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[1] Temperature determines a range of physical properties of water and exerts a strong
control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal
regime directly affects the geographical distribution of aquatic species through their growth
and metabolism and indirectly through their tolerance to parasites and diseases. Models
used to predict surface water temperature range between physically based deterministic
models and statistical approaches. Here we present the initial results of a physically based
deterministic model of global freshwater surface temperature. The model adds a surface
water energy balance to river discharge modeled by the global hydrological model
PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and
lateral exchange along the drainage network, energy is exchanged between the water body
and the atmosphere by shortwave and longwave radiation and sensible and latent heat
fluxes. Also included are ice formation and its effect on heat storage and river hydraulics.
We use the coupled surface water and energy balance model to simulate global freshwater
surface temperature at daily time steps with a spatial resolution of 0.5� on a regular grid
for the period 1976–2000. We opt to parameterize the model with globally available data
and apply it without calibration in order to preserve its physical basis with the outlook
of evaluating the effects of atmospheric warming on freshwater surface temperature.
We validate our simulation results with daily temperature data from rivers and lakes
(U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly
temperatures with those recorded in the Global Environment Monitoring System (GEMS)
data set. Results show that the model is able to capture the mean monthly surface
temperature for the majority of the GEMS stations, while the interannual variability as
derived from the USGS and NOAA data was captured reasonably well. Results are poorest
for the Arctic rivers because the timing of ice breakup is predicted too late in the year due
to the lack of including a mechanical breakup mechanism. Moreover, surface water
temperatures for tropical rivers were overestimated, most likely due to an overestimation of
rainfall temperature and incoming shortwave radiation. The spatiotemporal variation of
water temperature reveals large temperature differences between water and atmosphere for
the higher latitudes, while considerable lateral transport of heat can be observed for rivers
crossing hydroclimatic zones, such as the Nile, the Mississippi, and the large rivers flowing
to the Arctic. Overall, our model results show promise for future projection of global
surface freshwater temperature under global change.
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global freshwater surface temperature, Water Resour. Res., 48, W09530, doi:10.1029/2012WR011819.

1. Introduction

[2] Temperature directly determines a range of physical
properties of surface water including vapor pressure, surface
tension, density and viscosity, and the solubility of oxygen
and other gases. Indirectly water temperature acts as a strong
control on freshwater biogeochemistry, influencing sediment
concentration and transport, water quality parameters (e.g.,
pH, nitrogen, phosphor, dissolved oxygen), chemical reac-
tion rates, phytoplankton and zooplankton composition and
the presence or absence of pathogens [Webb, 1996; Rounds
et al., 1999]. Thus, in freshwater ecosystems the thermal
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regime affects the geographical distribution of aquatic spe-
cies through their growth and metabolism, tolerance to
parasites, diseases and pollution and life history in general
[Beitinger et al., 2000; Burgmer et al., 2007].
[3] Past work on modeling freshwater surface temperature

(see Webb et al. [2008] for an extensive review of methods)
can be divided into statistical methods establishing regression-
type relationships between water temperature and air temper-
ature and stream discharge or flow velocity [Neumann et al.,
2003; Donato, 2003; Benyahya et al., 2007] and physically
based deterministic modeling of water flow and the water
energy balance [Wang and Martin, 1991; Kim and Chapra,
1997; Caissie et al., 2007]. Temperature models of lakes are
among the most sophisticated of deterministic freshwater
temperature models [Perroud et al., 2009], including density
effects and temperature stratification, turbulent vertical mixing
and wind action (e.g., in order of increasing complexity:
Mironov [2008]; Goudsmit et al. [2002]; Hodges et al.
[2000]). When compared to statistical approaches, physically
based deterministic models have the advantage that they are
more robust to changes in flow regime, river morphology,
radiation balance and upstream hydrology. Such models are
therefore better suited for projecting the effects of global
change on water temperature.
[4] Until now, physically based deterministic models have

only been applied to well-defined freshwater bodies of lim-
ited size (e.g., lakes or stream segments), where the numer-
ous parameters can be measured or otherwise established.
However, in order to support global studies on the effect of
the climate change and direct anthropogenic impacts on
freshwater ecosystem health and biodiversity, e.g., as part of
integrated assessments [cf. Vörösmarty et al., 2010], global
models of freshwater temperature dynamics are required. To
this end, van Vliet et al. [2011] presented one of the first
attempts to model global river water temperature using a
nonlinear regression model of water temperature and dis-
charge. Here, we present the initial results from a physically
based deterministic model of global freshwater surface
temperature. The model adds a surface water energy balance
to river discharge modeled by the global hydrological model
PCR-GLOBWB. In addition to advection of energy from
direct precipitation, runoff and lateral exchange along the
drainage network, energy is exchanged between the water
body and the atmosphere by shortwave and longwave radi-
ation and sensible and latent heat fluxes. Also included are
ice formation and its effect on heat storage and river
hydraulics. We used the coupled surface water and energy
balance model to simulate global freshwater surface tem-
perature at daily time steps with a spatial resolution of 0.5�
on a regular grid for the period from 1976 to 2000 inclusive.
We compared our simulation results with daily temperature
data from rivers and lakes (U.S. Geological Survey (USGS),
limited to the USA) and compared mean monthly tempera-
tures with those recorded in the Global Environment Moni-
toring System (GEMS) data set.
[5] In the remaining part of the paper we first introduce

the global hydrological model and the water energy bal-
ance module. Next follows a short description of the
temperature data used and a description of the validation
results. Thereafter, we investigate how surface water tem-
perature differs from air temperature along river stretches

and across climate zones. We end the paper with the dis-
cussion and conclusion.

