much inflammation, leaving 204

patients for analysis. There were no significant differences

between the original 240 and final 204 cases in any of the

clinicopathologic features analyzed. The patients were all treated

according to the national guidelines of the Norwegian Breast

Cancer Group at that time. The auxiliary fat was macroscop-

ically examined and all detectable lymph nodes (median: 12,

range: 4–27) were prepared for histology. All tissues were cut in

5 millimeter thick slices, fixed in buffered 4% formaldehyde and

embedded in paraffin. Four micrometer histological sections

were made and stained with haematoxylin-erythrosin-safran

(HES). Histological type and grade were assessed by two

pathologists (EG, JB) with considerable experience in breast

pathology, according to the World Health Organization criteria

[16]. Grade was carefully assessed according to the Nottingham

modification [17,18]. The MAI was assessed as described

elsewhere [19].

Immunohistochemistry
ERa and PR, PPH3, Ki67, CK5/6 and Her2 expression were

determined by immunohistochemistry (IHC) in whole sections.

Antigen retrieval and IHC techniques were based on DAKO

technology as described previously [8].

Quantification of PPH3, Basal Cytokeratin, ERa, PR, Ki67
and Her2

The PPH3 index was assessed as described elsewhere [20]. For

measuring % of Ki67 positive cells we used the semi-automatic

interactive computerized QPRODIT system (Leica, Cambridge),

as described in [21]. The percentage of CK5/6 positive tumour

cells in each cancer was scored using a continuous scale of 0–

100%. In the final analysis all tumours with any CK5/6 staining in

tumour cells were grouped as being positive as described before

[22]. ERa was scored positive if $1% of tumours cells showed

nuclear staining and all others were scored negative. PR was

scored as positive when nuclear staining was present in .10%,

and scored negative when ,10% of the of the tumour cells had

nuclear staining. Her2 was scored according to the DAKO

Hercep Test scoring protocol. All 2+ and 3+ cases were regarded

as positive. All sections were independently scored by two

pathologists. Triple negative breast cancers (TNP) are defined by

negativity for ERa (0%), PR (,10%) and Her2 (0 and 1+).

RNA-isolation and qPCR for FFPE Tissue
All sections were evaluated by an experienced breast pathologist

(EG) who selected an area with at least 50% tumour cells for RNA

isolation. Five sections of 10 mm were used for RNA isolation.

Tumour tissue was isolated by macrodissection from the slides.

Total RNA was isolated using miRNeasy for FFPE kit (Qiagen,

Valencia, CA) according to the protocol provided by the

manufacturer. All samples were analyzed on a Nanodrop

instrument (Thermo Fisher Scientific, Waltham, USA). cDNA

samples were made out 20 ng of total RNA using the Universal

cDNA synthesis kit (Exiqon A/S, Vedbaek, Denmark) according

to the manufacturer’s recommendations. A 8 ml volume of 80x

dilution of cDNA was used in each of the real-time PCR reactions

with SYBRH green master mix and miRNA LNATM PCR primer

sets (both from Exiqon A/S), following the manufacturer’s

instructions. All samples were run in triplicate. In order to find

candidates that could be used as control genes, we used the

previously published miRNA array data [15] and the free

programs Normfinder [23] and GeNorm [24]. miR-24 and

miR-26b showed the least variation between the 104 samples.

U6 was also included as a reference gene. The average Ct-values

of the triplicates for hsa-miR-24 (mean Ct = 22.73, std. = 1.33) and

hsa-miR-26b (mean Ct = 26.17, std. = 1.66) were used as the

endogenous reference and relative expression of target genes was

calculated via the equation 22DCt. U6 was later excluded by

GeNorm and Normfinder because of too much variation (mean

Ct = 26.43, std. 1.87) between the different patient samples.

Survival Endpoints
For survival analysis, the end point used was distant metastasis

free survival (DMFS) and which we defined as any recurrence at a

distant site. Patients were censored from the date of the last follow-

up visit for death from causes other than breast cancer, local or

regional recurrences, and the development of a second primary

cancer, including contra lateral breast cancer. If a patient’s status

during follow-up indicated a confirmed metastasis without a

recurrence date, the follow-up visit date was used. Age, time to first

recurrence and survival time were calculated relative to the

primary diagnosis date.

