-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

Peer-to-Peer Netw. Appl. (2012) 5:74-91
DOI 10.1007/s12083-011-0110-x

PuLpr: An adaptive gossip-based dissemination protocol

for multi-source message streams

Pascal Felber - Anne-Marie Kermarrec -
Lorenzo Leonini - Etienne Riviere - Spyros Voulgaris

Received: 11 January 2010 / Accepted: 12 September 2011
© Springer Science+Business Media, LLC 2011

Abstract Gossip-based protocols provide a simple,
scalable, and robust way to disseminate messages in
large-scale systems. In such protocols, messages are
spread in an epidemic manner. Gossiping may take
place between nodes using push, pull, or a combination.
Push-based systems achieve reasonable latency and
high resilience to failures but may impose an unneces-
sarily large redundancy and overhead on the system. At
the other extreme, pull-based protocols impose a lower
overhead on the network at the price of increased laten-
cies. A few hybrid approaches have been proposed—
typically pushing control messages and pulling data—
to avoid the redundancy of high-volume content and
single-source streams. Yet, to the best of our knowl-
edge, no other system intermingles push and pull in

P. Felber - L. Leonini - E. Riviere (<)

Institut d’Informatique, Université de Neuchatel,
Emile—Argand 11, 2009 Neuchatel, Switzerland
e-mail: etriviere@gmail.com

P. Felber
e-mail: pascal.felber@unine.ch

L. Leonini
e-mail: lorenzo.leonini@unine.ch

A.-M. Kermarrec

INRIA Rennes-Bretagne Atlantique,
Campus Universitaire de Beaulieu,
35042 Rennes Cedex, France

e-mail: anne-marie.kermarrec@inria.fr

S. Voulgaris

Computer Science Department, Vrije Universiteit,
Amsterdam, The Netherlands

e-mail: spyros@cs.vu.nl

@ Springer

a multiple-senders scenario, in such a way that data
messages of one help in carrying control messages
of the other and in adaptively adjusting its rate of
operation, further reducing overall cost and improv-
ing both on delays and robustness. In this paper, we
propose an efficient generic push-pull dissemination
protocol, PuLp, which combines the best of both worlds.
PuLp exploits the efficiency of push approaches, while
limiting redundant messages and therefore imposing
a low overhead, as pull protocols do. PuLp leverages
the dissemination of multiple messages from diverse
sources: by exploiting the push phase of messages to
transmit information about other disseminations, PuLp
enables an efficient pulling of other messages, which
themselves help in turn with the dissemination of pend-
ing messages. We deployed PuLp on a cluster and on
PlanetLab. Our results demonstrate that PuLp achieves
an appealing trade-off between coverage, message re-
dundancy, and propagation delay.

Keywords Peer-to-Peer network -
Gossip-based dissemination - Epidemic algorithm

1 Introduction

Disseminating information from and to very large com-
munities of nodes is fundamental in many systems and
for a wide spectrum of applications, such as spread-
ing antivirus updates, propagating control messages or
monitoring information (particularly when arriving in
bursts), operating a content delivery network, etc.
Solutions based on dedicated resources, be they indi-
vidual servers, server farms, or distributed architectures
of dedicated forwarders, share the common issue of cost

https://core.ac.uk/display/15480116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Peer-to-Peer Netw. Appl. (2012) 5:74-91

75

effectiveness, as they are extremely difficult to provi-
sion accurately. More specifically, the almost inevitable
over-provisioning of resources raises cost dramatically.
Any amount of dedicated resources has a finite limit
on the load it can handle. A system claiming high
scalability should provision resources for the highest
possible anticipated load, even if that peak load appears
very rarely, if at all. This results in a significantly un-
derutilized system during regular operation, leading to
massive waste of resources and money.

Collaborative architectures embracing peer-to-peer
(P2P) models form the natural alternative to systems
based on dedicated resources. Nodes making use of a
service also contribute to it, relieving the total system
of part of the work in a proposition comparable to the
load they impose on it. This property is often referred
to as elasticity, in the sense that system resources rapidly
scale up and down along with the demand.

In this context, epidemic (or gossip) protocols have
recently received an increasing interest. Their attrac-
tiveness stems from their scalability, inherent balancing
of load across all nodes, and quick convergence. Ad-
ditionally, they have proven to be remarkably robust
in the face of failures. Last but not least, they are
extremely simple. They rely on a periodic pairwise
exchange of information between peers, and are par-
ticularly suited to implement a global emergent behav-
ior as a result of local interactions based on limited
knowledge. They have been applied to a wide variety
of applications [7, 11, 13, 16, 32]. Yet, the most classical
use of gossip protocols is to reliably disseminate data in
large networks in a collaborative manner [2, 8, 14].

Gossip-based dissemination transmits information in
the same way as a rumor spreads within a large group
of people in real life, or a disease spreads by infecting
members of a population, which can in turn infect oth-
ers. Randomness and repetitive probabilistic exchanges
are at the heart of gossip-based protocols and are keys
to achieve robustness. Messages are relayed in an epi-
demic manner so that, with high probability, they are
received by all peers in the system.

More recently, gossip-based approaches have been
extensively used in the context of streaming applica-
tions [18, 20, 34]. Some recent work [3] has demon-
strated that epidemic live streaming algorithms can
achieve nearly unbeatable rates and delays. This grow-
ing interest in gossip-based dissemination can be
explained by the more than ever dynamic nature of
large-scale systems with frequent failures and unre-
liable communication links, emphasizing the fragile
nature of tree-based approaches. These systems con-
sider the transmission of a stream of messages from
one source to a large number of consumers, typically

for in-order replay. However, besides the now well-
understood single-source streaming problem and asso-
ciated protocols, there is also a need from applications
for the support of all-to-all data transmission where
messages are emitted by potentially all nodes in the sys-
tem and shall be received by all others. In this context,
message emissions are generally not correlated, thus a
weak or no ordering is typically sufficient. Examples
of such applications include wide-area monitoring, log-
ging and update mechanisms and notification services.
These applications are the ones we are targeting in
this paper. They share the following common charac-
teristics. Messages are sent by multiple sources (i.e.,
any peer in the system can be the source of a new
message or set of messages). Messages are typically of
moderate size and do not need to be sent in several
pieces (or chunks), which would typically be achieved
in a single-source dissemination using protocols such as
BitTorrent [6]. While messages from different sources
are not necessarily correlated, the overall rate at which
messages are sent in the whole group is typically vary-
ing in time: burst of messages can be sent to all peers in
the system at some point in time while in the common
case only a few messages are disseminated per unit of
time, or messages can be triggered at multiple sources
in response to the reception of a previous message. Fi-
nally, the targeted infrastructure is a non-reliable one,
where messages can be lost and nodes can join or leave
the system at any moment. A dissemination service
must take this aspect into account but at the same
time achieve reliable and efficient dissemination at the
lowest possible cost on the network (by minimizing the
number of messages and the overall bandwidth used for
the dissemination and its management).

There are two main methods for epidemic dissemi-
nation of messages, as laid out in the seminal paper on
epidemics by Demers et al. [7]. The first one (referred
to as rumor mongering in [7]) is a reactive method.
Upon reception of a new message, a node actively
pushes it forward to a few other nodes in the network,
which, in turn, do the same until some termination
condition is met. The second method (referred to as
anti-entropy in [7]) is proactive. Each node periodically
probes a random other node to check for messages it
has not received yet, and pulls them if there are any.
For convenience, in this paper we will be referring to
these methods as push and pull, respectively.

1.1 Evaluation metrics and objectives
In order to evaluate the strengths and weaknesses of

gossip-based dissemination protocols, we consider a set
of metrics traditionally used to assess the performance

@ Springer

76

Peer-to-Peer Netw. Appl. (2012) 5:74-91

of dissemination protocols, namely delay, coverage, and
redundancy.

— Delay refers to the time intervening between the
generation of a message and its delivery at some
destination.

— Coverage refers to the ratio of peers that receive a
message. We are targeting coverage ratios of 100%,
i.e., each message should be delivered to all peers.

— Redundancy refers to the number of duplicate—
and therefore unnecessary—message deliveries.
Although it improves resilience to failures, too high
a redundancy may overload the network.

Another important metric is that of the overall cost
of the dissemination mechanism, in terms of the num-
ber of messages (for the dissemination itself, mainte-
nance of the dissemination substrate, and control flow
messages) and used bandwidth (typically dominated by
redundant sends of messages). Ideally, messages origi-
nating at any peer should be delivered to all peers in the
system (complete coverage) with reasonable delays. In
our context, this should be achieved in a robust manner
and with the lowest possible cost, meaning achieving
a minimal redundancy and using as few messages as
possible for the protocol operation.

1.2 Contributions

We start by pointing out the shortcomings of the
push and the pull methods, and illustrate them by
experimental results. Our contributions are then the
following. We present the specificities related to the
dissemination of a flow of messages and how forward-
ing at random directions can be leveraged to achieve
complete disseminations at low cost and with low delay.
Next, we present a new protocol based on our obser-
vations, PuLp, that mingles push and pull in such a way
that each one makes up for the weaknesses of the other.
Purr is a highly scalable and adaptable collaborative
protocol for the dissemination of multiple messages in
very large sets of peers. The performance, costs, and
resilience of PuLp are conveyed by real deployments
under static and dynamic scenarios on a cluster and on
the PlanetLab testbed (http://www.planet-lab.org/).

