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1. Major depressive disorder 
 
1.1 Clinical diagnosis of major depressive disorder 
Major depressive disorder (MDD) is among the most common psychiatric disorders with a 

lifetime prevalence estimated at 16.2% in the United States1 (see 

www.hcp.med.harvard.edu/ncs/ for up to date and comprehensive statistics) and 17.5% in 

The Netherlands2, with females at higher risk than males. It is estimated that in the year 

2020 MDD will be the second leading cause of disability, only to be surpassed by ischaemic 

heart disease3. The consequences of MDD are of compound nature and characterized by 

the fact that MDD has a high tendency towards relapse, recurrence and chronicity4.  

Diagnosis of MDD is based on symptomatic criteria of the Diagnostic and Statistical 

Manual of Mental Disorders, Fourth Edition (DSM-IV). The diagnostic criteria for MDD 

require persistence of either depressed mood or loss of interest and pleasure (anhedonia), 

in association with at least four out of the following symptoms: inattention, fatigue, self-

depreciating or suicidal thoughts, and disturbances of psychomotor activity, sleep, appetite 

and weight. Symptoms need to be present consistently for at least two weeks. The variety in 

clinical symptoms of MDD underscores the complexity of the disease and, therefore, MDD is 

regarded as a heterogeneous disorder comprising of many different syndromes rather then a 

single disease. In particular, the clinical course of MDD is pleiomorphic and varies from 

subthreshold syndromes, single episodes (short or long), multiple recurrent episodes with or 

without inter-episodic recovery, residual symptoms after an episode, to chronicity5.  

 

1.2 The pathogenesis of depression 
An open question in MDD is which factors underlie a person’s vulnerability (or resilience) to 

the disease. Various putative risk factors have been suggested arising from epidemiological 

studies but difficulties in differentiating between association and causation have left many 

inconsistencies. However to date, it is generally accepted that both genetic and non-genetic 

factors, and the interaction between those, comprise disease liability6,7.  

Genetic epidemiological studies have shown depression to be a familial disorder with 

increased risk odd ratios (ratio of risks of first-degree relatives of MDD probands vs. the 

general population) of ~2.8 7. Familial studies can, however, not distinguish between genetic 

and shared environmental influences. Therefore, twin studies using mono- and dizygotic 

twins have been performed. These confirmed that genetic influences for the most part 

contribute to this familial aggregation, and heritability of liability is estimated to be ~37%7. In 
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terms of genetic contribution in psychiatric disorders this makes MDD at the lower end of the 

scale8. 

Of the environmental factors, the most consistent and dominant one is exposure to 

stressful live events. Twin studies have shown a causal relation between MDD and events 

related to ‘bad luck’ or stressful experiences related to a persons own behavior (65 – 75%), 

with odd ratios – the ratio of the risk of disease to individuals experiencing an event 

compared with persons without the stressful event – of 2.33 and 5.64, respectively6. 

Furthermore, the occurrence of stressors are 2.5 times more likely in depressed patients 

compared with controls, and in community samples, 80% of the depressed cases have 

experienced major life events prior to the onset9. In particular chronic forms of stress, often 

psychosocial in nature, may predict precipitation of depression10.  

 

1.3 Brain structures involved in MDD 
Despite the prevalence of depression and its considerable impact, knowledge about the 

pathophysiology of MDD is limited. This is caused by the fact that MDD is heterogeneous in 

terms of disease and underlying causes. Additionally, the impossibility to take a brain biopsy 

from depressed individuals hampers investigation of the affected brain tissue.  

Since currently available antidepressants adjust monoaminergic signaling (Box 1), early 

studies focused largly on monomaminergic nuclei such as the dorsal raphe nucleus and the 

locus coeruleus. From these nuclei, serotonergic and noradrenergic neurons innervate most 

other brain regions, respectively.  

However, the development of structural en functional neuroimaging technologies has 

permitted in vivo characterization of the anatomical correlates of mood disorders. Among 

these are brain regions and circuits that are known to regulate emotion, reward and 

executive function. Dysfunction of these highly interconnected ‘limbic’ regions has been 

implicated in depression and antidepressant action. In particular, these regions include the 

amygdala (anxiety and emotional memory), hippocampus (cognition), mediodorsal and 

midline thalamic nuclei (emotional expression), hypothalamus (vegetative symptoms and 

hormonal regulation), subgenual anterior cingulate cortex (negative mood states), and the 

ventral striatum (anhedonia)11. However, published findings are not consistent and are often 

complicated by comorbid diagnoses and medication history, and there has been little 

success in demonstrating any clear cause–effect relationships of pathological changes and 

MDD.  

Among the most consistent findings are a reduced grey-matter volume in the 

hippocampus12,13 and prefrontal cortex14. These pathological changes have been linked to  
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the cognitive aspects of depression, potentially underlying a ‘diminished ability to think or 

concentrate’. Cognitive difficulties in major depression fall into at least two domains. First, 

impairment of concentration and attention is likely to relate to the well-documented 

abnormalities of dorsolateral prefrontal cortex (DLPFC)-function in MDD subjects15. Second, 

MDD patients also exhibit prominent deficits in explicit memory16, a cognitive capacity well-

known to depend on the function of the hippocampus and the medial temporal lobe17. Apart 

from structural changes, hippocampal atrophy has been repeatedly documented in MDD. 

Whereas the total number of neurons and glia has not been found altered, neurons are 

reduced in size and the volume of the neuropil is reduced18. Disruption of hippocampal 

function, including the capacity for neuroplasticity, might contribute to several cognitive 

aspects of severe forms of MDD.  

In addition to its role in declarative memory, the hippocampus is a key regulator of 

prefrontal cortical function; the hippocampus and DLPFC act concertedly to regulate explicit 

memory. Disruption of hippocampal function in MDD might therefore contribute to the 

observed deficits in concentration, described above. The hippocampus is also a critical 

activity regulator of both nucleus accumbens and ventral tegmental area (VTA). It has been 

hypothesized that an indirect excitatory projection from hippocampus to VTA is important for 

coordinating the firing of VTA cells in response to novelty19. Impairment of this hippocampal 

function might lead to reduced dopaminergic tone and contribute to anhedonia20. Finally, the 

hippocampus provides an important source of negative modulation of the hypothalamus-

Box 1. Most commonly prescribed antidepressants 
Drug Brand Class Mechanism of action 
Sertraline Zoloft SSRI Inhibits serotonin transporter, and partly dopamine 

reuptake 
Escitalopram Lexapro SSRI Inhibits serotonin transporter 
Fluoxetine Prozac SSRI Inhibits serotonin transporter 
Bupropion Wellbutrin NDRI Inhibits norepinephrine and dopamine transporters 
Imipramine Tofranil TCA Inhibits serotonin, norepinephrine, and dopamine 

transporters. Is an antagonist of acetylcholine and 
histamine receptors. And is a dopamine receptor 
agonist 

Venlafaxine Efexor SNRI Inhibits serotonin and norepinephrine transporters 
Citalopram Cipramil SSRI Inhibits serotonin transporter 
Trazodone Trazolan SARI Inhibits serotonin transporter and antagonizes 

several serotonin and noradrenalin receptors 
Amitriptyline Tryptizol TCA Inhibits serotonin, and norepinephrine, transporters. 

Is an antagonist of serotonin and adrenergic 
receptors 

SSRI: specific seretonin reuptake inhibitor;  NDRI: norepinephrine-dopamine reuptake inhibitor; TCA: 
tricyclic antidepressant; SNRI: Serotonin–norepinephrine reuptake inhibitor; SARI: Serotonin 
antagonist and reuptake inhibitors.  
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pituitary–adrenal (HPA) stress hormone axis through its projections to the hypothalamus; 

hippocampal dysfunction therefore may contribute to dysregulation of the stress response21 

that is seen in major depression. 

 

1.4 Treatment of MDD 
There are several effective treatments for depression. The large majority (80%) of people 

with MDD show improvement during treatment with antidepressants or with 

electroconvulsive therapy (ECT). In particular ECT is still being considered the most 

effective22,23 treatment for patients with melancholic or psychotic depression. In addition, 

several forms of psychotherapy – in particular, cognitive and interpersonal psychotherapy – 

can be effective for patients with mild to moderate symptoms.  

The first antidepressants were discovered by chance almost 50 years ago, when 

iproniazid, a drug registered for the treatment of tuberculosis, was found to elevate mood in 

MDD patients24. Simultaneously and independently, imipramine, an experimental 

antihistamine with a tricyclic structure, was found to have antidepressant effects24. Soon 

after this, drugs with antidepressant activity were shown to increase the extracellular 

concentrations of two important monoamine neurotransmitters in the brain, serotonin (5-

hydroxytryptamine or 5-HT) and noradrenaline, by inhibiting their catabolism or reuptake into 

nerve endings. These findings were the basis for the monoamine hypothesis of depression, 

which proposes that mood disorders are caused by a deficiency in serotonin or 

noradrenaline at functionally important receptor sites in the brain24,25. Over the last few 

decades, the view that depression is produced by a chemical imbalance in the brain has 

become widely accepted among scientists, clinicians and the public, despite the lack of 

evidence for a direct role of 5-HT in this.  

It soon became evident that the monoamine hypothesis in its original form did not 

explain all of the antidepressant effects26. In particular, available antidepressants 

immediately increase monoaminergic availability, while it takes up to several weeks for the 

clinical antidepressant response to occur23. Therefore, the focus of research was re-directed 

towards the receptors and intracellular signal transduction molecules that are regulated by 

antidepressant treatment27, thereby generating new theories of the pathophysiology of MDD, 

the action of antidepressant medications, and identifying potential targets for novel 

antidepressant therapies28. A striking observation, as these downstream molecular events 

have been elucidated, is the degree of overlap between the molecular and cellular changes 

induced by antidepressant treatment and the molecular mechanisms of neuroplasticity, 

especially synaptic plasticity29.  
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In line with this, accumulating evidence suggests that the glutamatergic system and its 

plasticity play an important role in the neurobiology and treatment of depression. For 

example, the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine has consistently 

shown antidepressant effects within a few hours of its administration30,31. Also, it is 

hypothesized that increased alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid 

receptor (AMPAR) throughput may represent a convergent mechanism for the rapid 

antidepressant actions of ketamine30,32. This raises the possibility that AMPA receptor 

potentiators might be useful in the treatment of MDD30. 

  

 

2. Stress, depression and neuroplasticity 
 

As discussed above, there is a clear relationship between psychosocial stressors and MDD. 

Also, in animal models of depression, stress induces depressive symptom-like behaviors33,34, 

and can lead to atrophy of the hippocampus similar to that seen in depression35. Increasing 

evidence shows that exogenously applied chronic stress has detrimental effects on 

neuroplasticity18,36,37. 

As outlined below, in these animal models an overlap between antidepressant-induced 

changes and mechanisms of neuroplasticity is observed. For example, antidepressant action 

in the hippocampus is found to be dependent on cAMP response element-binding (CREB) 

protein38 that has a well-established role in synaptic plasticity and learning and memory.  

These findings have resulted in the hypothesis that chronic stress, which can precipitate 

or exacerbate depression, disrupts neuroplasticity, whereas antidepressant treatment 

produces opposing effects and can enhance neuroplasticity (Fig 1). Experimental evidence 

for this hypothesis is discussed below, and originated for a large part from animal models on 

stress-related research (Box 2).  

 

2.1 Stress and neuroplasticity  
 

Memory, plasticity and cell survival 

In animal models, transient mild stress has been shown to increase hippocampus-

dependent memory performance39. However, more severe or chronic stressors induce 

hippocampus-dependent spatial memory impairments40,41. Similar results were obtained by 

treatment with glucocorticoid stress hormones40. Specific impairments of hippocampus-
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dependent explicit memory were also observed after treatment of human subjects with 

glucocorticoids42.  

Hippocampus-dependent memory formation is known to be dependent on long-term 

potentiation (LTP) and long-term depression (LTD), the basic cellular mechanisms of 

synaptic plasticity within the hippocampus29. Interestingly, both stress and increased 

glucocorticoid levels inhibit LTP in the rodent hippocampus43. Conversely, paradigms 

inducing stress in rodents enhance hippocampal LTD43.  

Sustained levels of stress or glucocorticoids could damage hippocampal cells. Stress 

leads to atrophy and retraction of the apical dendrites of hippocampal pyramidal cells44. In 

addition, different forms of acute and chronic stress have been shown to reduce adult 

hippocampal neurogenesis in rodents18. It has been established that new neurons are 

generated in the dentate gyrus region of the hippocampal formation of the adult mammalian 

brain45. Neurogenesis appears to be required for the behavioral response to antidepressants 

in rodents46 and impaired neurogenesis has been hypothesized to represent a core 

pathophysiological feature of MDD18,47. Thus, neurogenesis might mediate the effects of 

stress on mechanisms of neuroplasticity and may contribute to the development of MDD. 

Similar effects of stress have been obtained in the PFC, such as reduced synaptic 

plasticity in projections coming from the amygdala48, regression of the apical dendrites of 

pyramidal cells49, and a reduction in the number of glial cells50. In contrast, in the amygdala, 

stress enhanced synaptic plasticity and the function of amygdala neurons51. Stress could 

also enhance amygdala-dependent learning52, and the size and activity of the amygdala 

were increased in depressed patients53. This contrast in stress-related response of different 

brain areas makes clear that the well-documented effects of stress on hippocampal 

morphology and function are not the mere manifestations of a universal effect of stress 

hormones, or other aspects of stress, on neuronal integrity. Rather, the effects of stress on 

brain morphology and function are region- and circuit-dependent. 

 

Stress and molecular plasticity 

Accumulating evidence suggests a role for glutamate in response to stress that might 

subsequently yield depression54. Glucocorticoid excess increases glutamate release in the 

CA1 region of the hippocampus55 and chronic behavioral stress increases extracellular 

levels of glutamate in the CA3 region56. This excess glutamate likely contributes to cell 

damage in these regions and possibly even cell death35,57. Chronic stress increases 

glutamate levels, which activates extrasynaptic NMDA receptors58. Extrasynaptic NMDA 

receptors have been found to inhibit LTP58.  
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Figure 1. The neuroplasticity hypothesis for depression. In healthy humans or animals (left), stress 
can disrupt neuroplasticity in specific neuronal networks, i.e. the hippocampus or PFC (right). 
Antidepressant drugs, electroconvulsive treatment, of behavioral therapy can all enhance 
neuroplasticity, thereby bringing plastic processes back to normal levels and relieving (cognitive) 
depressive symptoms.  

Stress can also alter downstream molecular signaling at the synapse in several ways. 

For example, both acute and chronic stress alter the activity of mitogen-activated protein 

kinase (MAPK)59 and calcium-calmodulin-dependent kinase II (CaMKII)60, two proteins that 

become activated by sufficient synaptic activity and therefore are involved in both early and 

late phase LTP. In addition, stress leads to reductions in hippocampal brain-derived 

neurotrophic factor (BDNF) mRNA levels, suggesting an impairment of some of the 

mechanisms of neuroplasticity. BDNF is known to be induced in activity-dependent LTP and 

it has a critical role in stabilizing synaptic change61.  

 

2.2 Antidepressants and neuroplasticity 
 

Memory, plasticity and cell survival 

As stress reduces neuroplasticity, and MDD is associated with a depressed synaptic state, it 

is likely that antidepressant treatment has the opposite effect. Indeed, accumulating 

evidence shows that antidepressants influence plasticity in a contrasting, but not exactly 

opposite way. In this respect, studies in healthy individuals / non-stressed animals are 

sparse and sometimes conflicting, but antidepressants consistently restore decreased 

plasticity.  

Some lines of research show that, in healthy humans, antidepressant treatment 

increases memory and acts on other cognitive domains62,63, although evidence is sparse. 
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Also in naïve animals, there is not a lot known of the effects of antidepressants. Some, 

although not all, antidepressants increase performance in the Morris water maze, a spatial 

learning and memory model64.  

At the synaptic level, antidepressant treatment predominantly increases plasticity. In 

naïve animals, several studies show increased LTP in dentate gyrus and CA1 synapses, 

although results have not been consistent and were dependent on the type of 

antidepressant65. More importantly, antidepressant treatment has consistently been found to 

rescue stress-induced reductions in LTP and increases in LTD66,67. Furthermore, chronic 

antidepressant treatment blocks the stress-induced changes in dendritic morphology and 

neurogenesis68, and some classes of antidepressants also increase neurogenesis in naïve 

animals68.  

 

Molecular changes induced by antidepressants 

Several lines of evidence suggest that antidepressants can directly modulate glutamate 

neurotransmission. For example, both riluzole and lamotrigine, which have antidepressant 

properties, increase the surface expression of alpha-amino-3-hydroxy-5-methyl-4 

isoxazolepropionic acid receptor (AMPAR) subunits GluR1 and GluR2, and riluzole 

reversibly attenuates AMPAR-mediated synaptic currents in cultured cells69. More typical 

antidepressants, such as fluoxetine, can regulate the phosphorylation state and thereby the 

function of AMPARs70 in frontal brain areas. These effects of antidepressants, targeting 

other molecules and pathways, have led to the proposal that direct modulators of AMPAR 

function, such as AMPAkines, can act as antidepressants.  

Furthermore, in rodents, chronic antidepressant administration increases cAMP levels71, 

and activates cAMP-dependent protein kinase (PKA)72 and CREB73. Since this cAMP-PKA-

CREB pathway is important in the maintenance of LTP, it is hypothesized that activation of 

this pathway accounts for the antidepressant induced increase in LTP. However, this 

suggested direct link needs validation in future studies. Another line of evidence supporting 

the hypothesis that antidepressant treatment leads to altered neuroplasticity, is the 

regulation of neurotrophic factors by antidepressants. Chronic antidepressant administration 

increases the expression of BDNF in the hippocampus and PFC74. Roles for BDNF in 

depression and its antidepressant action are supported by studies showing that levels of 

BDNF were decreased in the brains of MDD patients75 and were increased in patients 

receiving antidepressant treatment at the time of death76. Also, BDNF infusions produced an 

antidepressant response in animal models77.  
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Non-pharmacological treatment 

Apart from pharmacological treatment, also ECT and behavioral therapy have profound 

effects on neuroplasticity. Both these forms of treatment have been found to increase 

plasticity in frontal brain areas, i.e., reverse the stress-induced decrease in neuroplasticity in 

animal models of depression. Both treatments increase hippocampal LTP78 and prevent 

stress-induced alterations in cellular morphology and neurogenesis20.  

 

2.3 Neuroplastcity and the relevance for depression 
The effects of stress and antidepressants suggest that decreased neuroplasticity is a core 

pathophysiological feature of MDD. However, these data are best applicable to the 

hippocampus and PFC, whereas in other brain areas, such as the amygdala and the 

nucleus accumbens, increased plasticity after stress is related to depressive-like phenotypes 

in animal models34,51. For example, expression of CREB in the nucleus accumbens 

increased behavioral despair and helplessness in the forced swim and learned helplessness 

paradigms, and CREB inhibition has an antidepressant effect79. Therefore it is likely that 

decreased plasticity contributes to the installment of a depressive state only in certain brain 

areas.  

Most of the behaviors used to assay antidepressant effects in rodents, e.g., learned 

helplessness, the forced swim test, and the tail suspension test (see below and Box 2), are 

models of behavioral despair and coping. Animals are placed in an adverse environment 

from which it is difficult or impossible to escape, and, after a period of struggle, they enter a 

behavioral state of passivity. It might be that enhancement of neuroplasticity, and the 

concomitant increased capacity to adapt and learn, lead to an enhanced potential repertoire 

of behaviors or capacities to explore new escape options in adverse circumstances, and 

thus reduces the tendency to enter a state of behavioral despair. This interpretation predicts 

that enhanced neuroplasticity is indeed of causal importance for reduced depression-like 

behaviors after antidepressant treatment. Additionally, considering the undisputed relation 

between neuroplasticity and learning and memory, it is tempting to speculate that cognitive 

impairments seen in depressed patients are associated to these neuroplastic changes. 

Future studies using animal models of depression should provide evidence for a causal 

relationship between depression-related cognitive impairments and reduced neuroplasticity, 

and in particular, what molecular changes might account for these impairments.  
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Box 2. Animal models used in depression research 
Model Main features of symptoms and antidepressant effects 
Forced swim 
test 

Lack of struggling when placed in a chamber of water, thought to represent a state 
of despair. Antidepressants acutely increase the time an animal struggles. 

Tail suspension 
test 

Lack of struggling when suspended by its tail, thought to represent a state of 
despair. Antidepressants acutely increase the time an animal struggles. 

Learned 
helplessness 

Animals exposed to inescapable foot shock take a longer time to escape, or fail to 
escape entirely, when subsequently exposed to escapable foot shock. 
Antidepressants acutely decrease escape latency and failures. 

Chronic mild 
stress 

Animals exposed repeatedly to several unpredictable stresses (cold, disruption of 
light-dark cycle, foot shock, restraint, etc.) show reduced sucrose preference and 
sexual behavior. Chronic antidepressant treatment reverses these symptoms.  

Social stress Animals exposed to various types of social stress (proximity to dominant males, 
odors of natural predators, defeat by a dominant conspecific) show behavioral 
abnormalities. Chronic antidepressant treatment reverses these symptoms. 

Early life stress Animals separated from their mothers at a young age show some persisting 
behavioral and HPA axis abnormalities as adults, some of which can be reversed 
by antidepressant treatments. 

Olfacotry 
bulbectomy 

Chemical or surgical lesions of the olfactory bulb cause behavioral abnormalities, 
some of which can be reversed by antidepressant treatments. 

Anxiety-based 
tests 

The degree to which animals explore a particular environment (open space, brightly 
lit area, elevated area) is increased by anxiolytic drugs (e.g., benzodiazepines). 

Reward-based 
tests 

Animals show highly reproducible responses to drugs of abuse (or to natural 
rewards such as food or sex) in classical conditioning and operant conditioning 
assays. 

Cognition-based 
tests 

The ability of animals to attend, learn, and recall is measured in a variety of 
circumstances. This possibly models cognitive impairments. 

 

3. Rodent models of depression 
 

Animal models of depression are evaluated for their validity based on four criteria: (1) 

similarity in the symptom profile presented, such as decreased interest in pleasure (face 

validity), (2) amelioration or attenuation by treatments effective in treating the human 

condition i.e. antidepressants and behavioral therapy (predictive validity), (3) provocation by 

events thought to be important in eliciting the human disorder, such as stressful life events 

(etiological validity), and (4) involvement of similar neurochemical processes, like decrease 

hippocampal BDNF expression (construct validity). This is a challenge. Many of the core 

symptoms of depression (e.g., depressed mood, feelings of worthlessness and suicide) 

cannot be easily measured in laboratory animals. As a result, most available animal models 

of depression rely on one of two principles: 1) effects of known antidepressants and 2) 

responses to stress, thereby modeling depressive symptoms (Box 2).  
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3.1 The forced swim test 
Some of these tests, in particular the forced swim test, have been very effective at predicting 

the antidepressant efficacy of pharmacons (predictive validity)80. In this test, rodents 

immersed in a vessel of water develop an immobile posture after initial struggling. This 

immobility is considered as behavioral despair. Most antidepressants, administered acutely 

before the test, reverse immobility and promote struggling80. Obviously, models that use an 

acute stressor (for example, forced swimming) are better thought of as read-out of coping 

style, and cannot recapitulate a long-lived multidimensional syndrome such as depression. 

Therefore, this test should be considered as a fast and cost-efficient screening paradigm for 

potential antidepressants, rather than an animal model reflecting multiple aspects of the 

disorder. In this thesis this test was used to screen for the possible long-lasting 

antidepressant effect of the novel antidepressant ketamine.  

 

3.2 The social defeat paradigm 
Animal models that try to incorporate the multidimensional aspects of depression in order to 

study its neurobiological underpinnings are limited to stress models such as social defeat or 

chronic mild stress. These are more technically challenging paradigms, however, they show 

unique sensitivity to chronic and not acute antidepressant administration, which is 

comparable to the therapeutic delay of 3–6 weeks that is required for all available 

antidepressant drugs to adequately treat depression in humans26. In the social defeat model 

the experimental male rodent is placed in the territory of a large dominant male, after which 

a fight takes place and the intruder gets (socially) defeated. Apart from having etiological 

validity, because of the social stressor used as trigger, this model also has face validity, in 

which certain behavioral changes brought about by stress superficially resemble depressive 

symptoms. For instance, the defeated animal shows decreased sucrose intake or a reduced 

anticipation towards sucrose after chronic stress, which is thought to model anhedonia33,81. 

However, most studies of these models mimic the effects of acute stress, i.e. effects are 

studied acutely after the last stress-encounter, whereas we know from human studies that 

depressive symptoms are still apparent long after cessation of the stressor82. Moreover, 

these paradigms do not model the effects of more passive forms of stress, such as social 

isolation83. This is unfortunate since the lack of social support is known to be important 

especially for maintenance of depressive symptoms33. Therefore, to be able to study the 

long-term consequences of social defeat stress on depressive-like behavior, I adopted a 

social defeat paradigm33 in which experimental rats get socially defeated after which they 

are kept in social isolation for an additional 10-12 weeks. This paradigm might match human 
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depression in which active stress is often involved in the onset of depression, while passive 

stress, e.g., in the form of impaired social interaction, has strong precipitating effects on the 

development of the disease84.  

 

 

4. Aim and outline of the thesis 
 

MDD is a devastating brain disease that negatively impacts on the lives of many people 

worldwide. The aim of this thesis is to identify novel molecular targets that can be used to 

address the cognitive dysfunction that comes with MDD. For this I made use of two animal 

models, 1) temporal effects of ketamine in the mouse forced swim test, 2) social defeat (SD) 

stress in rats, which has best validity in terms of modeling aspects of MDD. In particular, I 

investigated the molecular and cellular neurogenic and plasticity changes that might affect 

hippocampal function, short and long-term after SD stress. I investigated whether typical 

antidepressants have a positive effect on the changes that are brought about by SD stress. 

Also I investigated the effect of behavioral therapy in this model. In this thesis there are 

several specific questions concerning stress-induced hippocampal plasticity that are 

addressed in the four experimental chapters.  

First of all the antidepressant action of ketamine was investigated. This NMDA receptor 

antagonist produces rapid (1 hour), robust and sustained (up to two weeks) antidepressant 

actions in treatment-resistant MDD patients31 and in preclinical models of depression 

following a single systemic infusion32. The rapid antidepressant effect of ketamine is of great 

interest since all other available antidepressants take weeks to exert their antidepressant 

effects. However, the mechanism through which ketamine exerts its effects is largely 

unknown. In chapter 2 I investigated the synaptic mechanism through which ketamine 

produces its antidepressant effect.  