Statistical Analyses
SPSS (SPSS, Chicago, Illinois, USA) for Windows version 18.0

was used. Kaplan–Meier survival curves were constructed and

differences between groups were tested by the log rank test. The
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relative importance of potential prognostic variables was tested

using univariate and multivariate (for 196 patients all features were

available) Cox-proportional hazard analysis (forward, Wald) and

expressed as a Hazards Ratio (HR) with 95% confidence intervals

(CI). Dchip software (version 31 March 2009) (www.dchip.org) was

used for hierarchical cluster analysis. The qPCR data were

Figure 1. Expression level of miRNAs for different prognostic features. Independent T-test was used to determined significant relationship.
Let-7b is down-regulated in high MAI $10 (A), miR-25 (B) and miR-505 (C) are expressed higher in MAI $10. MiR-18a (D) and miR-18b (E) are
expressed higher in ERa negative patients, while miR-375 (F) is down-regulated in ERa negative breast cancer patients.
doi:10.1371/journal.pone.0048692.g001
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standardized as follows, subtracting mean and divided by standard

deviation. Genes were filtered using analysis of variance, p-value

#0.01 and absolute correlation (meaning including genes with

opposite profile). These gene lists were used to classify samples by

cluster analysis and linear discriminate analysis (LDA). The

optimal expression threshold for miR-106b was determined by

Receiver Operating Characteristic (ROC) curve analysis (Med-

Calc statistical software v. 9.3.7, MedCalc, Mariakerke, Belgium.

Results

Median age was 57 (range 30–71 years) with median follow-up

of 122 months (range 10–178 months). Twenty-nine patients

developed distant metastasis or died from breast cancer. Table 1

shows the significant associations between the nine miRNAs and

the clinicopathological features. The most significant differences

between the miRNAs and the clinicopathological features are

illustrated by boxplots in figure 1 and all other boxplots are shown

in figure S1, S2, S3, S4, S5. Three of the nine miRNAs studied

(let-7b, miR-29c, and miR-375) are inversely correlated to the

classical prognostic features (proliferation, ER/PR and tumour

size) and can be regarded as tumour suppressive. Let-7b was the

most differently expressed miRNA (std. = 3.99) and low expression

of let-7b was significantly linked to high proliferation (Figure 1A),

TNP, ERa negative, CK5/6 positivity. miR-29c showed signifi-

cant (P,0.0001) associations to high proliferation, TNP, ERa
negativity and CK5/6 positivity. Low expression of miR-375 was

only significantly associated to ERa negativity (P,0.0001,

Figure 1F) and CK5/6 positivity. miR-424 was not associated to

any of the different clinicopathological features. High expression of

miR-25 was significantly associated to ERa negativity, high

proliferation (Figure 1B), TNP and CK5/6 positivity. Furthermore

miR-25 correlated very strongly to miR-106b (corr. = 0.428,

P = 0.0001). miR-505 was also expressed at low levels in all

patients. Strong and significant associations between high miR-

505 expression and ERa negativity, high proliferation, TNP

(Figure 1C) and CK5/6 positivity were found. High expression of

miR-18a and miR-18b was also significantly associated with high

proliferation, ERa negativity (Figure 1D and 1E), TNP and CK5/

6 positive breast cancers. miR-18a and miR-18b were also

expressed at lower levels in all samples and their expression profile

are strongly correlated to each other (Pearson correlation = 0.995,

p,0.0001).

Table 2 shows the survival and hazard ratios for the classical

tumour characteristics and the nine miRNAs for DMFS. The cut-

off values used for the survival analyses for each microRNA were

obtained by ROC analysis (Table S1 and Figure S6). Median and

3-quantiles split of the continuous expression data, were also tested

against DMFS. miR-106b was the only miRNA which had a

significant area under the curve by ROC analysis in relation to

DMFS. Furthermore Kaplan Meier curve analysis with miR-106b

gave a significant separation between good and bad prognosis, -

independent of the type of cut-off value chosen (ROC cut-off,

median and tertiles). ROC-curve analysis showed that a threshold

of .0.0172 expression (area under curve: 0.665), was optimal for

identification of patients at risk of developing distant metastasis.

