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ABSTRACT 

This paper focuses on the impact of vertical slamming on 
floating point absorber systems and the associated pressures 
that might be expected when these phenomena occur. In a first 
part it will be shown how the occurrence probability of 
slamming can be reduced by implementing a slamming 
restriction, i.e. by controlling the motion of the point absorber. 
The impact of these slamming restrictions on power absorption 
will be discussed. Secondly an investigation is made of the 
pressures that occur when the buoys are subject to vertical 
bottom slamming. Analytical results are presented, which give a 
pressure prediction of an impacting body with conical and 
hemispherical shape, using Wagner theory. Laboratory 
experiments have been carried out at Ghent University. Impact 
pressures were measured during drop tests with both 
hemispherical and conical buoy shapes. These pressures were 
measured by ICP pressure sensors with a range up to 345 kPa 
with small membrane and very high resonance frequency (> 250 
kHz). Analytical and physical results are compared and 
conclusions are drawn. 
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INTRODUCTION 
 Point absorbers are wave energy converters consisting of 
floating bodies oscillating with one or more degrees of freedom 
of which the horizontal dimensions are small in comparison to 
the wave length. Several Wave Energy Converters (WECs), 
composed of one or multiple point absorbers, are currently 
under development. Examples are FO³ [1], Wave Star [2], 
Manchester Bobber [3] and many other devices. At present 
intensive research is being carried out on shape optimization of 
point absorbers from the point of view of power absorption [4-
6]. However, the design of the buoy shape does not only 
influence the energy extraction but also the pressures and forces 
acting on the body. Oscillating point absorbers may loose 
contact with the water surface and be exposed to important 
impact pressures when re-entering the water. This phenomenon 
is called bottom slamming and it occurs particularly when the 
buoys have a small draft in combination with energetic wave 
conditions.  

NOMENCLATURE 
b = instantaneous radius at the intersection point 

between the body and the water [m] 
b0 = instantaneous radius at z = 0 [m] 
B = hydrodynamic damping coefficient [kg/s] 
Bext = external damping coefficient [kg/s] 
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d = draft of the buoy [m] 
D = diameter of the buoy at the waterline [m] 
F = force [N] 
h = drop height [m] 
k = hydrostatic restoring coefficient [kg/s²] 
m = mass of the buoy [kg] 
ma = added mass [kg] 
msup = supplementary mass [kg] 
p = pressure [Pa] 
P = power [W] 
r = distance from symmetry axis [m] 
R = radius of hemisphere [m] 
S = spectral density [m²s] 
t = time [s] 
U = entrance velocity [m/s²] 
z = vertical position of buoy [m] 
   
β = deadrise angle [°] 
ζ = wave elevation [m] 
ρ = fluid density [kg/m³] 

Subscripts 

A = amplitude 
abs = absorbed 
ex = exciting 
ext = external 
sign = significant 

INFLUENCE ON POWER ABSORPTION 
Before investigating the impact of slamming restrictions on 

power absorption, a brief introduction is given on how the 
power absorption is calculated, how the slamming restriction is 
formulated and fulfilled. With linear theory, the equation of 
motion of a heaving point absorber can be expressed as follows: 
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with z the position of the buoy and m the mass of the buoy. 

The added mass of the buoy is denoted by ma, B is the 
hydrodynamic damping coefficient and Fex is the exciting wave 
force. These parameters depend on both the frequency and 
shape of the buoy. The hydrodynamic coefficients ma, B and Fex 
are calculated with a Boundary Element Method (BEM) 
package. Parameter k is the hydrostatic restoring coefficient and 
is dependent on the buoy shape. The linear external damping 
coefficient, Bext, enables power absorption. The supplementary 
mass, msup, increases the natural period of the buoy. As such, 
this supplementary mass allows for an easy way of tuning the 
buoy to the incoming waves in a frequency domain model [4]. 
The forces associated with Bext and msup have to be realised by 
the power take-off (PTO) and motion control system 
respectively. 