1.3 Outline

The rest of the paper is organized as follows: In
Section 2, we discuss the strengths and weaknesses of
the push and pull approaches. The design of the PuLp
protocol is presented in Section 3. In Section 4, we
perform a thorough experimental evaluation of PuLp.

@ Springer

Section 5 discusses related work. Finally, Section 6
concludes.

2 The push-pull dilemma

As already mentioned, epidemic-based dissemination
protocols are based on two basic methods: push and
pull. In this section, we identify the strengths and weak-
nesses of each approach in an attempt to come up with
an efficient hybrid scheme that combines the best of
both worlds.

2.1 Push protocols

Push protocols are based on the recursive forwarding
of messages among peers. A node receiving a message
actively passes it on to a few random other nodes,
which recursively do the same until some termination
condition is met. The termination condition ensures
that the recursion does not go on forever. For instance,
messages could be augmented by a Time-to-Live (TTL)
field to limit the number of hops they can take. Al-
ternatively, nodes could be programmed to forward
messages only upon their first reception and ignore
subsequent copies. Either solution ensures that the
dissemination of a message eventually fades out. The
number of times an informed node forwards a message
is denoted as the FANOUT.

Regardless of the specific variation of the push pro-
tocol, reaching all nodes by blindly forwarding a mes-
sage in random directions is a very expensive operation.
Assume a rather ideal and generic model for push
dissemination (we explain later why reality is harsher),
where nodes are selected uniformly at random and one
at a time, out of a total population of n nodes. At
each iteration, the message is forwarded to the selected
node, independently of whether it is already informed.

The probability to select a not-yet-informed node
when k nodes have already been informed is ”%k, which
requires an expected number of - random forwards
to reach the (k 4+ 1)-th node. This number lies between
one and two until half of the nodes have been informed,
but increases dramatically for the last few nodes. For in-
stance, reaching the last node alone requires on average
n forwards. The expected number of times a message
should be forwarded to reach the whole population of
n nodes is

n—1 n n 1
=n- —~nlnn n

i=1

http://www.planet-lab.org/

Peer-to-Peer Netw. Appl. (2012) 5:74-91

for high values of n, where y ~ 0.5772. That is, the
expected total number of forwards to reach all nodes
is in the order of O(nInn).!

Reality, however, is harsher. First, forwarding a mes-
sage nlnn times does not ensure that it will reach
all nodes. Second, as dissemination is carried out in
a totally decentralized, asynchronous, and massively
parallel way, it is not possible to impose fine-grained
control on the number of times a message is forwarded.
As aresult of these, the indicated value n In n often ends
up being significantly surpassed, resulting in significant
additional redundancy.

2.2 Pull protocols

In a pull protocol, each node periodically probes ran-
dom peers in the network in hope to reach an already
informed peer, and retrieves new messages when avail-
able. Typically, during a pull round, random pairs of
peers exchange information about the messages they
have recently received and request missing messages
from each other.

Contrary to push protocols, the probability of an
uninformed node receiving a message increases linearly
with the current coverage of the message. Indeed, if
k out of n nodes are informed, then a non-informed
node will probe an informed one with probability %
In the case of the /ast uninformed node, it will pull the
message with probability 1 the next time it probes a
random node, as all other nodes already have it.

2.3 Coverage versus redundancy

In order to experimentally validate the aforementioned
properties, we consider the following push protocol.
Each message is augmented by a TTL value, determin-
ing the number of hops it can traverse. A node receiving
a message for the first time decreases its TTL by one,
and if it is not lower than zero forwards the message
to FaANouT random other nodes. When a node receives
a message that it has already received (and possibly
forwarded) in the past, it simply ignores it.

Figure 1 presents a simulated overview of the behav-
ior of push- and pull-only protocols, with respect to cov-
erage and redundancy. For the sake of simplicity, both
protocols are presented in a synchronous way: all peers
that pull from, or push to, another node do so at the
same time. This synchronous activity is called a cycle.

IThese probabilities are studied in the equivalent Coupons Col-
lector problem, where a collector keeps selecting at random out
of n different coupons with replacement, and the number of trials
until all coupons have been selected at least once is measured.

77
Useful — Usel — Notified

100 Push-based, FANOUT =2 25000

80 20000

60 // 15000

40 - 10000

20 o 5000
e O—————= [l m . | n
S o 1 2 3 4 5 6 7 8 9 10 2
= — [
§ 100 Push-bzised, FANOUT =4 25000 ﬁ
g 80 // 98,055 20000 3
= 60 w2 15000 &
g % /- S0 §
c (o]
T 0 /' md @m0 0 s
2 0o 1 2 3 4 5 6 7 8 9 10 2
3 i =

Z 100 Pull-based 25000

80 20000

60 // 100% 15000

40 10000

S LG a f LTS

0 flofdloiolg 000 fJ 0| 0
0 2 4 6 8 10 12 14 16 18 20

Cycles

Fig. 1 Discrete time simulation of redundant (“useless”) mes-
sage delivery ratios and coverage for push-based and pull-based
epidemic diffusions in a 10,000 node network. TTL is co for the
push-based simulation

We consider FanourT values of 2 (top) and 4 (middle),
with infinite TTL in push protocols. A random node
sends a message at cycle 0.

We observe that in push protocols the data spreads
exponentially fast through the network, especially in
the first rounds. However, as rounds advance, the rate
of the dissemination diminishes and the cost of reaching
additional nodes increases drastically (as shown by the
number of redundant messages, i.e., messages pushed
to already informed nodes). A higher FaANouT produces
a sharper exponential growth of the set of reached
nodes, but also a higher level of redundancy. One can
notice that messages are not pushed to all nodes.

Regarding pull protocols, Fig. 1 (bottom) shows that
it takes several rounds until the dissemination of a
message starts taking off, but once it has reached a
sufficient number of nodes it quickly spreads to all the
remaining ones. One can also observe that a constant
number of control messages are sent during each round,
with the ratio of useful messages growing only during
the peak of the message spread.

Figure 2 sheds more light on the behavior of push
protocols, with each dot representing a separate run of
a push-only dissemination for a certain combination of
TTL and Fanour values. Even if a coverage of close to
(but less than) 100% can be achieved with a relatively
low TTL and FaNour, as illustrated in Fig. 2 (top left),
the probability of a message reaching al// nodes is prac-
tically zero, unless both parameters have substantially
higher values (top right). Unfortunately, the values for

@ Springer

78

Peer-to-Peer Netw. Appl. (2012) 5:74-91

Coverage

Complete disseminations

C.:“‘N,"‘

25 S
20
15
104 &
51 455

Ry 1520
85 s

15 15 5

FANOUT

5
TTL 0?0
Avg. redundant pushes received, per peer

Fig. 2 Push-only: coverage, number of complete disseminations
and average number of redundant (useless) messages received
per peer, as a function of the TTL and FaNouT

TTL and Fanour that provide good coverage proper-
ties produce high redundancy, expressed as the number
of deliveries per message per node (bottom).

2.4 Delay

Push protocols deliver messages with a relatively low
delay, as they can immediately push messages further
upon reception at each step of the dissemination, in
an avalanche-like manner. Latency is therefore directly
proportional to the network delays and the number of
hops from the source. In contrast, pull protocols can
exhibit high latency because, even if the propagation
time of messages does also depend on the number of
hops from the source, it is multiplied by the pull period.
A high frequency will produce much (unnecessary)
traffic while a low frequency will dramatically increase
latency.

2.5 Discussion

While both push and pull protocols may achieve full
coverage, they do so through complementary patterns.
Push quickly spreads messages to a large portion of the
network, as it does not depend on timing assumptions
(e.g., no periodic operation). It is, however, slow and
prohibitively expensive in reaching the last few nodes.
This renders it an excellent candidate for the early
stages of dissemination, but inappropriate for the final
phase.

@ Springer

Pull, on the contrary, is an excellent candidate for
the final stages of dissemination, as it deterministically
delivers each message to all remaining nodes in log-
arithmic steps, and by pulling messages selectively it
eliminates the problem of redundant message forward-
ing. However, it is a poor choice for the early stages,
as it starts very slowly. The main disadvantage of pull,
though, is that probing requests are periodic, generat-
ing a non-negligible steady state load proportional to
the probing frequency. However, lowering the probing
frequency to save on traffic overhead increases the
dissemination delay, leading to delicate tradeoffs.

These complementary patterns of push and pull are
the driving force behind the PuLp protocol, described in
the following section.

3 The PuLp protocol

From the observations presented above, it appears
clearly that there is no ideal protocol performing well
on all fronts. In this section we present PuLp, a hybrid
protocol harnessing the specific strengths of both ap-
proaches.

