


 



 

 

 

 

 

 

Mild skin warming, a non-pharmacological 
way to modulate sleep and vigilance 

 

 

Roy J.E.M. Raymann 

  



 

 

 

 

 
 
 
 
 
 

 
Raymann, R.J.E.M. 
Mild skin warming, a non-pharmacological way to modulate sleep and vigilance 
 
ISBN/EAN: 978-94-6191-689-1 
 
©R.J.E.M. Raymann, 2013 
 
Copyright of the individual chapters belongs to the publisher of the journal listed at the beginning 
of each respective chapter. No part of this publication may be reproduced in any other form, by 
print, photocopy, digital file, internet or any other means without written permission from the 
author. 
 
Reading Committee: prof.dr. H.A.M. Daanen, dr. T. de Boer, prof.dr. G.A. Kerkhof, dr. K. 

Linkenkaer-Hansen, prof.dr. K.P. Wright Jr. 

Layout:  Roy Raymann & Edith Dourleijn, Waalre, The Netherlands 
Cover Design:   Roy Raymann, Waalre, The Netherlands 
Cover Artwork: Danielle Cuppens en Paul de Jong, Amsterdam 
Print:   Ipskamp Drukkers, Enschede, The Netherlands 
 
The research described in this thesis was conducted at the Netherlands Institute for 
Neuroscience. Financial/material support was provided by: Netherlands Organization for Scientific 
Research (NWO-ZonMw, projects Project 28-3003, SOW 014-90-001 & VIDI innovation grant 
016.025.041); the EU FP6 Sensation Integrated Project (FP6-507231); the Japan Foundation for 
Aging and Health; Stichting Centraal Fonds RVVZ/Innovatiefonds Zorgverzekeraars; Cambridge 
Neurotechnology; Itamar Medical; Flaga hf; Nature’s Choice; Royal Auping and Netherlands 
Institute for Neuroscience.  

Financial support for the publication of this thesis was generously provided by: the Dutch Society 
for Sleep-Wake Research, the Netherlands Institute for Neuroscience & Philips Group Innovation - 
Research, VU University. 

 
 
 
 



VRIJE UNIVERSITEIT 

 

 

  

Mild skin warming, a non-pharmacological way to 
modulate sleep and vigilance 

 

 

 

 

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan 
de Vrije Universiteit Amsterdam, 

op gezag van de rector magnificus 
prof.dr. L.M. Bouter, 

 in het openbaar te verdedigen 
 ten overstaan van de promotiecommissie 

 van de Faculteit der Aard- en Levenswetenschappen 
 op vrijdag 26 april 2013 om 11.45 uur 

in de aula van de universiteit, 
De Boelelaan 1105 

 

 

 

door 

Roy Joan Eli Marie Raymann 

geboren te Venlo 

  



promotoren:   prof.dr. E.J.W. van Someren 

  prof.dr. D.F.Swaab 

 

  



 

 

 

 

 

 

 

 

FESTINA LENTE CAUTA FAC OMNIA MENTE 

"Haast je langzaam, doe alles met je verstand." 

Wapenspreuk gemeente Venlo 

  



 

 

 

 

 

  



Contents 
Introduction        
 Chapter 1 Introduction: Sleep, vigilance and thermosensitivity. 

 Co-authored with Nico Romeijn, based on Pflügers Archiv - European Journal of 
Physiology 2012(463), p. 169–176. 
 

 Chapter 2 Circadian and age-related modulation of thermoreception and temperature 
regulation: mechanisms and functional implications. 

  Ageing Research Reviews 2002(1), p. 721-778.  
 

 Promoting Sleep Onset 
 Chapter 3 Skin temperature and sleep-onset latency: changes with age and insomnia. 
  Physiology & Behavior 2007 (90), p. 257-266. 
 

 Chapter 4 Cutaneous warming promotes sleep onset. 
 American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 
2005(288), p. R1589–R1597. 
 

 Chapter 5 Diminished capability to recognize the optimal temperature for sleep 
initiation may contribute to poor sleep in elderly people. 

  Sleep 2008(31), p. 1301-1309. 
 
Daytime Vigilance 
 Chapter 6 Time-on-task impairment of psychomotor vigilance is affected by mild skin 

warming and changes with aging and insomnia. 
  Sleep 2007(30), p. 96-103. 
 

 Chapter 7 Manipulation of core body and skin temperature improves vigilance and 
maintenance of wakefulness in narcolepsy. 

   Sleep. 2008(31), p. 233-240. 
 

Sleep Depth & Sleep Maintenance  
 Chapter 8 Skin deep: cutaneous temperature determines sleep depth. 
  Brain 2008(131), p. 500-513. 
 

 Chapter 9 Manipulation of skin temperature improves nocturnal sleep in narcolepsy. 
  Journal of Neurology, Neurosurgery, & Psychiatry 2008(79), p. 1354-1357. 
 

Conclusion 
 Chapter 10 Summary, general discussion and future perspectives. 

 Co-authored with Nico Romeijn, based on Pflügers Archiv - European Journal of 
Physiology 2012(463), p. 169–176. 
 

Nederlandse Samenvatting (Summary in Dutch) 

List of scientific publications 

Curriculum Vitae  

Acknowledgements 

 

 

 

 
 

9 
 

 

23 

 

 

 
87 

 

111 

 
 

135 

 

 

 
155 

 

 
177 

 

 

 
197 

 

221 

 

 
229 

 
 

247 

253 

259 

261 



 



 

 

 

 

 

 

 
 

INTRODUCTION 



 

 

  



 

 

 

 

 

 

Chapter 1 
Sleep, vigilance and 

thermosensitivity 
 

 
 

 
Nico Romeijn 

Roy J.E.M. Raymann 
 Els Møst 

Bart te Lindert 
Wisse P. van der Meijden 

Rolf Fronczek 
German Gomez-Herrero 

Eus J.W. van Someren 
 
 
 
 

 
 

Co-authored with Nico Romeijn and Eus van Someren, based on a part of Pflügers Archiv - 
European Journal of Physiology 2012(463), p. 169–176.



 
Introduction 12 

Summary 
The regulation of sleep and wakefulness is well-modeled with two underlying processes: a circa-

dian and a homeostatic one. So far the parameters and mechanisms of additional sleep-

permissive and wake-promoting conditions have been largely overlooked. The present thesis fo-

cuses on one of these conditions: the effect of skin temperature on the onset and maintenance of 

sleep, and daytime vigilance. Skin temperature is quite well-suited to provide the brain with in-

formation on sleep-permissive and wake-promoting conditions, because it changes with most if 

not all of them. Skin temperature changes with environmental heat and cold, but also with post-

ure, environmental light, danger, nutritional status, pain and stress. Its effect on the brain may 

thus moderate the efficacy by which the clock and homeostat manage to initiate or maintain 

sleep or wakefulness. This introductory chapter provides a brief overview of the neuroanatomical 

pathways and physiological mechanisms by which skin temperature could affect the regulation of 

sleep and vigilance and outlines the contents of the thesis. 



 

 

Ch
ap

te
r 1

  

 
 

13 Sleep, vigilance and thermosensitivity 

Introduction 
In order to provide an intuitive idea on the focus of the present thesis on sleep, vigilance and 

thermosensitivity one may try to imagine two situations, likely familiar to most researchers and 

clinicians reading this thesis. The first situation is as follows. Consider a moment of considerable 

fatigue after a long working day, while there is still that one manuscript that needs to be read and 

commented on today. What would be the best strategy to promote alertness and finish the job: 

reading it sitting at one’s desk, or rather lying down on the sofa to give in somewhat to the fati-

gue, and read it semi-supine? The second situation is also familiar to many of us. Imagine flying 

back home from a demanding conference, eager to catch a nap. How does trying to sleep in a 

sitting position compare to trying to sleep in a supine position? For most of us, answers to these 

questions come without even the slightest bit of doubt. If one has to stay awake, chances to do so 

successfully are better with sitting, and even more so with standing, as compared to lying 

down9,10,13,29. If one desires to sleep on the other hand, most of us succeed much better when 

lying down1,39. Although most sleep researchers agree with these answers, are they supported by 

current models on the regulation of sleep and alertness? 

 

Sleep regulation: are a clock and an hourglass sufficient? 
As reviewed many times before5,14,16, the core model of sleep-wake regulation consists of a circa-

dian component and a homeostatic component. The circadian (circa=about, dies=day) component 

refers to the clock of the brain. The central clock of our brain is located in the hypothalamic su-

prachiasmatic nucleus (SCN) and drives many physiological and behavioral rhythms including the 

rhythm in sleep and wakefulness. In humans, this central clock promotes sleep during the night 

and wakefulness during the day. However, circadian processes are not limited to the central cir-

cadian pacemaker formed by the SCN. Indeed, molecular clock mechanisms are found in every 

single cell15. This is not surprising given the fact that the evolution of life on our rotating planet 

has always occurred in an environment with near-24 hr cycles of light and darkness, and corres-

ponding higher and lower environmental temperatures. Given this origin it is also not surprising 

that both light and temperature can affect clock mechanisms at the cellular and systems level, as 

will be touched upon later. 

 

The homeostatic component refers to the hourglass of the brain. The longer we’re awake, the 

stronger the pressure for sleep. While we’re asleep, this pressure dissipates, and as soon as we 

wake up, the process starts all over again, just like turning an hourglass at every transition be-

tween sleep and wakefulness. The neurobiological mechanisms underlying the hourglass are not 
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characterized as well as the mechanisms of the clock are. Important roles have been assigned to 

adenosine43, to an increase in synaptic density during wakefulness50, and to cytokines30. 

 

Back to our question: how does the consensus model of sleep regulation account for the quite 

familiar experience that it is easier to stay awake in an upright position and easier to fall asleep in 

a supine position? Does this simple change of posture phase-shift our clock? Does it tilt the hour-

glass? Does it affect these processes at all? The answer seems to be a definitive no. The clock & 

hourglass model has brought us very far in understanding the regulation of sleep and wakeful-

ness. Both components are necessary to understand the maintenance and transitions of states. 

They model it so well under comfortable, safe and variance-limiting laboratory conditions that we 

tend to forget that the model may not necessarily be sufficient for a complete understanding of 

the maintenance and transitions of states, as we will argue below. 

 

Sleep-permissive and wake-promoting conditions 
In real life, sleep onset and maintenance also depend on whether some seemingly trivial yet cru-

cial conditions are met, like having attained an appropriate posture. Being in a supine position is 

being in a sleep-permissive condition. Being upright is being in a wake-promoting condi-

tion1,9,10,13,29,39. Posture is just one of several examples of permissive and promoting conditions. 

Are we as likely to maintain the state of sleep or wakefulness in a brightly lit versus dark environ-

ment?52 And, whatever state the clock and hourglass tells our sleep-regulating systems to imple-

ment, are we going to fall asleep in case of acute cold42,47, heat22,40, danger12,20, pain17,32 or 

stress2,51? Just like the clock mechanisms are strongly rooted in evolution, so are the sensitivities 

to sleep-permissive and wake-promoting conditions: the odds for survival would be severely 

compromised if these were not effective. We plea that insights into the parameters and mechan-

isms of sleep-permissive and wake-promoting conditions are no less important for our under-

standing of sleep regulation and sleep disorders than insights into the mechanisms underlying the 

clock and hourglass are.  

 

The present thesis focuses on one of these conditions: the effect of skin temperature on the onset 

and maintenance of sleep, and vigilance. Skin temperature is quite well-suited to provide the 

brain with information on sleep-permissive and wake-promoting conditions, because skin tem-

perature changes with most sleep-permissive and wake-promoting conditions, if not all of them. 

Because the skin is rather poikilotherm (poikilio = varied or irregular, therm = temperature), its 

temperature changes with environmental heat and cold4. It changes also with posture38,49, envi-

ronmental light8,52, anxiety31, food intake46, pain21,25,33 and stress44. Its effect on the brain may thus 
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15 Sleep, vigilance and thermosensitivity 

moderate the efficacy by which the clock and homeostat manage to initiate or maintain sleep or 

wakefulness. 

 

Skin temperature 
Skin temperature is modulated by environmental and endogenous processes. The human skin is 

under the influence of environmental temperature. In addition, skin temperature depends on 

endogenous central and autonomic nervous system processes that actively regulate blood flow 

through the skin26. Variation in perfusion of the skin with the ~37˚C blood thus results an endo-

genous modulation of skin temperature. Information on skin temperature, measured with cold 

and warm receptors and conveyed through thermosensitive afferent pathways, reaches the brain 

in order to allow for thermoregulation23. However, information on skin temperature does not only 

reach brain areas with a primary involvement in thermoregulation, but also brain areas involved 

in other functions54. 

 

Skin temperature and sleep-wake regulation 
Indeed, several neuronal systems that are directly or indirectly involved in sleep-wake-regulation 

are sensitive to temperature55,56,57. This is not surprising from an evolutionary perspective given 

that environmental temperature has a long history of affecting sleep-wake behavior. In the evolu-

tionary older ectotherms (ecto =outside, therm = temperature), the behavioral relationship be-

tween temperature and vigilance level is relatively straightforward. Ectotherms require warming 

up by exposure to the radiation of the sun, in order to become active. On the other hand, endo-

therms (endo =inside, therm = temperature), aim to maintain their core body temperature within 

a small range, which makes the relationship between temperature and vigilance more complex. 

The most studied organisms, humans and small furred mammals (such as rats, ground squirrels 

and hamsters) mainly sleep during that part of the day when their core body temperature is low, 

and are most awake during the part of the day when their core body temperature is high, which 

resembles the behavior of ectotherms. But unlike ectotherms, their skin temperature is elevated 

during the sleep period due to an increase in skin blood flow in combination with behavior that 

limits heat loss through insulation by creating a warm microclimate, like covering and curling up. 

This results in an inverse relationship between core and skin temperature in everyday life, while in 

ectotherms skin and core body temperature covary over time in phase. The question thus be-

comes more complicated: to what extent are the biological systems that are involved in sleep-

wake rhythm regulation differentially affected by the normal variations in core temperature ver-

sus skin temperature? 
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As extensively reviewed elsewhere54, several brain areas involved in sleep regulation are differen-

tially sensitive to the local brain temperature which covaries with core temperature, versus skin 

temperature which shows an inverse relation to core temperature during the 24-hour cycle. An 

area that plays a key role in both sleep and temperature regulation is the preoptic area of the 

anterior hypothalamus (POAH). Animal studies indicate that both mild local warming of the area 

using a micro-thermode, as well as mild skin warming using a wrap, induce its neuronal fire pat-

terns to resemble those of sleep and inhibit those associated with wakefulness3,35,36. The same 

was shown in the posterior hypothalamic area. Mild skin warming has also been associated with 

sleep-like activity in the cerebral cortex and midbrain reticular formation. Local brain warming has 

furthermore been shown to induce sleep-like firing patterns in the diagonal band but also wake-

like firing patterns in the midbrain reticular formation and midline thalamic nuclei. Taken togeth-

er, the effect of a mild increase in brain temperature may differentially drive different brain areas 

towards either a more sleep-like or a more wake-like firing pattern. The complex relationship 

between brain temperature and neuronal firing patterns makes an unequivocal sleep-promoting 

effect of mild increases in brain temperature unlikely. In contrast, the effect of a mild increase in 

skin temperature in general seems to drive different brain areas towards more sleep-like firing 

patterns. If these findings can be translated to a real-life situation, a mild increase in skin temper-

ature might promote sleep. 

 

Next to these general functional anatomy considerations, how would core and skin temperature 

affect the specific functional anatomy that underlies the hourglass and clock of sleep regulation? 

Little is known on specific effects of temperature on the incompletely understood regulation of 

adenosine that is thought to be involved in the homeostatic aspect of sleep regulation. With re-

spect to the much better understood clock-related systems, evidence has accumulated over the 

last decade to indicate that peripheral oscillators, including those in the brain (e.g. cerebral cor-

tex) can be entrained by ambient temperature cycles6,7,18. On the other hand, such cycles do not 

appear to affect the intact SCN, the central clock of the brain. The SCN itself becomes sensitive to 

ambient temperature cycles only if communication between its neurons is restricted, as is the 

case in early development24 or can be accomplished with application of tetrodotoxin7. This is an 

interesting observation with respect to aging, where communication between SCN neurons is 

likely to be compromised because of low expression of vasoactive intestinal polypeptide (VIP), an 

essential factor in electrical synchronization of SCN neurons34. In humans, the decrease in VIP 

occurs in a gender-specific way, i.e. in males mostly48. Thus, it may be that temperature cycles 

have the capacity to enhance sleep-wake rhythms more prominently at high age, where rest-

activity rhythms are most vulnerable and strongly associated with well-being11. It is therefore of 

considerable interest to review in detail the mechanisms and functional implications of age-
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17 Sleep, vigilance and thermosensitivity 

related changes in thermoreception and temperature regulation and their circadian modulation. 

We do so extensively in Chapter 2, which has been published in Ageing Research Reviews 2002(1), 

p. 721-778. 

 

Support for an effect of skin temperature on vigilance in humans 
What is, in humans, the observational support for an association between skin temperature and 

vigilance, operationalized as the ability to initiate or maintain sleep or alert wakefulness? On 

anecdotal level we mention the sleep promoting effect of the warmth of the sun, when lying on 

the beach, the red earlobes of young children getting tired, the use of the fan and air conditioner 

in the car to stay alert when driving during a hot summer day, or the warm rosy feeling after being 

deprived from sleep. 

On scientific level constant routine and forced desynchrony studies provide unequivocal observa-

tional support that people sleep best while they head towards the trough of their 24-hour core 

body temperature and perform best around its peak59. Constant routine protocols fix posture, 

activity, light, behavioral state, and food intake over a prolonged period of time in order to minim-

ize the confounding effects of the aforementioned conditions on wake and sleep and/or circadian 

phase. In forced desynchrony protocols, sleep–wake cycles of more (e.g., 28 h) or less (e.g., 20 h) 

than 24 h are implemented. Since the endogenous biological clock cannot keep pace with these 

long or short periods, the effects of its near-24-h rhythms can be disentangled from the effects of 

the imposed non-24-h rhythm. Unfortunately, because skin temperature has usually not been 

measured during these studies, the relative contribution of the inversely related core and skin 

temperature changes to the variance in vigilance could not be evaluated. A number of studies 

that specifically investigated spontaneous or indirectly experimentally induced fluctuations in skin 

temperature however, strongly support an association with vigilance. Healthy people fall asleep 

more easily if their skin temperature or bed temperature is higher27,28,58. The same association 

was shown for people with a vasospastic syndrome, who have a lower temperature of their hands 

and tend to have difficulties falling asleep41; and for narcoleptic patients, where skin temperature 

is correlated to their daytime sleep propensity19. With respect to the ability to maintain alert 

wakefulness, healthy people perform better during the troughs of their normal daytime skin tem-

perature fluctuations45. Findings in both healthy elderly people and demented elderly people also 

indicate more complaints on daytime sleepiness in those who have elevated daytime skin tem-

perature37. 

 

These correlational studies can be interpreted as merely indicating that skin temperature reflects 

an underlying process of vigilance regulation. But what is the actual experimental support for a 
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causal contribution of skin temperature to vigilance regulation in humans? At the onset of the 

series of studies presented in this thesis, such support was lacking. Of course, several studies had 

shown that extremely low or high temperatures impede both sleep and sustained attention, 

which are of secondary interest when survival is at stake. In case of extremely low or high tem-

peratures, the organism should address all its resources for behavioral and autonomic thermore-

gulation. However, no previous human studies measured sleep and sustained attention while 

selectively and systematically manipulating skin temperature within the thermoneutral range - 

where a thermoregulatory response is not necessary. 

 

In short, literature shows that not only the observed drop in core body temperature, but also the 

increase in skin temperature might play a sleep permissive role. Temperature sensed at skin level 

serves as input to the sleep regulating brain areas. Mild skin warming, within the thermoneutral 

range, should be able to induce a sleep permissive state and as such facilitate sleep. To test to 

what extent skin and core body temperature affect sleep, we manipulated both skin temperature 

and core body temperature simultaneously within the thermoneutral range in young health 

adults. Next to that, we applied the same interventions in 2 patient groups that have both altered 

thermoregulation and sleep complaints. It is known that thermoregulation in elderly is compro-

mised (see Chapter 2) and it recently has been shown that daytime skin temperature regulation is 

altered in narcoleptic patients19. In these patient groups we aimed at improving both sleep and 

vigilance by changing using mild skin warming.  

It has been shown that the firing rate of warm sensitive neurons involved in sleep- or arousal- 

regulation is primarily dependent of the skin temperature and only secondary to the core body 

temperature. When the skin is cold, the firing rate stayed low, no matter how the brain tempera-

ture changed, whereas the firing rate increased when the skin was warmed only slightly54. Based 

on this observation, we expect skin temperature manipulations to be more effective than core 

body temperature manipulations in changing sleep propensity. Since the density of the thermore-

ceptors in the distal skin areas (i.e. hands and feet) is rather large as compared to density of the 

thermoreceptors in the proximal skin area (i.e. legs, trunk and arms) and a habitual increase in 

distal skin temperature can be observed during sleep (onset)54, we expect mild distal skin warm-

ing to be more effective as compared to proximal.  

 

The work presented in this thesis focuses on the effects of mild manipulations of skin tempera-

ture on sleep onset (Chapters 3, 4 and 5), on daytime vigilance (Chapter 6 and 7), and on sleep 

depth and maintenance (Chapter 8 and 9). A first experiment applied home-applicable distal skin 

temperature manipulation in order to evaluate to what extent simple and more local skin tem-



 

 

Ch
ap

te
r 1

  

 
 

19 Sleep, vigilance and thermosensitivity 

perature manipulation approaches might be of value to improve sleep onset in everyday life in 

young and older healthy adults as well as in elderly people suffering from insomnia (Chapter 3).  

Using a water-perfused thermosuit – during wakefulness in combination with hot and cold food 

and drinks (to manipulate core body temperature) - a well-controlled experimental set-up was 

designed that allowed for simultaneous and relatively independent manipulation of the tempera-

tures of the core, of the distal skin areas, and of the proximal skin areas. We studied the effects in 

younger (Chapters 4, 6 and 8) and older healthy adults as well as in elderly people suffering from 

subjective sleep complaints (Chapters 5, 6 and 8). Subsequently, we studied the effects of the 

manipulations in narcolepsy, a patient group in which skin temperature is correlated to daytime 

sleep propensity19 (Chapters 7 and 8). In order to facilitate field studies into skin temperature and 

its association with sleep and vigilance in health and disease, we meanwhile validated a miniature 

temperature logger for use in human physiology (not represented in a chapter)53. 

 

Concertedly, the studies addressed the following hypotheses: 

 

1. Within the thermoneutral range, mild skin warming promotes sleep onset (1a) and sleep 

depth (1b) and impedes sustained attention (1c). 

2. Skin temperature manipulations yield stronger effects than core body temperature mani-

pulations. 

3. Distal skin temperature manipulations yield stronger effects than proximal skin tempera-

ture manipulations. 

4. Skin temperature manipulations yield stronger effects the more sleep is compromised, i.e. 

small effects in young people without sleep complaints, medium effects in elderly people 

without sleep complaints and strong effects in elderly people suffering from chronic in-

somnia and patients diagnosed with narcolepsy. 

 

Following the literature review of Chapter 2 and the experimental studies of Chapter 3 to Chapter 

9, Chapter 10 provides a general discussion summarizing findings and revisiting the hypotheses. 
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Summary 
At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an ad-

vanced phase, and decreased stability. The present review evaluates to what extent these 

changes may result from age-related deficiencies at several levels of the thermoregulatory sys-

tem, including thermo-reception, thermogenesis and conservation, heat loss, and central regula-

tion. Whereas some changes are related to the aging process per se, others appear to be second-

ary to other factors, for which the risk increases with aging, notably a decreased level of fitness 

and physical activity. 

Moreover, functional implications of the body temperature rhythm are discussed. For example, 

the relation between circadian rhythm and thermoregulation has hardly been investigated, while 

evidence showed that sleep quality is dependent on both aspects. It is proposed that the circadian 

rhythm in temperature in homeotherms should not be regarded as a leftover of ectothermy in 

early evolution, but appears to be of functional significance for physiology from the level of mole-

cules to cognition. A new view on the functional significance of the circadian rhythm in peripheral 

vasodilation and the consequent out-of-phase rhythms in skin and core temperature is presented. 

It is unlikely that the strong, daily occurring, peripheral vasodilation primarily represents heat loss 

in response to a lowering of set point, since behavioral measures are simultaneously taken in or-

der to prevent heat loss. Several indications rather point towards a supportive role in immunolog-

ical host defense mechanisms. Given the functional significance of the temperature rhythm, re-

search should focus on the feasibility and effectiveness of methods that can in principle be ap-

plied in order to enhance the weakened circadian temperature rhythm in the elderly. 
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1. Introduction 
Evolution has taken place in an environment where the rotation and orbit of the earth and moon 

resulted in continuing cyclic variations of light and temperature, now known as days, months and 

seasons. The present review focuses on age-related changes in temperature cycles in humans, 

who despite being homeothermic have not abandoned the cyclic variation. On the contrary, the 

cyclic variation in body temperature is internalized, generated actively and appears to be of im-

portance to our well-being. Whereas Claude Bernard’s homeostatic principle has for quite some 

time been the leading paradigm, it has become evident only during the last decennia, that rhyth-

mic variations in human functions are the rule rather than the exception. It seems appropriate, 

therefore, to discuss age-related changes in thermoregulation and thermoreception from a 

rhythmic perspective. 

The circadian rhythm in core temperature is the result of circadian rhythms in heat production 

and heat loss. Core temperature is maximal in the late afternoon and reaches its minimum in the 

early morning. Mean skin temperature on the other hand is increased during the decline in core 

temperature. Deviations from the temperature range allowed by the circadian clock at a certain 

time of day have two main sources: internally generated heat resulting from physical activity and 

environmental heat or cold transferred through clothing. These changes need to be sensed, 

processed and counteracted if necessary. Thus, the thermoregulatory system can be conceptua-

lized as containing three parts: thermosensitive afferent pathways, neuronal integration and con-

trol systems, and descending effector pathways altering heat gain or loss. The functional anatomy 

and physiological mechanisms of these compartments, including alterations due to circadian 

modulation and aging, will be covered in Section 2 (thermoreception), Section 3 (thermogenesis, 

heat gain and heat retention), Section 4 (heat loss and reduction of heat gain), Section 5 (central 

thermoregulatory control). Section 6 summarizes age-related changes in the circadian modulation 

of body temperature. Section 7 shows that the daily temperature cycle is not merely an evolutio-

nary leftover, but has important functional implications. The increased vulnerability to deviations 

from the normal limits of this cycle at older ages has consequences for physical and mental func-

tioning and health. Therefore, it is of importance to investigate factors that promote thermoregu-

lation and the temperature rhythm amplitude, and these are discussed in Section 8.  

A rather artificial but still important discrimination can be made concerning primary and second-

ary age-related changes. Primary age-related alterations are those that are present even in the 

very fit and healthy elderly, or after correction for such secondary alterations. Secondary age-

related changes are those that cannot be attributed to aging per se, but to factors for which elder-

ly are at a higher ‘risk’. Examples are: a sedentary lifestyle, a lower fitness level and a variety of 

diseases. The discrimination is somewhat artificial since chronic diseases and disabilities affect 



 
Introduction 26 

more than 60% of those over 75 years of age118, and can in many aspects be considered as age 

related. 

Of necessity, a review can cover only a limited range of topics. For thermoreception, innocuous, 

but not nocuous thermal stimuli are discussed. The discussion on the regulatory and effector 

stages is also limited to the ‘healthy’ range, excluding, e.g. hypothermia, the fever response294 and 

hot flashes138,139. It needs to be mentioned that much of the basic knowledge on thermoreception 

and thermoregulation has been derived from the first and still excellent monograph on this topic 

by Hensel175. The terminology and definitions used in this review are according to glossary of 

terms for thermal physiology193. 

 

2. Thermoreception 
Deviations from the limits on core and skin temperature accepted by the circadian timing system 

at a certain time of the day need to be sensed and reported to integrating and controller systems 

in order to allow for adequate regulatory measures. This sensing is referred to as thermorecep-

tion, which may or may not be associated with an actual subjective conscious experience of 

warmth, cold or thermal (dis)comfort. For example, the sensations versus metabolic responses 

induced by cooling may be highly divergent34. Another example is the strong effect of the circa-

dian rhythm in temperature on sleep that goes without awareness. Moreover, not all thermosen-

sitive structures are also involved in controlling temperature, or relaying information to control-

ling structures. In the brain, for example, there are abundant thermosensitive neurons that ap-

parently are not involved in the regulatory control of temperature. Not until recently, a function 

has been proposed for their presence: they may be involved in the coupling of arousal states, i.e. 

sleep and wakefulness, to the circadian modulation of core and skin temperature399. 

Temperature sensitive structures are present in the skin, deep body and central nervous system 

(CNS). The sensation of warm and cold mainly depends on the activity of cutaneous thermorecep-

tors, the physiological thermoregulatory responses mainly depend on core temperature, and the 

emotional experience of thermal comfort or discomfort depends on the total thermoregulatory 

state, including the input from core and skin thermoreceptors54,175. 

 

2.1. Anatomy and physiology of skin thermoreception 
The thermosensitivity of the skin is determined by the cutaneous nerve endings—mostly without 

clear corpuscles—of neurons located in the dorsal root ganglia. The firing rate of the afferent fi-

bers responds not only to changes of the temperature of the skin but is also determined by the 

static temperature of the skin. Skin thermoreceptors also play a major role in informing us about 

the wetness of the skin, since we have no humidity sensors in the skin. Sudden cooling is in cer-
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tain circumstance identified as a wet skin. Cold receptors are located at a depth of ±0.16 mm at 

the endings of thin myelinated A∂ fibers, and increase their firing rate with a decreasing or static 

low temperature. Warm receptors are located at a depth of ±0.45 mm at the endings of the slow-

er unmyelinated C fibers and increase their firing rate with increasing or static elevated tempera-

ture. Cold receptors outnumber warm receptors by a factor 3–10 in most areas of the body160. 

Small skin temperature changes within the limits of 30–40°C have profound effects since they 

induce simultaneous and opposite changes in the most sensitive range of both cold and warm 

receptors. A schematic overview of the range of temperature that affects thermoreceptive fibers 

is shown in Fig. 1.  

 
Fig. 1.  Discharge frequency of fibers transmitting cold-pain, cold, warmth and heat-pain, plotted 

against the temperature applied to the skin. Adapted from Guyton160, with permission. 
 

Skin temperature changes activate not only specific thermoreceptors, but also tactile receptors352. 

Skin areas at several sites of the body differ in their sensitivity to thermal stimuli. As in animals, 

the nose and lips are the most sensitive areas in man174,175. 

The thermosensitive fibers ascending from the skin reach the spinal cord via the dorsal root gan-

glion, and terminate on second-order neurons in lamina I of the dorsal horn. From the dorsal 

horn, the thermosensitive afferents are projected mainly via the contralateral anterolateral spino-

thalamic tract, but projections via the ipsilateral dorsolateral spinocervical tract have also been 

demonstrated175.Thermosensitive nerve endings in the face, originating in the trigeminal ganglion 

cells, innervate second-order neurons in the trigeminal nucleus in the medulla oblongata. Ascend-

ing secondary fibers join the spinal ascending fibers to terminate on third-order neurons in the 

ventrobasal thalamic relay nuclei, which project to the somatosensory cerebral cortex. Ascending 
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secondary fibers are also relayed to the midbrain raphe nuclei, the reticular formation, and the 

hypothalamus57,58,59,75. 

Thermoreceptive information originating in the skin converges while ascending, and also diverges 

to several brain areas. The amount of convergence strongly depends on the skin area where the 

thermal information occurs. When thermal stimuli are applied to multiple discrete skin areas the 

evoked signals may be summed up, e.g. as is the case when cooling two hands. In other combina-

tions of sites, saturation may occur, e.g. the evoked signal does not augment when the forehead 

is cooled in addition to cooling of a hand. Another factor determining the response to thermal 

stimuli is the baseline or ‘adapting’ temperature of the skin. A warm skin can detect even a small 

increase in temperature, whereas the detection of cooling needs quite a large decrease in tem-

perature. At low baseline levels, the reverse is true60,162,213. In fact, cortical somatosensory evoked 

potentials can only be demonstrated with warm stimuli applied to a skin with a baseline tempera-

ture of at least 35°C70. 

There is a topographic cerebral representation of the temperatures of different areas of the skin. 

During stereotactic brain surgery, thermal sensations can be evoked by microstimulation of the 

posteroinferior and cutaneous core regions of the ventrocaudal thalamic nucleus235 and the post-

central gyrus of the cerebral cortex111. Cortical lesions in humans impair thermosensitivity2. The 

‘thermal’ representation of skin areas in the brain differs markedly from the actual surface size 

represented, much like the out-of-proportion ‘homunculus’ representing tactile sensations314. The 

face and extremities are disproportionally represented in the brain, and indeed the fingers and 

lips are very sensitive to mild warming155,264. Thermal stimulation of a small area on the extremi-

ties or face elicits activity in 10 times the number of thalamic neurons as compared to the number 

of neurons responding to thermal stimulation of the same surface area on the trunk258. A similarly 

‘distorted’ cortical representation was confirmed in studies using warm and cool stimuli and mea-

suring blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI)36 

and evoked potentials70. Meh and Denislic recently demonstrated that the amplitude of such 

evoked potentials is indeed correlated with the subjective thermal sensation265. Already in 1937, 

Hardy estimated that merely the hands and forearms “form an area which is nearly as sensitive as 

the whole body surface”165. 

 

2.2. Anatomy and physiology of deep body thermoreception 
Thermosensitivity is not limited to the skin, but is also present in the deep body, although the 

anatomy and physiology are much less understood. Equivocal results have been reported con-

cerning the presence of thermoreceptors in the vasculature and muscles in some early studies175. 

At least in the cat, carotid baroreceptors and chemoreceptors are sensitive to the temperature of 
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the blood. Moreover, thermosensitivity has been reported for vascular areas that play an impor-

tant role in heat loss, as the ear pinna. A local thermosensitive effect has been demonstrated by 

Vanhoutte and Shepherd398. The temperature of the perfusing blood modulates the response of 

the peripheral vasculature to sympathetic input. Thus, a given amount of sympathetic input to the 

vasculature may induce strong vasoconstriction when the blood temperature is low (as in the 

early morning) or attenuated vasoconstriction when the core temperature is high (as in the after-

noon). 

The presence of cold and warm receptors has been demonstrated in the knee joint of dogs and 

cats428, but we are not aware of such studies in humans. 

Intra-abdominal temperature may affect thermoregulatory centers via the splanchnic nerve175, 

and sensitivity to intragastric cooling has also been demonstrated in humans290. Primary vagal 

afferents convey information of thermosensitive nerve endings from most internal organs via the 

cervical and thoracic branches to neurons in the Nucleus of the Solitary Tact39. The system ap-

pears able to signal constant levels of temperature, since non-adapting responses were recorded. 

  

2.3. Anatomy and physiology of central nervous system thermoreception 
Thermosensitive neurons have been demonstrated at all levels of the neural axis, from the spinal 

cord to the cerebral cortex45,175,399. Thermosensitive neurons are defined as neurons whose 

evoked or spontaneous firing rate depends on local and/or peripheral (cutaneous) temperature. It 

is of note that this change in activity exceeds by far the normal temperature-dependence that is 

present in all biochemical processes. Most chemical reactions speed up about 2–3-fold for every 

10°C increase in temperature115. This increase is known as the ‘Q10’: the ratio of biochemical ac-

tivity levels at temperatures 10°C apart. Eisenman and coworkers117 have proposed to reserve the 

term ‘thermosensitive’ for neurons with a Q10 of greater than 2 at a physiological temperature 

range, i.e. not limited to occur only with extremely low or high temperature. For example, a Q10 

of about 8 has been found in many neurons in the cat sensorimotor cortex26. Another criterion for 

warm-sensitivity is an increase in firing rate of at least 0.8 impulses/°C warming46. 

Neurons that increase their firing rate with warming are called ‘warm-sensitive neurons’ (WSN), 

and neurons that increase their firing rate with cooling are called ‘cold-sensitive neurons’ (CSN). 

An example is shown in Fig. 2.  
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Fig. 2.  Effect of local temperature changes on the firing rate of a warm-sensitive neuron record-

ed in an SCN tissue slice. From the upper to lower panel, the peak-trough vertical axes 
cover ±120, 115 and 100 mV, respectively. The vertical axes cover ±600 ms. Adapted from 
Burgoon and Boulant55, with permission. 

  

Generally, WSNs account for about 30% of the neurons in thermosensitive brain structures. Most 

of them retain their thermosensitivity even when their synaptic input is experimentally 

blocked47,92,249. The principal cellular physiological determinant that discriminates WSNs from 

temperature insensitive neurons is a marked thermosensitivity of the rate of depolarization of the 

prepotential45. CSNs account for about 5–10% of the neurons in these structures, and their ther-

mosensitivity usually disappears during synaptic blockade, suggesting that their sensitivity is not 

intrinsic but due to synaptic inhibition from adjacent warm-sensitive neurons, and ‘cold-

sensitivity’ may be regarded a misnomer45,47,249. A detailed account of their representation in the 

brain can be found in Van Someren399. In short, thermosensitive neurons have been demonstrat-

ed in the midbrain reticular formation including the raphe nuclei and locus coeruleus; in hypotha-

lamic areas including the posterior hypothalamus (PH), preoptic area and anterior hypothalamus 

(POAH); in parts of the basal forebrain including the horizontal limb of the diagonal band of Broca 

(DBB); in thalamic nuclei including the ventrobasal complex and midline reuniens and the reticular 

nuclei; and in parts of the cerebral cortex including, but not limited to, the somatosensory cortex. 

Arteries of considerable size are located in close vicinity to thermosensitive neurons, so that blood 

temperature and brain temperature are closely coupled. 
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There is considerable integration of thermal signals at all levels of the neural axis175,399. For exam-

ple, about two-thirds of the thermosensitive neurons in the POAH also respond to thermal stimu-

lation of the spinal cord and skin. When the skin temperature is high, the POAH neuron’s firing 

rate is high, relatively independent of changes in local brain temperature, indicating the predomi-

nant impact of skin temperature on POAH WSNs48. At a lower level of the neuraxis, thermosensi-

tive neurons in the midbrain reticular formation are sensitive to ascending thermal information 

originating in the skin, but not to thermal stimulation of the POAH. Almost all thermosensitive 

neurons in the spinal cord also respond to thermal stimulation of the skin, whereas thermo-

insensitive neurons in the spinal cord do not respond to skin temperature changes. These findings 

indicate a hierarchical organization of thermoreception. 

 

2.4. Circadian modulation of thermoreception 
Surprisingly little is known about the circadian modulation of thermosensitivity. Most studies on 

this topic have investigated the circadian modulation of the threshold or gain of a thermoregula-

tory response, and do not specifically untangle whether the modulation concerns the thermore-

ception, integration and control, or thermoregulatory part of the system. These studies will be 

discussed later in this review, categorized according to the response investigated. Only a few stu-

dies have been reported that are relevant to circadian modulation of thermoreception and did 

not use a thermoregulatory response as primary outcome variable. 

At the cellular level, the thermosensitivity of the POAH is modulated by sleep, when less neurons 

show thermosensitivity153. Some cells do, however, not show any circadian modulation in sensitiv-

ity328. In a slice preparation, neurons in the rat suprachiasmatic nucleus similarly show decreased 

thermosensitivity during the projected sleep (light) period94. 

At the subjective phenomenological level, the perceived coldness of a strong cold stimulus applied 

to the skin is maximal in the afternoon120 and attenuated during the night and early morning, pos-

sibly due to a relatively high level of peripheral perfusion with warm blood212,302. On the other 

hand, the ability to perceive small differences in skin temperature does not show any diurnal vari-

ation74,371. 

  

2.5. Age-related changes in thermoreception 
In contrast to the extensive number of studies on the effect of aging on the sensory perception of 

vision, hearing, touch, taste and smelling41,351 the number of studies on the effect on thermal 

senses is quite limited. The free nerve endings associated with thermal sensations appear to re-

main intact in elderly humans, in contrast to the decreasing number of specific encapsulated skin 

receptors subserving the sense of touch, e.g. the Meissner and Pacinian corpuscles283. In addition, 
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the conduction velocity and number of the smaller diameter afferents subserving thermal sensa-

tions (A∂ and C) appear to remain intact at advanced age, in contrast to the large diameter affe-

rents344,405. The neocortical primary sensory areas also remain relatively intact in aging51,327. 

Still, thermal perception is attenuated. After some equivocal findings in early studies in small 

groups and ‘young’ elderly213, Meh and Denislic264 determined normal values for subjective warm 

and cold sensations at several skin regions in a large group (n = 150) of subjects aged 10–73 years. 

As shown in Fig. 3, they found a marked decrease in perceptive sensitivity, especially in the distal 

parts, confirming previous studies reporting an age-related loss of thermosensitivity for warm 

stimuli but not cold stimuli, and especially at the feet30,38,214. Others in fact did find a 50% de-

crease in “cold spots” in the elderly288. Heft and coworkers174 applied fast cool and warm stimuli to 

a limited (0.8 cm2 ) area of the face (upper lip and chin) and found a modest elevation of sensory 

thresholds as well as decrease in above-threshold discrimination ability with aging. Fowler and 

colleagues134 found an increased facial warm but not cold sensitivity threshold, contrary to Becser 

et al.30, who found the strongest increase in facial cold threshold, a smaller increase in facial warm 

threshold, and furthermore no change in thresholds at the hands. Kenshalo214 noted that elderly 

mainly show a decreased sensitivity to warm—not cold—stimuli applied to the plantar side of the 

feet but not to other locations. It should be noted that the between-subject thermosensitivity 

variability also increased with age, indicating diminished sensitivity in some, but intact sensitivity 

in other elderly subjects. Furthermore, these laboratory measurements are all based on warming 

or cooling small individual sites, and do not take into account the fact that skin sites have differ-

ent spatial summation properties, as discussed previously.  

Concerning secondary age-related thermoreceptive changes, diabetes, for which elderly are at 

risk, is associated with increased thermal sensibility thresholds199. The feet appear to be rather 

sensitive to a loss of sensibility for thermal stimuli not only in healthy elderly: a marked loss was 

also found in diabetics without symptoms or signs of a clinical neuropathy199. The increase in 

thermal thresholds are consistent with elevated thresholds for other modalities174. Also here, the 

glabrous skin of the palm and sole are the areas in which the strongest loss of tactile sensitivity 

with aging is present213. 

To the best of our knowledge, no thermosensitivity studies have been performed in Alzheimer’s 

disease (AD) patients. However, for the other modalities, the conduction velocities of the primary 

afferent nerves are preserved358 and the patients show normal sensitivity to pain and vibratory 

stimulation188. Also at a higher level of the neuraxis, the neocortical primary somatosensory areas 

are relatively intact in AD17,42, possibly because of the high degree of protective myelination49. 

Taken together, the changes in peripheral afferent nerves in AD are quite similar to those ob-

served in healthy aging. 
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Fig. 3.  The interval of temperatures applied to the skin necessary to elicit a temperature sensa-

tion (limen) increases with age. Results of temperature sensitivity assessed at the dorsum 
of the foot in 67 women aged 10–69 years (A) and 83 men aged 10–73 years (B). Regres-
sion equations clearly indicate that the unresponsive range increases with aging. Adapted 
from Meh and Denislic264, with permission. 

 

The question arises why the threshold for temperature increases with age, if the thermosensitive 

nerve endings, ascending fibers and primary cortical projection areas appear to remain intact. A 

hypothetical explanation might be that properties of the skin important for thermal conductivity, 

e.g. the density of collagen fibers and elastic tissue, change during the course of life25,77,174. 

Another possibility is that the reduced vascular supply to skin tissues is involved: it has been dem-

onstrated in monkey that the functionality of cold receptors is highly dependent on oxygen 

supply189. A further possibility is that whereas the anatomical substrate for the ascending informa-

tion is preserved at old age, its transmissive properties have declined. It may, for example, be that 
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changes in the ion content of cells and intercellular space affect threshold for synaptic transmis-

sion. 

Subjective comfort is dependent on, but not equal to thermal sensation. Sensations rely mainly on 

skin thermoreceptors and occur fast, whereas comfort is a slower process depending on integra-

tion of skin and internal thermoreceptors as well as the sensations resulting from thermoregula-

tory actions. In spite of common belief, the comfortable temperature average does not change 

with aging. When exposed to cold with access to a lever that turns on heating, old rats show an 

equal amount of behavioral thermoregulation in comparison to young rats194. Elderly humans in 

similar situations show a much less precise operation of thermoregulatory instruments as com-

pared to young subjects. They, thus, tolerate larger deviations from this average before discom-

fort is felt and action is undertaken78,79,137,201,391, indicating a decreased subjective thermal percep-

tion. 

In summary, the results indicate a loss of thermal perception in the absence of macroscopic neu-

roanatomical changes, especially for cold stimuli applied at the lower extremities. Structural 

changes in the skin may be involved. 

 

3. Thermogenesis, heat gain and heat retention 
When a deviation from the allowed circadian temperature range is reported, controller systems 

need to initiate countermeasures aimed at either both gain and preservation of heat, or loss of 

heat. Section 3 discusses the mechanisms associated with the obligatory (Section 3.1) and faculta-

tive (Section 3.2) generation of heat, as well as measures in order to promote the gain of heat 

from the environment and the retention of body heat (Section 3.3). 

Thermogenesis, i.e. the production of heat is present in obligatory as well as facultative ways195. 

Obligatory thermogenesis refers to the heat produced in association with cellular metabolic 

processes that are a part of life itself, as well as to heat generated during behavior not per se 

aimed at heat gain but inevitable for the fulfillment of other vital purposes. These processes con-

tinuously generate heat. When the organism cools down in spite of this obligatory heat produc-

tion, e.g. in a cold environment, facultative thermogenesis occurs. Facultative thermogenesis can 

be subdivided into (1) voluntary increased physical activity, (2) shivering thermogenesis, and (3) 

humoral thermogenesis. Humoral thermogenesis has again been subdivided into (3.a) the ‘classic-

al’ non-shivering thermogenesis (NST), i.e. the sympathetic, norepinephrine (NE) induced mito-

chondrial heat production in brown adipose tissue (BAT) and (3.b) hormonal thermogenesis, asso-

ciated with epinephrine, glucagon, thyroid, growth hormone (GH), and adrenocorticotropic hor-

mone (ACTH). Another subdivision of thermogenesis often made is behavioral versus autonomic 

thermogenesis. Both occur in obligatory and facultative ways. 
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In addition to these heat-generating mechanisms, the animal has several ways to gain and pre-

serve heat. In humans, the ability to preserve heat relies to a large extent on behavioral thermo-

regulation247, which is also the primary thermoregulatory mechanism in most rodents381. Exam-

ples include creating a microclimate by means of warm clothing and bedding, the intake of hot 

drinks, seeking a sunny, warm, dry, wind-sheltered environment and positional measures like 

curling up, huddling and cuddling. The major human autonomic response is constriction of the 

peripheral vasculature of the skin in order to prevent heat exchange from the warm blood, via the 

skin, to the cool environment. Whereas in furred animals pilo-erection is another important auto-

nomic way of preventing heat loss, it is of little importance in human cold defense. 