Then I went on to get better insight into the neurobiology of MDD by using an animal 

model with profound validity for the human disorder. First, I investigated cognitive functioning 

and molecular changes at the level of the synapse that might occur directly after severe SD 

stress exposure when compared to the long-term effect of SD. These molecular alterations 

are involved at the onset of neuroplastic changes and the installment of a depressive-like 

phenotype, and are addressed in chapter 3 of this thesis.  

A second issue concerns the longitudinal effects of stress on neuroplasticity. As we 

know from human studies (see82 for review), depressive symptoms are often still apparent 

long after the end of a stressful life event and MDD is considered a chronic disease. 
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Therefore, it is of interest to determine whether the long-term effects of SD stress on 

depressive-like (cognitive) symptoms are related to altered hippocampal plasticity. In 

chapter 4 I questioned whether the depressive symptoms that are seen long after the 

cessation of social defeat stress exposure and are maintained by social isolation, are 

associated with reduced hippocampal memory performance. Ongoing, I investigated which 

type of cellular and molecular plasticity occurred at hippocampal synapses that could be 

involved in hippocampus-dependent memory impairment long after SD stress, and whether 

a form of behavioral therapy or chronic antidepressant treatment could restore these 

changes. In addition, I investigated whether long-term effects of SD stress were also 

associated with changes in the neurogenic process in the hippocampal dentate gyrus, which 

is discussed in chapter 5. Here, I also investigated the antidepressant action on SD-affected 

neurogenesis.  

Finally, chapter 6 of this thesis brings together my data, and here the most important 

conclusions are discussed in the context of MDD. 
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Abstract  
The NMDA receptor antagonist ketamine produces rapid, robust and prolonged 

antidepressant actions in treatment-resistant patients and preclinical models of depression 

following a single systemic infusion. Elucidating the neural sites and mechanisms underlying 

its effects are crucial for further development of novel treatments. Here, we examined the 

contribution of synaptic hippocampal glutamate receptors in depressive-like behavior as 

measured using an optimized set-up and automated protocol for the forced swim test (FST) 

in mice, a test of behavioral despair. Increased behavioral despair correlated with higher 

synaptic membrane expression of hippocampal NMDA receptor (NMDAR) subunit GluN2A. 

Subsequently, we analyzed the short- and long-term behavioral effects, and long-term 

molecular effects of a single dorso-hippocampal infusion of ketamine. Ketamine caused both 

rapid and enduring antidepressant effects without impairing memory retention. These long-

term antidepressant effects were paralleled by increased turnover of AMPA receptors 

(AMPARs) as shown by increased Ser-845 phosphorylation of GluA1. The relative 

contribution of hippocampal AMPAR over NMDAR appeared to be crucial for the 

antidepressant-like effect, as molecular blockade of regulated AMPAR endocytosis by a 

TAT-Glu23Y peptide in the CA1 region of the dorsal hippocampus partially mimicked the 

effects of ketamine. The well-known long-term antidepressant effect of a single treatment 

with ketamine is potentially mediated by increased hippocampal AMPAR function. 

 

 



KETAMINE AND HIPPOCAMPAL AMPARS 
 

27	
  

Introduction 
Major depressive disorder (MDD), also referred to as major depression, is a common, 

chronic, recurrent mental illness that affects millions of individuals worldwide. Since current 

available antidepressants target the monoaminergic systems (serotonin, norepinephrine, 

and dopamine), these transmitter systems have received most attention in depression-

related research. However, these antidepressants take weeks to achieve their therapeutic 

effect and leave patients particularly vulnerable to the devastating symptoms and the risk of 

self-harm. Therefore, treatment strategies that exert a rapid and prolonged antidepressant 

effect within days or even hours could substantially benefit public health. Previously, clinical 

trials have shown the immediate improvement of depressive symptoms in treatment-

resistant patients by the use of a sub-anesthetic single dose of ketamine31,85. This 

antidepressant effect is characterized by a very rapid onset of action (within hours) and a 

robust and prolonged effect, lasting one to two weeks. Recently, the rapid activation of the 

mTOR pathway, leading to increased synaptic signaling proteins and increased number and 

function of new spines, was shown as mechanism for the acute antidepressant effects of 

ketamine86. As yet, molecular insight into the more lasting effects of ketamine, as well as the 

main anatomical site of action in the brain is not available. 

Ketamine is a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist87 

and has been used clinically as a dissociative anesthetic in both pediatric and adult 

patients88. Its primary mechanism of action is blocking the NMDA receptor (NMDAR) at the 

phencyclidine site in the ion channel. In addition, ketamine induces rapid increases in 

presynaptic release of glutamate, a process hypothesized to be mediated by NMDA 

autoreceptors, and/or by activated GABAergic neurons89. Apart from ketamine, other 

NMDAR antagonists, such as MK-801 and CGP 37849, have antidepressant-like effects in 

several preclinical paradigms90,91. A better understanding of the antidepressant effect of 

ketamine might aid future development of rapidly acting and effective pharmacological 

therapies.  

Apart from the antidepressant effect of ketamine, other clinical and preclinical lines of 

research points to the involvement of the glutamatergic system in the pathophysiology of 

depression. Several reports showed increased glutamate levels in blood and cerebrospinal 

fluid in patients with MDD92. In rodent models of depression, synaptic plasticity was affected 

in glutamatergic neurons in both the CA1 and the dentate gyrus of the hippocampus93. 

Growing evidence supports the idea that antidepressants, via a cascade of time-dependent 

signaling, ultimately converge to regulate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid (AMPA) and NMDA receptor-mediated synaptic plasticity (reviewed in94). Consequently, 
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several studies showed that positive allosteric modulators of AMPA receptors (AMPARs), 

referred to as AMPA potentiators, display antidepressant effects in both clinical31 and 

preclinical95 studies.  

Recently, a large body of evidence from preclinical studies indicates that the acute 

effect of ketamine is mediated through a functional interplay between AMPARs and 

NMDARs32,96. The increased presynaptic release of glutamate preferentially acts on 

AMPARs, due to the ketamine inhibition of NMDARs. This direct effect of ketamine on 

glutamatergic signaling explains the rapid onset of action when compared to other 

antidepressants. Given these acute effects, the prolonged antidepressant action of up to at 

least a week31,86,97 remains unexplained.  

Here, we investigated how ketamine prolongs its antidepressant effects much beyond 

its short half-life (~13 min in serum of mice;98) and duration of NMDAR blockade. Secondly, 

we investigated through which neuronal circuits ketamine exerts its antidepressant effects. 

We show, by using an automated forced swim test (FST) analysis of depressive-like 

behavior in mice, that the long-term effects of ketamine are likely to be regulated by 

persistently increased AMPAR function in the dorsal part of the CA1 region in the 

hippocampus. 

 
 
Methods & Materials 
Animals 

All experiments were carried out in accordance to the Animal User Care Committee (VU 

University). Adult male (>8 weeks) C57BL/6J and DBA/2J mice (20-25 g, Charles River) 

were singly housed on a 12/12 h light/dark cycle with ad libitum access to food and water, 

light on at 7 AM. All mice were habituated to the facility for at least 1 week prior to testing, 

and were allowed to recover for at least 1 week after surgery. 

 

Pharmacalogical Interventions 

Acute systemic injection – Imipramine (Sigma Aldrich, Germany; 8 or 16 mg/kg) was injected 

intraperitoneally 30 min before testing. 

Chronic treatment – An osmotic minipump (Model 1004; Alzet, Cupertino, CA) containing 60 

mg/ml imipramine was placed subcutaneously during isoflurane anesthesia, resulting in 6-8 

mg/kg/day (for mice weighing 26-20 gram, respectively) administration of imipramine (28 

days).  
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Hippocampal injection – Mice were implanted with double guide cannulae (Plastics One, 

Roanoke, VA) targeting the CA1 region of the dorsal hippocampus as described 

previously99,100, using mouse brain atlas coordinates101. Ketamine hydrochloride (Alfasan, 

Woerden, The Netherlands) at a dose of 0.25 µg (0.125 µg/side) and 2.5 µg (1.25 µg/side) 

was infused in a volume of 0.25 µl/hemisphere during 2 min. To block regulated endocytosis 

of AMPARs in the CA1 region of the dorsal hippocampus, a synthetic peptide derived from 

the GluA2 carboxyl terminal fused to the cell membrane transduction domain of the HIV-TAT 

protein (GluA23Y: 869YKEGYNVYG877
102) or control peptide (GluA23A: AKEGANVAG) were 

injected at (15 pmol/side; 60 µM) similar to ketamine delivery. Injection sites were verified 

(0.25 µl methylene blue), and mice that did not receive symmetrical and bilateral injections in 

Figure 1. Automated analysis of FST performance detects low-dose imipramine effects. 
Imipramine (Imi; 30 min prior to testing, i.p., 8 and 16 mg/kg) had no significant effect on immobility, as 
often measured during the last 4 min of the FST (A, left). However, measuring immobility during the 
total 6-min test time (A, right), as well as novel parameters resulting from our automated analysis like 
strategy (i.e. activity over time; B), total activity C), latency to first float (D) and time to change swim 
strategy (E) showed robust effects due to imipramine. Data derived from digital images are explained in 
detail in Fig. S1. For detailed ANOVA results, see Table S1. *** P<0.001, ** P<0.01, * P<0.05 vs. 
saline. 
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the CA1 region of the dorsal hippocampus were excluded. Days of testing after insertion of 

the pump or hippocampal injection are indicated  (Tables S1 and S3). 

 

Tissue Preparation and Immunoblotting.  

The hippocampus (strain differences) or its dorsomedial part (ketamine effect) were 

dissected from fresh brains and immediately frozen (–80 °C). Synaptic membranes were 

isolated (pool of 2 or 3 mice per sample) on a discontinuous sucrose gradient, as described 

previously103. SDS-PAGE (8%) was run using 5 µg/sample (Laemli lysis buffer). Proteins 

were blotted onto a PVDF membrane (Bio-Rad Laboratories, Hercules, CA). After blocking 

and incubation of the first antibody, against GluA1 (1:1,000; Genscript, Piscataway, NJ), 

GluA1-Ser845 (1:1,000; Phosphosolutions, Aurora, CO) GluA2 (1:1,000; Neuromab, Davis, 

CA), GluN1 (1:1,000; Millipore, Billerica, MA), GluN2A (1:1,500; Abcam, Cambridge, UK) 

and GluN2B (1:1,000; Neuromab, Davis, CA) the blot was washed and incubated for 1 h at 

RT with AP-conjugated secondary antibody (1:10,000; GE Healthcare, Diegem, Belgium) 

allowing detection using the ECF immunoblotting detection system (GE Healthcare, Diegem, 

Belgium). The lower half of the same gel was cut and stained for coomassie, as shown 

previously to be a good control for general input103. Quantification of immunoblots was 

performed using Quantity One® 1-D analysis software (Bio-Rad, Veenendaal, The 

Netherlands). 

 

Forced Swim Test 

Mice were placed in a rectangular transparent Perspex tank (22 x 14 x 35.5 cm, length x 

width x height), filled up to a height of 30 cm with water (25 °C)(Fig. S1). Traditionally, a 

round tank is used in many FST setups. However, round tanks distort the image of the 

mouse in the tank particularly on the sides thereby confounding the precision of quantitative 

motion-detection analysis. A single swim session of 6 min was conducted, as the swim 

strategy is modified in a second swim session (Fig. S1D). After the session, mice were 

placed on a clean dry tissue under a warm light bulb (max. 5 min) in their home cage. A 

high-resolution digital camera (Sunkwang B140XP/SO; RF Concepts, Dundonald, UK), in 

combination with Virtualdub software (v1.9; www.virtualdub.org) was used to record the 

swim session (AVI files) at a rate of 25 frames per sec. 

The digital movie was used offline for automatic analysis, using custom-developed software 

for motion detection (R.F. Jansen and O. Stiedl; see http://www.falw.vu/~ngc/FST.html) (Fig. 

S1A). This program yields the activity diagram (Fig. S1B). As the cumulative plot of activity, 

i.e., the strategy plot, yields non-stationary data due to changes in swim strategy of the 
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animal over time, cumulative movement data were fitted using a Douglas-Peucker polyline 

algorithm104 with an 8-pixel tolerance (Fig. S1C). The program for automatic analysis, using 

a custom-developed motion detection algorithm, is made available upon contact (R.F. 

Jansen and O. Stiedl, oliver.stiedl@cncr.vu.nl). 

Immobility – Time (%) spent inactive with very low activity (change between frames < X 

pixels) below the threshold set per time bin (0.6 s per bin). 

Latency to immobility – Time (s) before the first bout of inactivity lasting > 1 s. 

Strategy plot – The coordinates of the average cumulative activity (y) by time (x) of each 

fitted line segment was calculated and plotted. This parameter gives detailed information 

about the average swim strategy over time. Because the swim strategies were mostly 

Figure 2. Mouse strain differences in expression of synaptic hippocampal glutamate receptors 
and behavioral despair. Hippocampal synaptic membrane fractions from C57BL/6J (C57) and 
DBA/2J (DBA) mice (n=4 samples) were used for immunoblotting with glutamate receptor subunit 
antibodies; GluN1 (A), GluN2A (B), GluN2B (C), GluA1 (D), GluA2 (E). Bar graphs (left) show 
quantification of samples. (Right) A typical example of the immuno-detected protein is shown for each 
strain, together with the coomassie-stained lower part of the gel. * P=0.013. (F,G) A strain-specific 
effect (C57BL/6J mice (n=11), DBA/2J mice (n=10)) was apparent for immobility (F) and latency to 
first float (G), as well as other parameters (see Fig. S4), ** P<0.01 and * P<0.05 vs. C57BL/6J. 
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captured by at least 3 line segments for every mouse, only those segments were used for 

analysis.  

Total activity – The sum of the activity during the 6-min swim session calculated by the 

motion-detection analysis. 

Time to change strategy – Total time before activity was less than before. The latency to 

reach the fitted line segment of which the slope was lower than before, i.e. when the second 

derivative was at a minimum, was taken. 

 

Statistical Analyses 

Behavioral data was subjected to univariate ANOVA/Kruskal-Wallis with dose or strain as 

between-subject variables. For statistically significant main effects, post-hoc comparisons 

were conducted using Student-Newman-Keuls/Mann-Whitney-U tests. Immunoblot and 

behavioral results using single drug injections were analyzed using student’s t-test with 

either strain or treatment as factors. The level of probability for statistically significant effects 

was set at P<0.05. All data are displayed as mean values ± SEM (except for EPM 

parameters that are displayed as box plots with mean ± maximum values). 

 

Results 

Novel FST parameters for detection of antidepressant action 

Predictive validity of the behavioral despair test is important in preclinical settings to assess 

effectiveness of novel pharmacological agents with antidepressant effects. Here, we first 

investigated whether the two most commonly used parameters, namely immobility105, and 

latency to first float106, are optimal to segregate between different classes of antidepressants 

used at clinically relevant doses.  

Traditionally, the last 4 min of a 6-min FST are used to measure immobility80,105. 

Relative low doses of imipramine (8 and 16 mg/kg) that were previously reported to be 

ineffective in C57BL/6J mice106,107 did indeed only reveal a trend (P=0.064) for immobility 

when the last 4 min were used for analysis (Fig. 1A). However, based on total test-time, a 

highly significant effect on immobility was obtained (P=0.001, Fig. 1A, Table S1). In addition, 

our optimized FST set-up and its analysis procedure increased sensitivity of detection as 

these relative low doses had a significant effect on latency to first float (P<0.001), that went 

previously undetected106. 

Movement detection of digital images allows more relevant information to be extracted, 

such as total amount of activity displayed, as well as changes in patterns of activity on a 

high-resolution time scale (Fig. 1B, Fig. S1). Mice have a tendency to start swimming 
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actively and vigorously for a certain period before they change strategy resulting in a 

combination of swimming and floating (Fig. S1). Here we show for the first time that 

specifically total activity, strategy and hence latency to change swim strategy are very 

sensitive to antidepressant treatment (Fig. 1B,C,E; Table S1). In addition, chronic 

imipramine treatment at a relative low dose (6-8 mg/kg/day, s.c.) for 3 weeks revealed a 

significant effect (P<0.05) on these novel parameters (Fig. S2B,C,E; Tables S1, S2), and no 

significant persistent effect was measured using the classical parameter of immobility (Fig. 

S2A). Notably, at this low dose, the previously reported effects of imipramine on locomotion 

are not detectable (Fig. S3; Table S3). Thus, we provide evidence that our improved 

protocol and automated analysis is very sensitive in measuring antidepressant-like effects, 

and could thereby improve the predictive validity of the FST.  

Figure 3. Acute and long-term effect of hippocampal ketamine on behavioral despair in 
C57BL/6J mice. Bilateral dorso-hippocampal injection of saline (n=6) or ketamine (0.25 µg, n=6-8; 2.5 
µg, n=8), were given 1 h or 9 days before the test. Ketamine treatment caused differences from saline 
controls with respect to immobility (A), strategy (see Fig. S5), and time to change swim strategy (D). 
Total activity (B) and latency to first float (C) were specifically affected on the short-term and the long-
term, respectively. For detailed ANOVA results see Table S1. ** P<0.01, * P<0.05, # P<0.2 vs. saline.  
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Strain differences in behavioral despair and hippocampal NMDA receptor subunit expression 

Depressive-like behavior in the FST is likely influenced by glutamatergic transmission90. 

Therefore we tested whether two inbred strains of mice (C57BL/6J and DBA/2J) that show 

well-known differences in behavioral despair108,109 also show differences in synaptic 

hippocampal glutamate receptor expression. We performed immunoblotting for NMDAR and 

AMPAR subunits on hippocampal synaptic membranes (Fig. 2). A significantly reduced 

expression level of GluN2A was found in DBA/2J mice (79.3%±0.3, P=0.013), with no 

change in levels of AMPAR or other NMDAR subunits (Table S4). 

Figure 4. Synaptic hippocampal glutamate receptors are involved in the long-lasting 
antidepressant effect of ketamine. (A) Dorso-medial hippocampal synaptosome fractions of mice with 
dorso-hippocampal injections of saline or ketamine (0.25 µg, n=6) were used for immunoblotting with 
glutamate receptor subunit antibodies; P-GluA1 and total GluA1 (See Fig. S8). Typical examples of the 
immuno-detected protein levels are shown for each treatment (saline, S and ketamine, K) mice, 
together with the coomassie-stained lower part of the gel to the right of each bar graph. ** P=0.007. (B-
E) Bilateral dorso-hippocampal injections of the GluA23Y blocking peptide (60 µM, n=13) or GluA23A 
control peptide (n=12) were given 1 h before the test. Treatment with this blocking peptide showed 
differences from control with respect to immobility (B), as well as novel parameters resulting from our 
automated analysis like latency to first float (D), but not total activity (C), and time to change swim 
strategy (E). *** P<0.001, * P<0.05 vs. control peptide. 
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We replicated the previously reported increased immobility108 in C57BL/6J compared 

with DBA/2J mice (P<0.005; Fig. 2F,G; Table S2). In addition, C57BL/6J mice showed lower 

values for strategy (P<0.05), decreased total activity (P=0.007) and latency to the first float 

(P=0.021)(Fig. S4B-D). Thus, increased GluN2A levels correlated with a higher level of 

behavioral despair.  

 

Rescue of depressive-like phenotype by inhibiting hippocampal NMDA receptors 

According to current views32,96, changing the balance between AMPAR and NMDAR 

involvement might contribute to antidepressant efficacy. Accordingly, AMPAR potentiators110 

and NMDAR antagonist have antidepressant effects91,111,112. Since C57BL/6J mice show 

increased behavioral despair and increased hippocampal synaptic NMDAR subunit 

expression, we tested the hypothesis that inhibiting hippocampal NMDARs in mice with 

endogenously elevated NMDAR subunits levels has antidepressant-like effects. 

First, we showed that dorso-hippocampal injection of ketamine, a non-specific NMDAR 

antagonist, indeed had a clear acute antidepressant-like effect (immobility_last minutes: 

F(2,17)=4.041, P=0.037; immobility_total time: F(2,17)=5.542, P=0.014) (Fig. 3A, Table S1). In 

addition, the novel parameters of strategy (P<0.05; Fig. S5), total activity (F(2,17)=5.897, 

P=0.011), and time to change strategy (F(2,17)=4.957, P=0.020) showed that hippocampal 

ketamine had a significant antidepressant effect, with the highest effect at 0.25 µg (Fig. 3). 

Second, when behavioral despair was measured 9 days after local injection of ketamine 

(Fig. 3), an antidepressant-like effect was still observed for immobility, but only using total 

test-time (F(2,21)=3.523, P=0.048; Table S1). In addition, parameters time to change swim 

strategy (F(2,21)=3.977, P=0.034; Table S1) and latency to first float (F(2,21)=4.633, P=0.022) 

showed prolonged effects from ketamine that were more pronounced than the acute effects. 

In all parameters, the 0.25 µg dose was more effective than the 2.5 µg dose.  

In an independent group of mice we observed that a hippocampal ketamine injection 

(0.25 µg) reduced anxiety in the novel exploration test (P=0.025) and elevated plus maze 

(P=0.044; Fig. S6, Table S3), with no effect on locomotion and anxiety in the open field 

test113, nor in contextual fear learning (Fig. S7). 

 

Antidepressant effects by increased AMPA functionality 

As the long-term behavioral effect cannot be attributed to the antagonistic properties of 

ketamine on NMDARs, but rather reflects a down-stream molecular consequence of 

ketamine action reaching further than the recently described activation of the mTOR 

pathway86, we determined the effect of ketamine on synaptic hippocampal glutamate 
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receptor expression nine days after injection in a separate group of mice not used in the FST 

experiment. A single ketamine injection increased the levels of P-Ser-845-GluA1 in the 

hippocampus (P=0.007; Fig. 4A), with no difference in expression of GluA and GluN 

subunits (Fig. S8, Table S4). Phosphorylation at this site increases the number of 

membrane-localized AMPARs96,114. Because we did not observe an increase in total level of 

GluA1, the long-term effect of ketamine might be attributable to stimulated receptor turnover 

in hippocampal synapses. This increased cycling could serve to increase functional non-

desensitized AMPARs in the synaptic membrane.  

If increased AMPAR functionality would play a role in the lasting antidepressant effect of 

ketamine, then increasing the total number of AMPARs might mimic the antidepressant 

effects. Therefore, we blocked the regulated endocytosis of AMPARs in order to create a 

phenocopy of the lasting antidepressant-like effect. For this, we used a molecular tool to 

impair retrieval of AMPARs from hippocampal synaptic membranes. We injected the GluA2 

regulated endocytosis blocking peptide102,103 into the dorsal hippocampus and tested the 

effect on behavioral despair. This peptide had no acute effects on basal locomotion (Fig. 

S9), and therefore appears to be a highly specific tool for behavioral intervention. Both 

immobility (P=0.021; total test time) and latency to the first float (P=0.0004) were decreased 

significantly (Fig. 4B,D). No effect was observed on total activity and time to change strategy 

(Fig. 4C,E; Table S5), thus creating a partial phenocopy of the enduring effects of ketamine.  

 

 

Discussion 
Here, we first implemented a new approach using automated FST analysis to objectively 

quantify subtle effects of antidepressant-like actions on both classical and novel FST 

parameters with high sensitivity. Our data indicate a role for hippocampal glutamate 

receptors as targets for the antidepressant action of ketamine both acutely and on the long-

term. Finally, we provide evidence that prolonged effects of ketamine are mediated through 

an increased functionality of AMPARs that could result in neuronal and behavioral plasticity. 

 
Novel forced swim test parameters:  

The improved protocol and the automated analysis for the FST employed have the 

advantage that it combines the measurement of classical FST parameters, such as 

immobility, and novel FST parameters related to the intensity of activity and swim strategy. 

With low-dose imipramine using both an acute and chronic treatment, we showed that this 
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protocol has an improved sensitivity to detect changes in immobility and latency to first float, 

resulting in antidepressant-like effects that remained unnoticed previously106,107.  

Furthermore, by introducing the novel parameters of total activity, strategy and time to 

change strategy, we show that we can distinguish different types of effects that characterize 

both chronic and acute treatment. Specifically, the effect of chronic imipramine treatment at 

low doses could be measured using these parameters without having an effect on classical 

parameters like immobility. In addition, prolonged effects of ketamine affected strategy and 

time to change strategy but not activity. Acute ketamine also affected the latter parameter. 

Finally, automated analysis of digital images increases replicability and favors reduction of 

potential observer bias, and thus a more objective analysis of the data. Taken together, this 

protocol increases sensitivity and predictive value of the FST as a measure of 

antidepressant action.  

 

NMDA/AMPA receptors 

Impaired neural and structural plasticity is assumed to play a causal role in the development 

of mood disorders94,115. Furthermore, there is growing evidence from preclinical and clinical 

studies for altered NMDAR activity and a role for glutamatergic transmission in the pathology 

of depression, making glutamate receptors a promising potential therapeutic target. Clinical 

evidence comes from antidepressant effects of ketamine and the GluN2B subunit-selective 

antagonist CP-101,606, in a group of treatment-resistant patients116. Interestingly, NMDARs 

containing the GluN2B subunit are localized primarily in the forebrain, including the 

hippocampus, which is implicated in the pathology of mood disorders like MDD. The 

hippocampus is a crucial site for pathological alterations in neuronal plasticity resulting from 

various stressors35,117.  

Recently, the role of the GluN2A receptor subtype in the etiology of depression has 

been under investigation, with GluN2A knockout mice exhibiting a robust depression-

resistant phenotype118. In line with this, we found that a higher abundance of NMDARs, 

specifically the GluN2A-containing receptor in the hippocampus of C57BL/6J mice, appears 

to be important for the depressive-like phenotype of this strain in the forced swim test.  

In line with this, we show that ketamine injected into the CA1 region of the dorsal 

hippocampus alleviates the depressive symptoms in C57BL/6J mice not only acutely but 

also 9 days after infusion. The behavioral patterns differ slightly, and this is possibly related 

to the differences in molecular mechanisms taking place (see below, Fig. 5). Acutely, this 

antidepressant effect of ketamine is likely to be mediated by the well-described inhibitory 

effect of this drug on the ion-channel of the NMDARs, and concurrently its ability to increase 
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pre-synaptic glutamate release at low non-anesthetic doses32,89,112,119. Both actions favor 

AMPAR over NMDAR transmission (Fig. 5). The acute antidepressant effect of ketamine 

was completely abolished when NBQX, an AMPAR antagonist, was given prior to ketamine 

infusion32. Similarly, NBQX blocked the ketamine-related induction of synaptic proteins in the 

PFC that are causal to the immediate antidepressant effects86. Classic antidepressants with 

a long therapeutic lag after treatment onset, like imipramine, do not share this mechanism of 

action as the acute antidepressant effect of imipramine was unaffected by NBQX. Increasing 

glutamate signaling via AMPARs relative to NMDARs is therefore the likely mechanism by 

which ketamine exerts its rapid effect86. 