3.1 System model

We consider a large set of n nodes communicating
over an unreliable, fully connected medium (e.g., UDP
over the Internet). Nodes can join or leave the net-
work at any time. Departures and crash failures are
treated equivalently, that is, there is no graceful leave
operation. Byzantine behavior is out of the scope of
this paper (see, for instance, BAR Gossip [20] for a
dissemination protocol dealing with byzantine nodes).

All operations are fully decentralized. That is, there
is no central entity to control any function of the sys-
tem. All message exchanges (both periodic and spo-
radic) between nodes are asynchronous. Note that the
dynamic and unreliable nature of the network rules out
protocols that depend on rigid structures or reliable
communication channels, such as tree-based dissemina-
tion protocols using TCP communication.

Regarding the anticipated workload, we consider (1)
a sequence of messages being disseminated rather than
a single message, (2) generated at variable arbitrary
rates, and (3) originating at multiple nodes. As we
will see, point (1) is particularly important as message
disseminations are leveraged to inform nodes of pre-
vious messages that might have been missed, which in
turn helps nodes adjust their pulling frequency. The
resulting protocol is adaptive and self-controlled based

Peer-to-Peer Netw. Appl. (2012) 5:74-91

79

on the current message generation rate. Note that the
model of a sequence of messages matches the nature
of many common applications, such as microblogging,
RSS feeds, etc.

3.2 Supporting mechanisms

Like many epidemic protocols, PuLp relies on commu-
nication between peers selected uniformly at random.
To that end, we rely on the family of PEER SAMPLING
SERVICE protocols [11], and specifically Cycron [33],
which provides each node with a regularly refreshed list
of links to random other peers, in a fully decentralized
manner and at negligible bandwidth cost.

To provide a high level sketch of CycLoN we omit
certain details found in [33]. In a CycLoN overlay,
each node maintains a (very short) partial view of the
network, that is, a handful of links (IP addresses and
ports) to other nodes. Periodically, yet asynchronously,
each node contacts a peer from its view, and they
exchange a few of their views’ links. As a result, views
are periodically refreshed with new links to random
other peers of the overlay. When the right policies are
followed (see [11] and [33] for details), this method
has shown to produce overlays that strongly resemble
random graphs, that is, at any given moment each
node’s view contains links to nodes selected uniformly
at random from the whole network. Moreover, this
process has shown to converge in a few dozen cycles
irrespectively of the initial topology, and due to the self-
healing nature of CycLoN the respective properties are
retained even in the face of node churn.? CycLoN and
most other PEER SAMPLING SERVICE protocols have neg-
ligible computational, memory, and bandwidth cost,
and have shown to operate with remarkable reliability
and robustness in (even highly) dynamic conditions.

To elaborate on the feasibility of nodes to commu-
nicate with randomly selected peers, when a node is
equipped (through CycLoN) with a few links to ran-
domly selected other nodes, and it randomly selects one
among them, it is equivalent to having selected one
node at random from the whole overlay. Further, when
the node’s CycLoN view is changing over time, the node
has essentially access to an endless stream of random
peers to communicate with.

’In our experiments CycLoN converged in no more than 20
“cyclon rounds”, that is 100 s, and remained converged thereafter
even at experiments involving churn.

3In our experiments CycLON traffic accounted for an average of
24 bytes/s per node, as explained in Section 4.1.

Note that peer sampling protocols are also able to
cope with the characteristics of actual IP networks, in
particular with respect to nodes’ reachability (as the
node lies behind a firewall or NAT). The authors of [15]
propose an augmentation of the CycLoN protocol that
also deals with NAT-traversal issues while maintaining
the same randomness characteristics for the overlay.

Finally, nodes in PuLp need to have a rough estimate
of the network size. For that, we employ the interval
density algorithm [17], which can be executed locally on
top of CycLoN with negligible cost. The principle of this
algorithm is based on the fact that the CycLonN view pro-
vides a continuous stream of randomly selected peers
from the entire network. Estimation of the network
size relies on the density of these peers over a chosen
value space, and proceeds as follows. Each node applies
a hashing function to the IP addresses of each peer
it discovers through CycLoN, mapping them to values
uniformly spread in a given value space. It keeps a set
of recent peers’ hashed values that are the closest to a
particular value (e.g., its own hash value), and uses the
span of this set over the whole value space to infer an
indication of the network size. More than one hashing
function can be used for increased accuracy.

3.3 PuLp: the intuition

As explained extensively in Section 2, push-based and
pull-based protocols operate with opposite patterns.
Conveniently enough, these patterns are complemen-
tary with each other regarding their strengths and
weaknesses.

Given the respective observations, PULP strives to
meet the following objectives:

Limit push Let push execute only for the very few
initial steps, to avoid redundant message forwarding
while ensuring sufficient startup diffusion of messages.
Our experiments (Section 4) indicate that reaching 4%
to 5% of the network is a good target for the push
phase, with nearly no redundancy.

Reduce redundant pulls Avoid probing to find out
whether a message is missing. Probe only in an attempt
to pull the message, when it is known to be missing.

Adapt the pull period Periodic probing constitutes
a limitation. Too short a period causes unnecessary
probing message load, particularly in periods of low
message rate. Too high a period renders the system
unresponsive when messages come at high rate. PuLp is
designed to dynamically adjust the probing frequency
of nodes to match the current message rate.

@ Springer

80

Peer-to-Peer Netw. Appl. (2012) 5:74-91

The key observation is that if messages are for-
warded to nodes selected uniformly at random, every
message reaches a different set of nodes that is not
correlated to the sets of nodes reached by other mes-
sages. Although a node might miss a given message
with significantly high probability, the probability of it
missing all of k messages, diminishes exponentially with
k. We exploit this property in our algorithm.

With respect to the first objective, reaching 4% to
5% of the network in the initial push phase requires
to set the values of TTL and Fanour accordingly.*
The coverage obtained depends on both of these pa-
rameters, as well as the size of the network, which
is estimated by the interval density algorithm (see
Section 3.2). A node with a size estimation Ny simply
chooses, for messages it generates, the values of TTL
and Fanour such that

TTL
Cest = Nest/ E Fanout'

i=1

is as close as possible to the expected coverage. TTL
or Fanour is fixed (possibly based on allowed range of
values or on the CycLoN view size for the FaNourt) and
the other parameter is derived accordingly. Our current
implementation fixes the FaANourt to 3 and computes
the value of TTL. values to approach more closely the
required coverage. Note that duplicates can be ignored
in the calculation, as the value of the expected coverage
is indeed required to be low enough to actually avoid
most duplicates.

Regarding the second and third objectives, PuLp
leverages the push phase to relieve the pull phase
of excessive probing requests. Instead of having each
individual node explicitly probe random other nodes
at fixed intervals to discover whether it is missing any
messages, forwarded messages carry information about
which other messages are available, conveying this in-
formation as a by-product of the push component.

3.4 Purp: the protocol

We now present a detailed description of the PuLrp
algorithm, which combines the push and pull compo-

4We chose this value of 4 to 5% as they allow for a low latency
dissemination with only very few duplicates. Using larger values
do not reduce the delays further but significantly increase dupli-
cate counts. This choice is experimentally justified in Section 4.2.

@ Springer

nents for disseminating a sequence of messages in a
collaborative and decentralized fashion.

Algorithm 1 shows the pseudo-code of the PuLrp pro-
tocol. Each peer P maintains a history of the messages
it has recently received, denoted as Hp. It additionally
maintains a trading window, denoted as T p, containing

Algorithm 1: Pulp algorithm on node P

Variables

Hp: History of (recently) received message IDs

Apun: Period of pull operations (initially 30s)

missing: Set of message IDs known, but not yet received
prevMissingSize: Size of missing at the end of last
Ayt period

Prevygera: Number of useful pull replies during current
Agjust period

Prevyseess: Number of useless pull replies during current
Agjust period

(Aadjust: TTL and FANOUT are fixed protocol parameters)

// Invoked when a message is pushed to node P by node Q
unction PusH(msg, hops, Q, Tq)
// Forward further if needed
if msg received for the first time then

add msg to Hp

if hops > 0 then

invoke PusH(msg, hops-1, P, Tp) on FANOUT
L random peers

-

// Messages will be pulled at the next pulling period
missing < missing U {m € T :m ¢ Hp} \ {msg}

// Periodic pulling of missing elements
hread PERIODICPULL()
do every A,,; seconds
// Shuffling reduces the probability of receiving
duplicates by pull
shuffle missing
invoke PuLL(missing, P, Tp) on a random node Q

o+

// Invoked when a node Q requests a message from node P
function PULL(requested, Q, Tq)
‘ m « 1% element in requested order € Tp, or L if none
invoke PULLREPLY(m, P, Tp) on Q

// Receive a reply to a pull request from node P
function PULLREPLY(msg, Q, Tq)
if msg=_1V m € Hp then
| Previseiess <= PT€Uuseless + 1
else
add msg to Hp
L missing < missing U {m € Tg : m ¢ Hp} \ {msg}
Prevyseful $— Prevyseful + 1

// Periodic adjustment of pulling period for node P
thread ADAPTFREQ()

do every A, seconds

if |missing| > prevMissingSize then

A qdjust

Apuir 4= Tmissing] — prevMissingSizet Drev e ful

else
if |missing|] > 0 A previseess < Prevyseru then
‘ Al,,,,u < A[,,,,v” x 0.9
else
L A]m” < A[m,ll x 1.1

Ap,,“ < maX(A],,,”, A],,,”
Apan — min(A . Apun
PrevVyseless < 0
Prevysefur <— 0
prevMissingSize < |missing|

min)

max

Peer-to-Peer Netw. Appl. (2012) 5:74-91

81

the list of messages that are available to other nodes on
request.