The body temperature of older animals drops further after exposure to cold and takes longer to 

recover161,241. Similarly, elderly humans are less able to maintain body core temperature when 

exposed to cold, and core temperature may be lowered by as much as 1°C213. Frail elderly at 

home and in nursing homes are even at an increased risk of hypothermia, as reviewed in a num-

ber of papers that include advice for diagnosis, prevention and treatment25,64,425. The mechanisms 

for the generation, gain and preservation of heat, as well as their circadian and age-related mod-

ulations will be discussed in the following sections. 

 

3.1. Obligatory thermogenesis 

3.1.1. Basal metabolic rate 
Humans are homeotherms, i.e. even at rest the metabolic rate is so high that it provides a conti-

nuous internal source of heating, accounting for about 60–75% of the total daily energy expendi-

ture315. Aschoff and Wever estimated the relative thermogenic contribution of several parts of the 

body at rest as follows: skin and muscles 18%, brain 16%, lungs, heart, kidneys and other internal 

organs 56%, with a prominent involvement of the liver21. During physical activity, as will be dis-

cussed later in Section 3.2 (facultative thermogenesis), heat generation in muscles is the most 

important source of heat generation. The basal metabolic rate (BMR) augmented with the heat 

generated by physical activity and digestion of food is referred to as the total energy expenditure 

(TEE). Catecholamines and sympathomimetic agents like ephedrine, caffeine and theophylline 

increase the resting metabolic rate in humans195,196. 

Circadian modulation: BMR is modulated by sleep and a circadian rhythm. BMR during sleep is 

slightly lower than during wakefulness at complete rest160,266. Early reports did not find a circadian 

variation in the awake resting BMR270,441, but Kräuchi and Wirz-Justice demonstrated, in an opti-

mally controlled study, a clear peak just before noon218. 

Age-related changes: In BMR, age-related changes may be different in rats and humans. The BMR 

of old rats is slightly higher than that of young rats, but still old rats have lower body temperature, 
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indicating decreased heat conservation234. Human aging studies indicate that BMR declines. 

Poehlman et al. report a curvilinear decline with age, significantly decreasing after the age of 

about 50 years317. McDonald and Horwitz mentioned a 1–2% per decade decline of oxygen con-

sumption after the age of 30 years262. Elia and coworkers found that the total energy expenditure 

declines per decade by 0.69 MJ per day for men and by 0.43 MJ per day for women118. The BMR 

decline accounts for 44% of this decrease. The decline in BMR is strongly related to the relative 

loss of fat-free, heat producing tissue317,208 and to the decrease in fitness level present in many 

elderly315. Increased plasma norepinephrine (NE) concentrations, likely to increase the BMR, are 

found in highly fit, physically active but not in sedentary elderly315. Fitness is not only associated 

with an increased daytime metabolic rate, but also with a lower nocturnal sleeping metabolic 

rate, thus, promoting a circadian amplitude266,420. A decreased BMR is likely to underlie the age-

related decrease in core temperature130, which is more pronounced in male elderly133. The find-

ings on age-related changes of the resting temperature of the skin are equivocal: both in-

creased227 and decreased130 finger temperature have been reported. A few studies have been 

reported on the BMR in Alzheimer’s disease. The daily energy expenditure in AD patients is com-

parable to the energy expenditure of non-demented elderly, and appropriate for their metabolic 

size105,318. 

In summary, the diurnal variation in BMR contributes to the circadian rhythm in core tempera-

ture, and this contribution is less in the elderly, in part and reversibly secondary to a decreased 

fitness level. 

 

3.1.2. Diet-induced thermogenesis 
The increased metabolic demand of digesting food is associated with an increase in core tempera-

ture of about 0.01 °C per 159 kcal of food218, or about 10–18% of the food energy content270,384. 

Whereas carbohydrates and fat in food induce only a 4% increase of the metabolic rate for a brief 

period of about 1 hour, protein ingestion may induce an increase of up to 30%, lasting for several 

hours. The resulting increase in core temperature may in turn induce an increased peripheral skin 

blood flow (skBF) and temperature178. Fasting lowers both core and skin temperature221. 

Circadian modulation: There is a clear circadian rhythm in food intake in humans, which is high 

during the day, and generally absent during the night. A circadian rhythm in the thermic effect of 

food may be present, in that the same food elicits most thermogenesis in the morning, less in the 

afternoon, and even less at night337. 

Age-related changes: The intake of food slightly decreases with age315,118. Allison et al. demon-

strated that hospitalized elderly leave about 40% of the presented food untouched, and that the 

ensuing malnutrition is associated with a loss of thermoregulation9. Some studies indicate that 

the thermic effect of food is reduced in elderly, possibly as a consequence of an attenuated sym-
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pathetic increase following meal ingestion262. Other studies found no effect of age118. The variabil-

ity in results may be related to a secondary effect of aging, since the thermic effect of food is de-

creased in subjects with a high percentage body fat and a low level of fitness and spontaneous 

physical activity316,384,424. 

In summary, the diurnal patterns of food intake and the thermic effect of food contribute to the 

daytime increase in temperature, and this contribution may be attenuated especially in non-lean, 

unfit elderly. 

 

3.1.3. Baseline physical activity and posture 
Even minimal, obligatory physical activity is associated with heat production from muscular activi-

ty. As compared to conditions of continuous sleep and bed rest, changes in core temperature 

have been noted due to (1) mere wakefulness, (2) an upright posture, and (3) the activity level. 

Being awake rather than asleep, but still in a supine posture and without any activity elevates 

core temperature by 0.06–0.31°C28,246,397. If awake, changing the body posture from supine to 

upright increases the core temperature by 0.1–0.5°C, whereas the mean skin temperature drops 

by about 5°C271,389,397. Even a change from supine to semi-supine (10°) increases core tempera-

ture4. The effect of standing is stronger than the effect of sitting. Considering the additional tem-

perature increase due to essential activity, Levine and colleagues estimated the energy expendi-

ture for standing and walking as compared to sitting to increase by 11 and 106%, respectively236. 

There is an ISO norm (no. 8996) on the relation between metabolism and several activities. It 

should be noted that all these findings concern short-term laboratory findings and that prolonged 

bed rest for several days, as may occur in frail, ill elderly, is on the contrary associated with an 

increase in core temperature, likely due to dehydration4. 

Circadian modulation: The rise in core temperature due to merely being awake rather than asleep 

is maximal near the endogenous circadian temperature peak in the afternoon422. The fact that 

people assume a supine posture during the night and are upright during the day also contributes 

to the day–night rhythm core temperature. The temperature increase due to essential activity is 

of relevance only during the day, although sleep–wake controlled laboratory studies have shown 

that the amount of activity-induced temperature rise is in fact limited near the endogenous circa-

dian temperature maximum in the afternoon7,414. In normal situations, all three factors interact, 

and comparing laboratory bed rest and natural home activity, Gander and coworkers found the 

daytime core temperature rhythm peak to be increased by on average 0.16°C145. 

Age-related changes: The sedentary lifestyle of many elderly lowers heat production77. Elia et al. 

estimated that 46% of the age-related decline in total energy expenditure is due to decreased 

physical activity118. Gander et al. found no age differences in the daytime temperature increase 

due to natural home activity as compared to laboratory bed rest145. On the contrary, Monk and 
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Buysse reported that in fact the reduced baseline physical activity level is a major factor in the 

decreased diurnal circadian rhythm in temperature280. 

In summary, the diurnal patterns of wakefulness, posture and activity contribute to the daytime 

increase in temperature, and this contribution is attenuated especially in sedentary elderly. This 

will keep the daytime temperature lower and, thus, contribute to the age-related attenuation of 

the amplitude of the diurnal temperature rhythm. 

 

3.2. Facultative thermogenesis 
When exposed to a cold environment, core temperature drops unless action is undertaken. The 

actions listed later have in common that their thermogenic effect is elicited only if the body cools 

below a critical threshold, and that below this threshold the intensity of the action may increase 

with further cooling. The increase per unit of cooling is often referred to as the sensitivity, but in 

order to prevent confusion we will adhere to the term gain. 

 

3.2.1. High-level physical activity (sports, fitness training) 
Metabolic heat production increases with the level of voluntary physical activity. The temperature 

increase resulting from a certain amount of exercise is not a function of the absolute intensity of 

that exercise, but of its VO2 requirement as a percentage of one’s individual VO2max , i.e. fitness 

level27, where VO2 functionally represents the amount of oxygen that can be removed from circu-

lating blood and used by the working tissues during a specified exercise and period, and VO2max 

the maximum hereof. 

Circadian modulation: The circadian rhythm in metabolic rate (oxygen consumption) in rodents 

may to a large extent be due to increased activity381. High levels of physical activity are limited to 

the wake period and, thus, contribute to the circadian modulation of core temperature. The 

amount of exercise-induced hyperthermia and the consequent ‘overshooting’ post exercise hypo-

thermia depends on the time of day the exercise takes place. Hyperthermia during exercise is 

limited with exercise timed near the peak of temperature278,414. The post exercise hypothermia 

duration is long following exercise at 8:00 h in the morning, moderate following exercise at 16:00 

h in the afternoon, and absent following nocturnal exercise278. 

Age-related changes: Not only during rest, but also during moderate physical activity, the core 

temperature of elderly remains lower, and this finding cannot be attributed to a secondary age-

related reduced fitness level130. 

In summary, the diurnal patterns of voluntary high activity levels contribute to the daytime in-

crease in temperature, and this contribution is attenuated even in fit elderly. 
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3.2.2. Shivering thermogenesis 
Shivering thermogenesis is the production of heat by skeletal muscle tremor. Shivering is more 

dependent on core than on skin temperature: the ratio of how core and skin temperature 

changes affect shivering is about 4:154. Shivering can increase the metabolic rate up to a factor 5, 

and is in addition to peripheral vasoconstriction (discussed later) a second major autonomous 

cold protective response in humans31,247,434. 

Circadian modulation: No circadian modulation of the shivering response was found when meas-

ured in the morning and afternoon only67. However, when the full 24 h cycle is examined, the 

shivering response to hypothermia is impaired during the early sleep period, and maximal in the 

early morning176,268. The modulation of thermoregulatory responses by sleep states has been re-

viewed by Parmeggiani311. In brief, a smaller deviation is necessary for the initiation of the shiver-

ing response during quiet sleep, but larger deviations are tolerated during paradoxical sleep. 

Age-related changes: Elderly shiver less78.379, due to a lower core temperature threshold to be 

reached before shivering starts136. Moreover, the muscle mass is smaller432 and muscles contract 

at a lower level than is the case in young subjects77. The decline may be prominent in elderly 

males but absent in elderly females411,434. 

In summary, although shivering is not involved in the generation of a diurnal temperature rhythm 

under thermoneutral conditions, the attenuation of shivering especially in male elderly may cause 

a lower daytime temperature level during exposure to cold. 

 

3.2.3. Humoral thermogenesis I: ‘classical neuronal’ non-shivering thermogenesis 
Non-shivering thermogenesis (NST) is defined as “heat production due to metabolic energy trans-

formation by processes that do not involve contraction of skeletal muscles”193, which in rodents 

mainly involves burning of brown adipose tissue (BAT), triggered by sympathetic activity. BAT-

related NST plays a significant role mainly in small mammals, but is negligible in humans77. In rats, 

norepinephrine (NE) release from the sympathetic nervous system is sensed by β3-adrenergic 

receptors on BAT and induces the expression of mitochondrial uncoupling proteins (UCP). Heat 

can be produced by uncoupling the metabolic chain from oxidative phosphorylation in the inner 

membranes of mitochondria185. Also in humans NST is activated with body cooling well before the 

onset of shivering. However, thermogenesis is mainly mediated by β1 and β2 receptors, and only 

a small amount of BAT is present, so other mechanisms must be involved. At least three candidate 

mechanisms are available: (1) NE-induced thermogenesis mediated by β1 and β2 receptors in 

skeletal muscle, (2) white adipose tissue producing heat in response to adrenaline, probably via 

β3 receptors, and (3) BAT appearance following cold-adaptation. Although UCP1—important in 

rodents—is hardly detected in humans tissues, a homologue, UCP2, is widely distributed, and 

another homologue, UCP3 is present in skeletal muscles140,195,196. 
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Circadian modulation: In rat pups at rest, BAT thermogenesis is more active during the peak of the 

endogenous circadian temperature rhythm than during the minimum, or trough330. On the other 

hand, when exposed to cold at different times of the day, no circadian modulation of not further 

specified metabolic heat production response could be found in mice381. 

Age-related changes: Although senescent rats are undoubtedly more likely to develop hypother-

mia with cold exposure as compared to young rats, there is no evidence of a reduction in non-

shivering thermogenesis in aged mice. The sympathetic outflow to BAT is in fact similar or higher, 

and the concentration of UCP in BAT mitochondria is unrelated to age262,347,348,379. Alternative ex-

planations for the age-related loss of cold defense may be (1) non-UCP-related decrease of BAT 

functionality, (2) impaired heat conservation or (3) impaired non-BAT mediated thermogenesis. 

Also in elderly humans, the cold-induced increase in metabolic rate is attenuated, which does not 

appear to be secondary to a decreased fitness level130,361. 

In summary, the importance of BAT thermogenesis is negligible in adult and elderly humans. In 

rodents, circadian modulation of BAT thermogenesis is equivocal, and the age-related decrease in 

cold defense could not be related to altered BAT innervation or UCP induction. 

 

3.2.4. Humoral thermogenesis II: ‘non-classical’ non-shivering thermogenesis 
The humoral response to a cold environment is not limited to an increased sympathetic (NE) out-

put inducing UCP in BAT. First, sympathetic liberation of norepinephrine and epinephrine from 

the adrenal medulla into the blood stream induces glycogenolysis in muscle and liver cells. Fur-

thermore, thyroxine enhances the metabolic rate of most cellular chemical reactions. A complete 

absence can reduce the metabolic rate by ±50%, whereas extreme activation may increase it by 

±100%. However, atrophy and hypertrophy of the thyroid are slow processes, and not involved in 

acute metabolic responses to cold. The mechanisms involved in the thyroxine regulation have 

been reviewed by Arancibia et al.16. Skin cooling elicits thyrotropin-releasing hormone (TRH) pro-

duction in the raphe nuclei, which relays this information by a serotonergic projection to the hy-

pothalamic paraven- tricular nucleus (PVN). The PVN synthesizes TRH158 and secretes it in the 

portal blood, which in turn induces the pituitary to release thyroid stimulating hormone (TSH) in 

the blood stream. A secondary effect of increased plasma TSH is the upregulation of UCP3 

mRNA196. Other humoral factors increas- ing the metabolic rate include testosterone, growth 

hormone, glucagon, insulin, ACTH and dehydroepiandrosterone (DHEA)195,232. 

Circadian modulation: Since the secretion of most if not all mentioned humoral factors is mod-

ulated by sleep and/or a circadian rhythm, the thermogenesis associated with them is likely. 

However, the relative factual contribution of such modulations to the circadian rhythm in tem-

perature has not been unraveled. 
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Age-related changes: The levels of most humoral factors change with aging. Examples are the 

strongly reduced secretion of growth hormone during sleep, and the decrease of DHEA by about 

2% per year406. Moreover, the circadian rhythm in DHEA, showing lower levels in the evening, 

almost disappears in elderly subjects95,406. A not strictly age related but ‘secondary’ effect is the 

increased vulnerability to a decreased thyroid function, which increases the risk of hypothermia77. 

In summary, although most humoral factors with thermogenic properties show circadian and age-

related modulations, their significance for the circadian rhythm in body temperature and changes 

with aging remain to be unraveled. 

 

3.2.5. Heat generation in the brain? 
Although the human brain accounts for only 2% of the body mass, it uses about 20% of the oxy-

gen needed to break down glucose for energy supply323 and is more than six times larger than the 

average brain size of a typical mammal of the same body weight152. There are some brain-specific 

thermoregulatory topics that justify a separate discussion of its thermogenesis and dissipation of 

heat. It has often been stated that the brain is vulnerable to damage by low or high temperatures, 

and that special physiological measures should be taken in order to keep the brain temperature 

within close limits. The validity of this statement is arguable, since there is little reason to suppose 

that other organs tolerate larger deviations, and in case of fever brain temperature frequently 

exceeds body temperature256. 

The metabolic heat produced by the brain is dissipated by the circulating blood, of which the ar-

terial temperature is 0.2–0.5°C lower than the brain temperature256. It has been argued that the 

temperature of the brain depends to a large extent on the temperature of the circulation of the 

rest of the body, since changes in neuronal activity level contribute little to the temperature varia-

tion10. There is considerable argument about the existence of selective brain cooling (SBC) in hu-

mans256. Selective brain cooling involves a mechanism of cooling arterial blood by counter-current 

air-cooled returning venous blood in the carotid rete. Rats and humans have no carotid rete, al-

though there may be some cooling where the middle carotid passes the sinus cavernous. One of 

the major arguments put forward in support for the existence of SBC in humans, monkeys and 

rats is the fact that a ventro-dorsal temperature gradient is present, leaving the dorsal cortex sig-

nificantly cooler than the base of the brain10,172,185,267. 

However, recent findings suggest that local differences in heat generation may account for these 

results as well. Heat production is often regarded only as a side-product of cellular metabolic 

processes. However, cellular activity appears to be only a minor factor in neural thermogenesis, 

suggesting that an active process should be present as well. Horvath et al. recently demonstrated 

that such an active process is present in the brain, much like it is present in BAT185. The mitochon-

drial uncoupling protein UCP2 as well as its mRNA was demonstrated in neurons and their pro-
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jecting axons and axon terminals, mainly in and around the hypothalamus but not in the hippo-

campus, cortex and thalamic relay nuclei. Horvath et al. suggested that heat produced by the pre-

synaptic axon terminals may modulate pre- and postsynaptic events185. Thus, local temperature 

changes could modulate signaling pathways. Indeed, the temperature of the brain areas where 

axon terminals containing UCP2 are present were warmer than the areas whiteout UCP2-

containing axon terminals. Moreover, cells found to be activated by cold exposure, as indicated by 

c-fos expression, may in fact be modulated by a UCP2 mechanism, since they were abundantly 

innervated by UCP2-containing axon terminals. 

Szelényi has proposed another possible mechanism for the brain thermogenesis that can be seen 

during acute cold exposure374. In the brain, the number of glial cells outnumber the number of 

neurons by a factor 10, and it is highly unlikely that their function is limited to ‘gluing’ neurons 

together. Szelényi proposes that one of the functions of the most abundant astroglia may be to 

produce heat by glycogenolysis in response to increased intracellular norepinephrine levels, and 

possibly other substances like adenosine, histamine and vasoactive intestinal polypeptide. 

Circadian modulation: Cats show attenuated SBC during paradoxical sleep23,313. On the other 

hand, in pigs and springbok, the magnitude of selective brain cooling is greatest during rest and 

sleep143,277. The species differ in the circadian modulation of SBC: in pigs SBC is relatively high at 

low body temperatures, but in steenbok at high body temperature.  

Age-related changes: We are not aware of studies investigating age-related changes in brain tem-

perature regulation. Szelényi noted that the hypothetical heat-generating astroglia mechanism 

might be of special importance at high age, when hypothermia is likely to occur, but the relative 

weight of glia cells is increased, possibly preventing the brain of elderly from becoming as cold as 

the rest of their body374. 

In summary, the novelty of the ideas about specific brain thermogenesis and selective brain cool-

ing in humans accounts for the lack of studies on circadian and age-related modulation in such 

rather hypothetical but possibly relevant processes. 

 

3.3. Gain and retention of heat 

3.3.1. Behavioral measures for heat gain and retention 
Humans have only limited autonomic possibilities to prevent hypothermia in a cold environment. 

Therefore, behavioral measures are the primary responses and of utmost importance. Examples 

are the creation and application of clothing, bedding, shelter and heating systems. In contrast to 

most autonomous thermoregulatory responses, behavioral thermoregulation is not postponed 

until a drop in core temperature occurs, and is primarily modulated by changes in mean skin tem-

perature71,85,154. 
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Circadian modulation: An obvious but little recognized circadian modulation of a behavioral 

measure is the creation, by means of bedding, of a nocturnal sleeping microclimate of ±34°C289,409, 

which is much higher than the usual daytime temperature and even thermoneutrality ±29°C247. 

This finding is suggestive of behavioral thermoregulatory measures aimed at heat preservation 

during sleep. 

Age-related changes: The bed microclimate created by elderly is not different from that of young 

adults298. On the other hand, during daytime, elderly regulate their indoor ambient temperature 

less precisely and tolerate larger deviations from the comfortable average before action is under-

taken78,79,201,391. This cannot be attributed to a reduced mobility, since simple hand movements 

sufficed to change ambient temperature in some experiments. 

In summary, whereas the nocturnal ambient microclimate does not change with aging, the poor 

behavioral response to cool environment during the day contributes to a lower and more variable 

daytime body temperature and, thus, to the age-related attenuated amplitude and decreased 

stability of the diurnal temperature rhythm. 

 

3.3.2. Capacitive and insulative properties of the body 
The body can be seen as a reservoir including heat producing cells, isolated from the environment 

by the skin and subcutaneous tissue, with a prominent role for the poor thermoconductive subcu-

taneous fat. During cold exposure, subcutaneous fat thickness is negatively associated with skin 

temperature and, thus, heat loss130,432. There is some evidence that repeated cold exposure of the 

skin increases local subcutaneous fat deposit and, thus, enhances thermal insulation and heat 

retention191. Although pilo-erection does occur in humans exposed to cold, it is of no functional 

significance, in contrast to the effectiveness in furred animals. 

Circadian modulation: The body constitution may change, but too slow for circadian modulation 

to occur. The modulation of thermoregulatory responses by sleep states in animals has been re-

viewed by Parmeggiani311. In brief, during quiet sleep even a small deviation from the set point is 

sufficient for the initiation of pilo-erection, while on the contrary larger deviations are tolerated 

during paradoxical sleep. 

Age-related changes: The proportion of heat producing cells decreases with age, and the decrease 

in total body water content results in a lower thermal buffering capacity due to a decrease in the 

heat reservoir25,77. Furthermore, a loss of insulating subcutaneous tissue is present333. On the oth-

er hand, heat loss would be expected to be less in the elderly due to their increased body fat and 

smaller body surface area relative to mass432, but this does not appear to play a prominent role133. 

In AD, total body fat mass was found to be comparable318, or lower150 as compared to age-

matched controls. Fat-free mass was reported to be lower332 or higher365 in AD patients. Thus, the 

results in AD are highly equivocal and inconclusive. 
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In summary, the decreased ‘heat reservoir’ and insulating subcutaneous tissue makes the aged 

body more vulnerable to deviations from the set point and may be involved in the age-related 

decreased stability of the diurnal temperature rhythm. It is conceivable that the limited heat re-

servoir may be involved in the fact that elderly reach their nocturnal temperature minimum earli-

er in the morning113,282. 

 

3.3.3. Autonomic heat retention by peripheral vasoconstriction 
One of the major physiological adjustments in response to cold exposure is peripheral vasocon-

striction, which restricts heat transfer from the internal organs to the skin and from the skin to 

the environment. Peripheral vasoconstriction is more dependent on core than on skin tempera-

ture: the ratio of how changes in core and skin temperature contribute is estimated between 30:1 

and 4:154,71,85,154. The sympathetic part of the autonomic nervous system is by far the most impor-

tant branch involved in regulation of cutaneous vasoconstriction. The involvement of the para-

sympathetic branch in circulatory regulation is limited to the modulation of heart rate. Most sym-

pathetic outflow is associated with vasoconstriction, although a few vasodilatory fibers exist as 

well, projecting to muscles rather than the skin. During cold stress, NE is released from sympa-

thetic nerve endings. Sympathetic NE stimulation of the vessel wall can induce vasoconstriction 

via    receptors or vasodilation via β receptors: the skin of the extremities mainly contains α2 re-

ceptors and, thus, shows strong vasoconstriction136,204. In contrast, there is poor vasoconstrictive 

capacity in the face, resulting in poorly attenuated heat loss from this site during cold exposure247. 

When exposed to severe cold for a prolonged period the vasoconstriction of the hands is periodi-

cally interrupted by periods of cold-induced vasodilation (CIVD). The cyclic process is known as the 

‘hunting reaction’ and was first described by Lewis237. CIVD is especially prominent in fingers, lips, 

cheeks, nose, elbows, which are parts of the body that are rich in arteriovenous anastomoses 

(AVAs). 

When exposed to cold, stress or exercise, increased sympathetic output to the adrenal medulla 

induces it to release more adrenalin as well as some norepinephrine into the blood stream. As 

mentioned previously, norepinephrine is a strong vasoconstrictive agent, as is epinephrine to a 

lesser extent. Other powerful vasoconstrictive agents are angiotensin, acting on all arterioles, and 

vasopressin160. 

Circadian modulation: When exposed to cold at different times of the day, mice show less cuta-

neous vasoconstriction in the afternoon381. On the contrary, in humans, cold-induced peripheral 

vasoconstriction is attenuated during the night and occurs only if core temperature falls below a 

threshold of 36.0°C302,386. This indicates that optimal vasoconstriction is linked to the preferred 

activity period: during the night in the nocturnal mice and during the day in the diurnal humans. 

Cold-induced vasoconstriction in humans is maximal during the early morning176. The hunting 
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reaction also shows a circadian modulation, i.e. it is most pronounced in the afternoon217, likely 

associated with the peak in core temperature85. As is the case for pilo-erection in response to 

cold, vasoconstriction is also modulated by sleep states. During quiet sleep even a small deviation 

from the set point is sufficient for the initiation of vasoconstriction, while on the contrary larger 

deviations are tolerated during paradoxical sleep311. 

Age-related changes: Under thermoneutral ambient conditions the skin temperature at the ex-

tremities is lower in the elderly324, which is indicative of enhanced baseline vasoconstriction. 

However, during cold exposure both in laboratory and outdoor situations, elderly show an atte-

nuated efficiency in diverting blood from the skin to help conserve body heat and consequently 

the skin remains relatively warm25,78,201,215,297,391. This age-related change is likely to be the most 

important factor involved in poor cold defense133. The loss of vasoconstrictive cold defense may 

be prominent in male elderly and absent in females432,434. Also during the night, vasoconstriction 

of the fingers in response to facial cooling is attenuated in the elderly197. In contrast to their atte-

nuated constriction, elderly were more easily awakened by the facial cooling stimuli, indicating 

that the problem is related to decreased constrictive capacity rather than a loss of thermorecep-

tive sensibility. The age-related loss of vasoconstriction is present at both the threshold, gain and 

maximum level. Frank et al. demonstrated that the threshold for cold-induced vasoconstriction 

lies at a lower core temperature at high age, and that the maximal vasoconstriction is reduced, 

likely associated with a decrease in evoked NE release137. On the other hand, when exposed to 

cold for a more prolonged period the difference between young and elderly may disappear432, 

making an age-related decrease in the maximal constriction equivocal. The mechanism underlying 

the decreased cold-induced vasoconstriction is most likely an increased arterial wall stiffness. A 

decrease in the smooth muscle   -adrenergic receptor has also been demonstrated, which is, how-

ever, compensated by an increased sympathetic nervous system activity, leaving the net result 

unchanged133. The hunting reaction weakens with advancing age366,430. The findings concerning 

the rate of rewarming of the fingers after discontinuation of the cold stimulus are equivocal: both 

faster227 and slower324 rates have been reported to occur in the elderly. 

In summary, the delayed and slower evolving vasoconstrictive response to a cool environment will 

contribute to a lower and more variable body temperature, most likely during the daytime and, 

thus, to the age-related attenuated amplitude and decreased stability of the diurnal temperature 

rhythm. 

 

4. Heat loss and reduction of heat gain 
When an animal is exposed to ambient heat and/or involved in rigorous physical activity it should 

limit its heat production and promote the radiation, conduction, convection and evaporation of 
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heat from the body to the environment. Radiation is the emission of heat through infrared elec-

tro-magnetic waves. Conduction is the transmission of heat to other objects and air by direct con-

tact. Convection aids conduction if the warm air rises up and away from the body or is promoted 

by air movement (wind). Evaporation of water from the skin and lungs also continuously draws 

heat from the body, further increasing when sweating occurs. Behavioral and autonomic changes 

are involved in the accomplishment of heat loss in order to prevent unacceptable elevated body 

temperature. Behavioral measures include the intake of fluids to prevent dehydration; decreasing 

the level of physical activity; and seeking a cool, shady, windy environment. In addition, autonom-

ic measures are taken. Passive heating results in a decrease of the sympathetic outflow to the 

periphery, while active heating (exercise) first increases the sympathetic outflow to the periphery, 

inducing vasoconstriction, until eventually the rise in core temperature attenuates the outflow. 

Both are associated with sweating. 

 

4.1. Peripheral blood flow 
An increase in core or skin temperature induces peripheral vasodilation. Cutaneous vasodilation 

results in increased skin blood flow (SkBF), which serves three heat-loss enhancing mechanisms. 

First, heat is convected from the internal organs and working muscles to the skin. Second, the 

resulting increase in skin temperature promotes dry heat loss by convection and radiation to the 

(cooler) environment. Third, the increase in skin temperature also elevates the skin-to-ambient 

vapor pressure gradient which promotes sweat evaporation. At neutral (24–25°C) ambient tem-

peratures at rest, with a core temperature of about 37°C and a skin temperature of about 34°C, 

the human core temperature is mainly regulated by alterations in skin blood flow, rather than by 

changes in metabolism or evaporative heat loss52. In this zone, sympathetic innervation regulates 

skin blood flow between 2 and 6 ml blood/(min 100 ml skin). If heat loss is needed, the total per-

fusion of the skin with warm blood may increase from ±0.2–0.5 to 7–8 l/min, resulting in an up to 

eight-fold increase in the transfer of heat from the core to the skin160. Such elevated skin blood 

flow can take as much as half of the cardiac output and requires a redistribution of blood flow 

from other circulations, the splanchnic and renal circulations in particular207. 

In the extremities, the increase in skin blood flow is to a large extent due to the opening of arteri-

ovenous anastomoses (AVAs), which are shunts between the arteries and the venous plexus. The 

presence of AVAs is limited to the extremities, i.e. the palmar/plantar but not dorsal side of hand 

and foot as well as the nail bed, elbow, lips, cheeks, ears and nose. They are more numerous in 

the more distal parts, i.e. maximal in the fingertips85. AVAs are sympathetically innervated, and 

both cholinergic and noradrenergic terminals have been found, as well as α-adrenoreceptors85. 
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AVAs are fully dependent on this innervation and do not respond significantly to changes in local 

skin temperature220. 

At rest and in thermoneutrality skin blood flow is controlled by the sympathetic vasoconstrictor 

system. During warming of the skin, not only a release of the tonic adrenergic vasoconstrictor 

tone but rather an active vasodilator system is activated, accounting for up to 80–95% of the ele-

vated peripheral blood flow52. The neurotransmission mechanism of active vasodilation is not fully 

understood, and may be related to sympathetic sudomotor activity, although acetylcholine is not 

implicated204. It has also been suggested that parasympathetic cholinergic innervation of the ves-

sels induces a sequence of steps leading to nitric oxide release which relaxes the vascular smooth 

muscles261. However, no parasympathetic nerves are found in the skin or muscles85. The involve-

ment of the sympathetic nervous system in the active vasodilatory system was demonstrated in 

microneurography studies. Skin sympathetic nerve activity associated with vasodilation was found 

in the peroneal nerve innervating the hairy part of the feet, but not in the tibial nerve innervating 

the plantar glabrous skin253. Active vasodilation indeed occurs in the back of fingers and hands200. 

Minson et al. recently demonstrated that active vasodilation consists of at least two components: 

an early axon reflex followed by a more sustained endothelial nitric oxide induced vasodilation274. 

For vasomotor control, three different regions can be distinguished (1) the extremities, (2) the 

trunk and proximal limbs, and (3) the face175. Modulation of the sympathetic constriction is 

strongly present in the extremities. Active vasodilation may play a more prominent role on the 

trunk and proximal limbs. On the forehead there is little vasoconstrictive response to cooling, but 

a vasodilation in response to warming does occur. 

With local warming of a skin area, maximal skin blood flow occurs at 42°C387. On the other hand, if 

all the ambient temperature surrounding the skin would exceed 37°C, vasodilation transfer of 

heat from the environment to the body instead of heat loss would occur, and in order to prevent 

this, ‘heat induced vasoconstriction’ occurs in such occasions 85,292. 

In addition to strictly thermoregulatory agents, tissue damage and inflammation are associated 

with agents including bradykinin, histamine and prostaglandin that promote vasodilation and, 

thus, local heat loss160. The vasomotor tone is furthermore modulated by ion concentrations. Va-

sodilation is furthermore promoted by high ionic concentrations of potassium, magnesium, so-

dium, hydrogen, acetate and citrate, whereas vasoconstriction is promoted by elevated plasma 

calcium ion concentrations. 

Circadian modulation of peripheral blood flow: At resting conditions, heat loss due to a release of 

peripheral vasoconstriction shows a circadian rhythm66,82,142,176,218,334,362, which is the major factor 

that induces the circadian rhythm in core body temperature. In humans, an increase in distal skin 

blood flow starts just after 20:00 h and induces a maximum plateau of skin temperature of ap-

proximately 33.5°C between 23:00 and 7:00 h18,19,218,257. Some studies suggest a more limited noc-
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turnal time interval of increased peripheral blood flow. Shaw et al. found lower basal forearm 

blood flow at 20:00 h as compared to 8:00 and 2:00 h354. The induction of endothelium depen-

dent, nitric oxide mediated vasodilation by means of acetylcholine and N-monomethyl-l-arginine 

was similarly attenuated 20:00 h as compared to 8:00 and 2:00 h. Panza et al. found a higher basal 

skin blood flow and dilatory response to sympathetic blockade at 7:00 h as compared to 14:00 

and 21:00 h309. After the nocturnal peak, skin temperature slowly decreases again to a level of 

approximately 32.2°C. On top of the circadian rhythm in vasodilation, the occurrence of sleep 

induces a further vasodilation219. A decrease in skin sympathetic nerve activity associated with the 

vasoconstrictive tone occurs in sleep stages 1 and 2378. In animals, a smaller increase in core tem-

perature is sufficient for the initiation of vasodilation during quiet sleep as compared to the in-

crease necessary during wakefulness311. On the contrary, larger deviations are tolerated during 

paradoxical sleep311. Melatonin, secreted only at night by the pineal gland also induces a strong 

peripheral vasodilation in humans. This heat-loss promoting property of melatonin may account 

for ±40% of the amplitude of the circadian rhythm in core temperature under resting conditions62. 

Both the adrenergic vasoconstrictor system and the non-adrenergic active vasodilator system are 

involved in the diurnal variation in the cutaneous circulatory response to passive heat stress13,15. 

The evening shift towards a higher threshold of core temperature before vasodilation commences 

is dependent on the active vasodilator system. But, once vasodilation has started after reaching 

this threshold, the change in cutaneous vasodilation per degree of further increase in core tem-

perature, i.e. the gain, is also higher in the evening as compared to the morning. This appears to 

be due to a decreased sympathetic noradrenergic vasoconstrictor system activity. The possibility 

of circadian modulation of postsynaptic   receptors is unlikely. The finally reached maximal skin 

blood flow does not show a circadian modulation. After discontinuation of the passive heat stress, 

it takes subjects much longer to return to their baseline core temperature in the morning295.  

During exercise heat stress the threshold for skin vasodilation is lower in the early morning than in 

the afternoon: vasodilation commences at a relatively low core temperature at night and in the 

early morning but only at a relatively high core temperature from noon till the evening367,368,419. 

The gain of peripheral blood flow, i.e. the increase in blood flow per degree of further increase in 

core temperature, was minimal at 4:00 h and maximal at 24:00 h, i.e. at midnight every degree 

increase in core temperature is related to a much stronger increase in vasodilation368. The latter 

finding was not confirmed in another study12. Aldemir et al. found a faster increase of forearm 

blood flow during exercise at 18:00 h as compared to 8:00 h, while the post exercise return to 

baseline was faster in the morning7. This extended morning vasodilation may be involved in the 

‘overshooting’ post exercise hypothermia which, if occurring, is most prolonged following exercise 

in the morning278. 
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Especially in the AVA-rich extremities, skin blood flow, and consequently skin temperature, show 

a spontaneous oscillation with a frequency of ±1 cycle/min. This frequency is lower the more skin 

temperature deviates from 32°C. Furthermore, there is a circadian modulation of the frequency, 

showing a maximum in the morning and a trough before bedtime146,357. 

Age-related changes in peripheral blood flow: Kenney and colleagues have investigated age-

related changes in the ability to dissipate heat in detail by assessing the response of SkBF to three 

challenges: (1) passive whole body heating, (2) exercise-induced body heating, and (3) local skin 

heating. Elderly showed a lower SkBF at a given core temperature in all three experimental condi-

tions. An example is shown in Fig. 4. Especially over the age of 60 years, there is a diminished cu-

taneous vasodilatory response at any given core temperature179,206,209,210,272,273.  

 

 

 
Fig. 4. Prolonged heating of the skin at 42°C elicits maximal skin blood flow in the heated area. 

The skin temperature of the left forearm was uniformly clamped at 42°C by spraying a 
fine mist of water over the surface. Maximal forearm skin vascular conductance is shown 
as a function of age in 100 healthy subjects ranging in age from 5 to 85 years. Each filled 
circle represents the maximal vascular conductance for an individual subject. Maximal fo-
rearm skin conductance (minimal resistance) decreases fairly linearly across this large age 
span. Adapted from Kenney207, based on data from Martin et al.259, with permission. 
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At high age, the threshold for vasodilation with heating is increased77 which is secondary to poor 

fitness: no increase in threshold is found when fit elderly are compared to fit young subjects207. 

Indeed, regular aerobic exercise in the long-term results in a lower core temperature threshold 

needed to induce the onset of vasodilation179,388. Changes in the active vasodilator system are 

involved in the decreased threshold. The gain, i.e. the slope of blood flow increase versus core or 

skin temperature increase, decreases with age207,391. The maximal SkBF declines linearly by a fac-

tor 3 between the ages of 5 and 85 years and can only partly be attributed to changes in fitness 

level170,207,259,338. Although fitness increases maximal skin blood flow in young subjects, it does not 

so in the elderly179. The heat-loss promoting effect of exogenous melatonin is also attenuated in 

older individuals63,244, especially in those who have a reduction in the maximal heat induced peri-

pheral vasodilation149.  

Concerning the mechanisms of the age-related reduction in vasodilatory capacity, Nadel et al. 

argued for peripheral rather than central hypothalamic changes291. Since both systemic as well as 

local skin blocking of noradrenergic transmission do not improve the age-related decrease in va-

sodilation, the involvement of increased sympathetic (NE) vasoconstrictor tone is unlikely, and 

rather a diminished sensitivity of the active vasodilator system seems to occur211. Other factors 

that may be involved are structural changes in the cutaneous vasculature that limit vessel wall 

expansion and vascular supply to skin tissue77,205,206,207. Indeed, degeneration of the microcircula-

tory vasculature in the skin was noted in postmortem studies in elderly subjects283. 

Evans et al. suggested that thermally-induced cutaneous blood flow is reduced in older persons at 

nutritive capillary sites, but not at AVA-rich sites125. Other factors involved in the reduced peri-

pheral blood flow are limitations in cardiac output and less redistribution of the circulation from 

the splanchnic and renal flows to the skin179,273. Altered fitness levels may play some role in the 

latter: whereas increased fitness in young subjects results in increased cardiac output and a 

greater redistribution of flow from the splanchnic and renal circulation to support SkBF, fitness in 

the elderly improves only cardiac output, not redistribution179. In addition to fitness two other 

secondary age-related factors may be involved in decreased vasodilation. First, dehydration, 

which often occurs in the elderly, lowers SkBF169,210. Second, much like exercise, regular exposure 

to high as well as low ambient temperature, i.e. heat or cold acclimation, results in a lower thre-

shold of core temperature needed to induce the onset of increased SkBF175 and elderly in homes 

for the elderly may seldom experience such exposure.  

In summary, the circadian variation in peripheral vasodilation and in the consequent dry heat loss 

and enhancement of evaporative heat loss is a major factor determining the core body tempera-

ture rhythm. Although a low fitness level accounts for a higher threshold of core temperature to 

be reached before vasodilation commences, it cannot fully account for the age-related decrease 

in gain and maximal skin blood flow. This decrease will show most prominently during the night, 
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when peripheral vasodilation is high, and result in an attenuated fall in core temperature, thus, 

reducing its circadian amplitude. The rhythm will furthermore be more susceptible to fluctuations 

induced by heat exposure. 

 

4.2. Evaporative heat loss 
Increases in core or skin temperature enhance evaporative heat loss, which is more dependent on 

core than on skin temperature: the ratio of how changes in core and skin temperature contribute 

has been estimated between 20:1 and 6:154. Repeated heat exposure reduces the threshold for 

sweating. Unlike most animals, evaporative respiratory heat loss is of little importance in humans, 

and sweating is the principal evaporative mechanism addressed during exercise and in hot envi-

ronments. Sweat glands are innervated by the cholinergic, so-called ‘sudomotor’ sympathetic 

fibers, i.e. other fibers than those involved in regulating the skin vasomotor tone239,253. Sympa-

thetic sudomotor innervation of the hairy skin is activated during heat stress, whereas the sudo-

motor innervation of the distal glabrous skin is mainly activated during psychogenic stress. In 

heat-acclimatized subjects, up to 2 l sweat/h can be produced, which allows for the removal of 10 

times the basal rate of heat production160. 

Circadian modulation: The resting sweating rate is maximal during the evening and night186,431. 

Sudomotor sympathetic nerve activation associated with increased sweating is enhanced during 

slow wave sleep296. The core temperature threshold to be reached before sweating occurs also 

depends on the time of the day. During both passive and exercise heat stress, sweating com-

mences at a relatively low core temperature at night and in the early morning but only at a rela-

tively high core temperature in the afternoon14,368,390,419. The gain, i.e. the slope of sweating in-

crease versus core temperature increase does not show a circadian modulation. Tayefeh et al. 

recently confirmed the circadian modulation of threshold and showed that at 3:00 h, sweating 

occurs on average already when core temperature exceeds 36.6°C, while at 20:00 h, a core tem-

perature of 37.1°C should be reached before sweating occurs386. As has been discussed previously 

for other thermoregulatory responses, evaporative heat loss is also modulated by sleep states311. 

During quiet sleep even a small deviation from the set point is sufficient for the initiation of ther-

mal tachypnea and panting, while during paradoxical sleep large deviations are tolerated without 

initiating these thermoregulatory responses. 

Age-related changes: Elderly have an attenuated sudomotor response, i.e. the sweating response 

to thermal stimulation is markedly decreased, and the maximal capacity as well as the threshold 

are increased77,175. However, this finding may be secondary to poor fitness. Havenith et al. applied 

multiple regression analyses on predictors of poor responses to heat stress and demonstrated 

that low levels of fitness and physical activity account for most of the attenuated sweating re-
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sponse170. Intact sweating capacity in fit elderly men and women has been demonstrated indeed 

in other studies192,308,435. In one study, fitness level could not account for decreased sweating in 

elderly women11, which was suggested to be a result of a lower sweat gland response to stimula-

tion or a structural alteration in the glands or surrounding tissue. No age-related difference in the 

density of heat activated sweat glands was found11. A secondary factor often occurring in aging 

and negatively affecting the sweating response is dehydration169. 

In summary, elderly show no decrease in sweating, except when fitness is low, which may be the 

case in many elderly. This decrease will show most prominently during the night, when the sweat-

ing rate is high due to circadian and sleep modulation. The age-related loss of slow wave sleep is 

predicted to further contribute to the decrease. Decreased nocturnal evaporative heat loss will 

attenuate the nocturnal fall in core temperature. However, the contribution of nocturnal evapo-

ration to the decline in core temperature is less prominent than the contribution of nocturnal 

vasodilation also because bedding reduces convection of humidity from the body. The circadian 

temperature rhythm will furthermore be more susceptible to fluctuations induced by heat expo-

sure. 

 

5. Central thermoregulatory control  

5.1. Thermoregulatory control 
The preoptic and anterior hypothalamic area (POAH) is considered the major site integrating cen-

tral and peripheral thermosensitive inputs as well as coordinating thermoregulatory outputs. In 

animal studies, warming of the POAH elicits autonomous heat-loss responses including vasodila-

tion, polypnoea, salivation and sweating as well as behavioral responses like moving to a cooler 

place and postural changes that increase heat loss45,175. POAH cooling can elicit behavioral heat 

retention responses, cutaneous vasoconstriction and heat production by shivering or non-

shivering thermogenesis. Despite the importance of the POAH, the concept of a single or dual 

integrating control center in the hypothalamus has been abandoned, and it is clear that thermo-

regulation is hierarchically controlled at several levels of the neuraxis342. Spinal reflexes for exam-

ple, although also modulated by higher centers, are sufficient for the phenomenon that warming 

of a single hand or foot causes vasodilation in the other. Thermoregulatory responses can, thus, 

be selectively elicited and suppressed16. For example, POAH lesions may affect autonomous ref-

lexes but leave behavioral thermoregulation intact, since the latter are also under control of the 

posterior hypothalamus. Moreover, the network is involved in, and interacts with, non-

thermoregulatory functions269. The representation of thermosensitive cells and ascending projec-

tions throughout the neuraxis have already been discussed in detail in Section 2, so the present 
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section will focus on general thermoregulatory output control centers, whereas Section 5.2 will 

discuss the circadian output control center. 

Although the POAH can be considered to represent the highest level of thermoreceptive and 

thermoregulatory integration, many other brain areas are thermosensitive and can induce ther-

moregulatory responses. In fact, any autonomous integrated thermoregulatory response can be 

evoked by appropriate stimulation at the level of the spinal cord. Structures of importance for 

thermoregulatory control include, in an ascending sequence: the peripheral sympathetic path-

ways, the spinal cord, parts of the brainstem reticular formation, the preoptic-anterior and preop-

tic-posterior hypothalamic nuclei, the ventrobasal and intralaminar thalamic nuclei and the soma-

tosensory cortex. 

A typical characteristic of the network is that several centers can modulate ascending, descending 

and reflex transmission16. For example, whereas the nucleus raphe magnus has traditionally been 

regarded a thermo-afferent relay, recent studies suggest that it rather modulates thermoregula-

tory efferents originating upstream, in the hypothalamus37. Indeed, inhibition of medullary raphe 

neurons with muscimol reduces distal vasoconstriction43 and results in a drop in core tempera-

ture293. Another example is that hypocretin projections from the perifornical hypothalamic area to 

laminae I and II of the superficial dorsal horn of the spinal cord may be involved in inhibition of 

ascending and reflective nociceptive and thermosensitive information156. The strength of vasomo-

tor reflexes induced by local skin temperature changes is indeed modulated by the higher regula-

tory centers. 

A notable property of the thermoregulatory network is that whereas the cold receptors by far 

outnumber the warm receptors in the skin and deep body160—suggesting a predominant function 

in cold defense—the number of cold-sensitive neurons in the brain are much less than the num-

ber of warm-sensitive neurons399, suggesting a predominant function in heat defense. 

With the exception of vasomotor control, which is continuously active in the thermoneutral 

range, homeotherms including humans rely primarily on behavioral thermoregulation, and only 

secondarily on autonomic thermoregulation. The anatomical sites involved in the two types of 

regulation may differ. For example, it has been demonstrated that stimulation of the posterior 

hypothalamus mainly elicits thermoregulatory behavior, whereas stimulation of the POAH may in 

addition elicit autonomic thermoregulation175. 