2. Physically Based Model of Global
Freshwater Temperature

2.1. Global Hydrological Model PCR-GLOBWB

[6] In order to properly model the energy balance of ter-
restrial freshwater resources, advection of water through riv-
ers, lakes and reservoirs needs to be taken into account, as well
as the generation of runoff, i.e., the conversion of precipitation
into various runoff components, each with its own temperature
signature. To model both runoff generation as well as fresh-
water advection we used the global hydrological model PCR-
GLOBWB [van Beek et al., 2011] (Figure 1). PCR-GLOBWB
calculates for each grid cell (0.5� � 0.5� globally) and for each
time step (daily) the water storage in two vertically stacked soil
layers and an underlying groundwater layer, as well as the
water exchange between the layers and between the top layer
and the atmosphere (rainfall, evaporation and snowmelt). The
model also calculates canopy interception and snow storage.
Subgrid variability is taken into account by considering sepa-
rately tall and short vegetation, open water, different soil types
and the fractional area of saturated soil and the frequency distri-
bution of groundwater depth based on the surface elevations of
the 1 � 1 km Hydro1k data set [Verdin and Greenlee, 1996]
(Land Processes Distributed Active Archive Center, HYDRO1k
ElevationDerivativeDatabase, http://eros.usgs.gov/#/Find_Data/
Products_and_Data_Available/gtopo30/hydro). Fluxes between
the lower soil reservoir and the groundwater reservoir are mostly
downward, except for areas with shallow groundwater tables,
where fluxes from the groundwater reservoir to the soil reservoirs
are possible (i.e., capillary rise) during periods of low soil mois-
ture content. The total specific runoff of a cell consists of satu-
ration excess surface runoff, meltwater that does not infiltrate,
runoff from the second soil reservoir (interflow) and groundwater
runoff (base flow) from the lowest reservoir. To calculate river
discharge, specific runoff is accumulated along the drainage
network by means of kinematic wave routing [Chow et al.,
1988]. The kinematic wave approximation neglects the terms
of the momentum equation other than slope in the Saint-Venant
equations and is therefore less applicable for rivers with slight
slopes that often exhibit hysteresis. Notwithstanding, the result-
ing errors are generally small and the velocity of the main part of
natural flood waves approximates that of a kinematic wave
[Lighthill and Whitham, 1955]. Included in the routing scheme
are the storage effects and evaporative losses from lakes, reser-
voirs and wetlands. Required channel dimensions are obtained
from established relationships between bankfull discharge and
channel geometry and hydraulic properties from the literature
(see van Beek and Bierkens [2009] for details and references).
This routing scheme is explicit and subdaily time steps are used
to preserve stability (variable time stepping based on the courant
number), assuming uniform local input rates of energy and water
during the day. Daily discharge is then reported as the average
lateral flux through the cell while water height, water temperature
and ice thickness are reported at the end of the day. For this study,
PCR-GLOBWB was forced with 44 years (1958–2001) of
daily fields of precipitation and temperature (at 2 m above
surface level), which comply with the monthly values of the
observation based CRU TS 2.1 at a spatial resolution of 0.5�
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[New et al., 2000] but downscaled using the ERA-40 reanal-
ysis data [Uppala et al., 2005]. Monthly fields of reference
potential evapotranspiration were computed according to the
FAO guidelines [Allen et al., 1998] from the secondary vari-
ables of the CRUTS 2.1 and supplementedwithmonthly wind
speed fields from the CRU CLIM 1.0 data set [New et al.,
1999] and downscaled on the basis of ERA-40 daily temper-
ature fields. This study focuses on the results for the subperiod
1976–2000 in which most temperature observations are
concentrated.

2.2. Energy Balance Model of Surface Water

[7] We model the energy balance of water with constant
density flowing through a rectangular channel with perfect
vertical mixing at a daily time step using an explicit numer-
ical scheme and taking the regular grid with a spatial reso-
lution of 0.5� as a Eulerian frame of reference (Figure 2).
Streams are intersected by lakes and reservoirs which are
treated as continuous and uniform water bodies. These water
bodies are represented by a water layer of variable depth that

forms as a result of the balance between inflow and outflow
and for which the energy balance determines the resulting
water temperature. We assume that lateral heat transport
occurs by advection only, which is a reasonable assumption
for most of the larger rivers with high flow velocities
[Sinokrot and Stefan, 1993]. Also, we do not take the
streambed heat flux into account, as it is assumed small when
considering stream water temperature on a daily basis or for
longer time steps [Hondzo and Stefan, 1994]. Energy fluxes
due to friction are small and likewise neglected [Hicks et al.,
1997; Ashton, 1986]. The resulting surface water energy
balance (in J m�2 s�1) at a location along the river per unit
width, w (m) for a rectangular channel, is then described as
(x [L] is coordinate along the drainage network, t is time [T]):

rwCp
∂ hTð Þ
∂t

¼ �rwCp
∂ vhTð Þ
∂x

þ S↓ 1� awð Þ þ L↓ � L↑ � H

� lrwE þ rwCp

XM
i¼1

qs;iTs;i ð1Þ

Figure 1. Model concept of PCR-GLOBWB (modified after van Beek and Bierkens [2011]). The left-
hand side represents the vertical structure for the soil hydrology, representing the canopy, soil column
(stores 1 and 2), and the groundwater reservoir (store 3). Precipitation (p) falls as rain if air temperature
(Ta) is above 0�C and as snow otherwise. Snow accumulates on the surface, and melt is temperature con-
trolled. Potential evaporation (Epot) is modified by canopy interception and soil moisture to return the
actual rate (Eact). Vertical transport in the soil column arises from percolation (perc) or capillary rise (cr).
Drainage from the soil column to the river network occurs via direct runoff, interflow or subsurface storm-
flow, and base flow (qdr, qsf, and qbf, respectively). The right-hand side represents the freshwater surface
with its inputs (channel discharge Q and direct gain and losses due to rainfall p and evaporation E) and
its energy balance. The bounded box represents the modified energy balance if river ice is present. Red-blue
arrows represent the energy input with the associated components as explained in equation (1), both local
and lateral due to streamflow. Precipitation and specific runoff, which contribute locally to the streamflow,
advect energy, which is indicated by the corresponding temperature (air temperature for precipitation, direct
runoff, and subsurface stormflow and mean annual temperature for the base flow).
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where T is average freshwater surface temperature (K); h is
water height (m), following from the solution of the kine-
matic wave equation; rw is density of water (1000 kg m�3);
Cp is the heat capacity of water (4190 J kg�1 K�1); v is
average flow velocity (m s�1) at a point along the channel as
follows from the kinematic wave equation; and S↓ is the
incoming shortwave radiation (J s�1 m�2). Here aw is the
albedo of water, and we assumed aw = 0.15; in case of an ice
cover it is replaced by ai = 0.8 (assuming that a snow cover is
present on the ice floor). L↓ is incoming longwave radiation
(J s�1 m�2) calculated from atmospheric temperature Ta (K),
vapor pressure, and cloud cover following Allen et al. [1998].
L↑ is the outgoing longwave radiation (J s�1 m�2), calculated
with Boltzmann’s equation: L↑ = ɛsT 4, where T is the water
temperature or ice temperature in case of ice cover. The
emissivity for both cases is taken as ɛ = 1. H is the sensible
heat flux (J s�1 m�2), calculated as