Here, we show that the long-term effects of ketamine are also modulated by AMPAR-

related mechanisms. Nine days after ketamine administration, there was an increase in 

levels of Ser845 phosphorylated GluA1, with no effect on total amounts of surface 

expressed AMPAR and NMDAR subunits. This is surprising, since acutely after 

administration, ketamine has been shown to decrease phosphorylation of GluA1 at 

Ser84590. However, this might be due to the fact that in this study the animals were tested 

directly after the forced swim test. Ser845 phosphorylation is known to prime GluA1 for 

membrane insertion and increases its open probability96,114. This finding of increased AMPA 

receptor functionality has important implication for the antidepressant effects of ketamine. 

Figure 5. Model of hippocampal synaptic plasticity mechanism induced by ketamine. In 
individuals with a depression-like phenotype there is an imbalance in AMPARs and NMDARs, favoring 
the contribution of NMDARs (increased green arrow). Acutely, ketamine blocks NMDARs, and 
concurrently it increases pre-synaptic glutamate release thereby favoring AMPAR over NMDAR 
signaling. On the long-term, increased trafficking of AMPARs into the membrane might yield a higher 
proportion of functional AMPARs, thereby recovering the imbalance between AMPARs and NMDARs 
and decreasing the depression-like phenotype. 
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Depressive-like behavior induced by long-lasting stress is mediated by an impairment of 

AMPA-dependent hippocampal LTP43. The ketamine-induced increase in AMPA receptor 

functionality could therefore counteract these stress-induced deficits. 

Even in the absence of increased levels of GluA1 on the membrane, it is likely that an 

increased turnover of AMPARs leads to increased functionality due to less desensitized 

receptors at the membrane (Fig. 5). Interestingly, increased phosphorylation of GluA1 at 

Ser845 has been found to underlie chronic treatment with classic and novel antidepressants, 

such as fluoxetine and tianeptine70,120, and was linked to the antidepressant action of several 

AMPAR potentiators that improve glutamatergic transmission121. In addition, chronic 

treatment with riluzole, and lamotrigine increases the amount of P-Ser845, but also 

enhances AMPAR surface levels70,122. Thus, the molecular changes of a single ketamine 

infusion are shared with those observed after chronic treatment with several (classical) 

antidepressants.  

In order to substantiate our hypothesis that increased hippocampal AMPAR functionality 

is key to the lasting effects of a single ketamine injection, we kept AMPARs at the synaptic 

membrane by blocking stimulated-endocytosis using a mimetic peptide. This intervention 

prevents induction of LTD102, and likewise it mimics the enduring antidepressant-like effects 

of ketamine on immobility and latency to immobility (Fig. 4). Increased phosphorylation of 

GluA1 at Ser845 increases its availability at the active zone of glutamatergic synapses123. 

Since GluA2-regulated endocytosis is know to induce GluA1-containing heterodimeric AMPA 

receptor endocytosis124, the GluA2-regulated endocytosis blocking peptide will most likely 

also increase GluA1 availability at the active zone of the synapse. Therefore, it will mimic the 

ketamine-induced effect of increasing AMPAR synaptic availability. Thus, we postulate that 

the described long-term effect of a single injection of ketamine on AMPARs causes a critical 

increase in synaptic strength by restoring the balance between AMPAR and NMDARs 

functionality, thereby generating a non-depressed state (Fig. 5). It is important to note that a 

single infusion of ketamine into the hippocampus has long lasting anxiolytic effects but has 

no deleterious side-effects on baseline locomotion and fear memory. 

In conclusion, we have identified a molecular process in which AMPARs are involved in 

the long-term antidepressant effects of a single ketamine treatment. This mechanism might 

be common to classical antidepressants when given chronically. Importantly, we 

demonstrate that this effect takes place in the dorsal hippocampus. Our findings are of 

interest for development of antidepressants that have rapid and enduring effects, bypassing 

negative side effects and delayed onset of prototypical antidepressants.  
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Supplemental Material 
 

Materials and Methods 

Mice & intracranial delivery 

Mice were housed individually in standard Macrolon cages (type II) on sawdust bedding, and for the 

purpose of animal welfare, the cages were enriched with cardboard nesting material and a curved 

PVC tube. Food (Teklad, Harlan, The Netherlands) and water was provided ad libitum. Housing 

rooms were controlled for temperature, humidity and light-dark cycle (7 AM lights on, 7 PM lights off). 

Experiments were performed during the light phase. All experimental procedures were approved by 

the local animal research committee and complied with the European Council Directive (86/609/EEC). 

For intra-hippocampal injections, mice were chronically implanted with double guide cannulae (C235, 

Plastics One, Roanoke, VA) in a customized high precision stereotaxic system (10 µm resolution). 

Outer diameter of both guide cannulae is 0.46 mm (26 gauge), whereas the double injectors and the 

dummy cannulae that are normally placed in the guide cannula have an outer diameter of 0.20 mm 

(33 gauge). The double injectors and dummy cannulae protruded 1 mm beyond the tip of the guide 

cannulae. The surgical procedures were performed under aseptic conditions. Mice were anesthetized 

by intraperitoneal injection of avertin (1.2%, 0.02 ml/g) as described previously125. Each double guide 

cannula (with inserted dummy cannula and dust cap) was fixed to the skull by dental cement. The 

guides were directed towards both dorsal hippocampi targeting the area ventral of CA1. The 

coordinates were based on the stereotaxic plates of the mouse brain atlas126 with anterior–posterior 

(AP) coordinates referred to bregma, lateral (L) coordinates to the midsagittal suture line, and ventral 

coordinates (V) to the surface of the skull: AP, –1.6 mm; L, +/- 1.03mm and V, –2.3 mm (injection 

site). The depth of injections was chosen to avoid micro-lesions of both dentate gyri by the cannula 

tips. Buprenorphine was injected subcutaneously at a dose of 0.1 mg/kg as analgesic. The mice were 

allowed a minimal of 7 days of recovery before the initiation of subsequent experiments. During this 

postsurgical period, mice were checked for signs of distress such as apparent behavioral 

abnormalities and profound loss of body weight. 

A microinjection pump (CMA/100, CMA/Microdialysis, Solna, Sweden) was used for bilateral 

injections into the dorsal hippocampus (0.25 µl/hemisphere) at a rate of 0.33 µl/min as described 

before99,125. Two 25 µl gas-tight syringes were mounted onto the pump and connected by 

polyethylene tubing to the double injection cannula (Plastics One, Roanoke, VA). The injection 

cannula delivered the injection solution 1 mm below the tip of the guide cannula at the depth of 2.3 

mm. Before injection, both dust cap and dummy cannula were removed. Injections into the dorsal 

hippocampus were applied during a 90 s isoflurane (Forene, Abbott, Wiesbaden, Germany) inhalation 

anesthesia. After the end of the injection, the injector remained in place for 15 s in order to prevent 

backflow into the cannula guides. Thereafter, the injector was replaced by the dummy cannula before 

the dust cap was screwed back onto the guide cannula. Injections were applied minimally 1 h before 

testing. 
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Tissue Preparation and Immunoblotting.  

The hippocampus (strain differences) or the dorso-medial part of the (ketamine effect) hippocampus 

was dissected from fresh brains and immediately frozen (< –60 °C). Synaptic membranes were 

isolated (pool of 3 or 2 mice per sample) on a discontinuous sucrose gradient, as described 

previously103. Protein concentration was measured by a Bradford assay. For all groups 5 µg/sample 

was dissolved in Laemli lysis buffer and loaded on an 8% SDS-PAGE gel. Proteins were blotted onto 

a PVDF membrane (Bio-Rad Laboratories, Hercules, CA). After blocking and incubation of the first 

antibody, against GluA1 (1:1,000; Genscript, Piscataway, NJ), GluA1-Ser845 (1:1,000; 

Phosphosolutions, Aurora, CO) GluA2 (1:1,000; Neuromab, Davis, CA), GluN1 (1:1,000; Millipore, 

Billerica, MA), GluN2A (1:1,500; Abcam, Cambridge, UK) and GluN2B (1:1,000; Neuromab, Davis, 

CA) the blot was washed and incubated for 1 h at RT with AP-conjugated secondary antibody 

(1:10,000; GE Healthcare, Diegem, Belgium). Before being used for immunoblotting, all antibodies 

were checked for specificity, i.e., whether they showed a band at the designated apparent molecular 

weight on Western blot. Immunodetection was performed using the ECF western blotting detection 

system (GE Healthcare, Diegem, Belgium) and blots were scanned with the FLA-5000 (Fuji Photo 

Film, Rotterdam, The Netherlands). Relative amounts of immunoreactivity were quantified using 

ImageJ (NIH, Bethesda, MD). For standardization of immunoblots, the lower half of the same gel was 

cut and stained for coomassie as shown previously to be a good control for general input. 

Quantification of immunoblots was performed using the program Quantity One® 1-D analysis 

software (Bio-Rad, Veenendaal, The Netherlands).  

 

Open field (OF)  
Open field box 1 – Mice were introduced into a corner of the white square open field (50 x 50 cm, 

walls 35 cm high) illuminated with a single white fluorescent light bulb from above (130 lx), and 

exploration was tracked for 10 min (12.5 frames/s; EthoVision 3.0, Noldus Information Technology, 

Wageningen, The Netherlands). Time spent in, and number of entries into the center square area (20 

x 20 cm) was measured using EthoVision.  

Open field box 2 – Mice were introduced into a Plexiglas chamber with a stainless steel grid floor with 

constant illumination (100-500 lx) and background sound (white noise, 68 dB SPL (sound pressure 

level)). The box contained 12 infrared beams on each side, allowing measurement of both activity and 

exploration (area covered within x time). Measurements (3 min) took place after a single habituation 

trial (3 min). 

 

Elevated plus maze (EPM)  
Mice were introduced into the same closed arm of an EPM (arms 30 x 6 cm, walls 35 cm high, 

elevated 50 cm above the ground), facing the closed end of the arm. The EPM was illuminated with a 

single white fluorescent light bulb from above (130 lx) and exploratory behavior was video tracked for 
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5 min (12.5 frames/s, EthoVision 3.0, Noldus Information Technology, Wageningen, The 

Netherlands). The border between center and arm entries was defined at 2 cm into each arm, 

producing the number of entries into the open arms, into the closed arms, onto the center platform, 

and time spent on the open arms. In addition, latency to explore was defined by the time between 

introduction into the maze and the first appearance in the maze center.  

 

Contextual Fear Conditioning 

Contextual fear conditioning - All experiments were carried out in a fear conditioning system (TSE-

Systems, Bad Homburg, Germany), as described previously127. Briefly, training and testing was 

performed in a Plexiglas chamber with a stainless steel grid floor with constant illumination (100-500 

lx) and background sound (white noise, 68 dB SPL). The chamber was cleaned with 70% ethanol 

prior to each session. Training consisted of placing mice in the chamber for a period of 180 s after 

which a 2 s foot shock (0.7 mA) was delivered through the grid floor. Mice were returned to their home 

cage 30 s after shock termination.  

Contextual fear retrieval - Retrieval test consisted of placing the animals in the conditioning context for 

180 s. The automatically measured percentage of inactivity99 served as measure of learning-induced 

fear response.  

 

Forced swim test 

We used a rectangular tank since a round tank gives image distortions when recording movements by 

camera recording using a lateral view (Supplemental Fig. 1A). As mice have the tendency to swim in 

circles in a round tank by simply following the curvature of the tank, the image of the animal is 

distorted. The distortion depends on the position and will affect the magnitude of detected 

movements. The more lateral the position of the object, the larger the distortion and the lower the size 

of detected movements. In a rectangular tank the visible surface of the animal remains almost 

constant irrespective of its position especially since we slightly reduced the depth of the tank. Thus, a 

rectangular tank causes substantially fewer image artifacts. The side-view and top-view give highly 

correlated results. Tail movements are more prominent in the top-view setup, and leg movements 

more prominent in the side-view setup. However, the side view offered a slightly higher sensitivity and 

was therefore selected for our analysis. 

The digital movie was used for automatic analysis, using a motion detection algorithm to determine 

whether a mouse is moving or not. The motion detection is based on the differences between two 

successive video frames. First, each frame is divided into small rectangles (grid; see Supplemental 

Figure 1B). The size of the rectangles determines the sensitivity to motion with smaller rectangles 

giving higher sensitivity. The program counts the number of rectangles where motion was detected 

given a specific detection threshold (noise filter). This measure yields the activity diagram 

(Supplemental Figure 1C). A threshold for mobility can be set manually for all digital movies to be 

analyzed batch-wise. Analysis was performed with 15 frames/bin, each bin representing 0.6 sec. As 
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the cumulative plot of activity yields non-stationary data due to changes in swim strategy, the 

separate stationary segments were fitted to line curves using Douglas-Peucker polyline fit104 with an 8 

pixel tolerance (Supplemental Figure 1D). Parameters as measured from digital images were: 

Immobility – Time (%) spent inactive with activity detected below the threshold of 7 transitions per 

time bin. 

Latency to immobility – Time (s) spent before a first bout of inactivity, lasting > 1 s. 

Strategy plot – The coordinates of the average cumulative activity (y) and time (x) of each fitted line 

segment (each set of stationary data) was calculated and plotted. This parameter gives detailed 

information about the swim strategy over time. Because the swim strategies were mostly captured by 

at least 3 line segments for every mouse, only those segments were used for analysis.  

Total activity – The sum of the activity during the 6 min swim session calculated by the quantitative 

motion-detection analysis. 

Time to change strategy – Total time before activity was less than before. The latency to reach the 

fitted line segment of which the slope was lower than before, i.e. when the second derivative was at a 

minimum, was taken. 

The program for automatic analysis, using a custom-developed motion detection algorithm, is made 

available upon contact (R.F. Jansen and O. Stiedl (oliver.stiedl@cncr.vu.nl). For more information, 

see http://www.falw.vu/~ngc/FST.html. 
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Figure S1. Analysis of classical and novel parameters for behavioral despair in the FST. (A) From 
digitized images (zoom in), using a grid structure to monitor activity, classical and novel parameters of the 
FST are captured. (B) Examples are given from the analysis window for 2 individual mice that received 
either saline or imipramine (8 mg/kg, i.p.) 30 min before the test. The most widely used classical parameter 
mobility/immobility (green/red) was extracted from the activity plot. The lower panel (red lines) displays the 
binned time of mobility and immobility, with imipramine-treated mice (i.p. injection 30 min before the test) 
showing more mobility both during the total period as well as during the last 4 min. In addition, the latency to 
float for ≥ 1 sec is indicated (>2 bins; 0.6 sec/bin). Naive and saline-treated C57BL/6J mice show a low 
latency to the first float (~10 sec), while imipramine-treated mice have a prolonged latency (~50-60 sec). (C) 
Novel parameters, such as strategy, total activity and time to change swim strategy can be extracted from 
the individual swim strategy plots, which shows the cumulative activity (number of rectangles in the 
detection grid with activity above the set threshold (horizontal black line) vs. time (seconds). Strategy plots 
are shown for the same two mice as in B. The blue lines indicate separate line fits to the non-stationary 
data, and the red line indicates a cumulative distribution with no change in activity (stationary data). Note 
that the latency to the first change in swim strategy, denoted by the first change towards less activity (purple 
vertical line), is longer in imipramine-treated mice. In addition, the total activity of imipramine-treated mice is 
higher than that of saline-treated mice. (D) A second swim session changes the swim strategy of mice 
(lower panel), and hence parameters typical for a first swim session (upper panel) cannot be used. Note the 
regular swimming bouts in the second session, lacking the vast amount of activity displayed during the 
beginning of the first session. 
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Figure S2. Effects of low chronic imipramine on FST performance of C57BL/6J mice. An osmotic 
minipump was placed subcutaneously 26 days before the test and delivered imipramine at a dose of 6-8 
mg/kg/day for 28 days. Imipramine-treated mice (n=13) differed from control mice (saline; n=11) only in the 
novel FST parameters strategy (B), total activity (C), and time to change swim strategy (E), but not in 
classical parameters of behavioral despair, such as immobility (A), nor in the latency to first float (D). # 
P<0.1, * P<0.05. 
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Figure S3. Effect of low chronic imipramine on locomotor and anxiety parameters of C57BL/6J 
mice. An osmotic minipump was placed subcutaneously 26 days before the test and delivered imipramine 
at a dose of 6-8 mg/kg/day for 28 days. Imipramine-treated mice (n=13) did not differ statistically (P<0.05) 
from control mice (saline; n=11) in open field behavior determined by the time spent in the center (A), 
frequency in the center (B), total distance moved (C), nor in elevated plus maze behavior such as 
frequency of the open arm visits (D) and duration on open arms (E). For the latter, only a trend was visible 
(P=0.176) towards reduced anxiety-like behavior. 
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Figure S4. Mouse strain differences in FST performance. A strain-specific effect (C57BL/6J mice 
(n=11), DBA/2J mice (n=10)) was apparent for immobility as measured traditionally during the last 4 min (A, 
left), as well as measured during the total 6-min test time (A, right). Novel parameters resulting from our 
automated analysis like strategy (i.e. activity over time displayed for fitted line segments shared by all mice 
within a group (i.c. up to ~ 200 sec), see Methods; B), total activity (C) and latency to first float (D) showed 
strain-specific differences, but not time to change swim strategy (E). *** P<0.001, ** P<0.01 and * P<0.05 
vs. C57BL/6J. 
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Figure S6. Long-term effects of 
hippocampal ketamine on 
exploration and anxiety-like 
behavior of C57BL/6J mice. 
Novelty exploration in the home 
cage was measured 6 h after 
dorsohippocampal injection of 
ketamine (0.25 µg; n=8) or saline 
(n=8) for log-normalized (ln) 
latency of exploration (A; P=0.443) 
and duration of exploration (B; * 
P=0.025). Two days after 
hippocampal injection of ketamine 
(0.25 µg; n=22) or saline (n=20), 
anxiety parameters as frequency 
open arms (C; P=0.116) and 
duration on the open arms (D; * 
P=0.044) were measured on the 
elevated plus maze. 
 

Figure S5. Acute and long-term effect of hippocampal ketamine on strategy of swim 
behavior. Bilateral dorsohippocampal injection of saline (n=6) or ketamine (0.25 µg, n=6-
8; 2.5 µg, n=8) were given 1 h (A) or 9 days (B) before the test. Ketamine treatment 
caused differences from saline controls with respect to swim strategy only in the 0.25 µg 
dose. The effect was highest acutely after ketamine injection (A). * P<0.05, # P<0.2 vs. 
saline. 
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Figure S7. Long-term effects of hippocampal ketamine injection on locomotion and contextual fear 
conditioning in C57BL/6J mice. Open field behavior was measured 1 day after hippocampal injection of 
ketamine (0.25 µg; n=22) or saline (n=20) for time spent in the center (A), frequency in the center (B), total 
distance moved (C), with no significant differences in either of the parameters measured. Contextual fear 
conditioning took place 5 days after hippocampal injection of ketamine (0.25 µg; n=8) or saline (n=8), and 
48 h later animals were tested for expression of fear memory. No significant differences were observed in 
inactivity (D) or exploration (E). Note that both groups expressed high levels of conditioned fear based on a 
substantially increased inactivity and reduced exploration.  
 



KETAMINE AND HIPPOCAMPAL AMPARS 
 

51	
  

Figure S8. Long-term effects of hippocampal ketamine on synaptic hippocampal glutamate 
receptors. Dorso-medial hippocampal synaptosome fractions of mice with dorsohippocampal injections of 
saline or ketamine (0.25 µg, n=6) were used for immunoblotting with glutamate receptor subunit antibodies; 
GluN1 (A), GluN2A (B), GluN2B (C), P-GluA1 (D), GluA1 (E), GluA2 (F). Typical examples of the immuno-
detected protein levels are shown for each treatment (saline, S and ketamine, K) mice, together with the 
coomassie-stained lower part of the gel to the right of each bar graph. ** P=0.007. 
 

 

 

Figure S9. Effect of TAT-GluA23Y 
peptide on locomotor activity. 
The GluA2 blocking peptide (3Y; 
n=9) and control peptide (3A; n=9) 
were injected 1 h before an open 
field test. The peptide had no 
effect on exploration (A) and 
activity (B).  
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Table S1. Statistical results of the FST performance of C57BL/6J mice with pharmacological 
interventions. ANOVA results (F- and P-value) and subsequent t-tests (P-value) for the acute effect of 
imipramine (8 and 16 mg/kg, i.p.), and the acute and long-term effect of local hippocampal infusion of 
ketamine (0.25 and 2.5 mg). Parameters measured (cf. Supplemental Figure 1) and P-values (<0.05, bold; 
<0.2, italics) are indicated. *Non-parametric test results (Kruskall-Wallis and Mann-Whitney U-test) are 
indicated. ‡Albeit significant or a trend towards significance, Kruskall-Wallis/ANOVA did not allow to 
perform post-hoc analysis. 
 

Forced Swim Test ANOVA  t-test  

30 min after Imipramine (i.p.) F-value 

(2,24) 

P-value P-value  

(8 mg/kg) 

P-value  

(16 mg/kg) 

Immobility_last minutes * 0.064 0.022‡ 0.606 

Immobility_total * 0.001 <0.001 0.001 

Total_activity 13.023 <0.001 0.00018 0.00026 

Latency_first_float 11.058 <0.001 0.00003 0.00284 

Time_strategy_change 5.850 <0.001 0.00795 0.00537 

 

1 h after local ketamine F-value 

(2,17) 

P-value P-value  

(0.25 µg) 

P-value  

(2.5 µg) 

Immobility_last minutes 4.041 0.037 0.0433 0.7025 

Immobility_total 5.542 0.014 0.0074 0.7182 

Total_activity 5.897 0.011 0.0123 0.4892 

Latency_first_float 1.138 0.344 0.2402 0.2574 

Time_strategy_change 4.957 0.020 0.0166 0.0434 

 

9 days after local ketamine F-value 

(2,21) 

P-value P-value  

(0.25 µg) 

P-value  

(2.5 µg) 

Immobility_last minutes 3.433 0.051 0.0370‡ 0.0528‡ 

Immobility_total 3.523 0.048 0.0123 0.1104 

Total_activity 0.672 0.521 0.2761 0.7887 

Latency_first_float 4.633 0.022 0.0364 0.0324 

Time_strategy_change 3.977 0.034 0.0020 0.2088 
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Table S2. Statistical results of the FST performance by imipramine and strain difference. Values of t-
tests (P-value) for the long-term effect of imipramine (6-8 mg/kg/day, s.c. in C57BL/6J mice) and the strain 
difference between C57BL/6J and DBA/2J mice. Parameters measured (cf. Supplemental Figure 1) and P-
values (<0.05, bold; <0.2, italics) are indicated. 
 

Forced Swim Test Imipramine (minipump) Strain difference 

 P-value P-value 

Immobility_last minutes 0.9876 0.0001 

Immobility_total 0.1984 0.0034 

Total_activity 0.0170 0.0074 

Latency_first_float 0.2546 0.0207 

Time_strategy_change 0.0280 0.9999 
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Table S3. Statistical results of anxiety tests and contextual fear conditioning performances after 
pharmacological intervention in C57BL/6J mice. T-test or Mann-Whitney U test (P-value) for the long-
term effect of imipramine (6-8 mg/kg/day, s.c. by minipump) and long-term effect of local hippocampal 
infusion of ketamine (0.25 mg). Parameters measured, time after insertion of a minipump or local injection, 
and P-values (<0.05, bold; <0.2, italics) are indicated. 
 

Anxiety & learning   t-test / MWU test 

Imipramine minipump days post 

minipump 

test parameter P-value 

Novelty exploration 13 Latency exploration 0.8308 

  Duration exploration 0.4012 

Open field 15 Duration center 0.9979 

  Frequency center 0.9321 

  Duration center 0.6753 

Elevated plus maze 16 Duration open arms 0.1755 

  Frequency open arms 0.4321 

Fear conditioning 19 Inactivity pre-shock 0.2312 

 19 Exploration pre-shock 0.3147 

 21 Inactivity 48 h post-shock 0.6858 

 

Local Ketamine days post 

Ketamine 

test parameter P-value (0.25 µg) 

Novelty exploration 0.25 Latency exploration 0.4427 

  Duration exploration 0.0250 

Open field 1 Duration center 0.2547 

  Frequency center 0.2232 

  Duration center 0.8578 

Elevated plus maze 2 Duration open arms 0.0440 

  Frequency open arms 0.1160 

Fear conditioning 5 Inactivity pre-shock 0.8749 

 5 Exploration pre-shock 0.4299 

 7 Inactivity 48 h post-shock 0.9056 
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Table S5. Statistical analyses of FST performance test after molecular intervention in C57BL/6J 
mice. T-tests (P-value) for the acute effect of local GluA2 endocytosis block using the GluA23Y peptide and 
GluA23A control peptide (15 pmol per side, 30 pmol total). Parameters measured (cf. Supplemental Figure 
1) and P-values (<0.05, bold) are indicated. 
 