For the control of vasomotor tone, efferents from the POAH project via the medial forebrain bun-

dle to the vasoconstrictor area of (C-1) the rostral ventrolateral medulla148,284,360. From this area, a 

distinct population of sympathetic noradrenergic premotor neurons project to the spinal cord 

where they excite the sympathetic vasoconstrictor neurons that give rise to the non-myelinated 

innervation of the skin blood vessels. Even at rest, there is a continuous slow firing of these neu-

rons, inducing a permanent partial constriction called the vasomotor tone. The vasomotor center 
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receives input not only from the hypothalamus, but also from several cortical areas, the amygda-

la, the septum and hippocampus160. 

The vasoconstrictor area neurons are not involved in the innervation of brown adipose tissue, for 

which the sympathetic premotor neurons in the rostral raphe pallidus may be responsible284. 

The primary motor center for shivering is located in the dorsomedial portion of the posterior hy-

pothalamus. It receives inhibitory input from the POAH and excitatory input from skin and spinal 

cord thermoreceptors160,382. The output itself is not rhythmic: the muscle oscillation is probably 

related to a muscle spindle stretch reflex.  

The shivering pathway originates in the posterior hypothalamus, and runs caudally through the 

midbrain tegmentum and pons, close to the rubrospinal tracts, to the cerebrospinal and reticu-

lospinal tracts (α and γ motoneurons). 

Age-related changes in central thermoregulatory control: There is a surprising lack of studies that 

specifically addressed age-related changes in the brain areas involved in thermoregulation. At the 

macroscopic whole brain level it has been shown that, in comparison to young rats, aged rats 

show a decreased or altered temperature response to intracerebroventricular administration of 

prostaglandin E2, norepinephrine, serotonin, dopamine, and carbachol131. In the POAH area, most 

aging studies addressed the sexual dimorphic nucleus, which is, however, thought to be primarily 

related to sexual behavior rather than thermoregulation181. One study in old female rats showed a 

decreased number of neurons in the anterior hypothalamic area187, which would predict an atte-

nuated thermoregulatory capacity. The hypothalamic paraventricular nucleus, of major impor-

tance for hypothalamic regulation of the autonomous nervous system stays intact in the course of 

aging181, and so does the vasopressin and oxytocin innervation of the parabrachial nucleus in AD 

patients. The innervation of this autonomic relay center is most probably originating in the 

PVN402. In the C-1 medullary vasomotor center of AD patients, a reduction in the size of neurons 

was found, without amyloid deposits and only marginal tau-immunoreactivity56. 

In summary, there is only marginal information about age-related changes in the neural substrate 

of thermoregulatory control, and it is at present not known to what extent these findings are in-

deed relevant for age-related changes in thermoregulatory control. An important exception is the 

studies on the hypothalamic suprachiasmatic nuclei (SCN), the biological clock of the brain re-

sponsible for the circadian modulation of not only temperature but virtually all physiological 

processes, as will be discussed later. 

 

5.2. Central control of the circadian rhythm in temperature 
The circadian rhythm in body temperature is controlled by the SCN, representing the biological 

clock of the brain. The SCN consist of two small (±0.25 mm2 ; ±10.000 vasopressin neurons each) 
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nuclei located at the bottom of the anterior hypothalamus just above the optic chiasm and sepa-

rated by the third ventricle. 

It is not known in detail at present by which specific projections the SCN drives areas involved in 

thermoregulation. Projections of relevance for thermoregulatory control include those to the 

POAH263,415, to the pineal gland and to the paraventricular nucleus (PVN), a key structure in the 

hypothalamic output regulating the autonomic nervous system. The presence of the SCN projec-

tions to the POAH and the PVN have been confirmed in the human hypothalamus86,87. However, 

POAH lesions do not affect the period and even amplify the amplitude in the circadian body tem-

perature rhythm343,375. Furthermore, a recent retrograde tracing study on the rat brain structures 

responsible for sympathetic outflow to the tail artery—of major importance for vasodilatory heat 

loss—failed to find labeling in the SCN, although many of the major hypothalamic SCN-projection 

sites (PVN, DMH, VMH, POAH) were labeled360. Tracing of the SCN may have been missed because 

these nuclei were labeled not before 7 days after injecting the retrograde tracer, and no observa-

tions were made after 7 days. A projection to the melatonin-producing pineal contributes to the 

circadian regulation of temperature. Under control of the SCN, melatonin is secreted only during 

the night, and in human induces a strong peripheral vasodilation. This heat-loss promoting prop-

erty of melatonin may account for ±40% of the amplitude of the circadian rhythm in core temper-

ature under resting conditions62. 

It should be noted, however, that the nocturnal increase in heat loss commences already before 

melatonin starts to increase220. Melatonin may act both through POAH melatonin receptors224 and 

receptors in the vasculature61. The role of the SCN in the circadian modulation of activity and 

posture116 also has consequences for metabolic heat production and heat loss, respectively due to 

increased peripheral blood flow and, thus, the core temperature. 

As described already, under strict resting conditions the circadian rhythm in core temperature is 

only to a small extent the result of changes in heat production, which is maximal just before 

noon218. In such conditions, but probably not under normal activity conditions, the diurnal varia-

tion in dry heat loss, with a peak plateau during the night, is the major determinant of the circa-

dian rhythm in core temperature82,142,176,218,334. This suggests a major role of the SCN in vasomotor 

control, the primary factor in heat loss. 

By what control mechanism does the SCN effectuate the circadian rhythm in temperature? Hensel 

argued that the circadian rhythm could only be accomplished by modulation of a set point, since 

the temperature rhythm is present in the thermoneutral range where thermoregulatory control 

actions are near zero175. However, we would like to stress that in fact countermeasures are taken 

in order to limit heat loss when the biological clock promotes peripheral vasodilation, which ar-

gues against a set point induced change, in which case behavioral thermoregulation would also be 

aimed at heat loss. For example, gerbils show increased autonomic thermogenesis and behavioral 
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heat gain during the trough of their temperature rhythm331, and rats self-select a higher ambient 

temperature during the time of day when their core temperature is declining50. The same is true 

for humans: although the changes in body position promote peripheral vasodilation, the creation 

of an insulative microclimate far above thermoneutrality is indicative of thermoregulatory beha-

vior aimed at limiting the heat loss. In fact, humans sleep best at 34°C, the habitual microclimate, 

which is just slightly above the thermoneutral range (28–33°C133) and any activation of cold de-

fense disturbs sleep168,312. These and other observations399 argue against the paradigm that a ma-

jor function of sleep would, with respect to thermoregulation, would be heat loss due to a lower 

set point, rather that vasodilation is promoted in spite of a set point that does not favor it. This 

indicates that the circadian modulated increase in peripheral vasodilation and sweating most like-

ly serve a function other than heat loss. A new view on this question will be presented in Section 

7. 

 

6. The circadian temperature rhythm in aging and dementia 
It was more than a century ago reported that the circadian amplitude of human body tempera-

ture declines from childhood to senescence by about 50%417. This finding has been replicated in 

many studies, with percentages ranging from 13 to 40%83,102,113,252,393,408,418. At least in rats there is 

a marked inter-individual variability in the amplitude reduction, ranging from strong to absent238. 

This variability may underlie the absence of an amplitude reduction in very healthy elderly282. Not 

only the amplitude, but also the mean level of temperature may decrease with age364. Changes in 

the intrinsic free-running period have been reported, but remain equivocal84,252,418. On the other 

hand, many studies have confirmed an advanced phase83,113 and it appears that especially the 

early morning rising phase of the rectal rhythm is advanced113,282. 

The relative contribution of the age-related changes in thermoregulation discussed in the present 

paper to the changes in the circadian rhythm in temperature is at present far from clear, although 

a major involvement of the decreased vasodilatory capacity is a priori likely.  

At a central level, the number of SCN neurons expressing the peptide vasopressin (VP) and mRNA 

declines at old age, and even more so in AD243,373. Vasopressin is strongly implicated in the clock 

output that is of importance for the regulation of both the level and rhythm of temperature. VP-

deficient Brattleboro rats may maintain a temperature rhythm under light–dark cycles, but in the 

absence of these Zeitgeber, i.e. cues with a circadian timing, the temperature rhythm is lost and 

temperature is low and irregular423. 

Another change at the central level, the age-associated decrease in acetylcholine synthesis147,359, 

may also be of importance. Rats treated with a cholinergic neurotoxin show a phase advance and 

decreased amplitude, but no change in period122, strikingly similar to the findings in normal aging. 
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The SCN receives strong cholinergic input from the nucleus basalis magnocellularis40. Both nicotin-

ic and muscarinic receptors are present in the SCN, which decrease in number with increasing 

age396. 

Corticosteroid levels are increased during aging and do not reach the low nocturnal levels ob-

served in young adults132,394. Elevated glucocorticoid levels suppress vasopressin synthesis in the 

SCN242, and since vasopressin reflects the output strength of the SCN, may thus be involved in an 

attenuated circadian temperature amplitude. A peripheral action of cortisol is to increase cate-

cholamine synthesis in sympathetic ganglia16. Thus, elevated nocturnal cortisol levels may contri-

bute to the attenuated loss of sympathetic vasoconstriction, and the consequent reduction in 

heat loss and core temperature decline during the night. The nocturnal temperature minimum in 

elderly indeed remains up to 0.3–0.4°C higher than the minimum in young adults418, especially in 

poor sleeping elderly245. 

The age-related increase in the risk of hypothermia may even be worse in dementia173. A case 

report also suggested a possible link between the progression of AD and progressive loss of cold 

defense99. However, some studies suggest that the age-related decrease in circadian temperature 

amplitude does not occur in AD patients, which is surprising given their poor sleep–wake rhythms 

and the considerable evidence for a reduced circadian temperature amplitude with normal ag-

ing393. Prinz et al. found no differences in amplitude and phase as compared to healthy elderly and 

confirmed this finding in a larger sample321,322. The former study may, however, have been biased 

since nocturnal rectal assessments were only available in compliant subjects, and low amplitudes 

occur mainly in very agitated male AD patients410. Mishima et al. demonstrated intact tempera-

ture amplitudes in AD patients, and a loss of amplitude only in multi-infarct dementia275. Howev-

er, no neuropathological confirmation of this diagnosis was available, and postmortem AD neuro-

pathology is often seen in dementia clinically diagnosed as ‘vascular’. The expression of a relative-

ly strong temperature amplitude in AD is also supported by an animal model. Grafting genetically 

transformed cells that over express β/A4 amyloid into the SCN of adult rats induces a disrupted 

circadian activity pattern, whereas the body temperature regained a circadian amplitude relative-

ly fast385. Concerning the phase of the temperature rhythm, a delayed maximum is found in most 

patients, and especially in the agitated ones410. This phase delay was confirmed by Harper et al., 

who moreover once more found an intact amplitude167. A late temperature minimum was also 

found in end-stage demented elderly (Van Someren et al., unpublished results). We propose that 

the degeneration of cholinergic neurons that characterizes AD may contribute to this delay, since 

cholinergic projections to the SCN, as discussed previously, exert a phase advancing effect151. 

The interpretation of the increase or lack of change in amplitude in demented elderly is difficult, 

and several factors may be involved. First, if the thermoregulatory capacity is decreased, this may 

in certain circumstances result in a body temperature that is allowed to oscillate uncontrolled 
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within a wider temperature range77, as is the case in POAH lesioned animals343,375. Indeed, in-

creased within subject temperature cycle variability has been reported in old rats238 and AD pa-

tients321,299, especially in agitated subjects410 and male subjects322. Alzheimer patients furthermore 

show an unpredictable and variable temperature response to serotonin agonists, which in healthy 

subjects invariably elevates core temperature233. This loss of stability may also be related to a 

reduced vasopressin production in the SCN: in the vasopressin-deficient Brattleboro rats, temper-

ature homeostasis is poor and over responsive to disturbances induced, e.g. by handling423. 

Possible confounding factors may be the use of cholinesterase inhibitors and neuroleptics in AD. 

Cholinesterase inhibitors as prescribed to patients suffering from AD induce dose-dependent hy-

pothermia in rats110, monkeys339 and humans254. The anticholinesterases may exert their hypo-

thermic action through the POAH, which receives cholinergic projections from the brain stem72, 

but also by acting on the PVN376,377. Neuroleptics may increase the body temperature especially in 

warm environments, but occasionally also induce hypothermia, dependent on individual disposi-

tion and dose73,251. It is, thus, likely that the prescription of neuroleptics affects the circadian 

rhythm in body temperature, with an outcome that depends furthermore on the time(s) of intake. 

In summary, the results suggest a delayed phase and a strong but highly variable amplitude in 

elderly suffering from AD, quite the opposite of the advanced phase and flat amplitude associated 

with normal aging. The increased variability may be a stronger hallmark of dementia related cir-

cadian changes than changes in the amplitude per se401. Indeed, a study in progress suggests that 

under constant routine conditions, the amplitude in AD patients is as reduced as in healthy elderly 

controls166. Neuroleptics and cholinesterase inhibitors affect the circadian rhythm in core body 

temperature. 

 

7. Functional implications of body temperature and the                      
 temperature  rhythm 
Ambient temperature cycles have been of pivotal importance in the very origin of proteins and, 

thus, the evolution of life itself286. It is, therefore, a priori likely that temperature cycles, even if 

they are internalized as in homeotherms, have functional implications. Indeed, this notion is sup-

ported by demonstrations that temperature modulates a variety of physiological and behavioral 

functions ranging from glucocorticoid receptor binding439 to complex executive cognitive func-

tions as assessed using the Tower of London task (Van Someren and Raymann, unpublished ob-

servations). The present paragraph discusses some recent findings on how body temperature 

cycles affect daytime and nocturnal functions relevant for human aging. 

At the cellular level, there is evidence that repeated mild heat stress is able to prevent the onset 

of various age-related changes during cellular aging in vitro404. Human skin fibroblasts in culture 
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show less of the characteristics of aging cells when they are exposed repeatedly to mild (41°C) 

warming325. Thus, although speculative, it may well be that temperature cycles promote cell inte-

grity. 

At the organismic level, there is evidence that a proper circadian temperature rhythm is essential 

for optimal homeostatic thermoregulation. Squirrel monkeys put in a constantly lit environment 

without circadian time cues lose their circadian temperature rhythm and as a consequence show 

an attenuated cold defense, indicating that an intact circadian temperature rhythm is required for 

adequate thermoregulation141. 

Sleep onset and maintenance is modulated by the SCN-induced peripheral skin vasodilation at the 

end of the day222,395,399. Indeed, limitations in the peripheral vasodilatory capacity have devastat-

ing effects on sleep, as has been reviewed by Van Someren399, and recently been confirmed for 

patients suffering from the vasospastic syndrome303 and insomnia245. Moreover, the timing of the 

early morning decrease in peripheral vasodilation and heat loss, and consequently the increase in 

core temperature, is strongly involved in the ability to maintain sleep in the later part of the 

night83. It is difficult to maintain sound sleep once the core temperature is rising, and this difficul-

ty is more pronounced in the elderly101,112. Concerning the mechanism by which circadian altera-

tions in core and skin temperature affect sleep, a model has been proposed which stresses the 

importance of input from thermoreceptors to sleep-related brain structures399. 

Nocturnal temperature may also be involved in the sleep-disturbing increased nocturesis in elder-

ly. Cooling promotes diuresis171. Dewald et al. showed that this is likely due to thermosensitive 

neurons in the hypothalamic PVN96. Warming induced an increased firing rate in neurons showing 

burst discharge, which is characteristic for vasopressinergic neurons. Indeed, plasma AVP concen-

tration in man is increased during heat exposure353, thus, attenuating diuresis. 

Although the major changes in thermoregulation herald rather than follow the transition from 

wakefulness to sleep, a slight vasoconstriction remains if one is kept awake, even supine in a dark 

environment, as compared to being asleep. Without sleep, the extremities show a circadian mod-

ulated increase in skin blood flow, but full vasodilation is obtained only when sleep is allowed. The 

proximal part of the skin in fact shows decreased nocturnal vasodilation if one is kept awake, and 

full vasodilation only if sleep is allowed219. Thus, the extremities lead in peripheral vasodilation 

due to a circadian modulation, and this vasodilation is enhanced at the extremities and spreads 

out to include the proximal skin areas when sleep is allowed. This strong whole body skin vasodi-

lation of necessity requires a redistribution of the blood flow, attenuating the flow to skeletal 

muscles and other peripheral organs80,176 and the brain255. 

An important question, raised in Section 5, is what the purpose of this strong nocturnal perfusion 

of the skin—requiring a reduced perfusion of vital organs including the brain— might be if it does 

not primarily serve thermoregulation. We would like to put forward that this increased skin blood 
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flow is an important part of the previously proposed function of sleep in immunological host de-

fense225. More specifically, we propose that the increased nocturnal skin blood flow may crucially 

support the role of the skin as the major barrier and first line of defense against environmental 

micro-organisms. Leukocytes, whether coming from the lymph vessels, bone marrow or spleen, 

need transport by blood to reach the parts where they are needed. The strong sleep-associated 

increase in skin blood flow will, thus, routinely give leukocytes optimal access to this important 

first defense area, much like the primary response of increased vasodilation and plasma extrava-

sation elicited by irritation or injury of the skin (68). Human sleep is indeed associated with a re-

duced number of monocytes, natural killer cells and lymphocytes circulating in the blood 

stream44,279. This is indicative of an enhanced redistribution of lymphocytes into extravascular 

tissues to allow them to perform their functions at the sites that need it most32,97,98,301. The migra-

tion from the interstitial space to the lymphatic system is however low, since it was demonstrated 

in both humans and sheep that the efferent lymph output is reduced during night-time rest and 

sleep100,124. Collectively, these findings are indicative of an increase in lymphocytes in skin tissue 

during sleep. 

An increase in regional blood flow is associated with an increase in the amount of fluid leaking out 

from the capillaries into the interstitial fluid100. Consequently, increased nocturnal skin blood flow 

furthermore enhances the distribution and interstitial flow of endogenous antimicrobial peptides, 

like cathelicidin and α- and β-defensins in the skin33,144,163,164. Especially during sleep, β-defensin 3 

may be increased in the human skin because it is upregulated by TNF-α164, and plasma TNF-α is 

elevated in association with high power in the slow-wave band of the sleep electroencephalo-

gram90. The TNF-α increase during sleep could, however, not be demonstrated in other stu-

dies44,157,320. 

The warm skin that results from the combination of increased peripheral blood flow and insula-

tive bedding will strongly enhance capillary permeability and lymph flow124,300. In addition, in hu-

mans, the nocturnal strong warming of the skin will also contribute to the already upregulated 

sweating rate during the night. This increased sweating is hardly effective in heat loss because 

bedding prevents convection, and may once more rather serve host defense, since sweat glands 

secrete the endogenous antibiotic peptide dermcidin350. 

The nocturnally secreted pineal hormone melatonin supports furthermore nocturnal host defense 

in humans in several aspects. First, melatonin strongly enhances peripheral blood flow in humans. 

Second, melatonin increases salivary immunoglobulin A (IgA) concentration, which plays an im-

portant role as a first line of defense against bacterial and viral antigens on mucosal surfaces and 

upper respiratory tract infections310. Indeed, inadequate sleep is associated with an increased risk 

of oral184 and respiratory89 infection. With respect to these findings, it is conceivable that the al-

ready increased risk of infection in elderly412 is worsened by their reduced melatonin release as 
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well as the attenuated vasodilatory effect sorted by melatonin. Recent findings suggest that day-

time bright light treatment may have important clinical consequences, because it increases noc-

turnal melatonin as well as salivary IgA in both young and aged subjects276,310.  

The strongest nocturnal vasodilation takes place in skin of the extremities, which most prominent-

ly interact with the environment and are, thus, in need of a strong defense mechanism. It is strik-

ing that the first degenerative symptoms of long-term sleep deprivation in rats are ulcerative and 

hyperkeratotic lesions at the very skin area that normally shows the most dramatic diurnal and 

sleep-related variation in vasodilation: the tail and plantar surfaces of the paws127,329, suggesting 

that these areas indeed suffer most from a lack of full sleep-related vasodilation. The lesions im-

prove within days with recovery sleep129. A systemic but not fully successful effort for additional 

vasodilation in order to make up for the lack of sleep-related vasodilation is one of the hallmarks 

of such long-term sleep deprivation and accounts for the decrease in core temperature in spite of 

a strong increase in energy expenditure437, which is also seen in sleep-deprived humans346. This 

continuous strive to vasodilate during sleep deprivation testifies of the relevance of the cyclic full 

vasodilation of the skin occurring daily under normal sleeping conditions. Indeed, long-term sleep 

deprivation in rats results in a breakdown in host defense with blood infection126. In addition, live 

bacteria were found in the lymph nodes128. The importance of these findings has been questioned 

since they do not readily account for all symptoms induced by sleep deprivation35. On the other 

hand, it would be highly unlikely that sleep would serve a single function, and that symptoms 

other than those related to collapsing host defense are a priori likely. Under normal, non-deprived 

conditions, microbial infection and cytokines promote sleep226 and, thus, skin blood flow, which is 

in support of our suggestion of a prominent role of the circadian and sleep-related increase in skin 

blood flow in host defense. 

In summary, the strong cutaneous vasodilation associated with the preferred sleeping period in 

the circadian cycle is not likely serving heat loss due to a lowering of the set point. Several obser-

vations support our hypothesis that it may be of importance in host defense. 

Circadian cycles in core temperature are paralleled by cycles in cognitive performance281,427. This 

might indicate that both processes are under the control of a similar output of the circadian tim-

ing system, or alternatively that temperature changes directly affect performance. Strong evi-

dence for either of the possibilities is not presently available. 

Although some have suggested that cognitive functioning is rather insensitive to cooling10, there is 

considerable evidence for the contrary. Cooling may shift the speed-error trade-off in task per-

formance towards more errors119,121. Hoffman180 and Palinkas305 reviewed human psychological 

performance in cold environments and these overviews clearly indicate decrements in manual 

performance due to changes in tactile sensitivity, dexterity, strength and motor speed. The rela-

tion between vigilance and environmental temperature appears to follow an inverted U-shaped 
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curve, with lowered vigilance both at higher and lower temperatures than the optimal range of 

27–32°C. Simple reaction times hardly suffer from cold exposure, whereas more complex reaction 

time tests do markedly. Other complex tasks, addressing memorizing, recall or complex cognitive 

functions are also performed poor in cold environments. It is of interest that such tasks are 

strongly dependent on the prefrontal cortex, and that the majority of neurons in the sulcal part of 

the prefrontal cortex show thermosensitivity in rats355. 

Lowering of the core temperature by 1°C induces a 6–7% reduction of cerebral blood flow335. Such 

a reduction in cerebral blood is associated with a significantly worse cognitive performance123, 

and is for example in AD related to the severity of dementia and survival349. Robinson et al. have 

described a parallel progressive decline of cognitive performance and core temperature over time 

in AD335. Collins suggested this to represent seasonal variation which is, however, unlikely given 

the variable time intervals of the patients76. An untested hypothesis even suggested that hypo-

thermia, which frequently occurs in the elderly, may alter protease activity and, thus, contribute 

to the formation of β-amyloid deposits, which are associated with AD182,183. Cerebral blood flow is 

not only sensitive to changes in core temperature, but also to changes in skin temperature. During 

application of a cold pack to the thigh, frontal oxygen saturation decreased, and showed an over-

shooting increase after removal. During application of a warm pack, frontal oxygen saturation 

showed an increase with a less marked undershooting decrease after removal. The middle cere-

bral artery blood flow increased with cool packs and decreased with warm packs103. Mild warm 

stimuli applied to the hand increased cerebral blood flow, most markedly at the left temporal 

region340. 

Vigilance, as measured by the critical fusion frequency (CFF), increases with passive whole body 

warming1. When subjects are instructed to respond with a microswitch press when they become 

aware of tones presented during the night, increasingly stronger tones are necessary while the 

core temperature declines, and less loud tones once core temperature starts increasing in the 

early morning: the curves throughout the night are mirrored229. On the other hand, CFF, subjec-

tive scales and electroencephalographic parameters also indicate increased vigilance with the 

application of brief cold stimuli to the face and neck104,230, suggesting a differential effect of skin 

and core temperature. Temperature suppression after melatonin intake is associated with de-

creased alertness and performance efficiency91, which appear to be mediated by the changes in 

temperature rather than by increased melatonin levels per se426. Kräuchi and colleagues demon-

strated that decreased alertness is strongly related to distal vasodilation223. 

The findings concerning temperature effects on learning are equivocal. Andersen and colleagues 

found spatial learning to be resistant to temperature changes. In their studies, the acquisition, 

consolidation and retrieval phases of spatial learning in the Morris water maze, an often used 

experimental setup for memory testing, were not apparently affected by cooling10,285,307. Howev-
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er, many other studies in rat have demonstrated that hypothermia may indeed disrupt learning 

and memory161,177,198,241,250, including spatial learning326. Since the body temperature of older ani-

mals drops further after exposure to cold and takes longer to recover, age-related findings on the 

Morris water maze should be interpreted with caution. Indeed, the enhanced body temperature 

drop in old rats accounted for a part of the ‘age-related’ decline in memory and could be restored 

by rewarming the older rats241. Hamm found no age differences in the degree of hypothermia-

induced amnesia on a passive avoidance task when taking account for temperature levels161. 

Thus, the age-related increased sensitivity to learning deficits with hypothermia may in some ex-

perimental paradigms be accounted for by the decreased cold defense and, hence, lower induced 

temperatures. 

Electrophysiological findings at the cellular level surprisingly indicated a strong modulation of 

hippocampal potentials in the same experiments that demonstrated resistance of spatial learning 

to cooling10,285. During cooling, synaptic potentials get considerably slower and smaller, while ac-

tion-potentials and after-potentials are in fact somewhat enhanced. 

Electrophysiological findings at the cortical level support the idea that cognitive functioning is 

modulated by temperature. In humans, whole body cooling increased the latencies of visual, audi-

tory and somatosensory evoked potentials248 and attenuated the amplitude of middle latency 

auditory evoked potentials (MLAEP), but not the amplitude of visual evoked potentials336. These 

findings should be taken into account when assessing the effect of age on evoked potentials, es-

pecially since the elderly are vulnerable to hypothermia. In contrast to whole body cooling, skin 

cooling by application of brief cold stimuli to the face and neck in healthy elderly decreased VEP 

P300 latencies, whereas warm stimuli increased the latencies104. Cold stimuli also elevated the 

amplitudes. Since a short latency and high amplitude P300 is indicative for increased vigilance, the 

results suggest a positive correlation between skin temperature and drowsiness, and once more 

the opposite relation for core temperature. 

In summary, the majority of studies indicate that a warm core and a cool skin promote optimal 

cognitive functioning. 

  

8. Factors promoting thermoregulation & the temperature  
 rhythm  amplitude 
Given the functional implications of the circadian rhythm in core temperature, it is of practical 

importance to investigate which factors might be used to support this rhythm in elderly. Several 

suggestions are given as follows. 
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There is considerable evidence that the amplitude of the circadian rhythm in core temperature 

flattens in the absence of Zeitgeber. Also the average temperature can decrease considerably 

when the subject is deprived of circadian clues77. 

Light: The major circadian Zeitgeber is environmental light. Core temperature increases with light 

exposure during the night. At least in Syrian hamsters, the increase is strongly dependent on the 

circadian phase of application363. Light during the habitual night (active period) increased temper-

ature, whereas light during the habitual day did not. The temperature increase could not be attri-

buted to increased physical activity. Humans similarly respond to light during their habitual dark 

period24. The nocturnal light induced increase in core temperature can be antagonized by supple-

tion of melatonin, which is suppressed by bright light220,370.  

Light during the day has been reported to be ineffective also in humans24. However, in other stu-

dies, light applied in a thermoneutral to warm environment increased the vasodilatory gain and 

had the opposite effect of lowering tympanic temperature5,6. An artificial increase in daylight fur-

thermore has the delayed effect of increasing the nocturnal release of melatonin, which promotes 

heat loss and the decline of core temperature276. 

It is not presently known whether light similarly affects core temperature in elderly as it does in 

young subjects. An attenuation is likely, since aging is associated with a decreased immediate 

early gene expression in the SCN in response to light stimuli22,372. Moreover, the age-related loss 

of vasopressin synthesis in the SCN most likely will attenuate the effectuated output. In addition, 

the age-related decrease in acetylcholine synthesis may attenuate the effect of light. Sight in-

creases the ACh concentration in the SCN287. Cholinergic agonists are capable of mimicking the 

effects of light436 and it has been presumed that ACh concentrations in the SCN may increase 

through retinal projections to basal forebrain cholinergic neurons433. However, such connections 

have not been observed by postmortem tracing of optic nerve projections in the human brain88. 

Melatonin: As mentioned already and confirmed in many studies, suppletion of melatonin pro-

motes heat loss may be used to promote the nocturnal fall in core temperature399. The hypo-

thermic action of exogenously administered melatonin is dose-dependent345. Zhdanova et al. in 

fact warned for the possibility of nocturnal hypothermia after a pharmacological dose of melato-

nin at bedtime when given to elderly insomniacs438. Melatonin is under control of the SCN, and 

might alter heat dissipation centrally through receptors in the POAH224 and SCN itself, as well as 

peripherally through receptors in the vasculature61. Melatonin increases the peripheral blood flow 

in human, thus, lowering core temperature, while in rat it has the opposite effect which is com-

patible with the finding that peripheral blood flow during the night, when melatonin secretion is 

maximal, is increased in a diurnal species like humans, but decreased in the nocturnal rats. Cag-

nacci et al. demonstrated that in elderly not only the nocturnal production of melatonin is com-

promised, but also the hypothermic effect of melatonin63. It is likely that this attenuated vasodila-
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tory response to melatonin in elderly is due to peripheral rather than central changes, since at 

least in rats the expression of melatonin receptors in the SCN remains relatively constant with 

age, whereas on the other hand, a dramatic loss in receptors was found in the arteries228. 

Heat and cold exposure: By definition, the temperature rhythm of heterothermic organisms can 

also be entrained to environmental temperature rhythms, and this has indeed been demonstrat-

ed in bacteria, fungi, insects and vertebrates304,440. Several studies indicate that this entrainability 

is not lost in homeothermic mammals20,135,240,306,319,392. A circadian ‘memory’ has furthermore been 

demonstrated for the thermoregulatory response to heat and cold exposure. Rats exposed to 

heat or cold at a fixed time of day for several days show at discontinuation of this daily treatment 

a drop in temperature during the time of day they were previously exposed341,356. It is not known 

whether such mechanism is present in humans. However, the human temperature rhythm is defi-

nitely sensitive to changes in ambient temperature. Humans living in strict isolation show a free-

running period that is slightly longer than 24 h. When the ambient temperature could be regu-

lated to be 23°C during wakefulness and 17°C during sleep, the period length increased by about 

0.4 hour421. Repeated morning lukewarm baths of 37°C do not affect the temperature rhythm in 

young healthy subjects159. Dorsey et al. compared such lukewarm baths with warm baths (40°C) 

and showed that enforcing an increase in body temperature in the early evening by taking a warm 

bath 1.5–2 h before bedtime resulted in an average delay of 1.5 h in the nocturnal rectal tempera-

ture minimum of elderly female insomniacs106,107,108. The length of the delay was correlated with 

the increase in sleep efficiency. Several other studies confirm changes in the circadian tempera-

ture curve and sleep due to active and passive heating399. 

Regular exposure to more extreme high as well as low ambient temperatures, i.e. heat or cold 

acclimation, results in a lower threshold of core temperature needed to induce the onset of in-

creased skin blood flow during heat exposure175,192. It may be hypothesized that this finding is in 

part due to the trophic influence that regular sympathetic activation is known to exert on the 

vasodilatory endothelial function of the conduit arteries, but probably not on the microcircula-

tion8,69,202,203,429. 

Exercise: As indicated previously in the present review, some of the age-related changes in ther-

moregulation are reversible since they result from a low fitness level. Increasing the fitness level 

by means of regular exercise will enhance the vasodilatory capacity, the sweating response, the 

diurnal rhythm in basal metabolic rate. In healthy adults, long-term fitness-training affects day-

time and night-time metabolic rate in an opposed way: whereas the daytime metabolic rate in-

creases, the night-time metabolic rate decreases266,420. Of course, exercise also acutely affects 

core temperature. During exercise, core temperature increases. Following exercise the rectal 

temperature starts to fall and decreases even below the level otherwise present at that time of 

day278. This pattern may be applied in insomniac elderly by timing exercise in the late afternoon in 
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order to enhance the nocturnal sleep-promoting heat loss399,400. A higher activity level further-

more contributes to the diurnal amplitude of thermogenesis. 

There is some evidence that exercise training increases cold tolerance in humans109. However, 

neither in young nor in old rats does exercise training increase UCP mRNA in the resting state347. 

UCP mRNA has not been evaluated during cold stress. 

Other: Elderly are at an increased risk of electrolyte imbalance29,369, which affects thermoregula-

tion both at a central and peripheral level403. These conditions are reversible by proper nutrition 

and hydration. 

Estrogen replacement therapy (ERT) in postmenopausal women lowers the baseline core temper-

ature and the threshold of core temperature to induce the onset of increased skin blood flow, but 

only when exercising in the heat. It does not affect skin blood flow during passive whole body or 

local skin heating. A central hypothalamic rather than a vascular mechanism is likely to be in-

volved53,383. 

Application of sheetings of silicone or polyurethane to parts of the skin for several weeks can in-

crease skin blood flow by about 6%, and resting skin temperature by about 4°C216. 

Biofeedback has been used with success to enhance the vasodilatory capacity of the extremi-

ties65,190, also in elderly3, and in some cases with the secondary effect of improved sleep93,407,413. 

Transcutaneous electrical nerve stimulation (TENS) can be applied to induce an acute increase in 

skin blood flow and temperature81, but it is not known whether repeated treatment could induce 

long-lasting improvement in skin blood flow. 

In mice, the age-related decline in cold defense could be restored to the level of young animals 

after 15 brief daily sessions of intracranial (hypothalamic) electrical (self) stimulation380, which is 

suggestive for plasticity of central thermoregulatory control areas. 

Although dysregulation of body temperature might be predicted to contribute to age-related in-

creases in susceptibility to disease, individuals with lower body temperatures throughout adult 

life may have increased disease resistance and increased lifespans. The strongest support for the 

latter statement comes from studies of caloric restriction, a dietary manipulation that increases 

the lifespan of all mammals studied to date416. Caloric restriction also improves insulin sensitivity 

and reduces incidence of various age-related diseases including cardiovascular disease, type 2 

diabetes, cancers and neurodegenerative disorders260. Caloric restriction consistently lowers body 

temperature in rodents114 and primates including humans231. Reduced body temperatures may 

contribute to the anti-aging effects of caloric restriction by reducing cellular metabolism and oxy-

radical production. 
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9. General conclusion 
The vulnerability of disturbances in the circadian temperature rhythm at old age may result from 

deficiencies at several levels: thermoreception, thermogenesis and conservation, heat loss, and 

central regulation. More research is needed in order to evaluate the relative contribution of the 

range of age-related changes to the decreased amplitude, advanced phase, and increased variabil-

ity of the circadian rhythm in temperature. The circadian rhythm in temperature in homeotherms 

should not be regarded as a leftover of ectothermy in early evolution, but appears to be of func-

tional significance for physiology from the molecular to the cognitive level. A new view on the 

functional significance of the circadian rhythm in peripheral vasodilation was presented. It is un-

likely that this phenomenon primarily represents heat loss in response to a lowering of set point, 

since behavioral measures are taken to prevent heat loss. Several indications rather point towards 

a prominent function in host defense. Given the functional significance of the temperature 

rhythm, additional research should evaluate the feasibility and effectiveness of methods that can 

in principle be applied in order to enhance the weakened circadian temperature rhythm in the 

elderly. 
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Summary 
Throughout the 24-hour day, the occurrence of sleep and wakefulness are closely related to 

changes in body temperatures. Changes in skin temperature may causally affect the ability to 

initiate and maintain sleep. First, we briefly summarize a previously proposed neurobiological 

mechanism that couples skin temperature to sleep propensity. Next we review previous findings 

on the relation between skin temperature and sleep onset latency, indicating that sleep propensi-

ty can be enhanced by warming the skin to the level that normally occurs prior to – and during – 

sleep. Finally, we present new data indicating age- and insomnia- related changes in the sleep 

onset latency response to foot warming, and evaluate whether different methods of foot warm-

ing could provide an applicable strategy to address sleep complaints. Foot temperature manipula-

tions included footbaths before sleep onset (1), and heatable bed socks applied either before (2) 

or after lights-off (3). In adults, sleep onset latency was accelerated by warm and neutral bed 

socks after lights-off and correlated to the increase in foot temperature. This increase was atte-

nuated in elderly subjects. In elderly subjects without sleep difficulties, sleep onset could be acce-

lerated with neutral bed socks after lights-off and a warm footbath prior to lights-off. In elderly 

insomniacs, none of the treatments accelerated sleep onset. We illustrated that elderly subjects 

show an attenuated increase in foot temperature after lights-off and lose the relationship be-

tween pre-sleep heat loss activation and sleep latency. The sensitivity of sleep propensity to foot 

warming changes with age and is attenuated in age-related insomnia. 
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1. Introduction 
Both sleep initiation and termination are temporally related to the circadian rhythm of core body 

temperature (CBT) and skin temperature. The habitual sleep period coincides with the diurnal 

phase of lowered CBT and the rise of CBT heralds the end of the sleep period. Habitual sleep on-

set coincides with the maximal rate of decline in CBT30,38. This decline is to a large extent caused 

by increased skin blood flow, and consequently skin warming and heat loss. Moreover, the habi-

tual sleep period coincides with the diurnal phase of increased skin temperature. A functional link 

between skin temperature and sleep has been suggested by Kräuchi and colleagues27,28. In a series 

of controlled laboratory studies, they showed that the gradient between the skin temperature of 

the hands and feet and the proximal skin temperature was highly correlated with subsequent 

sleep onset latency. A key question is whether this correlation merely results from a single under-

lying sleep propensity increase that first shows in autonomous measures like skin vasodilation and 

only later in the central nervous system, as measured by the sleep-electroencephalogram (EEG). 

An alternative hypothesis51 proposed that changes in skin temperature causally affect the ability 

to initiate and maintain sleep. The neurobiological mechanism proposed to underlie this causal 

relation is as follows. 

 

1.1. Neurobiology and behavior 
It has been shown that a subpopulation of warm-sensitive neurons (WSNs) in the preoptic area 

and anterior hypothalamus (POAH) spontaneously increases its firing rate at sleep onset. Experi-

mental local warming of the POAH induces a similar increase in firing rate and facilitates 

sleep1,36,37. Consequently, it has been proposed that sleep would be facilitated when brain tem-

perature exceeds a threshold level36. However, this proposition is in opposition to the chronobio-

logical perspective – namely, that sleep propensity is actually minimal during the phase of high 

CBT. We proposed the warm sensitive neurons involved in sleep regulation to be sensitive to skin 

temperature as well. The circadian phase of elevated skin temperature coincides with the period 

of maximal sleep propensity, and animal studies show that the activity of a high percentage of 

locally warm sensitive neurons is strongly modulated by thermoafferent projections to the POAH 

originating in the skin2. Afferents conveying information about skin temperature modulate the 

firing rate of thermosensitive neurons in the POAH at least as strong as does local brain tempera-

ture. In case of simultaneous differential local brain temperature and skin temperature manipula-

tions, the latter dominate the POAH response2,3. In addition, a recent human neuroimaging study 

demonstrated hypothalamic activation with warming of the skin15. Thus, the changes induced by 

direct local CBT warming and leading to sleep-related alterations in firing rate – changes that can 
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be observed in experimental conditions - may well be induced by warming of the skin under more 

natural conditions. 

The behaviors that occur while preparing for sleep strongly favor an increase in skin temperature. 

The postural change from upright or sitting to a supine position29,47, the use of bedding to create a 

microclimate of 34°C to 36°C 19,39,55, and the relaxation associated with the preparedness to sleep 

that is signaled by lights off31 - all promote an increase in skin temperature. Since warming of the 

skin due to these changes occurs already before sleep onset, it could affect the process of falling 

asleep. 

 

1.2. More evidence for a modulatory role of circadian changes in skin  
 temperature 
Several studies have shown that temperatures of the skin and, more specifically, temperatures of 

the skin of the extremities (i.e. hands and feet) increase prior to sleep onset. The potential role of 

skin temperature in sleep onset, was already recognized by Magnussen in 193935. He reported 

that peripheral vasodilation and hence an increase in peripheral skin temperature indicated 

“Schlafbereitschaft” or “sleep preparedness”. Also, Kleitman reported on an increase in toe tem-

perature before sleep onset26. Brown confirmed the elevation of toe temperature around sleep 

onset, and suggested that it was related to the onset of the first period of slow-wave sleep rather 

than to sleep onset4. Van den Heuvel and colleagues also reported on increased peripheral tem-

peratures in the hand and foot prior to and after habitual sleep onset49. Kräuchi and colleagues 

showed that the degree of heat loss at the skin of the hands and feet relative to the proximal part 

of the body (distal to proximal gradient, or DPG) was the best physiological predictor of a fast 

sleep onset under strictly controlled experimental conditions27,28. Fronczek et al. demonstrated 

that the DPG was increased in relation to the very short sleep-onset latencies of narcoleptic sub-

jects, and that the association between skin temperature and sleep onset latency was even 

stronger for proximal and distal skin temperature per se than for their difference18. Lack and Gra-

disar focused on finger temperature on a finer timescale and showed a rapid increase prior to the 

onset of sleep33. In another study, Gradisar and Lack concluded that the rise in finger temperature 

before sleep onset drives the decline in core body temperature, which in turn is related to sleep 

onset20. Recently, we showed that in a natural setting both distal and proximal skin temperature 

strongly increase around habitual bed times50. 

 

1.3. Thermal Manipulations 
In addition to the observational, correlational studies on diurnal changes in skin temperatures in 

relation to sleep onset, several studies have investigated the effect of manipulating body temper-
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ature on sleep onset latency, by applying warm baths, warm blankets or water-perfused suits. 

Horne and colleagues showed in young adults that whole-body warming in the early afternoon 

induced sleepiness both during and following the warm baths, and decreased sleep onset laten-

cy21,22. Other studies of bathing have demonstrated shorter sleep onset latencies following passive 

body heating in the evening, but not after heating in the morning, and it has been suggested that 

the drop in core body temperature following heating of the body underlies these findings5,10. Sung 

and Tochihara showed that immersion of the body or the feet and lower legs only in a hot water 

bath before bedtime affected core temperature only marginally, but did result in a elevated skin 

temperature during the first part of the night and improved sleep-onset latency45. 

Other studies have applied passive body heating in elderly subjects. Kanda and colleagues re-

ported an increase in ease of falling asleep for both young and elderly subjects after taking a hot 

bath in the evening25. Dorsey and colleagues showed that taking a hot bath 1.5 h to 2 h before 

bedtime resulted in a significant increase in SWS, but did not report on sleep onset11,12,13.  

It has been suggested that the mechanism by means of which passive heating of the body affects 

sleep is that warming promotes a subsequent steep fall in core body temperature, mimicking the 

decrease in CBT seen in the hours preceding habitual bedtime5,12,13,21,22,24,25,45. We have subse-

quently proposed that it is not so much the steep decrease in core body temperature but rather 

the underlying heat-loss activation that increases skin blood flow, and thereby skin temperature 

and heat loss, that is causally involved in the increase in sleep propensity. Of the aforementioned 

studies, only the study of Sung and Tochihara included both polysomnography and skin tempera-

ture measurements45. Of note, in this study, the sleep-promoting effects subsided as soon as a 

pre-sleep hot footbath-induced increase in skin temperature had normalized after two hours of 

sleep. 

 Two studies explored the effects of sleeping with an electric blanket. Fletcher and colleagues 

found no effects on core body temperature in the first three hours of sleep, but did not report on 

sleep onset or skin temperature16. Okamoto-Mizuno and co-workers showed an elevated foot 

temperature and bed microclimate temperature when using an electric blanket, but did not find 

an effect on sleep onset40. 

Using a thermo-suit for more controlled skin temperature manipulations, we showed reduced 

sleep onset latencies with subtle warming of the proximal skin in the comfortable and thermo-

neutral range41. Distal manipulation was not effective, possibly due to the very small range of the 

manipulated temperature. 

In summary, temperatures of the skin and, more specifically, temperatures of the skin of the ex-

tremities (i.e. hands and feet) increase prior to sleep onset. The speed of sleep onset is related to 

onset of sleep. Direct or indirect warming of the skin prior to onset of sleep speeds up sleep onset 

and might be a useful treatment for subjects with sleep-onset difficulties. 
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1.4. New Studies 
Recent data from our group give some clues regarding the possibilities of thermal manipulation as 

a tool for improvement of sleep onset. In this study we explored the effects on sleep onset laten-

cy of home-applicable temperature treatments that affect only skin, not core body, temperature. 

Both timing and temperature of the foot warming are of crucial importance. A foot temperature 

manipulation that is too warm might induce arousal during sleep initiation, whereas the effect of 

a manipulation prior to sleep that is too mild might not last until the start of the lights-off period. 

In short, we examined the effectiveness of both warm and thermoneutral footbaths prior to lights 

off, and of wearing warm socks prior to and during lights off, in young adults and elderly subjects 

with no difficulties in getting to sleep and in elderly subjects with difficulties in getting to sleep. 

Since decreased sleep quality (shorter sleep duration, slower sleep onsets, early awakenings and 

fragmented sleep)17,32 in the elderly may be determined in part by age-related changes in thermo-

regulation (i.e. decreased amplitude and decreased stability), the treatments might be suitable for 

ameliorating these age-related effects.   

We hypothesized that warming the foot will decrease sleep-onset latency. We addressed the fol-

lowing three questions. First, is sleep-onset latency modulated by distal skin temperature manipu-

lation over a somewhat wider range than we applied previously? Second, does the distal skin 

temperature, prior to sleep onset, correlate with sleep-onset latency27,28 - crucial for a fast subse-

quent initiation of sleep, or is the distal skin temperature during the period from lights-off to 

sleep onset the crucial factor? Third, to what extend are the effects of distal skin manipulations on 

sleep onset still effective in elderly, who in general show attenuated thermoreception and peri-

pheral blood flow?53. With the possible application of such treatments in mind, we chose to con-

duct the distal temperature manipulation with home-applicable treatments, both in young and 

elderly subjects. Since poor sleep is a frequent complaint in the elderly52 we included both elderly 

subjects who slept well and those who slept poorly. 

2. Materials & Methods 

2.1. Subjects 
Eight healthy young adults free from sleep complaints (21-39 years old; mean ± s.e.m.: 27.00 ± 

2.41 years, 4 males), eight healthy elderly subjects free from sleep complaints (56-80 years old; 

mean ± SD: 65.75 ± 7.91 years, 4 males) and eight elderly subjects with sleep complaints but oth-

erwise healthy (51-66 years old; 59.13 ± 5.41 years, 4 males) participated with informed consent. 

All participants were free of medication known to affect sleep or the circadian system, cardiovas-

cular medication or psychotropic medication. One female adult used oral contraceptives. Subjec-
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tive sleep quality and complaints were measured using the 75-item Sleep Disorders Questionnaire 

(SDQ) a Dutch adaptation46 of the SDQ14 and the Pittsburgh Sleep Quality Index (PSQI)6. Poor slee-

pers were defined by a SDQ-Insomnia score > 2.5, a PSQI > 5 and a score <= 3 on the SDQ subs-

cales narcolepsy, apnea, restless legs and psychiatry. The adult females participated between day 

4 and day 12 of the menstrual cycle (mid-follicular phase) and all elderly females were post-

menopausal. The protocol was approved by the Medical Ethics Committee of the Academic Medi-

cal Center of the University of Amsterdam. 