H ¼ KH T � Tað Þ; ð2Þ

where Ta is atmospheric temperature at 2 m height (K)
and KH is the turbulent heat exchange coefficient, which is
taken 20 J s�1 m�2 K�1. In case an ice cover is present, two
sensible heat fluxes are considered in series: one from the
water to ice surface (assumed to be at 0�C or 273 K) with
KH = 8 J s�1 m�2 K�1,

H1 ¼ KH T � 273ð Þ; ð3aÞ

and one from ice surface to the atmosphere with KH =
20 J s�1 m�2 K�1,

H2 ¼ KH 273� Tað Þ; ð3bÞ

lrwE is the latent heat flux (J s�1 m�2), with E being open
water evaporation (m s�1) and l being the latent heat of
vaporization (250 kJ kg�1 K�1). The latent heat flux is
assumed zero in case of an ice cover.
[8] In line with the routing scheme, the freshwater surface

energy balance is evaluated over relatively small time steps

using constant rates of vertical inputs of water and energy.
To solve for the energy balance, first the vertical changes in
the energy balance per cell and then the lateral transport along
the drainage network are evaluated. For the time derivative
of the vertical energy balance, a forward-difference scheme is
used, the change in heat storage for the current time step being
directly proportional to the rates of vertical energy exchange
and the change in storage. The lateral exchange, which
includes both a spatial and temporal derivative, is considered
next. Advected heat is associated with the discharge from the
kinematic wave approximation along the drainage network
for the current time step using a backward finite difference
scheme [Chow et al., 1988].
[9] The last right-hand term in equation (1) represents the

various water fluxes adding to the water body thereby influ-
encing its energy content, all per unit surface water area
As (m2). We do not carry a soil and atmospheric energy
balance in PCR-GLOBWB, so the following assumptions
are made with regards to the energy advected by lateral
inflow: precipitation p (m�s�1) has the same temperature as
the atmosphere Ta, which also holds for the direct runoff
component qdr (direct runoff m s�1) and qsf (stormflow or
interflow m s�1). Further, we assume that groundwater
runoff or base flow qbf (m s�1) has a constant temperature
equal to the yearly average 2m temperature T a and that none
of the respective components can enter at a temperature
below the freezing temperature of 0�C. If fw = Aw/A is the
area fraction water in a PCR-GLOBWB cell of size A, then,
with the assumption about the temperature of specific runoff
components and precipitation, the last right-hand term is
given by

rwCp

XM
i¼1

qs;iTs;i ≡ rwCp pTa þ 1� fw
fw

� �
qdrTa þ qsf Ta þ qbf T a

� �� �

ð4Þ

[10] Any additional anthropogenic influences such as
cooling water from power plants, processing water from

Figure 2. Schematic representation of the energy balance of a rectangular channel. Q represents the
streamflow with the associated temperature across a reference volume A�dx, with energy being exchanged
vertically over the surface area As.
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industrial activities or sewage water can be easily accounted
for by including these terms in (4) but are presently omitted
in this study.
[11] Many lakes and rivers are situated in areas where

temperatures are below zero for considerable fractions of the
year. Consequently, we evaluate the water energy balance
together with that of a potential or actual ice cover. Ice will
form or grow if the air temperature is below freezing point
and is not balanced by the sensible heat flux coming from
the water or by the incoming net radiation. The temperature
of the ice is kept at 0�C throughout. Any additional cooling
results in an increase in ice thickness and a reduction in
water temperature until it freezes completely when its tem-
perature reaches 0�C. The change in ice thickness zi (m) as a
result of direct heat inputs to the ice cover over a time step is
calculated by

lf rw
dzi
dt

¼ �H1 þ H2 � S↓ 1� aið Þ � L↓ þ L↑ ð5Þ

where lf is the latent heat of fusion of ice (333.4 kJ kg�1).
[12] The formation of ice will have considerable impact

on the hydraulic properties of the river; for each river seg-
ment, the channel and associated floodplain is represented
by a composite, constant width for an assumed rectangular
channel and a uniform Manning’s roughness coefficient [van
Beek et al., 2011]. This width was defined as the minimum
of the area as river and floodplain specified by the GLWD3
data [Lehner and Döll, 2004] and the area flooded by water
levels 1 m above the stage at bankfull discharge for the DEM
of the Hydro1k data set [Verdin and Greenlee, 1996] in a
cell, divided by river length. The corresponding roughness
(Manning’s n) was computed relative to the wetted perime-
ter, P, for a stage of 1 m over bankfull discharge using a
typical Manning’s n of 0.04 for the actual channel and 0.10
for the floodplain. If an ice cover is present, the wetted
perimeter of the rectangular channel is further modified from
(h water height [L], W channel width [L]) P = 2h + W to
P = 2(h + W). Moreover, the ice surface is often rough with
typical Manning’s n values between 0.01 and 0.10, and a
composite Manning’s roughness coefficient nc is calculated
for the ice-covered channel according to [U.S. Army Corps
of Engineers, 2002]

nc ¼ ni
3=2 þ nb

3=2

2

 !2
3=

ð6Þ

where ni and nb are the Manning’s n values for the ice cover
and the bed respectively. Power functions have been used to
establish empirical relationships between water height, ice
thickness and roughness coefficients [Nezhikovskiy, 1964].
These show a decreasing roughness with water height and an
increasing roughness with ice thickness for different ice
types (thick and thin ice jams and frozen-up covers with

decreasing roughness). These functions for ni can be
approximated by a general function which is applied here:

ni ¼ 0:0493h�0:23z0:57i ð7Þ

[13] The influence of ice on river discharge is consider-
able. If we assume that the flow area remains constant and
that bed and ice roughness are equal, the increase in the
wetted perimeter alone reduces the hydraulic radius by 50%
if the width of the channel is large compared to the flow
depth, thus resulting in a 37% decrease in flow velocity.