When a message is pushed to (or generated at) node
P for the first time, P registers it in Hp and, if the
TTL has not been reached yet, forwards it to FANouT
random other peers. We stress that obtaining the IP
address of randomly selected peers is a trivial task
thanks to CycLoN, as described in Section 3.2.

In forwarding a message to another peer Q, node P
also forwards the IDs of messages in its trading window
Tp. These are messages that P considers to be in the
pull phase, a subset of messages in P’s history Hp. The
trading window plays a key role in the interaction be-
tween nodes, because it helps nodes avoid exchanging
messages that are either (1) too recent and are still
being pushed, or (2) too old and have already been
removed from local histories. The trading window 7Tp
essentially leaves a “safety margin” on both sides of
history Hp. Figure 3 illustrates these data structures.

When Q receives Tp, it checks for messages not
contained in its own history H. If it discovers some
messages it has missed, it inserts them in the missing
set. These messages will be asked for by the periodical
pull thread.

The periodic pull thread simply selects a random
peer and sends it a pull request. The protocol does
not try to pull from peers that are known to have the
requested messages, neither does it keep information
on which peer advertises what content. The rationale
behind this design choice is that, while pulling from
specific peers might slightly speed up dissemination
of the first few messages, random selection has the
advantage of distributing information about message
availability more evenly (advertisements are sent along
with pull requests), overall making the protocol more
responsive and globally more efficient. It is a design
decision that favors common benefit over (short term)
individual gain.

As multiple pull operations of the same node may
overlap in time, it makes sense to avoid requesting the
same message from two different peers. Therefore, the
set missing is rotated by one position (round-robin)
before being sent next time. The inquired node selects,

t
Hp: recent history /Tp: trading window v

A s // P 7 ’III N N
old messages |B3|A7|Cd||B1]Cs|B2|Cs|As|Ae|(C7|Cs|Bs| As|Ca
" y/A— 7! A

Fig. 3 Data structures of the PuLp algorithm. Note that messages
come from multiple sources (here A, B, and C) and each node
sorts them based on the order it received them (which is generally
different for each node)

among the messages in its history, the first available
one according to the ranking in the received missing
list, if such an element exists. If none of the messages
in missing is available, it replies with L, and the pull
operation counts as useless. Note that, as for pushed
messages, a node replying to a pull request also piggy-
backs its trading window in the answer.

The periodic adaptation of the pulling frequency is
performed by a separate thread in the following way.
Each node has a pulling frequency Apy, and maintains
a set of message identifiers, missing, that it has heard
of but not received yet. Pulling frequencies are chosen
to follow the overall rate of new messages sent in the
network. Every A,gjust seconds, a node inspects (1) the
evolution of the size of the missing set during the last
period, and (2) the number of useful and useless pulls
that were performed during that period. If the size
of the missing set has increased, A,y is lowered to
the period that would have been necessary to retrieve
all newly known elements (assuming successful pull
operations). That is, the new pulling frequency Apun
is simply the adjustment frequency A,gjusc divided by
the number of messages that should have been fetched
during the last adjustment period to cope with a steady
rate of reception (which would result in a steady size of
the missing set).

This adaptation allows us to cope with increasing
rates of new messages and to limit the growth of the
missing set. If the size of missing has shrunk, the evolu-
tion depends on the ratio of useless vs. useful pull oper-
ations: if useless pulls dominate, Apy is decreased by a
small factor. If useful pulls dominate, A,y is increased
by the same factor. We observed based on preliminary
evaluations that a value of 10% was yielding a good
compromise between the reactivity and the accuracy of
the pulling frequency adaptation mechanism. In other
words, the pulling frequency aggressively adapts to sud-
den sending activity and adjusts to the highest possible
value with acceptable useless pulling rate. Apy; can be
bounded by [Apun;,» Apully,,), depending on the un-
derlying network properties and the desired reactivity
of the system to new message sending activity.

4 Evaluation

This section describes experimental results from
real deployments of PuLp on PlanetLab (http://www.
planet-lab.org/), as well as a controlled deployment in
a cluster. We first present our experimental setup and
evaluation metrics. Then, we present experimental re-
sults demonstrating the performance, stability, and load
in both static and dynamic environments. Finally, we

@ Springer

http://www.planet-lab.org/
http://www.planet-lab.org/

82

Peer-to-Peer Netw. Appl. (2012) 5:74-91

compare PuLP to a push-only and a pull-only protocol
to highlight the benefit of its hybrid approach.

4.1 Experimental setup

The implementation of PuLp is based on SprLay [21],
a lightweight framework for designing, deploying, and
monitoring distributed systems. It uses UDP for com-
munication. UDP, being a connectionless protocol,
seems the most appropriate choice given the many
short communication sessions between arbitrary nodes,
rather than long sessions between fixed pairs. In addi-
tion, given the inherent fault tolerance of PuLp, there
is no reason to opt for a more reliable (and expen-
sive) protocol such as TCP. The ability of gossip-based
dissemination to gracefully deal with packet loss is
demonstrated in our experiments.

In all experiments, messages are 8 KB in size and
are sent from randomly chosen nodes of the network.
Unless specified otherwise, the initial push phase is
configured to reach between 4 and 5% of the network
when there is no message loss (thus slightly less in
practice). To that end, we set the parameters as follows:
TTL = 3 and FaNout = 3 in a 1,000 node network
(ideally reaching 40 nodes—coverage 4%) and TTL
= 3 and Fanout = 2 in a 300 node network (ideally
reaching 15 nodes—coverage 5%). We further justify
this choice of a very low coverage of the initial push
phase with our second experiment. Unless otherwise
noted, the minimal and maximal pull periods are set to
Apullyy, = 0.2 s and Apyy . = 30s.

No node has global knowledge of the network, and
the selection of random peers for PuLp operations
is based exclusively on CycLon [33], as explained in
Section 3.2. CycLoN performs periodic pairwise shuffles
of peers’ views to maintain a constantly evolving over-
lay network whose properties are close to those of a
random graph (i.e., each node’s link is equally likely
to be present in any other node’s view). Views were
configured to a size of 25 links to other nodes, and
peers exchanged 5 links every 5 s. Given that a link
is 6 bytes long (IP address and port), this accounts to
60 bytes of traffic (inbound and outbound) induced by
each node every 5 s. Since this traffic affects two nodes,
each node is involved on average in 120 bytes per S s,
that is 24 bytes per second of total traffic for each node.
Also, it should be noted that thanks to CycLoN’s link
aging policies, which are out of the scope of this paper,
links to failed nodes can remain in other peers’ views
no more than 5 exchange rounds, that is, 25 s in our
experimental settings.

We evaluate Purp along the metrics laid out in the
introduction, namely coverage, dissemination delays,

@ Springer

Number of receptions

300
= 100
'cgn Max — 75th perc. /23 25th perc.
5 807y goth perc. /3 50th perc. === 5th perc.
2 60
L
@ 40 1
& 20
8 o
— 0 100 200 300 400 500
3
= 12
5 14 Useful Useless --------
2 081
= 0.6
8 041
s 0.2 S
e 0 aan ; - —
= 0 100 200 300 400 500
o Time (sec.)

Fig. 4 Performance of the dissemination of 200 messages on a
network of 1,001 nodes running on a cluster: individual cumula-
tive delays, evaluation of the delay distribution, and evolution of
the pull operations recall

and redundancy (both in terms of redundant pushes
and useless pulls). We evaluate (1) delays and their
distribution, (2) the influence of the initial push phase,
(3) the influence of high levels of churn on update
reception delays and (4) the effectiveness of the self-
adaptation of pulling periods for varying message gen-
eration rates.

4.2 Homogeneous settings and churn resilience

Our first set of experiments was conducted on a local
cluster composed of 11 dual-core nodes with 2 GB
of memory each. Each machine hosts 91 instances of
PULP, reaching a total of 1,001 nodes.

Our first experiment (Fig. 4) presents the delivery
delays for a stream of 200 messages. Messages are sent
by randomly chosen peers at a rate of one every 2 s
approximately.® The upper plot presents the number
of nodes informed (through either push or pull) for
each message with respect to time. Each single line
corresponds to the evolution of a certain message. The
middle plot presents the distribution of delays for each
message. The abscissa corresponds to the time when the

SDue to the high load on our cluster, periods are not exactly
respected by the machine’s scheduler. This explains that the last
message is sent at around 408 s and not 400 as expected.