 

2.2. Procedures 
The participants were instructed to keep a regular as possible sleep-wake pattern by minimizing 

variability in bedtime and wake-up time in the two weeks prior to the experiment, which was 

verified with a sleep diary34 and with actigraphy (Actiwatch, Cambridge NeuroTechnology Ltd., 

Cambridge, UK). One week before the experiment, participants visited the sleep laboratory for an 

introductory session and became habituated to the bedroom and the equipment. Participants 

were instructed to refrain from caffeine, alcohol and tobacco for 8 hours before arriving at the 

sleep laboratory and were questioned about compliance with this instruction. In brief, the expe-

riment consisted of determining 6 sleep-onset latencies on a single day for each subject while 

manipulating foot skin temperature with home-applicable methods. The subjects reported to the 

sleep laboratory at 08:30 hours where they were prepared for polysomnography. Ambient room 

temperature was kept at approximately 21˚C. The subjects wore their habitual nightclothes, and 

they were covered by a sheet and a blanket during lights-off. The experiment started at 09:30 h 

and consisted of 6 consecutive blocks with durations of 1.5 hours each. As shown in Figure 1, each 

block consisted of the following strictly standardized procedures: It started at 0:00 (block- time) 

by setting the bed in semi-supine position and requiring the subjects to leave the bed, wear a 

bathrobe and slippers and sit behind a desk. At 0:10 they were served a drink (200 ml decaffei-

nated tea; 4.25 kcal, 17.8 kJ; Iced Tea Mix, Diet Decaffeinated Lemon, Lipton, Englewood Cliffs, 

USA) and an isocaloric snack of the subject’s choice (200 kcal, 837.2 kJ) at room-temperature, to 

be consumed in approximately 10 minutes. Also at 00:10, in 4 of the 6 conditions, foot tempera-

ture was manipulated for 30 minutes by applying warm (42˚C) or neutral (32˚C) footbaths 

(FBPRE), or by means of non-heated or heated bed socks (SOCKPRE). At 00:20 a self-paced com-

puterized neurobehavioral task battery was started, taking around 20 minutes to complete. This 

battery included assessment of subjective thermal comfort using a 100 mm visual analogue scale 

(VAS) ranging from uncomfortable to comfortable. At 00:50, the subjects were required to leave 

the desk and to use the bathroom if needed and returned to bed. At 01:00 in the two remaining 

of the 6 conditions temperature was manipulated for 30 minutes by applying non-heated or 
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heated bed socks during the lights-off period in bed (SOCKBED). For all condition at 01:00, the bed 

was set in supine position, the lights switched off and the participants were asked to try to sleep. 

Sleep onset was determined online (Multiple Sleep Latency Test, MSLT)7,8 and subjects were awa-

kened directly after sleep onset determination (see below). When woken up, subjects were kept 

awake in bed in the supine position, and with the light turned on (<10 Lux). The maximum time 

allowed for falling asleep was 30 minutes, thus completing the 1.5 hour of a block. 

Within the sequence of the manipulations, the thermoneutral and warm levels of each condition 

(FBPRE, SOCKPRE, SOCK) were paired. All conditions and their two levels were optimally counter-

balanced over subjects within each group. 

 

 
Fig. 1.  Schematic view of the experimental design within a block. At 00:10, in 4 of the 6 condi-

tions, foot temperature was manipulated for 30 minutes by applying warm (42˚C) or neu-
tral (32˚C) footbaths (FBPRE), or by means of non-heated or heated bed socks (SOCKPRE). 
At 00:60 in the two remaining of the 6 conditions temperature was manipulated for 30 
minutes by applying non-heated or heated bed socks during the lights-off period in bed 
(SOCKBED). 

 

2.3. Temperature Manipulations and Measurement 
Foot temperature was manipulated by means of a footbath (Philips, HP5225/B, Eindhoven, The 

Netherlands) and Hot Socks (Nature’s Choice, Prinsenbeek, The Netherlands). The loose-fitting 

bed socks have a removable filling at the sole part of the sock. The filling contains grains and can 

be heated using a microwave oven. When applying the warm footbath, the bath was filled with 

2.8 liter water of 42˚C and the heating of the footbath was turned on. When using the thermo-

neutral footbath, the bath was filled with 2.8 liter water of 32˚C and the heating of the footbath 

was turned off. When using the warm bed socks, the 2 fillings were heated for 90 seconds at 620 

Watts using a microwave oven. This resulted in a temperature of the sole of the sock of approx-

imately 66˚C, gradually declining to 43˚C in 30 minutes. When applying the thermoneutral bed 

socks, the fillings were not heated and were at room temperature. 

Body temperature was obtained using 3 thermistors (P-8432, ICBT, Tokyo, Japan). Core body tem-

perature (Tre) was measured using a rectal thermistor that was self-inserted 13 cm into the rec-

tum. Foot temperature (Tfoot) was measured at the medial metatarsal area at the plantar sites of 

the left and right foot. The skin thermistors were attached to the skin with thermal probe covers 
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(ref 090-2764, ConMed Corporation, Utica, USA) that reflect ambient heat. Temperature was digi-

tally recorded at 1 Hz (Embla A10 and Somnologica software, Flaga hf, Reykjavik, Iceland) and 

sampled offline at 0.1 Hz. Based on visual inspection of the data, an automated procedure was 

applied to remove occasional artefacts, defined for core body temperature as outside the range 

35.5°C-38°C. In addition, visually obvious artefacts (abrupt steep changes in skin temperature, 

>0.3°C/min, or in core body temperature, >0.1°C/min, outside the time-window of the foot-

temperature manipulation) were removed and omitted from analyses. The average temperature 

of both feet was used for subsequent analyses. 

 

2.4. Sleep 
Polysomnographic sleep recordings consisted of electroencephalography (EEG), electromyogra-

phy (EMG) and electro-oculography (EOG). The EEG was derived from two bipolar leads FpzCz and 

PzOz54 with the E-net and Hydrodot system (Physiometrix Inc., Billerica USA). Submental EMG and 

horizontal EOG from the outer canthi were recorded using disposable Ag/AgCl electrodes (type 

4203 Meditrace, Graphic Controls Corporation, Buffalo 11 USA). All PSG signals were digitally rec-

orded at 200 Hz using the Embla A10 recorder and Somnologica software (both Flaga hf, Reykja-

vik, Iceland). Sleep onset was determined online during the experiment according to standard 

criteria42, with sleep onset defined as three consecutive 30-s epochs of Stage 1 sleep or one 30-s 

epoch of stage 2 (or deeper) sleep8.Online determination of sleep stage was aided by the use of 

spectral views of the EEG signal, facilitating the observation of disappearance of the alpha (8-12 

Hz) peak, dominance of the proportion of theta (4-8 Hz) over the proportion of alpha activity, or 

the clear appearance of spindle (12-15 Hz) peaks. Recordings of MSLT were visually scored offline 

by two independent scorers blind to the manipulations and, in case of differences, consensus was 

reached. Sleep onset latency (SOL) was defined as the time between lights-off and the sleep on-

set. If the subject did not sleep during the 30 minutes, sleep onset latency was scored as 30 mi-

nutes. 

 

2.5. Statistical Analysis 
All temperature measures were first averaged into 30-second bins. Mean foot and mean core 

body temperature were then calculated over block-time 00:20-00:40 (T-pre) and block-time 01:00 

until sleep onset (T-bed) for statistical analyses. Additionally the linear rate of change (ROC, in 

1˚C/min) in the interval lights-off (blocktime: 01:00) until sleep onset was calculated. For graphical 

purposes all temperature data were once again averaged in 5-min bins.  

To determine the effects the passive cutaneous warming treatment on body temperatures and 

sleep onset latency, hierarchical regression modeling (i.e. random coefficient analysis) was ap-
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plied (MLwiN software, Centre for Multilevel Modelling, Institute of Education, London, UK). This 

method takes into account the interdependency of the data points inherent to the hierarchical 

structure of the design, in our case the sequential sleep onset observations i that were nested 

within subjects j23. It moreover allows for varying numbers of missing data within a case.  

Since the frequency distribution of SOLs was slightly skewed, a log transformation was applied. 

For the 3 groups (young adults free from sleep complaints, elderly free from sleep complaints and 

elderly with sleep complaints) 5 separate analyses were run with either SOL, Tre-pre, Tfoot-pre, Tre-bed 

and Tfoot-bed as the dependent variable and the treatments as dummy coded predictors. The un-

warmed bed socks pre-sleep was selected as reference condition (hereafter referred to as base-

line), since it mostly resembles the situation before going to bed in daily living. In the subsequent 

analyses for sleep-onset latency the actual measured temperatures and temperature changes (Tre-

pre, Tfoot-pre, Tre-bed and Tfoot-bed and ROCTfoot-bed) were entered in the equation.  

Time of day (Hour) was entered in the models as covariate, and up to the third order and the 

square root (Hour2, Hour3, √Hour), as needed, to account for possible diurnal variation in SOL9. 

Maximum likelihood was used to estimate the regression coefficients, which were tested for signi-

ficance with the Wald test56. Additional temperature-related and time-related independent va-

riables were allowed in the model only if their coefficients were significant and if residual error of 

the model was reduced according to the likelihood ratio test48. Finally, the overall mean ROCTfoot-

bed was determined for the group of young subjects and the group of all elderly subjects in the 

treatments without warming during the lights-off period, by the intercept of equation for the null-

model (i.e. the model without independent variables) for the ROCTfoot-bed of each group. Two-

tailed significance levels were set at 0.05. 

 

3. Results 

3.1. Induced temperatures 
For each group the average core body and foot temperatures per treatment are displayed in Fig-

ure 2 and Table 1. Tables 2 shows the regression model effect sizes of treatment and time on foot 

and core body temperature. 

Foot temperature (Tfoot) was significantly higher during the warm SOCKPRE and FBPRE manipula-

tions as compared to the baseline condition in all the three groups and the effects lasted, albeit 

less strongly, during the lights-off period. Likewise the warm SOCKBED manipulation induced a 

significantly higher Tfoot during the lights-off period for all the three groups. Moreover, the neutral 

FBPRE condition lowered Tfoot-bed  in the elderly free from sleep complaints. 

Rectal temperature (Tre) was significantly lower during the warm FBPRE manipulation as com-

pared to the baseline condition in the young adults free from sleep complaints and this lasted, 
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albeit less strongly, during the lights-off period. In the elderly free from sleep complaints, Tre was 

significantly lower during and after the warm SOCKPRE manipulation. In addition, Tre-bed was lower 

after the warm FBPRE manipulation. The elderly with sleep complaints showed a higher Tre-pre 

during the warm SOCKPRE condition, which did not last until the lights-off period. Inspection of 

the figures suggested that the observed differences in Tre were already present at the start of the 

treatments - except for the decreases in Tre both prior to and during the lights-off in elderly free 

from sleep complaints, where a change from the start of block is seen. Both Tre-pre and Tre-bed were 

modulated by time of day. 

 

In summary: The effects of the warm manipulation were reflected in the foot temperatures during 

manipulation and were maintained during the subsequent lights-off period. The neutral footbath 

treatment in the elderly free from sleep complaints actually lowered foot temperature during the 

lights-off period, probably through evaporative heat loss. Only pre-sleep foot warming, by means 

of heated bed socks in the elderly free from sleep complaints, appeared to affect rectal tempera-

ture. 
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Fig.2.  The average foot temperatures (Tfoot) and core body (next page,Tre,) for the six treatments 
throughout every single experimental block per group. Lights-off period is in gray. 
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Fig.2cont. The average foot temperatures (previous page, Tfoot) and core body (Tre,) for the six treat-

ments throughout every single experimental block per group. Lights-off period is in gray. 
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3.2. Sleep onset latency 
Table 3 shows the average sleep-onset latencies associated with the different treatments. Table 4 

shows the regression model effect sizes of treatment and time on sleep onset latency.  

 

 
 

In young adults, the baseline sleep-onset latency averaged 15.69±3.47 minutes. LOG(SOL) was 

0.22±0.08 shorter in the warm SOCKBED condition and 0.20±0.08 in the neutral SOCKBED condi-

tion as compared to the baseline condition, but unaffected by FBPRE or SOCKPRE manipulations. 

In the elderly free from sleep complaints, the baseline sleep-onset latency averaged 11.19±3.32 

minutes. LOG(SOL) was 0.16±0.06 shorter in the neutral SOCKBED condition and 0.12±0.06 short-

er in the warm FBPRE condition, but unaffected by the other manipulations. In the elderly with 

sleep complaints, the baseline average sleep-onset latency averaged 10.50±2.87 minutes. Sleep-

onset latency was not affected by any treatment. In the elderly without sleep complaints, 

LOG(SOL) was also modulated by Hour2. 

 

We next addressed the question whether SOL could be predicted by the manipulation-induced 

changes in rectal and foot temperature, either before or after lights-off. Within the young adult 

group it turned out that the rate of change (ROC) of the Tfoot-bed was significantly associated with 

SOL. The steeper the increase in foot temperature, the faster the sleep onset is. For every 1˚C/min 

faster increase in Tfoot-bed, LOG(SOL) decreased by 0.34±0.15. In elderly subjects, both with and 

without sleep complaints, none of the possible predictors for SOL reached significance. 

Subsequently, we found that, in general, the rate of change of foot temperature was significantly 

less for elderly compared to young adults. In the treatments without warming during the lights-off 
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period, the rate of change in foot temperature after lights-off was 59% less in the elderly 

(0.04°C/min) compared to the young adults 0.10°C/min) (p=0.02). 

 
In summary: In young adults, sleep onset was accelerated by wearing either warm or neutral bed 

socks after lights-off, and the rate of change of the foot temperature after lights-off was related 

to this faster sleep onset. In elderly subjects free from sleep complaints, sleep onset was accele-

rated by a warm footbath prior to sleep or wearing neutral bed socks during lights-off. In elderly 

subjects with sleep complaints, none of the foot-warming strategies used was effective in chang-

ing SOL. Unlike young subjects, elderly subjects did not show an association between sleep onset 

latency and the rate of change in foot temperature, or any other temperature variable, and 

showed an attenuated increase in foot temperature after lights-off compared to the young sub-

jects. 

4. Discussion 
The aim of the present study was to investigate whether sleep-onset latency could be modulated 

by home-applicable foot-temperature manipulations, which result in changes in foot temperature 

of approximately 6°C. Moreover, we addressed the question whether sleep-onset latency is in-

deed related to the distal skin temperature prior to sleep onset, shown to be correlated with 
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sleep-onset latency27,28, or rather to the distal skin temperature during the period from lights-off 

to sleep onset. Furthermore, it was investigated whether the effects of distal skin manipulations 

on sleep onset would be equally effective in elderly, who in general show attenuated thermore-

ception53 compared to younger subjects. Results showed that wearing bed socks from the time of 

lights-off decreased sleep-onset latency, at least in young adults. Whereas we did not find 

changes in sleep-onset latency during very subtle distal warming41, the more robust warming with 

heated bed socks and also the more subtle change in foot temperature due to wearing non-

heated bed socks, did affect sleep-onset latency in the present protocol.  

Faster increases of foot temperature after lights-off seemed to be involved in this more rapidly 

sleep onset, suggesting a role for the rate of change rather than the level of distal temperature. 

The results from the elderly subjects without sleep problems were less clear. Both neutral bed 

socks during lights-off and a warm footbath prior to sleep decreased SOL, but SOL could not be 

related to any specific induced temperature change. It might be that, in the elderly, skin tempera-

ture is not as effective a sleep-inducing signal as in the young. In fact aging affects thermorecep-

tion and peripheral blood flow negatively53, which in turn reduce the ability to warm the peri-

pheral skin. A post-hoc analysis revealed that the most effective treatment before sleep in elderly 

subjects without sleep problems was rated as being most comfortable in both these and young 

subjects. Increased comfort might be a more relevant factor than temperature input in the elderly 

subjects. The treatments used were not successful in accelerating sleep onset in elderly people 

with sleep complaints. It might be possible that the manipulation of skin temperature in the feet 

would be more effective in improving nocturnal sleep at habitual bedtimes. 

In young adults, the rate of change of the foot temperature after lights-off appeared crucially 

involved in sleep-onset latency whereas, in elderly subjects, both the rate of change of foot tem-

perature and the effects of the treatments were significantly less. It is conceivable that the re-

duced ability to show a fast increase in distal temperature plays a key role in the complaints of 

difficulties with sleep initiation frequently noted in the elderly. Regular exercise provides a way to 

improve the vasodilatory response43, which may be involved in the finding that regular exercise is 

associated with a reduction in the prevalence of disturbed sleep in a large population of healthy 

middle-aged to elderly subjects44. 

The average SOL was shorter in the older groups, particularly the poor sleepers. In this particular 

daytime protocol, they might benefit from their increased daytime sleepiness and their familiarity 

with daytime napping.  

In summary, home-applicable methods for warming the feet may be effective in accelerating 

sleep onset in young subjects, but the effect is less pronounced in elderly subjects. A steep in-

crease in foot temperature is associated with a rapid onset of sleep. The reduced ability of elderly 

subjects to show such a steep increase in foot temperature may be involved in the attenuated 
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efficacy in them of foot warming to promote sleep onset. It is conceivable that sleep-promoting 

manipulation of temperature may become more effective in elderly subjects if they are supple-

mented by interventions (such as regular exercise) that improve the vasodilatory response.   

Taken together, direct or indirect warming of the skin may accelerate sleep onset. This is in line 

with the previously proposed neurobiological mechanism that changes in skin temperature mod-

ulate brain areas involved in sleep regulation (5). Skin warming may thus be applied to accelerate 

sleep onset. However, it is not yet known at what location on the body skin warming is most ef-

fective. Most correlational studies stress the importance of distal skin temperature, but the only 

study that applied both proximal and distal skin temperature manipulation simultaneously, 

showed that proximal skin warming was most effective41.  

Another point of debate is which property of the temperature signal is crucial. Whereas the re-

sults of the present study and others show that the level of proximal or distal skin temperature is 

essential18,45,41, other suggest the importance of the distal to proximal skin temperature differ-

ence, i.e. the gradient in skin temperature27,28,33,20.  

Both timing and temperature of the skin warming play a key role. A too warm skin during or just 

prior to sleep initiation might induce arousal and elevation of core body temperature. Skin warm-

ing methods that also induce an increase of core body temperature should therefore be applied at 

approximately 1.5-2 hours before bedtime, whereas moderate skin warming methods that mani-

pulate the skin temperature close to the ceiling of its normal diurnal pattern without affecting 

core temperature can be applied just prior or during sleep initiation. 

In elderly subjects, enhancement of skin vasodilation and its concomittant increase in skin tem-

perature may be crucial to promote sleep onset. Such enhanced skin vasodilation can for example 

occur after passive body heating, which indeed promoted sleep in elderly subjects25,12,11,13.   

In summary, skin warming is effective in accelerating sleep onset. In young adults the application 

of a mild thermal skin manipulation is effective, whereas in elderly the induction of a vasodilatory 

response seems to be crucial for accelerating sleep onset. 
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Summary 
Sleep occurs in close relation to changes in body temperature. Both the monophasic sleep period 

in humans and the polyphasic sleep periods in rodents tend to be initiated when core body tem-

perature is declining. This decline is mainly due to an increase in skin blood flow, and consequent-

ly skin warming and heat loss. We have proposed that these intrinsically occurring changes in core 

and skin temperature could modulate neuronal activity in sleep regulating brain areas48. We here 

provide results compatible with this hypothesis. We obtained 144 sleep onset latencies (SOL) 

while directly manipulating core and skin temperatures within the comfortable range in 8 healthy 

subjects under controlled conditions. The induction of a proximal skin temperature difference of 

only 0.78±0.03°C (mean±SE) around a mean of 35.13±0.11°C changed SOL by 26% (3.09 (95% con-

fidence interval (CI), 1.91 to 4.28) minutes around a mean of 11.85 minutes (CI, 9.74 to 14.41)), 

with faster sleep onsets when the proximal skin was warmed. The reduction in SOL occurred in 

spite of a small but significant decrease in subjective comfort during proximal skin warming. The 

induction of changes in core temperature (∂=0.20±0.02°C) and distal skin temperature 

(∂=0.74±0.05°C) were ineffective. Previous studies have demonstrated correlations between skin 

temperature and SOL. Also, sleep disruption by ambient temperatures that activate thermoregu-

latory defence mechanisms have been shown. The present study is the first to experimentally 

demonstrate a causal contribution to sleep-onset latency of skin temperature manipulations with-

in the range of its normal nocturnal fluctuations. Circadian and sleep-appetitive behavior induced 

variations in skin temperature might act as an input signal to sleep-regulating systems. 
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1. Introduction 
Human sleep and body temperature both show a day-night rhythm that appears to be strongly 

coupled. Habitual sleep onset tends to closely follow the timing of the maximal rate of decline in 

core body temperature26,38. In experimental protocols that disentangle the rhythms by imposing 

ultra-short28,30,32,43 or very long15 sleep-wake cycles while core body temperature maintains its 

circadian rhythm, the ability to initiate and maintain sleep is maximal during the phase of lowered 

core body temperature. If sleep is prohibited, as during the so called constant routine protocols, a 

circadian rhythm in body temperature is still present30. These findings demonstrate that the daily 

decline in core body temperature is not merely the result of sleep. Moreover, they allow for the 

possibility that the neuronal mechanisms underlying the circadian modulation of sleep propensity 

and those underlying the circadian modulation of core body temperature share a common com-

ponent. It may even be proposed that the thermoregulatory state of the body could affect sleep-

regulating systems. 

Animal experiments indeed have shown that sleep onset and a decline in core body temperature 

can be induced by a single common stimulus, i.e. local warming of the preoptic anterior hypotha-

lamus (POAH)35,36. This structure is considered the thermo-integrative centre of the mammalian 

brain and plays a key role in the arousal state regulation and is thus involved in the induction of 

both heat loss and sleep. It has moreover been demonstrated that about two-third of the POAH 

neurons that spontaneously change their firing rate during sleep show a similar change in firing 

rate in response to experimental local warming1. A similar thermosensitivity in relation to sleep 

has been demonstrated in the diagonal band2. It might thus be argued that sleep would be facili-

tated when brain temperature exceeds a threshold level35. 

Despite of the robustness of the experimental induction of sleep by local POAH warming, it is 

highly unlikely that the elevation in brain temperature occurring daily under control of the circa-

dian timing system is causally involved in the circadian modulation of sleep propensity. On the 

contrary, sleep onset tends to occur on the declining part of the core body temperature rhythm, 

and the major nocturnal sleep period ends on its rising part. Thus, a circadian modulated input to 

sleep-related POAH neurons other than local temperature should be postulated if we presume 

their involvement in the coupling between sleep and temperature rhythms. In fact, this input sig-

nal should direct POAH neurons towards their sleep-type firing patterns in spite of local tempera-

ture favoring wake-type firing patterns. Putative signals include adenosine and prostaglandin D2, 

which were found to excite sleep-active neurons36,45. We have in addition suggested skin temper-

ature as a candidate to provide such signal to sleep-related neurons48, because the majority of 

neurons sensitive to local brain temperature also receive input originating from the skin thermo-

receptors6. It may thus well be that skin temperature modulates thermo-sensitive neurons in the 
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POAH and other brain structures involved in arousal-state regulation. It is important to note that 

this hypothesis goes further than stating that vasodilatation and sleep onset merely coincide be-

cause increased activity of a subset of POAH warm-sensitive neurons has the dual effect of pro-

moting sleep and inducing vasodilatation. The hypothesis explicitly states that skin warming, re-

sulting from this vasodilatation or otherwise induced, will cause enhanced activity of sleep-

inducing warm-sensitive neurons. 

The potential role of skin temperature in sleep, already recognized by Magnussen in 1939, was 

almost totally neglected33. Only at the end of the last century studies on the relation between skin 

temperature and sleep re-emerged. Kräuchi and colleagues showed that the degree heat loss at 

the skin of the hands and feet was the best physiological predictor for a fast sleep onset and that 

during the phase of lowered core body temperature, heat loss is elevated23,24. In studies on the 

close relation between sleep regulation and body temperature, the circadian rhythm in skin tem-

perature has received much less attention than the circadian rhythm in core body temperature. 

Under constant conditions, keeping subjects supine in a thermoneutral environment without food 

or drinks, the mean skin temperature is elevated during the night and low throughout the day, 

thus showing a rhythm inverse to that of the core34. In everyday life this day-night difference is 

even amplified by the nocturnal increase in skin temperature associated with the postural change 

from upright or sitting to a supine position25,46, the use of bedding to create a microclimate of 34 

to 36°C19,39,51, and the relaxation associated with the preparedness to sleep signaled by lights off27. 

Since skin warming due to these changes occurs already before sleep onset, it might affect the 

process of falling asleep. Afferents conveying information about skin temperature have in animal 

studies been shown to modulate the firing rate thermosensitive neurons in the POAH at least as 

strong as local brain temperature does, and in case of simultaneous and differential local brain 

and skin temperature manipulations the response of POAH neurons is dominated by skin temper-

ature7. 

Indirect support for our hypothesis, that sleep onset might be modulated by small changes in skin 

temperature, was given by Kräuchi and colleagues23,24 who reported a strong negative correlation 

between the increase in especially distal skin temperature prior to lights out and sleep onset la-

tency. This finding could however as well be interpreted as indicative of a common mechanism 

promoting both an increase in skin temperature and sleep onset. We here report the first experi-

mental support for the hypothesis that sleep-onset latency might be modulated by small changes 

in skin temperature in man. Whereas sleep was found to be disrupted in previous reports where 

skin temperature was manipulated towards uncomfortable high or low levels, we applied only 

minute changes in skin temperature within the range covered by the nocturnal skin temperature 

under thermoneutral conditions. 



 

 

Ch
ap

te
r 4

 

 
 

115 Cutaneous warming promotes sleep onset 

2. Materials & Methods 

2.1. Participants 
Eight healthy volunteers (21-39 years old; mean±SE: 27.00±2.41 years, 4 males) participated with 

informed consent. All participants were free of medication known to affect sleep or the circadian 

system, cardiovascular medication or psychotropic medication, except for one female that used 

oral contraceptives. None of the subjects reported sleep complaints and their subjective sleep 

quality was rated as being good. The scores on the insomnia scale of the 75-item Dutch Sleep 

Disorders Questionnaire (SDQ)44 were significantly below the cut-off score of 3 (SDQ-Insomnia; 

1.76±0.10; P<0.001) and the scores on the Pittsburgh Sleep Quality Index (PSQI)8 were significant-

ly below the cut-off score of 6 (Global-PSQI; 4.00±0.46; P <0.005). The women participated be-

tween day 4 and day 12 of the menstrual cycle (mid-follicular phase). The protocol was approved 

by the Medical Ethics Committee of the Academic Medical Center of the University of Amsterdam. 

 

2.2. Design and Procedure 
Participants were instructed to keep a regular sleep-wake pattern by minimizing variability in bed-

time and wake-up time in the two weeks prior to the experiment, which was screened with a 

sleep diary31 and with actigraphy (Actiwatch, Cambridge NeuroTechnology Ltd., Cambridge, UK). 

One week before the experiment subjects visited the sleep laboratory for an introductory session 

and got habituated to the procedures. Participants were instructed to refrain from caffeine, alco-

hol and tobacco for 8 hours before arriving at the sleep laboratory. In brief, the experiment con-

sisted of determining 18 sleep onset latencies for each subject over two experimental days, while 

manipulating core temperature with food and drinks and skin temperature with a thermo-suit. 

The night before each experimental day, the subjects reported to the sleep laboratory at 22:00 hr 

where they were prepared for polysomnography, were fitted with a comfortable stretch knit fa-

bric thermo-suit for skin temperature manipulation and where compliance to the instructions was 

verified by questioning. From midnight until 6:00 hr, lights were turned off and subjects were 

allowed to sleep. At 6:00 hr they were awakened. The experiment started at 6:30 hr and consisted 

of a modified constant-routine protocol14,37 under dim light (<10 Lux) conditions and a fixed body 

position schedule. Both experimental days consisted of 9 consecutive blocks with a duration of 1.5 

hours each. Each block consisted of the following procedures: It started by requiring the subjects 

to leave the bed and walk 5 meters to use the bathroom if needed. After 10 minutes they re-

turned to bed, were put in semi-supine position and were served a snack and a drink to consume 

in approximately 10 minutes. Subsequently a self-paced computerized neuropsychological task 

battery was given, taking around 35 minutes to complete. This battery included assessment of 

thermal comfort and temperature sensation using 100 mm visual analogue scales (VAS) ranging 
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from uncomfortable to comfortable and from cool to warm respectively. At 60 minutes, the bed 

was set in supine position, the lights switched off and the participants were asked to try to sleep. 

Sleep onset was determined online (Multiple Sleep Latency Test (MSLT))11,12 and subjects were 

awakened directly after sleep onset determination (see below). When wakened up, subjects 

stayed in bed in supine position, with the light turned on (<10 Lux) and they had to stay awake. 

The maximum time allowed to fall asleep was 30 minutes, finishing up the 1.5 hour of a block. 

Skin and core temperature were manipulated differently in every block. During the first block skin 

temperatures were kept at an intermediate temperature. This block served as an adaptation pe-

riod for participants to wake up and to get used to the protocol. In the remaining 8 blocks core 

body temperature, proximal skin temperature and distal skin temperature were independently 

manipulated in either a slightly warmer or cooler direction, but within the comfortable and ther-

mo-neutral range. This 2x2x2 experimental design (core body temperature warm or cool (CBT+ or 

CBT-), proximal skin temperature warm or cool (PST+ or PST-), distal skin temperature warm or 

cool (DST+ or DST-)) brings up 8 possible manipulation combinations, that were all tested within a 

day in every subject (see figure 1). The sequence of the manipulation combinations was different 

for each subject such that, over all subjects, every manipulation combination was given once in 

each of the 8 blocks, and every transition from one to any other combination occurred only once. 

  

 
 
Fig. 1. Schematic view of temperature manipulations within a day within one subject. On the 

second day temperature manipulation combinations were the opposite of those of the 
first day to provide a protocol balanced for circadian effects.  

 Block A = habituation block. White= Cool, Dark grey = Warm. 
 

At the end of the first day subjects went home and returned to the laboratory the next evening 

for a repeated assessment according to the same procedure, with as only difference that the 

temperature manipulation combinations were the opposite of those of the first day to provide a 

protocol balanced for circadian effects. For example if the second block of a specific subject on 

day 1 consisted of core warming, proximal skin cooling and distal skin warming, that participant 

was subjected to core cooling, proximal warming and distal skin cooling during the second block 

on day 2. 
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2.3. Temperature Manipulations and Measurement. 
Core body temperature was manipulated by means of 200 ml hot (heated to 80°C, served 2 mi-

nutes later) or cold (0°C, crushed ice) diet (4.25 Kcal), decaffeinated tea (Iced Tea Mix (Diet Decaf-

feinated Lemon), Lipton, Englewood Cliffs, USA) together with an isocaloric hot or cold snacks at 

subjects’ choice (200 Kcal). Ingestion of food and drinks to manipulate core body temperature 

manipulation was started 50 minutes before lights off, since it has been shown, at least for core 

body cooling, that the core body temperature after intake of crushed ice is maximally decreased a 

time lag of circa 50 minutes, whereas the distal vasoconstriction induced by the intake of crushed 

ice has to a large extent – though not fully – subsided by that time27. Skin temperature (Tsk) was 

manipulated using a thermo-suit (Coretech Cool tube suit, Med-Eng Systems Inc., Ottawa, Cana-

da). The suit provided a full torso, arms, hands and lower body coverage, with a snug fit design for 

maximum contact for optimal temperature manipulation and optimal comfort and range of mo-

tion. It was connected to two computer-controlled bath/circulation thermostats (K6KP, Lauda, 

Lauda-Köningshofen, Germany), one for distal skin temperature manipulation and one for prox-

imal. The thermo-suit trousers and long sleeve shirt induced the proximal skin temperature mani-

pulation, whereas the distal skin temperature manipulation was provided by the socks and the 

hand gloves of the thermo-suit. The sequence of the temperature manipulations was pro-

grammed using Wintherm software (Wintherm, Lauda, Lauda-Köningshofen, Germany). During 

the first 20 minutes of each block the water in the thermostat baths changed to the desired tem-

perature with a programmed ramp of ± 0.2°C /min. For the remaining 70 minutes of the block the 

bath temperature was kept constant. The water in the bath was 33°C in the cool condition and at 

37°C in the warm condition, resulting in temperatures of approximately 31°C and 34°C measured 

at the tubes just before entering the thermo-suit. Water circulated from and to the thermostat 

baths via isolated connecting-tubes through the network of micro-tubes inside the thermo-suit. 

The range of skin temperature manipulations was chosen such as not to differentially trigger ma-

jor thermoregulatory responses. Subjects were habituated to the diurnal skin manipulation by 

application of similar nocturnal thermo-suit manipulations (alternating periods of 15 or 30 mi-

nutes of 33°C and 37°C water bath temperature, with ramps in between lasting 15 minutes). Ma-

nipulation temperature was recorded in the bath with a built-in PT100 element, on the connec-

tion-tube just before entering the thermo-suit and on the connection-tube just after departing 

the thermo-suit (both with a PT100 element (RTD-3-3105, Omega, Stamford, USA) and were rec-

orded and stored on PC once a minute using the Wintherm software. The recordings of the mani-

pulation temperature data were visually checked for possible artefacts. Occasional erroneous 

recordings characterized by abrupt steep changes (>0.3°C/min) in connection-tube temperature 

within the time window of interest were removed and linearly interpolated when feasible. Body 

temperature was obtained using 8 thermistors (P-8432, ICBT, Tokyo, Japan). Core body tempera-
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ture (Tre) was measured using a rectal thermistor that was self-inserted 13 cm into the rectum. 

Proximal skin temperature was measured at three places: right mid-thigh on the musculus rectus 

femoris, abdomen (1 cm above the navel) and the right infraclavicular area. Distal skin tempera-

ture was measured at four points: thenar area at the palmar sites of the left and right hand and 

medial metatarsal area at the plantar sites of the left and right foot. The skin thermistors were 

attached to the skin with thermal probe covers (ref 090-2764, ConMed Corporation, Utica, USA) 

that reflect ambient heat and insure a more accurate recording. Temperature was digitally rec-

orded at 1 Hz (Embla A10 and Somnologica software, Flaga hf, Reykjavik, Iceland). Body tempera-

ture data were down sampled to 0.1 Hz. Based on visual inspection of the data, an automated 

procedure was applied to remove occasional artefacts, defined for core body temperature as out-

side the 35.5˚C-38˚C range and for skin temperature as outside the 32˚C-37˚C range. In addition 

visually obvious artefacts (abrupt steep changes in skin temperature (>0.3˚C/min) or in core body 

temperature (>0.1˚C/min)) were removed and linearly interpolated when feasible. Average distal 

skin temperature (Tdist) was calculated as the average of the average of the temperature of both 

feet and the average temperature of both hands. A weighted average was calculated for proximal 

skin temperature (Tprox = 0.383 * mid-thigh + 0.293 * infraclavicular + 0.324 * abdomen) according 

to a modification of the method used by Kräuchi et al.22, who in contrast to our protocol also in-

cluded forehead temperature. Temperature data averaged over the 5 minutes before lights off 

were used for further analyses. As a final check, when such a single averaged data point differed 

more than +/- 2 standard deviations from the other 5-min averages during that day, the non-

averaged data were once more checked for artefacts and corrected or removed when needed.  

 

2.4. Sleep 

Polysomnographic sleep recordings consisted of electroencephalography (EEG), electromyo-

graphy (EMG) and electrooculography (EOG). EEG was derived from two bipolar leads FpzCz and 

PzOz50 with the E-net and Hydrodot system (Physiometrix Inc., Billerica USA). Submental EMG and 

horizontal EOG from the outer canthi were recorded using disposable Ag/AgCl electrodes (type 

4203 Meditrace, Graphic Controls Corporation, Buffalo USA). All PSG signals were digitally record-

ed at 200 Hz using the Embla A10 recorder and Somnologica software (both Flaga hf, Reykjavik, 

Iceland). 

Sleep onset was determined online during the experiment according to standard criteria41, with 

sleep onset defined as three consecutive 30 sec epochs of Stage 1 sleep or one 30 sec epoch of 

stage 2 (or deeper) sleep12. Online sleep stage determination was aided by the use of spectral 

views of the EEG signal, facilitating the observation of disappearance of the alpha (8-12 Hz) peak, 

dominance of the proportion of theta (4-8 Hz) over the proportion of alpha activity, or the clear 

appearance of spindle (12-15 Hz) peaks. MSLT sleep recordings were once more visually scored 
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offline by two independent scorers blind to the manipulations, and in case of differences consen-

sus was reached. Sleep-onset latency (SOL) was defined as the time between lights off and the 

sleep onset. If the subject did not sleep during the 30 minutes, sleep-onset latency was scored as 

30 minutes. 

 

2.5. Statistical Analyses 
To determine the effects of skin and core temperature manipulation on core body, proximal skin, 

and distal skin temperatures and on subjective comfort, hierarchical linear modeling (i.e. random 

coefficient analysis) was applied using the MLwiN software (Centre for Multilevel Modelling, Insti-

tute of Education, London, UK). Since the frequency distribution of SOLs may be slightly skewed, 

longitudinal Poisson regression analysis, also referred to as longitudinal log-linear regression ana-

lyses, was used to determine the effects of skin and core temperature manipulations and induced 

temperatures on sleep onset latency. Both analyses takes into account the interdependency of 

the data points inherent to the hierarchical structure of the design, in our case the sequential 

sleep onset observations i that were nested within days j, once more nested within subjects k47. 

The first block of both days (the habituation block) was omitted from analyses. Analyses were run 

with induced body temperatures (Tre, Tprox and Tdist), subjective comfort and sleep-onset latency as 

dependent variables and the body temperature manipulations (CBT, PST and DST) as dichotomous 

predictor variables, with 0 reflecting the cool manipulation and 1 reflecting the warm manipula-

tion. The effects on SOL were additionally (post-hoc) analyzed with the actual induced Tre, Tprox 

and Tdist as predictor variables. Additional models were run to test for carry-over effects of the 

temperature manipulations, by adding temperature manipulations of the preceding block (pCBT, 

pPST and pDST) to the regression models.  

A number of variables that might account for variance in the dependent variables were also al-

lowed in the model. More specifically, time of day (Hour) was allowed in the models for induced 

temperatures to account for possible diurnal variation in core and skin temperature26. Both time 

of day and the number of repeats trying to fall asleep (Repeats) were entered in the models for 

SOL to account for possible diurnal variation in SOL, and for a possible decrease of SOL with prac-

tice13,29. ‘Repeats’ was defined as the number of times allowed to fall asleep since day one. ‘Hour’ 

was defined as the number of hours since the start of the first MSLT within each day. Since these 

effects are likely to be nonlinear, their square root and squared values were allowed in the model 

in addition to their possible linear contribution. For the longitudinal Poisson regression analysis, 

all independent variables were centred at the within day level, except for ‘Repeats’, which was 

centred at the within subject level over the two days. For all regression analyses we report both 
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the full model, with all temperature manipulation variables and covariates in the model as well as 

the optimal model, containing only the significant contributions. 

Maximum likelihood was used to estimate the regression coefficients, which were tested for signi-

ficance with the Wald test52. In case of the optimal linear models, additional terms were allowed 

in the model only if their coefficients were significant and if the model improved according the 

likelihood ratio test of the models. For the longitudinal Poisson regression analysis, additional 

terms were allowed in the model only if their coefficients were significant and if the residual error 

of the model was reduced. Two-tailed significance levels were set at 0.05. 

 

3. Results 

3.1. Induced body temperatures 
The observed mean sleep-onset latencies and temperatures per temperative condition are shown 

in Table 1. The observed mean temperatures and SEs per day and time of day are displayed in 

Table 2. Table 3 shows the effects of temperature manipulations on core and skin temperatures, 

as derived from the regression analyses. Figure 2, middle, provides an example of measured tem-

peratures in a representative subject throughout the 2 experimental days. 
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The overall average core body temperature during the 5 minutes prior to lights off was 36.88 ± 

0.06˚C (mean±SE). Core body temperature was modulated by time of day (Hour, √Hour) and af-

fected significantly by the core temperature manipulation, with a 0.20 ± 0.02˚C higher core body 

temperature in the CBT+ condition as compared to the CBT- condition. Entering time of day (Hour, 

√Hour) into the model accounted for 21% of the variance whereas the addition of the core body 

temperature manipulation accounted for another 44% of the residual variance in core body tem-

perature. The addition of preceding temperature manipulations, to test for carry-over effects, 

revealed a positive contribution of pPST (0.11 ± 0.02˚C) that accounted an additional 16% of the 

variance. 

The overall average proximal skin temperature during the 5 minutes prior to lights off was 35.13 ± 

0.11˚C. Proximal skin temperature was not only affected by the proximal skin temperature mani-

pulation, but also, albeit very modestly, by distal skin temperature manipulation. Proximal skin 

temperature was 0.78 ± 0.03˚C higher in the PST+ condition as compared to the PST- condition 

and 0.09 ± 0.03˚C higher in the DST+ condition as compared to the DST- condition. The manipula-

tions accounted for 82% of the variance in proximal skin temperature.  
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Fig. 2. Example of manipulations and measurements in a representative subject throughout the 

2 experimental days. Upper panel: Temperature manipulation combinations. Middle 
panel: measured body temperatures over 5 minutes prior to lights off, connected by lines 
for clarity, left axis Tre, right axis Tprox and Tdist. Lower panel: measured SOLs.. For this 
specific subject, if dichotomized, only two out of sixteen observations (day two, at 10:30 
and 16:30 hr) fail to match the general consistent pattern of shorter latencies being 
restricted to occur during the warm proximal condition. 

 

The overall average distal skin temperature during the 5 minutes prior to lights off was 

35.14±0.15˚C. Distal skin temperature was modulated by time of day (Hour2) and significantly 

affected by all temperature manipulations. Distal skin temperature was 0.74 ± 0.05˚C higher in the 

DST+ condition as compared to the DST- condition, 0.38 ± 0.05˚C higher in a PST+ as compared to 

the PST- condition, and 0.44 ± 0.05˚C higher in a CBT+ as compared to the CBT- condition. Enter-

ing time of day into the model accounted for 4% of the variance and adding the manipulations 

accounted for another 73% of the residual variance in distal skin temperature. The addition of 

preceding temperature manipulations, to test for carry-over effects, revealed a positive contribu-

tion of pPST (0.17 ± 0.06˚C) that accounted an additional 2% of the variance.  

Summarizing, the manipulations accounted for a high proportion of the variance in skin and core 

temperature, but were not fully successful in independently controlling the core body, distal and 
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proximal skin temperatures. Moreover, a carry-over effect was present in that the previous prox-

imal manipulations slightly affected distal and core temperature. 

 

3.2. Temperature perception 
The effect of the temperature manipulations on temperature sensation and thermal comfort is 

shown in table 4.  

 

 
 

The overall average rating of thermal comfort prior to lights off was 59.1 ± 2.3. When all condi-

tions were cool (CBT-, PST- and DST-), thermal comfort was rated close to maximal (81.5 ± 3.3 on 

the 100 mm scale ranging from 0 = uncomfortable to 100 = comfortable). Thermal comfort was 

slightly but significantly lower in the CBT+, PST+ and DST+ conditions (-20.2 ± 2.8 for CBT+, -18.6 ± 

2.8 for PST+, -5.9 ± 2.8 for DST+). The overall average rating of temperature sensation prior to 

lights off was 62.4± 1.8. When all conditions were cool (CBT-, PST- and DST-), the temperature 

sensation was neutral (47.66  ± 2.27 on the 100 mm scale ranging from 0 = cool to 100 = warm) 

Temperature was perceived as significantly higher in the CBT+, PST+ and DST+ conditions (12.03 ± 

1.62 for CBT+, 13.19 ± 1.62 for PST+, 4.19 ±  1.62 for DST+). 

 

In summary, the warm conditions were experienced as less comfortable and warmer than the 

cool conditions. 
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3.3. Sleep-onset latency  
The effects of the temperature manipulations on sleep-onset latency are shown in table 1 and 

table 5, with the temperature manipulations as dichotomous predictor variables. The observed 

mean SOLs and standard errors per day and time of day are displayed at table 2. 

 

 
 

Figure 2, bottom provides an example of measured SOLs in a representative subject throughout 

the 2 experimental days. The overall average sleep-onset latency was 11.85 minutes (95% 

confidence interval [CI] 9.73 to 14.41). Sleep-onset latency was significantly modulated by time of 

day (Hour2) and affected by the number of sleep onset repeats (√Repeats) and the proximal skin 

temperature manipulation. Sleep-onset latency was 3.09 (CI 1.91 to 4.28) minutes shorter in the 

PST+ as compared to the PST- condition. Sleep-onset latency was not altered by core or distal skin 

temperature manipulations. The addition of preceding temperature manipulations did not 

decrease the residual error of the regression model, indicating a lack of significant carry-over 

effects. Figure 3 gives a graphical representation of the model best fitting the data of all subjects.  
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Because the temperature manipulations did not completely independently control core, proximal 

skin and distal skin temperatures, but did account for most of the variance in these temperatures, 

we did a post-hoc analysis entering the actually induced temperatures into the model rather than 

the dichotomous manipulation levels (see table 6). The model best fitting the data turned out to 

contain the same variables as the aforementioned model with dichotomous manipulation levels. 

A 1˚C increase in proximal skin temperature shortens sleep-onset latency by 2.68 (CI 1.34 to 4.03) 

minutes. The effects on sleep-onset latency of time of day and the number of times allowed to fall 

asleep are highly comparable to the effects in the dichotomous model. Sleep-onset latency was 

not significantly related the induced changes in core or distal skin temperature.  

 

In summary, sleep onset latencies increase with time over the day, but decrease by ‘practice’ and 

proximal skin warming. 
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Fig. 3.  Graphical representation the effect of PST manipulation in the model best fitting the data 

of all subjects: ln(SOLijk) = 2.44 + 0.007*Hour2 -0.05*Repeats -0.27*PST (where SOL is 
sleep-onset latency) (see Table 5, right columns and text).  
 
Estimated sleep-onset latency is thus given by: 
Sleep-onset latency data are given in minutes and PST is coded -0.5 for the cool proximal 
skin manipulation and +0.5 for the warm proximal skin manipulation (centred dummy 
coding). ‘Repeats’ was defined as the number of times allowed to fall asleep since day 
one, starting with 1 and centred within subject. ‘Hour’ was defined as the number of 
hours since the start of the first MSLT within each day, starting with zero at 9:00 hr and 
was centred within subject within day. For this figure, giving an impression of SOLs ob-
tained on the two experimental days, the average over two days of the centred values of 
Repeats were used in the model. 

 
 

4. Discussion 
The present study investigated whether sleep-onset latency is affected by manipulating core body 

and skin temperatures within the range of their normal circadian fluctuations under strictly con-

trolled conditions. It is the first of its kind to experimentally manipulate core and skin tempera-

tures independently with the aim of modifying sleep onset latency. We show that the process of 

falling asleep is accelerated by warming of the proximal skin within the temperature range nor-

mally covered during everyday life under comfortable conditions. This effect occurred in spite of 

the fact that this warming was perceived as slightly less comfortable. 

