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Sensitivity of rotational transitions in CH and CD to a possible variation of fundamental constants

Adrian J. de Nijs, Wim Ubachs, and Hendrick L. Bethlem
LaserLaB, Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

(Received 28 June 2012; published 6 September 2012)

The sensitivity of rotational transitions in CH and CD to a possible variation of fundamental constants has
been investigated. Largely enhanced sensitivity coefficients are found for specific transitions which are due
to accidental degeneracies between the different fine-structure manifolds. These degeneracies occur when the
spin-orbit coupling constant is close to four times the rotational constant. CH and particularly CD match this
condition closely. Unfortunately, an analysis of the transition strengths shows that the same condition that leads
to an enhanced sensitivity suppresses the transition strength, making these transitions too weak to be of relevance
for testing the variation of fundamental constants over cosmological time scales. We propose a test in CH based
on the comparison between the rotational transitions between the e and f components of the �′ = 1/2,J = 1/2
and �′ = 3/2,J = 3/2 levels at 532 and 536 GHz and other rotational or �-doublet transitions in CH involving
the same absorbing ground levels. Such a test, to be performed by radioastronomy of highly redshifted objects,
is robust against systematic effects.
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I. INTRODUCTION

A possible variation of the fundamental constants can be
detected by comparing transitions between levels in atoms
and molecules that have a different functional dependence on
these constants. The limit that can be derived from such a
test is proportional to the relative accuracy of the experiment
and inversely proportional to both the time interval covered
by the experiment and the sensitivity of the transition to a
possible variation. The duration of tests that are conducted in
the laboratory is typically limited to a few years, but these tests
have the advantage that one can choose transitions in atoms or
molecules that are very sensitive to a variation, transitions that
can be measured to an extremely high precision, or both. Tests
over cosmological time scales, on the other hand, typically
span 109 years, but have the disadvantage that only a limited
number of molecular transitions are observed at high redshift,
and the accuracy of the observed lines is relatively low.

Up to very recently, tests of the time-variation of the proton-
to-electron mass ratio μ = mp/me over cosmological time
scales were based exclusively on molecular hydrogen, the most
abundant molecule in the universe and observed in a number
of high redshift objects. The transitions in molecular hydrogen
correspond to the transitions between different electronic states
and exhibit sensitivity coefficients Kμ ranging from −0.05
to +0.01 [1,2]. Recently, the observations of the inversion
transition in ammonia (Kμ = −4.2) [3–5] and torsion-rotation
transitions in methanol (Kμ ranging from −33 to −1) [6–8],
at high redshift, have resulted in more stringent limits on the
variation of μ.

In this paper, we discuss the sensitivity of rotational
transitions in CH and its deuterated isotopologue CD to
a variation of the proton-to-electron mass ratio μ and the
fine-structure constant α. CH is a small diatomic radical that
is frequently targeted in astrophysical studies as it is a well
established and well understood proxy of H2 [9]. These studies
have been targeting primarily the interstellar medium in the
local galaxy. However, a survey for CH at high redshift is
currently being conducted at the Atacama Large Millimeter
Array (ALMA) [10]. CH and CD have a spin-orbit coupling
constant A that is close to two and four times their respective

rotational constant B. This leads to near degeneracies between
rotational levels of different spin-orbit manifolds. As a result,
the rotational transitions between the near-degenerate levels
have an increased sensitivity to a variation of μ. The work
presented in this paper is complementary to that of Kozlov
[11], who calculated the sensitivity coefficients of �-doublet
transitions in CH and other diatomic radicals.

II. ENERGY LEVEL STRUCTURE OF A 2� STATE

In this work, we investigate CH and CD in their 2�

ground state. Molecules in 2� states have three angular
momenta that need to be considered; the electronic orbital
angular momentum L, the spin angular momentum S, and the
rotational angular momentum R. Depending on the energy
scales associated with these momenta, the coupling between
the vectors is described by the different Hund’s cases. In
Hund’s case (a), L is strongly coupled to the internuclear
axis and S couples to L via spin-orbit interaction. States
are labeled by J , the quantum number associated with the
total angular momentum, and �, the sum of � and �, the
projections of L and S on the internuclear axis, respectively.
When the rotational energy becomes comparable to the energy
of the spin-orbit interaction, S decouples from the internuclear
axis and Hund’s case (b) is more appropriate. In this case the
molecular levels are labeled by N = R + �, and J .