Peer-to-Peer Netw. Appl. (2012) 5:74-91

83

message is sent. For a given abscissa, the cumulative
shaded areas represent the distribution of delays, by
percentiles. For instance, the maximum delay for re-
ceiving the message sent at time 200 is 31 s, and half
of the peers receive it within 14 s (50th percentile). One
vertical set of percentiles (distribution) in the middle
plot is a concise representation of the cumulative dis-
tribution of reception times for this message, shown
by one individual line in the upper plot. Finally, the
lower plot presents, for each period of one second, the
mean number of useful and useless pull operations per-
formed, per peer. This metric is used by nodes to self-
tune the pulling algorithm, with the objective to reach
a larger number of useful than useless pull operations.

We clearly see in Fig. 4 (top) the initial push phase
that reaches a small portion of the network (4%): the
small vertical lines at the beginning of each diffusion,
that is shown for all messages. The larger part of
the dissemination takes place by pull operations. We
observe an initial bootstrap phase, where mostly only
push operations reach nodes, and no pulls take place.
This is due to the fact that, prior to the dissemination
of the first message, all nodes have pulling periods of
Apully,, =30 s in this experiment. As soon as enough
nodes have been reached by initial pushes, there is
a warm up phase with an increasing rate of periodic
pull operations: nodes start to discover missed messages
and to retrieve them. This is also demonstrated by
Fig. 4 (bottom): after the warm up phase, nodes start is-
suing pull operations, most of which are useful (pulling
too early, on the opposite, would have resulted in a
larger set of useless communications). As a small num-
ber of useless pull operations appear, the pull period
gracefully adapts to the message emission frequency
and only a very small fraction of pull operations are
useless. As a result, the delivery delays for messages
sent after the warm up phase remain stable.

The next experiment explores the impact of the ini-
tial push phase on the overall delivery latency: does a
larger coverage during the push phase result in lower
delays? Figure 5 (top) presents the distribution of de-
lays for a set of 200 messages in the same settings as
for the previous experiment. We vary the coverage by
setting TTL = 2 and by varying FaNour from 2 to 16.
The lower part of the figure presents the evolution
of the proportion of duplicate messages as a function
of the coverage of the initial push. For instance, we
have a coverage of 14.4% of the nodes on average with
Fanour = 12 and this results in 1.11% of the nodes
receiving at least one duplicate.

We observe the typical exponential growth of dupli-
cates with respect to the coverage of the push phase:
the higher the FaNouT, the more peers are reached, but

Max ——3
90th perc. ——

75th perc. /=3
50th perc. ==

25th perc. =
5th perc.

[
o
o

200

Delays
(seconds)

S
co 34 /
ZP] 24
& g 14 //
2 o —
%o T, %, o, %, CH N
o e T T

Push coverage (%) (Fanout)

Fig. 5 Evolution of the reception latency distribution w.r.t. the
coverage of the initial push phase

redundancy grows faster than coverage. Most impor-
tantly, the delays that are observed with increasing cov-
erage are decreasing only at very low values of FANouUT,
and the price in redundant push operations overwhelms
the benefits of higher values. This justifies the value of
approximately 4% chosen as target coverage for our
experiments.

4.3 Performance under churn

The next experiment studies the resilience of the Purp
protocol to churn (Fig. 6). To that end, we use SPLAY’s
churn manager that can emulate node departures and
arrivals in real time, by remotely starting and Kkilling

Max. ——3
90th perc. ——=

75th perc. =3
50th perc. ===

25th perc.
5th perc. =

No Churn

Churn x5

Update Time Distributions (seconds)
Churn x10

Churn x20

0 50 100 150 200 250 300 350 400
Time (seconds)

Fig. 6 Evolution of the delays as seen by a set of 100 observers
(static nodes) under increasing churn rates

@ Springer

84

Peer-to-Peer Netw. Appl. (2012) 5:74-91

our prototype nodes at specific times. We replay a
real trace of 2,000 nodes collected in the Overnet file-
sharing network in 2004 [1] at its original speed, as
well as 5, 10 and 20 times faster. The most accelerated
run result in churn rates of 192 departures or joins per
minute on average for an average population of 650
simultaneously active peers.

In addition to the nodes of the trace, we use a set
of 100 static nodes, denoted as observers, to monitor
the dissemination and reception of messages. A set of
200 messages is sent by nodes belonging to the non-
observer set, one every 2 s. We plot the evolution of
delays at the observers, for increasing churn rates, and
for a static environment (with 650 nodes) as a base-
line. As already mentioned, communication is carried
over UDP, without ACKs being sent. Failed nodes are
gradually removed by CycLoN only. This means that
most nodes will have (temporarily) failed peers in their
views, which results in additional message losses.

Figure 6 presents the evolution of the delays and
illustrates the inherent capacity of PuLp, to cope with
dynamic environments. We observe that only a very
high churn rate leads to slightly increased delays (lower
plot of Fig. 6). Interestingly, nodes pull more often
when there is more churn because the period Apy
decreases as more messages are lost but the size of the
missing set does not diminish. This demonstrates that
the self-adaptation of the pulling period Ay also deals
with increasing loss in the communication and keeps
the rate of reception sufficiently high for all online
nodes to receive all published messages.

4.4 PlanetLab experiments

Our second set of experiments is run on the PlanetLab
world-scale distributed testbed. PlanetLab is composed
of nodes that are extremely heterogeneous in load and
available network resources. We use a set of 300 ran-
domly chosen PlanetLab nodes. We evaluate dissemi-
nation delays and analyze the self-tuning of the pulling
period with varying message emission frequencies.

The experiments carried out on the Planetlab testbed
highlight the ability of PuLp to achieve full coverage in
heterogeneous environments that are prone to failures,
message loss, and arbitrary delays. As a matter of fact,
Planetlab nodes experience significantly less reliable IP
communication than typical computers on the Internet,
due to their massively parallel virtualization and high
load.

The first experiment reproduces the scenario studied
in the cluster and shown in Fig. 4, with the notable
difference that we use here 300 distinct PlanetLab
nodes. The data representation is the same as for Fig. 4.

@ Springer

A set of 200 messages are sent by nodes selected ran-
domly at a rate of one message every 3 s (again, the time
span deviation from 600 to 730 s is due to scheduling
issues on heavily loaded nodes).

One can observe in Fig. 7 that, as before, the first
messages help to bootstrap the dissemination process
by notifying nodes of some publishing activity. Mes-
sages then need approximately 30 s to reach half of
the network and all nodes but the 10% slowest ones
receive them in less than 60 s on average. Note that
some of the randomly selected PlanetLab nodes failed
or became unresponsive during our experiments, as
one can observe in the figure: the protocol achieves a
coverage of 100% of all live nodes at slightly less than
300 receptions.

Our second PlanetLab experiment evaluates the ca-
pacity of PuLp to self-tune the pull period Ay, on each
peer. We consider again a network of 300 PlanetLab
nodes with only one publisher, whose message sending
rate follows the frequency evolution of the upper plot
of Fig. 8: starting from a frequency of 0.2 (i.e., one
message every 5 s) and increasing to 2 messages per sec-
ond, for a duration of 475 s (100 messages). This steady
increase is followed by the sending of 200 additional
messages at a rate of 2 messages per second, followed
by a sudden drop to one message every 5 s for the last
20 messages. 320 messages are sent in total.

We observe in the middle plot the distribution of the
pulling periods Apy computed by the self-adaptation
algorithm: the initial frequency is of one pull every
30 s (idle state). As soon as messages are published,
nodes discover that they miss some newly published

300

250 -

200 -

150 4

100 4

Number of receptions

50

0

0 250 500 750 1000 1250 1500 1750 2000

100 - 90th perc. ——2 75th perc. 3 25th perc. T

50th perc. === 5th perc.
80
60
40\ A 8 f |

0 100 200 300 400 500 600 700
Time of publication (seconds)

Time of reception (seconds)

Fig. 7 Performance of the dissemination of 200 messages on
PlanetLab

Peer-to-Peer Netw. Appl. (2012) 5:74-91

85

2,
151
05F

0 200 400 600 800 1000 1200 1400

Messages
frequency

90th perc. —— 50th perc. s 5th perc. s
. 75th perc. tmmEm 25th perc. mmm—
3
5 O
e 20
E -§ 10
22 -
£ 0 200 400 600 800 1000 1200 1400
T 15
85 Useful Useless -------
so 1r
o2
n=3_ g)—; 05¢
Q— 0 Y ruc? v “ i . . d Rl i)
0 200 400 600 800 1000 1200 1400

Time (seconds)

Fig. 8 Evolution of the pulling frequency w.r.t. new messages
frequency

messages and adapt their frequencies accordingly. The
lower plot presents the number of pull requests issued
by nodes, distinguished between useful (i.e., resulting in
the reception of new information) and useless requests
(i.e., retrieving no new message). We observe that the
pulling frequency follows the evolution of the new
messages frequency in the first phase, with a slightly
oscillating behavior around the optimal value. This os-
cillation is typical of the control-loop-based adaptation
of the pulling frequency implemented by PuLp, and is
also a result of the latency between the observation
and the adaptation (as adaptation decision are made
periodically, on average half such a period is required
before the adaptation takes place). This does not result
in significant delay increases for individual messages.
Then, as messages are being disseminated, most pull
operations are useful and the pulling frequency remains
high. As soon as most of the messages have reached all
nodes, the number of useless pulls grows, resulting in
an increase of the pulling period.