Behavioral despair t-test 

1 h after local GluA2 endocytosis block P-value (30 pmol) 

Immobility_last minutes 0.0331 

Immobility_total 0.0210 

Total_activity 0.3508 

Latency_first_float 0.0004 

Time_strategy_change 0.9732 

 

Immunoblot analysis t-test 

Strain difference P-value 

GluA1 0.295 

GluA2 0.125 

GluN1 0.924 

GluN2A 0.013 

GluN2B 0.727 

 

9 days post local Ketamine P-value 

GluA1 0.675 

P-GluA1 0.007 

GluA2 0.928 

GluN1 0.398 

GluN2A 0.522 

GluN2B 0.585 

Table S4. Immunoblot analysis for 
hippocampal synaptic membrane 
glutamate receptor subunits. Statistical 
analyses for strain difference between 
C57BL/6J and DBA/2J mice (cf. Figure 3), 
and the long-term effects of local ketamine 
injection (0.25 µg). P-values (<0.05, bold) 
are indicated.  
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Abstract 
Cognitive functions, such as learning and memory are greatly affected by stress, but the 

synaptic changes causing these deficiencies are largely unknown. Therefore, we 

investigated hippocampus-dependent memory function and concomitant expression of 

synaptic glutamate receptors over time after social defeat stress in rats. Acutely, 24 hours 

after cessation of social defeat exposure (5 daily social defeat encounters), plasma 

corticosterone levels were increased 2.5 fold, and performance in a hippocampus-

dependent object place recognition task was significantly reduced. Moreover, this impaired 

spatial memory was associated with decreased synaptic expression of glutamate receptor 

subunits GluN1, GluN2B and GluA2 in the dorsal hippocampus. In addition, we found that 

glutamate receptor levels were unaltered 3 months after social defeat, whereas spatial 

memory performance remained impaired. Therefore, we conclude that different synaptic 

molecular mechanisms underlie memory impairment at the short and long term after social 

defeat stress. 
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Introduction 
Cognitive functions such as learning and memory are greatly affected by stress128. In 

humans, acute stress disrupts declarative memory retrieval for previously learned 

information42,129. Also, in stress-related psychiatric disorders, such as depression, decreased 

attention and spatial memory have been found130. In rodents, acute and chronic stress also 

disrupts spatial memory formation and retrieval40,41,131.  

The hippocampus is a medial temporal lobe structure implicated in the consolidation of 

declarative memory in humans and spatial memory in rodents132. Increased corticosterone 

after stress has been shown to alter hippocampal synaptic plasticity, and to affect spatial 

memory performance133. Stress and glucocorticoids have a profound influence on the two 

most well characterized forms of synaptic plasticity of the hippocampal CA1 region, i.e., 

long-term potentiation (LTP) and long-term depression (LTD), the proposed cellular 

substrates for learning and memory134.  

Stress hormones have been extensively studied and were shown to have facilitating or 

impairing effects on hippocampal physiology and memory37. Recent evidence shows that, on 

the short term, rapid, non-genomic effects of corticosterone are mediated via high-affinity 

mineralocorticoid receptors (MRs), which act to enhance alpha-amino-3-hydroxy-5-methyl-4 

isoxazolepropionic acid receptor (AMPAR) mobility135 and miniature evoked post-synaptic 

current (mEPSC) frequency136, and facilitate synaptic potentiation137. However, long-lasting 

effects (>1 hour) are mediated via genomic glucocorticoid receptors (GRs), which impair N-

methyl-D-aspartate receptor (NMDAR)-mediated LTP43 and facilitate LTD43,133. This 

hippocampal LTD has been shown to be necessary and sufficient to cause acute stress-

induced impairment of spatial memory retrieval and is dependent on GluN2B-containing 

NMDARs133. Similarly, acutely (~24 h) after chronic stress (>20 days exposure) spatial 

recognition memory has been repeatedly demonstrated to be impaired128.  

Thus, the degree through which stress alters spatial memory is dependent on many 

factors among which the severity and duration of the stressor, and the time between stress 

experience and behavioral assessment128,138. A persistent finding is that the time frame for 

chronic stress to influence performance is critical; for instance, a wire mesh restraint over a 

relatively long period (21 days) impaired spatial recognition on the Y-maze, but this restraint 

over a shorter time frame (5 – 10 days) was ineffective139.  

Here, we used a social defeat paradigm to assess short- and long term effects of a 

natural type of stressor. Social defeat stress was inflicted over a short 5-day period, and 

tested for its effects immediately thereafter or after a period of 3 months; socially defeated 

rats were individually housed from the first day of defeat onward. The repeated social defeat 
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stress as used here has previously been shown to reduce hippocampal LTP, and to increase 

LTD on the long-term (up to 9 months)140. In this study, we investigated both the direct and 

long-term effect of social defeat on glutamate receptor synaptic membrane expression in 

conjunction with the associated spatial memory deficits.  

 

Materials and methods 
Animals 

Male Wistar rats (Harlan, Horst, The Netherlands) 8 weeks of age and weighing 180–200 g 

at the time of arrival were initially socially housed (2 per cage) in Makrolon type IV cages 

(Tecniplast, Milan, Italy). Long-Evans male rats (Harlan, UK), weighing 300–350 g were 

used as residents for social defeat141. These animals were pair-housed with age-matched 

sterilized females in plastic cages (63 x 25 x 33 cm) located in a separate room. All animals 

were housed in a temperature-controlled room (21±1 °C) under regulated lighting conditions 

(lights on at 7:00 p.m. and off at 7:00 a.m.). Food and water were available ad libitum. All 

experimental manipulations were conducted during the dark phase (activity period) under a 

dim red light. All experiments were approved by the Animal Users Care Committee of the VU 

University Amsterdam.  

 

Experimental design and social defeat procedure 

Wistar rats (age ≥ 11 weeks) of the social defeat group were subjected to 5 days of social 

defeat stress and were then housed individually in macrolon class III cages from the first 

defeat onwards, as described before140,142. Control rats were housed in pairs. The social 

defeat procedure consisted of daily resident-intruder interaction sessions using dominant 

male Long-Evans rats. Control animals were daily handled. All behavioral, 

electrophysiological and molecular analyses were performed either 24 h (acute) or 3 months 

(long-term) after the last social defeat session. 

 

Corticosterone assay 

Corticosterone levels were measured as described previously142. In short, trunk blood 

samples were collected via decapitation between 9:00 am and 11:00 am. Samples were 

collected into a 7-mL heparin-coated tube (Greiner Bio-One, Monroe, North Carolina) and 

kept on ice. The samples were spun at 1000x g for 10 min. Plasma was decanted and 

stored at −80 °C until the assay was used. Levels of plasma corticosterone were assessed 

using a rat Glucocorticoid (GC) ELISA kit (Cusabio Biotech Co., LTD), according to the 

manufacturers instructions. 
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Recognition tests 

Recognition memory testing was conducted based on two previously reported tasks relying 

on spontaneous exploration of objects in an open field143,144. All testing was carried out in a 

rectangular arena, 79 x 57 surface area with 42 cm tall black walls. The box was surrounded 

by visual cues: computer light coming from the west side; a white wall (north); a metal rack 

(east side); and an open space where the experimenter was sitting (south). The arena was 

always placed inside the room at the same location and in the same orientation. All rats 

were habituated to the empty arena twice for 30 minutes on the two days preceding 

behavioral testing, as well as on the test day for 10 min and 1 min prior to the sample phase.  

Object-recognition task – Round or square aluminum bars were used as novel or 

familiar objects and were chosen using a pseudorandom protocol, balanced across 

treatment groups. In the 4-minute sample phase, rats were exposed to two identical objects 

(round or square metal bars) followed by a 15 min inter-trial interval (Supplemental Fig. 1). In 

the test trial, one object (chosen using a pseudorandom protocol, balanced across treatment 

groups) was replaced with a novel object and rats were allowed to explore both objects for 4 

minutes (Supplemental Fig. 1). The familiar object was a third copy of the two objects seen 

in the sample phase, to prevent possible carry-over of olfactory cues. Each session was 

recorded by a video camera suspended above the field and interfaced with a computerized 

tracking system using the ‘Viewer’ software package (BIOBSERVE, GmbH, Bonn, 

Germany). The nose of the rats was tracked by the ‘Viewer’ software and during both trials, 

the object exploration (defined as the time of the nose spent within 2 cm from the object) 

was measured for each object. Only rats that had accumulated at least 15 s of exploration at 

each object within the sample phase were included in the analysis (all but one tested met 

criteria). To further analyze object discrimination during the test trial, the discrimination index 

((novel-familiar)/(novel + familiar)) was calculated for each rat using the individual object-

exploration times recorded. 

Object-place task – For the 4-minute sample phase, rats always entered the testing box 

from the south, and were placed facing the south wall. Rats were exposed to two identical 

objects (round aluminum bars) followed by a 15 min inter-trial interval. During test trials, rats 

entered the box from the east or west side and were placed facing the east or west wall, 

respectively. Thus, for each trial, the entry point on the sample and test phases were 

different. In the test phase a third and fourth copy of the same object were placed back in 

the arena, one in a familiar corner and one in a novel corner. The location of the novel 

object-place configuration was counterbalanced such that on each trial different corners 

were used as familiar and novel locations. Rats were now only able to discriminate between 
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objects based on their location with respect to its surrounding. Further analysis of 

discrimination was the same as for the object recognition task.  

 

Tissue preparation  

Following decapitation, brains were removed and rapidly frozen in ice-cold isopentane and 

stored at –80 °C until further use. The dorsal hippocampus (Bregma: –2.56 till –5.0) was 

removed freehand at –20 °C from 1-mm-thick slices. Synaptic membrane fractions were 

isolated for every hippocampus (left and right pooled). Samples were homogenized in ice-

cold 0.32 M sucrose (5% of homogenate was collected as total cell lysate) and then 

centrifuged at 1000 g for 10 min. The supernatant was loaded on top of a sucrose gradient 

consisting of 0.8 and 1.2 M sucrose. After centrifugation at 100,000 g for 2 h, the 

synaptosome fraction at the interface of 0.85/1.2 M sucrose was collected and then lysed in 

hypotonic solution. The resulting synaptic membrane fraction was recovered by 

centrifugation using the sucrose step gradient as stated above. The synaptic membrane 

fraction was collected from the 0.85/1.2 M interface and protein concentrations were 

determined using a Bradford assay (Bio-Rad, Hercules, CA, USA).  

 

Immunoblotting 

Synaptic membranes of the dorsal hippocampus were isolated from two independent groups 

of animals (n=6 each) per time point. Samples (3 – 5 µg) were lysed in Laemli lysis buffer, 

separated by electophoresis on a Criterion 10.5 – 14% Tris-HCl sodium dodecyl sulfate-

polyacrylamide precast gel and blotted onto a polyvinylidene difluoride membrane (Bio-Rad 

Laboratories) as described before145. All antibodies were checked for specificity, i.e. whether 

they showed a band at the designated height on Western blot. The following antibodies were 

used:  mouse anti- PSD95, (NeuromAB; 1:5000), mouse anti-GluN1 (BD Biosciences; 

1:1000), rabbit anti-GluN2A (Abcam, 1:1000), mouse anti-GluN2B (NeuroMab, 1:1000), 

rabbit anti-GluA1 (GenScript, 1:1000), mouse anti-GluA2 (NeuroMab, 1:500).  

  

Statistics 

Determination of corticosterone levels (n=8 acute; n=6 long-term), behavioral assessments 

(n=12), and molecular analysis (n=6 in both experiments) were performed in independent 

groups of animals for each of the time points addressed. Physiological parameters were 

assessed in all experimental animals (n=32 acute, n=24 long-term). Significant differences 

between stress and control groups was determined by unpaired, two-tailed, Student’s T-

tests. 
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Results 
 

Effect of repeated social defeat on physiological parameters 

Social defeat stress resulted in a 2.5 fold increase in plasma corticosterone levels 24 hours 

after the last social defeat exposure (Fig. 1A, P=0.0023). These levels were back to normal 

at 3 months after social defeat, and there was no difference between treatment groups. The 

acute effect of social defeat was also evident by a decrease in body weight (Fig. 1B, 

P<0.001), and a decrease in food- (Fig. 1C, P<0.001) and water consumption (Fig. 1D, 

Figure 1. Social defeat stress affects physiological parameters. Either acute (24 h) or long-term (3 
months) after the last social defeat encounter various physiological parameters were measured. 
Acutely after social defeat stress, plasma corticosterone levels (n=8) were increased (A), and body 
weight (B), food intake (C), and daily water intake (n=32) (D) were decreased. All these parameters 
were normalized at 3 months after social defeat (n=24). Data presented are mean+SEM. Unpaired, 
two-tailed, Student’s t-test: **P<0.01, ***P<0.001. 
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P<0.001). All of these physiological parameters were back to normal at 3 months after social 

defeat. Previously described age-related differences in corticosterone-levels were observed 

(P<0.001)146, as well as age-related increases in body weight (Fig. 1A,B). 

 

Object-place memory is reduced short and long-term after social defeat stress 

To test whether repeated social defeat stress affected hippocampus-dependent and/or 

hippocampus-independent memory, object place recognition and novel object recognition 

tests were performed, respectively (Langston and Wood 2009). For both tests, during the 

sample trials, two similar objects were explored equally for the different treatment groups. In 

the object-place recognition test, control rats showed place recognition by having a 

preference for the object placed in the novel location. This spatial memory was significantly 

reduced acutely after social defeat stress (Fig. 2A, P=0.038). Interestingly, this 

hippocampus-dependent cognitive deficit was still present 3 months after social defeat 

(P=0.0034). At this stage, depressive-like phenotypes in the affective domain were also 

present in this paradigm33, indicative of a multi-layered phenotype. In contrast, in the object 

recognition test, both the acute and the long-term social defeat groups did not differ from 

their controls in the test-phase (Fig. 2B), suggesting that this form of hippocampus-

independent memory was still intact. Interestingly, hippocampus-dependent processing in 

the object-place task seemed prone to ageing, although this effect was not significant 

(P=0.11). 

 

Changes in synaptic expression of glutamate receptor subunits in the dorsal hippocampus 

short after social defeat stress 

Reduced spatial memory performance is caused by altered synaptic plasticity at excitatory 

neurons of the dorsal hippocampus43. Therefore, it is of interest to investigate whether 

glutamate receptors, mediating hippocampal synaptic plasticity, are involved in the observed 

social defeat stress-induced impairment in spatial memory performance. We compared the 

expression of ionotropic glutamate receptors in dorsal hippocampal synaptic membrane 

fractions using quantitative immunoblot analysis (Supplemental Fig. 1). This revealed 

significantly lower levels of two NMDAR subunits, namely GluN1 (P<0.001) and GluN2B 

(P=0.048), acutely after social defeat stress (Fig. 3A). Synaptic expression of GluN2A was 

unaffected. Also, synaptic expression of the AMPAR receptor subunit GluA2 was lower (Fig. 

3B, P=0.035), while GluA1 was unaffected. The change in expression of these subunits in 

synaptic membrane fractions was validated in an independent set of rats. The expression of 

the synaptic scaffold protein PSD-95 did not change after social defeat (Fig. 3B).  
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 We then measured the expression of synaptic glutamate receptor subunits 3 months 

after social defeat stress. Despite the reported change in LTP at this moment140, we did not 

find any change in levels of the glutamate receptor subunits, nor in the level of PSD-95 (Fig. 

3). 

 

Discussion 
Here, we show that repeated social defeat stress for 5 consecutive days resulted in a 

hypothalamic-pituitary-adrenal (HPA) axis response, expressed by an increase in plasma 

levels of the stress hormone corticosterone 24 hours after cessation of the stressor. This 5-

day social defeat exposure also reduced performance in a hippocampus dependent spatial 

memory task, and this was associated with reduced synaptic expression of the glutamatergic 

receptor subunits GluN1, GluN2B and GluA2. However, long-term after social defeat the 

Figure 2. Repeated social defeat impairs 
spatial memory performance. Either acute 
(24 h) or long-term (3 months) after the last 
social defeat encounter object place recognition 
(A) and objects recognition (B) were assessed 
during the test phase. (A) Social defeat stress 
significantly suppressed object place 
recognition both acutely as well as long after 
social defeat. Note the difference in task 
performance between 3-month vs. 6-month old 
rats. (B) Social defeat stress did not affect 
performance on object recognition in either 
group. Data presented are mean+SEM of the 
discrimination index; n=12 for all groups. 
Unpaired, two-tailed, Student’s t-test: *P<0.05.  
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spatial memory deficit remained in the absence of elevated corticosterone levels and 

changed glutamate receptor expression. 

Synaptic expression of GluN1, GluN2B and GluA2 is reduced acutely after social defeat 

stress, and associated with the deficit in spatial memory performance. Since GluA2 

endocytosis underlies NMDAR-induced LTD124,147, it is likely that the reduction in synaptic 

GluA2 expression acutely after repeated social defeat stress induces hippocampal CA1 

LTD. This in turn might contribute to the observed memory impairments. The regulation of 

GluN1 and GluN2B levels acutely after social defeat stress is less straightforward to explain, 

especially since the number and subunit composition of synaptic NMDARs have long been 

considered to be quite static148. However, recent evidence shows that neuronal activity 

drives NMDAR synaptic targeting and incorporation, receptor retrieval, and lateral diffusion 

between synaptic and extrasynaptic sites149. An emerging concept is that activity-dependent, 

bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful 

mechanism for the regulation of synaptic efficacy and remodeling. Indeed, it has been 

shown that alterations in NMDAR number and/or subunit composition contribute to the 

expression mechanisms of LTP (NMDAR-LTP)150 and LTD (NMDAR-LTD)151. Low frequency 

stimulation and mGluR group I agonists induce NMDAR-LTD at CA1 synapses in 

hippocampal slices and the internalization of NMDARs in hippocampal neurons152. This 

might explain the reduced synaptic expression of GluN1 and GluN2B directly after social 

defeat stress. Alternatively, synaptic over-activation, accelerating the turnover rate of a 

subset of receptor subunits, such as GluN1 and GluN2B, may change the relative 

abundance of these subunits and decrease their levels in highly active synapses153.  

Stress-induced alterations in NMDAR-mediated synaptic strength are of great interest in 

that they involve potentiation of the plasticity trigger itself and, as such, would be expected to 

critically influence metaplasticity. This supports the current view37 of stress-induced plasticity 

in which on the short term stress-induced hormones facilitate strengthening of contacts 

involved in the formation of memories directly associated to the stressor. As such a mild 

stressor enables avoidance learning of stressful associations. However, high levels of 

corticosterone and severe chronic stress suppress hippocampal LTP and promote LTD, with 

a delay of at least an hour. This would lead to an increased threshold for synaptic 

strengthening of input from other sources, thereby dampening the aversive learning process. 

Here, we show that repeated social defeat stress decreased expression of specific NMDA 

and AMPA receptor subunits. This might potentially underlie the process of metaplasticity 

and affect hippocampus-dependent learning.  
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We found that differences in levels of glutamate receptors were absent months after 

social defeat. However, at this time point hippocampus-dependent spatial memory function 

was still impaired. Also, previously it was shown that at this time point hippocampal LTP was 

affected140. Thus, despite the changes in hippocampal physiology and hippocampus-

dependent task performance, the plasticity of ionotropic glutamate receptors expression at 

the synaptic membrane is not affected. There are several possible explanations for this 

outcome. For example, glutamate receptors, or their interacting proteins, may have 

undergone persistent posttranslational modifications that were not studied here. In particular, 

more in depth molecular analysis of the hippocampal synaptic proteome of rats 3 months 

Figure 3. Repeated social defeat stress alters synaptic expression of Glutamate receptor 
subunits in the dorsal hippocampus. Either acute (24 h) or long-term (3 months) after the last social 
defeat encounter the dorsal hippocampus was dissected for synaptic membrane proteome analysis. (A 
– F) Quantitative Western blot analysis of glutamate receptor subunits revealed a downregulation of 
NMDA receptor subunits GluN1 (A) and GluN2B (C), while GluN2A was unaffected (B) acutely after 
social defeat stress, with no differences long-term after social defeat. In addition, GluA2 was 
downregulated (E), while GluA1 was unaffected (D) acutely after social defeat stress, with no 
differences long-term after social defeat. The marker of the postsynaptic density PSD-95 was 
unaffected at any time point after social defeat stress (F). Data presented are mean+SEM; n=6 for all 
groups. Unpaired, two-tailed, Student’s t-test: *P<0.05, ***P<0.001.  
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after social defeat may shed light on this. Alternatively, these effects could be caused by 

changes in hippocampal circuitry, such as altered neuronal morphology or reduced 

neurogenesis18,36,142). Taken together, these results show that different synaptic mechanisms 

are involved in deficits in hippocampal plasticity and spatial memory performance long and 

short after social defeat stress. 
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Abstract 
Depressed patients often persistently suffer from comorbid cognitive impairments, such as 

deficits in explicit memory. Here, we modeled persistent affective depression symptoms and 

memory deficits in a social defeat paradigm in rats. We found that hippocampus-dependent 

cognitive impairments were still apparent three months after social defeat stress. This 

maintenance phase of depression was characterized by increased levels of the Na,K 

ATPase subunit AT1B2 in hippocampal synapses and by a reduced potential to evoke 

hippocampal CA1 long-term potentiation (LTP). The antidepressant imipramine normalized 

the level of AT1B2 and rescued the hippocampal LTP deficit and cognitive decline. Most 

importantly, we found that behavioral therapy, consisting of daily housing in an enriched 

environment for one hour, thereby modeling positive activities and exercise, was just as 

effective as imipramine treatment in relieving all molecular, cellular and behavioral aspects 

of the depression-like state. 
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Introduction 

Major depressive disorder (MDD) is a complex neuropsychiatric syndrome. Although MDD is 

most markedly typified as a mood disorder, with strong affective symptoms, most MDD 

patients suffer from associated cognitive impairments, such as disturbances in explicit and 

spatial memory16,130. Thus, MDD has debilitating properties both in the affective and 

cognitive domains, eliciting questions concerning underlying mechanisms and adequate 

therapies.  

Stress is a potent causal factor in eliciting MDD. Over the years, compelling evidence 

has linked cognitive deficits in MDD to reduced hippocampal volume12,154, and impaired 

hippocampal function155. In line with this, rodent models of depression involving acute stress 

showed morphological changes in the hippocampus, e.g., neuronal atrophy and reduced 

neurogenesis, plasticity changes, e.g., reduced long-term potentiation (LTP), and stress-

induced reduction of dorsal hippocampus-dependent spatial learning (reviewed in35,156. 

However, paradigms with clinical validity, modeling and examining the maintenance phase 

of depression weeks to months after initial stress exposure, are scarce. To assess the long-

term effects of stress exposure on cognitive function, to reveal its underlying synaptic 

mechanisms, and to investigate treatment options, we adopted a social defeat paradigm in 

rats, in which five daily encounters of social defeat were followed by individual housing for a 

period of 12 weeks33. This particularly enabled us to model long-term stress effects, as 

social isolation would appear to be particularly relevant to certain subtypes of human 

depression157, and moreover, a combination of active and passive stress has strong 

precipitating effects on the development of the disease84. Importantly, the majority of stress 

stimuli that lead to MDD are of psychosocial nature82, 

This stress paradigm has been shown to cause insensitivity to rewards33, resulting in 

impaired reward anticipation behavior indicative of an anhedonic state, a core symptom of 

depression, that can be counteracted by chronic antidepressant therapy141. In the present 

study, the long-term effects of social defeat stress on dorsal hippocampus-dependent 

cognitive performance were addressed. We examined the cellular plasticity mechanisms 

contributing to these impairments, and we investigated the changes in the synaptic 

proteome long after social defeat stress exposure. Since in humans, physical exercise and 

positive psychosocial activities can improve cognitive function, reduce depressive symptoms 

and increase stress resiliency158, we questioned whether, next to pharmacotherapy, 

behavioral therapy would alleviate impairments in the social defeat paradigm at the 

molecular, cellular and behavioral level.  
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Materials and methods 
 

Animals 

Male Wistar rats (Harlan, Horst, The Netherlands) 8 weeks of age, weighing 180–200 g at 

the time of arrival were initially socially housed (2 per cage) in Makrolon type IV cages 

(Tecniplast, Milan, Italy) in a temperature-controlled room (21±1 °C) under regulated lighting 

conditions (lights on at 7:00 p.m. and off at 7:00 a.m.). Food and water were available ad 

libitum. Long-Evans male rats (Harlan, UK), weighing 300–350 g were used as residents for 

social defeat141. These animals were pair-housed with age-matched sterilized females in 

plastic cages (63 x 25 x 33 cm) located in a separate room. Housing conditions were the 

same as for Wistar rats. All experimental manipulations were conducted during the dark 

phase (activity period) under a dim red light. All experiments were approved by the Animal 

Users Care Committee of the VU University Amsterdam.  

 

Experimental design and treatment 

Wistar rats (age ≥ 11 weeks) of the social defeat group were subjected to 5 days of social 

defeat stress and were then housed individually for three months in macrolon class III cages 

from the first defeat onwards, as described before140 (Supplemental Fig. 1). Control rats 

were housed in pairs. The social defeat procedure consisted of daily resident–intruder 

interaction sessions using dominant male Long-Evans rats for five consecutive days. Control 

animals were handled daily. 

During the last three weeks of this social isolation, rats were treated by gavage 

administration of the antidepressant imipramine (20 mg/kg per 0.5 ml water; Sigma- Aldrich, 

Germany), behavioral therapy (BT), consisting of housing in an enriched environment for 

one hour every day, or water as control. This 2 x 3 design resulted in six experimental 

groups: (1) control rats with water (Control+H20), (2) control animals with chronic imipramine 

treatment (Control+IMI), (3) control animals with BT (Control+BT), (4) socially defeated 

animals with water (Defeat+H20), (5) socially defeated animals with chronic imipramine 

treatment (Defeat+IMI), and (6) socially defeated animals with BT (Defeat+BT). All 

behavioral, electrophysiological and molecular analyses were performed at the end of 

treatment, unless stated otherwise.  

 

Reward anticipatory behavior 

A classical Pavlovian conditioning setup was used to investigate anticipatory behavior, as 

described earlier140. To investigate the behavioral response to the conditioning stimulus 
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(repetitive sound (keyboard) and light flashes (three times)), animals were observed before 

training (trial 0) to determine baseline activity, and again after 35 training trials of pairing with 

a 5% sucrose-reward, using the computer program ‘The Observer’ (Noldus Information 

Technology, Wageningen, The Netherlands). The researcher who analyzed the behavioral 

data had no knowledge of the experimental groups. Differences in activity (reflected by 

frequency or transitions of behavioral elements) displayed before training compared with 

those after training were used as parameter for reward anticipation. 

 

Sucrose preference 

The preference for sucrose (5%) was measured in a two-bottle (sucrose and water) 

consumption test. Consumption was assessed after 24 h by reweighing the pre-weighted 

bottles. After 2 days, the consumption test was repeated. In case of social housing, 

consumption for each subject was set to half of the total consumption. Sucrose preference 

was expressed as the increase in consumption (gram) relative to water (gram), and this 

difference was represented as percentage of the total consumption (gram) [100% x (Δ 

sucrose–water)/total volume sucrose and water consumed]. 

 

Recognition tests 

Recognition memory testing was conducted based on two previously reported tasks relying 

on spontaneous exploration of objects in an open field143,144. All testing was carried out in a 

rectangular arena, 79 x 57 in surface with 42 cm tall black walls. The box was surrounded by 

visual cues: computer light coming from the west side; a white wall (north); a metal rack 

(east side); and an open space where the experimenter was sitting (south). The arena was 

always placed inside the room at the same location and in the same orientation. All rats 

were habituated to the empty arena twice for 30 minutes on the two days preceding 

behavioral testing, as well as on the test day for 10 min and 1 min prior to the sample phase.  