In heavy molecules at low J , the spin-orbit interaction is
much larger than the rotational energy splitting. As a result,
the energy level structure consists of two spin-orbit manifolds
separated by an energy A, each having a pattern of rotational
levels with energies given by Bz, with z = (J + 1/2)2 − 1.
In light molecules, A ∼ Bz already at low J . In this case the
two manifolds are considerably mixed and the energies are
not described by a simple formula. To describe a situation
that is intermediate between Hund’s case (a) and (b), the wave
function of a state is written as a superposition of pure Hund’s
case (a) wave functions

|�′,J 〉 = c�′,J,�=1/2|� = 1/2,J 〉 + c�′,J,�=3/2|� = 3/2,J 〉,
(1)
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where c�′,J,�=1/2 and c�′,J,�=3/2 are coefficients signifying
the � = 1/2 and � = 3/2 character, respectively, of the wave
function of the state |�′,J 〉. Note that �′ is used to label the
rotational levels of the different spin-orbit manifolds, while �

is used to denote the pure Hund’s case (a) wave functions. The
coefficients are the eigenvectors of the Hamiltonian matrix
that is given, for instance, by Amiot et al. [12]. When the �-
doublet splitting, centrifugal distortion and hyperfine splitting
are neglected, the Hamiltonian matrix reduces to [13](

1
2A + Bz −B

√
z

−B
√

z − 1
2A + B(z + 2)

)
. (2)

The first row represents the 2��=3/2 component, the second
the 2��=1/2 component. Although most of our calculations
use the extensive matrix, all relevant features can be under-
stood from the simplified matrix.

The level scheme of CH is depicted in Fig. 1. In CH (A =
1.98B), the �′ = 1/2,J = 3/2 level lies about 200 GHz below
the �′ = 3/2,J = 5/2 level, whereas in CD (A = 3.65B) the

FIG. 1. Level scheme of the ground state of CH, calculated using
the Hamiltonian matrix from Amiot et al. [12] and the molecular
constants given by McCarthy et al. [14]. Indicated are five different
types of rotational transitions, labeled I through V. The �-doublet
splitting is exaggerated by a factor of 10. Also indicated are the
symmetries of the electronic part of the wave function, denoted by e
and f and the total parity, denoted by + and −.

energy difference is only 30 GHz. In Fig. 1, the �-doublet
splittings are exaggerated by a factor of 10. It was shown by
Kozlov [11] that, as a result of an inversion of the �-doublet
splitting in the �′ = 3/2 manifold, the different components of
the � doublet become near degenerate at �′ = 3/2,J = 3/2
for CH, leading to enhanced sensitivity coefficients of the
�-doublet transitions.

Let us now consider the sensitivity of rotational transitions
to a possible variation of μ. The sensitivity coefficient of a
transition is defined as

Kμ = μ

ν

∂ν

∂μ
= μred

ν

∂ν

∂μred
, (3)

with

ν = (
E�′

f ,Jf
− E�′

i ,Ji

)
/h (4)

the transition frequency, and μred the reduced mass of the
molecule. Note that it is assumed here that the neutron
and proton masses vary in the same way. The Kμ and Kα

coefficients can now be calculated using the Hamiltonian
matrix by including the dependence of the molecular constants
on the reduced mass of the molecule and α, given, for instance,
in Beloy et al. [15], and the values of the molecular parameters
for CH from McCarthy et al. [14] and for CD from Halfen et al.
[16]. As the effective Hamiltonian used for these molecules is
an accurate physical representation, the sensitivity coefficients
that are found in this way are very accurate. For instance, in
previous work on CO, the transition frequencies in different
isotopologues could be predicted to a relative accuracy well
within 10−4 [17]. However, for actual tests of the variation of
fundamental constants, an accuracy of 1% is sufficient and the
sensitivity coefficients will be given to this level only.