Overall, we observe that most of the pulls are suc-
cessful and result in delays low enough to sustain the
message sending rate during dissemination, whereas a
pull-based protocol with a fixed pulling period would
have either incurred high delays or a high number of
useless pulls. This observation further highlights the
importance of the self-adaptive pulling period.

Our final experiment evaluates the capacity of PuLp
to react to bursty message generation scenarios. It
complements the previous experiment (Fig. 8). Figure 9
presents the dissemination of a total of approximately
2,000 messages in a network of 200 nodes. To better ob-
serve the behavior of the dissemination after the burst,

we voluntarily slow down the system reaction by setting
a very conservative minimum period for pull replies of
one second. The maximal period is maintained at 30 s.
Note that the dissemination speed in fully-loaded mode
(i.e., when many messages are on-the-fly in the network
and are still being propagated) is a direct function of
this parameter, which in turn proportionally impacts
the dissemination time.

Messages are sent from all nodes in the following
manner: an initial message is sent by a first node, and
other nodes react to the first message reception by
triggering between 1 to 20 messages (their number
is chosen randomly). This scenario illustrates the be-
havior of PuLr when messages are sent as bursts by
combinatorial reaction. We observe on the upper plot
the number of messages sent per second (from any
node in the network). Note the log scale on the y axis.
We start from a steady state system with all pulling
periods equal to 0, and one message is sent initially.
Nodes receiving the message by the initial push phase
generate new messages which result in 198 messages
being sent after a warming period of 180 s, and a peak
of 783 messages once all nodes receive the initial trigger
message as they turn to the minimal pulling frequency
allowed of one pull request per second.

As there are messages remaining from the burst to
be received by nodes in the network, nodes continue
to pull with a near-optimal success rate (the average
number of useful and useless pull requests are shown
on the bottom graph). We observe that nodes stop
pulling approximately at the same time. This is an

£ 1000
2]
o 100 1
S 10
o 'lJ 1
= 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
901 perc. === 50" perc. mwww 5" perc. wew
75" perc. mmmm 25M perc.
i
2
gg 30
83 20
£8 10
Z 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

2
15} Useful

1}
0.5}

Useless -------

Pull replies
(/peer,/second)

Time (seconds)

Fig. 9 Reaction to a message burst with a one second minimal
pulling frequency

@ Springer

86

Peer-to-Peer Netw. Appl. (2012) 5:74-91

expected result as all nodes are pulling at the same
(minimal) period and the large number of messages to
be received is much larger than the number of nodes
that are reached by the initial push phases. Moreover,
these initial push phases reach different set of nodes,
allowing all nodes to warm up their pulling activity
while distributing initial messages in similar amounts to
all of them.

This experiment highlights the ability of PuLp to
disseminate at a very low cost (one message per second
and per node), large number of messages arriving as
burst from multiple senders. We note however that,
as claimed in our initial assumptions, PULP is not tai-
lored nor designed to handle reactive systems (such as
eventing mechanisms) where the delays of reception of
particular messages are critical. Instead, PULP carries its
goal of disseminating in an adaptive and robust manner
sets of messages from multiple sources at extremely low
cost.

4.5 Comparison to push-only and pull-only
disseminations

Our last experiment highlights the benefit of using the
Purp hybrid pull-push approach to dissemination, as
opposed to a solution that would use only push or
only pull operations. We compare PuLp against two
protocols:

— A “pull-only” adaptive protocol. This is basically a
subset of PuLp, where the network is not seeded
by some initial push phase, but where we keep
all other features, in particular, the pulling period
dynamic adaptation.

— A “push-only” algorithm, which works as follows.
A node that wishes to publish some message initi-
ates a push phase, as for the regular PuLp proto-
col, but this operation is not completed by regular
pull operations. The push itself does not intend
to reach a full coverage of the network, which
would be totally impractical and overflow any rout-
ing infrastructure quickly. Instead, subsequent push
operations are used to convey implicit pull offers
about ongoing disseminations and publicize the
availability of new data. When a node n, pushes
some new message m to some node ny, 1, includes
its list of message identifiers (in the same way as
in normal Purp). This list is sorted in the order
of message reception as seen by n, (as all nodes
can publish messages, there is no global order on
messages, thus two nodes can have different orders
for the same set of received messages). In return, n,
requests from n, the first message from n,’s list (the

@ Springer

oldest as seen by n,), among the ones it does not
already have. In this way, older messages get larger
priorities and, as there are more messages to dis-
seminate, the number of implicit pull offers grows
accordingly and helps resolve previous messages.

These two protocols help to highlight the behavior
of Purp itself, as both implement its two key ideas:
(1) using pull frequency adaptation to adjust to changes
in message emission rates and (2) leveraging a sequence
of disseminations from various sources and the spread
of information about which elements are missing by an
initial push phase.

Figure 10 presents the distribution of dissemination
times for a set of 200 messages on a cluster hosting 500
nodes for the three protocols, as well as the duplicate
and hit rates of the push-only protocol. Messages are

PULP (Fanout=3, TTL=3): Reception Delays Distribution

60
50 h Max ——= 750 perc. =— 25 perc. E===
40 90" perc. =— 50 perc. =3 5" perc.

Seconds

Seconds

Only—push (Fanout=5, TTL=4): Reception Delays Distribution

200
175
» 150
T 125
g 1001
o 751
(] gg i
0 : , ; , N
0 100 200 300 400 500 600
Only—push (Fanout=5, TTL=4): Hit and Duplicate ratios
100
o 80 1
£ 601
o 40
28' Hit Ratio Dup Ratio s
0 100 200 300 400 500 600
Message sending rate
1msg
/2s
1msg |
/20s r r - - ,
0 100 200 300 400 500 600

Fig. 10 Comparison of pulp with an initial seeding phase (fop),
with no initial seeding phase hence relying only on push op-
erations (middle) and a dissemination that uses only push to
disseminate new messages and implicit pull proposals

Peer-to-Peer Netw. Appl. (2012) 5:74-91

87

published from random nodes in the network, but ac-
cording to the frequency that is shown by the bottom
plot: alternation between a frequency of 1 messages
every 2 s and 1 message every 20 s, for periods of 150 s.

The top plot presents the dissemination times ob-
tained by using PuLp, which are consistent with previ-
ous evaluations. Periods of high message sending fre-
quency imply low delays as the number of transient
messages in the network is kept to a minimum, yielding
more pull messages to sustain the frequency of new
messages. Periods of lower sending rate result in lower
activity hence higher maximal reception delays, but
remaining at acceptable levels with a median delay of
at most 10 s and a maximal delay of 30 s (note that this
can be reduced by setting Apuy,,. to a lower value).

The second plot presents the dissemination delay
for PurLp without the initial push phase. These results
convey those from Fig. 5: delays increase drastically
when the seeding effect of the initial push phase is
absent. Median delays are effectively doubled when
compared to the classical PuLp.

The third and fourth plots present the dissemination
results for the pure-push scenario: delays distribution,
hit ratio (proportion of nodes receiving a message) and
duplicate ratio (proportion of useless message recep-
tion compared to useful ones). The hit and duplicate
ratios are not shown for PuLp and its variant with no
push phase as the former is always 1 and the latter
always 0 by construction. We set the values of TTL
and FaNour for the push-only solution as the minimal
ones that yield a hit ratio of 1 for most messages.
Under such conditions, the duplicate ratio (mostly due
to duplicates during the push phase) is around 80%,
that is, a message is received on average 900 times in a
network of 500 nodes. The lack of regular pull messages
has the consequence that messages are not compre-
hensively disseminated when no further dissemination
takes place, or when the message sending rate drops
suddenly.

Overall, this experiment shows that both key com-
ponents of PuLP are necessary for its proper operation,
and that, accordingly to the intuition, a hybrid and
adaptive approach yields the best results.

5 Related work

Unlike structured dissemination overlays (typically us-
ing trees) that use reactive strategies to tolerate failures
and churn, gossip-based approaches proactively imple-
ment redundancy in the system and trade network over-
head for extreme robustness against failures. Building
upon the seminal work in this area where epidemics

were introduce to disseminate updates in a database [7],
many probabilistic gossip-based approaches have been
recently proposed [2, 8, 10, 22, 23]. There has been a
growing interest in such proactive approaches in a con-
text where large-scale systems are highly dynamic. They
avoid the need for potentially slow recovery mecha-
nisms as well as the cost of maintaining structures in
overlay networks. More specifically, many approaches
have been proposed in the area of gossip-based video-
streaming and secure protocols, breaking the myth of
the lack of relevance of gossip protocols to distribute
bandwidth-intensive contents or cope with malicious
behavior [3, 18-20, 26, 27].

Gossip-based dissemination protocols usually fall
under either of the push-only and pull-only category
of protocols as discussed earlier, both having their own
tradeoffs with respect to overhead (message redun-
dancy), delay and robustness.