Object-recognition task – Round or square aluminum bars were used as novel or 

familiar objects and were chosen using a pseudorandom protocol, balanced across 

treatment groups. In the 4-minute sample phase, rats were exposed to two identical objects 

(round or square metal bars) followed by a 15 min inter-trial interval (Supplemental Fig. 2). In 

the test trial, one object (chosen using a pseudorandom protocol, balanced across treatment 

groups) was replaced with a novel object and rats were allowed to explore both objects for 4 

minutes (Supplemental Fig. 2). The familiar object was a third copy of the two objects seen 

in the sample phase, to prevent possible carry-over of olfactory cues. Each session was 

recorded by a video camera suspended above the field and interfaced with a computerized 
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tracking system using the ‘Viewer’ software package (BIOBSERVE, GmbH, Bonn, 

Germany). The nose of the rats was tracked by the ‘Viewer’ software and during both trials, 

the object exploration (defined as the time of the nose spent within 2 cm from the object) 

was measured for each object. Only rats that had accumulated at least 15 s of exploration at 

each object within the sample phase were included in the analysis (all but one tested met 

criteria). To further analyze object discrimination during the test trial, the discrimination index 

((novel-familiar)/(novel + familiar)) was calculated for each rat using the individual object-

exploration times recorded. 

‘Allocentric’ object-place task – For the 4-minute sample phase, rats always entered the 

testing box from the south, and were placed facing the south wall. Rats were exposed to two 

identical objects (round aluminum bars) followed by a 15 min inter-trial interval. During test 

trials, rats entered the box from the east or west side and were placed facing the east or 

west wall, respectively. Thus, for each trial, the entry point on the sample and test phases 

were different. In the test phase a third and fourth copy of the same object were placed back 

in the arena: one in a familiar corner and one in a novel corner (Supplemental Fig. 2). The 

location of the novel object-place configuration was counterbalanced such that on each trial 

different corners were used as familiar and novel locations. Rats were now only able to 

discriminate between objects based on their location with respect to its surrounding. Further 

analysis of discrimination was the same as for the object recognition task.   

 

Long-term potentiation (LTP) measurements 

Rats were sacrificed by decapitation. Subsequently, brains were rapidly removed, and 

placed in ice-cold artificial cerebrospinal fluid (ACSF; in mM: NaCl 124, KCl 3.3, KH2PO4 1.2, 

MgSO4 1.3, CaCl2 2.5, NaHCO3 20 and Glucose 10.0, constantly gassed with 95% O2/5% 

CO2). Horizontal hippocampal slices were cut on a vibrating microtome at 400 µm thickness 

and then placed in a submerged-style holding chamber in ACSF, bubbled with carbogen 

(95% O2, 5% CO2). Slices were allowed to recover for 1 hour following slicing. A planar 

multi-electrode recording setup  (MED64 system, Alpha Med Sciences Co., Ltd, Tokyo, 

Japan) was employed to record the field excitatory post-synaptic potential (fEPSP), and to 

study LTP as described in159(see supplemental materials and methods). 

 

iTRAQ-based Proteomics 

To analyze differential expression of hippocampal synaptic membrane proteins between 

experimental groups, quantitative iTRAQ proteomics was performed. To this end, tissue 

preparation, iTRAQ labeling, two-dimensional liquid chromatography, MS⁄MS and protein 
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identification and quantification were performed as described previously145,160 (see 

supplemental materials and methods). 

  

Immunoblotting 

The total homogenate and synaptic membranes of the dorsal hippocampus was isolated 

from an independent group of animals (n=6) as compared to those used in iTRAQ. Samples 

(3 – 5 µg) were lysed in Laemli lysis buffer, separated by electophoresis on a Criterion 10.5–

14% Tris-HCl sodium dodecyl sulfate-polyacrylamide precast gel (Bio Rad Laboratories), 

and blotted as described before145. The following antibodies were used: mouse anti-β-CaM 

Kinase II (ZYMED Laboratories; 1:1000), mouse anti-Sodium/potassium-transporting 

ATPase subunit beta-2 (Santa Cruz, 1:5000), mouse anti-Caseine Kinase IIβ (Santa Cruz, 

Figure 1. Social defeat impacts on cognitive and affective behavioral tasks. (A) Discrimination 
index during the test phase of an allocentric object place task. The social defeat paradigm (social 
defeat) significantly suppressed spatial memory performance, whereas behavioral therapy (BT) and 
imipramine treatment (IMI) reversed this long-term stress-induced effect (treatment F(1,47)=5.30, 
P=0.008;. n=12 for al experimental groups). (B) Discrimination index during the test phase of a novel 
object recognition task. Social defeat does not affect performance on this task. (C) Anticipation towards 
5% sucrose expressed as the difference in activity in the CS-US interval post-training compared with 
pre-training. Social defeat significantly suppressed reward anticipation, whereas behavioral therapy and 
imipramine treatment reversed this effect (defeat x treatment interaction F(1,33)=5.48, P=0.0093). (D) 
Sucrose preference. Social defeat does not affect sucrose preference (sucrose intake – water 
intake)/total fluid intake (%). Data is presented as mean ± SEM. LSD Post hoc: *P<0.05, **P<0.001. 
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1:1000), mouse anti-cAMP-dependent protein kinase catalytic subunit alpha (PKA) (Santa 

Cruz 1:1000).  

 

Statistical analysis 

The iTRAQ-based proteomics was performed in six biological independent experiments. 

Proper correction for multiple measurements was carried out in the R computing 

environment (1.81, Raqua) using the Linear models for Microarray data package161 (Limma, 

1.3.13), which is part of the Bioconductor project162 (http://www.Bioconductor.org) with 

adjusted P-values163. For all other data, statistical analysis was performed using SPSS18.0. 

All results are expressed as group means ± SEM. Treatment effects were assessed with 

two-way analysis of variance (ANOVA), followed by Least-square difference (LSD) post-hoc 

analyses. 

 

 

Results 
 
Social defeat results in hippocampus-dependent cognitive impairments 

Using a model of the maintenance phase of depression, in which 5 daily social defeat 

sessions were followed by individual housing for 12 weeks (Supplemental Fig. 1), we tested 

recognition memory based on spatial position and novelty of the object144 (Supplemental Fig. 

2). Social defeat decreased performance in the hippocampus-dependent object-place 

memory task (P=0.0034; Fig. 1A). Pharmacotherapy, in the form of imipramine treatment 

only during the last three weeks of the paradigm (Supplemental Fig. 1) was able to reverse 

this deficit, illustrating the predictive value of this model as antidepressants can also restore 

cognitive deficits in depressed patients63. Similarly, behavioral therapy (1 h daily enriched 

housing) was able to completely reverse these cognitive deficits (Fig. 1A), showing the 

potential of this type of treatment. Pharmacological and behavioral therapies had no effect in 

control animals. Socially stressed rats showed no difference in object-recognition, a task that 

is hippocampus-independent. Also there was no effect of treatment in control groups in this 

task (Fig. 1B). Thus novelty preference and discriminative ability were similar among all 

groups. 

We confirmed that socially defeated rats display a deficit in the affective domain, i.e. an 

anhedonic phenotype33,140,141, as shown by a reduced anticipation towards a 5 % sucrose 

solution compared with control rats (P=0.0034). This increase in anhedonia was reversed to 

control levels by behavioral therapy (Fig. 1C). In addition, a similar reversal was observed 
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for the chronic administration of imipramine141. Neither treatment in control animals had an 

effect on anticipation towards 5 % sucrose. As reported previously, this long-term social 

defeat paradigm had no significant effect on sucrose preference164, and no side effects were 

observed by behavioral therapy or imipramine (all F(1,30)<0.2, P>0.80, Fig. 1B). Also, no 

difference in plasma corticosterone levels was observed between any of the groups (all F(1, 

30)<0.2, P>0.90, Supplemental Fig. 3), indicative of the absence of an acute stressor.  

 

Reduction in LTP by long-term social stress is reversed by imipramine and behavioral 
therapy 
As imipramine treatment and behavioral therapy were both capable of rescuing cognitive 

performance on a hippocampal-dependent memory task, we questioned whether behavioral 

therapy was able to recover reduced LTP in this long-term social defeat paradigm140. Using 

Figure 2. Effect of long-term 
social stress on LTP in the CA1 
of the dorsal hippocampus. (A) 
Coronal section of the dorsal 
hippocampus on a MED64 
electrode array. An electrode in 
the Schaffer collateral pathway 
(white) was used as stimulating 
electrode. Field potentials were 
recorded and averaged for the 
electrodes in the dendritic field of 
CA1 (marked x). (B) 
Representative traces from one 
experiment recorded before (gray) 
and after (black) LTP induction. 
(C) Time course of percentage 
change in fEPSP measured before 
and after HFS (arrow). (D) Change 
in fEPSP 50 min after LTP 
induction (gray indicated in C). 
Social defeat significantly 
suppressed CA1 LTP, whereas 
behavioral therapy (BT) and 
imipramine treatment (IMI) 
reversed this effect (defeat: 
F(1,45)=4.08, P=0.049; treatment: 
F(1,45)=3.96, P=0.026; n=6 for al 
experimental groups). Data is 
presented as mean ± SEM. LSD 
Post hoc *P<0.05, **P<0.001. 
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a microelectrode array in the Schafer collateral pathway going from CA3 to CA1 subfields of 

the dorsal hippocampus (Fig. 2A) we applied a tetanus of field potentials. In control rats, 

average spike amplitude was increased to a response of 113% in CA1 at 50 min after LTP 

induction (Fig. 2C). LTP was significantly reduced after social defeat (P=0.019). This 

reduced potential to elicit full LTP in socially defeated rats was reversed to control levels by 

both imipramine and behavioral therapy. Imipramine treatment in controls slightly enhanced 

LTP, whereas behavioral therapy alone had no side effect on LTP maintenance. 
LTP is well-known to be dependent on a the subunit-specific regulation of the AMPARs, 

during initiation and maintenance phases. In various paradigms, stress has been shown to 

impact directly on the basal levels of AMPAR subunits, thereby modulating LTP induction 

and maintenance43,165,166. Also, we find that immediately after social defeat AMPAR subunits 

are regulated (See Chapter 3, Fig. 3). Thus a straightforward explanation of the fact that, 

long after social defeat stress, LTP induction is impaired is that synaptic AMPAR levels are 

not at baseline. However, in contrast we find that synaptic expression of the glutamate 

receptor subunits is normal at this time point (See Chapter 3, Fig. 3). These results 

prompted us to further investigate the synaptic proteome long after social defeat stress and 

investigate alternative modes of synaptic modulation. 

 

Reduced spatial performance and CA1 LTP are associated with an increased synaptic 
expression of AT1B2 
To reveal the molecular basis of synaptic plasticity dysfunction that underlies decreased 

spatial memory after social defeat stress, we compared the proteomes of hippocampal 

synaptic membrane fractions of socially stressed and control rats. We used iTRAQ labeling 

of tryptic digests of synaptic proteins, separated these with 2D LC, and identified and 

quantified peptides using MS/MS (Supplemental Fig. 4). Previously, we used this method to 

detect subtle changes in synaptic membrane protein abundances in other animal models of 

disease145,167. In total, 382 proteins were identified with at least 3 distinct peptides with a 

confidence of ≥ 95% present among experimental groups (data not shown). To correct for 

multiple measurements P-values were adjusted to control for the false discovery rate163. Five 

proteins were significantly regulated (adjusted P-value <0.05) after social defeat stress 

(Supplemental Table 1). Differential expression of three of these proteins was confirmed by 

quantitative immunoblotting in the same sample set (Supplemental Fig. 5, middle panel); 

Sodium/potassium-transporting ATPase subunit beta-2 (AT1B2), cAMP-dependent protein 

kinase catalytic subunit alpha (PKAα), and Casein kinase II subunit beta (CSK2B). Of these 

three proteins AT1B2 was confirmed as upregulated (51%) by social defeat in a biologically 
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Figure 3. Long-term social stress increases 
synaptic expression of AT1B2 in the dorsal 
hippocampus. At the end of treatment, the dorsal 
hippocampus was dissected for synaptic membrane 
proteomics analysis. (A) Quantification of iTRAQ 
reagents revealed a significant higher levels of 
AT1B2 after long-term social stress (social defeat). 
Behavioral therapy (BT), and imipramine treatment 
(IMI) reversed the stress-induced increase in 
synaptic expression of AT1B2 (stress F(1,33)=8.05, 
P=0.009; treatment F(1,45)=8.58, P=0.002;, stress 
x treatment interaction F(1,33)=8.97, P=0.001; see 
Supplemental Table 1 for adjusted p-values; n=6 for 
al experimental groups.) (B) Regulated synaptic 
expression of AT1B2 was validated in an 
independent set of rats by quantitative immunoblot 
analysis (stress x treatment interaction: 
F(1,45)=4.08, P=0.049; n=8 for al experimental 
groups). Insets: representative example of 
immunoblots showing the regulated synaptic 
expression of AT1B2 (45 kDa). Data is presented 
as mean ± SEM. LSD Post hoc: *P< 0.05, **P< 
0.01, ***P< 0.001.  
 

independent set of animals (P=0.007; Fig. 3B, Supplemental Fig. 5, lower panel). At the level 

of gene expression there was a trend for downregulation of this transcript (P=0.133; 16%). 

To substantiate that dysregulation of AT1B2 is associated with the animal’s depressed 

state, we measured the effects of both imipramine treatment and behavioral therapy on 

AT1B2 levels. Indeed, we found that both treatments normalized the increased synaptic 

expression of AT1B2 after social stress, bringing it back to basal levels (Fig. 3A,B), with no 

additional effect of treatment alone. 

 

Discussion 
Cognitive deficits associated with human depression have been well-characterized168, with 

reductions in hippocampus-dependent declarative and spatial memory16,130. Recently a link 

between these reported cognitive impairments and hippocampal function was shown155, 

giving way to a hippocampus-dependent symptomatology of depression. In the present 

study, we showed that in a preclinical model of the maintenance phase of depression, 

impairments in the affective and cognitive domains are persisting over a long period of time. 

Because depressed patients still experience symptoms long after the cessation of stress 
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exposure82, the long-term social defeat model has a high level of both etiological- and face-

validity. Behavioral therapy was able to restore the social defeat-induced deficits from the 

molecular level all the way up to behavior, similar as achieved by pharmacotherapy using 

the tricyclic agent imipramine. This indicates that apart from having predictive validity, the 

present model might also have construct validity, i.e., at the level of the mechanism 

underlying cognitive core symptoms of MDD.  

The reduction in hippocampus dependent memory long after social defeat was found 

associated with a reduction in the capacity to elicit hippocampal CA1 LTP. This form of 

synaptic plasticity is known to involve plasticity of glutamate receptors. On the short term, 

stress-induced effects on LTP are dependent on NMDA receptors133 and insertion of AMPA 

receptors165,169. Also, stress hormones have been shown to regulate the mobility and 

postsynaptic membrane levels of AMPA receptors135. Accordingly, immediately after social 

defeat stress glutamate receptor levels are altered. However, here we show that the social 

defeat-induced impairment of LTP on the long term is not caused by pre-altered synaptic 

expression of glutamate receptor subunits, as their levels are not affected long after social 

defeat. Instead, our proteomics analysis showed the increased synaptic expression of a 

Na,K-ATPase subunit AT1B2 that might well influence the induction of LTP. Importantly, the 

reversal of AT1B2 to normal levels due to imipramine or behavioral therapy indicates that 

dysregulation of AT1B2 is indeed related to the disease phenotype. Taken together, our data 

suggests that on the long-term, different synaptic mechanisms are involved in causing LTP 

impairments when compared to acute stress.  

One might wonder whether the observed changes in the cognitive domain are a 

consequence of individual housing per se, because social isolation is considered a social 

stressor by itself83. However, at the end of the social defeat paradigm, stress hormone levels 

have normalized, indicative of the absence of acute stressors. Also, the social defeat-

induced changes in basal physiology, i.e. body weight and food/water intake, have already 

returned to basal levels during the isolation period (Supplemental Fig. 6). Moreover, we 

showed that hippocampal CA1 LTP is not affected by individual housing without previous 

social defeat (Supplemental Fig. 7). Thus individual housing after social defeat apparently 

does not result in a severe stress experience that affects basal physiology and neuronal 

plasticity.  

The observation that reduced CA1 LTP is associated with increased synaptic 

expression of AT1B2 has interesting implications for the molecular mechanism underling the 

cognitive deficits observed after social defeat. AT1B2 is a β subunit of the P-type Na,K 

ATPase family. The protein complex is a heterodimer composed of two subunits: the 
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catalytic α subunit that contains ATPase activity and the β subunit that regulates, through 

assembly of alpha/beta heterodimers, the number of sodium pumps transported to the 

plasma membrane170,171. Na,K ATPases are expressed throughout neurons, i.e., at neuronal 

cell bodies and dendrites, and are found enriched in synaptosomes172. They are membrane 

localized transporters responsible for active transport of Na+ and K+ ions across the plasma 

membrane, thereby generating a gradient responsible for the neuronal rest membrane 

potential, but also its repolarization after eliciting action potentials173. Increased levels of the 

regulatory subunit AT1B2 after social defeat on the presynaptic site, and hence increased 

numbers of Na+/K+ transporters, will lead to a faster clearance of Na+ ions from the synaptic 

spine and influx of K+ ions from the synaptic cleft (Fig. 4). Consequently, after generation of 

an action potential, increased pump activity will induce a faster repolarization, resulting in 

less glutamate release from the presynaptic site and longer after-hyperpolarization174. As a 

result, there will be less activation of postsynaptic glutamate receptors and thus less 

Figure 4. Model of the hippocampal synaptic adaptation after long-term social defeat stress 
associated with reduced LTP and impaired spatial memory. After social defeat stress and 
subsequent individual housing, the synaptic levels of subunit AT1B2 of the Na+/K+ transporter is 
increased by ~50%. This increased expression likely causes an increased transporter activity (shown 
by an increased number of ion pumps), thereby faster clearance of potassium from the synaptic cleft 
([Na+]i), and of sodium from the synaptic compartments ([K+]i). This causes faster membrane re-
polarization after firing of an action potential, and therefore less glutamate release and calcium influx. 
Together, increased levels of Na+/K+ transporter causes less plasticity in hippocampal synapses that 
might underlie impaired LTP. 
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induction of plasticity postsynaptically, reflected by reduced LTP. In line with presynaptic 

effects, increased numbers of Na+/K+ transporter post-synaptically will reduce building up a 

membrane depolarization, counteracting postsynaptic plasticity. The involvement of the 

Na+/K+ transporter in synaptic plasticity has been demonstrated in Leech and 

Drosophila170,174,175 

Other subunits of the Na,K ATPase complex, e.g., AT1A1 subunits, have been 

implicated in antidepressant response, i.e., the effect of lithium176 and in stress-induced 

animal models of depression177. In this perspective it is noteworthy that a trend of higher 

synaptic expression has been found for other subunits of this complex, e.g., AT1A2 

(P=0.095), AT1b1 (P=0.170; Supplemental Table 2). Also, most of these subunits show 

decreased levels of expression due to behavioral therapy, and to a lesser extent due to 

imipramine, in socially defeated animals. 

AT1B2 has been found regulated at the level of gene expression both in clinical and 

preclinical studies. Lower levels of AT1B2 transcript were observed in the hippocampus of 

depressed individuals178, as well as in the hippocampus of a genetic model of endogenous 

depression, i.e., the Wistar-Kyoto strains179), similar to the lower transcript levels observed in 

this study. However, we find the AT1B2 protein at higher levels in the synaptic membrane 

fraction, indicating that caution should be taken when translating gene expression data into 

synaptic protein levels and further into a clinical perspective. 

Our finding that the beneficial effects on cognitive domains of both chronic imipramine 

treatment and behavioral therapy are associated with a recovery to normal levels of synaptic 

AT1B2 holds important promises for intervention at Na,K ATPase-related mechanisms in the 

maintenance of depressive symptoms and their treatment. Obviously, application by 

pharmacological intervention at Na,K ATPases is complicated considering that after social 

defeat its expression was found only increased at synaptic sites and not in total cell lysates. 

Moreover, its ubiquitous expression throughout the body further precludes direct 

pharmacological interference. Fine-tuning the level of these transporters might be crucial, as 

too low levels could induce anxiety symptoms and increases stress-induced memory 

impairments in mice177.  

Behavioral therapy, consisting of housing in an enriched environment for one hour daily, 

thereby modeling positive activities and exercise, was effective in restoring stress-induced 

long-lasting cognitive impairments and its underlying cellular and molecular deficiencies. 

Also, in the affective domain, behavioral therapy restored the social defeat-induced 

reduction in reward anticipation (anhedonia). These findings, when translated to the human 

condition have important implications for treatment strategies in the clinic. Several forms of 
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psychotherapy –in particular, cognitive and behavioral therapies– were shown effective for 

patients with mild to moderate MDD180, and the combination of medication and 

psychotherapy can exert a synergistic effect. Our study implies that, in addition to 

pharmacological treatment, with often bearing negative side effects, another form of 

behavioral therapy, i.e. physical exercise, should be explored further as treatment option for 

depressed patients with cognitive impairments and anhedonia.  

 



CHAPTER 4 

86	
  

Supplemental material 
 
Material and methods 

 
Social isolation 

Wistar rats (age ≥ 11 weeks) of the social Isolation group were housed individually for three months in 

macrolon class III cages. Control rats were housed in pairs.  

 

Corticosterone assay 

Trunk blood samples were collected via decapitation between 9:00 am and 11:00 am. Samples were 

collected into a 7-mL heparin-coated tube (Greiner Bio-One, Monroe, North Carolina) and kept on ice. 

The samples were spun at 1000 x g for 10 min. Plasma was decanted and stored at −80 °C until the 

assay was used. Levels of serum corticosterone were assessed using a rat Glucocorticoid (GC) 

ELISA kit (Cusabio Biotech Co., LTD), according to the manufacturers instructions. 

 

LTP recording 

A planar multi-electrode recording setup (MED64 system, Alpha Med Sciences Co., Ltd, Tokyo, 

Japan) was employed to record the field excitatory post-synaptic potential (fEPSP), and to study LTP. 

The methodology has been described in detail elsewhere 159. Briefly, hippocampal slices were placed 

on special probes that were fabricated with 8 x 8 electrode arrays and pre-coated with 

polyethylenimine (PEI, Sigma). P210A probes (Alpha Med Sciences) with an inter-electrode distance 

of 100 µm were used. Correct placement of the electrodes at the CA3–CA1 region was done 

manually, monitored by a microscope (MIC-D, Olympus Ltd., Japan) (fig. 2A). Four slices per rat were 

studied simultaneously. Each slice was superfused by 100 ml oxygenated ACSF, which was 

recirculated at a flow rate of 2 ml/min. fEPSPs were recorded from multiple electrodes in the dendritic 

layer of CA1 neurons by choosing an electrode in the Schaffer collateral pathway as the stimulating 

electrode. Based on the stimulus–response curve, we chose a stimulation intensity that evoked the 

fEPSP with a magnitude of 50% of the maximum response (around 1 mV in most cases). We found 

that this setting was suitable for the induction of LTP in healthy slices in the setup. After allowing a 

stable baseline of 20 min, an induction protocol that evoked LTP was applied, which consisted of 2 

trains of 100 Hz stimulus that lasted for 1 s, separated by 10 seconds. The field potential response 

was recorded for 1 h after the tetanus. LTP was quantified as % change in the average amplitude of 

the fEPSP taken from 50 to 60 min interval after LTP induction. LTP in al electrodes within the CA1 

region was averaged, and average LTP of all 4 slices was defined as final LTP per individual rat.  

 
iTRAQ-based Proteomics 

Tissue preparation – Following decapitation, brains were removed and rapidly frozen in ice-cold 

isopentane and stored at –80 °C until further use. The dorsal hippocampus (Bregma –2.56 till –5.30) 
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was removed freehand at –20 °C from 1-mm-thick slices. Synaptic membrane fractions were isolated 

for every hippocampus (left and right pooled). Samples were homogenized in ice-cold 0.32 M sucrose 

(5% of homogenate was collected as total cell lysate) and then centrifuged at 1000 g for 10 min. The 

supernatant was loaded on top of a sucrose gradient consisting of 0.8 and 1.2 M sucrose. After 

centrifugation at 100,000x g for 2 h, the synaptosome fraction at the interface of 0.85⁄1.2 M sucrose 

was collected and then lysed in hypotonic solution. The resulting synaptic membrane fraction was 

recovered by centrifugation using the sucrose step gradient as stated above. The synaptic membrane 

fraction was collected from the 0.85⁄1.2 M interface and protein concentrations were determined using 

a Bradford assay (Bio-Rad, Hercules, CA, USA). For each sample, 75 µg of protein was used for 

iTRAQ labeling (see below), and synaptic membrane fractions were dried in a SpeedVac overnight. 

iTRAQ labeling – Synaptic membranes were resuspended in 28 µL of dissolution buffer and 2 

µL of cleavage reagent [iTRAQ reagent kit, with 0.85% RapiGest (Waters Associates, Milford, MA, 

USA)] to solubilize synaptic membranes. After incubation for 1 h, 1 µL of cys blocking buffer (Applied 

Biosystems, Carlsbad, CA, USA) was added and vortexed for 20 min. Next, 10 µL of trypsin 

(Promega) dissolved in water was added and incubated overnight at 37 °C. Trypsinized peptides from 

each experimental group were then tagged with iTRAQ reagents (113, CON+H2O; 114, CON+IMI; 

115, CON+BT; 116, Stress+H2O; 117, Stress+IMI; 118, Stress+BT) dissolved in 80 µL ethanol. After 

incubation for 3 h, the six samples were pooled and acidified with 10% trifluoroacetic acid (TFA) to pH 

2.5 – 3.0. After 1 h, the final sample was centrifuged and the supernatant dried overnight in a 

SpeedVac.  