Before discussing the possible interpretations and implications of our findings, the restrictions of 

the present study deserve attention. First, we have not been able to fulfill our aim to indepen-

dently manipulate core body and distal and proximal skin temperatures. Although these areas 

were primarily and most strongly affected by their respective manipulations, thermoregulatory 

PST0.27- Repeats0.05- Hour0.007 + 2.44 2

e
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responses affecting other areas or carry-over effects from preceding proximal skin temperature 

manipulations seem to have been elicited. Core temperature manipulations induced not only 

changes in core body temperature, but also affected distal skin temperature. Proximal skin tem-

perature manipulations affected primarily proximal skin temperature but also distal skin tempera-

ture and affected to a lesser extent in core body temperature and distal skin temperature in the 

next block. Distal skin temperature manipulations affected primarily distal but also proximal skin 

temperature. We optimized the design to prevent systematic errors due to circadian variation, 

not only by applying both cool and warm conditions to the same subject at the same time of day, 

but also by stratified randomization in order to have different sequences for all subjects. Thus, 

there was also no fixed sequence allowing possible carryover effects to introduce a systematic 

error. Despite these limitations, the momentary manipulations did account for most of the varia-

bility in core and skin temperatures, and a post-hoc analysis regressing sleep-onset latencies on 

the induced temperatures rather than on the manipulation levels provided essentially the same 

results, i.e. a reduction of sleep-onset latency associated with a warmer proximal skin.  

A second restraint is that one should be cautious with extrapolation of the findings to tempera-

ture ranges and times of the day that were not covered in the present experiment. Both animal 

and human studies have demonstrated disturbed sleep with thermal manipulations that activate 

heat or cold stress mechanisms20,40. Thus, beyond the physiological range we applied, a further 

increase in skin temperature is likely to disturb sleep onset mechanisms rather than facilitate it at 

some point. On the other hand, the normal diurnal time course of distal skin temperature reaches 

values much lower than we have applied. During everyday life, diurnal distal skin temperature 

easily reaches temperatures of several degrees below the diurnal values measured at the proxim-

al skin53. Also under strictly controlled laboratory conditions, the distal 24-hour minimum and 

maximum and the 24-hour mean skin temperatures were lower than their proximal equivalents26. 

The averaged induced proximal and distal skin temperatures in our study were however compa-

rable to each other (see table 2). Thus we may have manipulated distal skin temperature too 

close to the ceiling of its normal diurnal pattern, not leaving the range optimal for sleep onset. 

Whereas the small proximal skin temperature manipulations we applied were sufficient to affect 

sleep-onset latency, we cannot exclude that applying distal skin temperature manipulations in a 

slightly lower range would be at least as adequate in affecting sleep-onset latency. In fact, in-

creases in distal skin temperature relative to the proximal skin temperature (the distal-to-

proximal gradient, DPG) have previously been shown to be correlated to sleep onset latency23. 

With respect to the gradient findings, it should be noted that all manipulation blocks where distal 

and proximal temperatures were both warm or both cool resemble the gradient condition found 

to be correlated to sleep-onset latency by Kräuchi and colleagues23.  
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Third, the dichotomous nature of our manipulation is such that the terms ‘warm’ and ‘cool’ can be 

interpreted only as relative to each other. Theoretically, sleep-onset latency might either be in-

creased in the cool condition or decreased in the warm condition. Several arguments favor the 

interpretation in terms of the warm condition promoting sleep onset rather than the cool condi-

tion delaying sleep onset. First, the cool rather than the warm condition was subjectively expe-

rienced as most comfortable, with the highest score on the visual analogue scale on comfort. The 

cool condition was also subjectively experienced as most thermoneutral, with values nearest to 

50 on the visual analogue scale ranging from cool (0) to warm (100). Yet, sleep-onset latency was 

shorter in the warm (subjectively less thermoneutral and slightly less comfortable) condition. 

Second, although sleep-onset latencies differ strongly from laboratory to laboratory and from 

clinic to clinic, the average sleep-onset latency we obtained in the warm proximal skin tempera-

ture condition (10.25 ±0.73 mean ± SE minutes) tends to be lower than what has been reported in 

the majority of studies10,13,17,54,55 in healthy adults. Third, even in the cool condition, the induced 

average proximal skin temperature (34.7˚C) was slightly higher than the average minimum prox-

imal skin temperature (33.8˚C) reported in the primary controlled study on circadian modulation 

of skin temperature under laboratory conditions26. 

A related issue is that it is presently not known to which extent the induced skin temperatures of 

around 35.1˚C are representative of the temperatures that occur in everyday life when preparing 

for sleep. In an experimental setting, somewhat lower average proximal and distal skin tempera-

tures (34.5˚C) were reported to occur when preparing for sleep after lights off27. On the other 

hand, earlier studies under more natural sleeping conditions, measured skin temperatures of 35 

to 36˚C during sleep and bed temperature microclimates of 34 to 36˚C19,39,51. Although none of the 

previously performed studies is of a sample size large enough to provide normative data on the 

range of skin temperatures under habitual waking and sleeping conditions, these examples at 

least suggest that the proximal skin temperature was manipulated within or close to the subject’s 

habitual nocturnal range. In fact, it is likely that the temperature we applied closer resembles the 

natural environmental temperature during sleep than the microclimate temperature in, for ex-

ample, the studies of Kräuchi et al.24,26, who provided subjects only with a light bed cover in an 

ambient temperature of 22˚C. Their experimental setup may well have reflected the habitual day-

time environmental temperature, but not have allowed the subjects to attain in the natural noc-

turnal microclimate temperature of 34-36˚C. In both rodents and humans, the self-selected am-

bient temperature is higher during the lower part of the core body temperature cycle49. 

As to core body temperatures, we are confident that the range in core body temperatures cov-

ered throughout our manipulations should be sufficient to alter sleep-onset latencies if they were 

indeed dependent on core body temperature as has been proposed previously5,9,38. The difference 

of 0.20˚C in core body temperature we established between the warm and the cool condition is 
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about half of the reported circadian amplitude in core body temperature (0.44˚C) under con-

trolled conditions26. In humans, the onset to the major sleep period tends to closely follow the 

timing of the maximal rate of decline in core body temperature, halfway its peak and trough26,38. 

In rats, which show a polyphasic sleep pattern and more ultradian fluctuations in core tempera-

ture, sleep onset similarly tends to occur near the maximal rate of decline of these fluctuations16. 

It consequently has been proposed that a declining core temperature might be involved in pro-

moting sleep onset9,38. 

Whereas our data do not support the idea that core temperature itself is involved in promoting 

sleep onset, they do support the notion that the heat loss mechanisms underlying this drop in 

core temperature are involved. The circadian rhythm in core body temperature is to a large extent 

due to variations in heat loss26: a circadian-regulated nocturnal increase in skin blood flow, result-

ing in increased skin temperature, promotes heat transfer from the body to the environment. 

Although our observations have been limited to the human sleep EEG, they are compatible with 

the idea that, rather than changes in core temperature, the associated warming of the skin could 

provide a signal to sleep-regulating areas in the brain. This contention is supported by early work 

of Boulant and Bignall7, who demonstrated that the activity of the thermosensitive neurons in the 

POAH is modulated predominantly by skin temperature if local brain temperature and skin tem-

perature is manipulated simultaneously and differentially. Skin warming has moreover been 

shown to promote sleep-type firing patterns in other brain areas involved in the regulation or 

expression of sleep48. In humans, an increase in (distal) skin blood flow and consequently skin 

temperature starts around 20:00 h and induces a maximum plateau of skin temperature between 

23:00 and 7:00 h3,4,26,34. We have previously suggested that, in response to this change in skin 

temperature, a subpopulation of sleep-related warm-sensitive neurons (WSNs) increase firing 

rate, thus promoting sleep. This idea can at present only receive indirect support in humans, since 

the presently available neuro-imaging tools do not yet provide the possibility for ultra-high resolu-

tion imaging of changes induced by slowly changing thermal stimuli. 

Our findings may at first sight be difficult to reconcile with the inverse circadian rhythms of sleep 

propensity and proximal temperature under constant routine conditions. If anything, the evening 

decline in proximal skin temperature that has been shown to occur under constant routine condi-

tions would be predicted, according to our findings, to inhibit the onset of sleep. However, this 

inhibition would take only as long as the subject has not appropriately prepared for safe sleep by 

taking a supine position in a relatively warm microclimate due to bedding, and relaxing to allow 

sleep to occur. Only if these conditions have been met, proximal skin temperature strongly in-

creases after lights off, at least if subjects know that they are allowed to fall asleep. Proximal skin 

temperature then stays higher than pre-sleep levels throughout most of the night, in contrast its 

further decline if sleep is not allowed27. If safe sleeping conditions have not yet been established, 
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the low proximal temperature might be of functional importance to support wakefulness when 

the time awake is usually long and sleep pressure is high. When safe sleeping conditions have 

been established, its fast increase may promote sleep onset. This tentative idea should be verified 

by investigating whether sleep-onset latency is related to the steepness of the increase in proxim-

al skin temperature that occurs between lights off and sleep onset. Some caution in interpreting 

the inverse relation of the circadian rhythms in sleep propensity and proximal temperature is 

furthermore warranted, given the fact that this relation has been established under constant 

routing conditions in a ‘daytime’ environmental temperature26. As we noted above, the preferred 

nocturnal temperature may differ from what has been applied in constant routine studies. The 

diurnal rhythm in proximal skin temperature under natural living conditions has to our knowledge 

not been studied in detail, and may differ from the unmasked rhythm obtained in a constant rou-

tine protocol.  

 We have previously suggested that the proposed signaling of skin temperature to sleep-related 

brain areas may have a functional role: a warm skin is most likely to occur if the sleep-appetitive 

behaviors of lying down and covering up are fulfilled, and it is thus safe for the organism to fall 

asleep48. A question of considerable interest is whether skin temperature is also involved in the 

maintenance and depth of sleep. 

Our findings may have implications for sleep-onset latency in everyday life. Warming the proximal 

skin resulted in a 26% decrease in sleep-onset latency, which approximates the order of magni-

tude that can be obtained with hypnotic compounds. In healthy subjects, daytime administration 

of melatonin, Temazepam and Zopiclone induced reductions of at most 3 to 7 minutes18,21,42. 

Hence warming of the skin either by promoting peripheral heat loss or by subtle and feedback-

controlled warming of the skin within the thermoneutral range might provide a means to improve 

sleep onset in people who have trouble falling asleep in the beginning of the night, or after noc-

turnal or after nocturnal or early morning awakening. Such non-pharmacological treatment is 

likely to lack the adverse effects that characterize chronic use of hypnotics. Although we are not 

aware of comprehensive studies on the effect on sleep onset of the many pharmaceuticals that 

induce vasodilatation, some studies at least suggest that vasodilatation is correlated with the ease 

of sleep onset. For example, the rate of heat-loss induced by melatonin and Temazepam is corre-

lated with their effect on sleep-onset latency18,24. 

 

In conclusion, our results add to the significance of previous studies demonstrating a correlation 

between skin temperature changes and sleep-onset latency by demonstrating for the first time 

that an experimentally induced subtle increase in skin temperature may in fact cause a decrease 

in sleep-onset latency. The findings are compatible with the model we have previously put for-

ward48, stating that the diurnal modulation of skin temperature is possibly not only an output 
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signal of the circadian timing system but may as well act as an input signal to sleep-regulating 

brain areas. 
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Summary 
Study Objectives. Sleep propensity and skin temperature are functionally related. In young adults, 

changes of skin temperature within the comfortable thermoneutral zone affect sleep-onset laten-

cy and vigilance performance. Aging is associated with both decreased thermosensitivity and 

poorer sleep. Our goal was to test whether subtle manipulations of core-body and skin tempera-

ture affect sleep onset in elderly people without sleep complaints and in elderly insomniacs and 

whether the subjective perception of these mild body temperature manipulations is preserved 

with aging and insomnia. 

Design: In a 2-day semi constant–routine protocol, 288 sleep-onset latencies were polysomno-

graphically determined while manipulating core-body and skin temperatures differentially in 

warm and cold directions within a comfortable thermoneutral range. 

Setting: Sleep laboratory of the Netherlands Institute for Neuroscience. 

Patients or Participants: Eight elderly subjects without sleep complaints (65.8 ± 2.8 years, mean ± 

SEM) and 8 elderly insomniacs (59.1 ± 1.9 years).  

Measurements and Results: Warming the proximal skin by 0.7˚C facilitates sleep onset equally 

effective in healthy elderly (by 18% i.e., by 1.84 minutes [95% confidence interval {CI}, 0.76-2.92]) 

and elderly insomniacs (28%, 2.85 minutes [CI: 2.55-3.18]). These effects were comparable to the 

results in healthy young subjects, in spite of a marked decrease in the subjective perception of 

temperature changes in elderly subjects, especially in insomniacs. 

Conclusion: The findings show that mild changes in skin temperature have an effect on sleep pro-

pensity in elderly and indicate that elderly insomniacs may have a diminished capability to recog-

nize that a slight increase in bed temperature facilitates the initiation or re-initiation of sleep. 
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1. Introduction 
Both skin temperature and core body temperature (CBT) show a day-night rhythm that is func-

tionally linked to the sleep-wake cycle. The circadian rhythm in CBT in humans is characterized by 

a relatively low temperature throughout the nocturnal sleeping period and a relatively high tem-

perature during the day, while being awake. It is well established that CBT and sleep propensity 

are negatively related36 and that sleep onset is most likely to occur when CBT decline is at its max-

imum rate1,5,42. The majority of studies on the interaction between thermoregulation and sleep-

wake transitions have focused on the relationship between CBT and sleep. Skin temperature also 

exhibits a circadian rhythm that is reciprocal to the CBT rhythm21,40,56,59, i.e., low during the habi-

tual wake period. Its potential role in sleep regulation was already recognized by Magnussen in 

1939 but since then has been almost totally neglected39. Recently, a renewed interest in the rela-

tionship between skin temperature and sleep has emerged. Kräuchi and colleagues have shown 

that the degree of heat loss at the skin of the hands and feet is the best physiologic predictor for a 

rapid sleep onset33,34. Fronczek et al recently demonstrated that, under less-controlled circums-

tances, the proximal skin temperature (PST) predicts subsequent sleep-onset latency (SOL) even 

better than distal skin temperature (DST), in both narcoleptic subjects as well as healthy con-

trols19. We have previously addressed the underlying mechanisms of the relationship between 

skin temperature and sleep propensity and have provided a neurobiological model postulating 

that autonomous thermoregulatory changes in CBT and especially skin temperature could act as 

an input signal to modulate neuronal activity in sleep-regulating brain areas57. For example, the 

activity of thermosensitive neurons in the preoptic area/anterior hypothalamus, a key area in 

both sleep regulation and thermoregulation, is indeed modulated more strongly by changes in 

skin temperature than by changes in CBT2. In support of a feedback mechanism of skin tempera-

ture to sleep-regulating brain areas, we have shown that manipulation of the skin temperature 

within the normal thermophysiological range —without activating thermoregulatory responses— 

modulates sleepiness in healthy young adults (Chapter 4, this thesis)45 and patients with narcolep-

sy (Chapter 7, this thesis)20 and affects sleep depth (Chapter 8, this thesis)47. 

Insomnia is more prevalent in the elderly17,35. Poor sleep in elderly subjects is typically under-

treated27 or treated with pharmacologic interventions with adverse consequences for daytime 

function58. Given the graying society, it is highly relevant to investigate alternative strategies for 

sleep management in elderly23,51.  

The aims of the present study were 2-fold. The first aim was to evaluate whether subtle skin 

warming in elderly subjects without sleep complaints and in elderly insomniacs promotes sleep 

onset in a fashion similar to that reported earlier in healthy young adults (see Chapter 4, this the-

sis)45. The second aim was to evaluate whether the previously reported age-related decrease in 
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awareness of changes in temperature during the daytime is also present in a sleeping environ-

ment and equally so in good sleepers and insomniacs. Preservation of these subjective and objec-

tive responses is not trivial because thermosensitivity during wakefulness decreases with age (see 

Chapter 2, this thesis)61. 

 

2. Materials & Methods 

2.1. Participants 
Sixteen elderly subjects were recruited through newspaper and both magazines and Internet sites 

aiming at an elderly audience. Participants were 8 healthy elderly subjects without sleep com-

plaints (mean ± SEM: 65.8 ± 2.8 years, 4 men) and 8 elderly subjects diagnosed with primary in-

somnia (59.1 ± 1.9 years, 4 men) according to the qualitative criteria of the International Classifi-

cation of Sleep Disorders25 and the Research Diagnostic Criteria for Primary Insomnia15, as well as 

according to proposed quantitative criteria by Lichstein et al37. The groups did not differ regarding 

their mean age (t test, P = 0.38). 

Although the study was performed prior to the recently published Recommendations for a Stan-

dard Research Assessment of Insomnia3, it complied with the majority of the recommendations. 

Diagnosis was performed by accredited sleep specialists and included interviews, sleep diaries, 

and 2 questionnaires: a Dutch adaptation53 of the 75-item Sleep Disorders Questionnaire (SDQ)14 

and the Pittsburgh Sleep Quality Index (PSQI)4. All elderly subjects suffering from primary insom-

nia had a PSQI score greater than 5 (10.9 ± 1.1) and an SDQ-Insomnia score greater than 2.5 (3.3. 

± 0.1). All elderly subjects without sleep complaints scored within the normal range of these 

scales: 3.6 ± 0.4 for the PSQI and 2.0 ± 0.1 for the SDQ-Insomnia subscale. The diagnosis of insom-

nia was supported by sleep diaries kept over a period of 2 weeks just prior to the experiment. 

Sleep diary data are given in Table 1. The 2 groups differed significantly on subjective sleep effi-

ciency, SOL, and the duration of wake after sleep onset.  

None of the subjects scored higher than the cutoff score of 3 on the SDQ subscales Narcolepsy, 

Apnea, Restless legs, and Psychiatry. Polysomnographic confirmation of disturbed sleep in the 

absence of apnea and periodic leg movements was demonstrated during the study. A history or 

present symptoms of medical or psychiatric disorders were furthermore excluded by interview 

and evaluating the Symptom Check List (SCL-90). All subjects were in good health, and none used 

hypnotic, psychotropic, or cardiovascular medication. All women were postmenopausal. The data 

from 8 young and healthy adults (mean ± SEM: 27.0 ± 2.4 years, 4 men) used from a previous 

study45 for the comparison all scored within the normal range of these scales: 4.0 ± 0.5 for the 

PSQI and 1.8 ± 0.1 for the SDQ-Insomnia subscale, respectively. All subjects participated with in-



 

 

Ch
ap

te
r 5

 

 
 

139 Diminished capability to recognize the optimal temperature for sleep 

formed consent. The Medical Ethics Committee of the Academic Medical Center of the University 

of Amsterdam approved the protocol. 

 

 

2.2. Design and Procedure 
A previously described design was used that consisted of a modified constant-routine protocol10,41 

over 2 experimental days in which sleepiness was measured using the (Multiple Sleep Latency 

Test [MSLT])7,6. The procedures have been described in detail before (see Chapter 4, this thesis)45 

and are given here in a comprehensive way.  

Participants refrained from caffeine, alcohol, and tobacco for 8 hours before arriving at the sleep 

laboratory at 22:00, where they were prepared for polysomnography and were fitted with a 

thermosuit (Coretech Cool tubesuit, Med-Eng Systems Inc., Ottawa, Canada) for skin-temperature 

manipulation. From midnight until 06:00, lights were turned off, and participants were allowed to 

sleep. The experiment started at 06:30 and consisted of a modified constant-routine protocol 

under dim-light (<10 lux) conditions and a fixed body-position schedule. Over 2 experimental 

days, 18 SOLs for each subject were determined while CBT was manipulated with food and drinks 

and skin temperature was manipulated with a thermosuit.  

Both experimental days consisted of 9 consecutive blocks with a duration of 1.5 hours each (see 

Figure 1). Within the first 60 minutes of each block, CBT and skin-temperature manipulations 

were applied, and a computerized neuropsychological task battery had to be completed. This 

battery included assessment of vigilance, thermal comfort, and temperature sensation using 100-

mm visual-analog scales. At 60 minutes, the lights were switched off, and the participants were 

asked to try to sleep. Sleep onset was determined online (MSLT)7,6, and participants were awa-

kened directly after sleep-onset determination (see below) and stayed awake in bed with the dim 
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light turned on. The maximum time allowed to fall asleep was 30 minutes. The results of the ef-

fects of temperature manipulation on vigilance-task performance have been reported elsewhere 

(see Chapter 6, this thesis)44. 

CBT, PST, and DST were simultaneously and independently manipulated in either a slightly war-

mer (+) or cooler (-) direction, within the comfortable and thermoneutral range. This brings up a 2 

x 2 x 2 experimental design (CBT warm or cool [CBT+ or CBT-], PST warm or cool [PST+ or PST-], or 

DST or cool [DST+ or DST-]) with 8 possible manipulation combinations, which were all tested in 

the 8 blocks within a single day in every participant (see Figure 1 for an example of 1 subject). We 

have previously demonstrated that the “cool” condition can be regarded as an adequate approx-

imation of the skin temperature during normal sleep in elderly subjects47. The sequence of the 

manipulation combinations was different for each participant such that, over all participants, 

every manipulation combination was given once in each of the 8 blocks, and every transition from 

one to any other combination occurred only once. At the end of the first day, subjects went home 

for a normal night of sleep and returned to the laboratory the next evening for a repeated as-

sessment according to the same procedure. However, on the second day, the temperature mani-

pulation combinations were the opposite of those of the first day to provide a protocol balanced 

for circadian effects (for example: Day 1, block n: CBT+, PST-, DST+; Day 2, block n: CBT-, PST+, 

DST-). 

 

 
Fig. 1. Schematic view of the temperature manipulations within one day within one subject. Core 

body, proximal and distal skin manipulation occurs simultaneously during every block. 
Within the last 30 minutes of each block the MSLT was performed. On the 2nd day, tem-
perature manipulation combinations were the opposite of those of the 1st day to provide 
a protocol balanced for circadian effects. Block A: Habituation block. White represents 
cool; dark gray represents warm. 

 

2.3. Temperature Manipulations and Measurement. 
Temperature manipulations and measurements have been described in detail previously45. In 

brief, CBT was manipulated by means of 200 mL hot (heated to 80°C, served 2 min later) or cold 

(0°C, crushed ice) diet (4.25 kcal), decaffeinated tea (iced tea mix [diet decaffeinated lemon], Lip-

ton, Englewood Cliffs, NJ) together with an isocaloric hot or cold snack of the subjects’ choice (200 

kcal). Skin temperatures were manipulated with the use of a water-perfused thermosuit (Core-
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tech Cool tube suit, Med-Eng Systems Inc.), connected to 2 computer-controlled bath-circulation 

thermostats (K6KP, Lauda, Lauda-Köningshofen, Germany). The temperatures measured at the 

tubes just before entering the thermosuit were approximately 31°C and 34°C, a comfortable 

range of skin temperature manipulations that does not trigger major thermo-regulatory res-

ponses. Ingestion of food and drinks to manipulate CBT and skin temperature was started about 

50 minutes before lights off.  

Body temperature was obtained using 8 thermistors (P-8432, ICBT, Tokyo, Japan). CBT was meas-

ured using a rectal thermistor. PST was measured at 3 places: right midthigh, abdomen, and the 

right infraclavicular area. DST was measured at 4 points: thenar eminence of the left and right 

hand and medial plantar aspect of the left and right foot. Temperature was digitally recorded at 1 

Hz (Embla A10 and Somnologica software, Flaga hf, Reykjavik, Iceland). An automated procedure 

was applied to remove occasional artifacts and to calculate average DST (Tdist) and PST (Tprox) using 

a weighting method, as has been described previously45. Temperature data averaged over the 5 

minutes before lights off were used for further analyses. 

 

2.4. Sleep 

Polysomnographic sleep recordings consisted of electroencephalography from 2 bipolar deriva-

tions (FpzCz and PzOz)63, submental electromyography, and electrooculography. The signals were 

digitally recorded at 200 Hz using the Embla A10 recorder and Somnologica software (Flaga hf).  

Sleep onset was determined online during the experiment according to standard criteria48, with 

sleep onset defined as 3 consecutive 30-second epochs of Stage 1 sleep or one 30-second epoch 

of Stage 2 (or deeper) sleep7. Real-time sleep-stage determination was aided by the use of spec-

tral views of the EEG signal. MSLT recordings were once more visually scored offline by 2 inde-

pendent scorers blind to the temperature manipulations. SOL was defined as the time between 

lights off and sleep onset. If the participant did not sleep during the 30 minutes, SOL was scored 

as 30 minutes. This occurred in 8% of the SOL determinations. 

 

2.5. Statistical Analysis 
To determine the effects of skin and core-temperature manipulation on body temperatures and 

subjective comfort, mixed-effect regression analysis (also known as hierarchic or multilevel analy-

sis) was applied using the MLwiN software (Centre for Multilevel Modelling, Institute of Educa-

tion, London, UK). These analyses were necessary in order to take into account the interdepen-

dence of the data points inherent to the hierarchic structure of the design, in our case the se-

quential sleep onset observations i that were nested within days j, once more nested within par-

ticipants k55. They were necessary as well to independently estimate the effects of the simulta-
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neously and differentially manipulated CBT, DST, and PST, a major aim of the present study. Be-

cause the frequency distribution of SOLs is skewed, a Poisson distribution rather than normal dis-

tribution was assumed in the mixed-effect analyses on the effects of the manipulations on SOL. 

We evaluated how CBT (Tre) and skin temperatures (Tprox and Tdist), subjective comfort, and SOL 

were affected by the manipulations. To do so, the CBT, PST, and DST manipulation levels were 

dummy coded as dichotomous predictor variables, using -0.5 for the cool and +0.5 for the warm 

manipulation. A 3-level regression model was fitted (each block (i), nested within days (j), nested 

within subjects (k)). To account for possible diurnal variation in core body and skin temperature32 

and a possible decrease of SOL with practice23,8, both time of day (Hour) and the number of re-

peats trying to fall asleep (Repeats) were entered in the models as covariates. Since these effects 

are likely to be nonlinear, their square-root and squared values were allowed in the model in ad-

dition to their possible linear contribution. Additional models were run to test for confounding 

effects of the prior temperature manipulations, by adding temperature manipulations of the pre-

ceding block (pCBT, pPST, and pDST) to the regression models.  

Maximum likelihood was used to estimate the regression coefficients (effect sizes), which were 

tested for significance with the Wald test64. Additional terms were allowed in the model only if 

their coefficients were significant and the residual error of the model was reduced. Two-tailed 

significance levels were set at 0.05. 

 

3. Results 

3.1. Effects of Temperature Manipulations on CBT and Skin Temperatures 
The effects of the temperature manipulations on CBT and skin temperatures for both groups are 

shown in Table 2. The overall average Tre during the 5 minutes prior to lights off was 36.86˚C ± 

0.09˚C for elderly subjects without sleep complaints and 36.80˚C ± 0.07˚C for elderly insomniacs. 

Tre was significantly affected by the CBT manipulation, with 0.20˚C and 0.16˚C higher Tre in the 

CBT+ condition, compared with the CBT- condition for elderly subjects and elderly insomniacs, 

respectively. Tre also showed modulation over the time of day, accounting for 47% and 36%, re-

spectively, of the variance. The CBT manipulation accounted for another 33% and 32% of the resi-

dual variance in Tre. The addition of preceding temperature manipulations to test for confounding 

effects of the previous manipulations accounted for an additional 27% (by all previous manipula-

tions) and 20% (by previous PST manipulation) of the variance, respectively. 
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The overall average Tprox during the 5 minutes prior to lights off was 35.03˚C ± 0.01˚C for elderly 

without sleep complaints and 35.00˚C ± 0.09˚C for elderly insomniacs. Tprox was significantly af-

fected by the PST manipulation, with 0.71˚C and 0.73˚C higher Tprox in the PST+ condition com-

pared with the PST- condition for elderly subjects and elderly insomniacs, respectively. Moreover, 

in elderly insomniacs, Tprox was significantly affected by the DST manipulation, with 0.09˚C higher 

Tprox in the DST+ condition compared with the DST- condition. Tprox showed modulation over the 

time of day, accounting for 5% and 8% of the variance for elderly subjects and elderly insomniacs, 

respectively. The PST manipulations accounted for another 76% and 71% of the residual variance 

in Tprox. The addition of preceding temperature manipulations to test for the effects of the pre-

vious manipulations accounted for an additional 3% (by previous PST manipulation) of the va-

riance, but only in the elderly without sleep complaints.  

The overall average Tdist during the 5 minutes prior to lights off was 35.00˚C ± 0.15˚C for elderly 

without sleep complaints and 35.18˚C ± 0.11˚C for elderly insomniacs. Tdist was significantly af-

fected by the DST manipulation, with 0.82˚C and 0.72˚C higher Tdist in the DST+ condition com-

pared with the DST- condition for elderly subjects and elderly insomniacs, respectively. Tdist was 

also modulated by proximal skin manipulations (0.29˚C, and 0.27˚C higher Tdist in the PST+ condi-

tion) and CBT manipulation (0.41˚C, and 0.42˚C higher Tdist in the CBT+ condition). In the elderly 

insomniacs, Tdist also showed modulation over the time of day, accounting for 3% of the variance. 

The DST manipulations accounted for another 70% and 72% of the residual variance in Tdist. The 
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addition of preceding temperature manipulations accounted for an additional 36% (by previous 

skin temperature manipulations) and 21% (by previous PST manipulation) of the variance, respec-

tively. 

 

In summary, the manipulations accounted for a high proportion of the variance in body tempera-

tures, and their effects were highly comparable between both groups. Only very limited carryover 

effects of manipulations in the previous block were present. Likewise, crosstalk was limited such 

that the largest changes of temperature were consistently in the body parts being manipulated. 

 

3.2. Effects of Temperature Manipulations on Temperature Perception 
The effects of the temperature manipulations on thermal comfort and temperature sensation for 

both groups are shown in Table 3. The overall average rating of thermal comfort prior to lights off 

was 55.6 ± 4 for elderly without sleep complaints and 49.9 ± 7.9 for elderly insomniacs. Only in 

the elderly without sleep problems was thermal comfort significantly affected by all of the tem-

perature manipulations. In these subjects, comfort was maximal (71.0 ± 4.6 on the 100-mm scale 

ranging from 0 = uncomfortable to 100 = comfortable) when all conditions were cool (CBT-, PST-, 

and DST-). Thermal comfort was significantly lower in the warm conditions (-12.6 ± 2.6 for CBT+, -

12.6 ± 2.6 for PST+, -5.4 ± 2.6 for DST+). In contrast, none of the temperature manipulations af-

fected thermal comfort in elderly insomniacs.  

The overall average rating of temperature sensation prior to lights off was 59.7 ± 2.8 for elderly 

subjects and 63.2 ± 4.5 for elderly insomniacs. Temperature sensation was significantly affected 

by the CBT manipulation. The CBT+ condition was rated 12.84 warmer by elderly subjects and 

9.35 warmer by elderly insomniacs, as compared with the CBT- condition. Only in elderly subjects 

without sleep complaints was temperature sensation also significantly affected by the PST mani-

pulation. The PST+ condition was rated 11.48 warmer than the PST- condition. Of note is that, in 

elderly subjects, the temperature sensation was neutral (47.5 ± 3.2 on the 100-mm scale ranging 

from 0 = cool to 100 = warm) when CBT manipulation and proximal skin manipulation conditions 

were cool (CBT- and PST). In elderly insomniacs the temperature sensation was just above neutral 

(58.5 ± 4.7) when the CBT manipulation was cool (CBT-). 

 

In summary, temperature sensation was affected by the CBT manipulations in all elderly subjects, 

whereas the PST manipulations were experienced only as warmer than the cool by elderly with-

out sleep complaints. DST manipulations did not affect temperature sensation in either elderly 

group. All temperature increases were seen as discomforting by elderly good sleepers, but none 

were discomforting to elderly insomniacs. 
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3.3. Effects of Temperature Manipulations on SOL  
Table 4 shows the effects of the temperature manipulations on SOL. The overall average SOL was 

10.43 minutes (95% confidence interval [CI]: 7.13 - 15.26) for elderly subjects and 10.10 minutes 

(CI: 6.96-14.65) for elderly insomniacs. In elderly good sleepers, SOL was significantly modulated 

by time (hour2) and affected by the number of sleep-onset repeats (Repeats and √Repeats) and 

by the proximal skin warming. Sleep onset was 1.84 minutes (CI: 0.76-2.92) shorter in the PST+ 

condition, compared with the PST- condition. Sleep latency was not significantly affected by core 

and distal manipulations. As compared to the cool condition, warming of the proximal skin thus 

resulted in an 18% decrease in the time to fall asleep (see Figure 2). In elderly insomniacs, SOL 

was significantly modulated by time (Hour) and affected by the number of sleep-onset repeats 
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(Repeats and Repeats2) and by both proximal skin warming and core body cooling. Sleep onset 

was 1.68 minutes (CI: 0.60-2.76) shorter in the CBT- condition, compared with the CBT+ condition, 

and 1.16 minutes (CI: 0.08-2.24) shorter in the PST+ condition, compared with the PST- condition. 

Sleep latency was not significantly affected by distal manipulations. Warming of the proximal skin 

together with cooling of the core thus resulted in a 28% decrease in the time to fall asleep, as 

compared with the opposite manipulation (see Figure 2). 

 

 
 

In summary, SOLs increase with time over the day but decrease by “practice” and proximal skin 

warming. In insomniacs, core-body cooling also accelerates sleep onset. 
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Fig. 2. Sleep onset latencies ( ± 95% confidence intervals) in elderly and elderly insomniacs. Ef-

fect sizes follow from the regression analysis results presented in table 4. 
 

3.4. Effects of Age and Insomnia on Induced Temperature Changes and 
Subjective Thermosensitivity  

To investigate changes in subjective thermosensitivity related to insomnia, we compared the re-

gression model of both groups. To investigate changes in subjective thermosensitivity related to 

aging, we compared the regression model of both groups with the models of a group of young 

subjects who underwent the same protocol45. Such comparisons were possible because tempera-

ture manipulations induced changes in CBT and skin temperatures of similar magnitude in all 3 

groups (all Z-tests: P > 0.10). 

Between-groups comparison of the effects of the temperature manipulations on thermal comfort 

and temperature sensation indicated only a minor loss in temperature perception with aging, per 

se, and a major loss in elderly insomniacs. When comparing thermal comfort in the young and the 

elderly without sleep complaints, it was found that thermal comfort was affected highly similarly 

by PST and DST manipulations (both Z-tests: P > 0.10) and significantly less by CBT manipulations 

in the elderly (Z-tests: P < 0.05). However, in the elderly insomniacs, none of the temperature 

manipulations affected thermal comfort. When comparing temperature sensation in the young 

and the elderly without sleep complaints, it was found that temperature sensation was affected 

similarly by CBT and PST manipulations (both Z-tests P > 0.50) but not by DST, which affected 

temperature sensation only in young subjects. In the elderly insomniacs, only CBT manipulation 
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affected temperature sensation, and this effect was comparable to the effect seen in the young 

and the elderly (both Z-tests P > 0.25). 

 

In summary, the applied ranges of temperature manipulations affected the skin temperatures and 

CBT in a highly similar fashion in all 3 groups, and all manipulations affected the thermal comfort 

and sensation, but only in the young group. However, with age, the effect of the applied CBT 

range on thermal comfort attenuates, and the effect of the applied DST range on temperature 

sensation disappears. In elderly insomniacs, only the effect of the applied CBT range on tempera-

ture sensation holds on. It indicates that the subjective effects of thermal manipulation are 

slightly weakened with aging and more strongly so in elderly insomniacs. 

  

3.5 Effects of Age and Insomnia on the Effects of Temperature Manipula-
tions on SOL 

Between-groups comparison indicated no differences on the effects of PST manipulations on SOL 

(all Z-Tests P > 0.05). Increases of PST resulted in decreases of SOL in all groups. Only in the elderly 

insomniacs did decreases of CBT result in decreases of SOL. 

4. Discussion 
The aims of the present study were (1) to evaluate whether subtle manipulation of CBT and skin 

temperature within the range that is naturally occurring during the circadian cycle in elderly with-

out sleep complaints and elderly insomniacs affects SOL in a similar fashion as reported earlier in 

healthy young adults45 and (2) to evaluate whether the previously reported age-related decrease 

in awareness of changes in temperature at daytime is also present in a sleeping environment. 

Whereas it has been shown that elderly in general show attenuated thermosensitivity29,60,61 com-

pared with younger subjects when awake, no prior studies have addressed such possible attenua-

tion during attempts to fall asleep and/or maintain sleep within the microclimate of the bed. Of 

note, our experimental approach of manipulating CBT and skin temperatures and quantifying 

their effect on thermal appreciation and sleep onset allowed for a cause-and-effect interpreta-

tion, in contrast with correlation studies. 

With regard to the effect of skin temperature on sleep initiation, our study showed that proximal 

skin warming, in particular, facilitated sleep onset in elderly with and without sleep complaints. 

The effect was comparable in both groups of elderly and also did not differ significantly from the 

effect found in young adults, reported in our earlier study15. In elderly insomniacs, core body cool-

ing also accelerated sleep onset, an effect that was not present in either younger or older partici-

pants without sleep complaints.  
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The failure of distal warming to affect sleep latency is in line with the results of our previous study 

on foot warming and sleep onset that reported an attenuated sensitivity of sleep propensity to 

foot warming in elderly46. Moreover, the normal diurnal time course of DST reaches values much 

lower than we have applied, and, hence, both our cool and warm DST manipulation might be in-

terpreted as being warm. Whereas the subtle PST manipulations we applied were sufficient to 

affect SOL, we cannot exclude that applying DST manipulations in a slightly lower and wider range 

would be at least as adequate in affecting SOL. 

Although the present study demonstrates a proof of principle, it remains to be addressed in a 

larger sample whether CBT and skin-temperature manipulations will be of clinical relevance in 

real-life situations. A reduction of 2.8 minutes (28%) in the SOL of elderly insomniacs, induced by 

the optimal combination of a warmer proximal skin in the absence of a warmer core, may not 

seem clinically relevant at first sight. However, it approximates the order of magnitude that can 

be obtained with hypnotic compounds. In adult and elderly insomniacs, comparable improve-

ments have been reported with the administration of melatonin (eg, 17%)38 or benzodiazepines 

(4.2 minutes on average in a meta-analysis)24. Moreover, control of skin temperature not only 

affects SOL, but also sleep depth47. Further work is necessary to evaluate the clinical efficacy of 

the manipulations in insomniacs with an objectively verifiable very long SOL. In the present sam-

ple of insomniacs, the daytime SOLs under strictly controlled laboratory conditions did not differ 

from those of elderly without sleep complaints, even though the insomniacs reported much in-

creased sleep latencies in the diaries on their sleep at home. Such discrepancy has been reported 

previously for laboratory-based studies of nocturnal sleep49 and for laboratory-based studies on 

SOL under constant-routine conditions comparable with our present study22. 

With respect to our investigation of an age-related decrease in awareness of changes in tempera-

ture in a sleeping environment, the results show that elderly insomniacs have a notable deficit in 

the detection of subtle changes in skin temperature —even though the temperature manipula-

tions affected their skin temperatures and CBTs, as they did in younger and older subjects without 

sleep complaints. This attenuation of subjective thermosensitivity was much less in elderly with-

out sleep complaints who, as compared with young subjects, only failed to detect the distal 

warming condition as being warmer than the distal cooling condition. Elderly insomniacs did not 

discriminate temperature changes associated with either PST or DST manipulations nor did they 

rate any of the manipulations of core and skin temperature as affecting subjective comfort. The 

only sensitivity that the elderly insomniacs preserved similar to young and elderly without sleep 

complaints was that they rated the core warming condition as warmer than the core cooling con-

dition. 

These findings are in agreement with those of previous studies reporting a decrease in the sensi-

tivity of subjective thermal perception with age, especially for warm stimuli and particularly in the 
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distal parts30,31. Our results also show a reduced contribution of the CBT to the subjective expe-

rience of thermal comfort at advanced age. In elderly insomniacs, none of the applied tempera-

ture manipulations affected thermal comfort. This finding is in agreement with studies showing 

that elderly tolerate larger deviations in temperature before discomfort is noticed, at least when 

awake9,18,26,54 

To our knowledge, this is the first experimental finding of a pronounced attenuation of subjective 

thermosensitivity in elderly insomniacs within the small range of normal bed temperatures. It 

should be noted that our results cannot be extrapolated to a wide range of temperatures, includ-

ing those outside of the thermoneutral range; it cannot be concluded that insomniacs have a ge-

neralized failure to recognize temperature changes over a range of several degrees. Since subjec-

tive thermosensitivity is better preserved in elderly without sleep complaints, we consider the 

possibility that an attenuated thermosensitivity could contribute to suboptimal sleep in elderly 

subjects. A suboptimal temperature of the bed may go unnoticed even though it could adversely 

affect the capability to initiate or reinitiate sleep and adequate countermeasures may not be tak-

en. 

A limitation of the study is that the manipulation of CBT, DST, and PST was not completely inde-

pendent. However, the combined manipulations still did account for most of the variability ob-

served throughout the day in CBT and skin temperatures.  

A surprising finding was that the average SOL of the elderly insomniacs did not differ from that of 

the elderly without sleep complaints, although the groups differed in reported SOL in the 2 weeks 

prior to the experiment, as shown in Table 1. It may be that, in our particular protocol, the elderly 

insomniacs benefited from increased daytime sleepiness due to the restricted sleep allowed dur-

ing both nights preceding the experimental days. Moreover, the elderly insomniacs frequently 

reported that the environment of the sleep laboratory, with no sound, very low light levels, and a 

comfortable temperature, was rather ideal to them. Also, sleep onset occurred increasingly faster 

throughout the 2 experimental days, supporting the previous notion of Harris et al23 that sleep 

onset can improve with frequently repeated training. Finally, the application of relatively high 

distal temperatures in both cool and warm condition might have optimized sleep-onset conditions 

and, thus, contributed to the elimination of possible differences in SOL between elderly groups. 

Our findings may have implications for SOL in elderly and elderly insomniacs in everyday life. In 

both elderly and elderly insomniacs, warming the proximal skin resulted in a decrease in SOL. 

Hence, warming of the skin either by promoting peripheral heat loss or by subtle and feedback-

controlled warming of the skin within the thermoneutral range provides a means to improve 

sleep onset in elderly who have trouble falling asleep in the beginning of the night or after noc-

turnal or early morning awakening. Since our results indicate that the sleep onset in elderly in-

somniacs is accelerated by CBT cooling, it is of importance that the applied skin-warming strategy 
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is not resulting in an influx of heat to the core of the body. Application of, for instance, an electric 

blanket throughout the night (ie, continuous heating) results in an increase in the CBT and dis-

turbs nocturnal sleep16,43. Feedback control of the heating is clearly necessary to keep the micro-

climate in bed at such a level that the skin is warmed slightly only when skin-temperature mea-

surement indicates that it falls below a critical value. Such procedure should be optimized to pre-

vent an increase in CBT. 

In conclusion, our results confirm that even mild changes in skin temperature, likely to occur in 

normal sleeping circumstances, can have an effect on sleep propensity in elderly subjects, just as 

we previously demonstrated in young adults45. The sensitivity of the sleep-regulating systems in 

the brain to small variations in skin temperature is thus preserved at advanced age. In contrast, 

the subjective appreciation of subtle induced changes in skin temperature is decreased in elderly 

subjects, especially so in insomniac elderly. As a consequence, elderly insomniacs may lie awake 

awaiting sleep onset without noticing that the bed microclimate might not be supportive for fall-

ing asleep and, consequently, without taking the appropriate behavioral action, e.g., a change of 

bedding or clothing, to optimize the bed microclimate. Especially elderly insomniacs may benefit 

from interventions that increase skin temperature, e.g., by passive body heating before sleep 

(resulting in an increased drop in CBT and an elevated skin temperature)11,12,13,28 or by controlled 

warming of the beds microclimate. It is essential that this warming should not be timed too close 

to bedtime because elevated body temperature does not favor sleep50 and, only after about 2 

hours after body warming, the CBT becomes lower than without warming while skin temperature 

is still elevated52.  

 

References 
1.  Barrett J., Lack L., Morris M., 1993. The sleep-evoked decrease of body temperature. Sleep 16, 93-99. 

2.  Boulant J.A., Bignall K.E., 1973. Hypothalamic neuronal responses to peripheral and deep-body tem-
peratures. Am. J. Physiol. 225, 1371-1374. 

3.  Buysse D.J., Ancoli-Israel S., Edinger J.D., Lichstein K.L., Morin C.M., 2006. Recommendations for a 
standard research assessment of insomnia. Sleep 29, 1155-1173. 

4. Buysse D.J., Reynolds C.F., Monk T.H. 3rd, Berman S.R., Kupfer D.J., 1989. The Pittsburgh Sleep  Quality 
Index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193-213. 

5.  Campbell S.S., Broughton R.J., 1994. Rapid decline in body temperature before sleep: fluffing the phy-
siological pillow? Chronobiol. Int. 11, 126-131. 

6.  Carskadon M.A., Dement W.C., 1992. Multiple sleep latency tests during the constant routine. Sleep 
15, 396-399.  

7.  Carskadon M.A., Dement W.C., Mitler M.M., Roth T., Westbrook P.R., Keenan S., 1986. Guidelines for 
the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 9, 519-524. 

8.  Clodore M., Benoit O., Foret J., Bouard G., 1990. The Multiple Sleep Latency Test: individual variability 
and time of day effect in normal young adults. Sleep 13, 385-394. 

9.  Collins K.J., Dore C., Exton-Smith A.N., Fox R.H., MacDonald I.C., Woodward P.M., 1977, Accidental 
hypothermia and impaired temperature homoeostasis in the elderly. Br. Med. J. 1, 353-356. 



 
Promoting sleep onset 152 

10.  Czeisler C.A., Brown E.N., Ronda J.M., Kronauer R.E., Richardson G.S., Freitag W.O., 1985. A clinical 
method to assess the endogenous circadian phase (ECP) of the he deep circadian oscillator in man. 
Sleep Res. 14, 295. 

11.  Dorsey C.M., Lukas S.E., Cohen-Zion M., Sterfanovic L., 1998. Passive body heating vs. Zolpidem in 
older female insomniacs. Sleep 21 S3, 255. 

12.  Dorsey, C.M., Lukas, S.E., Teicher, M.H., Harper, D., Winkelman, J.W., Cunningham, S.L., Satlin, A., 
1996. Effects of passive body heating on sleep of older female insomniacs. J. Geriatr. Psychiatr. Neurol. 
9, 83–90. 

13.  Dorsey, C.M., Teicher, M.H., Cohen-Zion, M., Stefanovic, L., Satlin, A., Tartarini, W., Harper, D., Lukas, 
S.E., 1999. Core body temperature and sleep of older female insomniacs before and after passive body 
heating. Sleep 22, 891–898. 

14.  Douglass A.B., Bornstein R., Nino-Murcia G., Keenan S., Miles L., Zarcone V.P. Jr., Guillemi-
nault, C., Dement, W.C., 1994. The Sleep Disorders Questionnaire. I: creation and multiva-
riate structure of SDQ. Sleep 17, 160–167. 

15.  Edinger J.D., Bonnet M.H., Bootzin R.R., Doghramji K., Dorsey C.M., Espie C.A., Jamieson A.O., McCall 
W.V., Morin C.M., Stepansky E.J.; American Academy of Sleep Medicin Work Group,  2004. Derivation 
of research diagnostic criteria for insomnia: report of an American Academy of Sleep Medicine Work 
Group. Sleep 27, 1567-1596. 

16.  Fletcher A., Van den Heuvel C., Dawson D., 1999. Sleeping with an electric blanket: effects on core 
temperature, sleep, and melatonin in young adults. Sleep 22, 313-318. 

17.  Foley D.J., Monjan A.A., Brown S.L., Simonsick E.M., Wallace R.B., Blazer D.G., 1995. Sleep complaints 
among elderly persons: an epidemiologic study of three communities. Sleep  18, 425-32. 