3. Data and Validation Results

[14] The ability of PCRGLOB-WB to simulate river dis-
charge was validated extensively in van Beek et al. [2011].
Validation was based on all stations (N = 1983) from the
Global Runoff Data Centre (GRDC) [2011] long-term
global river runoff data set with time series exceeding 10 years
over the observation period. Here we repeat the main con-
clusion that PCR-GLOBWB is able to reproduce the within
year and between year variability of discharge of the major
rivers adequately, where results are better for the larger rivers
and for rivers with larger effective rainfall. In terms of
reproducing absolute values of river discharge, results very
much depend on the quality of the meteorological forcing. As
a result, good results are found for the rivers in Europe and the
United States, where the CRU rainfall maps are based on
many rain gauges and ERA-40 reanalysis data are of high
quality due to the ingestion of abundant data during reanaly-
sis. For the same reason, i.e., the lack of CRU stations and
little data to ingest during reanalysis, precipitation in CRU
and ERA-40 across South America and Africa are of limited
quality [Biemans et al., 2009] resulting in an underestimation
of the Amazon discharge and an overestimation for African
rivers such as the Congo, Zambezi, the Orange and the Nile.
Finally, underestimation of discharge peaks of arctic rivers
occurs due to the snow undercatch in the CRU TS 2.1 and the
simplified representation of snow hydrology in PCR-
GLOBWB. For a more in depth evaluation of model perfor-
mance of PCRGLOB-WB of discharge we refer to van Beek
et al. [2011].
[15] To validate the simulations of surface water temper-

ature we use the temperature data sets as reported in Table 1.
To test the reproduction of long-term average yearly and
monthly temperatures we used the GEMS/Water (http://www.
gemswater.org/) monthly climatology data. In this data set
spatial and temporal coverage by stations is highly variable
and we retrieved from this data set 296 stations with full or
partial information on the long-term mean monthly water
temperature by extending our selection criteria to the period
1980–2005. Of these stations, 288 stations have information
on upstream area and for 149 stations the climatology contains
more than 9 months and the difference between the reported

Table 1. Overview of Data Sets Used to Verify the Global Surface Water Temperature Modela

Variable Source Temporal Resolution Extent Period

Discharge GRDC Daily Global Variable, >10 years
Discharge + temperature USGS Daily Conterminous USA 1975–2004
Temperature NOAA Daily Great Lakes (USA, Canada) 1960–1990
Temperature GEMS Monthly climatology Global 1980–2005

aExtent pertains to the spatial coverage of the available stations.
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upstream area and that included in the model is less than 10%.
Of these stations, 114 stations can be linked to GRDC dis-
charge measurements and represent more than 5 years of
temperature data (Figure 3a). The stations are plotted against
the backdrop of the Holdridge [1967] life zone classification
with a spatial resolution of 0.5� [Leemans, 1989]. The Hol-
dridge life zone classification is used to check whether the
accuracy of temperature simulation varies over climate zones,
and to check how differences between water temperature and
atmospheric temperature through the year vary between cli-
mate zones. Daily simulations of surface water temperature
were compared to a limited number of stations available in the
USA: the USGS (Water data for the nations, http://waterdata.
usgs.gov/nwis) daily river temperature and discharge data set
(period 1975–2004 for 15 stations) and NOAA Great Lakes

temperature data (1960–1990 for four lakes; http://www.glerl.
noaa.gov/res/glcfs; Figure 3b).
[16] In the subsequent analyses, a several statistics are

used to summarize the data and to evaluate model perfor-
mance. These include the mean error, mean absolute error
and relative error, all with reference to observed values; the
Nash-Sutcliffe efficiency; the regression coefficient or slope
of a linear regression line forced through the origin and, the
correlation coefficient of a regular linear regression of the
observed values on the simulated ones.

3.1. Mean Monthly Water Temperature

[17] We compared the GEMS monthly climatology of
water temperature with the simulated one. Figure 4a shows for
each GEMS station the mean deviation in water temperature

Figure 3. Stations with water temperature observations. (a) Stations from the GEMS database with
monthly climatology: (1) GEMS stations with a climatology of 9 months or more based on more than
5 years of water temperature data, with an absolute catchment of less than 10%, and linked to GRDC dis-
charge data (N = 114), (2) same as type 1, but relaxing the conditions of more than 5 years of water tem-
perature data and the availability of GRDC discharge (N = 149), and (3) all GEMS stations with
temperature information (N = 296). (b) USGS stations and NOAA lake data set with daily temperature
data, as numbered according to Table 2: 1: Arkansas above Pueblo; 2: Arkansas John Martin Reservoir;
3: Arkansas Las Animas; 4: Colorado Cameo; 5: Colorado Lees Ferry; 6: Colorado Silver; 7: Colorado
Utah Stateline; 8: Delaware at Trenton; 9: Green River Campbellsville; 10: Jackson River; 11: Potomac
near Washington; 12: San Joaquin Vernalis; 13: Mackenzie South Fork; 14: St. Croix Milltown; 15: White
River Centerton; A: Lake Superior; B: Lake Huron; C: Lake Erie; D: Lake Michigan. Stations are super-
imposed on the Holdridge life zone classification [Leemans, 1989].
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where the size of a circle is proportional to the observed dis-
charge at the station. Figure 4b shows the mean and mean
absolute monthly deviation per Holdridge life zone. Errors are
generally small (mean absolute error across all stations =
2.3�C, N = 149). Results are slightly better for locations with
larger discharge as runoff across larger basins is better

captured by the large-scale hydrological model [van Beek
et al., 2011] (see also Figure S1 in the auxiliary material).1

[18] Figure 4 shows that water temperatures are generally
underestimated by 0.5 to 5�C in some of the northwestern