Two-dimensional liquid chromatography – The dried iTRAQ sample was dissolved in 300 µL of 

loading buffer (20% acetonitrile, 10 mM KH2PO4, pH 2.9) and loaded onto a polysulfoethyl A column 

(PolyLC, Columbia, MD, USA). Peptides were eluted with a linear gradient of 0–500 mM KCl in 20% 

acetonitrile, 10 mM KH2PO4, pH 2.9, over 25 min at a flow rate of 50 µL⁄min. Fractions were collected 

at 1-min intervals. In the second-dimensional liquid chromatography separation, peptides were 

delivered with a Famos autosampler (Dionex Corp., Sunnyvale, CA) at 30 µL⁄min to a C18 trap 

column (1 mm x 300 µm i.d. column) and separated on an analytical capillary C18 column (150 mm x 

100 µm i.d. column) at 400 nL⁄min using the LC-Packing Ultimate system. Peptides were separated 

using a linearly increasing concentration of acetonitrile from 5 to 50% in 45 min, and to 90% in 5 min. 

The eluent was mixed with matrix (7 mg a-cyano-hydroxycinnaminic acid in 1 mL of 50% acetonitrile, 

0.1% TFA, 10 mM dicitrate ammonium) delivered at a flow rate of 1.5 µL⁄min and deposited off-line to 

the Applied Biosystems metal target every 15 s for a total of 192 spots using a robot (Dionex, 

Sunnyvale, CA, USA). 

Mass spectrometry – The Matrix-assisted laser desorption/ionization (MALDI) plates were 

analyzed on a 4800 proteomics analyzer (Applied Biosystems) and peptide collision induced 

dissociation (CID) was performed at 2 kV with nitrogen collision gas. MS⁄MS spectra were collected 

from 2500 laser shots. Peptides with a signal-to-noise ratio above 50 at the MS mode were selected 
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for MS⁄MS, at a maximum of 25 MS⁄MS per spot. The precursor mass window was set at 200 relative 

resolution full width at half maximum (FWHM). 

Protein identification – The MS⁄MS spectra were searched against the rat database [Swissprot 

and National Center for Biotechnology Information (NCBI)] using GPS Explorer (Applied Biosystems) 

and Mascot (MatrixScience, Boston, MA, USA). A library was then generated containing all annotated 

peptides with a confidence interval score higher than 20%. Database redundancy and sequence 

redundancy were removed. Hence, quantification was performed only on those peptides that were 

annotated to a single protein, and are referred to as ‘unique peptides’. Only proteins identified with ≥ 2 

unique peptides, and of which at least one peptide had a confidence interval ≥ 95%, were selected for 

quantification and statistical analysis. All regulated proteins were analyzed with a large number of 

peptides, of which the majority was analyzed with high confidence.  

Protein quantification – The iTRAQ experiment was repeated six times with independent samples. 

The iTRAQ areas (m⁄z 113–118) were extracted from raw spectra and corrected for isotopic overlap 

using GPS Explorer. To compensate for the possible variations in the starting amounts of the 

samples, the individual peak areas of each iTRAQ signature peak were log2-transformed to obtain a 

normal distribution, normalized to the mean peak area for each sample, and finally standardized to 

the normalized peak average per peptide. The protein abundances in every experimental group were 

determined by taking the average normalized standardized iTRAQ peak area of all unique peptides 

annotated to a protein. In total, the iTRAQ-proteomics experiment was repeated six times with 

independent biological samples. Only proteins that were identified in five out of six replicates were 

included for further statistical analyses. For presentation of differential expression of synaptic proteins 

between groups, regulation was calculated by subtracting the average log2-transformed protein 

abundance of groups of interest. For presentation of absolute expression differences, exponents of 

these values were calculated.   
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Supplemental figure 2. 
Experimental design for object-
place and object-recognition tests. 
Schematic representation of the 
recognition tasks (Place, A; 
Recognition, B) and geometric 
arrangement of objects. The ‘x’ and 
‘y’ indicate start locations of the rat in 
the tasks. In the object place test the 
start locations are counterbalanced 
between ‘x’ and ‘y’ over treatment 
groups. The circle and square 
represent the different objects.  
 

 
 

 

 

Supplemental figure 1. Experimental design and treatment groups. The social defeat 
paradigm (social defeat) in combination with behavioral therapy (BT) or imipramine treatment (IMI) 
was applied in 11-week old rats. After habituation to the new housing conditions, rats of the social 
defeat group received daily bouts (5 min) of social defeat during 5 days and subsequent individual 
housing (3 months). Control animals were handled daily for 5 days and were housed in pairs. 
Behavioral or pharmacotherapy was applied only during the last three weeks (or no treatment, 
H2O) of the individual housing period. The length of each period is indicated. All behavioral and 
electrophysiological and biochemical analysis were performed at the end of the paradigm, at the 
end of treatment (arrow). Independent cohorts of animals were used for behavioral physiological 
and biochemical analyses. 
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Supplemental figure 3. Mean 
levels of plasma corticosterone (± 
SEM), measured at the end of 
water (H2O), imipramine (IMI) or 
behavioral therapy (BT) treatment. 
No difference between any of the 
groups was observed. 
 

Supplemental figure 4. Set up of 
the iTRAQ experiments. Synaptic 
membrane fractions were isolated 
from one dorsal hippocampus (left 
and right) from one rat per 
experimental group. Tryptic 
digests of synaptic membranes 
from these samples were tagged 
with 6-plex iTRAQ reagents (one 
per experimental group). Peptides 
from each set of iTRAQ 
experiment were pooled together, 
fractionated by two-dimensional 
liquid chromatography and 
subjected to tandem mass 
spectrometric analysis. Protein 
identification and quantification 
were performed as detailed in the 
main text. The experiment was 
performed six times, each time 
with a biological independent set 
of samples.  
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Supplemental figure 5. Synaptic expression of CSK2b, AT1b2 and KAPCA determined by iTraq and 
Western blot. Protein expression in synaptic membrane samples was determined both by iTRAQ 
quantitative proteomics (upper panels), and by immunoblot (middle panels) on the same set of samples. 
Expression differences of these three proteins was tested in an independent set (indep.) by immunoblot 
(lower panels). Bar graphs show standardized average relative expression levels (vs. Control+H2O) 
(±SEM) for CSK2b, AT1b2, and KAPCA (cf. Supplemental table 1). *P<0.05 vs. Control+H2O. Regulated 
expression of only AT1b2 could be validated in the independent set of samples. Insets show representative 
examples of the immuno-detected band, as well as the coomassie-stained gel, used for correction of input 
material. 
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Supplemental figure 6. Basal physiological parameters tested acutely after social defeat and their 
normalization over time. Parameters were acquired in the first five weeks after the start of social defeat, 
before behavioral therapy and imipramine treatment had started. At this time point only two groups were 
present: social defeat, and controls. (A) Social defeat reduced body weight (A), food intake (B), and water 
intake (C). These parameters were normalized after 4, 3, and 2 weeks, respectively. Data is presented as 
mean ± SEM. *P<0.05, **P<0.01, ***P<0.001. 
 
 
 

 

Supplemental figure 7. Effect of individual housing on LTP in the CA1 of the dorsal hippocampus. 
Average change (±SEM) in fEPSP 50 min after LTP induction. Individual housing had no effect on LTP.  
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Supplemental table 1. Synaptic protein changes after long-term social stress. Five proteins were 
significantly regulated (adjusted p-value < 0.05) after long-term social stress after adjustment for multiple 
hypothesis-testing using the Benjamini and Hochberg method. Expression of two of these proteins (AT1B2 
and ANXA6) were rescued to control levels by imipramine treatment and three (AT1B2, KAPCA, and 
ANXA6) were rescued to control levels by behavioral therapy. Regulated expression of three of these 
proteins (CSK2B, AT1B2 and KAPCA; bold) could be confirmed by quantitative immunoblot analysis on the 
same samples as used for iTRAQ analysis. Regulated expression of AT1B2 (bold) could be confirmed by 
immunoblot in an independent set of biological samples. Indicated are protein accession number, protein 
name, average number of peptides (over six replicate experiments) used for quantification and 
identification, expression ratios (log2) of Stress+H2O vs CON+H2O and their adjusted-p-value for the iTraq 
data, of Stress+IMI vs CON+H2O and Stress+BT vs CON+H2O as a measure of rescue to control levels, of 
Stress+H2O vs CON+H2O and their p-values (t-test) of the immunoblots on the samples used for iTRAQ 
quantification and on an independent set of biological replicates. NA: not available; no antibody suitable for 
quantification was available.  

 

 
 
 
 
 

iTRAQ Western blot 

SwissProt 
Accession 
number 

Protein 
name 

Nr 
unique 

peptides 

Regulation 
SDH vs. 
CONH 

Adjusted 
P-value 

Regulat
ion SDI 

vs. 
CONH 

Regulat
ion 

SDB vs. 
CONH 

Regulat
ion 

SDH vs. 
CONH 

P-
value 

Regulation 
SDH vs. 
CONH 

independent 
P-value 
indep. 

CSK2B_ 
RAT 

Casein 
kinase II 
subunit 
beta 4 -0.29 0.008 -0.19 -0.17 -0.47 0.047 0.21 0.557 

AQP4_ 
RAT 

Aquaporin
-4 6 0.30 0.008 0.23 0.17 NA NA NA NA 

AT1B2_ 
RAT 

Sodium/ 
potassium
-
transporti
ng 
ATPase 
subunit 
beta-2 8 0.21 0.008 0.09 0.01 0.38 0.045 0.68 0.040 

KAPCA_ 
RAT 

cAMP-
dependen
t protein 
kinase 
catalytic 
subunit 
alpha 7 0.12 0.049 0.11 0.01 0.24 0.009 0.00 1.00 

ANXA6_ 
RAT 

Annexin 
A6 43 0.23 0.014 -0.08 -0.05 NA NA NA NA 
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Supplemental Table 2. Several Na,K ATPase subunits are rescued by behavioral and pharmacological 
therapy in social defeated (SD) rats. Proteins as identified by iTRAQ proteomics are indicated by the 
protein accession number (SwissProt). Comparisons (regulation (log2), P-value) are made for the effect of 
water-treated social defeat (SD_H) vs control (Con_H) animals (upregulation), and the effect of behavioral 
therapy (BT) or imipramine (Imi) in defeated animals vs. defeated water-treated (SD_H) animals (down-
regulation). Orange: P<0.05; yellow: P<0.1. Note that most of the ATPAse type 1 subunits are affected 
similarly. 
 

  SD_H vs. Con_H SD_BT vs. SD_H SD_Imi vs. Sd_H 
Protein 
accession Regulation p-value Regulation p-value Regulation p-value 
AT1A1_RAT 0.01 0.769 -0.09 0.127 -0.03 0.473 
AT1A2_RAT 0.51 0.095 -0.60 0.015 -0.53 0.072 
AT1A3_RAT -0.16 0.498 -0.14 0.024 -0.13 0.056 
AT1B1_RAT 0.09 0.170 -0.19 0.016 -0.11 0.120 
AT1B3_RAT 0.08 0.372 -0.16 0.014 0.10 0.093 
AT2A2_RAT 0.05 0.293 -0.10 0.045 -0.04 0.343 
AT2B1_RAT -0.23 0.790 -0.07 0.321 -0.04 0.573 
AT2B2_RAT 0.04 0.460 -0.08 0.127 -0.03 0.376 
AT2B3_RAT 0.01 0.825 -0.11 0.106 -0.04 0.410 
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Abstract 
Major depressive disorder is a chronic disabling disease, often triggered and exacerbated by 

stressors of a social nature. Hippocampal volume reductions have been reported in 

depressed patients. In support of the neurogenesis theory of depression, in several stress-

based animal models of depression, adult hippocampal neurogenesis was reduced and 

subsequently rescued by parallel antidepressant treatment. Here, we investigated whether 

repeated social defeat and subsequent individual housing for three months induces long-

lasting changes in adult hippocampal neurogenesis in rats, and whether these can be 

normalized by late antidepressant treatment, as would match human depression. 

Neurogenesis was analyzed by stereological quantification of the number of immature 

Doublecortin (DCX) immunopositive cells, in particular young (class-I) and more mature 

(class-II) DCX+ cells, to distinguish differential effects of stress or drug treatment on these 

subpopulations. Using this social defeat paradigm, the total DCX+ cell number was 

significantly reduced. This was most profound for older (class-II) DCX+ cells with long apical 

dendrites, whereas younger, class-I cells remained unaffected. Treatment with the broad-

acting tricyclic antidepressant imipramine, only during the last 3 weeks of the 3-month period 

after social defeat, completely restored the reduction in neurogenesis by increasing both 

class-I and-II DCX+ cell populations. We conclude that despite the lack of elevated 

corticosterone plasma levels, neurogenesis is affected in a lasting manner by a decline in a 

distinct neuronal population of more mature newborn cells. Thus, the neurogenic deficit 

induced by this social defeat paradigm is long-lasting but can still be normalized by late 

imipramine treatment.  
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Introduction 

Exposure to stress forms an important risk factor for development of human 

psychopathologies such as major depressive disorder181. In particular chronic forms of 

stress, often psychosocial in nature, may predict precipitation of depression10. As patients 

who underwent a first episode, are at increased risk to develop recurrent or chronic 

depression, interest has been raised into the underlying mechanisms that determine 

particularly longitudinal aspects of the disorder and its maintenance182.  

Of the many brain regions affected in depression, the hippocampus is well known for its 

role in cognition and stress sensitivity. Volumetric studies have repeatedly found reductions 

in hippocampal volume in patients suffering from major depression, paralleled by alterations 

in various neuropsychological and cognitive measures12,154. In preclinical models, stress 

exposure in rodents causes mild volume reductions of the hippocampus as a whole, reduces 

dendritic complexity of neurons in the CA3 subregion, and impairs neurogenesis in the 

dentate gyrus (DG)183. Despite the absence of causal evidence that changes in adult DG 

neurogenesis are critical to the etiology of major depression, impaired hippocampal plasticity 

likely contributes to the cognitive symptoms of depression, as well as clinically effective 

antidepressant treatment47,68,184. Indeed, neurogenesis is affected by many factors, among 

which treatment with antidepressant drugs – an effect that is age-dependent185 and is found 

both in stressed and naive animals186-190.  

Most studies examining the effect of stress as model for depression have measured 

neurogenesis shortly after exposure to either acute or chronic stressors that notably were 

often of a physical nature, like restraint47,68. Most stressors relevant for depression however, 

are chronic and psychosocial in nature10, and depression may develop long after the initial 

stress exposure. Also, the effects of antidepressant drugs have been evaluated, but when 

used in conjunction with a stress model, they have been administered during or parallel to, 

and not after an extended period after stress exposure68,186,191. Therefore, we questioned (i) 

whether stress induced by social defeat has long-term effects on neurogenesis or 

corticosterone levels, and (ii) whether neurogenesis can still be normalized by 

antidepressant treatment starting at a late stage, when depressive-like symptoms are 

already manifest. 

To address this, adult rats were subjected to a long-term social defeat paradigm, 

consisting of exposure to repeated severe social defeat stress followed by subsequent 

individual housing for three months. This type of paradigm models mainly the maintenance 

phase of depression as it results in increases in stress responsivity as well as decreases in 

social interaction and sensitivity to reward anticipation over time33,141,192. Social defeat stress 
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followed by subsequent individual housing for three months leads to impaired hippocampal 

long-term potentiation and this could be restored by late antidepressant treatment140. In view 

of the persistent changes in behavior and hippocampal function in this model, we 

investigated whether neurogenesis in the DG was affected on the long-term. As read-out we 

quantified the number of Doublecortin (DCX) immunopositive (DCX+) cells. Doublecortin is a 

microtubule-associated protein selectively expressed in young, immature neurons from 

approximately 4 to 14 days after birth of a newborn cell193,194. During this period, the 

temporal course of dendrite maturation can be used to morphologically distinguish younger 

(class I) and older (class II) DCX-positive cells195,196. We used this classification to 

distinguish between differential effects of our social defeat paradigm or drug treatment on 

these DCX+ subpopulations. 

 

 

Materials and methods 
 

Animals 
Male Wistar rats (Harlan, Horst, The Netherlands) 8-9 weeks of age, weighing 180–200 g at 

the time of arrival, were initially socially housed (2 per cage) in Makrolon class IV cages 

(Tecniplast, Milan, Italy). Long-Evans male rats (Harlan, UK), weighing 300–350 g were 

used as residents for social defeat141. These animals were pair-housed with age-matched 

sterilized females in plastic cages (63 x 25 x 33 cm) located in a separate room. All animals 

were housed in a temperature-controlled room (21±1 °C) under regulated lighting conditions 

(lights on at 7:00 p.m. and off at 7:00 a.m.). Food and water were available ad libitum. All 

experimental manipulations were conducted during the dark phase (activity period) under a 

dim red light. The Animal Users Care Committee of the VU University Amsterdam approved 

all experiments.  

 

Experimental design and treatment 
Wistar rats (age ≥ 11 weeks) of the social defeat group were subjected to 5 days of social 

defeat stress and were then housed individually for three months in macrolon class III cages 

from the first defeat onwards, as described before140 (Fig. 1). Control rats were housed in 

pairs. The social defeat procedure consisted of daily resident–intruder interaction sessions 

using dominant male Long-Evans rats for five consecutive days. Control animals were 

handled daily. 
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During the last three weeks of this three-month period, rats were treated by gavage 

administration of the antidepressant imipramine (20 mg/kg per 0.5 ml water; Sigma- Aldrich, 

Germany) or water as control (Fig. 1). Subsequently, four experimental groups were 

generated: 1) control rats with water (Control+H20), 2) control animals with chronic 

imipramine treatment (Control+IMI), 3) social defeated animals with water (Social 

defeat+H20), and 4) social defeated animals with chronic imipramine treatment (Social 

defeat+IMI). All behavioral and immunohistological analyses where performed at the end of 

the treatment period. Independent cohorts of animals were used for behavioral and 

immunohistochemical analyses. 

 

Reward anticipatory behavior 
A classical Pavlovian conditioning setup was used to investigate anticipatory behavior, as 

described earlier140. To investigate the behavioral response to the conditioning stimulus 

(repetitive sound (keyboard) and light flashes (three times)), animals were observed before 

training (trial 0) to determine baseline activity, and again after 35 training trials of pairing with 

a 5% sucrose-reward, using the computer program ‘The Observer’ (Noldus Information 

Technology, Wageningen, The Netherlands). The researcher who analyzed the behavioral 

data had no knowledge of the experimental groups. Differences in activity (reflected by 

frequency or transitions of behavioral elements) displayed before training compared with 

those after training were used as parameter for reward anticipation.  

 
Sucrose preference 

Figure 1. Experimental design and treatment groups. The social defeat paradigm (social defeat) in 
combination with antidepressant treatment was applied in 11-week old rats. After habituation to the new 
housing conditions, rats of the social defeat group received daily bouts (5 min) of social defeat during 5 
days and subsequent individual housing (3 months). Control animals were handled daily for 5 days and 
were housed in pairs. Treatment with the tricyclic antidepressant imipramine was applied only during 
the last three weeks (IMI; or no treatment, H2O) of the individual housing period. The length of each 
period is indicated. All behavioral and immunohistological tests were performed at the end of the 
paradigm, at the end of treatment (arrow). Independent cohorts of animals were used for behavioral 
and immunohistochemical analyses. 
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The preference for sucrose (5%) was measured in a two-bottle (sucrose and water) 

consumption test. Consumption was assessed after 24 h by reweighing the pre-weighted 

bottles. After 2 days, the consumption test was repeated. In case of social housing, 

consumption for each subject was set to half of the total consumption. Sucrose preference 

was expressed as the increase in consumption (gram) relative to water (gram), and this 

difference was represented as percentage of the total consumption (gram) [100% x (Δ 

sucrose–water)/total volume sucrose and water consumed]. 

 
Corticosterone assay 
Trunk blood samples were collected at the end of the experiment via decapitation (between 

9 – 11 AM) into a 7-mL heparin-coated tube (Greiner Bio-One, Monroe, North Carolina) and 

kept on ice before centrifugation at 1000 x g for 10 min. Plasma was decanted and stored at 

−80 °C until analysis. Levels of plasma corticosterone were assessed using a rat 

Glucocorticoid (GC) ELISA kit (Cusabio Biotech Co., LTD), according to the manufacturers 

instructions. 

 

Tissue preparation and immunohistochemistry 

Animals were anesthetized (between 9 – 11 AM) by injection of pentobarbital sodium salt 

(Nembutal; 1 mg/kg bodyweight; A.U.V. Cuijk) and perfused transcardially with saline 

followed by 4% paraformaldehyde in phosphate buffer (PB; 0.1 M, pH 7.4). Brains were 

post-fixed overnight in the skull at 4 °C, after which they were carefully removed, washed, 

and cryoprotected in 20% sucrose in PBS. Frozen sections (35 µm thick) were cut using a 

sliding microtome and collected in PB/azide.  

The number of young, differentiating neurons was identified with an antibody against 

doublecortin (DCX; 1:800; polyclonal goat anti-DCX; Santa Cruz Biotechnology) as 

described before187. Amplification was performed with a biotinylated secondary antibody, 

donkey anti-goat (1:500; Jackson ImmunoResearch Laboratories)] and avidin-biotin complex 

(1:1000; Elite Vectastain ABC kit, Brunschwig Chemie) in combination with tyramide (1:500; 

0.01% H2O2; kindly provided by Dr. I. Huitinga, Netherlands Institute for Neuroscience, 

Amsterdam, The Netherlands). Subsequent chromogen development was performed with 

diaminobenzidine (20 mg per 100 ml of Tris buffer, 0.01% H2O2).  

 
Stereological quantification and phenotypic analysis  
Quantification of cell numbers was performed in every 10th coronal section along the entire 

rostrocaudal axis of the brain, in a total of 9 sections per animal as described before196. Total 
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numbers of DCX+ cells per DG were quantified by systematic random sampling performed 

using the Stereo Investigator System (MicroBrightField) with optical fractionator settings of 

180 x 150 grid size and 180 x 150 counting frame, resulting in 200 – 450 markers per 

animal. A single examiner unaware of the group codes performed the data collection.  

We further distinguished morphologically different subclasses of DCX+ cells, based on an 

adaptation of the stages of neuronal differentiation described before195; the most mature 

DCX+ cells were named class-II; these were characterized by a primary dendrite that was 

orientated perpendicular to the subgranular zone and radially projecting up into the 

molecular layer. The younger cells were named class-I and were located in the SGZ, without 

a dendrite, or only a short dendrite reaching no further than the granule cell layer196 (See 

Fig. 3).  

 

Statistical analysis 
Statistical analysis was performed using SPSS 18.0. Results are expressed as group means 

± SEM. Treatment effects were assessed with two-way analysis of variance (ANOVA), 

followed by Student Newman’s Keuls post-hoc analyses for further examination of group 

differences. 

 

 

Results 
 
Behavioral and physiological consequences of social defeat 
In the present model, we studied consequences of repeated social defeat and subsequent 

individual housing for three months (Fig. 1), and assessed several pathological dimensions 

of depression141,192. We confirmed that socially defeated rats in this paradigm display a 

depressive-like phenotype33,141, as shown by a reduced anticipation towards a 5 % sucrose 

solution compared with control rats (Fig. 2A). This was reversed to control levels by chronic 

administration of imipramine (IMI). Two-way ANOVA (stress x treatment) revealed a 

significant effect of SD stress ((F(1,20)=4.77, P=0.041), and an interaction of stress and 

treatment (F(1,20)=5.55, P=0.029). Post hoc comparisons showed a significant decrease 

after social defeat without treatment compared to controls (P=0.012), and for social defeat 

without treatment when compared with the imipramine-treated socially defeated group 

(P<0.029). In contrast, no difference was found for the social defeat group that was treated 

by imipramine when compared with either of the control groups. Imipramine treatment alone 

in control animals had no significant effect on anticipation towards 5 % sucrose. In contrast 
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to sucrose anticipation, neither stress nor imipramine treatment had a significant effect on 

sucrose preference (Fig. 2B), which is an indicator of more acute stress. 

Also, no difference was observed in plasma corticosterone levels between any of the 

groups (Fig. 2C), indicating that no lasting changes in stress hormone levels had been 

induced, nor that antidepressant treatment had been stressful.  

 

Figure 2. Behavioral and physiological 
consequences of long-term social stress. (A) 
Anticipation towards 5 % sucrose expressed as the 
mean difference in activity (# behavioral transitions) 
in the CS-US interval post-training compared with 
that during pre-training. The social defeat paradigm 
(social defeat) significantly suppressed reward 
anticipation, whereas imipramine treatment (IMI) 
reversed this stress-induced effect. *P=0.0034 vs. 
Control+H2O. (B,C) Sucrose preference (sucrose 
intake-water intake)/total fluid intake (B) and plasma 
corticosterone level (C) were not affected. All data 
show mean ± SEM. n=6 for al experimental groups. 
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Long-term social stress affects neurogenesis by reducing differentiation and survival 
of DCX-positive cells  
Immunohistological staining of the adult hippocampus revealed numerous DCX+ cell bodies 

located in the SGZ and only few DCX+ cells within the granule cell layer itself. DCX-

expressing cells were classified195,197,198 into class-I (Fig. 3A), or class-II cells  (Fig. 3B). 

About 70 % of all DCX+ cells belonged to class-II (Fig. 3C). Hence, at any given time point, 

DCX identifies a majority of cells with a relatively mature phenotype. 

To examine whether adult hippocampal neurogenesis was affected by the social defeat 

paradigm and/or antidepressant treatment, we first quantified the total population of DCX+ 

neurons. Two-way ANOVA revealed a significant effect of defeat (F(1,30)=6.17, P=0.019) on 

total number of DCX+ neurons (Fig. 4A). Social defeat significantly reduced the total number 

of DCX+ cells (P=0.004). This effect was not present anymore after three weeks of 

imipramine treatment, as the social defeat group treated with imipramine differed 

significantly from the social defeat group (P=0.048) and was not different from both control 

groups (CON+H2O, CON+IMI).  

To further address which subset of the DCX cells was affected, i.e., the relatively younger 

or older cells, we quantified class-I and -II DCX+ cells. No effect of defeat or treatment was 

Figure 3. Class-I and class-II DCX-expressing cells in the DG subgranular zone. (A, B) High-power 
images of clusters of DCX+ cells with different morphology. The granule cell layer (GCL) is seen as a 
purple cell layer. The hillus (H), subgranular zone (SGZ), and molecular layer (MOL) are indicated. 
Scale bar, 30 µm. (A) Class-I cells (arrow) with no or short processes reaching no further than the 
granule cell layer. Note how the initial segment of the dendrite grows parallel to the SGZ (arrow heads). 
(B) Class-II cells (arrow) with at least one dendrite reaching into the molecular layer (arrow heads) and 
occasionally showing delicate branching with few major branches. (C) Percentage of total amounts of 
class-I and –II cells in control animals (mean ± SEM). 
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found on the number of cells belonging to class-I cells (F(1,30) < 1) (Fig. 4B). However, a 

significant effect of both defeat (F(1,30)=10.41, P=0.003) and treatment (F(1,30)=4.96, 

P=0.034) with no interaction was found on class-II DCX+ cells. Social defeat significantly 

reduced the number of class-II cells (P=0.002), and three weeks of imipramine treatment 

reversed this effect (P=0.026; Fig. 4C). Imipramine treatment alone had no effect in control 

rats (P=0.369).  