The parameters supplementary mass and external damping 

coefficient are optimised in order to maximize the power 
absorption P, which can be expressed by: 
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with ω the pulsation, zA the amplitude of the buoy motion, ζA the 
wave amplitude and Sz the wave spectrum. The amount of 

absorbed power is influenced by the external damping 
coefficient, Bext, and by the velocity of the buoy which is 
dependent on both Bext and the supplementary mass, msup. 
In order to reduce the probability of slamming and to decrease 
the effects of slamming (by decreasing the entry velocity) a 
motion restriction is implemented. Slamming occurs when: 
 

dz A >− )( ς   
 

with d being the draft of the buoy. To reduce the probability 
of slamming, the significant amplitude of the position of the 
buoy relative to the free surface is not allowed to be higher than 
the draft of the buoy: ( ) dz signA <− ,ς . This means that slamming 

is still allowed for the 13.5 % highest waves. In small and 
moderate waves, the slamming criterion does not influence the 
optimal values of the control parameters. However, for higher 
waves and smaller buoy drafts, less optimal values of the 
control parameters Bext and msup have to be chosen in order to 
fulfill the slamming criterion. Fig. 1 shows the absorbed power 
as a function of the supplementary mass and external damping 
coefficient for Hs = 2.25 m and Tz = 5.75 s, for a heaving buoy 
with waterline diameter D = 4 m. The submerged part of the 
buoy consists of a cone shape with top angle 90° and a 
cylindrical upper part of 0.5 m. The total draft is 2.5 m. The 
shaded area has to be avoided to fulfill the slamming restriction, 
resulting in less power absorption. As can be seen in the graph, 
the slamming constraint is satisfied when the point absorber is 
detuned (by selecting a less optimal supplementary mass), when 
the external damping is increased or by using a combination of 
both. With the help of a simple algorithm, the optimal 
combination of control parameters is selected in the remaining 
(non-shaded) area on the graph, resulting in maximum 
allowable power absorption, without violating the slamming 
restriction. The maximum power absorption in this remaining 
area is 45 kW, which is indicated by a circle on the graph. This 
figure does not take into account losses due to mechanical 
friction, turbulent losses, turbine and generator losses or any 
other losses in the conversion system and is for that reason not 
equal to the produced electrical power.  

As can be seen in Fig. 1, there is a significant reduction in 
power absorption due to the slamming restriction. It should be 
mentioned that the present requirement is quite conservative. It 
imposes a constraint based on a certain sea state, and 
consequently this measure is too restrictive for the smaller 
waves in that sea state. It would be more efficient to implement 
a real time slamming restriction, than to impose a constraint that 
remains the same over a certain sea state. However, this would 
require a very reliable forecasting of the incoming waves and/ 
or accurate data of the current point absorber motion 
characteristics (buoy position with respect to free surface, buoy 
position relative to the wave elevation, buoy velocity and buoy 
acceleration). The control algorithm becomes more complicated 
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and high temporary forces might be necessary to decelerate the 
buoy in a short time interval. In any case, the penalty to 
overcome slamming completely will be too high, therefore it is 
of importance to know to which pressure magnitudes the body 
is exposed when slamming occurs. The next paragraph will deal 
with these impact pressures and the parameters that have an 
influence on it. 

 

 
Fig. 1 Absorbed power [W] as a function of the control parameters, 
Bext and msup, for Hs = 2.25 m and Tz = 5.75 s, with a contour line 
indicating the slamming restriction. 

ANALYTICAL INVESTIGATION  
 
Literature overview  

One of the pioneers in slamming research is Von Karman 
[7], who studied water impact on rigid bodies by approximating 
the bodies by a growing flat plate. This work was intended to 
estimate the pressure on floats of hydroplanes during sea 
landings. Subsequent research has been carried out by Wagner 
[8]. He adapted the Von Karman solution by taking into account 
the water uprise on the body in a simplified way. Wagner mainly 
analyzed slamming effects on two-dimensional solid bodies. 
The shape of these bodies is also approximated by a growing 
flat plate, which implies that the Wagner method assumes small 
deadrise angles. Zhao and Faltinsen [9-10] presented 
numerically similarity solution results, based on the findings of 
Dobrovolskaya [11], for deadrise angles between 4° and 81°. 
Based on the work of Zhao et al., Mei [12] developed an 
analytic solution for the water impact problem of general two-
dimensional bodies, where the exact body boundary conditions 
are fulfilled. The advantage of Wagner’s approximation is the 
ability to use analytic expressions for the velocity potential. 
With the generalized Wagner method, a broader range of (local) 
deadrise angles can be investigated in a more accurate way. A 
lot of experimental work has been carried out to study the 
hydrodynamic impact problem and validate the analytic and 
numerical solutions, e.g. the work of Lin and Shieh [13], Zhao 
and Faltinsen [10] and Yettou [14] et al.  
 