The aforementioned collaborative video streaming
protocols combine the two methods in a context-depen-
dent manner: typically push-only protocols are used
to disseminate control messages so as for peers to
subsequently pull useful stream packets. While the two
protocols are combined, they are used for different
purposes precisely because they have different charac-
teristics. Push protocols are robust but introduce redun-
dancy and are relevant to disseminate control messages
where robustness is required and messages are typically
small. Pull protocols are used for the dissemination of
large content to limit redundancy. Chainsaw [26] uses
pull only to pull for new data in a dynamic network
based on a peer sampling mechanism. BAR Gossip [20]
and Flightpath [19] focus on tolerating the presence
of byzantine peers. In Coolstreaming [18], the content
location is pushed while the actual content is pulled
as in swarming systems. HEAP [9] accounts for peers
heterogeneity by letting nodes dynamically adjust their
contribution to gossip dissemination according to their
capabilities. In [3], several push-only gossip-based ap-
proaches that differ in the choice of the content be-
ing pushed are studied. More specifically, the authors
demonstrate that sending the most recent chunks to
random peers achieves close to optimal dissemination
with respect to rate and delay. In [4], a push-only
protocol is combined with fountain codes (rateless
erasure-correcting codes) to eliminate the unnecessary
redundancy of standard push protocols.

The approach of PuLp is to combine push and pull,
not simply to disseminate control messages on one hand
and the actual content on the other hand. This approach
is shared to some extent by the following work.

The Interleave protocol [29], which is further evalu-
ated by [5], combines push and pull for set of messages

@ Springer

88

Peer-to-Peer Netw. Appl. (2012) 5:74-91

as Purp does, but with an approach that differs in
several aspects. In Interleave, a list of sequential items
is considered. Push is used to propagate new items to a
large set of nodes in the system, while pull is used to re-
trieve the oldest missing items from the set (as decided
from the sequence number of newest messages re-
ceived). As such, Interleave focuses on single-publisher
scenarios while PuLp targets multiple publishers. More-
over, the frequency of pull operations does not adapt
to the frequency of new messages, incurring either a
potentially high steady-state load or a lack of reactive-
ness in periods of heavy publishing activity. On the
other hand, an interesting contribution of Interleave is
to take into account the bandwidth limitations at each
peer, thus supporting more easily high-bandwidth file
diffusion in heterogeneous systems. The properties of
push/pull protocols for live video streaming are further
studied in [28], with the interesting conclusion that
RTT is an essential parameter for such delay sensitive
systems (different from those considered by PuLp).

In [25], the authors propose a hybrid dissemination
mechanism that also aims at reducing the cost of the
push phase by limiting the number of duplicates, and re-
lying on a pull phase thereafter to complete the dissem-
ination. Nonetheless, the main difference with PuLp lies
in the approach that is used for limiting the duplicates
in that push phase. In [25], a structured network based
on prefix routing is used conjunctively with a random
network. Both the structured and random overlays are
constructed in a delay-aware manner. The structured
network is based on a coarse-grain structure, using only
a few digits for prefix based routing, allowing a more
robust construction and maintenance. The push phase
is based on prefix-precedence relations and uses em-
bedded trees that are found in the structured network
to seed the network with the new messages. Meanwhile,
the approach does not allow for frequency-adaptive
pull operations. Interestingly, the authors of [25], based
on simulation of their protocol, share our observation
from Section 4.2, that reaching a small fraction of peers
in the initial push phase has only a small increased delay
when compared to a push phase that seeds most of the
network. This observation pledges in favor of the PuLp
approach that stops pushing messages before duplicates
are likely to occur rather than maintaining a structure
amongst peers to ensure this property, as the former is
more lightweight and robust in the long term. In any
case, the two protocols focus on optimizing different
metrics: [25] concentrates on minimizing delays, while
Purp prioritizes on lowering traffic, be it redundant
data transfers or control messages.

In [12], Karp et al. theoretically analyze the com-
bination of push and pull for disseminating a single

@ Springer

message. They propose using push-based dissemination
until n/logn nodes have the message with high proba-
bility (exponential growth phase). From that point on,
each uninformed node has sufficiently high probability
of reaching an informed node by probing nodes at ran-
dom, so they switch to pull communication (quadratic
shrinking phase). The overall message complexity is
O(nloglogn). As the algorithm relies on an exact es-
timation of the number of rounds to execute during
the first phase, Karp et al. propose a median-counter
algorithm to determine the right phase transition time.
Nonetheless, contrary to PuLp that strives to avoid du-
plicate message deliveries, the goal of this mechanism is
to reduce delays. Hence, the first phase (push) is used
for as long as the probability of hitting a non-informed
node is higher than the probability of a non-informed
node randomly probing an informed one. As a side-
effect of limiting the push phase, the number of re-
dundant deliveries is reduced to some extent, however,
it is far from being eliminated. Moreover, Karp et al.
focus on the independent dissemination of individual
messages, not taking advantage of streams of messages
and the potential interplay these messages can have in
enabling faster or more reliable dissemination overall.

Liu et al. [24] also use a hybrid mechanism that
mixes push and pull interactions for cache replica main-
tenance. In this context, a push operation refers to a
proactive replication from the “master” node and a pull
operation to a passive replication from nodes holding
replicas to nodes with free space as a result of periodic
exchanges.

Also in the domain of cache updates, Srinivasan
et al. [30] and Urgaonkar et al. [31] proposed to dynam-
ically adapt the frequency of pull requests from replica
holders to master nodes for the dynamic update of
read-only replicas in caches. Adaptation is performed
in a similar manner as in PuLp, by adding a constant to
the frequency as the number of updates to replicas in-
creases, and dividing the frequency when experiencing
too many useless pull requests.

6 Conclusion

The properties of gossip-based protocols have been
widely studied in the literature. Such protocols rely on
randomization and are known to be simple, scalable
and extremely robust. Yet, they have long been deemed
impractical, mainly because of the large gap between
their behavior as predicted by theoretical models and
as experienced in real networks. More specifically, the
correct operation of gossip-based protocols depends on
many external factors that are difficult to dimension

Peer-to-Peer Netw. Appl. (2012) 5:74-91

89

properly without good knowledge of the underlying
system (e.g., its size, delays, lossiness, etc.). Moreover,
gossip-based dissemination protocols are usually con-
sidered much more expensive than deterministic proto-
cols in terms of overhead. Yet, the robustness to churn
of such protocols make them more and more appealing
to the point that they have recently been used in the
context of video streaming applications.

In this context, we have presented Purp, a light-
weight gossip-based dissemination protocol that com-
bines pull- and push-based approaches and performs
remarkably well in practice. PuLp disseminates flows of
messages originating from multiple sources to large sets
of nodes in a fully decentralized way. Gossip messages
exchanged by the push protocol carry information that
helps nodes perform pulls in a smart and self-adaptive
manner.

Thanks to its hybrid approach, PuLp limits the redun-
dant traffic from the push phase and the unnecessary
polling from the pull phase, thereby being particularly
network-efficient. Our deployment of PuLp in real-
world conditions on a cluster and on PlanetLab demon-
strates its good performance and its robustness even in
the face of high churn. While PuLp seamlessly supports
node failures, it does not explicitly take into account
the presence of selfish or malicious nodes. This is an
interesting area of research left for future work.

Acknowledgements This work was carried out during the te-
nure of Etienne Riviere’s ERCIM (European Research Con-
sortium for Informatics and Mathematics) “Alain Bensoussan”
fellowship. This work is supported in part by the Swiss National
Foundation Grant 102819.

References

1. Bhagwan R, Savage S, Voelker GM (2003) Understanding
availability. In: Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS’03). Berkeley, CA,
pp 256-267

2. Birman KP, Hayden M, Ozkasap O, Xiao Z, Budiu M,
Minsky Y (1999) Bimodal multicast. ACM Trans Comput
Syst 17(2):41-88

3. Bonald T, Massoulié L, Mathieu F, Perino D, Twigg A (2008)
Epidemic live streaming: optimal performance trade-offs.
In: SIGMETRICS. Annapolis, MA, pp 325-336

4. Champel M-L, Kermarrec A-M, Le Scouarnec N (2009) Fog:
fighting the achilles’ heel of gossip protocols with fountain
codes. In: SSS. Lyon, France, pp 180-194

5. Lo Cigno R, Russo A, Carra D (2008) On some fundamental
properties of P2P push/pull protocols. In: Proceedings of the
2nd International Conference on Communications and Elec-
tronic (HUT-ICCE). HoiAn, Vietnam, pp 67-73

6. Cohen B (2003) Incentives build robustness in bittorrent.
In: Proceedings of the 1st workshop on economics of Peer-
to-Peer systems. Berkeley, CA

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker

S, Sturgis H, Swinehart D, Terry D (1987) Epidemic algo-
rithms for replicated database maintenance. In: Proceedings
of the 6th annual ACM symposium on Principles of Distrib-
uted Computing (PODC’87). Vancouver, Canada, pp 1-12

. Eugster P, Handurukande S, Guerraoui R, Kermarrec A-

M, Kouznetsov P (2003) Lightweight probabilistic broadcast.
ACM Trans Comput Syst 21(4):341-374

. Frey D, Guerraoui R, Kermarrec A-M, Mogensen M, Monod

M, Quéma V (2008) Gossiping capabilities. Technical Report
LPD-REPORT-2008-010, EPFL