Figure 4. Deviations between observed and simulated temperature. (a) Mean average deviation (�C) per
station climatology (N = 149) with symbol size proportional to observed discharge. Warmer colors indicate
an overestimation; cooler colors indicate an underestimation of the observed temperature. (b) Mean abso-
lute and average deviation (�C) per Holdridge life zone for all available data. Number of stations per Hol-
dridge life zone is as follows: tundra, 1; cold parklands, 2; forest tundra, 4; boreal forest, 23; cool desert, 0;
steppe, 3; temperate forest, 48; hot desert, 7; chapparal, 12; warm temperate forest, 9; tropical semiarid, 8;
tropical dry forest, 15; tropical seasonal forest, 12; tropical rain forest, 5; all classes combined, 149.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012WR011819.
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European rivers (Rhine, Po, Ebro). This underestimation is
most likely caused by neglecting the effects of the use of river
water for cooling of power plants and factories. Even though
the mean absolute errors are on average a few degrees centi-
grade (Figure 4b), it is clear that they are strictly positive in the
wet African, Southeast Asian, and South American tropics.
Possible causes for this overestimation of water temperature
are the underestimation of water albedo and emissivity or the
overestimation of incoming radiation, most likely due to the
neglect of shading of the tropical forest canopy for the smaller
streams. Also, the assumption that rainfall has the same tem-
perature as the atmosphere may not be valid. Much of the

tropical rainfall occurs in deep convection thunderstorms
where rainfall is formed very high up in the atmosphere
yielding rainwater temperatures that are lower than the atmo-
spheric temperature observed close to the land surface.
Unfortunately, little is known about the difference between the
temperature of rainfall and that of the lower atmosphere.
Observations [Byers et al., 1949] and theoretical analysis
[Kinzer and Gunn, 1951] seem to suggest that raindrops, while
freely falling, behave like a wet bulb and the temperature dif-
ference can be calculated from atmospheric temperature and
relative humidity. However, Byers et al. [1949] also observe
that the temperature difference diminishes quickly during a

Figure 5. Regression of observed on simulated water temperature: (a) correlation coefficient per station
climatology (N = 134), with symbol size proportional to observed discharge, and (b) correlation coeffi-
cient per Holdridge life zone and the slope where the trend line is forced through the origin for all available
data (see Figure 4 for number of stations per Holdridge life zone).
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rainstorm, most likely due to increasing relative humidity if
rainfall persists. A straightforward way to estimate rain tem-
perature from meteorological data sets such as ERA-40 and
CRU is therefore not available. Instead, we performed a sen-
sitivity analysis by rerunning the model assuming that rainfall
and direct runoff have a water temperature that is 1.5�C lower
than atmospheric temperature. Results from this run show a
reduced bias in water temperature over the tropics although
this improvement is limited (see Figure S2 in the auxiliary
material).
[19] Figure 5a shows for each GEMS station the correla-

tion coefficient between observed and simulated mean
monthly temperatures. In Figure 5b the results are summa-
rized by a bar chart for the different climate zones. In addi-
tion to the correlation coefficient, the slope, a, of a
regression that is forced through the origin is shown, which
preferably should coincide with the 1:1 line (|a| = 1). Gen-
erally the correlation coefficient is positive and close to unity
for all stations and across climate zones. Similarly, the slope
is close to one, suggesting that the model is capable of
reproducing the seasonal trend in water temperature and the
associated means. Notwithstanding, statistics for the tropics
as well as in the arctic areas are somewhat lower. The former
is caused by the lack of a strong seasonal signal, making the
signal-to-noise ratio and thus the explained variance lower
(e.g., Mekong in Figure 6). The reduced performance for the
subarctic climate zones can be attributed to the difficulty in
simulating the start and ending of the ice cover (e.g., Lena in
Figure 6). In particular the ending of the ice period is not
represented well as the model simulates only ice melt and
not the mechanical breakup. This causes the temperature to
rise too late in spring. In Figure 7 scatterplots are shown for
simulated and observed surface water temperatures, where
symbols represent the different climate zones. Winter (DJF)

results are generally good, while the summer (JJA) results
show larger deviations in particular for the colder climate
zones, again suggesting a simulated temperature rise that is
too late.

3.2. Daily Water Temperature

[20] Daily temperature time series from the USGS data set
(period 1975–2004 for 15 river stations; http://waterdata.
usgs.gov/nwis) and NOAA Great Lakes data set (1960–1990
for 4 lakes; http://www.glerl.noaa.gov/res/glcfs) were com-
pared to daily temperature simulations from a data set. Figure 8
shows time series for three USGS locations, and Figure 9
shows time series for the Great Lakes. For clarity only a
10 year period is shown for which the most data-rich period
was chosen (1991–2000 for the USGS river stations, 1981–
1990 for the NOAA lake stations). Comprehensive statistics
on performance are shown in Table 2 for all available sta-
tions. Performance is less consistent than for the monthly
climatologies from the GEMS data set. For the USGS daily
river data the most probable cause for this is the error in
catchment size (e.g., Mackenzie at South Fork, Jackson
River). The upstream catchments size of many of the data
is small compared to the 0.5� � 0.5� grid size of PCR-
GLOBWB and the resulting error can cause substantial
deviations in discharge, total water volume stored and the
timing of daily discharge. This in turn will cause both sys-
tematic and timing errors in water temperature, albeit much
smaller than the errors in discharge. When daily results are
aggregated to a coarser temporal resolution, performance
improves; timing at the monthly time scale is better than at
the daily time scale and better for the monthly climatology
still (Table 2). Results for the monthly climatology approach
those for the GEMS stations.

Figure 6. Monthly climatologies of freshwater surface temperatures for (a) Mekong River, Nakhon
Phano (GRDC station 2969095), (b) Missouri River, Missouri (GRDC station 4122900), (c) Lena River,
Kusur (GRDC station 2903420), and (d) Yangtze River (Chang Jiang; GRDC station 2181600).
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[21] While good agreement of the seasonal temperature
signal is evident and trivial, the ability of the model to sim-
ulate interannual variability for the current climate is of par-
ticular importance when using the model to study the impacts
of climate change. The correlation on yearly averaged water
temperature shows smaller correlations are found than for the
monthly and daily temperatures since the seasonal variation
has been removed [Erickson and Stefan, 2000]. However, the
correlations are still considerable showing that interannual
variation is captured reasonably well providing confidence
that the model captures water temperature variations over a
range of temporal scales accurately.
[22] Regression coefficients and especially Nash-Sutcliffe

model efficiencies test for bias in modeled water tempera-
ture. Out of the 15 stations, 8 have a NSE equal or greater
than 0.48, indicating fair (NSE≥0.5) to good model perfor-
mance. Overall, deviations in the slope from the 1:1 line tend
to be small. Notable exceptions are those stations with large
errors in catchment size and the stations associated with
reservoirs (Arkansas at John Martin reservoir, Colorado at
Lees Ferry). Here, mixing occurs apparently over a larger
volume than the active water depth represented by the
model. An obvious improvement therefore would be to
consider different mixing types depending on the outlet
position (e.g., tailwaters fed by under or overflow).
[23] Similarly, errors in lake temperatures result from the

neglect of surface currents and vertical stratification in the
model, including the seasonal overturning of the epilimnion.
To check whether any improvements can be expected when
vertical stratification and overturning are modeled, we also
applied a designated water temperature model for lakes
(FLake [Mironov, 2008]). Upon calibration and application
(see Figure S4 and Table S1 in the auxiliary material), we did
not find this model to outperform PCR-GLOBWB consis-
tently. We can only speculate about this lack of improvement
but possibly the larger number of parameters necessary to run
FLake cause additional uncertainty, requiring better data or an
even more sophisticated lake model to make the difference.