Most studies have focused on two-dimensional impact 
problems, since slamming on ships has been a major concern. 
However, there is a need for three-dimensional solutions, 
because real impact phenomena are three-dimensional. Ship 
designers have a growing interest in three-dimensional 
modelling tools, since estimates from two-dimensional solutions 
are not accurate enough, especially not near the bow of the ship 
where slamming often occurs.  

Since point absorbers are considered in this paper, vertical 
slamming of three-dimensional objects, more specifically 
axisymmetric bodies are of interest. In 1945 and 1951, 
Shiffman and Spencer [15-16] presented solutions for the 
impact force on spheres and cones by approximating the bodies 
as a lens and an ellipsoid. One of the important contributors to 
axisymmetric slamming problems is Miloh [17-19], who 
developed analytical expressions for the slamming coefficient 
and slamming force. The work of Korobkin and Scolan [20-21] 
needs to be mentioned as well. Scolan and Korobkin [20] 
presented analytical solutions of the three-dimensional Wagner 
problem for blunt bodies with elliptic and circular contact line 
(an elliptic paraboloid and a cone), obtained by the inverse 
Wagner method and adopting the Wagner assumptions - which 
means that a small deadrise angle, an ideal and incompressible 
fluid and irrotational flow are assumed.  
 
Pressure distribution with classical Wagner method  

Despite the interesting work that has already been carried 
out in the field of water impact, Wagner’s method is even 
nowadays still very valuable, since it produces analytical 
formulas that are easy to handle and give a very good first 
insight into the problem.  

In this paper, the classical Wagner theory is applied to 
some point absorber shapes, namely hemispherical and conical 
buoy shapes. Since the buoys are axisymmetric, the body shape 
can be approximated by a growing flat disc, analogously to 
Wagner’s flat plate approximation for two-dimensional shapes. 
An infinite amount of water is considered. The effect of surface 
tension can be neglected and the water can be assumed 
incompressible and the flow irrotational. Consequently, 
potential theory can be used to describe the flow during water 
entry of a rigid body. A constant entrance velocity U is 
considered, which represents the relative velocity between the 
body and the water. The initial time instant t0 is defined as the 
time where the body touches the calm water surface. At a time t, 
the penetration depth relative to the calm water surface (z = 0) 
equals Ut and the corresponding instantaneous radius at the wet 
section of the cone is equal to b0(t). However, an uprise of water 
is caused while the impacting body penetrates the water, as can 
be seen in Fig. 2.  

A Von Karman method neglects this piling-up effect, 
whereas a Wagner method takes it into account. The 
instantaneous radius b(t) at the intersection point between the 
body and the water is found by integrating the vertical velocity 
of the water particles at z = 0. It should be mentioned that Fig. 2 
gives a simplified presentation of the water uprise, since in 
3 Copyright © 2008 by ASME 



reality a jet flow occurs which ends in a spray. This spray and 
the spray roots (inner domain) are not considered in this model.  
 

 
Fig. 2 Cone penetrating through originally calm water: clarification of 
parameters. 

 
The generalized equation of Bernoulli is used to derive the 

pressure p that is experienced during impact. Using the classical 
Wagner theory [8], the pressure on a cone shape with deadrise 
angle β, at a certain distance r from the symmetry axis, can be 
described by:  
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The expression for the pressure is composed of three terms: 
• The first term expresses the stagnation pressure. 
• The second term is a consequence of the permanent 

flow around the disc. 
• The third term accounts for the expansion of the disc. 

This term represents the effect of the non-stationary 
behaviour of the flow around the disc. 

 
Fig. 3 shows the pressure distribution as a function of the 

dimensionless radius r/Ut for an impacting cone with different 
deadrise angles β. A more peaked pressure distribution and a 
significant pressure increase can be observed when the deadrise 
angle decreases, in particular for small values of β. When β 
decreases from 20° to 10°, the dimensionless pressure peak 
rises from 13.5 up to 53.6, which is an increase by almost a 
factor of 4. Note that the pressure drops down after the peak 
pressure and even goes to infinity for r equal to b, which is 
obviously unphysical. In order to know the correct pressure 
near r = b, an analysis near the spray roots is required. 
However, in order to know the total impact force, the effect of 
the spray can be neglected since the contribution of the 
pressures at the spray and spray roots is negligible. 

