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Does a reduced glucose intake prevent
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Carlijn TI de Betue1, Sascha CAT Verbruggen2, Henk Schierbeek3, Shaji K Chacko4, Ad JJC Bogers5,
Johannes B van Goudoever3,6 and Koen FM Joosten2*

Abstract

Introduction: Hyperglycemia in children after cardiac surgery can be treated with intensive insulin therapy, but
hypoglycemia is a potential serious side effect. The aim of this study was to investigate the effects of reducing
glucose intake below standard intakes to prevent hyperglycemia, on blood glucose concentrations, glucose kinetics
and protein catabolism in children after cardiac surgery with cardiopulmonary bypass (CPB).

Methods: Subjects received a 4-hour low glucose (LG; 2.5 mg/kg per minute) and a 4-hour standard glucose (SG;
5.0 mg/kg per minute) infusion in a randomized blinded crossover setting. Simultaneously, an 8-hour stable
isotope tracer protocol was conducted to determine glucose and leucine kinetics. Data are presented as mean ±
SD or median (IQR); comparison was made by paired samples t test.

Results: Eleven subjects (age 5.1 (20.2) months) were studied 9.5 ± 1.9 hours post-cardiac surgery. Blood glucose
concentrations were lower during LG than SG (LG 7.3 ± 0.7 vs. SG 9.3 ± 1.8 mmol/L; P < 0.01), although the
glycemic target (4.0-6.0 mmol/L) was not achieved. No hypoglycemic events occurred. Endogenous glucose
production was higher during LG than SG (LG 2.9 ± 0.8 vs. SG 1.5 ± 1.1 mg/kg per minute; P = 0.02), due to
increased glycogenolysis (LG 1.0 ± 0.6 vs. SG 0.0 ± 1.0 mg/kg per minute; P < 0.05). Leucine balance, indicating
protein balance, was negative but not affected by glucose intake (LG -54.8 ± 14.6 vs. SG -58.8 ± 16.7 μmol/kg per
hour; P = 0.57).

Conclusions: Currently recommended glucose intakes aggravated hyperglycemia in children early after cardiac
surgery with CPB. Reduced glucose intake decreased blood glucose concentrations without causing hypoglycemia
or affecting protein catabolism, but increased glycogenolysis.

Trial registration: Dutch trial register NTR2079.

Introduction
Critically ill patients often develop hyperglycemia due to
an acute stress response after (surgical) trauma and
severe illness [1,2]. Undergoing cardiac surgery with car-
diopulmonary bypass (CPB) increases the risk of devel-
oping hyperglycemia [3,4] because of the associated
hyperoxia and hypothermia and increased inflammatory
response induced by contact of blood with foreign

material in the CPB system [5-7]. In addition, intra-
operative glucose infusion contributes to hyperglycemia
in children undergoing cardiac surgery [8].
Hyperglycemia in critically ill children is reported to

be associated with increased morbidity and mortality
[9-11]. This has led to the widespread use of insulin
therapy to achieve blood glucose targets in the pediatric
intensive care unit (PICU) [12]. A randomized trial in
critically ill children, three quarters of whom were car-
diac surgery patients, showed that at the research loca-
tion intensive insulin therapy was associated with a
decrease in mortality of 6% to 3% and a decreased mor-
bidity [13]. A major drawback of this therapy was the
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high incidence of hypoglycemia (25%, blood glucose
concentrations equal to or less than 2.2 mmol/L) [13].
Hypoglycemia has been associated with adverse outcome
in the PICU [10] and may adversely affect the develop-
ing brain of young children [14-16].
An alternative approach to prevent hyperglycemia and

avoid the use of insulin might be reducing intravenous
(IV) glucose infusion to below current recommendations
for glucose intake (approximately 5.0 mg/kg per minute)
[12,17,18]. However, a reduced energy intake could
result in increased protein catabolism and, subsequently,
adverse outcome [19]. We hypothesized that currently
recommended glucose intake in children after cardiac
surgery contributes to the development of hyperglyce-
mia and that reducing glucose intake to below these
standard intakes would result in blood glucose levels in
the glycemic target range of 4.0 to 6.0 mmol/L without
causing hypoglycemia.
The first aim of this study was to investigate whether

reducing IV glucose intake would prevent hyperglycemia
in children after cardiac surgery without causing hypo-
glycemia. This was determined by using a randomized
blinded controlled crossover design providing for both
low IV glucose intake (LG 2.5 mg/kg per minute) and
standard IV glucose intake (SG 5.0 mg/kg per minute).
The second aim was to determine the effects of reduced
glucose intake on glucose kinetics and on both leucine
kinetics and albumin synthesis as indicators of protein
metabolism by using stable isotope tracer methodology.