We have calculated Kμ and Kα for rotational transitions in
CH and CD using both the extensive and the reduced matrix.
For clarity, we separate the transitions into five different types,
I through V, as shown in Fig. 1. The transitions from J to
J + 1 within the �′ = 1/2 and �′ = 3/2 manifolds are labeled
by I and II, respectively. The transitions from �′ = 1/2 to
�′ = 3/2 with 	J = −1,0, + 1 are labeled by III through V,
respectively. From the calculations, we found that for both CH
and CD, transitions of types I and II have Kμ close to −1 and
Kα close to 0. Transitions of types III and IV also have Kμ

close to −1 and Kα close to 0, except for transitions involving
the lowest rotational levels, which have Kμ between −0.5 and
−1 and a Kα between 1 and 0. Interestingly, transitions of type
V were found to be extremely sensitive to a variation of α and
μ. The Kμ for these transitions are listed in the third column
of Table I and range from −67 to 18 for CD and −6.2 to 2.7
for CH. The fourth column of Table I lists the values of Kα .
Note, that Kα ∼ 2+2Kμ, a relation that is exact when �-type
doubling is neglected.

The calculations are most easily understood by plotting the
sensitivity coefficients for the different transitions as a function
of A/B, as shown in Fig. 2. The upper panel shows the Kμ for
transitions of types I through IV, while the lower panel shows
Kμ for transitions of type V, calculated using the reduced
matrix from Eq. (2). The black curves show the sensitivity
coefficients for transitions starting from J = 3/2. To indicate
the progression towards higher values of J , transitions starting
from J = 7/2 and J = 15/2 are plotted in gray. We see
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TABLE I. Transition frequencies, sensitivity coefficients to vari-
ation of μ and α, and transition strengths of transitions from
�′ = 1/2,J to �′ = 3/2,J + 1, type V transitions in CH and CD
calculated using the Hamiltonian matrix from Amiot et al. [12] and
the molecular constants given by McCarthy et al. [14] for CH and
Halfen et al. [16] for CD. Note that the values of Kμ for transitions
starting from �′ = 1/2,J = 1/2 are always between 0 and −1, as the
�′ = 1/2,J = 1/2 is unmixed. freq.: Frequency, Tr. Str.: Transition
Strength.

J freq. (MHz) Kμ Kα Tr. Str.