18.  Frank S.M., Raja S.N., Bulcao C., Goldstein D.S., 2000. Age-related thermoregulatory differences during 
core cooling in humans. Am. J. Physiol. 279, R349-354. 

19.  Fronczek R., Overeem S., Lammers G.J., Van Dijk J.G., Van Someren E.J.W., 2006. Altered skin-
temperature regulation in narcolepsy relates to sleep propensity. Sleep 29, 1444-1449. 

20.  Fronczek R., Raymann R.J.E.M., Romeijn N., Overeem S., Fischer M., Van Dijk J.G., Lammers G.J., Van 
Someren E.J.W. 2008. Manipulation of core body and skin temperature improves vigilance and main-
tenance of wakefulness in narcolepsy. Sleep 31, 233-240. 

21.  Gradisar M., Lack L., 2004. Relationships between the circadian rhythms of finger temperature, core 
temperature, sleep latency, and subjective sleepiness. J. Biol. Rhythms 19, 157-163. 

22.  Gradisar M., Lack L., Wright H., Harris J., Brooks A., 2006. Do chronic primary insomniacs have im-
paired heat loss when attempting sleep? Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1115-1121. 

23.  Harris J., Lack L., Wright H., Gradisar M., Brooks A., 2007. Intensive Sleep Retraining treatment for 
chronic primary insomnia: a preliminary investigation. J. Sleep Res. 16, 276-284. 

24.  Holbrook A.M., Crowther R., Lotter A., Cheng C., King D., 2000. Metaanalysis of benzodiazepine use in 
the treatment of insomnia. CMAJ 162, 225-233. 

25. International Classification of Sleep Disorders: Diagnostic and Coding Manual. 1990. Rochester, MN: 
American Sleep Disorders Association. 

26.  Kaji Y., Yadoguchi I., Shoyama S., Kaji M., Tochihara Y., 2000. Effects of room temperature on physio-
logical and subjective responses to bathing of the elderly. In: Werner J., Hexamer M. (Eds.) Proceed-
ings of the IX Conference on Environmental Ergonomics; Dortmund, Germany, pp. 425-428. 

27.  Kamel N.S., Gammack J.K., 2006. Insomnia in the elderly: cause, approach, and treatment. Am. J. Med. 
119, 463-469. 

28.  Kanda K., Tochihara Y., Ohnaka T., 1999. Bathing before sleep in the young and in the elderly. Eur. J. 
Appl. Physiol. 80, 71-75. 

29.  Kenney W.L., Munce T.A, 2003. Invited review: aging and human temperature regulation. J. Appl. Phy-
siol. 95, 2598-2603. 

30.  Kenshalo D.R., 1977. Age changes in touch, vibration, temperature, kinesthesia and pain sensitivity. In: 
Birren J.E., Schaie K.W. (Eds.) Handbook of the Psychology of Aging. Van Nostrand, New York, pp. 562-
579. 

31.  Kenshalo D.R., 1986. Somesthetic sensitivity in young and elderly humans. J. Gerontol. 41. 732-742. 



 

 

Ch
ap

te
r 5

 

 
 

153 Diminished capability to recognize the optimal temperature for sleep 

32.  Kräuchi K., Wirz-Justice A., 1994. Circadian rhythm of heat production, heart rate, and skin and core 
temperature under unmasking conditions in men. Am. J. Physiol. 267, R819-R829. 

33.  Kräuchi K., Cajochen C., Werth E., Wirz-Justice A., 1999. Warm feet promote the rapid onset of sleep. 
Nature 401, 36-37.  

34.  Kräuchi K., Cajochen C., Werth E., Wirz-Justice A., 2000. Functional link between distal vasodilation and 
sleep-onset latency? Am. J. Physiol. 278, R741-748. 

35.  Kryger M., Monjan A., Bliwise D., Ancoli-Israel S., 2004. Sleep, health, and aging. Bridging the gap be-
tween science and clinical practice. Geriatrics 59, 24-26, 29-30. 

36.  Lack L.C., Lushington K., 1996. The rhythms of human sleep propensity and core body temperature. J. 
Sleep Res. 5, 1-11. 

37.  Lichstein K.L., Durrence H.H., Taylor D.J., Bush A.J., Riedel B.W., 2003. Quantitative criteria for insom-
nia. Behav. Res. Ther. 41, 427-445. 

38.  Lushington K., Pollard K., Lack L., Kennaway D.J., Dawson D., 1997. Daytime melatonin administration 
in elderly good and poor sleepers: effects on core body temperature and sleep latency. Sleep 20, 1135-
1144. 

39.  Magnussen G., 1939. Vasomotorische Veränderingen in den Extremitäten im Verhältnis zu Schlaf und 
Schlafbereitschaft. Acta Psychiatr. Neurol. 14, 39-54. 

40.  Marotte H., Timbal J., 1982. Circadian rhythm of temperature in man. Comparative study with two 
experimental protocols. Chronobiologia 8, 87-100. 

41.  Mills J.N., Minors D., Waterhouse J., 1978. Adaptation to abrupt time shifts of the oscillator(s) control-
ling human circadian rhythms. J. Physiol. 285, 455-470. 

42.  Murphy P.J., Campbell S.S., 1997. Nighttime drop in body temperature: a physiological trigger for sleep 
onset? Sleep 20, 505-511. 

43.  Okamoto-Mizuno K., Tsuzuki K., Ohshiro Y., Mizuno K., 2005. Effects of an electric blanket on sleep 
stages and body temperature in young men. Ergonomics 48, 749-757. 

44. Raymann R.J.E.M., Van Someren E.J.W., 2007. Time-on-task impairment of psychomotor vigilance is 
affected by mild skin warming and changes with aging and insomnia. Sleep 30, 96-103. 

45.  Raymann R.J.E.M., Swaab D.F., Van Someren E.J.W., 2005. Cutaneous warming promotes sleep onset. 
Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1589-1597. 

46.  Raymann R.J.E.M., Swaab D.F., Van Someren E.J.W., 2007. Skin temperature and sleep-onset latency: 
Changes with age and insomnia. Physiol. Behav. 90, 257-266. 

47.  Raymann R.J.E.M., Swaab D.F., Van Someren E.J.W., 2008. Skin deep: enhanced sleep depth by cuta-
neous temperature manipulation. Brain 131, 500-513. 

48.  Rechtschaffen A., Kales A., 1968. A manual of standardized terminology, techniques and scoring sys-
tem for sleep stages of human subjects. Bethesda: United States Department of Health, Education and 
Welfare. 

49.  Rosa R.R., Bonnet M.H., 2000. Reported chronic insomnia is independent of poor sleep as measured by 
electroencephalography. Psychosom. Med. 62, 474-482. 

50.  Sewitch D.E., 1987. Slow wave sleep deficiency insomnia: A problem in thermo-downregulation at 
sleep onset. Psychophysiology 24, 200-215. 

51.  Sivertsen B., Omvik S., Pallesen S., Bjorvatn B., Havik O.E., Kvale G., Nielsen G.H., Nordhus I.H., 2006. 
Cognitive behavioral therapy vs zopiclone for treatment of chronic primary insomnia in older adults: a 
randomized controlled trial. JAMA 295, 2851-2858. 

52.  Sung E.J., Tochihara Y., 2000. Effects of bathing and hot footbath on sleep in winter. J. Physiol. Anthro-
pol. Appl. Hum. Sci. 19, 21-27. 

53.  Sweere Y., Kerkhof G.A., De Weerd A.W., Kamphuisen H.A., Kemp B., Schimsheimer R.J., 1998. The 
validity of the Dutch Sleep Disorders Questionnaire (SDQ). J. Psychosom. Res. 45, 549-555. 

54.  Tochihara Y., 2000. Thermal comfort and blood pressure changes in the elderly. In: Werner J., Hex-
amer M. (Eds.). Proceedings of the IX Conference on Environmental Ergonomics, Dortmund, Germany, 
243-247. 

55.  Twisk J.W.R., 2003. Applied Longitudinal Data Analysis for Epidemiology. Cambridge University Press, 
Cambridge, UK. 



 
Promoting sleep onset 154 

56.  Van Marken Lichtenbelt W.D., Daanen H.A.M., Wouters L., Fronczek R., Raymann R.E.J.M., Severens 
N.M., Van Someren E.J.W. 2006. Evaluation of wireless determination of skin temperature using iBut-
tons. Physiol. Behav. 88, 489-497. 

57.  Van Someren E.J.W., 2000. More than a marker: interaction between the circadian regulation of tem-
perature and sleep, age-related changes, and treatment possibilities. Chronobiol. Int. 17, 313-354. 

58.  Van Someren E.J.W., 2000. Circadian and sleep disturbances in the elderly. Exp. Gerontol. 35, 1229-
1237. 

59.  Van Someren E.J.W., 2006. Mechanisms and functions of coupling between sleep and temperature 
rhythms. Prog. Brain. Res. 153, 309-324. 

60.  Van Someren E.J.W., 2007. Thermoregulation and aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 
292, R99-102. 

61.  Van Someren E.J.W., Raymann R.J.E.M., Scherder E.J.A., Daanen H.A.M., Swaab D.F., 2002. Circadian 
and age-related modulation of thermoreception and temperature regulation: mechanisms and func-
tional implications. Ageing Res. Rev. 1, 721-778. 

62.  Van Someren E.J.W., Riemersma R.F., Swaab D.F., 2002. Functional plasticity of the circadian timing 
system in old age: light exposure. Prog. Brain Res. 138, 205-231. 

63.  Van Sweden B., Kemp B., Kamphuisen H.A., Van der Velde E.A., 1990. Alternative electrode placement 
in (automatic) sleep scoring (Fpz-Cz/Pz-Oz versus C4-A1). Sleep 13, 279-283. 

64.  Wald A., 1943. Tests of statistical hypotheses concerning several parameters when the number of 
observations is large. Trans. Am. Math. Soc. 54, 426-482. 

 
 



 

 

 

 

 

 

 
 

DAYTIME VIGILANCE 



 
 

  



 

 

 

 

 

 

Chapter 6 
Time-on-task impairment of 

psychomotor vigilance is 
affected by mild skin warming 

and changes with aging and 
insomnia 

 
Roy J.E.M. Raymann 

Eus J.W. van Someren 
 

 
 
 

 
 

 
 

 
Sleep 2007(30), p. 96-103.



 
Daytime Vigilance 158 

Summary 
Study Objectives: To investigate the effect of mild manipulations of core and skin temperature on 

psychomotor vigilance (PVT) in young adults, elderly, and elderly insomniacs. 

Design: 432 PVTs were obtained during a 2-day semi-constant routine protocol, while differential-

ly manipulating core and skin temperatures within a comfortable thermoneutral range. 

Setting: Sleep laboratory of the Netherlands Institute for Neuroscience. 

Patients or Participants: Groups of 8 sex-matched young adults (27.0±2.4 years, mean±s.e.m.), 

elderly (65.8±2.8 years), and insomniacs (59.1±1.9 years).  

Measurements and Results: During the 7-minute PVTs, response speed typically declined with 

increasing time-on-task. Proximal skin warming by only ±0.6˚C accelerated this decline by 67% (P 

= 0.05) in young adults and by 50% (P<0.05) in elderly subjects. In elderly insomniacs, proximal 

warming slowed down the mean response speed already from the onset of the task (3%, 

P<0.001). Response speed tended to decrease with age (P<0.10), reaching significance only in 

elderly insomniacs (P<0.05). Speed decrements occurred mostly towards the end of the time-on-

task in young adults; earlier and more gradually in elderly without sleep complaints; and very ear-

ly and in a pronounced fashion in insomniacs. Interestingly, the worsening by warming followed 

the time pattern already present within each group. 

Conclusions: The results are compatible with the hypothesis that the endogenous circadian varia-

tion of skin temperature could modulate vigilance regulating brain areas and thus contribute to 

the circadian rhythm in vigilance. Minute-by-minute PVT analyses revealed effects of age and 

insomnia not previously disclosed in studies applying time-point aggregation. Our data indicate 

that “age-related cognitive slowing” may result, in part, from age-related sleep problems. 
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1. Introduction 
There is a close relationship between the circadian rhythm of core body temperature (CBT) and 

the daily variation in vigilance, as shown by Kleitman16. Vigilance is optimal during the circadian 

phase of increased CBT6,15,22,39,40. Under controlled conditions, the rhythm in CBT results to a large 

extent from the rhythm in skin blood flow, which determines skin temperature, and the resulting 

heat transfer gradient from the body to the environment. Skin temperature thus shows a circa-

dian rhythm that is reciprocal to the CBT rhythm, i.e., low during the habitual wake period20,32,35, 

although a reversal of the proximal skin temperature has been found under specific conditions17. 

We have proposed that these intrinsic changes in both CBT and skin temperature could modulate 

neuronal activity in vigilance regulating brain areas33. A likely brain structure linking vigilance with 

core body and skin temperature is the preoptic area/anterior hypothalamus (POAH), the major 

thermo-regulatory center of the mammalian brain as well as a key structure in vigilance state 

control. Both local brain temperature and skin temperature modulate the firing rate of thermo-

sensitive neurons in the POAH and other brain areas involved in vigilance regulation4,33.  

Support for a causal contribution of skin, but not core, temperature to vigilance regulation has 

been provided by a strictly controlled laboratory study, demonstrating accelerated sleep onset 

with very subtle warming of the skin in a comfortable and thermoneutral range (Chapter 4, this 

thesis)28. The simultaneous and independent induction of changes in core body temperature did 

not affect sleep propensity. These findings suggest that the previously reported positive phase 

relation of the circadian rhythm in core body temperature and the circadian rhythm in vigil-

ance6,15,22,39,40 might also be an indirect reflection of a reciprocal phase relation of the circadian 

rhythm in skin temperature and the circadian rhythm in vigilance.  

A limited number of experimental studies have investigated the effect of skin tmperature manipu-

lation on vigilance. These studies manipulated ambient temperature to induce skin temperatures 

beyond the range of the normal diurnal fluctuations in skin and core body temperature. A recent 

meta-analysis on the effects of temperature manipulation on task performance indicates an in-

verted U-shape, not surprisingly demonstrating that both high and low temperatures that activate 

thermoregulatory responses adversely affect performance26. Thus, both heat and cold stress nega-

tively affected sustained vigilance14,23. This makes sense from the point of view that the brain 

needs to readdress its resources from optimal task performance towards thermal stress defense. 

These findings cannot be generalized to the normal diurnal range of in skin temperature. Conse-

quently, no conclusion can be drawn regarding a causal contribution of the circadian rhythm in 

skin temperature to the circadian rhythm in vigilance. 

The aim of the present study was to investigate whether the induction of changes in skin and core 

body temperature within the comfortable range of normal diurnal rhythm could causally affect 
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vigilance. Our recently developed experimental set-up28 allowed us to induce subtle changes in 

core body temperature (+ and - 0.1˚C) and proximal and distal skin temperature (+ and - 0.3˚C) in 

a balanced protocol. As the dependent variable, we obtained sustained response speed as meas-

ured with the psychomotor vigilance task (PVT)10. We investigated the effect of core body and 

skin temperature manipulations on psychomotor vigilance not only in healthy young adults, but 

also in elderly without sleep problems and elderly who complained of poor sleep. Elderly subjects 

are of particular interest because (1) thermosensitivity decreases with aging36; (2) aging slows the 

response speed during a psychomotor vigilance task1,2,24,25; (3) elderly are at a higher risk of chron-

ic poor sleep34, and acute sleep restriction affects vigilance—although less so in well sleeping el-

derly subjects than in young adults1,2,24,25. 

 

2. Materials & Methods 

2.1. Subjects 
Eight healthy young adults free from sleep complaints (21-39 years old; mean±s.e.m.: 27.0±2.4 

years; 4 males), 8  healthy elderly free from sleep complaints (56-80 years old; 65.8 ± 2.8 years; 4 

males), and 8  poorly sleeping healthy elderly (51-66 years old; 59.1 ± 1.9 years; 4 males) partici-

pated with informed consent. The protocol was approved by the Medical Ethics Committee of the 

Academic Medical Center of the University of Amsterdam. All participants were free of medica-

tion known to affect thermoregulation, sleep or the circadian system, cardiovascular medication, 

and psychotropic medication. One female used oral contraceptives. Subjective sleep quality and 

complaints were measured using a Dutch adaptation29 of the 75-item Sleep Disorders Question-

naire (SDQ)11 and the Pittsburgh Sleep Quality Index (PSQI)5. Poor sleepers were defined by a PSQI 

score > 5 and an SDQ-Insomnia score >2.5. None of the subjects scored higher than the cutoff 

score of 3 on the SDQ subscales Narcolepsy, Apnea, Restless legs, and Psychiatry. In the young 

adult group, females participated between day 4 and day 12 of the menstrual cycle (midfollicular 

phase or pseudofollicular phase). All elderly females were postmenopausal. 

 

2.2. Design and Experimental Procedures 
One week before the experiment, subjects visited the laboratory for an introductory session and 

habituation to the procedures. The vigilance task was trained for 3 times to minimize possible 

subsequent learning effects9. Participants were instructed to refrain from caffeine, alcohol, and 

tobacco for 8 hours before arriving at the sleep laboratory. Subjects were interviewed to verify 

compliance with the instructions. The night before each of the 2 experimental days, the subjects 

reported to the sleep laboratory at 22:00, when they were prepared for polysomnography and 
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fitted with a comfortable stretch knit fabric thermosuit for skin temperature manipulation. From 

midnight until 06:00, lights were turned off and subjects were allowed to sleep. They were awa-

kened at 06:00, so sleep duration was restricted to a maximum of 6 hours. 

The experiment consisted of measuring psychomotor vigilance 18 times for each subject over 2 

experimental days, while manipulating CBT with food and drinks and skin temperature with a 

thermosuit. An experimental day started at 06:30 and consisted of a modified constant-routine 

protocol21,7 under dim light (<10 Lux) conditions and a fixed body position schedule. Both experi-

mental days consisted of 9 consecutive blocks of 1.5 hours each. 

Each block was conducted as follows: The subjects were required to leave the bed and walk 5 

meters to use the bathroom if needed. At minute 10 of each block, skin temperature manipula-

tion was started and subjects were seated in a bed in semi-supine position, and were served a 

snack and a drink to consume in approximately 10 minutes. Subsequently a self-paced compute-

rized neuropsychological task battery was completed. This task battery included assessment of 

psychomotor vigilance, as described below in detail. At 60 minutes, the bed was set in supine 

position, the lights switched off, and the participants were asked to try to sleep. Maximum lights-

off time was 30 minutes, completing the 90 minutes of each block. Results of the effects of tem-

perature manipulation on sleep latency in healthy young adults have been reported elsewhere 

(Chapter 4, this thesis)28 and the results in the elderly are in preparation. 

Skin and core body temperature were manipulated differently in every block. During the first 

block of each day, skin temperatures were kept at an intermediate level. This block served as a 

habituation period for participants to dissipate sleep inertia and become accustomed to the pro-

tocol; this period was omitted from all analyses. 

In the remaining 8 blocks, core body temperature, proximal skin temperature, and distal skin 

temperature were independently manipulated in either a slightly warmer or cooler direction, but 

within a comfortable, thermoneutral range. This 2x2x2 experimental design (core body tempera-

ture warm or cool [CBT+ or CBT-], proximal skin temperature warm or cool [PST+ or PST-], distal 

skin temperature warm or cool [DST+ or DST-]) brings up 8 possible manipulation combinations 

that were all tested within a day in every subject (see Figure 1). The sequence of the manipulation 

combinations was different for each subject, such that every manipulation combination was given 

once in each of the 8 blocks, and every transition from one to any other combination occurred 

only once. At the end of the first day, subjects went home and returned to the laboratory the next 

evening for a repeat assessment using the same procedure; the only difference was that the tem-

perature manipulation combinations were the opposite of those of the first day to provide a pro-

tocol balanced for circadian effects. For example, if the second block of a specific subject on day 

one consisted of core warming, proximal skin cooling, and distal skin warming, that participant 
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was subjected to core cooling, proximal warming, and distal skin cooling during the second block 

on day 2. 

 
Fig. 1. Schematic view of temperature manipulations within a day within one subject. On the 

second day, temperature manipulation combinations were the opposite of those of the 
first day. Block A = habituation block. White= Cool, Dark grey = Warm. 

 

2.3. Temperature Manipulations and Measurement 
Temperature manipulations and measurements have been described in detail previously (see 

Chapter 4, this thesis)28. In brief, core body temperature was manipulated by means of 200 ml hot 

(heated to 80°C, served 2 minutes later) or cold (0°C, crushed ice) tea (4.25 Kcal), (Iced Tea Mix 

[Diet Decaffeinated Lemon], Lipton, Englewood Cliffs, NJ, USA) together with an isocaloric hot or 

cold snack of the subject’s choice (200 Kcal). Skin temperatures (Tsk) were manipulated using a 

thermosuit (Coretech Cool Tube Suit, Med-Eng Systems Inc., Ottawa, Canada). It was connected to 

two computer-controlled bath-circulation thermostats (K6KP, Lauda, Lauda-Köningshofen, Ger-

many), one for distal and one for proximal skin temperature manipulation. The water in the bath 

was 33°C in the cool condition and 37°C in the warm condition, resulting in temperatures of ap-

proximately 31°C and 34°C measured at the tubes just before entering the thermosuit. 

This range of skin temperature manipulations was chosen to be comfortable and not trigger major 

thermoregulatory responses. Ingestion of food and drinks to manipulate core body temperature 

manipulation and skin temperature manipulations were started about 25 minutes before the start 

of the PVT. Subjects were well habituated to the thermosuits and skin temperature manipulation; 

during the prior night they had slept in the suits, while being subjected to slow temperature varia-

tions within the same range (reported elsewhere, see chapter 8, this thesis). 

Body temperature was obtained using 8 thermistors (P-8432, ICBT, Tokyo, Japan). Core body tem-

perature (Tre) was measured using a rectal thermistor. Proximal skin temperature was measured 

at 3 places: right mid-thigh on the musculus rectus femoris, abdomen (1 cm above the navel), and 

the right infraclavicular area. Distal skin temperature was measured at 4 points: thenar area at 

the palmar sites of the left and right hand and medial metatarsal area at the plantar sites of the 

left and right foot. Average distal skin temperature (Tdist) and a weighted average for proximal skin 

temperature (Tprox) were calculated as described previously28. Temperature data were averaged 

over 20-minute intervals surrounding the PVT assessments and used for further analyses. As a 
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final check, when a single averaged data point differed more than 2 standard deviations from the 

other 20-minute averages during that day, the non-averaged data were once more checked for 

artifacts and corrected or removed when needed. 

 

2.4. Vigilance Measurement 
Vigilance was assessed using a 7-minute version of the Psychomotor Vigilance Task (PVT)10 that 

can be regarded as a viable alternative to the standard 10-minute PVT test19. During the task, sub-

jects focused on a blank box in the middle of a computer screen. At random intervals, a millise-

cond counter started to scroll, and subjects had to press a key to stop the counter as quickly as 

possible. After pressing the key, the counter displayed the achieved reaction time (RT, in millise-

conds) for 1 second, providing the subject with feedback on performance. Interstimulus intervals 

ranged randomly from 2 to 10 seconds, and the task lasted 7 minutes. Response speed, calculated 

as reciprocal RT (RRT = 1000/RT) was averaged per minute. The vigilance measure of interest was 

the characteristic decline of response speed with increasing time-on-task. This decline was mod-

elled using up to second order regression fits over the subsequent one-minute means, starting at 

the second minute. The first minute of data was excluded from analyses because many subjects 

showed unrepresentative long reaction times at the start of the PVT (see also Figure 2). 

  

2.5. Statistical Analysis 
To determine the effects of skin and core body temperature manipulation on body temperatures 

and on vigilance, hierarchical regression analysis was applied (also known as multilevel or random 

coefficient analysis) using the MLwiN software package (Centre for Multilevel Modelling, Institute 

of Education, London, UK). The regression takes into account the multileveled interdependency of 

the data points inherent to the hierarchical structure of the design30.  

It was first evaluated how core body and skin temperatures (Tre, Tprox, and Tdist) were affected 

by the manipulations. To do so, CBT, PST, and DST were dummy coded as dichotomous predictor 

variables, with 0 reflecting the cool manipulation and 1 reflecting the warm manipulation. A 3-

level regression model was fitted (the sequential 20-minute average temperatures in each block 

(i), nested within days (j), nested within subjects (k). Additional models were run to test for car-

ryover effects of the temperature manipulations, by adding temperature manipulations of the 

preceding block (pCBT, pPST, and pDST) to the regression models. 

Subsequently, 4-level regression models were applied to PVT response speed: the sequential one-

minute averaged response speeds (i), nested within measurements (blocks, (j)), nested within 

each day (k), nested within subjects (l). The final regression model included the best of linear and 

nonlinear approximations for the rate of decline in response speed (linear, second order, and 
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square root, i.e., Minutes, Minutes2, and √Minutes). Two series of regression analyses were run. 

The first series evaluated the effect of the dummy coded (factorial) temperature manipulations 

on response speed and its rate of decline with increasing time-on-task. The second series eva-

luated the relation of the actual momentary body temperatures to response speed.  

In order to account for possible diurnal variation and learning effects, both time of day (Hour) and 

the number of times the task was performed (Repeats, ranging from 1 to 16) were entered in the 

models as covariates, up to the second order as needed (Hour, Hour2, √Hour set at zero on both 

days for the first block included in the analysis; Repeats, Repeats2, √Repeats, set at one for the 

first block included in the analysis on day one). Maximum likelihood was used to estimate the 

regression coefficients, which were tested for significance with the Wald test. Independent va-

riables were allowed and kept in the model only if their coefficients were significant and if resi-

dual error of the model was reduced according the likelihood ratio test. Two-tailed significance 

levels were set at 0.05. 

 

3. Results 

3.1. Induced temperatures 
The effects of the temperature manipulations on core body and skin temperatures for all groups 

are shown in Table 1 and Table 2. Note that the values reflect the temperatures during task per-

formance and therefore differ slightly from the previously reported temperatures after comple-

tion of the task, just prior to sleep onset latency determination17.  

Tre was significantly affected by the core body temperature manipulation, with 0.25˚C, 0.20˚C, and 

0.18˚C higher Tre in the CBT+ condition, compared with the CBT- condition for young adults, elder-

ly subjects, and elderly insomniacs, respectively. Tre also showed modulation over the time of day, 

accounting for respectively 20%, 47%, and 37% of the variance. The core body temperature mani-

pulation accounted for another 51%, 32%, and 35% of the residual variance in Tre. The addition of 

preceding temperature manipulations to test for carryover effects accounted for an additional 

14%, 24%, and 20% of the variance, respectively. 

Tprox was significantly affected by the proximal skin temperature manipulation with 0.68˚C, 0.56˚C, 

and 0.57˚C higher Tprox in the PST+ condition compared with the PST- condition for young adults, 

elderly subjects, and elderly insomniacs, respectively.  Moreover, in elderly subjects, Tprox was 

significantly affected by the core body temperature manipulation, with 0.12˚C higher Tprox in the 

CBT+ condition compared with the CBT-. In young subjects the proximal temperature manipula-

tion accounted for 78% of the variance. In both elderly groups only, Tprox showed modulation over 

the time of day, accounting for 8% and 3% of the variance for elderly subjects and elderly insom-

niacs, respectively.  The temperature manipulations accounted for another 65% and 69% of the 
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residual variance in Tprox. The addition of preceding temperature manipulations to test for car-

ryover effects accounted for an additional 1%, 7%, and 1% of the variance, respectively.  

 

 
Tdist was significantly affected by the distal skin temperature manipulation, with 0.64˚C, 0.67˚C, 

and 0.59˚C higher Tdist in the DST+ condition compared with the DST- condition for young adults, 

elderly subjects, and elderly insomniacs respectively. Tdist was also modulated by proximal skin 

manipulations (0.24˚C, 0.17˚C, and 0.12˚C higher Tdist in the PST+ condition) and core body tem-

perature manipulation (0.69˚C, 0.42˚C, and 0.56˚C higher Tdist in the CBT+ condition). In the two 

groups with no sleep complaints, Tdist also showed modulation over the time of day, accounting 

for 3% of the variance in both groups. The temperature manipulations accounted for another 

75%, 75%, and 68% of the residual variance in Tdist. The addition of preceding temperature mani-

pulations to test for carryover effects accounted for an additional 4%, 2%, and 12% of the va-

riance, respectively. 
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In summary, the manipulations accounted for the major part of the variance in body tempera-

tures, even though some crossover of manipulations in the previous block occurred. Tprox was 

comodulated by core body temperature manipulation in the elderly subjects, and Tdist by the core 

body and distal manipulation in all groups.  

3.2. Effect of Temperature Manipulation on Vigilance 
The first minute of the PVT performance was characterized by long reaction times in both groups 

of elderly, suggesting some difficulty initiating the right mind-set for the task (see Figure 2). Ana-

lyses were therefore limited to the minutes 2 to 7. There was a typical worsening, i.e., a decline in 

response speed (RRT), with increasing time-on-task (see Table 3 and Figure 2). Proximal warming 

accelerated this decline by 67% in young adults (PST x Minute2, P = 0.05) and by 50% in the elderly 
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subjects (PST x Minute, P<0.05). In the elderly insomniacs, proximal warming lowered the overall 

response speed by 3%, independent of time-on-task (PST, P<0.001). There was no significant dif-

ference in response speed between the cool and warm core body and distal skin temperature 

manipulations in any group. 

 Since the effects of the temperature manipulations were not always restricted to the body sites 

aimed for, and some carryover effects of previous temperature manipulations occurred, we also 

analyzed the relation of the actually measured temperatures Tre, Tprox, and Tdist (regressor va-

riables) to response speed. In young adults, a higher Tprox was marginally associated with a faster 

decline in response speed with increasing time-on-task (Tprox x Minute2, P = 0.05). In the elderly 

insomniacs a higher Tprox also tended to be associated with a lower response speed, but now inde-

pendent of time-on-task (Tprox, P<0.10). For these both groups, the model best fitting the data was 

comparable to the aforementioned models with dichotomous manipulation levels. In the elderly 

subjects, lower Tre was associated with lower response speed independent of time-on-task (Tre, 

P<0.05). 

 

Summarizing the relation between body temperatures and vigilance, proximal skin warming wor-

sens the response speed on a vigilance task. In elderly subjects, a lower rectal temperature is as-

sociated with a lower response speed. 

 

3.3. Effect of Age and Insomnia on Vigilance 
Between-group comparisons indicated that aging tended to lower the overall response speed (P< 

0.10), reaching significance only in the elderly insomniacs (P<0.05). The groups also differed in the 

profile of the decline in response speed with increasing time-on-task. This decline was best ap-

proximated quadratically in young adults (Minutes2, P<0.001), linearly in elderly subjects (Mi-

nutes, P<0.001), and by a square root in elderly insomniacs (√Minutes, P<0.001). As evident from 

Figure 2, these profiles indicate that (1) young subjects perform well initially and begin to do 

worse halfway through the task; (2) elderly show a linear gradual decline commencing earlier; and 

(3) elderly insomniacs show their vigilance drop soon after the start of the task. 

Elderly subjects and insomniacs also differed from young adults by not showing the modulation of 

the average response speed by number of repeats that was present in the latter group (√Repeats, 

P<0.05), indicating a learning effect. Finally, no change in performance in the course of the day 

(hour) was present in any of the groups. 
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4. Discussion 
Psychomotor vigilance is partly determined by the endogenous circadian clock6,15,22,39,40, but the 

mechanisms involved in this circadian modulation are not known. We investigated whether subtle 

changes in core body and skin temperatures, mimicking those that are naturally occurring during 

the circadian cycle, could contribute to changes in psychomotor vigilance. In order to prevent 

cause-and-effect interpretation difficulties inherent to correlations, we chose to experimentally 

manipulate core body and skin temperatures and observe the effects on PVT performance. Our 

study is the first of its kind to study relative changes in vigilance under conditions of simulta-

neously and differentially controlled core body and skin temperatures. In young and elderly sub-

jects without sleep complaints, the decline in response speed with increasing time-on-task be-

came stronger with slight warming of the proximal skin area. In elderly insomniacs, the overall 

response speed decreased with such subtle proximal skin warming. Since all manipulations in-

duced changes in the temperature range normally seen in everyday life, the circadian modulation 

of these temperatures could indeed contribute to the circadian modulation in vigilance. During 

the circadian phase of habitual nocturnal sleep there is a parallel increase in vigilance impair-

ment31 and average or proximal skin temperature32,20, although the proximal skin temperature 

profile may reverse under colder laboratory conditions17, as discussed recently35. 
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A mechanism that may be involved is that skin warming has been shown to increase neuronal 

activity in the preoptic and anterior hypothalamic area in rodents4 and humans13, comprising 

areas critically involved in both sleep and arousal regulation. Such a mechanism is also supported 

by our recent finding that subtle skin warming accelerates sleep onset in young healthy adults, 

despite being experienced as less comfortable28.  Our studies provide indirect support for a mod-

ulatory role of skin temperature on brain areas involved in the regulation of sleep propensity and 

vigilance33.  Drummond and colleagues12 reported that slower reaction times in the PVT task were 

associated with greater activity in a “default mode network”27 that consists of frontal and post-

erior midline regions. Our findings suggest that the activity in this network is sensitive to skin 

temperature, possibly indirectly through a signaling pathway from the preoptic and anterior hy-

pothalamic area to this network. 

A limitation of the study is that we have not been able to fulfill our aim to completely and inde-

pendently manipulate core body and distal and proximal skin temperatures. The strongest cros-

sover occurred from core body temperature manipulations on distal skin temperature and minor 

carryover effects from preceding temperature manipulations have been elicited. On the other 

hand, the combined manipulations accounted for most of the variability observed throughout the 

day in core body and skin temperatures.  

We therefore followed up on the factorial analyses with subsequent analyses investigating the 

association of actually measured temperatures with response speed. These analyses confirmed 

that PVT performance is negatively related to proximal temperature, significantly so in young 

adult subjects, at trend level in elderly insomniacs, but not reaching significance in elderly sub-

jects.  

In the elderly good sleepers, a significant association emerged between vigilance performance 

and rectal temperature. This is compatible with previous reports on a worsening of vigilance dur-

ing the circadian phase of lowered CBT6,15,22,39,40. 

We optimized the design in order to exclude systematic errors due to circadian variation, not only 

by applying both cool and warm conditions to the same subject at the same times of day, but also 

by stratified randomization in order to have different sequences for all subjects. Thus, there was 

no fixed sequence that would allow for a systematic error due to possible carryover effects.  

The range in core temperatures covered throughout our manipulations should have been suffi-

cient to alter vigilance, if vigilance was indeed causally affected by the normal circadian variation 

in core body temperature. The difference of about 0.2˚C on average in Tre we established between 

the warm and the cool conditions is about half of the reported circadian amplitude in core body 

temperature (0.44˚C) under controlled conditions17. The normal diurnal time course of distal skin 

temperature reaches values much lower than we have applied. During everyday life, distal skin 

temperature reaches temperatures of several degrees below the values measured at the proximal 
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skin38. Also under strictly controlled laboratory conditions, the distal 24-hour minimum, maxi-

mum, and 24-hour mean skin temperatures were lower than their proximal equivalents17. The 

averaged induced Tprox and Tdist in our study were however comparable to each other (see Table 1). 

We may thus have been manipulating distal skin temperature too close to the ceiling of its normal 

diurnal pattern, hence we cannot exclude that applying distal skin temperature manipulations in a 

slightly lower range could be at least as effective in modulating vigilance. 

In order to investigate whether the changes in subjective thermal comfort and thermal sensation 

might have contributed to the findings, we post hoc added both variables that were included in 

the neuropsychological test battery17 to the optimal models. Neither subjective thermal sensation 

nor thermal comfort was associated with response speed in any of the groups (thermal sensation: 

P = 0.69, P = 0.26, and P = 0.67 and thermal comfort: P = 0.78, P = 0.90, and P = 0.51 for young 

adults, elderly without sleeping problems, and elderly insomniacs, respectively). Hence the per-

formance impairment is a direct effect of the change in temperature rather than an effect of the 

concurrent change in subjective thermal comfort or thermal sensation. We also performed a post 

hoc analysis to test whether the polysomnographically assessed sleep duration or efficiency dur-

ing the previous night might have been involved in the group differences in response speed. No 

significant contribution to response speed could be demonstrated (sleep duration: P = 0.41, sleep 

efficiency: P = 0.36), indicating that the group differences cannot be attributed to the sleep pat-

tern of the nights directly preceding the vigilance assessment days.  

Our data also revealed a number of age-related and insomnia-related changes in performance on 

the PVT under strictly controlled and balanced conditions. Of note, elderly subjects who were 

good sleepers responded only marginally less fast than young adults (P<0.10). Only if elderly were 

poor sleepers, their response speed became significantly worse than that of young adults 

(P<0.05). Whereas previous studies have also reported PVT response speed slowing with aging1,3, 

our data suggest that a part of the “age-related cognitive slowing” may in fact be due to sleep 

changes inherent to aging. The fact that only elderly insomniacs showed a robust worsening of 

PVT response speed supports the possible involvement of what one could call “poor sleep-related 

cognitive slowing” in “age-related cognitive slowing.” On the other hand, it may be that elderly 

good sleepers are not representative for the cognitive alterations present in the aged population. 

Whereas some previous studies on the effects of aging on vigilance may have been biased by se-

lecting well-sleeping elderly only, we purposely included separate groups of well-sleeping and 

poorly-sleeping elderly, thus allowing us to separate sleep-related changes from changes asso-

ciated with aging. 

The minute-by-minute analyses of the PVT moreover showed notable differences in the time-on-

task-related vigilance decline between young adults, elderly, and elderly insomniacs, which could 

not have been disclosed with the often applied aggregation of time-points.  
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First, whereas young adults show a slowing of speed only starting halfway the 7 minutes time-on-

task, the slowing was linear in elderly subjects and occurred at the beginning of the task in elderly 

insomniacs. Thus, aging results in an earlier onset and more gradual decline in response speed 

with increasing time-on-task. Insomnia, on the other hand, results in a near maximal drop in re-

sponse speed by the third minute, indicating that insomnia specifically affects the cognitive re-

source “reserve” that is required to maintain a highly vigilant state for a prolonged period of time. 

This specific defect associated with insomnia was mirrored also in the effects of proximal warming 

on the response speed. Whereas the effect of proximal warming developed slowly with increasing 

time-on-task in young and elderly subjects without sleep complaints, the effect was present at the 

onset of the task in the elderly insomniacs. It is remarkable that the group differences in the pro-

file of speed decline with increasing time-on-task-related were mirrored in the worsening with 

mild warming: only late in young adults, gradual in elderly subjects and at onset in elderly insom-

niacs. The fact that the group differences in the profile of temperature effect were exactly similar 

to the overall time-on-task effects within the groups provides strong support for the robustness of 

the group differences in time-on-task effects. Interestingly, the gradual change from (1) a perfor-

mance decline starting only halfway the task (young adults), to (2) a linear performance decline 

starting soon after onset of the task (elderly without sleep complaints), to (3) a performance de-

cline that is very pronounced already soon after onset of the task – closely resembles previously 

reported effects of increasing sleep propensity on time-on-task profiles8. 

Second, we observed marked group differences in the mean response time within the first minute 

of the PVT. Whereas the young adults showed the fastest responses during the first minute, the 

elderly subjects reached their fastest response speed only by the second minute. The data of 

Kribbs and Dinges18 also clearly show a delay of the fastest response in adults with obstructive 

sleep apnea. The initial poor performance indicates that elderly experience some difficulty initiat-

ing the right mind-set for the task. The finding is compatible with the fact that aging affects execu-

tive functioning in general, and task switching in particular37. Our novel finding that this age effect 

is also present in repeated PVT assessments has consequences for the use and interpretation of 

its most commonly calculated outcome measures (median RT, mean of the fastest 10% RT, mean 

of the slowest 10% reciprocal RTs, SD of the RT, and number of lapses [RT > 500 ms]) when com-

paring different age groups. None of these measures adequately describe the typical decline in 

response speed with increasing time-on-task, in which we found the most interesting age- and 

insomnia- related changes. We favor the opinion of Kribbs and Dinges18 that “analysis of the over-

all mean response often does not truly reflect the entire impairment process and, in fact, may 

sometimes obscure actual performance impairment.” We suggest others include an examination 

of time-on-task effects before aggregating data. In age-related studies on such time-on-task ef-

fects, the first minute of PVT response data may be excluded. 
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A further age-related finding of our study is that young subjects showed  increase in response 

speed related to the number of times the task was performed (learning effect), but this modula-

tion was not present in either group of elderly subjects. 

In conclusion, our results add to the significance of previous correlational studies39 on the relation 

between body temperature and vigilance by now demonstrating for the first time that an experi-

mentally induced subtle increase in skin temperature may in fact cause a decrease in vigilance 

performance. The findings are compatible with the model we have previously put forward, stating 

that the diurnal modulation of skin temperature should be regarded not only as an output signal 

of the circadian timing system but also as an input signal modulating vigilance regulating brain 

areas33. We also demonstrated that a minute-by-minute analysis of the PVT helps to reveal and 

disentangle age- and insomnia- related changes in vigilance regulation.  

A practical implication of our findings is that manipulation of skin temperature may be well suited 

for improvement of vigilances states, at least in the range of our manipulations. The manipula-

tions appear to have the greatest effect in the subjects whose vigilance state could be expected to 

be the most compromised, i.e., elderly subjects suffering from chronic poor sleep. Future studies 

should investigate whether vigilance can be changed if manipulation of skin temperature starts 

from an unmanipulated endogenous regulated skin temperature. Comparing the time-on-task 

effects on psychomotor vigilance of subtle skin warming or skin cooling with the time on task ef-

fects in a thermal neutral state (i.e. without manipulation) is necessary to assess the feasibility for 

practical application. 
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178 Daytime Vigilance 

Summary 
Context: Impaired vigilance and sleepiness are two major daily complaints of patients with narco-

lepsy. We previously showed their sleepiness to be correlated to an abnormally regulated skin 

temperature, i.e., increased distal skin temperature compared with proximal skin temperature. 

Objective: Our goal was to investigate a possible causal contribution of skin temperature distur-

bances to impairments in the ability to maintain vigilance and wakefulness in narcolepsy. 

Design: In a modified constant routine protocol, the Psychomotor Vigilance Task (PVT) and the 

Maintenance of Wakefulness Test (MWT) were repeatedly assessed. Meanwhile, skin and core 

body temperatures were mildly manipulated within the thermoneutral range of the normal diur-

nal rhythm using a thermosuit and hot or cold food and drinks. 

Setting: Tertiary narcolepsy referral center in a university hospital. 

Patients or Other participants: Eight patients (5 males) diagnosed with narcolepsy with cataplexy 

according to the ICSD-2 criteria (mean age ± SD: 28.6 ± 6.4, range 18-35 years). 

Intervention(s): None 

Main Outcome Measure(s): MWT sleep latency and PVT response speed. 

Results: Compared to core cooling, core warming attenuated the typical decline in PVT response 

speed with increasing time-on-task by 25% (P =0.02). Compared to distal skin warming, distal skin 

cooling increased the time that the patients were able to maintain wakefulness by 24% (distal 

warming: 1.88 min. vs. distal cooling: 2.34 min.; P < 0.01).  

Conclusions: Core body and skin temperatures causally affect vigilance and sleepiness in narco-

lepsy. This could lead to future practical applications. 
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1. Introduction 
Narcolepsy is a syndrome characterized by excessive daytime sleepiness (EDS) and cataplexy17. 

Although sleepiness in narcolepsy is generally described as inadvertently falling asleep, a perhaps 

equally important aspect is impaired performance in the waking state due to disturbed vigil-

ance6,23.  

In healthy controls, both sleepiness and vigilance show a relationship with core body temperature 

and skin temperature. When core body temperature is high during daytime, skin temperature is 

relatively low, a combination that is correlated to optimal vigilance3,8,9,16,27,28. In contrast, core 

body temperature is low at night time, when skin temperature is relatively high, and this combi-

nation is correlated to optimal sleep3,8,9,16,27,28. Skin temperature thus shows a circadian rhythm 

that is the inverse to the core body temperature rhythm13. Furthermore, a relatively high temper-

ature of the distal skin (hands and feet) compared to the temperature of the proximal skin has 

been shown to be related to the process of falling asleep: a higher distal-to-proximal gradient 

(DPG) promotes sleep onset10. A causal contribution of core body temperature and skin tempera-

ture to vigilance and sleepiness has been shown to exist in healthy subjects, in whom mild warm-

ing of the proximal skin leads to an accelerated decline in vigilance and to an earlier onset on 

sleep (Chapter 4 and Chapter 6, this thesis)20,21. It has been proposed that changes in both core 

body temperature and skin temperature modulate neuronal activity of thermosensitive neurons 

in brain areas that regulate vigilance and sleepiness13,24. 

In a previous study, we reported an altered pattern of skin temperature regulation in narcolepsy7.  

Narcoleptic subjects showed a combination of higher distal skin temperatures and lower proximal 

skin temperatures, which in healthy subjects is associated with the process of falling asleep10. We 

suggested that this pattern may even contribute to sleepiness7. 

In this paper, we investigate whether direct manipulations of core body and skin temperature 

induce corresponding changes in the degree of sleepiness and vigilance in narcolepsy. We meas-

ured vigilance and the ability to maintain wakefulness in narcoleptic subjects while subtly manipu-

lating skin and core body temperature within the thermoneutral range of their normal diurnal 

rhythm in a modified constant routine protocol. 

 

2. Materials & Methods 

2.1. Subjects 
Eight narcoleptic subjects (5 males, 18-35 years of age; mean ± SD: 28.6 ± 6.4 years) participated 

with informed consent. All suffered from excessive daytime sleepiness (EDS) and typical cataplexy 

according to the ICSD-2 criteria for narcolepsy with cataplexy1. The protocol was approved by the 

local Medical Ethics Committee. All subjects were free of medication, except for one female sub-
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ject using oral contraceptives. Females participated between day 4 and day 12 of the menstrual 

cycle (mid-follicular phase). Subjects were excluded when they suffered from conditions that 

could influence their peripheral vascular bed, such as the metabolic syndrome, diabetes mellitus, 

thyroid function disorder, and cardiovascular pathological conditions. 

 

2.2. Design  
A previously described design was used (see Chapter 4, this thesis)21, that consisted of a modified 

constant routine protocol4,14  over 2 experimental days during which vigilance was measured us-

ing the Psychomotor Vigilance Task (PVT) and sleepiness was measured using the Maintenance of 

Wakefulness Test (MWT). Meanwhile, proximal and distal skin temperature were subtly manipu-

lated using a thermosuit, while core body temperature was manipulated using hot or cold food 

and drinks (see Figure 1). 

 

2.2.1. Constant Routine protocol 
Subjects first visited the sleep laboratory to get familiar with the test environment and to practise 

the PVT. One week later, the actual experiment was performed. Subjects refrained from caffeine, 

alcohol, and tobacco for 8 hours before reporting at the sleep laboratory at 22:00, where they 

were prepared for polysomnography and fitted with the thermosuit. At midnight, lights were 

turned off and subjects were allowed to sleep until 06:00. The experiment started at 06:30 under 

dim-light conditions (10 lux) with a fixed body position (semi-supine) and consisted of 9 consecu-

tive blocks with durations of 1.5 hours each (described below). At the end of the first day subjects 

went home and returned to the laboratory the next evening for a repeated assessment according 

to the same procedure, but with a different temperature manipulation scheme (see Figure 1). 