Materials and methods
Patients and setting
Children admitted to the Intensive Care of Erasmus MC
- Sophia Children’s Hospital after cardiac surgery for
congenital heart disease between June 2010 and October
2010 were consecutively enrolled. Inclusion criteria were
age of greater than 30 days, body weight (BW) of less
than 30 kg, CPB during surgery, arterial and central
venous lines, and hemodynamic stability (with or with-
out inotropic support). Exclusion criteria were chromo-
somal disorder, pre-existent metabolic or endocrine
disorder, liver failure, and insulin therapy at the start of
the study. The medical ethical review board of Erasmus
MC, Rotterdam, The Netherlands, approved this study.
Prior to inclusion in the study, we obtained written
informed consent from parents or legal representatives
of patients.
Cardiac surgery
Anesthetic and peri-operative procedures have been
described in detail previously [20]. Maximal arterial oxy-
gen tension was targeted at 20 kPa. On CPB, either mild
hypothermia of 28 to 32°C or circulatory arrest with
deep hypothermia of 18°C nasopharyngeal temperature
and 21°C rectal temperature (deep hypothermic

circulatory arrest) was achieved. Antegrade cerebral per-
fusion was established when appropriate. Patients
received 30 mg/kg methylprednisolone during surgery as
standard care. Priming fluid of the CPB system con-
tained 0.5 g/kg human albumin, and during CPB,
patients received supplementary albumin to maintain a
colloid oncotic pressure of greater than 15 mm Hg.
Intra-operatively administered fluids did not contain
glucose.
Post-operatively, IV glucose intake was provided at 4.0

to 6.0 mg/kg per minute, and total fluid intake, includ-
ing medications, was restricted in the first 24 hours
after surgery to 50 mL/kg per day if BW was less than
10 kg and to 750 mL/m2 per day if BW was 10 to 30
kg. Patients were weaned off the ventilator when possi-
ble as standard practice. No corticosteroids were pro-
vided in the post-operative course.

Study design and interventions
Eight hours after cardiac surgery, we started the experi-
mental protocol, which lasted for 10 hours. See Figure 1
for the study design. Low glucose intake (LG) (2.5 mg/
kg per minute) and standard glucose intake (SG) (5.0
mg/kg per minute) were provided intravenously (IV) in
a crossover manner to diminish the effect of timing
after cardiac surgery on metabolic variables. Randomiza-
tion for the order of glucose intake was performed by
means of computer-generated sealed envelopes. Indistin-
guishable syringes with equal volume but different glu-
cose concentrations were prepared in order to keep
fluid intake equal throughout the protocol. Laboratory
personnel, nursing staff, and investigators were blinded
until analyses were finished.
In the post-surgical period prior to the start of the

study, glucose intake was infused as per standard care
(4.0 to 6.0 mg/kg per minute). After baseline blood and
breath samples were obtained, the study glucose intake
(LG or SG first) was started at t = 0. Simultaneously, a
primed continuous 8-hour IV stable isotope tracer infu-
sion (described under ‘Materials and sample processing’)
was administered. Four hours after the start of the tra-
cer infusion (t = 240), the glucose intake was switched
to the alternate level. A washout period was not deemed
necessary, since glucose turnover is rapid and steady
state can be achieved at 80 minutes after the start of a
glucose infusion [21]; thus, carry-over effects were not
expected.
Blood glucose concentrations were determined at t =

0 and at the end of both interventions (t = 240 and t =
480) along with C-reactive protein, pre-albumin, albu-
min, free fatty acids, triglycerides, insulin, and cortisol
to describe inflammatory, metabolic, and hormonal
characteristics. Blood glucose concentrations of less
than 4.0 mmol/L were considered hypoglycemic;
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concentrations of greater than 6.0 mmol/L were consid-
ered hyperglycemic. Plasma albumin concentrations of
less than 35 g/L were considered hypoalbuminemic.
Carbon dioxide production (VCO2), oxygen consump-

tion (VO2), and respiratory quotient were determined by
indirect calorimetry (Deltatrac™ II MBM-200; Datex-
Ohmeda Division Instrumentarium Corp., Helsinki, Fin-
land) in the last 40 minutes of each glucose infusion
period, either by canopy mode or on the ventilator.
Severity of illness was assessed by the Pediatric Index

of Mortality (PIM) score [22], the Pediatric Risk of Mor-
tality score [23], and the pediatric logistic organ dys-
function (PELOD) score [24]. For all three, higher
scores indicate higher severity of disease. Risk Adjust-
ment for Congenital Heart Surgery [25] and Aristotle
comprehensive complexity score [26] were assessed. For
both, higher scores indicate increased complexity of car-
diac surgery. Furthermore, vasopressor score at the start
of the interventions was calculated as described by
Zuppa and colleagues [27]. Estimated energy expendi-
ture was calculated with the Schofield equation [28].

Outcome measures
The primary outcome measure was blood glucose con-
centration during the interventions. Secondary outcome
measures were glucose rate of appearance, endogenous
glucose production (EGP), and rates of gluconeogenesis
and glycogenolysis; leucine flux, leucine release from
protein, leucine oxidation, non-oxidative leucine

disposal, and leucine balance; whole body protein break-
down, whole body protein synthesis, and whole body
protein balance; and albumin synthesis rates and contri-
bution of albumin synthesis to whole body protein
synthesis.

Materials and sample processing
Stable isotope tracers (at least 98% enriched) were pur-
chased from Cambridge Isotope Laboratories, Inc. (And-
over, MA, USA). The hospital pharmacy of Erasmus MC,
Rotterdam, The Netherlands, compounded the tracer
solutions and tested them for sterility and pyrogenicity.
At t = -120, 2H2O (4 g/kg) was infused intravenously
over the course of 1 hour to prime the body water pool.
At t = 0, a bolus of NaH13CO3 (2.1 μmol/kg) was infused
to prime the bicarbonate pool followed by primed con-
tinuous administration of [6,6-2H2]-glucose (40 μmol/kg;
48 μmol/kg per hour) and L-[1-13C]-leucine (8 μmol/kg;
8 μmol/kg per hour) to study glucose and leucine meta-
bolism, respectively (Figure 1).
Blood samples were obtained at standard frequent

intervals (Figure 1) from the arterial line and were cen-
trifuged (2 minutes, 2,000g), and plasma was frozen at
-80°C until samples were analyzed. Three breath sam-
ples of approximately 15 mL of expiratory air per time
point were taken from the outlet of the ventilator if
patients were ventilated [29] or by the direct nasophar-
yngeal sampling method collecting air from a gastric
tube inserted 1 to 1.5 cm in the nasopharynx [30]. The
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 0  -120 240 120 320 