To confirm whether long-term social stress indeed enforced its strongest effect on class-II 

cells, the ratio of class-II cells over class-I cells was calculated. This ratio was significantly 

affected by social defeat (F(1,30)=7.58, P=0.010). Post hoc comparisons showed that social 

defeat significantly reduced the ratio of class-II/class-I cells (P=0.004). However, imipramine 

was not able to restore this ratio to basal levels. Together these data demonstrate that (1) 

social stress on the long term reduces neurogenesis by specifically reducing class-II DCX+ 

cells, whereas class-I cells were unaffected, and (2) imipramine restored this reduction in 

neurogenesis by increasing both class-I and –II DCX+ cells, thereby leaving their ratio 

unaffected.  

 

Discussion 

Here, we showed for the first time that adult hippocampal neurogenesis is still reduced at the 

end of a three-3 month individual housing period that followed a short period of severe social 

defeat stress. The reduction in neurogenesis was observed, despite that corticosterone 

levels were normal at the end of this paradigm, and was most profound for the class-II DCX+ 

cells with long apical dendrites, arguing that neuronal differentiation and/or survival of 

newborn neurons is affected. Treatment with imipramine for the last 3 weeks completely 

restored this reduction by stimulating both class-I and -II DCX+ cells. 

 

Validity of the social stress model 
The present social defeat model recapitulates several behavioral dimensions of 

depression33,141. We showed that the depressive-like phenotype of reduced anticipation 

towards sucrose is associated with a decrease in hippocampal neurogenesis, although 

sucrose consumption was not changed. This reward-related consummatory response is 

different from appetitive behaviors measured by anticipation199. Although consummatory 

behavior is known to be reduced shortly after stress exposure200, we confirmed that on the 

long-term, appetitive behavior is specifically affected33,141. Since the mesolimbic dopamine 

reward system is primarily involved in appetitive behavior and not in the affective component 

of consumption, we hypothesize that reduced appetitive behavior is an adequate 
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representative of depressive-like behavior141,199. Moreover, anhedonia is commonly 

observed in depressive patients201.  

As the present results were obtained in rats 6 months of age, it is unlikely that 

interference with early postnatal development has played a major role202. The age at which 

rats experienced stress in our model (adult rats >11 weeks) is of importance given the 

protracted period of risk for development of affective disorders into young adulthood203.  

As compared with most other stress-induced models34,186, the present paradigm was used 

Figure 4. Differences in DCX-positive cells with different dendritic morphologies after long-term 
social stress and subsequent imipramine treatment. (A) Total number of DCX+ cells in the SGZ per 
hemisphere. The social defeat paradigm (social defeat) significantly reduced total amount of DCX+ 
cells, whereas imipramine treatment (IMI) normalized this stress-induced effect. (B) No effect of social 
defeat or imipramine was found on class-I DCX+ cell numbers. (C) Social defeat significantly reduced 
amounts of class-II DCX+ cells, whereas this reduction was not found in the imipramine treated group 
(IMI)(D). Social defeat significantly reduced the ratio of class-I cells over class-II cells. Imipramine 
treatment had no effect on this ratio. All data show mean ± SEM. n=9 for al experimental groups. ** 
P<0.01; * P<0.05. 
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to study long-lasting effects of social stress on structural plasticity changes, that have been 

implicated in depressive symptoms and maintenance of depression, long after the initial 

exposure to active stress has occurred, and when the rise in stress hormone levels has 

normalized10,12,204.  

 

Neurogenesis – subclasses of DCX+ cells 
We quantified DCX+ cell numbers in the DG to examine whether the persistent anhedonic 

phenotype present long after exposure to social defeat was associated with a reduction in 

neurogenesis. Doublecortin has been previously established as a reliable marker for young 

and migratory neurons in the adult DG193,195,198,205. It is expressed approximately from day 4 

to day 14 after a new cell is born and most likely all DCX+ young neurons originate from cell 

divisions during the past 3 – 4 weeks198. DCX expression is further selective for the neuronal 

lineage, as DCX-positive cells co-express early neuronal antigens like Tuj1, PSA-NCAM or 

pax-6194, but lack specific markers for glia, undifferentiated, stem cells, or apoptotic cells, 

making it a reliable marker of newly generated neurons in the adult DG193,198,206.  

DCX immunoreactivity in dendrites allowed classification of these immature neurons. 

DCX is transiently expressed from the proliferative progenitor cell stage to a postmitotic 

phase with long dendrites194,195. Several subclasses of DCX+ cells can be distinguished 

based on the presence and shape of the apical dendrites195,196. Smaller cells without a 

dendrite that penetrate the GCL are known to reflect progenitor cells (type-2b and type-3 

cells, see195, whereas longer cells with extensions into the molecular layer are considered 

immature postmitotic neurons. 

Here, we used a simplified scheme of this subdivision195 and defined class-I cells as 

young cells with no or short processes reaching no further than the molecular layer, and 

class-II cells as mature post proliferative cells with at least one dendrite reaching into the 

molecular layer. About 70% of DCX+ cells belong to class-II and 30% to class-I, and it has 

been shown that of this latter 30%, about two thirds is in cell cycle195. Interestingly, the ratio 

of class-I and –II cells we found were similar to those in rodents 2 months of age, despite the 

fact that the total number of DCX+ cells equals about 10% of what is observed in these 

younger animals. This implies that despite the lower overall DCX+ cell numbers, different 

stages of the neurogenic process are present in similar proportions both in young adults as 

well as adult animals.  

In a recent paper207, DCX+ cells were sorted using fluorescence activated cell sorting 

(FACS) and particularly the younger DCX+ cells with low levels of DCX per cell, comparable 

with our class-I cells, were shown to be capable of dividing again, in contrast to the older 
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types with higher DCX levels. Although we cannot compare FACS sorted cells with the 

present populations in brain tissue, it is tempting to speculate that as predominantly the 

class-II DCX+ cells were affected in our study, social stress may have affected progression 

through the cell cycle and thereby limited neuronal differentiation and/or newborn cell 

survival. 

 

Neurogenesis – social defeat and reversal by imipramine 
We found that at the end of the social defeat paradigm total DCX+ cell numbers in the DG 

were reduced, which was due to a reduction in class-II cells, whereas the class-I cells 

remained unaffected. It has been proposed that neurogenic stimuli that act on precursor 

cells are different from those regulating dendritic maturation and survival of newborn cells. In 

contrast to chronic unpredictable (physical) stress exposure, after which a rapid recovery of 

neurogenesis occurs (Heine et al., 2004), our present results imply that social defeat 

reduces neurogenesis for a prolonged period of time and that it does so by inhibiting 

specifically the differentiation and survival stage, but leaves progenitor cells unaffected.  

A remaining question however, is whether this long-term reduction in neurogenesis is 

caused by 1) long-term effects of social defeat, 2) by the individual housing or, –most likely– 

3) by a combination of both. In adult rats, individual housing by itself is considered to be a 

social stressor. Adult individual housing induces changes in anxiety- and anhedonia-like 

behavior83 as well as neurochemical alterations208. However, social isolation in male rats 

does not result in an increased, lasting expression of stress hormones83,209,210, which is in 

line with our current findings. Also, in the absence of external factors, adult social isolation 

does not affect hippocampal neurogenesis209,211. However, individual housing does increase 

the stress response to external stressors, both on glucocorticoid levels83,210 and 

neurogenesis209,211, and it delays the positive effect of physical activity on neurogenesis209. 

This would argue that individual housing in our paradigm might be involved in the 

maintenance of the reduction in neurogenesis rather than in its onset.  

This additive effect of social isolation is further supported by the observations that 

depressive-like behavior (e.g. reduced anticipation to sucrose) induced by social defeat is 

maintained during individual housing, but can be counteracted by social housing33.  

As social isolation itself cannot reduce anticipation towards 5% sucrose33, the observed 

reduction in neurogenesis is most likely induced by repeated social defeat stress, and 

maintained on the long term due to a lack of social support. This would match human 

depression in which active stress is often involved in the onset of depression, while passive 
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stress, e.g., in the form of social isolation, has strong precipitating effects on the 

development of the disease84.  

The current reduction in hippocampal neurogenesis was associated with an anhedonic 

phenotype, which is in accordance with the concept of a role for neurogenesis in depression 

or antidepressant action. This concept originated from animal studies in which stress was 

shown to inhibit neurogenesis188,212, and from studies in which various classes of 

antidepressants were found to promote newborn cell proliferation20,46,189, survival and 

neurogenesis187,189,213. Furthermore, the 3- to 4-week therapeutic time lag of antidepressants 

coincides with the maturational time course of newborn neurons214.  

However, ablating neurogenesis does not result in a depressive-like phenotype per se215. 

Also, the enhanced survival of newborn cells that occurs upon administration of 

antidepressants to young mice, is age- and strain dependent, and is abolished when older 

mice are studied185,216,217. Similarly, in hippocampal tissue of depressive patients, the 

stimulatory effect of antidepressants218 also appears to depend on age184. Hence, both 

neurogenesis-dependent and neurogenesis-independent mechanisms are likely to 

contribute to the reversal of depressive-like behaviors by antidepressants47,216.  

In this study, treatment with imipramine during the last 3 weeks of a 3-month individual 

housing period following exposure to severe social defeat stress restored total DCX+ cell 

numbers back to control levels. Interestingly, whereas the social defeat paradigm affected 

specifically class-II DCX+ cells, imipramine’s action is not cell-type specific as it left the ratio 

of type-II over type-I cells unaffected. This is in accordance with previous studies in which 

imipramine increased several stages of the neurogenesis process46,219, including 

proliferation, neuronal differentiation, survival as well as integration of adult-generated cells 

into existing neuronal circuits. 

 

Overall, using a paradigm that models both temporal aspects of a social stress-mediated 

onset and the maintenance phase of depressive symptoms, we have shown that in absence 

of lasting changes in corticosterone levels at the end of the social defeat paradigm, 

neurogenesis is still significantly reduced. This is accompanied by a reduction of 

differentiation and/or survival of the newborn neurons, whereas younger cells are 

unaffected. An interesting outcome of our study is that this form of long-term social stress 

does not affect all domains of the adult neurogenic process but appears selective for the 

differentiation and survival stages. In addition, these neurogenic deficits can still be 

normalized by late imipramine treatment that increased both classes of DCX+ cells. 
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Major depressive disorder (MDD) is a multifaceted disease with a broad spectrum of 

symptoms. Evidently, the underlying causative factors of MDD are diverse in nature. 

Environmental factors exert a major influence on the initiation of MDD; a common factor 

causing the disease is stressful life events. Stress impacts on the individual thereby affecting 

mood- and cognition-related functioning. In particular, this disease-triggering factor can be 

modeled in animals, thereby providing the opportunity to investigate the molecular and 

cellular changes in distinct brain areas. 

In this thesis, research focused on the impact of a natural occurring type of stressor, 

social defeat stress, on the functioning of the hippocampus in terms of learning and memory 

and the potential alleviating role of antidepressant and behavioral therapy. This thesis 

yielded several novel findings concerning the molecular and cellular correlates of MDD that 

originated from animal models of depression, and will be discussed below. 

 

Major conclusions 
First, we identified a mechanism by which ketamine may exert a direct and lasting 

antidepressant effect. We found that ketamine probably exerts its long-term antidepressant 

effects by increasing hippocampal synaptic membrane α-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid (AMPA) receptor function. This sheds new light on using ketamine 

in the treatment of depression. 

Second, we found that impaired hippocampal function observed both short- and long-

term after social defeat stress originated from different synaptic mechanisms. In particular, 

we noticed alterations in the glutamate receptor system only at the short-term, whereas on 

both time points hippocampal spatial memory performance was clearly affected. 

Third, we showed that long after social defeat stress, hippocampal plasticity was 

severely affected. This translates into concomitant behavioral dysfunction. The long-term 

impairment of the hippocampal functioning can be alleviated by imipramine treatment and, 

much to our surprise, to the same extent with behavioral therapy. 

Fourth, we found that neurogenesis in the hippocampal dentate gyrus was affected in a 

lasting manner after social defeat by a decrease in a distinct neuronal population of more 

mature newborn cells. Here, imipramine was able to rescue the neurogenic deficit. 

Fifth, we were able to identify synaptic mechanisms that are regulated long-term after 

social defeat stress. A proteomics analysis turned out to be a useful approach to identify 

potentially new targets for MDD research. 
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Overall, in this thesis, observations are made concerning the molecular and cellular changes 

in the hippocampus related to depressive-like phenotypes. In the next sections I will discuss 

these findings in the context of ongoing MDD research. 

 

 

Animal models of depression 
 
Model validity 

To appreciate the improvement of using animal models for depression based on long-term 

effects of stress over acute stress, it is important to compare how they meet criteria for a 

valid animal model.  

At the very least, animal models must resemble the human condition in several 

respects220, including (a) similarity in the symptom profile presented (face validity), (b) 

amelioration or attenuation by treatments effective in treating the human condition 

(predictive validity), (c) provocation by events thought to be important in eliciting the human 

disorder (etiological validity), and (d) involvement of similar neurochemical processes 

(construct validity) (Box 1).  

 

An acute stress model to study antidepressant action 

In this thesis several stress-induced animal models for depression have been used. The 

most basic and straightforward is the forced swim test (FST). This model has been proven 

efficient in predicting the clinical efficacy of antidepressants in a cost efficient way and 

therefore has good predictive validity80. However, this model has low etiological validity as 

acute swim stress is used to induce a depression-like phenotype. Also, its face validity is 

limited as only behavioral despair is accessed as readout parameter.  

Using the predictive validity of this model, we showed in chapter 2 that ketamine, an N-

methyl-D-aspartic acid (NMDA) receptor antagonist with acute and lasting clinically 

antidepressant effects, also showed acute and lasting efficacy in the FST and we revealed 

aspects of the contributing synaptic mechanisms. However, considering the limited validity of 

the test, care should be taken when interpreting the clinical relevance of these findings. 

 

Using chronic stress to gain insight into mechanisms of depression 

To gain insight in the molecular and cellular neurobiology of depression, animal models with 

the highest attainable validity should be used. In rodents, the social defeat paradigm is a 

good candidate. Since a natural type of social defeat stress is used, this model has good 
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Box 1. Validation criteria for evaluating animal models for psychiatric disorders 
Category of 
validation criteria Definition 
Face validity The phenomenological similarity between the behavior exhibited by the animal 

model and the specific symptoms of the human condition.  
Predictive validity The ability to predict changes in the human subject based upon changes in the 

model. This requires constant reality checking with clinical measures to make sure 
that the changes in the model correspond to those in the human. In terms of drug 
development, the special condition of predictive validity is usually determined 
through pharmacological validation that refers to clinically effective drugs showing 
activity in the test or model (pharmacological isomorphism). 

Etiologic validity The concept of etiological validity is closely related to the causes of the disorder in 
humans. When etiology can be established, the model becomes very useful. 
Unfortunately, the causes of behavioral disorders are often diverse. Therefore, this 
validity is limited to hypothesis regarding possible etiology. 

Construct validity Construct validity is closely related to the pathology and symptomatology of the 
disorder, and the accuracy with which changes in the model organism reflects that 
in the human. For example, close correspondence of changes in neurochemical or 
endocrinological parameters in depressed subjects and in the model systems 
used study depression endow the model with increasing construct validity. 

etiologic validity, especially since chronic psychosocial stress is particularly effective in 

predicting human depression10. Moreover, social defeat has been shown to induce behavior 

relevant to depressive symptoms both acute221 and long-term after defeat stress33. These 

symptoms include anhedonia (reduced sucrose preference or anticipation towards sucrose), 

behavioral despair, and reduced social interest, and therefore the model meets the criterium 

of face validity. Moreover, these symptoms were counteracted by chronic141,222, but not 

acute34 antidepressant treatment thereby establishing appropriate predictive validity. Finally, 

rodents subjected to the social defeat paradigm show neurobiological changes also 

observed in postmortem human studies, such as increased BDNF expression in the nucleus 

accumbens81 and reduced hippocampal volumes223 indicating that the paradigm has at least 

to some extent construct validity.  

Here we adopted a social defeat paradigm, in which rats were subjected to severe 

social defeat stress once every day for five days. In chapter 3, we showed that this results in 

an overactive hypothalamic-pituitary-adrenal (HPA) axis response 24 hour after the last 

social defeat encounter, expressed by an increase in plasma levels of the stress hormone 

corticosterone. This further supports the construct validity of social defeat stress, as 

dysregulation in HPA axis responses are also observed in MDD patients224. As further 

shown in this chapter; this social defeat stress reduced performance in a hippocampus 

dependent spatial memory task, a phenotype relevant to the cognitive symptoms of 

depression.  
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Long-term effects of chronic stress 

In humans, depressive episodes are still apparent long after the cessation of the stress 

exposure and depression is often considered as a chronic disease. Moreover, depression is 

a highly recurrent disorder; more than 75% of depressed patients have more than one 

depressive episode, often relapsing within two years of recovery from a depressive 

episode225. Indeed, between one-half and two-thirds of the people, who have ever been 

clinically depressed, will be in a relapse episode in any given year over the remainder of 

their lives226. Therefore, interest is in understanding the underlying mechanisms that 

determine particularly longitudinal aspects of the disorder and its maintenance182.  

To model the maintenance phase of depression rather than its induction phase, thereby 

increasing validity of the social defeat model, we adopted a social defeat paradigm in which 

five days of social defeat stress was followed by individual housing for 12 weeks33. In 

chapter 4, we confirmed face validity by showing that that this model induces depressive-like 

behavior by invoking anhedonic behavior, as indicated by reduced anticipation towards a 

palatable 5% sucrose solution, and by depression-associated cognitive impairments. 

Moreover, predictive validity was confirmed by showing that both behavioral and 

antidepressant therapy recovered both symptoms.  

 

 

Novel neurobiological mechanisms of depression 
 

Synaptic plasticity processes 

Throughout this thesis, several novel mechanisms have been characterized concerning 

stress-induced depressive-like phenotypes and antidepressant action. These mostly concern 

synaptic plasticity processes. In chapter 2 of this thesis, we showed that ketamine exerts its 

antidepressant effects by interfering with glutamatergic signaling in hippocampal synapses. 

Ketamine is a non-competitive (NMDA) receptor antagonist that has been shown to have 

immediate antidepressant effects in treatment-resistant patients when administered at a 

subanesthetic dose31,85. Its primary mechanism of action is blocking the NMDA receptor at 

the phencyclidine site, i.e. in the pore of the ion channel. In addition, ketamine induces rapid 

increases in presynaptic release of glutamate, a process hypothesized to be mediated by 

NMDA autoreceptors, and/or mediated by activated GABAergic neurons89. We show that the 

long-term antidepressant effects of ketamine in the FST were paralleled by increased Ser-

845 phosphorylation of GluA1 in hippocampal synapses. Moreover, a molecular blockade of 

regulated AMPAR endocytosis, using a TAT-Glu23Y peptide in the CA1 region of the dorsal 
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hippocampus, mimicked this antidepressant effect. This substantiates the hypothesis that 

the antidepressant effects of ketamine are initiated by an increased AMPAR turnover and 

functionality. These results argue that ketamine exerts its antidepressant effects through 

glutamatergic signaling mechanisms. The role of glutamate signaling in MDD is supported 

by growing evidence showing that antidepressants ultimately converge to regulate AMPA 

and NMDA receptor-mediated synaptic plasticity94, via a cascade of time-dependent 

signaling. 

Using the social defeat paradigm, we found that after severe social stress synaptic 

plasticity mechanisms are affected. In chapter 3, we showed that reduced spatial memory 

after social defeat is associated with reduced hippocampal synaptic expression of the 

glutamatergic receptor subunits GluN1, GluN2B and GluA2. In particular, the regulated 

synaptic expression of NMDA receptor subunits provides a dynamic and potentially powerful 

mechanism for the regulation of synaptic efficacy and remodeling. Indeed, it has been 

shown that alterations in NMDAR number and/or subunit composition contribute to the 

expression mechanisms of LTP (NMDAR-LTP)150 and LTD (NMDAR-LTD)151. This is another 

example in which synaptic glutamate signaling plays a role in generating a depressive 

phenotype. The reduced expression of NMDA receptor subunits is of particular interest since 

it might represent a mechanism of metaplasticity in the glutamatergic system37, and most 

likely underlies the cognitive impairments in a hippocampus-dependent memory task.  

Long after social defeat, synaptic changes are also apparent (chapter 4). Brain slice 

recordings of the hippocampus revealed a typical depressed state of the synapse. This 

reduced LTP in CA1 subfields probably affected hippocampus-dependent cognitive 

performance. We then used a proteomics analysis to identify synaptic alterations at the 

molecular level. The cognitive impairments and reduced LTP were associated with an 

increased hipocampal synaptic expression of the Na,K ATPase subunit AT1B2. Na,K 

ATPases are membrane localized proteins responsible for active transport of Na+ and K+ 

ions across the plasma membrane, thereby generating a gradient responsible for cell 

polarization and repolarization173. Increased expression and increased transporter activity 

could cause a faster clearance of K+ from the synaptic cleft, and of Na+ from the 

intrasynaptic compartment. This would result in a faster re-polarization after firing of an 

action potential, and therefore less glutamate release and calcium influx. Together, this 

might cause less plasticity in hippocampal synapses and underlie impaired LTP. Moreover, 

this Na,K ATPase dependent mechanism is a possible route through which stress can alter 

plasticity mechanisms, thereby inducing depressive symptoms.  
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Different mechanisms short and long-term after stress 

Stress has well-established effects on spatial memory performance in rodents by affecting 

hippocampal LTP40,41,43. Since hippocampal LTP is dependent on subunit specific regulation 

of AMPA receptors, it is not surprising that synaptic expression of GluA2 is affected after 

social defeat stress. In line with this, the stress hormone glucocorticoid enhances AMPA 

receptor mobility in hippocampal synapses135. Our observation that also synaptic localization 

of two NMDA receptor subunits was affected provides another mechanism through which 

plasticity mechanisms are regulated acutely after stress.  

Also, long after social defeat spatial memory performance and LTP in the CA1 subfields 

were reduced hinting towards altered glutamatergic signaling. However, in contrast to 24 

hour after social defeat, none of the glutamate receptor subunits were differentially 

expressed in synaptic membrane fractions. Instead, we observed an increase in synaptic 

expression of AT1B2. The fact that this Na,K ATPase subunit was not differentially 

expressed 24 hours after social defeat (data not shown), further confirms that on the long-

term different synaptic plasticity mechanisms are involved in causing reduced hippocampal 

LTP and memory. This argues that direct changes in levels of glutamate receptor subunits 

are involved in the installment of cognitive impairments immediately after stress exposure, 

while different synaptic mechanisms, e.g., changing the membrane potential, account for the 

maintenance of these symptoms. 

 

Depressive-like phenotypes after normalization of corticosterone levels 

The hypothalamic-pituitary-adrenal (HPA) axis has been found abnormal in depressed 

patients224. For example, a significant percentage of depressed patients have increased 

levels of cortisol in the saliva, plasma and urine, and increased size (as well as activity) of 

the pituitary and adrenal glands227. It is hypothesized that impaired hippocampal signal 

processing, due to damage by increased glucocorticoid levels, interferes with feedback 

inhibition of the HPA axis35. The resulting hyperactive HPA axis would then lead to an 

inappropriate stress response and, thereby, to the installment of depressive symptoms. 

However, here we show that despite hippocampal signaling being affected long after social 

defeat stress, corticosterone levels were normal. This argues that impaired hippocampal 

processing can induce depressive-like phenotypes, independent of HPA axis dysfunction. 

This supports the hypothesis that HPA axis hyperactivity is not a simple consequence or an 

epiphenomenon of depressive phenotypes, but on the contrary, that it is a risk factor 

predisposing to the development of depression228.  
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Social defeat stress affects hippocampal neurogenesis 

In chapter 5, we showed that after three months of individual housing, following a 5-day 

period of repeated social defeat, hippocampal neurogenesis is reduced indicated by a 

decrease in doublecortin postivie (DCX+) cells. This was most profound for older DCX+ cells 

with long apical dendrites, whereas younger cells remained unaffected. Chronic imipramine 

treatment subsequently increased both cell populations. Whether there is a causal relation 

between depressive phenotypes, cognitive impairments and a decrease in neurogenesis is 

still an active field of investigation68. However both neurogenesis-dependent and 

neurogenesis-independent mechanisms are likely to contribute to the reversal of depressive-

like behaviors by antidepressants47,216. This is in agreement with the network hypothesis of 

depression stating that depressive-like behavior reflects problems in information processing 

within particular neural networks in the brain and that antidepressant drugs and other 

treatments that alleviate depression function by gradually improving information processing 

within these networks229. 

 

Behavioral therapy 

Another interesting novel finding is the efficacy of behavioral therapy consisting of housing in 

an enriched environment for one hour daily. This type of therapy resembles activation and 

fysical execise therapy and aspects of behavioral therapy for depressed patients. Behavioral 

therapy was found equally effective in treating anhedonic symptoms, depression-associated 

cognitive impairments, as well as their underlying molecular and cellular correlates when 

compared with chronic imipramine treatment. Enriched environments produce functional and 

anatomical changes in neural networks that are reflected in the gradual improvement of 

natural behavior230. In analogy, behavioral psychotherapy might also have therapeutic 

effects on mood disorders through use-dependent neuronal plasticity. Therefore, behavioral 

and pharmacological therapies, might all lead to improved information processing and mood 

recovery through mechanisms that stimulate similar processes of plasticity. In this scenario, 

a combination of drug treatment and psychotherapy would be expected to be more 

beneficial than either treatment alone, and there is evidence that this might be the case231.  

 

 

Depression and neuroplasticity 
Increasing evidence demonstrates that neuroplasticity, a fundamental mechanism of 

neuronal adaptation, is disrupted in mood disorders and in animal models of depression156. 