This threshold was used to divide the patient in two groups

Table 1. Independent t-test between miRNAs and different
clinical features for breast cancer.

High
Proliferation ER2 PR2 TNP2 CK5/6+

Let-7b P,0.0001 P,0.0001 P = 0.005 P,0.0001 P,0.0001

miR-106b P,0.0001 P,0.0001 P = 0.001 P,0.0001 P = 0.044

miR-18a P,0.0001 P = 0.001 P = 0.001 P = 0.003 P = 0.003

miR-18b P,0.0001 P = 0.001 P = 0.003 P = 0.002 P = 0.002

miR-25 P,0.0001 P,0.0001 P,0.0001 P,0.0001 P = 0.004

miR-29c P,0.05* P,0.0001 P,0.0001 P,0.0001

miR-375 P,0.0001 P,0.0001

miR-424

miR-505 P,0.0001 P,0.0001 P = 0.001 P = 0.001 P = 0.002

Proliferation includes MAI, PPH3 and Ki67. Star indicated that Ki67 did not give
P-value under 0.05. The miRNAs with underscore/fat are inversely correlated to
the different clinical features, meaning that low expression of let-7b is
significantly associated to high proliferation.
doi:10.1371/journal.pone.0048692.t001

Figure 2. Long-term distant metastasis free survival curves according to miR-106b expression level and miR-106b expression in
patients with MAI$10.
doi:10.1371/journal.pone.0048692.g002
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(#0.0172 = low expression of miR-106b (n = 75), .0.0172 = high

expression of miR-106b, n = 128)). Kaplan-Meier survival analysis

showed that 4 of 75 ( = 5%) patients with low expression of miR-

106b developed distant metastasis, while 25 of 128 ( = 19%)

patients with high expression. Survival rates were 95% vs. 81%,

respectively (P = 0.004) (Figure 2A). In addition, miR-106b is

significantly correlated with ERa negative, TNP and CK5/6

positivity.

Univariate cox-regression of all the clinicopathological param-

eters for DMFS showed that only tumour diameter, Nottingham

grade, Her2, MAI, Ki67, PPH3 and miR-106b were significant. A

multivariate survival analysis, including all features that were

significant by univariate analysis, showed that Her2 and miR-106b

were the strongest prognostic factors for DMFS (HR = 5.5, 95%

Table 2. Distant metastasis free survival in lymph node-
negative breast cancer patient with Kaplan Meier and cox
multivariate analysis.

Characteristic Distant metastasis

Event/at risk
(%)

Log-rank
P-value HR 95% CI

Age

,55 years 13/92 (86) 0.375 1.4 0.7–2.9

$55 years 16/112 (86)

Tumour diameter

,2 cm 16/148 (89) 0.045 2.1 1.0–4.4

$2 cm 13/56 (77)

Nottingham grade

1 2/64 (97) 0.010 5.5 1.3–23.2

2 and 3 27/140 (81)

ER

Positive $1% 20/164 (88) 0.335 1.5 0.7–3.4

Negative 8/39 (80)

PR

Positive $10% 17/123 (86) 0.798 1.1 0.5–2.3

Negative 0–9% 12/81 (81)

Her2

0–1+ 20/176 (89) 0.002 3.2 1.5–7.1

2+–3+ 9/25 (64)

MAI

,10 14/144 (90) 0.006 2.7 1.3–5.8

$10 15/60 (75)

MAI

MAI 0–2 6/100 (94) 0.004 3.2 1.1–9.3

MAI 3–9 8/44 (81) 4.6 1.7–12.0

MAI $10 15/60 (75)

Ki67

0–9% 8/94 (92) 0.018 2.6 1.1–6.1

10–100% 19/88 (78)

PPH3

,13 9/122 (93) 0.002 3.5 1.5–7.9

$13 20/80 (75)