 
As mentioned before, the blunt body assumption in 

Wagner’s method implies that bodies should have small local 
deadrise angles. In literature, it is stated that the classical 
Wagner theory gives quite accurate results for wedges with 
deadrise angles in the range of 4 till 20 degrees [10]. Also for 
 

axisymmetric shapes, the blunt body approach will overestimate 
the pressures when the local deadrise angles are too high. In a 
second part in this paper, the analytical results will be compared 
with experimental measurements on cones with deadrise angles 
of 20° and 45°. The theoretical results of the latter one in 
particular might be expected to be too conservative. When 
deadrise angles are smaller than 4 degrees, an air cushion is 
formed, which reduces the pressure on the structure.  
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Fig. 3 Pressure distribution as a function of the dimensionless radius (r 
divided by the instantaneous submergence Ut). 

 
In Table 1 the analytical results are compared with the 

results from Peseux et al. in [22], where the Wagner method has 
been applied numerically. The comparison is made for cones 
with deadrise angles 6°, 10° and 14°. A very good agreement is 
found. 

 
Table 1 Comparison analytical results with Peseux et al. [22] 

 Peak pressure  

 

(analytical) 
[bar] 

Peak pressure 

Peseux et al. [22] 
(numerical) 

[bar] 

Cone 6° 20.0 19.8 

Cone 10° 7.2 7.0 

Cone 14° 3.7 3.5 

 
In a similar way as for a cone shape, the pressure 

distribution has been derived for a hemispherical buoy shape. 
For two reasons this formula can only be applied to very small 
submergences. Firstly because of the disc approximation, which 
implies that small local deadrise angles should be considered. 
Secondly, the relationship between the penetration depth and 
instant wet radius b is not as straightforward as it is for the case 
of a cone shape. A quadratic relation between Ut and b has been 
adopted, which is only valid for small submergences (Ut/R < 
1/5):  

 

R

b
Ut

3

²
=  
4 Copyright © 2008 by ASME 



 
The pressure on an impacting hemisphere with radius R, at a 
distance r from the symmetry axis, can be expressed as follows: 
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Fig. 4 presents an example of the pressure distribution on a 

hemisphere with radius R = 2 m as a function of the distance r 
from the symmetry axis for different penetration depths Ut. The 
smaller the submergence, the smaller the local deadrise angle, 
which corresponds obviously with a higher pressure. Note that 
the pressure peak is very much localized in space, especially for 
small submergences. 
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Fig. 4 Pressure distribution on a hemisphere with radius R = 2 m, as a 
function of r, being the distance between a considered point on the 
hemisphere and the symmetry axis. The pressure is presented for 
several penetration depths. 

EXPERIMENTAL INVESTIGATION  
 
Description of test setup and test models 

Free fall tests have been carried out on rigid axisymmetric 
bodies at Ghent University. Three rigid bodies have been tested, 
which are shown in Table 2: a hemisphere, a cone with deadrise 
angle 45° and a cone with deadrise angle 20°. The models are 
made from polyurethane and have a sufficient thickness to 
behave as a rigid body. 

A picture of the test setup is given in Fig. 5. The bodies 
were dropped in a water basin with dimensions (l x w x h) of 
1.20 m x 1.00 m x 1.25 m. Several drop heights have been 
evaluated up to a maximum of 4 m, see Table 3. Each single test 
was performed at least three times to have an idea of the 
reproducibility of the measurements. The first tests were carried 
out without any guiding structure, which caused too much 
scattering in the data. In order to make sure that the floaters fell 
 

down without experiencing small rotations, it was decided to 
guide the tested models along tightened steel wires.  

  
Table 2 Characteristics of test models 

Model shapes Characteristics 

 

Cone 

Deadrise angle: 20° 
Max. radius: 0.15 m 
Mass: 4.1 kg 
 

 

Cone 

Deadrise angle: 45° 
Max. radius: 0.15 m 
Mass: 5.8 kg 
 

 

Hemisphere  

Radius: 0.15 m 
Mass: 9.6 kg 
 

 
Table 3 Drop heights 

0.05 0.10 0.20 0.30 0.40 0.50 Drop heights 
[m] 0.75 1.00 1.50 2.00 3.00 4.00 

 
 

 
Fig. 5 Experimental test setup. The cone, at a height of 4 m above the 
water level, is encircled in red. 
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Instrumentation 
The pressure time history and deceleration of the body 

were recorded during impact. The deceleration was measured 
by a shock accelerometer with a range of ± 500 g and a 
resonance frequency of 54 kHz. Two high frequency ICP 
pressure sensors with a range up to 345 kPa have been used to 
register the pressures. The sensors were mounted at a horizontal 
distance of 40 mm respectively 90 mm from the symmetry axis. 
Fig. 6 illustrates the sensor position for the cone with deadrise 
angle 20°. 