4.0-6.0 mg.kg-1.min-1 
(Standard care) 

LG (2.5 mg.kg-1.min-1) or 
SG (5.0 mg.kg-1.min-1) 

SG (5.0 mg.kg-1.min-1) or 
LG (2.5 mg.kg-1.min-1) 

[6,6-2H2]-glucose; L-[1-13C]-leucine 

IC 
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Figure 1 Schematic presentation of the study in children receiving low or standard glucose intake after cardiac surgery. In a
randomized blinded crossover design, subjects received low glucose or standard glucose intake while a primed continuous stable isotope tracer
protocol was conducted. The gray arrow indicates prime of tracers before continuous infusion. Black triangles indicate time points of arterial
blood and breath sampling for laboratory parameters and isotopic enrichment measurements of glucose and leucine tracers. Enrichmentleu-alb
indicates the enrichment of [1-13C]-leucine incorporated into albumin, and ‘t1’ and ‘t2’ represent time points of blood sampling for
determination of Enrichmentleu-alb and calculation of fractional albumin synthesis. IC, indirect calorimetry; LG, low glucose intake; SG, standard
glucose intake.
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collected air was transferred to impermeable vacuum
glass tubes and stored at room temperature until
analysis.

Measurements
Blood glucose concentrations and plasma albumin con-
centrations were determined (the former by the hexoki-
nase method) on a Roche Modular Analytics P 800-
Module (Roche Diagnostics Nederland, Almere, The
Netherlands). Insulin was analyzed in blood with stan-
dard human insulin-specific radioimmunoassay techni-
ques. C-reactive protein, pre-albumin, free fatty acids,
triglycerides, and cortisol were determined by standard
in-house protocols.
Enrichment of deuterated water in plasma was deter-

mined by isotope ratio mass spectrometry (Delta+XP;
Thermo Fisher Scientific, Bremen, Germany). Glucose
M+1 enrichment with 2H derived from 2H2O was ana-
lyzed by means of gas chromatography mass spectrome-
try (GC 6890, MS 8973; Agilent Technologies,
Wilmington, DE, USA) by using the penta-acetate deri-
vative in negative chemical ionization mode as pre-
viously described [31,32]. Glucose M+2 enrichment
derived from [6,6-2H2]-glucose was determined as its
aldonitrile penta-acetate derivative in electron impact
ionization mode by using a slightly modified method as
previously described [33]. Standard curves were pre-
pared by mixing aqueous solutions of natural and
labeled glucose for both enrichment and concentration
determination. The mass spectrometric analyses were
performed on a mass spectrometer coupled with a gas
chromatograph (GC 7890 A, MS 5975 C; Agilent Tech-
nologies Netherlands BV, Amstelveen, The Nether-
lands). A chemically bonded DB-5 ms (J&W Scientific,
Folsom, CA, USA) capillary column with a length of 30
m, an internal diameter of 0.25 mm, and a film thick-
ness of 0.25 μm was used for the chromatographic
separation. The intensities of the 187.2 and 189.2 frag-
ments were selected for measurement of, respectively
the non-enriched and the 6,6-2H2-enriched aldonitrile
penta-acetate derivative of glucose. All measurements
were carried out in selective ion monitoring mode. Leu-
cine kinetics was calculated from plasma alpha-ketoiso-
caproate (a-KIC) M+1 enrichment that was determined
by gas chromatography mass spectrometry after derivati-
zation to butyldimethyl-silylquinoxalinol derivatives [34].
Breath samples were analyzed for enrichment of 13CO2

by using an infrared isotope analysis technique (Helifan;
Fischer Instruments, Leipzig, Germany). 13C enrichment
was expressed as atom percentage excess above baseline
for subsequent calculation of leucine oxidation [35]. The
enrichment of incorporated leucine in albumin was
determined on a gas chromatograph-combustion-isotope
ratio mass spectrometer (Delta XP; Thermo Fisher

Scientific) as described before [36]. Plasma samples were
analyzed as triplicates; breath samples were collected in
triplicate and analyzed once.

Calculations
Glucose kinetics was estimated by using the Steele equa-
tion [37], based upon the final 40 minutes of both glu-
cose infusion periods (steady state); whole body leucine
kinetics was calculated by conventional isotope dilution
equations by using a stochastic model [38]. At steady-
state plateau, rate of appearance (Ra) equals the rate of
disappearance (Rd) as follows:

Ra = Rd = i × [(Einf
/

Epl) − 1], (1)

where i is the infusion rate of the labeled tracer, Einf is
the tracer enrichment of the infusate, and Epl is the tra-
cer enrichment in plasma.
Glucose kinetics
Plasma [6,6-2H2]glucose enrichment (in mole percent
excess) and the exogenous glucose infusion rate were
used for data calculation. Under steady-state conditions,
total glucose rate of appearance is equal to the rate of
disappearance [37], the latter of which reflects glucose
utilization. Rates of EGP, glucose clearance, glycogenoly-
sis, and gluconeogenesis were calculated as previously
described [21,39,40].
EGP rate was calculated as follows:

EGP = RaGlucose − GIR, (2)

where GIR is the total glucose infusion rate in mg/kg
per minute.
Fractional gluconeogenesis was calculated as pre-

viously described [32]. Briefly, the average enrichment of
2H on each glucose carbon was calculated with the fol-
lowing equation:

Average (M + 1) d = (M + 1) d(m/z 169)
/

6, (3)

where (M+1)d(m/z 169) is the M+1 enrichment of deu-
terium of glucose measured by using m/z 170/169 and
‘6’ is the number of 2H labeling sites on the m/z 169
fragment of glucose.
Because body water is the precursor pool for deuter-

ium or hydrogen, the extent of deuterium labeling of
glucose during the gluconeogenic process when 2H2O is
infused is a measure of fractional gluconeogenesis.
Therefore, with the average deuterium enrichment in
m/z 170/169 for calculating fractional gluconeogenesis
(FracGNG), the equation is

FracGNG = average (M + 1) d/EH2O, (4)

where EH2O is the deuterium enrichment in body
water.
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The absolute rate of appearance of plasma glucose
from gluconeogenesis (RaGNG) and glycogenolysis were
calculated:

Gluconeogenesis = RaGlucose × FracGNG (5)

Glycogenolysis = EGP − Gluconeogenesis (6)

Glucose clearance, as a measure of the disposal of glu-
cose per unit of blood glucose, was calculated with the
following equation [21,40]:

Glucose clearance = Raglucose
/

(Cglucose × 0.18), (7)

where glucose clearance is expressed in mL/kg per
minute, Cglucose is the glucose concentration in blood in
mmol/L, and 0.18 the factor to convert the concentra-
tion to mg/mL.
Leucine kinetics
Plasma leucine kinetics, which is indicative of whole
body protein kinetics, was calculated as follows. Whole
body leucine fluxes (RaLeu) (μmol/kg per hour) were cal-
culated according to Equation 1 from [13C]a-ketoiso-
caproate ([13C]a-KIC) as previously described [34,41,42].
Leucine release from protein (LRP), which is indicative

of protein breakdown, was calculated as follows:

LRP = RaLeu − i, (8)

where i represents the tracer infusion rate.
Leucine oxidation rates (μmol/kg per hour) were cal-

culated with the following equation:

LeucineOx = VCO2 × (E13CO2
/

69.18)/[13C]α − KIC, (9)

where 69.18 is the 13CO2 refraction correction factor
for critically ill children [35]. VCO2 is measured in mL/
minute and converted to mmol/hour2 by multiplying by
60 minutes and dividing by 22.4 L/mol. The latter is the
volume of one mole of an ideal gas at standard tempera-
ture and pressure.
Non-oxidative leucine disposal (NOLD) (leucine used

for protein synthesis, which is indicative of protein
synthesis) was calculated as follows:

NOLD = Raleu − LeucineOx (10)

Leucine balance (μmol/kg per hour) was calculated as
follows:

Leucine balance = LRP − NOLD. (11)

Protein kinetics
Whole body protein turnover was calculated from the
model described by Golden and Waterlow [43]. To con-
vert leucine kinetics into protein kinetics, we assumed
that the average content of leucine in human proteins

was 621 μmol/g [44]. Thus, leucine kinetics in μmol/kg
per hour was divided by 621 μmol/g and multiplied by
24 hours to derive protein kinetics in g/kg per day (pro-
tein synthesis from NOLD, protein breakdown from
LRP, and protein balance from leucine balance).
Albumin synthesis
By measuring the incorporation of [1-13C]-leucine in
albumin, we calculated the fractional and absolute
synthesis rates of albumin and the contribution of albu-
min synthesis to the whole body protein synthesis. Frac-
tional albumin synthesis rate (FSR) represents the
renewed fraction of the intravascular albumin pool per
time unit (percentage per day) and was calculated as fol-
lows [45]:

FSR = (Eleu−alb, t2 − Eleu−alb, t1)
/

Eα−KIC × (24 × 60)
/
(t2 − t1) × 100%, (12)

where Eleu-alb is the enrichment (mole percent excess)
of incorporated leucine in albumin at t1 (t = 120 and t
= 360 for the first and second glucose infusions, respec-
tively) and t2 (t = 240 and t = 480 for the first and sec-
ond glucose infusions, respectively) (Figure 1). Ea-KIC is
the mean enrichment of the precursor, i.e. plasma a-
KIC, at these time points in mole percent excess.
The absolute albumin synthesis rate (ASR) (mg/kg per

day) was calculated as follows [45]:

ASR = FSR × Calb × volbl × (1 − Ht) × weight−1,(13)

where Calb is plasma albumin concentration (g/L),
volbl is the total volume of blood in the body (for these
subjects assumed to be 75 mL/kg), Ht is hematocrit,
and (1-Ht) is the fraction of blood that is plasma.
Furthermore, we calculated the contribution (percen-

tage) of albumin ASR to whole body protein synthesis
by determining the ratio of leucine incorporated into
albumin to the total amount of leucine used for protein
synthesis [45]:

Contribution =
[
(ASR × 0.104)

/
(NOLD × 131.2 × 24 × 0.001)

] × 100%, (14)

where 0.104 is the mass fraction of leucine residues in
albumin, 131.2 is the molecular mass of leucine, 24 is
the factor to convert to days, and 0.0001 is the factor to
convert to milligrams.