CK5/6

Negative 23/175 (87) 0.407 1.5 0.6–3.6

Positive 6/28 (79)

Triple Negative

Positive 23/174 (87) 0.362 1.5 0.6–3.7

Negative 6/30 (80)

Let-7b

.3.2792 14/146 (90) 0.007 2.7 1.3–5.7

#3.2792 15/58 (74)

miR-106b

#0.0172 4/75 (95) 0.004 4.3 1.5–12.6

.0.0172 25/128 (81)

miR-18a

#0.0121 6/77 (92) 0.083 2.2 0.9–5.4

Table 2. Cont.

Characteristic Distant metastasis

Event/at risk
(%)

Log-rank
P-value HR 95% CI

.0.0121 22/125 (82)

miR-18b

#0.025 10/114 (91) 0.033 2.3 1.0–4.9

.0.025 18/87 (79)

miR-25

#0.2509 11/119 (91) 0.022 2.4 1.1–5.3

.0.2509 17/84 (80)

miR-29c

.1.1674 7/78 (91) 0.113 2.0 1.0–4.3

#1.1674 22/126 (83)

miR-375

#0.3487 14/136 (90) 0.054 2.0 1.0–4.3

.0.3487 14/67 (79)

miR-424

#0.7702 18/146 (88) 0.388 1.4 0.7–2.9

.0.7702 11/57 (81)

miR505

#0.0182 3/40 (93) 0.295 1.9 0.6–6.2

.0.0182 25/163 (85)

HR hazard ratio, CI confidence interval.
doi:10.1371/journal.pone.0048692.t002

Table 3. Kaplan-Meier survival analysis for Her2 and miR-
106b.

Characteristic Distant metastases

Event/at risk (%) Log-rank P-value

Her2 negative

miR-106b #0.0172 3/69 (96) 0.015

miR-106b .0.0172 17/107 (84)

Her2 positive

miR-106b #0.0172 1/6 (83) 0.155

miR-106b .0.0172 8/18 (56)

doi:10.1371/journal.pone.0048692.t003
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CI 1.6–18.5). Her2 positive patients with low expression of miR-

106b have a DMFS of 83% vs. 56% for patients with high

expression (Table 3). miR-106b expression shows also a trend for

additional prognostic information in the group of patients with

high proliferation (MAI$10) (Figure 2B), with respectively 100%

vs. 69% (p = 0.063) for high vs. low expression of miR-106b.

Since some of the microRNAs correlated to the same

clinicopathological parameters we used hierarchical cluster anal-

ysis to illustrate the expression level in all patients in comparison

with the different parameters (Figure 3). Figure 3 is a supervised

hierarchical cluster of ERa driven genes (Anova analysis,

P,0.0001). This analysis confirms the tight connections between

miR-18a and miR-18b to ERa negative cancers. Furthermore,

high expression of let-7b was associated with favourable prognostic

features (low proliferation, ERa/PR positivity, HER2/CK5/6

negativity and tumour size ,2 cm) (cluster 1). As figure 3

indicates, a shift from high to low expression of let-7b points

toward worse prognosis. Low expression of let-7b, miR-25 and

miR-505 and little expression of miR-18a, miR-18b and miR-

106b can identify a small group of patients (cluster 2) in which 8 of

25 patients develop distant metastasis. While patients with both

high proliferation, TNP, CK5/6 positive, tumour size $2 cm and

grade 3 cluster significantly together and have high expression of

miR-505, miR-18a/b, miR-25, miR-106b and low expression of

let-7b (Figure 3, cluster 3).

Discussion

The current validation study by means of another analytical

method and in FFPE material of new LN- breast cancer patients

shows many of the same correlations between miRNAs and

clinicopathological features as described before [15]. Moreover,

miR-106b had strong prognostic univariate and multivariate

prognostic value.