 

2.2.2. Block Design 
Each block was similar: It started by having the subjects get out of bed and walk 5 meters, using 

the bathroom if needed. Ten minutes after the start of each block, skin temperature manipulation 

was started and subjects were served a snack and a drink to consume in approximately 10 min. 

Subsequently a self-paced computerized neuropsychological task battery was completed, includ-

ing the PVT (see below) and assessment of thermal comfort and temperature sensation, with the 

use of 100-mm visual analogue scales ranging from uncomfortable to comfortable and from cool 

to warm. During these tests a researcher was present to keep subjects awake if necessary. After 

60 min, the researcher left the room and subjects were asked to remain awake while lying quiet-

ly15.  If sleep was attained (see the sleep scoring subsection)22 subjects were awakened and kept 

awake for the remaining part of the MWT time of 30 min. 
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Fig. 1. Study Design. This figure shows a schematic overview of the two experimental days. Each 

day, subjects entered the lab at 22:00 and were prepared for temperature manipulation 
and sleep registration. After 6 hours of night sleep, a modified constant routine protocol 
was started with 9 identical 90 minute blocks. During each block, subjects walked to the 
toilet (10 min), consumed hot or cold food and drinks (10 min), performed tests on a 
computerized task battery (including PVT, 40 min), and underwent a MWT (30 min). Core 
body and proximal and distal skin manipulation occurred during every block. Manipula-
tion patterns are shown in the human outlines with white representing cooling and dark 
grey representing warming. On the second day, the protocol was identical, but tempera-
ture manipulations were exactly the opposite of day one. 
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2.3. Temperature Manipulations  

2.3.1. Manipulation Sequence 
Skin and core body temperature were manipulated differentially in every block according to a 

method described before (see Chapter 4, this thesis)21. In short, the 2x2x2 design consisted of 3 

body sites of manipulation: core body (CB), proximal skin (PS), and distal skin (DS). At each, tem-

perature could be increased or decreased (T+ and T-), resulting in 8 combinations (CBT+, CBT-, 

PST+, PST-, DST+, DST-). All 8 were tested in one day (Figure 1). The sequence differed between 

subjects in order to balance the protocol, such that over all subjects, every manipulation combi-

nation was given once in each of the 8 blocks, and every transition from one to any other combi-

nation occurred no more than once for each time of day. To balance for circadian effects, the 

second experimental day temperature manipulation combinations were the inverse of those of 

the first day (for example: day 1, block 1, CBT+, PST-, DST-; day 2, block 1, CBT-, PST+,DST+, figure 

1). 

 

2.3.2. Manipulation Method 
Core body temperature was manipulated by means of 200 mL hot (heated to 80°C, served 2 min 

later) or cold (0°C, crushed ice) diet decaffeinated tea (4.25 Kcal, Diet Decaffeinated Iced Tea Mix, 

Lipton, Englewood Cliffs, USA) together with a hot or cold snack of subjects’ choice (200 Kcal). 

Skin temperature was manipulated using a full-body thermosuit (Coretech Cool tube suit, Med-

Eng Systems Inc., Ottawa, Canada) connected to two computer-controlled circulation thermostat 

baths (K6KP, Lauda, Lauda-Köningshofen, Germany). During the first 20 min of each block, the 

water in the thermostat baths changed to the desired temperature, while the bath temperature 

was kept constant for the remaining 70 min of the block. The water in the tubes was ~31°C and 

~34°C just before entering the thermosuit. This range of skin temperature was chosen to avoid 

major thermoregulatory responses. 

 

2.4. Body Temperature Recordings 
Core body temperature was measured using a rectal thermistor. Proximal skin temperature was 

measured at 3 places: right on the middle of the frontal aspect of the thigh, abdomen (1 cm above 

the navel), and the right infraclavicular area. Distal skin temperature was measured at four points: 

thenar eminence of the left and right hand and medial plantar aspect of the left and right foot. 

Temperature was measured using thermistors (P-8432, ICBT, Tokyo, Japan) and digitally recorded 

at 1 Hz (Embla A10 and Somnologica software, Flaga, Reykjavik, Iceland). An automated proce-

dure was applied to remove occasional artifacts and to calculate average distal and proximal skin 

temperature by a weighted average as described before (see Chapter 4, this thesis)21. Tempera-
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ture data were averaged over 20-min intervals surrounding the PVT assessments and over the 5 

min before the start of the sleep latency test (Figure 1). 

 

2.5. Sleep Scoring 
Polysomnographic sleep recordings were performed according to standard procedures22. Sleep 

onset was determined online during the experiment according to standard criteria, defined as 3 

consecutive 30-s epochs of stage 1 sleep or one 30-s epoch of stage 2 (or deeper) sleep15.  Sleep-

onset latency was defined as the time between the start of the MWT and sleep onset. If the sub-

ject did not sleep during the 30 min, sleep-onset latency was scored as 30 min. One data point 

could not be included in the analysis due to loss of EEG data. 

 

 

2.6. Vigilance 

Vigilance was assessed using a 7-min version of the psychomotor vigilance test (PVT)5,12. Subjects 

focused on a blank rectangle in the middle of a computer screen. At random intervals (2-10 sec), a 

reaction time counter started, shown as the number of milliseconds since start, in the rectangle. 

Subjects had to press a key to stop it as quickly as possible. The obtained reaction time (RT) count 

was shown for 1 second, providing performance feedback. Because the distribution of reaction 

times deviates from normal, PVT results are as a standard reported as response speed, i.e., reci-

procal RT (RRT=1000/RT). In order to quantify the typical performance decline with increasing 

time-on-task response speed, averages were calculated per minute. The vigilance measure of 

interest was the decline of response speed with increasing time-on-task. 

 

2.7. Statistical Analysis 
To determine the effects of skin and core temperature manipulations on actual measured tem-

peratures (core body, proximal skin, and distal skin) and on PVT performance and subjective com-

fort, hierarchical regression analysis was applied using MLwiN software (Centre for Multilevel 

Modelling, Institute of Education, London, UK). Because the frequency distribution of sleep-onset 

latencies was skewed, longitudinal Poisson regression analysis was used to determine the effects 

of skin and core temperature manipulations and induced temperatures on MWT sleep onset la-

tency. The hierarchical regression analyses take into account the interdependency of the data 

points inherent to the hierarchical structure of the design, in our case the sequential sleep-onset 

observations, i, that were nested within days, j, once more nested within subjects, k 26.  The first 

block of both days (the habituation block) was omitted from analyses. Analyses were run with 

induced body temperatures (core body, proximal skin, and distal skin), subjective comfort, ther-



 
184 Daytime Vigilance 

mal comfort, time-on-task decline of PVT response speed, and sleep-onset latency as dependent 

variables and body temperature manipulations as centred dichotomous predictor variables (with -

0.5 reflecting the cool manipulation level and 0.5 reflecting the warm manipulation level, for ease 

of interpretation of the intercept, now showing the overall average). For the longitudinal Poisson 

regression analysis, all independent variables were centred at the within-subject single-day level. 

A second series of analyses was performed, now not evaluating the manipulation conditions but 

rather how the actually measured core body, proximal and distal skin temperatures, and the dis-

tal-to-proximal gradient (DPG) predicted the time-on-task decline of PVT response speed and 

MWT sleep-onset latency.  

Time (hour, hour2 and √hour; defined as the number of hours since the start of the first included 

PVT or MWT within each day, starting with 0 at 09:00) was allowed in the models for induced 

temperatures to account for possible diurnal variations in core and skin temperature11. For all 

regression analyses, we calculated the full model, with all temperature manipulation variables 

and covariates in the model and subsequently stepwise removed non-significant terms to obtain 

optimal models, containing only the significant contributions. Maximum likelihood was used to 

estimate the regression coefficients, which were tested for significance with the Wald test26. In 

order to obtain the optimal linear models, additional terms were allowed in the regression equa-

tion only if their coefficients were significant and only if their inclusion improved the regression 

model according to the likelihood ratio test. In order to obtain the optimal Poisson regression 

models, additional terms were allowed in the regression equation only if their coefficients were 

significant and if the residual error of the model was reduced. The following regression models 

were used:  

[1] effects of manipulation on measured temperature:  

Tijk = β0ijk + β1 x Hourijk + β2 x Hour2
ijk + β3 x √Hourijk + β4 x CBTijk + β5 x PSTijk + β6 DSTijk  

[2] effects of manipulation on PVT response speed:  

PVTijkl = β0ijkl + β1 x CBTijkl + β2 x PSTijkl + β3 x DSTijkl+ β4 x √Minuteijkl 

[3] relation of measured temperatures on PVT response speed:  

PVTijk = β0ijkl + β1 x Treijkl + β2 x Tproxijkl + β3 x Tdistijkl+ β4 x √Minuteijkl 

[4] effects of manipulation on sleep latency:  

ln(latency) = β0ijk + β1 x CBTijk + β2 x PSTijk + β3 x DSTijk+ β4 x Hour2
ijk  

[5] effects of measured temperatures on sleep latency:  

ln(latency)ijk = β0ijk + β1 x Treijk + β2 x Tproxijk + β3 x Tdistijk+ β4 x Hour2
ijk (+ β5 x DPGijk)  

 [6] effects of manipulation on temperature sensation and comfort: Outcome-variableijk = β0ijk + β1 

x CBTijk + β2 x PSTijk + β3 x DSTijk+ β4 x Hour2
ijk.  

(Subscripts indicate ith observation on day j for subject k in equations 1,4,5 & 6 and ith minute 

during the jth PVT on day k for subject l in equations 2 & 3) 
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In the tables the optimal models are shown, with only the significant contributing factors. Note 

that the values in the tables represent the effect coefficients as estimated from the Poisson re-

gression analysis: in order to transform these coefficients to the number of 30-sec epochs, one 

should calculate e to the power of the regression equation. Transformation to minutes subse-

quently takes a division by two. In the results section, sleep latencies have thus been transformed 

and are reported in minutes. Two- tailed significance levels were set at 0.05. 

 

3. Results 

3.1. Effects of Manipulations on Temperature and Comfort 
The effects of the manipulations on core body and skin temperatures during the PVT and before 

the start of the MWT are shown in Table 1. Core body and distal skin temperature were signifi-

cantly modified by time of day (P < 0.001), accounting for 10% to 25% of variance during the PVT 

and the MWT. 

The core body temperature manipulation was the sole factor influencing core body temperature 

during the PVT and the MWT (effect size: 0.10–0.12°C, P < 0.001) and accounted for 29% of the 

variance during the PVT and 17% of the variance during the MWT. 

Proximal and distal skin temperatures during the PVT and the MWT were mainly affected by their 

respective skin temperature manipulation (effect size: 0.45–0.62°C, P < 0.001), but also to a lesser 

extent by core body temperature and by the other skin temperature manipulation (effect size: 

0.14–0.56°C, P < 0.001). The temperature manipulations accounted for 60% of the variance during 

the PVT and the MWT. 

The effects of the manipulations on thermal comfort and temperature sensation, measured be-

fore the MWT are shown in Table 2. In summary, the warm conditions were experienced as less 

comfortable and warmer than the cool conditions. Comfort was significantly lower when the core 

body and proximal skin were warmed (P < 0.001), with a trend for warming of the distal skin (P = 

0.06). The highest comfort was achieved when cooling was induced at all 3 sites. Temperature 

was perceived as higher in the core body and proximal skin warming condition (P < 0.001). Sub-

jects did not perceive the distal skin warming condition as a significantly warmer condition than 

the distal skin cooling condition (P = 0.26). 

  



 
186 Daytime Vigilance 

 



 

 

Ch
ap

te
r 7

 

 
 

187 Manipulation of core body and skin temperature improves vigilance in narcolepsy 

 

3.2. Effects of Temperature Manipulation on Psychomotor Vigilance 
The overall average RRT of narcoleptic subjects was 2.46 ± 0.20 sec−1. There was a typical worsen-

ing, i.e., a decline in response speed, with increasing time-on-task (see Figure 2). This decline was 

best approximated by a square root function of time-on-task (√Minutes, P < 0.001). As evident 

from figure 2, these profiles indicate that vigilance declined quickly after starting the task. As 

compared to core body cooling, core body warming attenuated this decline by 25% (CBT x 

Minute, P = 0.02), while effects induced by proximal or distal skin temperature manipulations 

were not significant (P > 0.20). 

Regressing PVT on the actually induced temperatures showed essentially the same effects: a 

higher core body temperature was associated with an attenuated decline in response speed over 

the time-on-task (Tre x Minute, P = 0.004). Moreover, a higher DPG was associated with an accele-

rated decline in response speed (DPG x Minute, P = 0.04). 

 

3.3. Effects of Temperature Manipulation on Maintenance of Wakefulness  
Figure 3 shows the effects of the temperature manipulations on maintenance of wakefulness as 

derived from the regression analysis. Overall average sleep latency was 2.10 min (95% CI: 1.52–

2.90). Sleep onset latency was significantly modulated by time (hour2) and the distal skin manipu-

lation, with an estimated shorter latency (1.88 min; CI: 1.60–2.21) in the DST+ condition com-

pared to a longer latency (2.34 min; CI: 1.99–2.75) in the DST− condition (P < 0.01, figure 3). Cool-

ing the distal skin thus meant that subject remained awake for 24% longer as when the distal skin 

was warmed. Sleep latency was not significantly affected by core and proximal manipulations (all 

P > 0.20).  
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Regressing MWT on the actually measured temperatures resulted in significance for the same 

variables: sleep onset latency was significantly modulated by time (hour2) and by distal skin tem-

perature. The regression coefficients, transformed to minutes (Figure 3a & 3b), can be interpreted 

as follows: patients could stay awake for 1.89 (CI: 1.60–2.24) min when distal skin temperature 

was 0.5°C higher than the average distal skin temperature, compared with 2.34 (CI: 1.97–2.77) 

min when distal skin temperature was 0.5°C lower than the average distal skin temperature (P < 

0.01, Figure 3c). One degree of decrease in distal skin temperature thus increased the time pa-

tients succeeded to maintain wakefulness by 24%. Sleep latency was not significantly related to 

core and proximal temperatures (all P > 0.31). 

 

4. Discussion 
We investigated whether subtle manipulations of core body and skin temperatures within the 

natural range of the diurnal cycle, affected vigilance and sleepiness in narcolepsy. 

First, patients were better able to maintain vigilance when core body temperature was increased 

than when it was lowered. In short, vigilance in narcolepsy can be altered simply by altering the 

temperature of food and drinks. Second, the ability to maintain wakefulness was better when 

distal skin temperature was lowered than when it was increased. We were thus able to influence 

the process of falling asleep in narcoleptic subjects by gently cooling or warming their hands and 

feet. The acceleration of sleep onset by distal skin warming occurred in spite of the fact that 

warming was perceived as slightly less comfortable. 

Our data furthermore showed a number of narcolepsy-related aspects on PVT performance and 

maintenance of wakefulness under strictly controlled and balanced conditions. In agreement with 

previous investigations6, narcoleptic subjects showed a very poor average PVT response speed, 

not only compared with matched controls, but also compared with elderly good sleepers and 

elderly insomniacs previously submitted to the same protocol (see Chapter 6, this thesis)20. Al-

though untreated narcolepsy is already characterized by a very short MWT sleep latency (around 

6 min)15, in our constant routine protocol all patients had great difficulties remaining awake for 

longer than 3 min. These shorter MWT values relative to previous reports may be due to the re-

stricted time allowed for sleep during the night prior to the investigation (6 h) and continuous 

low-light, stimulus-free, semi-supine circumstances, known to promote falling asleep2. The more 

remarkable it is that even under these high sleep pressure inducing conditions, distal skin cooling 

significantly increased sleep latency by 24%. 

Note that in this study, sleep-onset was defined as 3 consecutive 30-s epochs of stage 1 sleep or 

one 30-s epoch of stage 2 (or deeper) sleep. This differs from the definition of one 30-s epoch of 

stage 1 (or deeper) sleep that is commonly used in the clinical setting. In our study design, sleep 

scoring was performed online and subjects had to be woken up immediately after the onset of 
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sleep. For this purpose, we had to be absolutely sure of sleep onset, and therefore used the three 

30-s epoch criterion. To compare results with other studies, the exact definition of sleep onset 

needs to be taken into account. However, using the clinical definition of sleep onset would not 

have changed the outcome of this study, since there was no occasion when a subject showed an 

epoch of wake after the occurrence of stage 1 sleep. 

It is known that the clinical efficacy of commonly used stimulants, such as modafinil, is not ade-

quately revealed by its small effects on sleep latency as measured in the MWT19. Although the 

definition of sleep onset may have differed between studies, the changes in sleep latency in our 

study are comparable to those seen with modafinil. Temperature manipulations may thus have a 

more significant clinical effect. 

We initiated this study based upon our previous findings that narcoleptic subjects have an in-

creased distal relative to proximal skin temperature (distal-to-proximal gradient, DPG) that was 

related to an increased sleepiness7. In that previous study, we did not measure core body tem-

perature. Other studies have reported conflicting results regarding core body temperature. There-

fore, we compared the Tcore measured in this study in narcoleptic subjects, with the earlier pub-

lished Tcore measured in healthy controls that underwent the same protocol and matched on age 

and gender21. Core body temperature was lower in narcolepsy than in controls (Tre: narcolepsy 

36.47 ± 0.14°C; controls, 36.88 ± 0.06°C; P = 0.01 [Z-test]). A partial normalization of the low core 

body temperature in the core warming condition may have been involved in its positive effects on 

PVT performance. This interpretation is supported by the positive relation between core body 

temperature and vigilance we previously found in elderly subjects in an identical protocol (see 

Chapter 6, this thesis)20 and by previous work showing a correlation between the circadian mod-

ulation of vigilance and of core body temperature8,27,3,16,28. The effects of distal skin warming and 

cooling on maintenance of wakefulness in narcoleptic subjects are in line with our earlier findings 

of an abnormally increased distal skin temperature that correlated with the ease of falling asleep 

in narcolepsy7. In previous studies of our group, both young and elderly subjects without sleep 

problems and insomniac elderly showed worsening of PVT performance and shorter sleep laten-

cies with proximal skin warming (Chapter 4 and Chapter 6, this thesis)20,21. Given the repeatability 

of the proximal warming results over the 3 groups in those previous studies, the more remarkable 

it is that narcoleptic subjects do not show sensitivity of vigilance performance and sleepiness to 

proximal warming. It is not unlikely that this difference with healthy controls—and with elderly 

subjects reported previously—is related to the markedly lower core and proximal temperature of 

narcoleptic subjects in combination with a higher distal skin temperature, even under the strictly 

controlled conditions of the present experiment and found previously under less controlled cir-

cumstances7. 
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Of note, the present study differs from previous work11,18,25 in that mild manipulations within the 

thermoneutral zone were applied. Since such manipulations induced only changes within the 

temperature range normally covered during everyday life, the circadian modulation of these tem-

peratures could contribute to the circadian modulation in vigilance and sleepiness. 

In conclusion, our results demonstrate a modulatory role for body temperature in the regulation 

of vigilance and maintenance of wakefulness in narcolepsy. Experimentally induced subtle 

changes in core body and skin temperature caused changes in vigilance and ability to maintain 

wakefulness. A practical implication of our findings is that temperature manipulations may be of 

value in the management of vigilance and sleepiness problems in narcolepsy. An ultimate practic-

al application could for example be clothing with integrated measurement and regulation of skin 

temperature. For the time being, the advice may be to utilise a warm drink or meal in combina-

tion with cooling of the extremities to aid their fight against vigilance impairment and daytime 

sleepiness. 
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Summary 
With aging, an increasingly disturbed sleep is reported as a significant complaint affecting the 

health and well-being of many people. The available treatments for sleep disturbance have their 

limitations, so we have adopted a different approach to the improvement of sleep. Since, in ani-

mal and human studies skin warming has been found to increase neuronal activity in brain areas 

that are critically involved in sleep regulation, we investigated whether subtle skin temperature 

manipulations could improve human sleep. By employing a thermosuit to control skin tempera-

ture during nocturnal sleep, we demonstrate that induction of a mere 0.4˚C increase in skin tem-

perature, whilst not altering core temperature, suppresses nocturnal wakefulness (P<0.001) and 

shifts sleep to deeper stages (P<0.001) in young and, especially, in elderly healthy and insomniac 

participants. Elderly subjects showed such a pronounced sensitivity, that the induced 0.4˚C in-

crease in skin temperature was sufficient to almost double the proportion of nocturnal slow wave 

sleep and to decrease the probability of early morning awakening from 0.58 to 0.04. Therefore, 

skin warming strongly improved the two most typical age-related sleep problems; a decreased 

slow wave sleep and an increased risk of early morning awakening. EEG frequency spectra 

showed enhancement of low frequency cortical oscillations. The results indicate that subtle feed-

back control of in-bed temperature through very mild manipulations could have strong clinical 

relevance in the management of disturbed sleep especially in the elderly, who have an attenuated 

behavioural response to suboptimal environmental temperature, which may hamper them from 

taking appropriate action to optimize their bed temperature. 
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1. Introduction 
With advancing age, an increasing number of people complain about their sleep quality18,28. Noc-

turnal awakenings occur more frequently, especially in the morning, and the time spent in slow 

wave sleep decreases. Non-pharmacological interventions are of value in the management of age-

related sleep complaints, since they may be at least as effective as hypnotics and lack the adverse 

effects that occur with chronic use44. In this report, we investigate a novel non-pharmacological 

approach to improve sleep by maintaining skin temperature within a narrow comfortable range. 

The major sleep period occurs during the trough of the circadian rhythm of core body tempera-

ture (CBT). Habitual sleep onset closely follows the maximal rate of decline in CBT during the 

evening36 and the probability of waking up increases during the early morning rise of CBT. Experi-

mental protocols have been designed to desynchronize the sleep and temperature rhythms. Re-

sults confirm that the ability to initiate and maintain sleep is maximal during the phase of lower 

CBT11,29,30,43. These findings suggest that sleep-regulating systems are regulated in parallel with the 

circadian variation in body temperature, or may even be affected directly by it. 

The site at which sleep regulation is likely to be linked with body temperature is the preoptic 

area/anterior hypothalamus (POAH), which is the major thermoregulatory centre of the mamma-

lian brain and a key structure in arousal state control. One source of input affecting activity of the 

POAH is its local brain temperature, which modulates the firing rate of thermosensitive neurons. 

A subpopulation of warm-sensitive POAH neurons (WSNs) spontaneously increases its firing rate 

at sleep onset. Experimental warming of the POAH induces a similar increase in this firing rate, 

and ultimately facilitates sleep1,34,35. It has, therefore, been proposed that sleep would be facili-

tated when brain temperature exceeds a threshold level34. However, the finding that experimen-

tal POAH warming promotes sleep renders it unlikely that the diurnal rhythm in brain tempera-

ture is causally involved in the circadian modulation of sleep propensity, because sleep propensity 

is low rather than high during the circadian phase of increased brain temperature11,29,30,43. Thus, a 

circadian modulated source of input to sleep-related POAH neurons other than local brain tem-

perature should be present if their involvement in the coupling between sleep and temperature 

rhythms is presumed. Such a putative input signal should show a diurnal modulation that is in-

verse to the CBT rhythm, i.e. direct POAH neurons towards their sleep-type firing patterns in spite 

of the low local brain temperature, presumed to disfacilitate sleep-type firing patterns51. 

We have proposed that skin temperature is a candidate for such an input signal52. Skin tempera-

ture shows a diurnal rhythm that is inversely related to the CBT rhythm, i.e. skin temperature 

peaks during the habitual sleep period33. Under normal conditions the nocturnal increase of skin 

temperature is further amplified by postural change26,47, a warm microclimate resulting from insu-

lating bedding20,37,38 and pre-sleep relaxation signalled by lights off27. A functional link between 
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skin temperature and sleep has been suggested before25, but hard evidence concerning the direc-

tionality of the relationship was lacking. Nevertheless, in a recent report, we showed that mild 

direct skin warming within the thermoneutral range reduced sleep onset latency by 27%, in spite 

of this warming being perceived as slightly less comfortable40. Skin warming moreover accelerated 

the decline in vigilance associated with the prolonged performance of a monotonous task39. 

A recent study involving human neuro-imaging demonstrated that hypothalamic activation occurs 

with skin warming16. Data from animal studies show that afferents conveying information about 

skin temperature modulate the firing rate of thermosensitive neurons in the POAH at least as 

strong as local brain temperature does, and even dominate the POAH response in case of simul-

taneous differential manipulations of brain and skin temperature3,4. We proposed that the mod-

ulation in neuronal firing rate and sleep propensity that can be experimentally induced by local 

brain warming, might similarly be induced by the warming of the skin that occurs under natural 

sleeping conditions. 

 

2. Materials & Methods 
Using a water-perfused thermosuit, we manipulated proximal and distal skin temperature (Tskin-

prox; Tskin-dist) directly and differentially, while monitoring sleep depth polysomnographically in eight 

young adult and eight elderly participants without sleep complaints and in eight elderly insom-

niacs. Unlike in previous studies the manipulations we made were so subtle that they affected 

only skin temperature, and only within a very narrow range (0.4˚C) of the thermoneutral and 

comfortable zone. 

 

2.1. Subjects 
Twenty-four healthy volunteers participated with informed consent. They included eight young 

adults (mean ± s.e.m.: 27.0±2.4 years, 4 males), eight elderly subjects without sleep complaints 

(65.8 ± 2.8 years, 4 males) and eight elderly subjects diagnosed with primary insomnia (59.1 ± 1.9 

years, 4 males) according to the qualitative criteria of the International classification of sleep dis-

orders (ICSD10) and the Research Diagnostic Criteria for Primary Insomnia15, as well as according to 

the quantitative criteria proposed by Lichstein et al.31, i.e. sleep onset latency or wake time after 

sleep onset of more than 30 minutes, occurring at least three times a week for at least half a year. 

Although the study was performed prior to the recently published ‘Recommendations for a Stan-

dard Research Assessment of Insomnia7, it still complied with the majority of these recommenda-

tions. Diagnosis was performed by accredited sleep specialists. Author EVS is a clinical sleep-wake 

expert accredited by the Netherlands Society for Sleep-Wake Research and Health Care Psycholo-

gist registered by the Netherlands Central Information Centre for Professional Practitioners in 
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Health Care; Author RR is a sleep expert accredited by the Holland Sleep Research School, Wes-

teinde Hospital, The Hague. Diagnostic tools included interviews, questionnaires and sleep diaries. 

Polysomnographic confirmation of disturbed sleep in absence of apnoea and periodic leg move-

ments was demonstrated during the study as described below. Subjective sleep quality and com-

plaints were measured using interview, sleep diaries, a Dutch adaptation46 of the75-item Sleep 

Disorders Questionnaire14 and the Pittsburgh Sleep Quality Index8. All elderly subjects suffering 

from primary insomnia had a PSQI score > 5 (10.9 ± 1.1) and an SDQ-Insomnia score >2.5 (3.3.± 

0.1). Young adult and elderly subjects without sleep complaints all scored within the normal range 

of these scales, respectively 4.0 ± 0.5 and 3.6 ± 0.4 for the PSQI, and 1.8 ± 0.1 and 2.0 ± 0.1 for the 

SDQ-Insomnia subscale. None of the subjects scored higher than the cut-off score of 3 on the SDQ 

subscales Narcolepsy, Apnoea, Restless legs and Psychiatry. A history of, or present symptoms of 

medical or psychiatric disorders were furthermore excluded by interview and evaluating the 

Symptom Check List (SCL-909). All subjects were in good health and none used hypnotic, psycho-

tropic or cardiovascular medication. One of the young adult females used oral contraceptives. The 

younger females participated during the mid-follicular phase (or pseudo-follicular phase) of the 

menstrual cycle. Elderly females were post-menopausal. The Medical Ethics Committee of the 

Academic Medical Center of the University of Amsterdam approved the protocol. 

 

2.2. Procedure 
Subjects refrained from caffeine, alcohol and tobacco for 8 hours before reporting to the sleep 

laboratory at 22:00 hr. They were then prepared for polysomnography and fitted with a thermo-

suit for skin temperature manipulation. At midnight, lights were turned off and subjects were 

allowed to sleep until 06:00 hr. The nocturnal sleep period was limited to six hours because the 

subjects were subjected to a semi-constant routine procedure starting at 6:00 hr, as reported 

previously (see chapters 4,5 & 6, this thesis)39,40. Starting at 0:30 hr., Tskin-prox and Tskin-dist were diffe-

rentially manipulated by thermosuit water perfusion of slowly cycling temperatures (figure 1). 

After sleeping for one night at home subjects returned for a second night, with the temperature 

manipulation sequences inversed compared to that of the first night. 
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Fig. 1.  Single-case, one-night example of the temperature profiles induced in the proximal (grey) 

and distal (black) parts of the thermosuit (lower traces),Tsuit-prox and Tsuit-dist. The upper 
traces show the induced slowly cycling proximal (grey) and distal (black) average skin 
temperature, Tskin-prox & Tskin-dist. During the second experimental night (not shown) the 
thermosuit temperature profiles were inversed to provide a balanced protocol. The hori-
zontal line illustrates the proximal thermosuit threshold - 35.5˚C for this example - that 
was determined such that the proportion of wakefulness during the time spent above this 
temperature (black rectangles) differed maximally from the proportion of wakefulness 
during the time spent below this temperature (grey rectangles). 

 

2.3. Temperature Manipulations and Measurement 
Skin temperature was manipulated from 00:30 hr. until 6:00 hr. using a thermosuit (Coretech Cool 

tube suit, Med-Eng Systems Inc., Ottawa, Canada) connected to two computer-controlled 

bath/circulation thermostats (K6KP, Lauda, Lauda-Köningshofen, Germany) that controlled the 

temperature of the water flowing through the tubes of the thermosuit. As shown in figure 1, the 

temperature levels were changed slowly throughout the night. The sequence of these tempera-

ture level changes was programmed on two control computers (Wintherm Software, Lauda, Lau-

da-Köningshofen, Germany), one for distal (hands and feet) and one for proximal (trunk and 

limbs) skin temperature manipulation. During each of the two nights, the Tsuit temperature cycled 

between alternating constant plateaus of high and low temperature levels that lasted either 15 or 

30 minutes. Transitions between the plateaus were accomplished with slow temperature 

changes, taking 15 minutes for each transition. The order of the sequences of skin temperature 

manipulations was different for each subject within its group and chosen in such a way that it 

resulted in an optimal uniform distribution of combinations of high and low Tsuit-prox & Tsuit-dist levels 

throughout the night over all subjects in one group, i.e. at any time of night there was an equal 

proportion of warm and cool periods. The actual manipulation temperature Tsuit was measured 

once per minute on the tubes that supplied the temperature controlled water to thermosuit, us-
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ing PT100 thermistors (RTD-3-3105, Omega, Stamford, USA). Tsuit cycled between 31.7 ± 0.1°C in 

the ‘cool’ and 34.6± 0.1°C in the ‘warm’ condition. This range was specifically chosen specifically 

to match the previously reported range of temperatures normally present in the bed microcli-

mate20,27,37,38. Importantly, we have also demonstrated previously that these temperatures are 

both close to maximal comfort, with the warm condition being experienced as slightly less com-

fortable and thermoneutral40. 

Body temperature was sampled at 1 Hz from 8 thermistors (P-8432, ICBT, Tokyo, Japan; Embla 

A10 recorder and Somnologica software, Flaga hf, Reykjavik, Iceland). Core body temperature (Tre) 

was obtained using a thermistor that was self-inserted 13 cm into the rectum. Tskin-prox was meas-

ured at three places: right mid-thigh on the musculus rectus femoris, abdomen and the right in-

fraclavicular area, and a weighted average was calculated40. Tskin-dist was calculated as the average 

of four points: the thenar area at the palmar sites of both hands and medial metatarsal area at 

the plantar sites of both feet. Temperature data were averaged over 30 second intervals synchro-

nized to the sleep stage epochs. 

 

2.4. Sleep recordings and analysis 
Polysomnographic sleep recordings consisted of electroencephalography (EEG) from two bipolar 

derivations (FpzCz and PzOz)55 obtained with the E-net system (MVAP, Newbury Park, CA), sub-

mental electromyography (EMG) and electrooculography from the outer canthi (EOG), both rec-

orded using disposable Ag/AgCl electrodes (type 4203 Meditrace, Graphic Controls Corporation, 

Buffalo USA). The signals were recorded digitally with a sampling frequency of 200 Hz using the 

Embla A10 recorder and Somnologica software (Flaga hf, Reykjavik, Iceland). An assessor who was 

blind to the temperature conditions scored sleep in 30 sec epochs according to standard criteria42. 

Epoch classification stages 3 and 4 were merged into the single class slow wave sleep (SWS). For 

each artifact-free 30 second epoch scored as non-REM-sleep, the average power spectra were 

calculated over 50% overlapping periods of 512 samples with a Hamming window, using the Som-

nologica software (Flaga hf, Reykjavic, Iceland). Power was averaged in 1 Hz bins in the frequency 

range from 0.4 to 25 Hz, the first bin ranging from 0.4 to 1.0 Hz. 

 

2.5. Statistical Analysis  

2.5.1. Descriptive analysis: determination of the thermosuit temperature threshold for 
sleep enhancement.  

For an ultimate practical applicability, e.g. in a system to control the bed microclimate tempera-

ture, a first requirement is to have an indication of the lower limit of the temperature that should 

be maintained in order to promote sleep. A first descriptive analysis therefore aimed to deter-
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mine an average thermosuit temperature above which wakefulness would be maximally sup-

pressed and sleep maximally promoted as well as to determine its variability both within and be-

tween groups. It can be assumed a priori that some individual variability will exist in the tempera-

ture that should be reached before favourable effects on sleep surfaces. Therefore, for each indi-

vidual night, we systematically varied the whole range of possible thresholds between the 31.7 ± 

0.1°C ‘cool’ and 34.6 ± 0.1°C ‘warm’ Tsuit boundaries and selected the temperature that maximized 

the difference in the proportion of wakefulness during the time spent above this temperature and 

the proportion of wakefulness during the time spent below this temperature. An example is 

shown in figure 1.  

If for example, for a specific night, wakefulness is present for 20% of the time that the proximal 

suit temperature is above of 33.5˚C and 30% of the time that the suit temperature is below 

33.5˚C, and at no other temperature the difference is larger than this 10%, the threshold is de-

termined to be 33.5˚C for this night. In this way, an optimal threshold temperature can be deter-

mined for each night, as well as well as two sets of percentage for each wake and sleep stage. The 

first set of percentages represents the time spent in each sleep stage and wakefulness relative to 

the total amount of time spent below the temperature threshold. The second set of percentages 

represents the time spent in each sleep stage and wakefulness relative to the total amount of 

time spent above the temperature threshold. The optimal temperature thresholds and corres-

ponding distributions of wake and sleep stages were averaged over nights and subjects and are 

shown in table 2. 

 

2.5.2. Statistical testing of the effect of thermosuit temperature on sleep 

For statistical testing, mixed effect (or multilevel) regression analysis was applied to account for 

the interdependency of the data points inherent to the hierarchical structure of the dataset, i.e. 

epochs within nights within subjects (MLwiN software, Centre for Multilevel Modelling, Institute 

of Education, London, UK). The regression models included parameters to account for nonlinear 

changes over time that could lead to correlated residual error. The analyses included all epochs 

during the skin temperature manipulation (i.e. from 00:30 hr. until 6:00 hr.). To determine the 

effects of skin temperature manipulation on the probability of occurrence of sleep stages, longi-

tudinal multilevel logistic regressions were applied for each sleep stage classification, with the 

current presence or absence of that stage as dummy coded dichotomous dependent variable and 

Tsuit-prox and Tsuit-dist as predictor variables. In addition to main effects, regression equations in-

cluded terms as needed in order to account for variability due to time (including a linear, second 

order, and square root term) and its interaction with Tsuit-prox and Tsuit-dist. Optimal regression mod-

els were selected using the likelihood ratio chi-square test48. Odds ratios were translated into 

sleep stage probabilities at every time point during the night for the maximal and minimal ther-
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mosuit temperature levels using the transformation ex/(1+ex), where x represents the regressor 

part of the best fitting model. Two separate plots were generated to visualize the regression pre-

diction for the cumulative sleep stage probability during the 34.6˚C upper and 31.7˚C lower Tsuit 

levels. The effect of Tsuit on the EEG spectral power bands was investigated using multilevel linear 

regression. Two-tailed significance levels were set at 0.05 for all analyses. 

 

3. Results 

3.1. Manipulation effects on core and skin temperature 
Unlike in previous studies -and due to the fact that the manipulations forced the skin temperature 

to slowly cycle only within a very subtle range of 0.4˚C (see figure 1)- core body temperature (Tre) 

was left virtually unchanged: skin temperature manipulations accounted for only 1.4 % of the 

variance of Tre. Manipulation of the proximal part of the thermosuit accounted for 49.2 % of the 

variance in mean Tskin-prox, which was on average 35.37 ± 0.07˚C (mean ± s.e.m.) versus 34.98 ± 

0.07˚C for the warmest and coolest levels respectively. Likewise, the independently manipulated 

temperature of the distal part of the thermosuit accounted for 43.0% of the variance in mean Tskin-

dist, which was 35.38 ± 0.08˚C versus 35.02 ± 0.07˚C for the warmest and coolest levels respective-

ly.  

 

3.2. Manipulation effects on the occurrence of sleep versus wakefulness 
In general, subjects showed less wakefulness and more sleep with increasing temperature of the 

thermosuit, especially in the proximal region. In order to obtain a first model-free description we 

therefore focused on the proximal thermosuit temperature (Tsuit-prox) threshold above which sleep 

was most promoted. Individual Tsuit-prox temperature values were determined for each night, such 

that the proportion of wake during the time spent above that temperature differed maximally 

from the proportion of wake during the time spent below it. There were no significant differences 

between the average thresholds of young adults (33.5 ± 0.4˚C), elderly subjects without sleep 

complaints (33.2 ± 0.4˚C) and elderly people with sleep complaints (33.1 ± 0.4˚C) (Z-tests, all 

p>0.48). Although there was some variance between subjects and nights, the thresholds on aver-

age occurred midway between the ‘cool’ (31.7 ± 0.1ºC) and ‘warm’ (34.6 ± 0.1 ºC) Tsuit tempera-

tures. Table 2 shows the thresholds and the percentage of wakefulness relative to the time spent 

below (‘cool’) and the time spent above (‘warm’) the threshold, as well as the distribution of sleep 

stage percentages corresponding to the optimal bipartition. Because the effects of distal manipu-

lations were less pronounced relative to the effects of proximal manipulation, a determination of 

thresholds and corresponding wake and sleep stage proportions  
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for distal temperature was difficult due to strong masking effects of simultaneous proximal tem-

perature changes. The descriptive data in table 2 suggest that not only a reduction in wakefulness 

occurred but also that a deepening of sleep was induced by the warmer thermosuit temperatures. 

This was tested using logistic regression analyses as described below. 
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3.3. Manipulation effects on sleep stage probability and distribution 

3.3.1. Main effects 
In order to evaluate in detail the effect of temperature manipulation on the probability of occur-

rence of sleep stages, logistic regression was applied. As shown in figure 2 and 3, thermosuit tem-

perature (Tsuit-prox ; Tsuit-dist) significantly affected the odds ratios for occurrence of wakefulness 

(Wake) and the sleep stages 1 (S1), 2 (S2), slow wave sleep (SWS) and rapid eye movement sleep 

(REM sleep). Odds ratios were translated into cumulative probability distribution plots for these 

stages throughout the night to provide a graphical representation of the regression-model-

predicted sleep stage distribution during the periods of minimal Tsuit (31.7˚C, upper panels) and 

during the periods of maximal Tsuit (34.6˚C, lower panel).  

The data in figure 2 and table 3 show that distal skin warming enhanced REM sleep and sup-

pressed S1 in the young adults and the elderly people without sleep complaints. In contrast, it 

suppressed REM sleep and marginally enhanced S1 in elderly insomniacs. Its effects on the other 

sleep stages were less uniform over the age groups. Distal skin warming suppressed S2 in young 

adults, enhanced S2 in elderly people without sleep complaints, and did not affect S2 in elderly 

insomniacs. In both groups of elderly, but not in young adults, distal skin warming suppressed 

Wake. Moreover, distal skin warming strongly enhanced SWS in elderly insomniacs, but not in 

young and elderly participants without sleep complaints. Proximal skin warming enhanced the 

deeper stages SWS and S2 at the cost of S1 and Wake in young adults and even more so in elderly 

without sleep complaints. In the elderly insomniacs, proximal skin warming promoted SWS and 

REM sleep at the cost of S1, S2 and Wake. 

 

3.3.2. Modulation of manipulation effects by time of night within groups 
Two questions of relevance to the utility of an ultimate home-applicable system for sleep optimi-

zation by skin temperature control are whether a certain temperature level is equally effective 

from the beginning to the end of the night and whether this is of the same magnitude in young 

subjects, elderly without sleep complaints and elderly insomniacs. Within each group, we eva-

luated how the time of night modulated sleep stage probabilities and their sensitivity to tempera-

ture manipulations. Therefore, we added (nonlinear) time and time by temperature interaction 

terms to the logistic regression models. The parameter estimates and a more detailed description 

of their meaning are available in a supplementary file. They are also visualized in figure 3, which 

shows the predicted development of sleep stage probabilities throughout the night under condi-

tions where distal and proximal skin would both be kept at ‘cool’ (left column) versus ‘warm’ 

(right column) levels continuously. Some temperature by time of night interaction 
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Fig. 2.  Graphical representation of the main effects logistic regression results. The stacked areas 

visualize the cumulative proportion of each sleep stage occurring over the whole night in 
case of the cool versus warm thermosuit temperatures for young adults (top panels), el-
derly without sleep complaints (middle panels) and insomniac elderly (bottom panels). Ef-
fects of distal warming versus cooling (Tsuit-dist at their minimal level of 31.7˚C (stacked bars 
left) and at their maximal level of 34.6˚C (stacked bars right)) are displayed in the left col-
umn, effects of proximal warming versus cooling (Tsuit-prox at their minimal level of 31.7˚C 
(stacked bars left) and at their maximal level of 34.6˚C (stacked bars right)) are displayed 
in the middle column and effects of total skin warming versus cooling (both Tsuit-prox and 
Tsuit-dist at their minimal level of 31.7˚C (stacked bars left) and at their maximal level of 
34.6˚C (stacked bars right)) are displayed in the right column. The actual predicted cumu-
lative proportion over all sleep stages may slightly exceed or fall behind 100% since the 
proportions were derived in separate logistic regressions for each sleep stage. For graphi-
cal purposes only, rescaling to 100% has been applied to correct for minor deviations in 
figure 2 and 3. 
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Fig. 3.  Graphical representation of the results of the logistic regression analyses that included 

main effects, time of night modulation and manipulation by time of night interactions. 
Stacked areas represent the model-predicted cumulative proportion of each sleep stage 
occurring at each time of the night in case of cool (minimal proximal and distal Tsuit (both 
31.7˚C), left panels) versus warm (maximal proximal and distal Tsuit (both 34.6˚C), right 
panels) thermosuit temperatures for young adults (upper panels), elderly without sleep 
complaints (middle panels) and insomniac elderly (lower panels). 
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effects on sleep stage probabilities can be highlighted as having practical relevance. First, the net 

effect of distal and proximal temperature by time of night interactions indicates that skin warming 

enhances SWS most effectively in the beginning of the night in young and elderly subjects without 

sleep complaints. In contrast, SWS enhancement by skin warming commenced only after about 

one and a half hour of sleep in elderly insomniacs, and continued throughout the night. Second, in 

both elderly subject without sleep complaints and elderly insomniacs, the net wake-suppressing 

effect of skin warming increased towards the end of the night, when its sleep-preserving effect 

was very marked and consequently prevented early morning awakening. 

 

3.4. Manipulation effects on sleep-EEG spectral power 
In addition to the qualitative assessment of sleep stages, the effects of skin temperature manipu-

lations on the quantitative NREM sleep (NREM sleep = non REM sleep, i.e. S1, S2 and SWS) EEG 

spectral power were examined using multilevel linear regressions for each 1 Hz bin. Figure 4 

presents the average spectra for the fronto-central and parieto-occipital EEG leads, as well as the 

percentage of change in spectral power per ˚C change in Tsuit for those frequency bins that were 

significantly (p<0.05) affected. 

In young adults, proximal skin warming enhanced EEG power in the sleep-propensity-related fre-

quency range at both the fronto-central (FpzCz) (all p<0.0001 for the 0.4-12 Hz range) and parie-

to-occipital (PzOz) (all p<0.04 for the 0.4-12 Hz range) derivations. Proximal warming also en-

hanced the sigma frequency range where sleep spindles occur, both at FpzCz (p<0.01 for the 13-

14 Hz bin) and at PzOz (p<0.002 for the 13-15 Hz range). Proximal skin warming moreover atte-

nuated EEG power in the 16-30 Hz frequency range typical of alert wakefulness (for FpzCz, all 

p<0.0002 for the 16-30 Hz range; for PzOz, all p<0.003 for the 19-24 Hz range). Distal skin warm-

ing increased the sleep-related 1-3 Hz range power at FpzCz (all p<0.03), and 5-7 Hz range power 

at PzOz (all p<0.002). It also enhanced the 14-15 Hz sleep spindle range power at both FpzCz 

(p<0.006) and PzOz (p<0.002). Nevertheless, at PzOz, distal warming also enhanced the wake-

related lower beta frequencies (15-21 Hz, p<0.03). Finally, distal skin warming attenuated EEG-

power in the alpha frequency range at both FpzCz (all p<0.0001 for the 7-12 Hz range) and PzOz 

(all p<0.001 for the 9-12 Hz range). 

In elderly without sleep complaints, proximal skin warming enhanced the fronto-central expres-

sion of the sleep-related 1-9 Hz range (p<0.03) and the higher sleep spindle frequency bin (14-15 

Hz, p<0.0004), and suppressed a lower sleep spindle frequency bin (12-13 Hz, p<0.002) and the 

wake-related beta range (16-25 Hz, p<0.03). Proximal warming also enhanced the parieto-

occipital expression of the sleep related 0.4-9 Hz range (p<0.05) and suppressed the 10-29 Hz 

range (p<0.02). Distal skin warming suppressed the fronto-central expression of the alpha range 

(7-12 Hz, p<0.005) and enhanced the 14-23 Hz range (p<0.05). Parieto-occipital, distal warming 
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suppressed the sleep related 0.4-6 Hz range (p<0.03) and enhanced a few frequency bins between 

10 and 23 Hz (p<0.04). 

As compared to the elderly people without sleep complaints, the overall EEG power spectra of 

elderly insomniacs (see figure 4) were characterized by a notable fronto-central reduction in the 

lower frequency range (0.4-5 Hz, all p<0.02, z-test) and sleep spindle peak frequency (13-14 Hz, 

p=0.03). The effects of temperature manipulation on the power spectra of the insomniac elderly 

were more restricted. Other than some minor spectral changes, only the enhancement of the 

sleep-related parieto-occipital slow wave sleep related 0.4-2 Hz range by proximal warming stood 

out (p<0.001).  

To summarize the strongest effects of proximal warming: it especially enhanced the slow oscilla-

tion (0.4-1 Hz) frequency range at PzOz in all groups and at FpzCz in young subjects only; and en-

hanced the slow wave (delta, 1-4 Hz) frequency range at PzOz in all groups and at FpzCz in young 

and elderly well sleeping subjects only. Moreover, it enhanced the higher sleep spindle frequency 

bin (14-15 Hz) in young adults and elderly without sleep complaints, but rather suppressed it in 

elderly insomniacs. Proximal warming also suppressed the wake-related higher frequencies in 

young adults and elderly without sleep complaints, but somewhat enhanced it (fronto-central 

only) in elderly insomniacs. 