CH e parity

1/2 536772.4 −0.22 1.57 6.6 × 10−1

3/2 191101.3 −1.02 −0.0068 2.1 × 10−2

5/2 137163.5 −1.09 −0.041 6.7 × 10−3

7/2 115440.4 −1.20 −0.074 3.0 × 10−3

9/2 107620.7 −1.32 −0.10 1.6 × 10−3

11/2 107870.7 −1.44 −0.12 9.7 × 10−4

13/2 113649.5 −1.55 −0.14 6.3 × 10−4

15/2 123632.5 −1.65 −0.14 4.3 × 10−4

f parity

1/2 532741.0 −0.20 1.59 6.6 × 10−1

3/2 178904.5 −0.94 0.039 2.1 × 10−2

5/2 111119.2 −0.85 0.020 6.7 × 10−3

7/2 71064.4 −0.64 −0.012 3.0 × 10−3

9/2 40500.9 −0.11 −0.086 1.6 × 10−3

11/2 13698.2 2.56 −0.42 9.7 × 10−4

13/2 11758.8 −6.40 0.68 6.3 × 10−4

15/2 37049.6 −3.16 0.27 4.3 × 10−4

CD e parity

1/2 439799.0 −0.46 1.09 9.5 × 10−1

3/2 31493.8 −10.6 −19.1 4.1 × 10−4

5/2 23326.3 −10.0 −17.9 1.7 × 10−4

7/2 20438.4 −9.09 −15.8 8.6 × 10−5

9/2 20133.3 −7.91 −13.2 4.9 × 10−5

11/2 21473.9 −6.74 −10.6 3.1 × 10−5

13/2 24037.3 −5.71 −8.27 2.1 × 10−5

15/2 27598.2 −4.89 −6.44 1.5 × 10−5

f parity

1/2 439262.1 −0.45 1.10 9.5 × 10−1

3/2 29320.6 −11.1 −20.3 4.2 × 10−4

5/2 17073.0 −12.7 −24.0 1.7 × 10−4

7/2 8787.4 −18.0 −35.9 8.6 × 10−5

9/2 1771.6 −67.1 −146 4.9 × 10−5

11/2 4894.4 18.0 44.7 3.1 × 10−5

13/2 11611.1 5.38 16.4 2.1 × 10−5

15/2 18576.6 2.12 9.14 1.5 × 10−5

that for large |A/B|, Kμ approaches −1 for transitions of
types I and II and 0 for transitions of types III through V.
This can be understood by realizing that for large |A/B|,
a Hund’s case (a) coupling scheme applies. Consequently,
transitions of types I and II are pure rotational transitions
which are proportional to B, while transitions of types III
through IV are pure electronic transitions and proportional
to A. When A ∼ Bz, the manifolds become mixed and the
sensitivity of the different types of transitions is between 0
and −1. When A = 0, corresponding to a pure Hund’s case
(b), all types of transitions have a sensitivity coefficient Kμ of
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FIG. 2. Sensitivity coefficient Kμ of transition types I through
IV (upper panel) and V (lower panel) starting from J = 3/2, in
black, and J = 7/2 and J = 15/2, in gray, calculated using the
reduced matrix given in Eq. (2). The crosses indicate the sensitivity
coefficients calculated for the transitions from J = 3/2 for the listed
molecules using the complete matrix.

−1, as expected. When A = 2B the two spin-orbit manifolds
are fully mixed, also causing Kμ to become −1. Another
special case is when A = 4B. Here, �′ = 3/2,J levels are
degenerate with �′ = 1/2,J + 1 levels. This gives rise to
an enhancement of the sensitivity coefficient for transitions
that connect these levels (i.e., transitions of type V). The
enhancement is expected to be on the order of A/ν [18,19],
which is in reasonable agreement with our calculations. Note
that the sensitivity coefficients found from the simplified model
are almost independent of J .

The crosses, also shown in Fig. 2, are the values of Kμ

calculated using a full set of molecular parameters for CH
(A = 1.98B), CD (A = 3.65B), OH (A = −7.48B) [20], and
OD (A = −14.1B) [21]. The correspondence between the
simplified model and the full description is very good for
transitions at low J , but less good for higher J when effects
of the �-type doubling become increasingly important. The
�-type doubling shifts the energy levels, leading to a decrease
or increase of the energy difference between the �′ = 1/2,J

and �′ = 3/2,J + 1 levels, and henceforth to a corresponding
increase or decrease of the sensitivity coefficients.

III. TRANSITION STRENGTHS

To be relevant for astrophysical tests of the time-variation
of the proton-to-electron mass ratio, the highly sensitive
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transitions in CH and CD discussed in the previous section
need to be sufficiently strong. In Hund’s case (a), the transitions
between different � manifolds (i.e., transitions of types III
through V) are forbidden. However, as discussed in the
previous section, the � manifolds of CH and CD are mixed
and transitions are allowed.

The transition strength of a transition between rotational
states i and f , is given by |〈i|T |f 〉|2, with |i〉 and |f 〉 given by
Eq. (1). The transition strength of a transition i → f is then
given by

|〈i|T |f 〉|2 = |ci,1/2 cf,1/2〈1/2,Ji |T |1/2,Jf 〉
+ ci,3/2 cf,1/2〈3/2,Ji |T |1/2,Jf 〉
+ ci,1/2 cf,3/2〈1/2,Ji |T |3/2,Jf 〉
+ ci,3/2 cf,3/2〈3/2,Ji |T |3/2,Jf 〉|2. (5)

The expressions 〈�,Ji |T |�,Jf 〉 are the Hund’s case
(a) dipole transition matrix elements given in, for example,
Brown and Carrington [22]. As a result of the Hund’s case (a)
selection rules, the second and third terms on the right-hand
side of Eq. (5) are zero. Using the simplified Hamiltonian
matrix given in Eq. (2), we have calculated the amplitude of the
remaining terms as a function of A/B. In Fig. 3, the transition
strength is plotted for type V transitions starting from different
J levels. It is seen that when |A/B| becomes smaller, the
levels become increasingly mixed and the transition strength
becomes larger. Near A = 4B the transition strength becomes
smaller due to the destructive interference between the two
different paths that combine to form this transition. At A = 4B

the two paths are equally strong, but due to the orthogonality
of the eigenvectors they have a different sign and the transition
strength becomes zero. The last column of Table I lists the
transition strength, calculated using the full Hamiltonian, but
neglecting hyperfine splitting. For comparison, note that purely
rotational transitions have a transition strength of order unity.
The crosses shown in Fig. 3 again correspond to a calculation
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FIG. 3. (Color online) Transitions strengths of type V transitions,
following from Eq. (5), starting from different J levels. The transition
strength is zero at A = 4B for all J , making the transitions with the
highest sensitivity exceedingly weak. The crosses correspond to a cal-
culation for CH, CD, OH, and OD using a complete set of parameters.
The molecules are also indicated by the vertical gray lines.

for CH, CD, OH, and OD using a complete set of parameters
and are in good agreement with the calculations using the
reduced matrix. We have validated that these calculations
are also in agreement with calculations using the PGOPHER

software package [23]. Note that the dipole moment is set to
unity in the calculations.