The family of miRNA let-7b was one of the first miRNAs to be

discovered as non-coding RNA [25] and has been well investigat-

ed. Let-7b has been reported as a tumour-suppressor gene in

cancers of the breast [26], pancreas [27] and stomach [28]. Some

suggest that let-7b and its family regulate ERa activity and

expression [29,30], others show that let-7b expression correlates to

luminal subtypes, thereby suggesting that tumours which maintain

let-7b expression are less metastatic [26]. These findings support

our current results that high expression of let-7b is associated with

patients with favourable prognostic factors like low proliferation,

ERa/PR positivity, Her2/CK5/6 negativity and tumour size

,2 cm.

Our data also suggest that miR-29c acts as a tumour suppressor

gene, as it shows low expression in TNP, ERa negative or CK5/6

positive cancers. In a recent, elaborate miRNA profiling study

containing 207 breast cancers high expression of miR-29c was also

associated with good prognosis [31]. Tumour necrosis factor

alpha-induced protein 3 (TNFAIP3), a key regulator in inflam-

mation and immunity, was found to be inversely correlated with

Figure 3. Supervised hierarchical clustering for ERa. Genes were filtered using analysis of variance, p-value #0.0001 and absolute correlation
for ERa. The heat-map diagram shows the result of the two-way hierarchical clustering of miRNAs and samples. Good prognosis indicates patients
with DMFS, while worse prognosis refers to patients with distant metastasis or who have died of distant metastasis. Each row represents a miRNA and
each column represents a patient sample. The miRNA clustering tree is shown on the left, and the sample clustering tree appears at the top. The
colour scale shown at the bottom illustrates the relative expression level of a miRNA across all samples: red colour represents an expression level
above mean, blue colour represents expression lower than the mean. Gray colour means that the specific miRNA has not been successfully detected
with qPCR. Numbers for clinicopathological features indicate the following: EOFUS (0 = no distant metastasis, 1 = distant metastasis), MAI10 (0,10,
1$10), ERa (0,1% positive tumour cells, 1$1% positive tumour cells), PPH3_13 (0,13, 1$13), KP_Ki67 (0,10%, 1$10%), Her2 (0 = 0 or 1+, 1 = 2+ or
3+), TNP (0 = positive for either ERa/PR/Her2, 1 = negative for ERa and PR and Her2), PR (0#10% positive tumour cells, 1.10% positive tumour cells),
CK5/6 (0 = no staining, 1 = any percentage of positive tumour cells), Tsize (Tumour size: 0#2cm, 1.2 cm) and Nottgrade (Nottingham grade:
1 = grade 1, 2 = grade 2, 3 = grade 3).
doi:10.1371/journal.pone.0048692.g003

Figure 4. An illustration of the miRNAs impact on ERa, based
on literature and results presented in this paper.
doi:10.1371/journal.pone.0048692.g004
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miR-29c levels and was identified as a target of miR-29c [32].

Furthermore, high TNFAIP3 expression levels were observed in

more aggressive breast tumours (ERa/PR negative and high

histological grade) [33]. Other reports indicate the same in lung

cancer [34] and nasopharyngeal carcinomas [35], while others

state it as up-regulated in breast cancer tissue in comparison with

normal adjacent tumour tissues [36].

Reports from both breast cancer tissue and breast cancer cell

lines show that miR-18a and miR-18b are highly expressed in

ERa negative breast cancer [37,38]. Transfection of pre-miR-18a

or pre-miR-18b to MCF7 cell lines, showed a reduced level of

ERa mRNA and therefore it was concluded that ERa is a direct

target for these miRNAs. Also in the same study, an increasing

number of cells in G1/G0 phase of the cell cycle, when cells are

stimulad with these miRNAs, was reported [38]. Previous results

[15] and the current validation study show that high expression of

miR-18a and miR-18b is associated with high proliferation, ERa
negative, TNP and CK5/6 positivity, thereby indicating that these

miRNAs could be markers for basal-like breast cancers. miR-18a

and miR-18b have nearly identical sequences and our data show

that their expression is strongly correlated. miR-106b is part of the

same family as miR-18a and miR-18b, and has been reported up-

regulated in several types of cancer, including colonic cancer [39],

gastric cancer [40], laryngeal cancer [41] and breast cancer

[42,43]. Some of these findings suggest that miR-106b affects the

cell cycle progression by targeting p21, a cyclin-dependent kinase

inhibitor [42,44]. Smith et al demonstrate a significant correlation

between miR-106b and Six1 and activated TGFb (nuclear

Smad3), suggesting that high miR-106b leads to increased tumour

initiating cell capacity and epithelial to mesenchymal transition

[42]. Both these and our results indicate that miR-106b is a

prognostic marker in breast cancer, but needs to be confirmed in

independent study.