Data analysis
Power analysis showed that inclusion of eight subjects
with complete data would suffice to detect a statistically
significant difference of 20% in plasma glucose concen-
trations (80% power, type I error of 5%) on the basis of
baseline blood glucose levels of 7.3 mmol/L and target
levels of less than 6.0 mmol/L. The Shapiro-Wilk nor-
mality test was used to determine whether data were
normally distributed. Data are presented as mean ±
standard deviation; non-parametric data are presented
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as median (interquartile range). Data during the two dif-
ferent glucose infusions were compared by either the
paired samples t test (normal distribution) or the Wil-
coxon matched pairs test with exact significance (non-
normal distribution). Differences between subsets of
subjects were assessed by the independent samples t test
(normal distribution) or Mann-Whitney U test (non-
normal distribution). Correlations between baseline
characteristics and the primary outcome measure were
determined with Spearman’s rho correlation coefficient.
Statistical significance was defined as a P value of less
than 0.05. Statistical analyses were carried out with IBM
SPSS Statistics version 17.0 (IBM Corporation, Armonk,
NY, USA).

Results
Patients
We conducted the study protocol in 11 children (8
males and 3 females). In 11 subjects, blood glucose con-
centrations were available during both glucose infusion
periods. Owing to technical problems, glucose kinetics
data were collected in 9 of 11 patients. Leucine kinetics
data were available in 8 of 11 patients because of the
inability to conduct indirect calorimetry in all patients.
Median BW was 6.8 kg (7.1 kg). Mean PIM score was
12.6% ± 7.2% predicted mortality, median PRISM score
was 7.5% (25.6%) predicted mortality, and median
PELOD score was 1.3% (1.2%) predicted mortality.
Table 1 lists other baseline characteristics.
There were no clinically important or statistical differ-

ences in baseline characteristics between patients ran-
domly assigned to start with LG and those who started
with SG (Table 1). All patients received prophylactic
antibiotics (cefazolin), diuretics, morphine, and/or aceta-
minophen for pain relief. One patient was ventilated
with nitric oxide for pulmonary hypertension but was
hemodynamically stable without inotropes. Other drugs
administered included norepinephrine (n = 1), milrinone
(n = 2), and IV nitroglycerine (n = 2). See Table 1 for
vasopressor scores at the start of the study protocol.
The first glucose infusion was started a mean of 9.5 ±
1.9 hours after cardiac surgery (t = 0). During LG, glu-
cose intake including glucose tracers was 2.6 ± 0.3 mg/
kg per minute; during SG, glucose intake including glu-
cose tracers was 5.0 ± 0.4 mg/kg per minute (P < 0.001;
paired samples t test).

Blood glucose concentrations and laboratory parameters
Blood glucose concentrations were significantly lower
during LG than during SG (Table 2). On average, the gly-
cemic target (4.0 to 6.0 mmol/L) was not achieved during
either of the glucose infusions. No hypoglycemic events
occurred, and the lowest blood glucose concentration

measured was 6.2 mmol/L. Table 2 lists other metabolic
characteristics.

Glucose kinetics
Steady-state 2H2O enrichments were 0.72 ± 0.06 and
0.72 ± 0.07 atom percent excess during the first and
second glucose infusions, respectively. During SG, EGP
was not fully suppressed and consisted entirely of gluco-
neogenesis, while glycogenolysis did not differ from zero
(P = 0.89; one sample t test) (Table 3 and Figure 2).
During LG, glucose rate of appearance tended to be
lower, with a significantly higher EGP than during SG.
The higher EGP during LG resulted from increased gly-
cogenolysis, while gluconeogenesis was maintained at
the same rate as during SG (Table 3 and Figure 2).

Leucine kinetics and whole body protein metabolism
VCO2, VO2, and respiratory quotient did not differ sig-
nificantly between the two glucose infusions (Table 2).
Respiratory quotient values were within the normal
range (0.85 to 1.00). Leucine and protein kinetics did
not differ significantly between the two glucose infusions
(Table 3). Whole body protein kinetics as derived from
leucine kinetics were as follows for LG and SG, respec-
tively: whole body protein breakdown 7.6 ± 0.8 versus
8.2 ± 1.1 g/kg per day (P = 0.22, paired samples t test)
and whole body protein synthesis 5.4 ± 0.7 versus 5.7 ±
1.4 g/kg per day (P = 0.46, paired samples t test). Whole
body protein balance was negative during both interven-
tions but was not further aggravated by reduced glucose
infusion (LG: -2.2 ± 0.6; SG: -2.4 ± 0.6 g/kg per day; P
= 0.57; paired samples t test).
Patients had normal plasma albumin concentrations

(Table 2). Fractional and absolute albumin synthesis
rates did not differ between the two glucose infusions
(Table 3). Protein synthesis consisted for 4% of albumin
synthesis during both interventions.