 
Fig. 6 Position of the pressure cells in mm: sensor 1 (S1) at r = 40 mm 
and sensor 2 (S2) at r = 90 mm. 

 
A sampling frequency of at least 20 kHz was used for 

recording. Such high sampling frequencies are required, since 
the pressure peaks occur in a very small time interval (order of 
magnitude milliseconds). For the same reason the resonance 
frequency of the sensors should be high enough. The ICP 
sensors have a resonance frequency which is above 250 kHz 
and a small membrane diameter (approximately 5 mm). A small 
pressure cell diaphragm area is necessary, since the pressure 
peaks are very much localized in space as well, as can be seen 
in Fig. 7. Fig. 7 shows the theoretically predicted pressure 
distribution at t = 0.002 s for a cone with deadrise angle 20° and 
drop height 4 m.   
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Wagner 3D - Time = 0.002 s - Drop height 4 m

 
Fig. 7 Theoretical pressure distribution as a function of r for a cone 
with deadrise angle 20° and drop height: 4 m. 

 
In earlier investigations, sensor diameters that have been 

used are sometimes quite large, up to 19 mm in [14]. In that 
case the pressure peaks might have a smaller spatial extent than 
the sensor area. Even pressure cells with diameter 5 mm 
measure a space-averaged pressure, which is slightly different 
from the peak pressure. The pressure distribution is more 
peaked when the (local) deadrise angle is small and the impact 
velocity high. In [23], Faltinsen estimated that the theoretical 
 

peak pressure is at maximum 11 % higher than the space-
averaged pressure, measured by a sensor with a diameter of 
4 mm. Deviations of the same magnitude can be derived, for the 
pressure cells with diameter 5 mm, based on the theoretically 
predicted pressure distribution. It is estimated that the measured 
pressure on a cone with deadrise angle 20° deviates 9.7 %, 
respectively 12.5 % from the peak pressure, for drop heights of 
1 m, respectively 4 m. This should be born in mind when 
analyzing the results. In a similar way as above, it is expected 
that a pressure sensor with a diameter of 19 mm, would 
underestimate the peak pressure with 30.5 %, respectively 
34.2 % for the same case of a cone with deadrise angle 20°.  
 
Experimental results 

Fig. 8 gives the measured pressure time history compared 
with the theoretically predicted pressure as a function of time. 
The tested body is a cone with deadrise angle 20° and the drop 
height is 1 m. Both the experimental and theoretical distribution 
show the typical shape, consisting of a very steep left side and a 
more gradually decreasing part on the right side of the peak 
pressure. The difference between the theoretical and 
experimental peak pressure is rather high. The possible reasons 
for this discrepancy are discussed later.  

Piezoelectric pressure sensors are only suited to measure 
dynamic pressures. When pressure is applied, the quartz crystals 
generate a charge, which eventually leaks to zero. This is why 
the measured pressures drop to zero, whereas the Wagner 
pressures lead to the sum of the stagnation pressure and the 
pressure due to permanent flow. 

Furthermore, it can be noticed that the time interval 
between the experimentally determined peak pressures is larger 
than between the Wagner peak pressures. This may indicate that 
the penetration velocity has been decreased during impact. This 
is confirmed by Fig. 9, where the acceleration and velocity are 
plotted for the same test case. The velocity drops from 4.4 m/s 
to 2.6 m/s. Consequently the assumption of a constant impact 
velocity may lead to conservative results, especially when the 
bodies have a small mass. 
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Fig. 8 Theoretical and experimental pressure time history on a cone 
with deadrise angle 20° at positions S1 (r = 0.04 m) and S2 (r = 
0.09 m). Drop height: 1.00 m.  
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Fig. 9 Acceleration [100 m/s²] and velocity [m/s] as a function of time 
for a free falling cone (deadrise angle 20°) and drop height 1.00 m. 