miR-106b is located in the intron of gene minichromosome

maintenance protein 7 (Mcm7) [45], together with miR-25 and

miR-93. Petrocca et al and others showed that BCL2L11 (Bim) is

a direct target for miR-25 [46–48]. Bim protein is essential in

regulation of apoptosis (review in [49]). Our results showed that

miR-25 is significantly up-regulated in tumours with high

proliferation, ERa negativity or CK5/6 positivity, all signs of

low apoptosis. Although miR-106b and miR-25 are located in the

same cluster and thereby thought to be expressed equally, we

found no strong correlation between these miRNAs. This could

signify a posttranscriptional mechanism that plays a key role in

determining the levels of these mature miRNAs [50].

miR-505 is associated with apoptosis [51,52]. Results of studies

of drug-resistant breast cancer cell lines showed that transfection

with miR-505 induced apoptosis by targeting alternative splicing

factor/splicing factor 2 (ASF/SF2) [51]. Moreover, gene expres-

sion data from mouse mammary tumours associate miR-505 with

basal-like breast cancer [53] This also agrees with our data that

high expression of miR-505 correlates with positivity for CK5/6,

ERa negativity and high proliferation.

There are only a few reports on miR-375 in breast cancer. Our

data show that miR-375 is highly expressed in ERa positive and

CK5/6 negative tumours. Down-regulation of miR-375 in

colorectal cancer [54], squamous cervical cancer [55] and

oesophageal cancer [56] suggests that miR-375 could target a

tumour promoter gene. Newly published data showed that miR-

375 expression was reduced in tamoxifen resistant cell lines

Table 4. Pathway analysis of the nine microRNAs by means of Diana microT 4.0 (beta version), PicTar and Targetscan 5.

microRNA KEGG pathway
Prediction
Pathway

KEGG-
pathway ID

Highest -ln
(p-value)

Number of
Genes Genes

Let 7b MAPK signaling pathway PT
TS5 5
Diana 4.0

hsa04010 12.3 (PT) 27 MAP4K3, MAP4K4, DUSP4, CSDE1, TGFBR1, PDGFB,
MAP3K7IP2, DUSP9, FASLG, CACNA1D, DUSP16, MAP3K3,
PAK1, FGF11, PPP3CA, ACVR1B, PLA2G3, NLK, DUSP1,
ACVR1C, CASP3

miR-18a P53-signaling pathway
Ubiquitin mediated
proteolysis

Diana 4.0+ TS
PT + TS5

hsa04115
hsa04120

13.0 (Diana 4.0)
5.3 (TS5)

5
5

THBS1, ATM, CDK2, CCND2, IGF1
UBE2G1, UBE2Z, MAP3K1, PIAS3, NEDD4

miR-18b P53-signaling pathway TS5
Diana-4.0

hsa04115 11.9 (Diana 4.0) 5 THBS1, ATM, CDK2, CCND2, IGF1

miR-106b TGF-beta signaling
pathway

PT
TS5
Diana-4.0

hsa04350 17,2 (PT) 12 E2F5, RBL2, DOCK5, ZFYVE9, SMAD7, SMAD6, RBL1,
SMAD5, PPP2CA, ACVR1B, BMPR2, EP300

miR-25 Phosphatidylinositol
signaling system

PT
TS5
Diana-4.0

hsa04070 7.5 (TS5) 8 SYNJ1, ITPR1, CALM1,CALM2,CALM3, IMPA2, PIP5K1C,
PIP4K2C, PIP5K3, PIK3R3

miR-29c ECM-receptor interaction PT
TS5
Diana-4.0

hsa04512 47.16 (Diana 4.0) 20 COL6A3, COL4A6, FN1, COL5A1, COL1A1, LAMA2,
COL3A1, DAG1, ITGA2, ITGA6, COL4A4, COL5A3, HSPG2,
COL5A2, COL1A2, ITGA11, COL2A1, LAMC1, COL4A1,
COL11A1