Correlations and subanalysis
Age, weight, height, severity of illness scores and com-
plexity of cardiac surgery scores, CPB time, and aorta
clamp time or time after surgery of starting the first glu-
cose infusion were not correlated with blood glucose
concentrations during LG and SG. Two subjects under-
went deep hypothermic circulatory arrest, which is dif-
ferent from other cardiac surgical interventions on CPB.
Subanalysis without these two patients revealed blood
glucose concentrations of LG 7.4 ± 0.7 versus SG 9.3 ±
1.5 (P < 0.01) with the paired samples t test. Glucose
and leucine kinetics were not affected, apart from
slightly changing the significance level of glycogenolysis
(LG 1.0 ± 0.6 versus SG 0.1 ± 1.0; P = 0.06; paired sam-
ples t test).
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Discussion
Our study showed that currently recommended glucose
intakes aggravated hyperglycemia in children admitted
to the PICU in the first 24 hours after cardiac surgery
with CPB. Furthermore, reduced glucose intake resulted
in decreased blood glucose concentrations and not in
hypoglycemia or increased protein catabolism. However,
in contrast with our hypothesis and our previous study
in healthy children undergoing elective craniofacial sur-
gery, the glycemic target (4.0 to 6.0 mmol/L) was not
achieved with reduced glucose intake [39]. In addition,
it resulted in increased EGP due to increased
glycogenolysis.
In recent years, the focus on intensive insulin therapy

in critically ill children has increased, especially after
Vlasselaers and colleagues [13] showed that in their set-
ting this therapy resulted in decreased morbidity and

mortality. However, hypoglycemia of equal to or less
than 2.2 mmol/L was observed in a quarter of patients.
It is considered a serious complication potentially lead-
ing to neurological damage in the long term [16]. We
and others therefore suggest that insulin therapy be
started at a higher glycemic threshold of approximately
8 mmol/L [12,46]. In the present study, currently
recommended glucose intakes (iatrogenically) aggravated
hyperglycemia, making patients eligible for insulin ther-
apy on the basis of this threshold. We therefore postu-
late reduced glucose intake as the initial step to prevent
hyperglycemia in the early post-operative phase. We
acknowledge that this alternative approach bypasses the
non-metabolic (for example anti-inflammatory and anti-
apoptotic) beneficial effects of insulin [12,47]. However,
within 24 hours after cardiac surgery, most children
show spontaneous resolution of hyperglycemia [48]. The

Table 1 Patient characteristics of 11 children after cardiac surgery

Patient First
glucose
infusion
(LG or
SG)

Age,
months

Diagnosis and
surgical intervention

RACHS-
1

category

Comprehensive
Aristotle

complexity
scorea

CPB
time,
hours:
minutes

Aorta
clamp
time,
hours:
minutes

Vasopressor
scoreb

Extubation
before start

of
intervention

period

1 LG 60.0 Sinus venosus defect
patch repair

1 3.0 1:11 0:53 0 Yes

2 LG 23.3 PCPC for univentricular
heart

2 6.8 0:40 0:00 0 Yes

3 LG 4.7 VSD repair 2 7.0 1:33 1:08 0 Yes

4 LG 20.6 Redo RVOT procedure
after correction of TOF

2 8.5 1:55 0:59 0 Yes

5 LG 4.8 CAVSD repair 3 9.0 2:18 1:47 0 Yes

6 LG 2.5 Biventricular repair of
HLHS with DHCA after
hybrid preparationc

6 17.0 3:44 1:58 0 No

7 SG 11.7 ASD-II repair 1 3.0 0:37 0:16 0 Yes

8 SG 24.4 Sinus venosus defect
patch repair

1 3.0 1:23 0:57 0 Yes

9 SG 3.1 VSD repair 2 7.0 1:22 0:47 0 No

10 SG 2.6 TOF repair with
transannular patch

2 8.0 1:14 0:52 0 Yes

11 SG 5.2 Biventricular repair of
HLHS with DHCA after
hybrid preparationc

6 17.0 4:32 2:33 7 No

LG as first glucose
infusion, median

(IQR) or mean ± SD

- 12.7
(28.3)

- 2 (3) 7.3 (5.3) 1:44
(1:36)

1:07 ±
0:42

0 (0) -

SG as first glucose
infusion, median

(IQR) or mean ± SD

- 5.1
(15.3)

- 2 (2) 6.0 (9.5) 1:22
(2:02)

1:05 ±
0:51

0 (3.5) -

All, median (IQR) or
mean ± SD

- 5.1
(20.2)

- 2 (2) 6.0 (4.0) 1:23
(1:07)

1:06 ±
0:44

0 (0) -

Normally distributed data (as assessed by Shapiro-Wilk normality test) are presented as mean ± standard deviation (SD), and non-normally distributed data are
presented as median (interquartile range, or IQR). There were no significant differences between patients receiving low glucose intake first or standard glucose
intake first (Mann-Whitney U test). aComprehensive Aristotle complexity score [26]; bvasopressor score [27]; cdeep hypothermic circulatory arrest (DHCA) times
(hours:minutes) were 0:53 and 1:31 for patients 6 and 11, respectively; antegrade cerebral perfusion times as part of DHCA were 0:32 and 1:21 for patients 6 and
11 respectively. ASD-II, ostium secundum atrium septal defect; CAVSD, complete atrial ventricular septal defect; CPB, cardiopulmonary bypass; HLHS, hypoplastic
left heart syndrome; LG, low glucose intake (2.5 mg/kg per minute); PCPC, partial cavo-pulmonar connection; RACHS-1, risk adjusted congenital heart surgery
score [25]; RVOT, right ventricle outflow tract; SG, standard glucose intake (5.0 mg/kg per minute); TOF, tetralogy of Fallot; VSD, ventricular septal defect.
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duration of insulin therapy in this population is there-
fore often brief. It is questionable whether beneficial
effects can then be exerted and whether they outweigh
the risk of hypoglycemia. In addition, insulin therapy
seems to reduce morbidity and mortality predominantly
by preventing hyperglycemia rather than by a direct
effect of insulin [49]. Also, hyperglycemia causes cell

damage, which is normally cleared by the process of
autophagy, but the latter is suppressed by nutrient
intake [49]. It has therefore been suggested that, when
tight glycemic control is not feasible in clinical practice,
moderate hyperglycemia might be tolerated when nutri-
ent intake is restricted [49]. Therefore, reduced glucose
intake seems even more promising to bridge the brief