Ganesh AJ, Kermarrec A-M, Massoulié L (2003) Peer-to-
Peer membership management for gossip-based protocols.
IEEE Trans Comput 52(2):139-149

Jelasity M, Voulgaris S, Guerraoui R, Kermarrec A-M,
van Steen M (2007) Gossip-based peer sampling. ACM
Trans Comput Syst 25(3). http://dl.acm.org/citation.cfm?
1d=1275520

Karp R, Schindelhauer C, Shenker S, Vocking B (2000) Ran-
domized rumour spreading. In: IEEE proc 41st ann symp
Foundations of Computer Science (FOCS), p 565

Kashyap S, Deb S, Naidu, KVM, Rastogi R, Srinivasan
A (2006) Efficient gossip-based aggregate computation.
In: PODS °’06: proceedings of the 25th ACM SIGMOD-
SIGACT-SIGART symposium on principles of database sys-
tems. ACM Press, New York, pp 308-317

Kermarrec A-M, Massoulié L, Ganesh AJ (2003) Probabilis-
tic reliable dissemination in large-scale systems. IEEE Trans
Parallel Distrib Syst 14(3):139-149

Kermarrec A-M, Pace A, Quema V, Schiavoni V (2009) Nat-
resilient gossip peer sampling. In: ICDCS ’09: proceedings of
the 2009 29th IEEE international conference on distributed
computing systems. IEEE Computer Society, Washington,
pp 360-367

Kermarrec A-M, van Steen M (2007) Gossiping in distributed
systems. ACM Oper Syst Rev 41(5):2-7

Kostoulas D, Psaltoulis D, Gupta I, Birman KP, Demers AJ
(2007) Active and passive techniques for group size estima-
tion in large-scale and dynamic distributed systems. J Syst
Softw 80(10):1639-1658

Li B, QuY, Keung GY, Xie S, Lin C, Liu J, Zhang X (2008)
Inside the new coolstreaming: principles, measurements and
performance implications. In: Proceedings of the 27th con-
ference on computer communications (IEEE INFOCOM),
pp 1031-1039

Li HC, Clement A, Marchetti M, Kapritsos M, Robison L,
Alvisi L, Dahlin M (2008) Flightpath: obedience vs choice
in cooperative services. In: Proceedings of the 8th USENIX
symposium on Operating Systems Design and Implementa-
tion (OSDI "08)

Li HC, Clement A, Wong EL, Napper J, Alvisi L, Dahlin M
(2006) BAR gossip. In: Proc of 7th symposium on Operat-
ing System Design and Implementation (OSDI *06), pp 191-
2004

Leonini L, Riviere E, Felber P (2009) SPLAY: distributed
systems evaluation made simple (or how to turn ideas into
live systems in a breeze). In: NSDI'09: proceedings of the 6th
symposium on networked systems design and implementa-
tion. USENIX, pp 185-198

Lin M, Marzullo K (1999) Directional gossip: gossip in a wide
area network. Technical Report CS1999-0622, University of
California, San Diego

Lin M, Marzullo K, Masini S (2000) Gossip versus deter-
ministic flooding: low-message overhead and high-reliability
for broadcasting on small networks. In: Intl symposium on
Distributed Computing (DISC 2000). Toledo, Spain, pp 85-89

@ Springer

http://dl.acm.org/citation.cfm?id=1275520
http://dl.acm.org/citation.cfm?id=1275520

90

Peer-to-Peer Netw. Appl. (2012) 5:74-91

24. Liu X, Lan J, Shenoy P, Ramaritham K (2006) Consis-
tency maintenance in dynamic Peer-to-Peer overlay net-
works. Comput Networks 50(6):859-876

25. Locher T, Meier R, Schmid S, Wattenhofer R (2007) Push-
to-pull Peer-to-Peer live streaming. In: Proceedings of DISC
2007: 21st international symposium on Distributed Comput-
ing. Lemosos, Cyprus

26. Pai V, Kumar K, Tamilmani K, Sambamurthy V, Mohr AE
(2005) Chainsaw: eliminating trees from overlay multicast.
In: IPTPS’05: the 4th international workshop on Peer-to-Peer
systems, pp 127-140

27. Picconi F, Massoulié L (2008) Is there a future for mesh-
based live video streaming? In: Proceedings of the 8th in-
ternational conference on Peer-to-Peer computing (P2P’08).
Aachen, Germany

28. Russo A, Lo Cigno R (2010) Delay-aware push/pull protocols
for live video streaming in P2P systems. In: Proceedings of the
IEEE International Conference on Communications (ICC)

29. Sanghavi S, Hajek B, Massoulié L (2007) Gossiping with
multiple messages. In: Proceedings of the 29th conference
on computer communications (IEEE INFOCOM), pp 2135-
2143

30. Srinivasan R, Liang C, Ramamritham K (1998) Maintaining
temporal coherency of virtual data warehouses. In: RTSS
’98: proceedings of the IEEE real-time systems symposium.
IEEE Computer Society, Washington, DC, p 60

31. Urgaonkar B, Ninan AG, Raunak MS, Shenoy P,
Ramamritham K (2001) Maintaining mutual consistency
for cached web objects. In: ICDCS ’01: proceedings of the
the 21st international conference on distributed computing
systems. IEEE Computer Society, Washington, DC, pp 371-
380

32. van Renesse R, Minsky Y, Hayden M (1998) A gossip-style
failure detection service. In: IFIP (ed) Proc of Middleware,
the IFIP international conference on distributed systems plat-
forms and open distributed processing. The Lake District,
UK, pp 55-70

33. Voulgaris S, Gavidia D, van Steen M (2005) CYCLON: inex-
pensive membership management for unstructured P2P over-
lays. J Netw Syst Manag 13(2):197-217

34. Zhang X, Liu J, Li B, Yum T-SP (2005) Coolstream-
ing/DONet: a data-driven overlay network for efficient live
media streaming. In: Proceedings of the 24th conference
on computer communications (IEEE INFOCOM), pp 2102-
2111

Pascal Felber received his M.Sc. and Ph.D. degrees in Computer
Science from the Swiss Federal Institute of Technology. He has
then worked at Oracle Corporation and Bell-Labs in the USA,

@ Springer

and at Institut EURECOM in France. Since October 2004, he is
a Professor of Computer Science at the University of Neuchatel,
Switzerland, working in the field of dependable, distributed, and
concurrent systems. He has published over 80 research papers in
various journals and conferences.

Anne-Marie Kermarrec is a Senior Researcher at INRIA
(France) since 2004, where she is leading the ASAP (As Scalable
As Possible) research group, focusing on large-scale dynamic
distributed systems. Her research interests are peer to peer net-
works, large-scale information management and epidemic proto-
cols. Before that, Anne-Marie was with Microsoft Research in
Cambridge (UK). She obtained her Ph.D. from the University of
Rennes (France) in October 1996. Anne-Marie has been awarded
a European Research Council Starting Grant in 2008 for her 5
year GOSSPLE project.

Lorenzo Leonini is a PhD student at the university of Neuchatel,
where his research interest have been in the design and evalua-
tion of large-scale distributed systems. Lorenzo has been working
on distributed systems for information retrieval, epidemic dis-
semination, recommendation systems, amongst others. He is the
main designer and architect of the Splay system.

Peer-to-Peer Netw. Appl. (2012) 5:74-91

91

Etienne Riviere is a lecturer at the University of Neuchatel,
Switzerland. He received his PhD in Computer Science from
the University of Rennes, France in November 2007. In 2008
and 2009, Etienne has been a post-doctoral fellow under an
“Alain Bensoussan” grant from ERCIM, which led him to the
University of Neuchéatel and to NTNU Trondheim in Norway.
His research interests lie in the design, analysis, implementation
and evaluation of large-scale distributed systems and concurrent
systems. He is a member of the ACM, the IEEE and Usenix.

Spyros Voulgaris is an Assistant Professor at the Vrije Univer-
siteit Amsterdam since October 2008, focusing on massive scale
decentralized systems both in wired and wireless settings. Before
that, he was a postdoc at ETH Zurich since 2006. He has obtained
his Ph.D. from the Vrije Universiteit Amsterdam (2006), his
M.Sc. from the University of Michigan in Ann Arbor (1999), and
his B.Sc. from the University of Patras (1997). He has worked at
Microsoft Research Cambridge (2003), Hughes Network Systems
in Maryland (1999-2001), and HP Labs (1998).

@ Springer

	Pulp: An adaptive gossip-based dissemination protocol for multi-source message streams
	Abstract
	Introduction
	Evaluation metrics and objectives
	Contributions
	Outline

	The push-pull dilemma
	Push protocols
	Pull protocols
	Coverage versus redundancy
	Delay
	Discussion

	The Pulp protocol
	System model
	Supporting mechanisms
	Pulp: the intuition
	Pulp: the protocol

	Evaluation
	Experimental setup
	Homogeneous settings and churn resilience
	Performance under churn
	PlanetLab experiments
	Comparison to push-only and pull-only disseminations

	Related work
	Conclusion
	References