miR-375 Biotin metabolism PT
TS5
Diana-4.0

hsa00780 6.36 (TS5) 1 HLCS

miR-424 Prostate cancer TS5
Diana-4.0

hsa05215 13.3(TS5) 15 BCL2, CCNE1, E2F3, CSDE1, IGF1R, MAP2K1, PIK3R1,
SOS1, FGFR1, FOXO1, IKBKB, IGF1, AKT3, CCND1, RAF1

miR-505 Tight junction TS5
Diana-4.0

hsa04530 4.07 (TS5) 4 ACTN2, VAPA, JAM3, MYH10

Only the most significant (from the top three) pathway that is common in all three software programmes is mentioned. Abbreviations: Diana 4.0 = Diana microT 4.0
(beta version), PT = PicTar, TS5 = Targetscan 5.
doi:10.1371/journal.pone.0048692.t004
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compared with wild type cells [57]. That study observed an

increased expression of epithelial markers, E-cadherin and ZO-1

mRNA level, and a decreased level of mesenchymal markers like

(fibronectin, ZEB1and SNAI2/slug) after re-expression of miR-

375. This suggests that miR-375 and one of it’s targets metadherin

play a central role in the epithelial to mesenchymal (EMT)

transition. Other publications that correlate miR-375 positivity

with ERa expression in breast cell lines by targeting RAS

dexamethasone-induced 1 [58] and the fact that higher level of

miR-375 in has been detected in ERa negative breast cancer

patient [59], fit well with this hypothesis.

As shown in figure 3 and 4 most of the miRNAs tested in this

study are strongly related to proliferation, ERa and CK5/6; of

these processes ERa is probably the most central. Although the

correlation are strongly significant the effects can still be indirect,

therefore we performed pathway analysis of the nine miRNAs by

means of different software tools like Diana microT 4.0 (beta

version), Pictar and Targetscan 5 [60]. The most significant (top

three) pathway that is common in all three software programmes

are mentioned and shown in table 4. Comparison of these

pathways and the results presented in the current study clearly

shows the complexity of the function of miRNAs as none of the

analysis showed ER pathway, CK 5/6 or cell cycle as most

important pathway.

On the other hand the fact that miRNAs can act on different

processes at the same time is often used to suggest there potential

as possible drug targets. Upregulation of let-7b and down

regulation of miR-106b could be used for such strategy. This

double action would in theory knock-out both the genomic and the

non-genomic action of ERa and thereby possibly stop many of its

carcinogenic roles.

The strength of this study is the fact that we validate the

correlation between nine microRNAs and important clinicopath-

ological features by a new method and in a new and larger cohort

of patients. All patients come from the same hospital as the

previous study, analyses of the clinicopathological features is all

performed by highly standardized and reproducible methods.

The limitations of the study are the fact that total RNA was

isolated from tissue with at least 50% tumour cells, so the

expression levels might be different if pure tumour populations

would be studied. In situ hybridization with the nine microRNAs

could shed light on the location of the microRNAs in tissue and

show whether the microRNAs are cell specific or not. Another

important issue is the use of control molecules in qPCR

experiments that involve microRNA. The use of U6 is strongly

debated and different molecules have otherwise been used, in the

current study we have analyzed all the data from our previous

study by Normfinder and GeNorm in order to find the microRNA

with the least variation in expressions levels.

In conclusion, we confirm our previously published data in a

new and larger group of LN- breast cancer. These results indicate

that high expression of miR-505, miR-18a, miR-18b, miR-25,

miR-106b and low expression of let-7b are highly associated to

unfavourable prognosis in LN- breast cancer patients. Further-

more, miR-106b has additional prognostic value to both MAI and

Her2.
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dent T-test was used to determined significant relationship.

(TIF)
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