4. Seasonal Temperature Differences

[24] The large heat capacity of water, particularly when
frozen, and the lateral transport of energy through rivers can
result in large differences between surface water and air
temperature. In Figure 10 the average temperature difference
between surface water and air temperature is plotted for the
various Holdridge life zones. As expected, the maximum
variation of this deviation occurs in the colder climate zones,
which are predominantly found at higher latitudes and alti-
tudes in the Northern Hemisphere (tundra, cold parklands,
forest tundra, boreal forest). A regional picture of seasonal
differences between water and air temperature shows many
different features (Figure 11): for instance, one observes
water being warmer than the atmosphere in the Northern
Hemisphere in boreal winter (DJF), being colder in spring
when the atmosphere heats up (MAM for the lower latitudes,
JJA for higher latitudes and more continental climate zones)
and then heating up at a slower pace than the atmosphere
during boreal summer (JJA). The influence of meltwater on
river water temperature is apparent in the case of the
Danube, Mississippi, Volga, St. Lawrence in spring (MAM),
and in early summer (JJA) of the Mackenzie, Yenisei, and

Figure 7. Scatterplots of observed versus simulatedmonthly
water temperature for winter (DJF: December, January,
February) and summer (JJA: June, July, August) and for
the entire year.
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Lena River and the upper reaches of the Asian rivers
springing from the Himalayas. The Nile represents another
interesting case as during the low-flow period, the White
Nile transports warmer water from the tropics to the north,
but in August, when the rains occur in the Ethiopian high-
lands, colder water from the Blue Nile decreases the water
temperature over a few hundreds of kilometers (JJA). As can

be seen, the temperature of the tropical rivers in South
America and Africa is higher than daily average temperature
throughout the year. Although other authors have reported
consistently higher surface water temperatures than 2 m
average daily temperature for tropical rivers (see, e.g., van
Vliet et al. [2011] for the Parana), overestimation of sur-
face water temperature due to overestimation of precipitation

Figure 8. Time series of freshwater surface temperatures for three USGS stations with daily observa-
tions. The stations with the lowest, median, and highest Nash-Sutcliffe efficiency were selected (see also
Table 2), ordered by increasing model performance from top to bottom. Daily observations over a selected
10 year period and the monthly climatology computed from all available data are shown.
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Figure 9. Time series of freshwater surface temperatures for the NOAA stations from the Great Lakes
data set. The stations with the lowest, median, and highest Nash-Sutcliffe efficiency were selected
(see also Table 2), ordered by increasing model performance from top to bottom. Daily observations over
a selected 10 year period and the monthly climatology computed from all available data are shown.
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temperature and radiation (neglecting shading) may play a
role here. Figure S3 in the auxiliary material is similar to
Figure 11, but now obtained by assuming precipitation
and direct runoff that is 1.5�C colder than the 2 m air tem-
perature as discussed above. This leads to lower surface
freshwater temperatures in those areas where direct runoff is
the main contributor to the specific runoff. However, water

temperatures stay consistently higher than the air tempera-
ture for the larger rivers in the tropics.

5. Discussion and Conclusion

[25] In this paper we introduced a physically based
deterministic model of global surface water temperature
based on solving the surface water energy balance driven by

Figure 10. (top) Climatology of the difference between freshwater surface temperature and that of the
overlying air (Tw � Ta) for the different Holdridge life zones. (bottom) The same data at a reduced vertical
scale for a selection of classes.
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radiation, precipitation and temperature from the CRU and
ERA-40 data sets and runoff and river discharge fluxes
computed with a global hydrological model. The model was
parameterized on the best available data and not calibrated
on the premise that a strong physical basis makes the model
better suited for extrapolation, for instance when analyzing
the effects of climate change and increased use of cooling
water on the change of surface water regimes. Also, contrary
to statistical approaches to modeling water temperature,
surface water temperature can be calculated everywhere
along the surface water network in a consistent manner and
with preservation of the surface water energy balance.
[26] Any comparison to existing deterministic models of

freshwater surface temperature has limited validity. Such
models are typically applied in regional studies to evaluate
the effects of local disturbances and calibrated to match
high-quality data sets, often over a limited part of the year
[e.g., Sinokrot and Stefan, 1993; Younus et al., 2000]. In
contrast, the model presented here is applied on a global
scale and parameterized using available data sets of varying
quality in which local detail is lost and applied continuously
over a much longer period (25 years). Moreover, the model
is not calibrated but validated directly against observations.
Reported prediction errors of deterministic models generally
are in the order of 1–2�C [Caissie, 2006] and obviously
lower than those obtained in this global study where the
mean absolute error ranges between 1.6 and 7.6�C for the
daily stations (Table 2) and is on average 2.3�C for those
with monthly climatologies only (Figure 4). Notwithstand-
ing, given the coarse resolution of the model and the
extended period of application, it may be concluded that

results show that the model is able to capture well the mean
monthly surface temperature for the majority of the GEMS
stations both in time and space, while the interannual vari-
ability as derived from the USGS and NOAA data was also
captured reasonably well. Thus, the model appears to be
relatively insensitive to the neglect of shading and the sim-
plifying assumptions that were made with regards to the
energy advected by precipitation and runoff, provided that
these fluxes and the ensuing discharge are adequately sim-
ulated. Calibration will improve model performance but the
problem is poorly constrained by the limited availability of
global water temperature data and the improved model per-
formance may be obtained for the wrong reasons. Moreover,
persistent errors in global precipitation products will propa-
gate through the hydrology and the associated surface water
energy balance and severely bias the calibrated parameter
set. As such a robust, calibrated parameterization that is
consistent with the physical nature of the model remains
unachievable until better global precipitation products are
available.
[27] Results are poorest for the arctic rivers, possibly

because the timing of ice breakup is predicted too late in the
year due to the lack of an algorithm describing mechanical
ice breakup. Moreover, surface water temperatures for
tropical rivers were overestimated, most likely due to an
overestimation of rainfall temperature and possibly incom-
ing shortwave radiation. The spatiotemporal variation of
water temperature reveals large temperature differences
between water and atmosphere for the higher latitudes, while
considerable lateral transport of heat can be observed for