Chronic stress, which can cause depression, also disrupts neuroplasticity35,44, whereas 
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several forms of antidepressant treatment induce opposing effects67. As discussed in the 

previous section, throughout this thesis, we made several novel observations supporting the 

neuroplasticity theory of depression. These findings hold throughout three different levels: 

structural plasticity, functional plasticity, and molecular mechanisms accompanying such 

changes. At the structural level we found that neurogenesis was affected after social defeat 

stress and imipramine treatment was able to restore the neurogenic process at this late time 

point, long after stress experience. This indicates that antidepressants might facilitate 

optimization of neuronal connectivity by increasing the choice of neurons available for 

selection through activity-dependent mechanisms. This process is expected to take time to 

develop and mature, which is consistent with the delayed appearance of the clinical effects 

of antidepressants229. 

Chronic stress impairs hippocampal LTP232. Short after social defeat stress, we found 

that hippocampal memory impairments were associated with decreased synaptic expression 

of glutamate receptor subunits. These are possibly caused by synaptic signaling pathways 

affected by social defeat stress. For example, several forms of chronic stress have been 

observed to increase the phosphorylation of MAPK233. The activation of MAPK appears to be 

critical for the effects of behavioral stress on hippocampal LTP234. Also, increased stress 

hormone levels and chronic stress can impair CREB activity235.  

The increased expression of AT1B2 that is associated with a decrease in LTP long after 

social defeat stress is a novel mechanism by which hippocampal plasticity is affected, and 

supports the neuroplasticity hypothesis of depression. However, care should be taken when 

projecting these findings to other brain regions. For example, in the amygdala51 and nucleus 

accumbens34 stress has opposing effects when compared with our data and increases 

neuroplasticity. Thus, our findings are brain region- and circuit-dependent and relate to the 

specific role of the hippocampus in MDD pathophysiology. The observation that both 

behavioral therapy and imipramine treatment (both effective treatments for MDD) have 

similar effects on plasticity and reverse of depressive-like phenotypes at the affective and 

cognitive domain argues that these changes are relevant for the disease phenotype of MDD.  

 

 

Clinical relevance 
 
Depression and cognition 

The observed changes in neuroplasticity in our depression model hint to aberrant 

information processing. Indeed, we found reduced cognitive hippocampal performance 
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associated with plasticity changes both short- and long-term after social stress exposure. By 

employing the social defeat model, we were capable of modeling aspects of cognitive 

impairments after a severe stress experience. Socially stressed rats showed decreased 

spatial memory, a symptom also observed in MDD patients130. Our finding that increased 

plasticity induced by both pharmacological treatment and behavioral therapy were able to 

relieve symptoms in both the affective and cognitive domain argues that improved 

information processing contribute to their antidepressant effects.  

There is a long history of research investigating the interaction of cognition and emotion 

in MDD. Clinicians and researchers alike have focused on cognitive processes and on the 

content of depressive cognition in trying to gain a more comprehensive understanding of 

MDD. These studies postulate that “associative networks” lead to cognitive biases on 

negative emotions in depressed individuals. Biases in cognitive processes, such as attention 

and memory, may not only be correlates of depressive episodes; they may also play a 

critical role in increasing the individuals’ vulnerability for the first onset and recurrence of 

depression236. Most cognitive theories propose vulnerability-stress hypotheses that posit that 

the onset of this disorder is due to the interaction of a psychological vulnerability (e.g., 

certain cognitions or particular ways of processing information) and a precipitating stressor. 

Importantly, one of the most effective interventions for depression, cognitive-behavioral 

therapy, focuses on modifying biased interpretations and dysfunctional automatic 

thoughts237.  

Depressed people experience difficulties involving concentration and memory (Burt et 

al. 1995). A general accepted attempt to integrate these findings with cognitive biased 

processes is the resource-allocation hypothesis. This postulates that because cognitive 

capacity is reduced, depressed individuals have deficits in remembering and in engaging in 

other effortful cognitive processes238. Additionally, the amount of resources available for 

cognitive operations is limited and depression either occupies or functionally reduces these 

resources, for example, because resources are used by task-irrelevant emotional 

processing. Thus, deficits should become evident in effortful, resource-demanding 

components of memory tasks.  

Given these still unsubstantiated views, the question remains how cognitive deficits are 

related to the hallmark feature of depression, the sustained negative affect. Therefore this 

interaction should be a focus of future depression research. 
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Implications for treatment strategies 

Throughout this thesis, several observations were made with important implications for 

treatment strategies for MDD. Our social defeat paradigm models symptoms in the affective 

and cognitive domains. In this paradigm, depressive-like behavior is induced by social stress 

experience in adult rats and, therefore, models adult onset stress-induced depression with 

cognitive impairments seen in depressed patients239. Here, we found that behavioral therapy 

was just as effective as imipramine treatment in rescuing depressive phenotypes and their 

underlying cellular and molecular correlates. This argues that behavioral therapy should be 

explored further as treatment option for depressed patients with cognitive impairments, that 

do not need, do not respond to or have adverse effects from pharmacological treatment. 

Furthermore, antidepressant effects of imipramine and behavioral therapy went hand in 

hand with an increase in hippocampal plasticity in glutamatergic systems as expressed by 

an increase in LTP after social stress. Also the acute and lasting antidepressant effects of 

ketamine were associated with a possible increase in AMPA receptor function in the 

hippocampus. This underscores that glutamatergic signaling pathways should be explored 

for potential therapeutic targets of MDD with faster therapeutic effects54. 

Finally, we showed that during the maintenance phase, likely different cellular and 

synaptic mechanisms are involved in stress-induced depressive phenotypes when 

compared with synaptic changes involved in the establishment of these symptoms directly 

after stress exposure. Since MDD patients are mostly treated (long) after cessation of the 

stress period, i.e., when depressive symptoms are evidently manifest, data originating from 

paradigms that model the maintenance phase of depression might be more relevant for 

implementation of treatment strategies. Therefore I argue for a shift in pre-clinical depression 

research, in which studies should focus increasingly on the maintenance phase of the 

disease rather that the induction phase of depression.  
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Nederlandse samenvatting 
 
 
Moleculaire en cellulaire neuroplasticiteit in diermodellen voor depressie 
 

Depressie is een veelvoorkomende psychiatrische aandoening die vaak diep in het leven 

van mensen ingrijpt. Depressie wordt gekenmerkt door een gedeprimeerde stemming en 

een verlies van belangstelling in aangename activiteiten. De oorzaak van depressie is 

grotendeels onbekend, maar in het algemeen wordt aangenomen dat een combinatie van 

genetische- en omgevingsfactoren hieraan ten grondslag ligt. Van de omgevingsfactoren is 

stress de meest voorkomende factor.  

Neurobiologisch gezien zijn er verschillende hersengebieden betrokken bij het tot stand 

komen van depressie symptomen. Eén van de gebieden waarin duidelijke veranderingen 

waarneembaar zijn bij depressieve patiënten is de hippocampus. Deze is betrokken bij 

verschillende cognitieve processen waaronder het semantisch geheugen en ruimtelijke 

oriëntatie. Daarnaast staat de hippocampus in verbinding met verschillende andere 

limbische hersengebieden die eveneens betrokken zijn bij gemoedstoestandregulerende 

processen.  

In het afgelopen decennium is duidelijk geworden dat er een verband bestaat tussen 

depressie en neuroplasticiteit. Deze relatie is duidelijk geworden door het gebruik van 

verschillende preklinische diermodellen voor depressie. Hiermee is aangetoond dat stress – 

één van de belangrijkste oorzaken van depressie – verschillende mechanismen van 

neuronale plasticiteit aantast. Ook is duidelijk geworden dat antidepressiva en niet-

farmacologisch gebaseerde therapieën deze processen juist stimuleren, hetgeen 

neuroplasticiteit meer in het focus van aandacht heeft gebracht.  

In dit proefschrift heb ik gebruik gemaakt van verschillende diermodellen in knaagdieren 

om de relatie van depressie met neuroplasticiteit te bestuderen. Naast de directe effecten 

van stress heb ik ook de lange termijn effecten van stress bestudeerd. Dit verdiend 

bijzondere aandacht omdat bij mensen de depressieve symptomen nog lang na een 

stressvolle levenservaring tot utdrukking komen. 

 

Hoofdsuk 2: Het antidepressieve effect van ketamine door middel van regulatie van 
AMPA receptor activiteit 
Ketamine is een N-methyl-D-aspartic acid (NMDA) receptor antagonist en wordt doorgaans 

gebruikt als verdovingsmiddel. Onlangs is gebleken dat deze stof, wanneer deze in lage 
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(sub-anesthetische) concentraties wordt toegediend, zowel een acute als een langdurige 

antidepressieve werking heeft in patiënten die verder niet reageren op klassieke 

antidepressiva, die hun eerste aangrijpingspunt hebben op het monoaminerge systeem. Van 

de klassieke antidepressiva is bekend dat ze pas effectief worden na chronische toediening 

van tenminste drie weken. De acute (binnen een uur) en langdurige werking van ketamine 

zijn daarmee erg interessant omdat dit impliceert dat de stof via, tot nog toe onbekende, 

monoamine-onafhankelijke mechanismen werkt. Om deze mechanismen te achterhalen heb 

ik gebruik gemaakt van de ‘forced swim test’. Dit is een preklinische test in muizen die 

effectief is in het voorspellen van de mogelijke antidepressieve werking van een stof. Met 

behulp van deze test heb ik ontdekt dat locale injectie van ketamine in de CA1 regio van de 

dorsale hippocampus een acute en langdurige (negen dagen na toediening) antidepressieve 

werking heeft. Door middel van immunoblot analyse op het synaptisch proteoom van de 

dorsale hippocmapus, heb ik vervolgens aangetoond dat negen dagen na toediening van 

ketamine de phosphorylatie van Ser-845 van α-amino-3-hydroxy-5-methylisoxazole-4-

propionic acid (AMPA) receptor subunit GluA1 verhoogd is. Dit duidt op een verhoogde 

‘turn-over’ snelheid – en daardoor op een mogelijke verhoogde receptor functie – van AMPA 

receptoren. Om aan te tonen dat het antidepressieve effect van ketamine wordt veroorzaakt 

door een verhoogde AMPA receptor activiteit in de hippocampus, hebben we deze situatie 

nagebootst door toediening van een TAT-Glu23Y peptide dat de gereguleerde endocytose 

van AMPA receptoren blokkeert. Toediening van dit peptide in de dorsale hippocampus had 

een antidepressieve werking in de ‘forced swim test’. Hiermee hebben we aannemelijk 

gemaakt dat de antidepressieve werking van ketamine in ieder geval deels wordt 

veroorzaakt door een verhoogde AMPA receptor functionaliteit in de hippocampus.  

 

Hoofdstuk 3: ‘Social defeat’ stress induceert veranderingen in de synaptische 
expressie van glutamate receptoren.  
Om een beter inzicht te krijgen in de moleculaire neurobiologie van depressie moet gebruik 

worden gemaakt van diermodellen met een sterke validiteit voor de ziekte in mensen. Het 

‘social defeat’ model in ratten is hiervan een goed voorbeeld. In dit model wordt gebruik 

gemaakt van een hevige sociale stressor, één maal per dag, voor vijf dagen achter elkaar. 

Hierdoor heeft  het model een sterke etiologische validiteit, aangezien psychosociale stress 

in mensen de vatbaarheid voor depressie sterk verhoogd. Met dit model heb ik aangetoond 

dat 24 uur na de laatste sociale stresservaring, het niveau van het stresshormoon 

coritcosteron in het bloedplasma 2.5 keer zo hoog is in vergelijking tot controle ratten. Deze 

sociale stress vermindert ook de prestatie van deze ratten in een hippocampus afhankelijke 
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cognitieve gedragstaak gebaseerd op het ruimtelijk geheugen. Bovendien heb ik 

aangetoond dat dit verminderde ruimtelijke geheugen gepaard gaat met een verlaagde 

synaptische expressie van de NMDA receptor subunits GluN1 en GluN2B en de AMPA 

receptor subunit GluA2 in de dorsale hippocampus. Vervolgonderzoek moet uitwijzen in 

welke mate de veranderde expressie van deze receptor subunits leidt tot 

elektrofysiologische veranderingen in synaptische plasticiteit.  

 

Hoofstuk 4: Gedragstherapie herstelt verminderde cognitieve prestaties na ‘social 
defeat’ stress, die samengaan met een verlaagde LTP en verhoogde synaptische 
expressie van AT1b2 in de hippocampus.  
In mensen komen depressieve symptomen meestal nog lang na een stressvolle 

levenservaring tot uitdrukking. Om een beter inzicht te krijgen in de neurobiologie van 

depressie en om op zoek te gaan naar moleculaire targets voor antidepressiva is het van 

grote meerwaarde om juist de lange termijn effecten van stress te onderzoeken. Om deze 

aanhoudende fase van depressie te modelleren hebben we ratten na ‘social defeat’ stress 

voor drie maanden in sociale isolatie gehouden. Door deze behandeling werden 

(hippocampusafhankelijke) cognitieve prestaties van ratten sterk verminderd. Dit zou 

overeen kunnen komen met de cognitieve disfuncties, zoals een verminderd geheugen, die 

vaak worden waargenomen in depressieve patiënten. De verminderde cognitieve capaciteit 

van deze ratten gaat gepaard met depressieve symptomen, zoals een verminderde 

anticipatie ten opzicht suikerwater. Bovendien konden zowel de verminderde cognitieve 

prestaties als de anhedonische symptomen hersteld worden door zowel gedragstherapie – 

bestaande uit dagelijkse huisvesting in een verrijkte omgeving gedurende een uur – alswel 

door een farmacologische behandeling, bestaande uit chronische toediening van het 

tricyclisch antidepressivum imipramine.  

Verder heb ik aangetoond dat deze verminderde cognitieve capaciteit lang na social 

defeat stress, gepaard gaat met een verlaagde lange-termijn-potentiatie (LTP) in CA3-CA1 

synapsen in de dorsale hippocampus. Deze plasticiteitsverandering is te herstellen middels 

de gedrags- en farmacologische therapie. Om te achterhalen welke moleculaire 

veranderingen in de synaps hieraan ten grondslag zouden kunnen liggen, werd met behulp 

van iTRAQ proteomics de samenstelling van het synaptische ‘proteoom’ in de dorsale 

hippocampus geanalyseerd. Dit is een zeer gevoelige techniek, die het mogelijk maakt om 

synaptische eiwitten te detecteren en kleine veranderingen in eiwitexpressie te 

kwantificeren. Hiermee heb ik gevonden, dat lang na ‘social defeat’ stress, de synaptische 

expressie van de Na,K ATPase subunit AT1b2 met ~40% verhoogd is ten opzichte van 
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controle ratten. Zowel gedragstherapie als chronische toediening van imipramine zijn in 

staat om de verminderde LTP en verhoogde AT1b2 expressie te normaliseren. Of de 

verhoogde expressie van AT1b2 ook de oorzaak is van de verminderde cognitieve 

prestaties zal in vervolgexperimenten onderzocht moeten worden.  

 

Hoofstuk 5: Neurogenese in de hippocampus is verminderd lang na social defeat 
stress 
In verschillende stress geïnduceerde modellen voor depressie in knaagdieren is in 

voorgaande studies een verminderde neurogenese in de hippocampus waargenomen. 

Bovendien zijn verschillende soorten antidepressiva in staat om deze verminderde 

neurogenese te herstellen. Deze bevindingen hebben geleid tot de neurogenese theorie van 

depressie. In dit hoofdstuk heb ik gekeken of neurogenese ook aangetast is in de 

aanhoudende fase van de depressieve symptomen, dus lang na de laatste ‘social defeat’ 

ervaring. Hiervoor heb ik door middel van stereologische technieken het aantal doublecortin 

(DCX) immunopositieve cellen bepaald. DCX is een marker voor nieuwgeboren immature 

neuronen. Op basis van de morfologie van de dendritische bomen van deze cellen heb ik 

specifiek het aantal jonge (klasse-I) en meer volgroeide (klasse-II) DCX positive (DCX+) 

cellen bepaald. Het aantal DCX+ cellen was sterk verminderd lang na ‘social defeat’ stress, 

hetgeen vooral werd veroorzaakt door een afname van klasse-II cellen, terwijl het aantal 

klasse-I cellen onveranderd was. In tegenstelling tot verhoogde niveaus stresshormoon 

corticosteron direct na de ‘social defeat’, was op de lange termijn het niveau genormaliseerd 

tot dat van controle dieren. Verder heb ik laten zien dat chronische behandeling met 

imipramine de vermindering in neurogenese herstelt door een toename van zowel klasse-I 

als klasse-II cellen te bewerkstelligen. Hieruit kunnen we concluderen dat, ondanks dat de 

stresshormoon niveaus genormaliseerd zijn, neurogenese blijvend is aangetast na ‘social 

defeat’ stress door een afname van klasse-II cellen. Het is opmerkelijk dat imipramine de 

verminderde neurogenese in dit late stadium nog kan herstellen.  

 

Conclusie 
In dit proefschrift heb ik laten zien dat in verschillende diermodellen voor depressie, diverse 

plasticiteitsprocessen in de hippocampus zijn aangetast. Interessant daarbij is dat deze 

processen niet direct gekoppeld zijn aan het monoaminerge systeem. Dus met dit 

onderzoek zijn nieuwe mechanismen gekarakteriseerd, die mogelijk kunnen worden gebruikt 

voor farmacologische interventies. Bovendien heb ik aangetoond dat andere moleculaire 

processen betrokken zijn bij de lange termijn effecten van stress, in vergelijking tot de acute 
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effecten die betrokken zijn bij de inductie van depressieve symptomen. De karakterisatie van 

deze lange termijn effecten is interessant voor ontwikkeling van nieuwe antidepressiva, 

aangezien depressieve patiënten over het algemeen pas lang na een stressvolle 

levenservaring worden behandeld. Een andere interessante bevinding is dat 

gedragstherapie een vergelijkbare efficiëntie heeft in het verminderen van 

stressgeïnduceerde depressieve symptomen in vergelijking tot chronische behandeling met 

imipramine. Bovendien was de gedragstherapie net zo efficiënt in het herstellen van 

aangetaste plastische processen in de hippocampus. Deze bevinding heeft mogelijk een 

implicatie voor de behandelingsstrategie van depressie, die in de toekomst wellicht meer op 

activiteitentherapie gericht zou kunnen worden.  
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Dankwoord 
 
Yeah!!! Mijn proefschrift is af. Eens even terug kijken. Was het leuk? Een van de coolste 

dingen die ik ooit heb gedaan. Was het zwaar? Viel best mee. Ooit spijt gehad? Nee nooit. 

Veel geleerd? Van handmatig cellen tellen tot hoe de wereld in elkaar zit. Ga ik het missen? 

Heel erg, ik zal mijn passie voor de wetenschap altijd meedragen. Had ik het alleen kunnen 

doen? Nee nooit, daarom wil ik hier een aantal mensen bedanken. 

 

Ten eerste de mensen die dit proefschrift voor een groot gedeelte mogelijk hebben 

gemaakt, Sabine Spijker, Guus Smit en Witte Hogendijk. Sabine, ik weet zeker dat ik 

helaas nooit meer een ‘baas’ zal krijgen zoals jij, je bent een uniek persoon. Bedankt voor 

alle vrijheid die je me altijd hebt gegeven en vooral voor je oneindige enthousiasme. 

Guus, in de jaren dat ik hier werkte is de afdeling enorm gegroeid. Door je zeer brede 

maar ook specifieke kennis heb je toch altijd controle over alle projecten kunnen houden. 

Dit geeft een stabiele basis waardoor ik nooit heb getwijfeld of mijn project wel tot een 

goed einde zou komen. Bedankt daarvoor. Guus en Sabine, door jullie plezier in het werk 

en vrijheid die jullie geven zorgen jullie voor een ongekend goede werksfeer op het lab. 

Dat ga ik niet snel ergens anders vinden. Witte, je stond iets verder van mijn onderzoek 

af, maar ik heb onze besprekingen altijd als bijzonder prettig ervaren. Hiermee heb je 

ervoor gezorgd dat ik mijn onderzoek altijd vanuit een humaan oogpunt bleef bekijken. Dit 

heeft voor een juiste balans in mijn proefschrift gezorgd.   

 

Tijdens mijn promotieonderzoek heb ik met een aantal collegae goed en met veel plezier 

samengewerkt. Hierdoor hebben zij ieder een wetenschappelijke bijdrage aan mijn 

proefschrift geleverd. Samen met Johanneke van der Harst heb ik het social defeat model 

opgezet op de Vrije Universiteit. Ik denk een enorm valide model waar de VU nog veel 

profijt van gaat hebben. Paul Lucassen, de neurogenese experimenten die ik bij jullie op 

het lab heb uitgevoerd, waren een welkome afwisseling op mijn werk op de VU. Ik heb 

me altijd erg thuis gevoeld op de UvA en bovendien heeft dit tot een mooi artikel en 

hoofdstuk geleid. Danai, what happens in the basement stays in the basement. Door 

samen met Erwin van Geldrop flexibel met bureaucratie om te gaan heb ik mijn 

gedragsexperimenten tot een goed einde kunnen brengen. Paul van Eijck, de 

experimenten op de microarray facility waren goed, en vooral netjes, uitgevoerd. Helaas 

vind je niet altijd significante resultaten, ook al analyseer je 44.000 probes. Roel van der 
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Schors, de proteomics experimenten die we samen hebben uitgevoerd, hebben de basis 

gelegd voor hoofdstuk drie en vier van dit proefschrift. En tussendoor hielden we ook nog 

in de gaten of één van de gebroeders Schleck al aan het demarreren was op de 

Toumalet. Huib Mansvelder, Tim Heistek en Jaap Timmermans, de elektrofysiologische 

metingen die ‘op de vierde’ uitgevoerd worden, zijn onmisbaar voor gedegen 

neurobiologisch onderzoek. Bruce Jencks, gedurende mijn master aan de Radboud 

Universiteit heb je me tijdens je fantastische colleges over de neurobiologie enthousiast 

weten te maken voor dit vakgebied. Dat heeft indirect tot dit proefschrift geleid.   

 

Every day I went to the VU, I went there happily. That’s for the most part because of my 

colleagues. Especially the ones from the first and the last hour. In order of appearance: 

Pri (the Berlin Bombs will always be in my memory, or they won’t, I don’t really know), 

Nutabi, Eva, Rolinka, Frau Klemmer, Jochem (SQ), Marlene, Bart (godverdomme!), 

Danai (shoe!), and Michel. Probably the best part of my PhD was having the chance to 

get to know all of you. You are all amazing people, each in your very, very own way. 

There is no limit in the amount of fun we had both inside and outside the lab, during lunch 

breaks, coffee breaks, just random breaks, Friday beers in ‘de Stelling’, lab outings, 

conferences, and Indian weddings. And ooohhw man, we know how to party! 

Bart, ik ben blij dat je mijn paranimf wilt zijn en met de vriendschap die we de afgelopen 

tijd hebben opgebouwd. Jochem, we vormen een super goed team en ik denk dat onze 

samenwerking zeker zijn vruchten af gaat werpen.  

 

Andere collega’s: Pim, Harold, Danielle, Maarten, Loek, Yvonne (ik verwacht het 

bierkanon op mijn promotiefeest), Mark, Nikhil, Andrea, Ronald, Brigitte, Marion, Anna, 

Remco, Ruud, Ka Wan, Ning, ‘Stelling-gangers van de vierde’, de ONWAR aio’s van de 

UvA, en mijn JtF commissiegenootjes. Jullie gezelligheid en wetenschappelijke bijdrage 

waren voor mij van onschatbare waarde! 

 

 

Daarnaast wil ik mijn vriendenkring bedanken. Een groep mensen met een oneindige 

hoeveelheid humor en levenslust. Daarmee zijn ze een onmisbare steun. Bovendien hebben 

ze indirect een belangrijke bijdrage aan dit proefschrift geleverd. Een doel van dit 

proefschrift was het vinden van een effectieve behandeling van depressie. Stap-voor-stap 

komt de wetenschap dichterbij, maar er is nog een lange weg te gaan. Gelukkig weet ik 
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dankzij jullie al wel hoe je een depressie kan voorkomen. Ik adviseer een intensieve omgang 

met de volgende personen: 

 

Mijn drie maten: Paul, Heck en Sté: grollen in het huis, kijken of er een bandje speelt in 

Dadas, Hein stompjes geven als hij die verdient (eigenlijk altijd wel), rennen over het 

spoor, vier frikadellen. Wie wil er een Bator? Rik, praten over voetbal, wetenschap en 

vrouwen. Wat wil een mens nog meer. De koningen van de Regulierstraat en Krista, er is 

voor mij geen mooier moment in het jaar dan het moment waarop er op een vrijdagavond 

in mei ‘Moonshadow’ uit de speakers komt. Again my colleagues. Scheldeplein 6: Veer, 

Eef, Sexma en Jeroen, Brabantse gezelligheid in Amsterdam. Chaan, ooit zullen onze 

telefoongesprekken tot radioprogramma gepromoveerd worden. We bellen (smiley). 

Maart, we hebben lang naar de Buurvrouw gezocht en veel later ook gevonden. Dat 

hebben ze geweten. Lisa, wij weten elkaar ongevraagd te motiveren en hebben veel 

plezier, ook samen met Lau en Janna. Anneke vd Bijgaart, jij hebt het in genetisch 

opzicht wel zo goed voor elkaar. Daardoor ben je zo chill. Dalila, nergens eet ik zo lekker 

uit ergonomisch en esthetisch volmaakte bakjes. De Venmilie, een bont gezelschap van 

warmte en vooral gezelligheid.  

 

Mijntje, tijdens het schrijven van dit dankwoord ben je steeds een stukje verder richting 

het einde opgeschoven. Schuif maar lekker door, dan heb ik straks ’t lekkerste voor ’t 

laatst.  

 

Tot slot, mijn familie. Ik denk dat het afgelopen jaar duidelijk is gebleken hoe sterk onze 

band is. Mam en Jack, jullie zijn er altijd voor me geweest. Ook al maak ik soms andere 

keuzes dan jullie voor ogen hebben, ik word altijd door jullie gesteund. Een steun die rust 

geeft, maar ook motiveert. Jullie hebben me enthousiast weten te maken voor alles wat er in 

deze wereld speelt.  

Mijn zus, Anneke; onbegrensd, onbezonnen, doelgericht, gepassioneerd, alom geliefd en vrij 

van geest. En dan ook nog super lief.  

 

 

Pieter 
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van ‘Brain-Derived Neurotropic Factor’ op de plasticiteit van melanotrope cellen in Xenopus 

laevis. Zijn tweede stage voerde hij uit aan de afdeling Cancer Research and Developmental 

Biology van The Hospital for Sick Children in Toronto, Canada. Hier onderzocht hij de rol 
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proefschrift. Sindsdien werkt hij samen met collega Jochem Cornelis aan de ontwikkeling 
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