IV. RELEVANCE FOR TESTS ON DRIFTING CONSTANTS
OVER COSMOLOGICAL TIME SCALES

In the previous section, we have shown that transitions of
type V that have an enhanced sensitivity to a variation of μ

are too weak to be observed in astrophysical objects at high
redshift. The only transitions in CH that have a nonvanishing
transition strength and a Kμ that deviates significantly from −1
are the �′ = 1/2,J = 1/2 to �′ = 3/2,J = 3/2 transitions at
532 and 536 GHz that have Kμ = −0.2. By comparing these
transitions with a rotational transition, typically exhibiting
Kμ = −1, in any other molecule observed in the same object,
a test of the time variation of μ over cosmological time scales
can be performed. If μ varies, the transition frequency of a
pure rotational transition will vary while the frequency of the
discussed transition in CH will change five times less (i.e.,
the CH transition will act as an anchor line). Ideally, the
CH anchor transitions are compared with other transitions in
CH, and preferably with transitions from the same absorbing
levels. This eliminates one of the main systematic effects
that limits astrophysical tests, namely the effect of spatial
segregation. Astrophysical tests rely on the assumption that the
transitions that are being compared originate from the same
space-time location and hence the same apparent redshift.
Spatial segregation of the absorbers may mimic or hide
frequency shifts due to a variation of μ [5].

We propose a test of the time variation of μ by comparing
the CH anchor transitions to other rotational or �-doublet
transitions in CH involving the same absorbing ground levels
(i.e. to the �′ = 1/2,J = 1/2 to �′ = 1/2,J = 3/2 transition
near 2 THz and/or the �′ = 3/2,J = 3/2 to �′ = 3/2,J =
5/2 transition near 1.5 THz that have Kμ = −1 or to the
�-doublet transition in the �′ = 1/2,J = 1/2 at 3.3 GHz
that has Kμ = −1.7 and the �-doublet transition in the
�′ = 3/2,J = 3/2 near 700 MHz that has Kμ = −6.2 [11]).
This test is based on transitions within the lowest four levels
of a single species making it very robust against possible
shifts due to spatial segregation of the absorbing molecules.
The transitions that are relevant to this test are listed in
Table II, including the hyperfine splitting, with their respective
sensitivity coefficients and transitions strengths, calculated
using PGOPHER [23]. Our values for the sensitivity coefficients
of the �-doubling transitions correspond well to those found
by Kozlov [11], but our sensitivity coefficients are more exact
as we use a more complete set of molecular parameters.

V. CONCLUSION

In this paper, we have analyzed the sensitivity to a possible
variation of μ and α for rotational transitions in 2� states, in
particular for rotational transitions in the ground states of CH
and CD. For certain rotational transitions, we found a signif-
icantly enhanced sensitivity due to accidental degeneracies
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TABLE II. Transition frequencies, sensitivity to variation of μ and α, and transitions strengths of specific � doubling and rotational
transitions in CH calculated using PGOPHER [23] with the molecular constants from McCarthy et al. [14], including hyperfine splitting.
Measured frequencies are given where possible, the difference with calculations is given for these transitions. The letters correspond to
references: a: McCarthy et al. [14], b: Brazier and Brown [24], c: Ziurys and Turner [25], d: Amano [26], e: Davidson et al. [27]. freq.:
Frequency, o-c: Observed-Calculated, Trans. Str.: Transition Strength.

�′, J F freq. (MHz) o-c (kHz) Kμ Kα Trans. Str.