Figure 11. Seasonally averaged difference between surface water and air temperature (Tw � Ta) for river
stretches around the world (MAM through DJF, clockwise from top left). Thickness of line is proportional
to river discharge; warmer colors denote that the fresh surface water is warmer than the overlying air, and
cooler colors indicate that it is colder.
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rivers crossing hydroclimatic zones such as the Nile, the
Mississippi and the large rivers flowing into the Arctic.
[28] Overall, our model results show promise for future

projection of global freshwater surface temperature under
global change. Possible improvements to the model are the
inclusion of a soil energy balance model, shading of surface
water by vegetation, explicit modeling of rainfall tempera-
ture, and vertical stratification in lakes including epilimnion
overturning and mixing in reservoirs. Anthropogenic influ-
ences that should be considered are water withdrawal that
affects the heat storage capacity of streams and thermal
pollution by cooling waters used in power plants and
industry, which increasingly upsets the natural thermal
regime of surface freshwater bodies in the developed and
developing regions of the world.

[29] Acknowledgments. We would like to thank Dmitrii Mironov at
the German Weather Office (DWD) for providing us with FLake, the water
temperature model for lakes. We gratefully acknowledge the United
Nations Environment Programme Global Environment Monitoring System
(GEMS) for providing us with monthly climatologies of freshwater surface
temperature and the Global Runoff Data Centre (GRDC) for the associated
discharge. We also wish to express our thanks to the U.S. Geological Sur-
vey (USGS) and the NOAA Great Lakes Environmental Research Labora-
tory (NOAA GLERL) for providing the daily station data for water
temperature we used. The contribution of Michelle van Vliet to this study
was financially supported by the European Commission through the FP6
Water and Global Change Project (WATCH). We would like to thank the
three anonymous reviewers, whose comments have contributed consider-
ably to the clarity and readability of this paper. Simulated freshwater surface
temperature and associated variables are publicly available from http://
www.globalhydrology.nl/maps/ and can be used freely for research pur-
poses with reference to this publication.

References
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotrans-

piration, FAO Irrig. Drain. Pap. 56, Food and Agric. Organ., Rome.
Ashton, G. D. (1986), River and Lake Ice Engineering, Water Resour.

Publ., Littleton, Colo.
Beitinger, T. L., W. A. Bennett, and R. W. McCauley (2000), Temperature

tolerances of North American freshwater fishes exposed to dynamic
changes in temperature, Environ. Biol. Fishes, 58, 237–275, doi:10.1023/
A:1007676325825.

Benyahya, L., D. Caissie, A. St-Hilaire, T. B. M. J. Ouarda, and B. Bobee
(2007), A review of statistical water temperature models, Can. Water
Resour. J., 32, 179–192, doi:10.4296/cwrj3203179.

Biemans, H., R. W. A. Hutjes, P. Kabat, B. J. Strengers, D. Gerten, and
S. Rost (2009), Effects of precipitation uncertainty on discharge calculations
for main river basins, J. Hydrometeorol., 10, 1011–1025, doi:10.1175/
2008JHM1067.1.

Burgmer, T., H. Hillebrand, and M. Pfenningerm (2007), Effects of
climate-driven temperature changes on the diversity of freshwater macro-
invertebrates, Oecologia, 151, 93–103, doi:10.1007/s00442-006-0542-9.

Byers, H. R., H.Moses, and P. J. Harney (1949), Measurement of rain temper-
ature, J. Meteorol., 6, 51–55, doi:10.1175/1520-0469(1949)006<0051:
MORT>2.0.CO;2.

Caissie, D. (2006), The thermal regime of rivers: A review, Freshwater
Biol., 51, 1389–1406, doi:10.1111/j.1365-2427.2006.01597.x.

Caissie, D., M. G. Satish, and N. El-Jabi (2007), Predicting water tempera-
tures using a deterministic model: Application on Miramichi River catch-
ments (New Brunswick, Canada), J. Hydrol., 336, 303–315, doi:10.1016/
j.jhydrol.2007.01.008.

Chow, V. T., D. R. Maidment, and L. W. Mays (1988), Applied Hydrology,
McGraw-Hill, New York.

Donato, M. M. (2003), A statistical model for estimating stream tempera-
tures in central Idaho, Hydrol. Sci. Technol., 19, 203–219.

Erickson, T. R., and H. G. Stefan (2000), Linear air/water temperature correla-
tions for streams during open water periods, J. Hydrol. Eng., 5, 317–321,
doi:10.1061/(ASCE)1084-0699(2000)5:3(317).

Goudsmit, G. H., H. Burchard, F. Peeters, and A. Wüest (2002), Applica-
tion of the k-ɛ turbulence models to enclosed basins: The role of internal
seiches, J. Geophys. Res., 107(12), 3230, doi:10.1029/2001JC000954.

Global Runoff Data Centre (GRDC) (2011), Long-Term Mean Monthly
Discharges and Annual Characteristics of GRDC Station/Global Runoff
Data Centre, Fed. Inst. of Hydrol. (BfG), Koblenz, Germany. [Available
at http://www.bafg.de/cln_033/nn_294838/GRDC/ EN/02__Services/
02__DataProducts/LongTermMonthlyMeans/longtermmonthly__node.
html?__nnn =true; accessed 21/08/2012.]

Hicks, F., W. Cui, and D. Andres (1997), Modelling the thermal break up
on the Mackenzie River at the outlet of Great Slave Lake, N.W.T.,
Can. J. Civ. Eng., 24, 570–585, doi:10.1139/l97-007.