Table 2 Metabolic characteristics of children receiving low or standard glucose intake after cardiac surgery

Metabolic characteristics Before
experiment

Low glucose intake
(2.5 mg/kg per minute)

Standard glucose intake
(5.0 mg/kg per minute)

P value

Glucose intake 3.6 ± 0.7 2.6 ± 0.3 5.0 ± 0.4 < 0.001

Blood glucose, mmol/L 9.5 ± 2.0 7.3 ± 0.7 9.3 ± 1.8 0.007

Estimated energy expenditure, kcal/kg per daya 54.7 ± 5.8

Energy intake, kcal/kg per day 12.1
± 1.3

23.5 ± 2.1 < 0.001

Measured energy expenditure, kcal/kg per day 44.9 ± 10.9 46.1 ± 10.7 0.856

VCO2, mL/kg per minuteb 5.6 ± 1.3 5.7 ± 1.2 0.901

VO2, mL/kg per minuteb 6.4 ± 1.7 6.6 ± 1.5 0.813

Respiratory quotient 0.87 (0.21) 0.89 (0.06) 0.719

C-reactive protein, mg/L 13 ± 7 32 ± 17 32 ± 16 0.933

Pre-albumin, g/L 0.18 (0.04) 0.18 (0.03) 0.17 (0.03) 0.203

Albumin, g/L 38 ± 5 38 ± 4 38 ± 5 1.000

Triglycerides, mmol/L 0.41 (0.32) 0.41 (0.41) 0.47 (0.35) 0.687

Free fatty acids, mmol/L 0.71 ± 0.23 0.66 ± 0.13 0.53 ± 0.12 0.013

Cortisol, nmol/L 535 ± 193 229 ± 100 208 ± 42 0.429

Insulin, pmol/L 90 (229) 61 (83) 142 (199) 0.064

Insulin/glucose ratio, pmol/mmol 0.6 (1.1) 9.0 (13.5) 17.8 (20.8) 0.105

P values indicate statistical comparison between glucose intakes (low glucose intake and standard glucose intake) only. Normally distributed data (as assessed by
Shapiro-Wilk normality test) are presented as mean ± standard deviation, and comparison between glucose intakes was done by paired samples t test. Non-
normally distributed data are presented as median (interquartile range), and comparison between glucose intakes was done by Wilcoxon matched pairs test.
aEstimated with Schofield equation [28]; bn = 8 for carbon dioxide production (VCO2), oxygen consumption (VO2), and respiratory quotient; for other variables, n
= 11.

Table 3 Glucose, leucine, and albumin kinetics in children receiving low or standard glucose intake after cardiac
surgery

Low glucose intake
(2.5 mg/kg per minute)

Standard glucose intake
(5.0 mg/kg per minute)

P value

Glucose kinetics (n = 9)a

Glucose Ra, mg/kg per minute 5.6 ± 0.9 6.6 ± 1.1 0.071

Fractional gluconeogenesis as percentage of Ra 34 ± 3 24 ± 5 0.002

Glucose clearance rate, mL/kg per minute 4.19 ± 0.54 4.03 ± 0.64 0.362

Leucine kinetics, μmol/kg per hour (n = 8)

Leucine Ra 195.2 ± 21.2 209.3 ± 27.3 0.218

Leucine oxidation 63.1 ± 14.6 68.0 ± 15.4 0.573

Leucine release from proteina 187.0 ± 20.9 201.1 ± 27.3 0.218

Non-oxidative leucine disposalb 132.1 ± 17.7 141.3 ± 35.5 0.496

Leucine balance -54.8 ± 14.6 -59.8 ± 15.8 0.573

Albumin synthesis (n = 8)

Fractional albumin synthesis rate, percentage per day 9.2 ± 3.5 9.6 ± 4.0 0.756

Absolute albumin synthesis rate, mg/kg per day 157.3 (94.6) 139.5 (111.3) 0.742

Contribution to total protein synthesis, percentage 4.2 ± 1.3 4.2 ± 1.6 0.976

Normally distributed data (as assessed by Shapiro-Wilk normality test) are presented as mean ± standard deviation, and comparison between glucose intakes -
low glucose intake and standard glucose intake - was done by paired samples t test. Non-normally distributed data are presented as median (interquartile range),
and comparison between glucose intakes was done by Wilcoxon matched pairs test. aIndicative of protein breakdown; bindicative of protein synthesis. Ra, rate of
appearance.
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hyperglycemic period after pediatric cardiac surgery.
However, since the study population was heterogeneous
and small, our study provides mostly a mechanistic view

of this approach. Also, our patients were relatively stable
and intra-operative management in our center includes
high-dose opioids to suppress the acute stress response