� doubling
1
2 , 1

2 f → 1
2 , 1

2 e 0 → 1 3263.795a 16 −1.71 0.58 0.33

1 → 1 3335.481a −10 −1.70 0.61 0.67
1 → 0 3349.194a 6 −1.69 0.62 0.33

1
2 , 3

2 f → 1
2 , 3

2 e 1 → 2 7275.004a 15 −2.13 −0.26 0.14

1 → 1 7325.203a 27 −2.12 −0.24 0.68
2 → 2 7348.419a −15 −2.12 −0.24 1.23
2 → 1 7398.618a −4 −2.11 −0.22 0.14

1
2 , 5

2 f → 1
2 , 5

2 e 2 → 3 14713.78b 190 −2.02 −0.04 0.04

2 → 2 14756.670a 36 −2.01 −0.03 0.54
3 → 3 14778.962a −28 −2.01 −0.03 0.77
3 → 2 14821.88b −160 −2.01 −0.02 0.04

3
2 , 3

2 f → 3
2 , 3

2 e 2 → 2 701.667c −8 −6.14 −8.28 1.17

1 → 2 704.008 – −6.11 −8.23 0.13
2 → 1 722.452 – −5.98 −7.96 0.13
1 → 1 724.788c 3 −5.96 −7.92 0.65

Rotational
1
2 , 1

2 f → 3
2 , 3

2 f 1 → 1 532721.333d −314 −0.20 1.59 0.17

1 → 2 532723.926d −54 −0.20 1.59 0.85
0 → 1 532793.309d −50 −0.20 1.59 0.34

1
2 , 1

2 e → 3
2 , 3

2 e 1 → 2 536761.145d −1 −0.22 1.57 0.86

1 → 1 536781.954d 31 −0.22 1.57 0.17
0 → 1 536795.678d 58 −0.22 1.57 0.34

3
2 , 3

2 f → 1
2 , 3

2 e 2 → 1 1470689.444 – −1.00 0.00 0.03

1 → 1 1470691.777 – −1.00 0.00 0.17
2 → 2 1470739.632 – −1.00 0.00 0.30
1 → 2 1470741.965 – −1.00 0.00 0.03

3
2 , 3

2 e → 1
2 , 3

2 f 1 → 1 1477292.168 – −1.00 0.00 0.16

2 → 1 1477312.946 – −1.00 0.00 0.03
1 → 2 1477365.614 – −1.00 0.00 0.03
2 → 1 1477386.391 – −1.00 0.00 0.30

3
2 , 3

2 f → 3
2 , 5

2 f 2 → 3 1656961.185 – −1.00 0.00 2.32

2 → 2 1656970.448 – −1.00 0.00 0.17
1 → 2 1656972.781 – −1.00 0.00 1.49

3
2 , 3

2 e → 3
2 , 5

2 e 2 → 3 1661107.278 – −1.00 0.00 2.32

1 → 2 1661118.045 – −1.00 0.00 1.49
2 → 2 1661138.822 – −1.00 0.00 0.17

1
2 , 1

2 e → 1
2 , 3

2 e 1 → 1 2006748.915 – −0.79 0.42 0.16

0 → 1 2006762.612 – −0.79 0.42 0.32
1 → 2 2006799.103 – −0.79 0.42 0.81

1
2 , 1

2 f → 1
2 , 3

2 f 1 → 1 2010738.601 – −0.79 0.42 0.16

0 → 1 2010810.46e 150 −0.79 0.42 0.33
1 → 2 2010811.92e −130 −0.79 0.42 0.81

between rotational levels of different fine-structure mani-
folds. These degeneracies occur when the spin-orbit cou-
pling constant is close to four times the rotational constant.
CH (A = 1.98B) and particularly CD (A = 3.65B), match
this condition closely. The fact that enhancement occurs is

unexpected, as it was shown by Bethlem and Ubachs [18]
that in molecules such as CO the transition from Hund’s
(a) to Hund’s case (b) coupling scheme prohibits levels that
are connected by one-photon transitions to be become near
degenerate. Here we show that for A ∼ 4B this does not
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apply. Unfortunately, the same condition that leads to an
enhanced sensitivity suppresses the transition strength. Thus,
one-photon transitions between different spin-orbit manifolds
of molecular radicals are either insensitive or too weak to be of
relevance for tests of the variation of fundamental constants
over cosmological time scales. However, the high sensitivity
coefficients could possibly be used in laboratory tests (note
that experiments are being planned to decelerate CH molecules
using electric fields [28] which open the prospect of measuring
its rotational and microwave spectrum at high resolution).

We propose a test in CH based on the comparison between
the rotational transitions between the e and f components of
the �′ = 1/2,J = 1/2 and �′ = 3/2,J = 3/2 levels at 532

and 536 GHz, which have Kμ = −0.2, with other rotational
or �-doublet transitions in CH. Such a test, to be performed
by far infrared spectroscopy of highly redshifted objects, is
robust against systematic effects.
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