Hodges, B. R., J. Imberger, A. Saggio, and K. B. Winters (2000), Modelling
basin-scale internal waves in a stratified lake, Limnol. Oceanogr., 45(7),
1603–1620, doi:10.4319/lo.2000.45.7.1603.

Holdridge, L. R. (1967), Life Zone Ecology, Trop. Sci. Cent., San Jose,
Costa Rica.

Hondzo, M., and H. G. Stefan (1994), Riverbed heat conduction prediction,
Water Resour. Res., 30, 1503–1513, doi:10.1029/93WR03508.

Kim, K. S., and S. C. Chapra (1997), Temperature model for highly tran-
sient shallow streams, J. Hydraul. Eng., 123, 30–40, doi:10.1061/
(ASCE)0733-9429(1997)123:1(30).

Kinzer, G. D., and R. Gunn (1951), Evaporation, temperature and thermal
relaxation-time of freely falling waterdrops, J. Meteorol., 8, 71–83,
doi:10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2.

Leemans, R. (1989), Global Holdridge Life Zone Classifications, digital
raster data on a 0.5-degree geographic (lat/long) 360 � 720 grid, http://
www.ngdc.noaa.gov/ecosys/cdroms/ged_iia/datasets/a06/lh.htm#top,
Natl. Geophys. Data Cent., Boulder, Colo.

Lehner, B., and P. Döll (2004), Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
doi:10.1016/j.jhydrol.2004.03.028.

Lighthill, M. J., and G. B. Whitham (1955), On kinematic waves. I. Flood
movement in long rivers, Proc. R. Soc. London, Ser. A, 229, 281–316,
doi:10.1098/rspa.1955.0088.

Mironov, D. (2008), Parameterization of lakes in numerical weather predic-
tion. Part 1: Description of a lake model, COSMO Tech. Rep. 11, Dtsch.
Wetterdienst, Offenbach am Main, Germany.

Neumann, D. W., B. Rajagopalan, and E. A. Zagona (2003), Regression
model for daily maximum stream temperature, J. Environ. Eng., 129,
667–674, doi:10.1061/(ASCE)0733-9372(2003)129:7(667).

New, M., M. Hulme, and P. D. Jones (1999), Representing twentieth century
space-time climate variability. Part 1: Development of a 1961–90 mean
monthly terrestrial climatology, J. Clim., 12, 829–856, doi:10.1175/
1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

New, M., M. Hulme, and P. D. Jones (2000), Representing twentieth century
space-time climate variability. Part 2: Development of 1901–96 monthly
grids of terrestrial surface climate, J. Clim., 13, 2217–2238, doi:10.1175/
1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

Nezhikovskiy, R. A. (1964), Coefficient of roughness of bottom surfaces of
slush ice cover, Sov. Hydrol. Sel. Pap., 2, 127–150.

Perroud, M., S. Goyette, A. Martynov, M. Beniston, and O. Anneville
(2009), Simulation of multiannual thermal profiles in deep Lake Geneva:
A comparison of one-dimensional lake models, Limnol. Oceanogr., 54(5),
1574–1594, doi:10.4319/lo.2009.54.5.1574.

Rounds, S. A., T. M. Wood, and D. D. Lynch (1999), Modeling discharge,
temperature and water quality in the Tualatin River, Oregon, U.S. Geol.
Surv. Water Supply Pap., 2465-B.

Sinokrot, B. A., and H. G. Stefan (1993), Stream temperature dynamics:
Measurements and modelling, Water Resour. Res., 29, 2299–2312,
doi:10.1029/93WR00540.

Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol.
Soc., 131, 2961–3012, doi:10.1256/qj.04.176.

U.S. Army Corps of Engineers (2002), Hydraulic computations and model-
ing of ice-covered rivers, engineering and design, in Ice Engineering,
Eng. Man. 1110–2-1612, pp. 4.1–4.14, Washington, D. C.

van Beek, L. P. H., and M. F. P. Bierkens (2009), The global hydrological
model PCR-GLOBWB: Conceptualization, parameterization and verifi-
cation, report, Dep. of Phys. Geogr., Utrecht Univ., Utrecht, Netherlands
[Available at http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf.]

van Beek, L. P. H., Y. Wada, and M. F. P. Bierkens (2011), Global monthly
water stress: 1. Water balance and water availability, Water Resour. Res.,
47, W07517, doi:10.1029/2010WR009791.

van Vliet, M. T. H., F. Ludwig, J. J. G. Zwolsman, G. P. Weedon, and
P. Kabat (2011), Global river temperatures and the sensitivity to atmo-
spheric warming and changes in river flow, Water Resour. Res., 47,
W02544, doi:10.1029/2010WR009198.

Verdin, K. L., and S. K. Greenlee (1996), Development of continental scale
digital elevation models and extraction of hydrographic features, paper

VAN BEEK ET AL.: GLOBAL FRESHWATER SURFACE TEMPERATURE W09530W09530

16 of 17



presented at 3rd International Conference/Workshop on Integrating GIS
and Environmental Modeling, Natl. Cent. for Geogr. Inf. and Anal.,
Santa Barbara, Calif.

Vörösmarty, C. J., et al. (2010), Global threats to human water security and
river biodiversity, Nature, 467, 555–561, doi:10.1038/nature09440.

Wang, P. F., and J. L. Martin (1991), Temperature and conductivity model-
ling for the Buffalo River, J. Great Lakes Res., 17, 495–503,
doi:10.1016/S0380-1330(91)71385-3.

Webb, B. W. (1996), Trends in stream and river temperature, Hydrol. Pro-
cesses, 10, 205–226, doi:10.1002/(SICI)1099-1085(199602)10:2<205::
AID-HYP358>3.0.CO;2-1.

Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown, and F. Nobilis
(2008), Recent advances in stream and river temperature research,
Hydrol. Processes, 22, 902–918, doi:10.1002/hyp.6994.

Younus, M., M. Hondzo, and B. A. Engel (2000), Stream temperature
dynamics in upland agricultural watersheds, J. Environ. Eng., 126,
518–526, doi:10.1061/(ASCE)0733-9372(2000)126:6(518).

VAN BEEK ET AL.: GLOBAL FRESHWATER SURFACE TEMPERATURE W09530W09530

17 of 17



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