Figure 2 Glucose kinetics in children receiving low or standard glucose intake after cardiac surgery. Data are presented as mean ±
standard deviation in mg/kg per minute in stacked bars (n = 9). Error bars are shown for components of rate of appearance of glucose only:
glucose intake (GI), glycogenolysis (GLY), and gluconeogenesis (GNG). Comparison between glucose intakes was done by paired samples t test.
Entire stacked bars represent rate of appearance of glucose, which consists of exogenous glucose intake and endogenous glucose production.
The latter is composed of gluconeogenesis and glycogenolysis. Glycogenolysis during standard glucose intake was not significantly different
from zero (P = 0.89; one sample t test). EGP, endogenous glucose production; LG, low glucose intake; Ra, rate of appearance; SG, standard
glucose intake.
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[20]. Therefore, caution should be taken when generaliz-
ing our data to longer periods of reduced glucose intake
and to different and more critically ill populations.
Thus, clinical outcome studies are warranted to formu-
late suitable recommendations of glucose intake.
Our study is one of few studies providing data on glu-

cose kinetics and glucose intake in critically ill children.
Glucose intake of 2.5 mg/kg per minute resulted in
increased EGP through increased glycogenolysis, despite
hyperglycemia. The latter suggests that LG did not meet
the metabolic needs of the liver. During SG, EGP was
sustained, whereas in healthy individuals increased glu-
cose intake reduces EGP [21,50-53]. These features can
be explained by the metabolic stress response, which is
characterized by increased EGP due to increased coun-
ter-regulatory hormones [47], impairment of insulin-
induced suppression of EGP (central insulin resistance),
and impairment of insulin-mediated glucose uptake
(peripheral insulin resistance) [1,2,47]. Since cortisol
concentrations were normal, inotropic support was lim-
ited to one patient, and all patients received corticoster-
oids, unsuppressed EGP (gluconeogenesis) most likely
resulted from insulin resistance. Craniofacial surgery
patients in whom we observed unsuppressed EGP as
well did achieve the glycemic target when receiving LG
[39]. Their insulin resistance was possibly less pro-
nounced, as supported by lower insulin concentrations,
lower insulin/glucose ratios, and higher glucose clear-
ance rates (n = 8, 5.0 ± 1.4 mL/kg per minute; unpub-
lished data) [39]. In the present study, insulin resistance
seemed to be higher during SG than LG, as shown by a
higher insulin/glucose ratio, which approached the
threshold of a hyperinsulinemic response (18 pmol/
mmol) [54]. The lack of statistical significance might be
explained by the small sample size. In adults, increased
insulin resistance is associated with increased risk of
post-operative complications after major surgery [55].
Therefore, glucose solutions in the first day after major
surgery in adults should be avoided [55]; in young chil-
dren, this would translate to avoiding SG.
We did not find adverse effects of LG on protein

metabolism or albumin synthesis rates, and this is con-
sistent with previous studies from our group [36,39,56].
Plasma albumin levels were in the normal range and in
agreement with previous reports in children receiving
human albumin during CPB [57,58]. In contrast, infants
after craniofacial surgery and septic adolescents, in
whom we studied albumin kinetics previously, were
hypoalbuminemic. This might explain why they showed
higher albumin synthesis rates than the current cardiac
patients [36]. Albumin synthesis rates were not affected
by glucose intake, protein intake, or insulin administra-
tion in any of the groups [36]. Possibly owing to its rela-
tively short duration (240 minutes), we did not find

increased protein catabolism during LG. At the time of
the study, patients likely had substantial glycogen stores.
With prolonged low glucose intake, glycogen stores
might eventually be depleted, further triggering gluco-
neogenesis and protein catabolism to provide amino
acids as gluconeogenic substrate. Whether further redu-
cing glucose intake is more effective to reduce blood
glucose concentrations and what the repercussions are
on glucose and protein metabolism therefore need to be
investigated.
There are some limitations to this study. First, glyco-

genolysis rates in some patients were negative during
SG, but this is physiologically not possible. This may
have resulted from an underestimation of EGP because
of dilution of the tracer pool by re-uptake of newly pro-
duced glucose in the liver as a consequence of hepatic
intralobular functional heterogeneity [59]. Second, we
did not measure cerebral glucose uptake as the lower
limit [17] and glucose oxidation rates as the upper limit
[18] of glucose intake. Since hypoglycemia was not
apparent in our population, we assume that cerebral
glucose uptake was not impaired during reduced glucose
intake. We refrained from measuring glucose oxidation
with [13C]-glucose, because our [1-13C]-leucine tracer
would have interfered with 13CO2 measurements for
glucose oxidation.

Conclusions
Glucose intake at currently recommended rates in the
initial phase of post-operative care in the PICU aggra-
vated hyperglycemia in children younger than 6 years
and with a BW of less than 30 kg after cardiac surgery.
Reducing glucose intake to 2.5 mg/kg per minute
resulted in decreased blood glucose concentrations with-
out causing hypoglycemia or increased protein catabo-
lism. Reduced glucose intake might be feasible as an
initial step targeting hyperglycemia in the early post-
operative course of cardiac surgery in relatively stable
children, potentially avoiding insulin use and its compli-
cations. We acknowledge that we cannot extrapolate
our results to longer durations of glucose infusions or
different patient populations. The concept of reduced
glucose intake as an alternative to insulin therapy seems
promising, however, and deserves further investigation
in these settings.

Key messages
• Currently recommended glucose intake (5.0 mg/kg
per minute) aggravated hyperglycemia (≥ 6 mmol/L)
in children in the early post-operative phase after
cardiac surgery.
• Reducing glucose intake to 2.5 mg/kg per minute
reduced blood glucose levels without causing
hypoglycemia.
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• Reducing glucose intake did not increase protein
catabolism.
• The increased endogenous glucose production dur-
ing reduced glucose intake resulted from increased
glycogenolysis, while gluconeogenesis was main-
tained at the same rate, as compared with standard
glucose intake.
• Reducing glucose intake might be used as an initial
step to prevent hyperglycemia in the early post-
operative phase after cardiac surgery in children
weighing less than 30 kg in body weight.
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