 
In Fig. 10 the peak pressure measured on a cone with 

deadrise angle 20° is given as a function of the drop height. The 
blue line shows the predicted maximum pressure obtained with 
the Wagner method for axisymmetric rigid bodies. It can be 
demonstrated that a linear correlation exists between the 
maximum Wagner pressure and the drop height h. For this 
reason a linear regression through the measurement points has 
been applied. The square of the Pearson correlation coefficient 
R² is presented, which gives an idea of the quality of the 
regression. 
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Fig. 10 Maximum pressure [bar] as function of the drop height [m] for 
a cone with deadrise angle 20°.  
 

Fig. 11 shows the peak pressures measured on a cone with 
deadrise angle 45° as a function of the drop height. For cone 
shapes, the position of the sensor is not expected to have any 
 

influence on the magnitude of the pressure. From Fig. 10 and 
Fig. 11, it can be seen that the pressures measured by the second 
sensor (at r = 0.09 m) are lower than the pressures from the first 
sensor (at r = 0.04 m). The average difference in pressure is 
11 %, respectively 22 %. One of the reasons might be the 
velocity decrease during impact. 
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Fig. 11 Maximum pressure [bar] as a function of the drop height [m] 
for a cone with deadrise angle 45°. 

 
Fig. 12 shows the peak pressures on a hemisphere with 

radius R = 0.15 m at two different sensor positions: r = 0.04 m 
and r = 0.09 m. The peak pressures predicted with the Wagner 
method are shown by a blue, respectively red line.  

 
From Fig. 10 - Fig. 12, it can be seen that the Wagner 

approach gives higher values than the measured pressures. The 
theoretical peak pressures on the cones with deadrise angle 20° 
and 45° are a factor of 1.9, respectively 2.2 higher on average 
than the measured values. For the hemisphere the difference is a 
factor of 3 and 2.2 for sensor 1, respectively sensor 2. One of 
the reasons for this discrepancy is the blunt body approach in 
Wagner’s method which assumes small local deadrise angles. 
However, in [22], where deadrise angles between 6° and 14° 
were tested, a difference of a factor of 1.3 up to 1.9 has been 
found between the numerical and experimental results. This 
might indicate that the Wagner approach is indeed somehow 
conservative. Other reasons which led to an underestimation of 
the measured data are the pressure cell diameter, which should 
be preferably smaller, as mentioned before and the friction of 
the guiding system, which might have decreased the theoretical 
impact velocity.  
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Fig. 12 Maximum pressure [bar] as a function of the drop height [m] 
for a hemisphere with radius R = 0.15 m. The pressure is measured at 
two different sensor positions, respectively at 0.04 m and 0.09 m from 
the symmetry axis. 

CONCLUSION 
In the first part, it is shown how the probability of 

slamming and its consequences can be reduced by controlling 
the point absorber motion. However, this has a quite negative 
influence on power absorption, especially in the case of more 
energetic waves and buoys with a rather small draft. A certain 
level of slamming will still occur in operational conditions, and 
also in storm conditions the point absorbers might experience 
vertical bottom slamming. In order to know which pressures 
might be expected on the buoys, an analytical investigation on 
the pressure distribution has been made in the second part of 
this paper. Analytical formulas which describe the pressure on 
cones and hemispheres are presented, based on the classical 
Wagner approach, applied to axisymmetric shapes. The results 
showed a very good agreement with the numerical results in 
[22]. 

Drop tests have been performed on three rigid bodies: two 
cones with deadrise angle 20°, respectively 45° and a 
hemisphere. The pressure time history and deceleration of the 
body were recorded during impact. A non-negligible 
deceleration was measured for the cone with deadrise angle 20°, 
indicating that a constant velocity assumption might be too 
conservative. The theoretical pressure distribution and peak 
pressure are compared with the experimental results. The shape 
of the theoretically predicted pressure distribution is very 
similar to the shape of the measured distribution. However, the 
measured peak pressures are on average about a factor of two 
smaller than the theoretical peak pressures. One of the reasons 
is that the Wagner theory is too conservative for deadrise angles 
larger than 20°. Also the constant impact velocity approach 
might be too conservative for light bodies, which experience a 
 

significant deceleration. On the other hand, the measured peak 
pressures are expected to be too small, due to the pressure cell 
area and friction from the guiding system. New experiments are 
planned with smaller pressure sensors, a better guiding system 
and exact recording of the impact velocity.  
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