To summarize the strongest effects of distal warming: its effects were more equivocal, and mainly 

present in young adults and elderly without sleep complaints. It suppressed the alpha range (8-12 

Hz) and induced some increase in the beta range (15-23 Hz). Only in elderly without sleep com-

plaints and only on PzOz, it suppressed the slow oscillation, delta, and lower theta ranges (0.4-6 

Hz) – which is compatible with the shift towards S2 and REM sleep indicated by the logistic re-

gression analyses. 
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Fig. 4.  EEG power spectra averaged over all artifact-free 30 second epochs scored as NREM sleep 
throughout the night from FpzCz (left panels) and PzOz (right panels) for young adults 
(upper panels), elderly without sleep complaints (middle panels) and insomniac elderly 
(lower panels). The traces give the mean±SEM spectra for each group, given in milli-
volt2/0.2 Hz bin. The bars indicate, for each 1 Hz bin, the percent change (±SEM in power 
per °C change in Tsuit, if significant (p<0.05). Note that the actually induced changes may 
be three times as much, given the range of thermosuit manipulation (3˚C). Black bars 
represent power changes induced by manipulation of the proximal part of the thermosuit. 
Gray bars represent power changes induced by manipulation of the distal part of the 
thermosuit. (lower panels). 
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4. Discussion 
The results of the present study have demonstrated for the first time that sleep depth is strongly 

affected by direct mild manipulation of skin temperature within the thermoneutral zone that 

normally occurs during everyday life under comfortable sleeping conditions. Of note, core body 

temperature remained unchanged and could thus not have mediated any of the effects. After 

demonstrating the effect of skin temperature manipulations in young adults, the robustness of 

the effects was verified in elderly with, and without, sleep complaints, in whom both thermosen-

sitive and thermoregulatory capacities are changed (Chapter 2, this thesis)54. In young and older 

subjects without sleep complaints, proximal warming resulted in deeper sleep and suppressed 

wakefulness, whereas distal skin warming enhanced REM sleep and suppressed light sleep (see 

figure 2 and table 3). Elderly insomniacs responded somewhat differently, in that proximal warm-

ing enhanced slow wave sleep and REM sleep, whereas distal warming enhanced slow wave sleep 

and suppressed REM sleep (see figure 2 and table 3). The fraction of SWS (see table 2) reported 

here may seem high for elderly and insomniacs and could result from the fact that we limited the 

allowed sleep time to 6 hrs (5.5 hrs analysed) in the present protocol. The even higher fraction of 

SWS in the skin warming condition suggests that this procedure can raise the amount SWS to a 

level not habitually seen in elderly people. Most importantly, the results show that mild skin tem-

perature manipulations can be chosen such as to significantly reduce early morning awakening 

and enhance deeper sleep stages (see figure 3). Early morning awakening and a lack of deep sleep 

are typical findings even in elderly people who do not have sleep complaints. Elderly participants 

showed such a pronounced sensitivity to skin temperature manipulations, that the induction of a 

relatively small (0.4˚C) increase in skin temperature lowers the probability of being awake at 6:00 

in the morning (P(W|6:00)) by a factor 14 (from 0.58 to 0.04) for elderly without sleep complaints, 

and by a factor 5 (from 0.36 to 0.07) in elderly insomniacs (see figure 3). In addition, subtle skin 

warming significantly restored the age-related decrease in SWS - often considered the most phy-

siologically restorative stage of sleep. The induction of a 0.4˚C increase in skin temperature 

doubled the overnight occurrence of slow wave sleep from 8% to 14% in elderly without sleep 

complaints and from 4% to 9% in elderly insomniacs (see figure 3). Frequency spectra of the 

NREM sleep EEG (see figure 4) confirmed that skin warming enhanced low frequency cortical os-

cillations, in agreement with the previously reported slowing of EEG with skin warming in a pri-

mate study2. 

An important question to be evaluated in further studies is whether the mild skin warming proce-

dure would be equally effective if it was applied continuously during the whole night instead of 

intermittently as in the present study. It might be argued that our finding of increased sleep depth 

with mild warming could be due to a ‘rebound’ of deeper sleep stages during the warming periods 

if their normal development would have been suppressed during the ‘cool’ periods. In brief, be-
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cause our hypothesis was that mild skin warming would enhance sleep, we made sure that our 

baseline (‘cool’) would be optimally comfortable, such that it would not suppress sleep. During 

pilot studies, we determined the baseline (‘cool’) level so that is was perceived as optimally com-

fortable and thermoneutral. This was verified in one published study (Chapter 4, this thesis)40, in 

which we demonstrated that the ‘cool’ condition was in fact perceived as even slightly more com-

fortable than the warm condition. We also ensured that the skin temperatures induced in our 

present protocol did not drop below normal proximal and distal skin temperatures measured 

using ambulatory equipment49 under habitual sleeping conditions at home. In 15 well-sleeping 

elderly (7 m, 8 f, age 62 ± 2 years mean ± s.e.m.) and 20 insomniac elderly (8 m, 12 f, age 59 ± 1 

years) the mean distal skin temperature measured at home in the 00:30-6:00 hr period was 34.4 ± 

0.2˚C and 34.8 ± 0.1˚C, respectively (unpublished data). Our present manipulations never induced 

the mean distal skin temperature to drop below 34.84˚C, even in the ‘cool’ conditions (see table 

1). Similarly, the mean proximal skin temperature measured in bed at home was 34.6 ± 0.2˚C for 

well-sleeping elderly and 34.8 ± 0.1˚C for elderly insomniacs, while our present manipulations 

never induced the mean distal skin temperature to drop below 34.85˚C, even in the ‘cool’ condi-

tions. In conclusion, because the baseline (‘cool’) condition was already somewhat warmer than 

the habitual sleep microclimate at home, it is unlikely that it suppressed the normal development 

of sleep. Warming studies over the whole nocturnal period are warranted to verify that the sleep-

enhancing effect and sleep-depth-enhancing effect of mild skin warming can indeed be sustained. 

Future research should also be designed in a way that is more suitable to evaluate temperature 

effects on REM sleep; mainly for reasons of logistics our protocol finished at 6:00 hr in the morn-

ing and may thus have compromised the typical enhanced expression of REM sleep at the end of 

the night.  

Previous studies reported skin and bed temperature microclimates of 34 to 36˚C during 

sleep20,37,38. In the present study, skin temperature was manipulated within a narrow 0.4˚C range 

around a mean of 35.1˚C, i.e. well within the normal comfortable skin temperature range during 

sleep. Of note, the sleep-enhancing effects of slight warming cannot simply be attributed to 

changes in comfort, since we previously demonstrated that the upper limit of the manipulated 

range is in fact perceived as slightly less comfortable40. Of further importance for perceived com-

fort is the fact that our study is unique in the sense that skin temperature manipulations were 

applied while keeping the temperature of the environmental air – which was breathed and to 

which the face was exposed – at 21˚C. We do not expect that elevating ambient temperature 

instead of directly manipulating the proximal and distal skin, would lead to any comparable sleep 

improvements, because elevated air temperatures may be experienced as uncomfortable. Worse 

sleep has indeed been reported with an air temperature of 30˚C, as compared to 18˚C and 23˚C19. 
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It thus appears of utmost importance to limit the manipulations to the proximal and distal skin 

area, i.e. the area normally covered by bedding. 

The finding that skin temperature modulates sleep depth may provide a possible explanation for 

the sleep improvement that previous researchers found to occur following passive body heat-

ing6,12,13,21,22,23,24,45. The increase in core body temperature induced by passive body heating acti-

vates heat loss mechanisms including increased skin blood flow, resulting in increased skin tem-

perature. This increase in skin temperature may have been involved in the reported acceleration 

of sleep onset and increase in slow wave sleep. Such an explanation is supported by the results of 

the only passive body heating study that included both polysomnography and skin temperature 

measurements45: in this study, the sleep-promoting effects subsided as soon as the hot bath in-

duced increase in skin temperature had normalized after two hours of sleep. In keeping with data 

from previous studies in which an association between sleep propensity and distal skin tempera-

ture was reported5,25,26,32 our present and recently reported studies39,40 support the view that 

there is not only a correlation, but actually a causal effect of skin temperature on sleep. 

The magnitude, body location and timing of the skin temperature manipulation are of crucial im-

portance for its application to improve sleep. Our results indicate that a clinically-useful thermal 

sleep treatment should aim at individualized and time-of-night dependent control of proximal skin 

temperature within the small range of reported skin and bed temperature microclimates during 

sleep20,37,38. Our results moreover suggest that bed microclimate temperature should ideally be 

kept, on average, above 33.5˚C, 33.2˚C and 33.1˚C for young adults, elderly subjects without sleep 

complaints and elderly people with sleep complaints respectively. It is not sufficient to merely 

apply heating blankets, which warm up the skin and core body without knowledge about the ac-

tual body temperatures, which may become too high and adversely affect sleep17 – most likely by 

activating heat stress responses. Whereas our thermosuit cannot be regarded as optimally suited 

for application at home, it is conceivable to develop a system integrated in the bedding that both 

measures skin temperature and controls the bed microclimate within a feedback control loop. 

In the absence of such a system and its validation, how can a clinician at present utilize the ad-

vancing insight on the importance of skin temperature for sleep with yet available methods? For a 

patient reporting with sleep complaints, a first valuable step would be to measure his or her skin 

temperature during habitual sleep at home. Low-cost small and unobtrusive temperature sensors 

have recently been validated for such purpose49. Since we recently found a marked decrease in 

the subjective perception of optimal sleeping temperatures in old age, especially in insomniacs41, 

it may well be that that people sleep under thermal conditions that do not favour sleep, without 

realising this fact. If skin temperature measurements suggest this to be the case, what tempera-

ture manipulation methods are available? In the case of low skin temperature measurements, a 

first approach would be to optimize the sleeping microclimate by heat insulation (additional 
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clothes or bedding) or by pre-warming of the bed with an electric heating blanket. As mentioned 

above, it is important to switch off the heating blanket during actual sleep. A second approach is 

to increase the heat load of the body prior to bedtime. This can be accomplished using passive 

body heating (e.g. bathing, sauna) or active body heating (exercise); both will help to maintain 

skin temperature elevated during subsequent sleep52,53. For complaints of early morning awaken-

ing, one may try an electrical heating blanket set at its lowest capacity and connected to an AC 

power timer to accomplish a delayed start. 

 

In conclusion, the present results show a strong modulating effect of skin temperature on sleep 

depth, which is compatible with the hypothesis that skin temperature affects sleep-regulating 

areas in the brain51 The finding may be involved in the suboptimal sleep that many elderly com-

plain of, because their previously reported attenuated behavioural response to off-neutral envi-

ronmental temperature50 may keep them from taking the behavioural actions necessary to optim-

ize the thermal microclimate of the bed. The effects of even very minimal temperature manipula-

tions within the thermoneutral comfortable range are so pronounced that they warrant further 

research into practical thermal manipulation applications to improve sleep. 
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Summary 
Objective: Besides excessive daytime sleepiness, disturbed nocturnal sleep is a major complaint of 

patients with narcolepsy. Previously, alterations in skin temperature regulation in narcoleptic 

patients have been shown to be related to increased sleepiness. This study tests the hypothesis 

that direct control of nocturnal skin temperature might be applied to improve the disturbed sleep 

of narcoleptic patients. 

Methods: Participants were eight patients (five males) diagnosed as having narcolepsy with cata-

plexy according to the ICSD-2 criteria, mean (SD) age 28.6 (6.4) years, range 18–35 years. During 

two nights, sleep was recorded polysomnographically while proximal and distal skin temperature 

were manipulated using a comfortable thermosuit that induced skin temperature to cycle slowly 

with an amplitude of only 0.4°C within the comfortable range normally observed during sleep. 

Logistic regression was used to evaluate the effect of skin temperature manipulation on the prob-

ability of occurrence of different sleep stages and nocturnal wakefulness. 

Results: Proximal skin warming significantly suppressed wakefulness and enhanced slow wave 

sleep (SWS). In contrast, distal skin warming enhanced wakefulness and stage 1 sleep at the cost 

of SWS and REM sleep. The optimal combination of proximal skin warming and distal skin cooling 

led to a 160% increase in SWS, a 50% increase in REM sleep and a 68% decrease in wakefulness, 

compared with the least beneficial combination of proximal skin cooling and distal skin warming. 

Interpretation: Subtle skin temperature manipulations under controlled conditions significantly 

improved the typical nocturnal sleep problems in narcolepsy. 
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1. Introduction  
The four classical symptoms of narcolepsy are excessive daytime sleepiness, cataplexy, hypnagog-

ic hallucinations and sleep paralysis11. In recent years, disturbed nocturnal sleep has gained in-

creasing attention as a fifth core symptom that severely affects quality of life11. Nocturnal poly-

somnography in patients with narcolepsy shows a fragmentation of the normal sleep pattern with 

frequent arousals and a decrease in slow wave sleep6,8,10. Several hypnotics, including sodium 

oxybate (gammahydroxy-butyrate), are currently used to improve nocturnal sleep in narcolepsy2. 

Narcolepsy is caused by a loss of the neuropeptide hypocretin (orexin), a neurotransmitter that is 

produced by neurons in the lateral hypothalamus12,17.  

There is a relation between sleep and both core body and skin temperature20,21 In everyday life 

and under laboratory conditions with a comfortable to warm environmental temperature, core 

body temperature is lower and the average skin temperature is higher during the night than dur-

ing the day9,21. Sleep-onset latency is negatively correlated to the temperature of distal skin areas 

(hands and feet)7. There seems to be a causal relation, since mild warming of the skin compromis-

es sustained vigilance (see Chapter 4, this thesis)13 and facilitates sleep initiation (see Chapter 6, 

this thesis)14. Moreover, mild active manipulation of the skin temperature within the comfortable 

and circadian range affects night-time sleep in healthy controls (see Chapter 8, this thesis)15.  

In a previous study, we reported disturbances in skin-temperature regulation in narcolepsy3. Nar-

coleptic subjects showed a combination of a higher distal skin temperature and a lower proximal 

skin temperature, which in healthy subjects is associated with the process of falling asleep7. In a 

follow-up study, we were able to improve both daytime vigilance and maintenance of wakeful-

ness by mild manipulation of skin temperature and core body temperature (see Chapter 7, this 

thesis)4. To test the hypothesis that manipulation of skin temperature might be applied to ameli-

orate the disturbed nocturnal sleep in narcolepsy as well, we performed subtle manipulations of 

proximal and distal skin temperature during two nocturnal sleep episodes in eight narcoleptic 

patients. 

 

2. Materials & Methods 

2.1. Subjects 
Eight narcoleptic patients (five males, 18–35 years of age; mean (SD): 28.6 (6.4) years) partici-

pated with informed consent. All suffered from excessive daytime sleepiness and typical cataplexy 

according to the ICSD-2 criteria for narcolepsy with cataplexy1. All subjects were free of medica-

tion, except for one female subject using oral contraceptives. All females participated between 

day 4 and day 12 of the menstrual cycle (mid-follicular phase or pseudo-follicular phase). All sub-
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jects participated in the summer season (July/August). The protocol was approved by the Medical 

Ethics Committees of the Academic Medical Center in Amsterdam and the Leiden University Med-

ical Center. The same eight subjects were used in the aforementioned study, where both skin 

temperature and core body temperature were manipulated during daytime (see Chapter 7, this 

thesis)4. 

 

2.2. Design  
A previously described design was used to differentially manipulate proximal and distal skin tem-

perature, and to determine the effects of these manipulations on sleep depth (see Chapter 8, this 

thesis)15. Subjects refrained from caffeine, alcohol and tobacco for 8 h before reporting at the 

sleep laboratory at 22:00. There they were prepared for polysomnography and fitted with a ther-

mosuit. At midnight, lights were turned off, and subjects were allowed to sleep until 06:00. From 

00:30 until 06:00, their proximal and distal skin temperatures were manipulated. After this, sub-

jects slept one night at home, after which they returned for a second night in the sleep laboratory, 

during which the temperature manipulation sequence (see below) was inverted to that of the first 

night. 

 

2.3. Temperature Manipulations and Measurement. 
Starting at 0:30, the temperature of the proximal skin (Tskin-prox) and the temperature of the distal 

skin (Tskin-dist) were differentially manipulated by slowly altering the temperature of the water that 

perfused the thermosuit (fig 1). The suit temperature (Tsuit) stayed at constant plateaus of either 

15 or 30 min with slow (15 min) transitions in between. The order of the sequences of skin tem-

perature manipulations was different for each subject within its group and chosen in such a way 

that it resulted in an optimal uniform distribution of combinations of high and low Tsuit-prox and 

Tsuit-dist levels throughout the night over all subjects, that is at any time of night there was an equal 

proportion of ‘‘warm’’ and ‘‘cool’’ periods. Tsuit cycled between 31.9 (0.1)°C (mean (SE)) in the 

‘‘cool’’ and 34.8 (0.1)°C in the ‘‘warm’’ condition, as measured once per minute on the isolated 

inflow tubes at their connections with the thermosuit using PT100 thermistors (RTD-3-3105, 

Omega, Stanford). This range was specifically chosen to match the previously reported range of 

temperatures normally present in the bed microclimate5. The environmental temperature was 

kept at 21°C. Skin and core body temperature was recorded as described previously (see Chapter 

6, this thesis)14. 
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2.4. Sleep Recordings 

Polysomnographic sleep recordings were performed according to standard procedures22. An ex-

perienced sleep technician blind to the temperature conditions scored sleep stages in 30-second 

epochs according to the Rechtschaffen and Kales criteria using Somnologica software16. 

 

 
Fig. 1. (A) Example of a temperature profile induced in one patient during a single night. The 

lower traces show the temperature of the proximal (solid line) and distal (dotted line) 
parts of the thermosuit. The upper traces show the actually induced proximal and distal 
skin temperatures. (B) Graphical representation of the proportion of the sleep stages dur-
ing the optimal (distal cooling and proximal warming) and least beneficial (distal warming 
and proximal cooling) manipulation scheme. The proportions were derived in separate lo-
gistic regressions for each sleep stage. For graphical purposes only, the figure was res-
caled to 100%. S1: stage 1 sleep, S2: stage 2 sleep, SWS: slow-wave sleep, REM: rapid-eye-
movement sleep.  

 

2.5. Statistical Analysis 
The main outcome measures of this study were the effects of proximal and distal skin warming or 

cooling on the odds ratios for the occurrence of each sleep stage (stage 1, stage 2, slow-wave 

sleep, REM sleep and wakefulness). Mixed effect (or multilevel) regression modelling was applied 

to account for the interdependency of the data points inherent to the hierarchical structure of the 

dataset: sleep epochs within nights within subjects (MLwiN software, Centre for Multilevel Model-

ling, Institute of Education, London)19. The analyses included all epochs during the skin tempera-

ture cycles (from 00:30 until 6:00). To determine the effects of skin temperature manipulation on 

the probability of occurrence of each sleep stage or wakefulness, longitudinal multilevel logistic 
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regressions were applied for each sleep stage classification, with the current presence or absence 

of that stage as dummy coded dichotomous dependent variable and Tsuit-prox and Tsuit-dist as predic-

tor variables. Two-tailed significance levels were set at 0.05. For a graphical representation, odds 

ratios (OR) were translated into whole-night sleep stage probabilities for two conditions, reflect-

ing the most and least profitable combination of upper (34.8 (0.1)°C) and lower (31.9 (0.1)°C) Tsuit 

levels (see results). These probabilities can easily be calculated using the transformation ex/(1+ex), 

where x represents the regressor part of the best-fitting regression model. 

 

3. Results 

3.1. Induced Temperatures 
With the thermosuit approach, we were able to differentially manipulate proximal and distal skin 

temperature (see example of one night in one patient in fig 1). The temperature manipulations of 

the proximal part of the thermosuit accounted for 53.8% of the variance in mean Tskin-prox. Tskin-prox 

averaged 35.1 (0.1)°C (mean (SEM)) at the warmest level versus 34.7 (0.1)°C at the coolest level. 

Likewise, the independently manipulated temperature of the distal part of the thermosuit ac-

counted for 44.0% of the variance in mean Tskin-dist. Tskin-dist averaged 35.5 (0.05)°C at the warmest 

level versus 35.1 (0.05)°C at the coolest level. Thus, the manipulations forced the skin tempera-

ture to cycle slowly within a very subtle 0.4°C range (see temperature graph in fig 1). The manipu-

lations left core body temperature virtually unchanged (skin temperature manipulations ac-

counted for only 2.5% of the variance in core body temperature). 

 

3.2. Effects of Temperature Manipulations on Sleep Stage Distribution 
Thermosuit manipulation of the temperature of the proximal and distal skin significantly affected 

sleep depth and the occurrence of wakefulness. Table 1 shows that proximal warming suppressed 

wakefulness (OR 0.81, CI (0.77 to 0.84), p<0.001) and enhanced slow-wave sleep (OR 1.23 (1.17 to 

1.29), p<0.001; all OR expressed per 1°C increase in Tsuit). In contrast, distal warming enhanced 

wakefulness (OR 1.11 (1.06 to 1.16), p<0.001) and stage 1 sleep (OR 1.22 (1.16 to 1.28), p<0.001) 

sleep at the cost of slow-wave sleep (OR 0.85 (0.81 to 0.89), p<0.001) and REM sleep (OR 0.87 

(0.83 to 0.92), p<0.001). There were no significant effects on the occurrence of stage 2 sleep. A 

graphical representation of the sleep-stage distribution is given in fig 2. As compared with the 

least favourable skin temperature combination, the optimal combination led to a 160% increase 

in slow-wave sleep, a 50% increase in REM sleep and a 68% decrease in wakefulness. 
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4. Discussion 
This study shows that subtle manipulation of proximal and distal skin temperatures has beneficial 

effects on nocturnal sleep in narcolepsy. When the proximal skin was warmed, slow-wave sleep 

increased, and wakefulness was suppressed. In contrast, warming of the distal skin suppressed 

slow-wave and REM sleep, while enhancing wakefulness and stage 1 sleep.  

Fragmented nocturnal sleep is a major and difficult to treat problem for many patients with nar-

colepsy. Currently, treatment of this invalidating symptom is based on hypnotics, most notably 

sodium oxybate2, which increases slow-wave and REM sleep, while suppressing wakefulness8,18.  

The present study was designed in such a way that different manipulation schemes were equally 

and randomly distributed over the test subjects in a balanced way. As such, the effects cannot 

have been caused by time of night or circadian effects, but can be solely attributed to the manipu-

lation of skin temperature. The fact that subtle changes in skin temperature affect sleep in both 

narcoleptic patients and healthy controls (see Chapter 8, this thesis)15 shows that the basic hypo-

thalamic circuitry involved in temperature and sleep regulation is still responsive to manipulation 

in narcolepsy despite the hypocretin deficiency. In this study, no subject experienced the optimal 

or least beneficial combination of proximal and distal manipulations continuously during a full 

night. Furthermore, sleep time was restricted from midnight to 06:00. It would now be of interest 

to confirm the positive effects found in this study using a controlled trial in which the optimal or 

least beneficial temperature conditions are applied continuously throughout a full night. 

In conclusion, despite the hypocretin deficiency, the basic hypothalamic circuitry involved in tem-

perature and sleep regulation is still responsive to manipulations in narcolepsy. These results raise 

the intriguing possibility that selective manipulation of skin temperature within the comfortable 

range might in theory be applied to ameliorate one of the core symptoms of narcolepsy; dis-

turbed nocturnal sleep. 
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General Discussion 
At this very moment, let us recall the situations described in the first chapter of this thesis. The 

first situation was as follows: Consider a moment of considerable fatigue after a long working day, 

while there is still that one manuscript that needs to be read and commented on today. What 

would be the best strategy to promote alertness and finish the job: reading it sitting at one’s desk, 

or rather lying down on the sofa to give in somewhat to the fatigue, and read it semi-supine? The 

second situation was: Imagine flying back home from a demanding conference, eager to catch a 

nap. How does trying to sleep in a sitting position compare to trying to sleep in a supine position?  

Both questions were addressed to explain sleep-permissive and wake-promoting effects. Body 

temperature can act as both sleep-permissive and wake-promoting factors. As mentioned before 

a relatively cool core body temperature and a relative warm, but not to warm, skin temperature 

act as a sleep-permissive signal, whereas a relatively warm core body temperature and a relatively 

cool skin temperature acts as a wake-promoting factor. 

On anecdotal level we mentioned the sleep permissive effect of the warmth of the sun, when 

lying on the beach, the red earlobes of young children getting tired, the use of the fan and air 

conditioner in the car to stay alert when driving during a hot summer day, the warm rosy feeling 

after being deprived from sleep, or the difficulties facing when attempting to fall asleep with cold 

feet. On scientific level studies provided unequivocal observational support that people sleep best 

while they head towards the trough of their 24-hour core body temperature and perform best 

around its peak49. A number of studies that investigated spontaneous or indirectly experimentally 

induced fluctuations in skin temperature however, strongly support an association with vigilance 

and sleep. Healthy people fall asleep more easily if their skin temperature or bed temperature is 

higher24,25,48. The same association was shown for people with a vasospastic syndrome, who have 

a lower temperature of their hands and tend to have difficulties falling asleep28; and for narcolep-

tic patients, where skin temperature is correlated to their daytime sleep propensity15. With re-

spect to the ability to maintain alert wakefulness, healthy people perform better during the 

troughs of their normal daytime skin temperature fluctuations35. These aforementioned correla-

tional studies can be interpreted as merely indicating that skin temperature reflects an underlying 

process of vigilance regulation. But what is the actual experimental support for a causal contribu-

tion of skin temperature to vigilance regulation in humans?  That was the scope of the current 

thesis.  

The present thesis addressed sleep-permissive and wake-promoting effects of small changes in 

skin temperature as occur naturally within the thermoneutral zone.  Under well-controlled condi-

tions we evaluated the effect of skin temperature manipulations on the onset and maintenance of 
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sleep, and alertness. A number of controlled experiments were specifically designed to evaluate 

the following hypotheses. 

 

Hypotheses 
1. Within the thermoneutral range, mild skin warming promotes sleep onset (1a) and sleep 

depth (1b) and impedes vigilance (1c). 

2. Skin temperature manipulations yield stronger effects than core body temperature mani-

pulations. 

3. Distal skin temperature manipulations yield stronger effects than proximal skin tempera-

ture manipulations. 

4. Skin temperature manipulations yield stronger effects the more sleep is compromised, i.e. 

small effects in young people without sleep complaints, medium effects in elderly people 

without sleep complaints and strong effects in elderly people suffering from chronic in-

somnia and patients diagnosed with narcolepsy. 

 

In order to evaluate these hypotheses, we first address the use of home applicable foot tempera-

ture interventions and studied its effects on sleep onset (Chapter 3). Next, an innovative, well-

controlled experimental set-up was build, using a water-perfused thermosuit – during wakeful-

ness in combination with hot and cold food and drinks – to study the effects of mild manipula-

tions of skin temperature and core body temperature on sleep onset (Chapters 4 and 5), on day-

time vigilance (Chapters 6 and 7) and on sleep depth and maintenance (Chapter 8 and 9). Below, 

the specific aims and major findings of the studies reported in Chapter 3 to 9 will be summarized, 

after which the hypotheses will be revisited. 

 

Summary 
The effects of skin warming and core body cooling on sleep onset were addressed in Chapter 3 to 

Chapter 5. In Chapter 3 we aimed at improving sleep onset using home-applicable distal warming 

techniques. To do so, we manipulated foot temperature using a footbath before lights off, heata-

ble bed socks before lights-off and heatable bed socks after lights-off in adults without subjective 

sleep complaints, elderly without subjective sleep complaints and elderly with subjective sleep 

complaints. Multiple Sleep Latency Test (MSLT) protocol guidelines were followed to quantify 

sleep onset latency (SOL) polysomnographically. In adults, sleep onset latency was accelerated by 

warm and neutral bed socks after lights-off and it correlated to the increase in foot temperature. 

This increase was attenuated in elderly subjects. In elderly subjects without sleep difficulties, 

sleep onset could be accelerated with neutral bed socks after lights-off and a warm footbath prior 
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to lights-off. In elderly insomniacs, none of the treatments accelerated sleep onset. We concluded 

that elderly subjects show an attenuated increase in foot temperature after lights-off and lose the 

relationship between pre-sleep heat loss activation and sleep latency. The sensitivity of sleep pro-

pensity to foot warming changes with age and is attenuated in age-related insomnia. 

In Chapter 4 we also intended to accelerate sleep onset, but now using mild skin warming and 

core body cooling, using a water-perfused thermosuit, in adults without subjective sleep com-

plaints. A 2 day semi constant-routine protocol was followed and each day consisted of a 2x2x2 

experimental design to apply different warming and cooling combinations. MSLT protocol guide-

lines were followed to quantify sleep onset latency polysomnographically. Hence we obtained 144 

sleep onset latencies while directly manipulating core and skin temperatures within the comfort-

able range in 8 healthy subjects under controlled conditions. The induction of a proximal skin 

temperature difference of only 0.78°C changed SOL by 26% (3.09 minutes), with faster sleep on-

sets when the proximal skin was warmed. The reduction in SOL occurred in spite of a small but 

significant decrease in subjective comfort during proximal skin warming. The induction of changes 

in core temperature of 0.20°C and distal skin temperature of 0.68°C were ineffective. We demon-

strated a causal contribution to sleep-onset latency of skin temperature manipulations within the 

range of its normal nocturnal fluctuations and concluded that circadian and sleep-appetitive be-

havior induced variations in skin temperature might act as an input signal to sleep-regulating sys-

tems. 

In Chapter 5 it was studied if the results found in the study described in Chapter 4 could be repli-

cated within a group of elderly adults with and without subjective sleep complaints. The experi-

mental design and innovative setup was identical to the one described in Chapter 4. 288 sleep 

onset latencies were determined, while directly manipulating core and skin temperatures within 

the comfortable range in 8 elderly without subjective sleep complaints and 8 elderly with subjec-

tive sleep complaints under controlled conditions. Warming the proximal skin by on average 

0.72˚C facilitated sleep onset equally effective in healthy elderly by 18% (1.84 minutes) and elder-

ly insomniacs 28% (2.85 minutes). These effects were comparable to the results in healthy young 

subjects as reported in chapter 4, in spite of a marked decrease in the subjective perception of 

temperature changes in elderly subjects, especially in insomniacs. We concluded that mild 

changes in skin temperature have an effect on sleep propensity in elderly and indicate that elderly 

insomniacs may have a diminished capability to recognize that a slight increase in bed tempera-

ture facilitates the initiation or re-initiation of sleep. 

The effects of skin warming and core body cooling on daytime vigilance were addressed in Chap-

ter 6 and Chapter 7. In Chapter 6 we tried to impede daytime vigilance using mild skin warming 

and core body cooling. This study was conducted in the same 3 groups (adults without subjective 

sleep complaints and elderly both with and without subjective sleep complaints), using the same 
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experimental design and the same setup as described in Chapter 4 and Chapter 5. Vigilance was 

assessed using a 7 minute version of the Psychomotor Vigilance Task (PVT) and 432 PVTs were 

completed, while core and skin temperatures were manipulated within the comfortable range. 

During the PVTs, response speed typically declined with increasing time-on-task. Proximal skin 

warming by only 0.68˚C and 0.56˚C respectively accelerated this decline by 67% in young adults 

and by 50% in elderly subjects. In elderly insomniacs, proximal warming slowed down the mean 

response speed already from the onset of the task, independent of time-on-task, with 3%. Re-

sponse speed tended to decrease with age, however reaching significance only in elderly insom-

niacs. Speed decrements occurred mostly towards the end of the time-on-task in young adults; 

earlier and more gradually in elderly without sleep complaints; and very early and in a pro-

nounced fashion in insomniacs. Interestingly, the worsening by warming followed the time pat-

tern already present within each group. We concluded that the endogenous circadian variation of 

skin temperature could modulate vigilance regulating brain areas and thus contribute to the cir-

cadian rhythm in vigilance. Minute-by-minute PVT analyses revealed effects of age and insomnia 

not previously disclosed in studies applying time-point aggregation. Our data indicated that “age-

related cognitive slowing” may result, in part, from age-related sleep problems. 

In Chapter 7 we addressed the effects of changes in skin and core temperature on daytime vigil-

ance in narcoleptic patients, in order to reveal a possible causal contribution of skin temperature 

disturbances to impairments in the ability to maintain vigilance and wakefulness in narcolepsy. 

For optimal comparability, the experimental design and setup was identical to the ones used in 

the studies described in Chapter 4 to Chapter 6, however, the MSLT procedure was replaced by a 

Maintenance of Wakefulness Test (MWT) procedure. 144 MWT sleep latencies and PVTs acquired 

during manipulation of core body and skin temperature within the comfortable range in 8 pa-

tients diagnosed with narcolepsy with cataplexy were analyzed. Compared to core cooling, core 

warming attenuated the typical decline in PVT response speed with increasing time-on-task by 

25%. Compared to distal skin warming, distal skin cooling increased the time that the patients 

were able to maintain wakefulness by 24% (distal warming: 1.88 minutes versus distal cooling: 

2.34 minutes). It was concluded that core body and skin temperatures causally affect vigilance 

and sleepiness in narcolepsy and that this could lead to future practical applications. 

The effects of skin warming (but not core body cooling) on sleep macro- and sleep micro- struc-

ture were addressed in Chapter 8 and Chapter 9. In Chapter 8 we tested if nocturnal sleep could 

be improved using mild skin warming in adults without subjective sleep complaints, elderly with-

out subjective sleep complaints and elderly with subjective sleep complaints. Sleep was recorded 

polysomnographically during two nights while proximal and distal skin temperature were manipu-

lated using a comfortable thermosuit (the same intervention method as used in the sleep onset 

and the daytime vigilance studies) that induced skin temperature to cycle slowly within the com-
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fortable range normally observed during sleep. It was shown that an induction of a mere 0.4˚C 

increase in skin temperature, whilst not altering core temperature, suppressed nocturnal wake-

fulness and shifted sleep to deeper stages in young adults and, especially, in elderly healthy and 

insomniac participants. Young adults showed a decrease in the relative proportion S1 and S2, and 

an increase of REM, as result of the distal skin warming. Proximal warming resulted in a decrease 

of Wake and S1, and an increase in S2 and SWS. Elderly healthy participant showed a decrease in 

the relative proportion Wake and S1, and an increase of S2 and REM, as result of the distal skin 

warming. Proximal warming resulted in a decrease of Wake, and S1 and an increase in S2 and 

SWS. Elderly insomniacs showed a decrease in the relative proportion S1 and REM, and an in-

crease of S1 and SWS, as result of the distal skin warming. Proximal warming resulted in a de-

crease of Wake, S1 and S2, and an increase in SWS and REM.  Elderly subjects showed such a pro-

nounced sensitivity, despite the diminished capability to perceive temperature changes, that the 

induced 0.4˚C increase in skin temperature was sufficient to almost double the proportion of noc-

turnal slow wave sleep and to decrease the probability of early morning awakening from 0.58 to 

0.04. EEG frequency spectra showed enhancement of low frequency cortical oscillations. Skin 

warming strongly improved the two most typical age-related sleep problems; a decreased amount 

of slow wave sleep and an increased possibility of early morning awakening. As such, subtle feed-

back control of in-bed temperature through very mild manipulations could have strong clinical 

relevance in the management of disturbed sleep especially in the elderly, who have an attenuated 

behavioural response to suboptimal environmental temperature, which may hamper them from 

taking appropriate action to optimize their bed temperature.  

In Chapter 9 an experimental protocol identical to the one described in Chapter 8 was used in a 

population of narcoleptic patients, in order to improve the disturbed nocturnal sleep habitually 

seen in these patients using mild skin warming. As a result of our temperature manipulations, 

proximal and distal skin temperature cycled slowly with an amplitude of only 0.4°C within the 

comfortable range normally observed during sleep. Proximal skin warming significantly sup-

pressed wakefulness and enhanced slow wave sleep. In contrast, distal skin cooling enhanced 

SWS and REM sleep at the cost of wakefulness and stage 1 sleep. The cooling of the distal skin 

most likely brings the habitually nocturnal increased distal skin temperature in narcoleptic pa-

tients within the range that is less disturbing for sleep. The optimal combination of proximal skin 

warming and distal skin cooling led to a 160% increase in SWS, a 50% increase in REM sleep and a 

68% decrease in wakefulness, compared with the least beneficial combination of proximal skin 

cooling and distal skin warming. It was that subtle skin temperature manipulations under con-

trolled conditions significantly improved the typical nocturnal sleep problems in narcolepsy.  
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Evaluation of hypotheses 
Hypothesis 2, 3 and 4 need to be revised as a result of these studies. Firstly, we tested the effect 

of core body temperature manipulation only during daytime. With the setup that was used we 

could not apply core body manipulations whilst the participant was asleep. Consequently we can 

only confirm that skin temperature manipulations yield stronger effects than core body tempera-

ture manipulations in changing sleep onset and vigilance at daytime. 

 

We cannot confirm that distal skin temperature manipulations yielded stronger effects than prox-

imal skin temperature manipulations; we mainly could observe the opposite pattern. As men-

tioned in several of the chapters, we manipulated the proximal skin temperature within or close 

to the subject’s habitual nocturnal range, whereas we might have manipulated distal skin tem-

perature slightly below the subject’s habitual nocturnal range. The sleep-permissive effects of 

distal skin warming might be revealed in a protocol that induces skin temperatures in 2 different 

ranges for distal skin and proximal skin temperature. However, at the start of the series of studies 

and also up to now, no normative data on the range of skin temperatures under habitual sleeping 

conditions are available.  

 

We also cannot confirm that skin temperature manipulations yielded stronger effects the more 

sleep is compromised, i.e. small effects in young people without sleep complaints, medium effects 

in elderly people without sleep complaints and strong effects in elderly people suffering from 

chronic insomnia and patients diagnosed with narcolepsy. For sleep onset we reported the 

strongest effects in the healthy young adults. With regard to nocturnal sleep, the strongest effects 

could be observed in the elderly without sleep complaint. Hence the severity of the sleep com-

plaint is not playing a key role in determining if the temperature intervention might be effective. 

It should also not left unnoted that our data showed relatively more pronounced effects of distal 

temperature in the 2 groups were sleep was comprised as compared to the two groups without 

subjective sleep complaints. 

 

One might argue that the efficacy of the temperature treatment might also be affected by the 

current thermoregulatory state of the body during sleep onset and nocturnal sleep. Only if mild 

skin warming is facilitating the body to achieve a thermal balance, without the need to activate 

thermoregulation, the sleep permissive state will be achieved. It is known that both insomniacs 

and narcoleptics are prone to compromised thermoregulation. As a consequence, a possible in-

tervention can be optimized by using the current thermoregulatory state of the body as an input 

to fine-tune the skin temperature manipulation.  
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Based on the current result we conclude: 

 

1. Within the thermoneutral range, mild skin warming promotes sleep onset (1a) and sleep 

depth (1b) and impedes vigilance (1c). 

2. Skin temperature manipulations yield stronger effects than core body temperature mani-

pulations in changing sleep onset and vigilance at daytime. 

3. Proximal skin temperature manipulations yield stronger effects than distal skin tempera-

ture manipulations. 

4. The effects of skin temperature manipulations on sleep and vigilance is not related to the 

severity of the disturbed sleep, but might be related to the degree of warming as com-

pared to the actual thermoregulatory state of the body.  

General conclusion and perspectives  
The findings provide support for the notion that skin temperature modulates vigilance regulation, 

and more than core temperature does. It has been demonstrated in younger and older healthy 

adults, as well as in patients suffering from either insomnia or narcolepsy, that very mild skin cool-

ing enhances vigilance and the ability to maintain wakefulness (Chapter 6 and 7, this thesis)17,32, 

while mild skin warming facilitates sleep onset (Chapter 4 and 5, this thesis)29,33 and promotes 

slow wave sleep and sleep maintenance (Chapter 8 and 9, this thesis)16,31. Skin temperature mani-

pulations may thus even complement available research tools to experimentally affect slow cor-

tical oscillations during sleep27,37. Concertedly, these findings now provide strong support for a 

causal contribution of skin temperature to vigilance regulation, as was suggested from animal 

studies39. 

The studies therefore allowed for the conclusion that, within the comfortable thermoneutral 

range that does not directly trigger thermoregulatory responses, the effect of a proximal skin 

temperature manipulation is stronger than the effect of manipulating either core temperature or 

distal skin temperature. Predominance of skin over core temperature effects on the brain makes 

sense from a survival perspective. Given the fact that the central part of the body is thermally 

buffered, it would be a disadvantage if an animal would respond only by the time an environmen-

tal thermal challenge has affected core temperature. A predominance of skin temperature effects 

has also been reported with respect to the disrupting effect of body cooling on performance. For 

example, Cheung et al6 administered vigilance and spatial attention tests while subjects were 

immersed in a cool water bath, and reported that all disruptive effects on performance occurred 

immediately with skin cooling while performance did not get any worse with the much slower 

developing decline in core body temperature. Of note, studies like these differ with respect to the 

applied temperature range.  
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With all our aforementioned studies on manipulation of sleep and vigilance, temperature was 

only manipulated within the thermoneutral zone, thus not stressful, neither activating thermore-

gulatory mechanisms to defend temperature. People neither sleep nor perform well at extreme 

environmental temperatures and sleep versus wake promoting effects may be restricted to a nar-

row comfortable temperature range, where the optimal temperature for sleep slightly differs 

from the optimal temperature to e.g. sustain attention. This is schematically shown in figure 1. 

 

 

 

Fig. 1.  Schematic representation of how we envision skin temperature may affect sleep and 
wake propensity regulation. Both the capacity to initiate or maintain sleep or to perform 
/performance on a sustained attention tasks are compromised at low and high tempera-
tures, because the brain will prioritize recruitment of its resources to solve a possibly dis-
advantageous thermal situation. Within a relatively small comfortable thermoneutral 
zone, there is no need for the brain to activate thermoregulatory defense mechanisms. 
Within this range, small differences in skin temperature may promote the brain to reach 
its peaks of vigilance-promoting and sleep-promoting capacities. It requires only the as-
sumption that the temperature at which the peaks reach their maximum differ slightly for 
vigilance-promoting and sleep-promoting capacities. 
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Perspectives: towards further insight into thermosensitivity of vi-
gilance-regulating networks in the human brain  
As extensively reviewed before39,40,41,42 and briefly touched upon in the introductory Chapter 1, 

most of the neuroanatomical and neurophysiological support for thermosensitivity of vigilance-

regulating networks in the brain stems from animal studies that were moreover not specifically 

and primarily designed to address this specific association. An important recommendation to fol-

low-up on the present apparently quite robust findings, is to apply functional Magnetic Resonance 

Imaging (fMRI) in humans with protocols specifically designed to address the association. Tech-

nological developments have recently made it feasible to obtain resting state electroencephalo-

graphy (EEG) during fMRI protocols, and to subsequently separate physiological signals from the 

abundant artifacts that are introduced by switching of magnetic fields and by motion (e.g. scanner 

vibration and ballistocardiac) of the head inside the high magnetic field1,21,26,47. The following type 

of protocol can therefore now be proposed to identify and further study which vigilance-

regulating networks in the human brain show changes in activity in association with observed 

behavioral and physiological changes in vigilance level as induced by mild manipulations of skin 

temperature. First, in a simultaneous EEG-fMRI recording of subjects throughout wake and sleep, 

one may use the EEG to either determine fluctuations in sleep depth or repeatedly determine 

transitions between wake and sleep. These fluctuations can then be convolved with a haemody-

namic response function and blood oxygenation level dependent (BOLD) changes in MRI signal, in 

order to determine the areas that (de)activate in association with changes in vigilance, just as has 

e.g. been done for fluctuations in alpha oscillations in the resting state EEG18. Second, one may 

use the thermosuit within the MRI environment11 and observe the pattern of BOLD changes in 

response to enforced mild increases and decreases in skin temperature. The third step is then to 

overlay the statistical parameter maps of significant (de)activations obtained in the two protocols, 

i.e. do a conjuction analysis to determine the overlapping areas. This approach will be of use to 

determine where in the brain incoming signals, induced by thermal changes, affect vigilance regu-

lation. A similar approach can be followed to do conjunction analyses of temperature-induced 

changes and changes associated with lapses or slow reaction times in sustained attention tasks. 

 

Perspectives: towards practical applications of sleep enhance-
ment  
An important question that ensues from our controlled direct skin temperature manipulation stu-

dies using a dedicated water-perfused thermosuit set-up in the laboratory, is to what extent they 

can be applied in daily life. It turns out that a translation towards a practical application is not 

trivial. Field studies trying to improve sleep with a heating blanket actually show that it disrupts 
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sleep14. The most likely reason for this failure is that a heating blanket continues to add heat to 

the body, thus increasing core body temperature. The situation of an elevated skin temperature 

while core temperature does not decrease should alarm the thermoregulatory systems of the 

organism to note that a thermally undesirable and possibly dangerous situation is present, and 

disrupt sleep in favor of autonomic or behavioral thermoregulatory defense mechanisms. If our 

rationale is correct, one may argue that only more subtle approaches of direct skin temperature 

are likely to produce the desired sleep-promoting effect. Surprisingly, within a very small temper-

ature range it appears theoretically possible to impose a slightly warmer skin temperature, yet 

promoting rather than inhibiting heat loss and thus lowering skin temperature. In humans, the 

environmental temperature that the skin is exposed to strongly determines the volume of blood 

flowing through the skin vasculature, and thus the efficiency of exchanging heat from the body to 

the environment. The skin is a relatively good insulator, keeping the heat within the body up to an 

environmental temperature of about 33˚C. However, it dramatically loses its heat insulating prop-

erties and allows for a much more effective heat transfer to the environment once it is exposed 

to, and takes on, an environmental temperature of ~35˚C (see Fig. 2.) 3,12,13. Thus, while the tem-

perature gradient between the core and the environment decreases if the environment is 

warmed, the possibility to lose heat does not necessarily decrease and may even increase. The 

large increase in skin blood flow with this small increase in skin temperature effectively reduces 

the heat insulation properties the skin normally provides, and facilitates heat flow from the core 

to the environment. Thus, while the gradient between a core body temperature of 37˚C and an 

environment of ~35˚C is less than a gradient of 37˚C versus 33˚C, it may still be easier to reach 

lower core body temperatures because the insulating property of the skin is much reduced. Ef-

forts to improve sleep by external heating should obtain feedback from the skin to create a closed 

loop manipulation, ensuring that it keeps the skin temperature within a range that still allows for 

the core body temperature to drop – settings which may even differ between individuals. Ulti-

mately, this closed loop manipulation may lead to home-applicable versions of the methodology 

that showed efficacy in laboratory studies on young and elderly people, without sleep complaints 

or suffering from insomnia or narcolepsy (Chapter 4, 5, 8, 9 this thesis)16,29,31,33. 

Another, indirect possibility to increase skin temperature during the sleep period without impe-

ding the nocturnal drop in core body temperature is to make use of normal thermoregulatory 

mechanisms. This alternative to direct warming of the skin during the desired sleep period is to 

heat the body prior to sleep, for example by exercising or taking a hot bath or sauna. Body heating 

activates heat dissipation for a duration that outlasts the heat stress, and consequently may keep 

skin blood flow higher for a few hours. Indeed this indirect endogenous skin warming procedure 

has shown to improve subsequent sleep in several studies (reviewed in Chapter 3, this thesis)30. It 

is important to note that this sleep enhancement seems to occur mostly when the heat stress is 



 
Conclusion 242 

annihilated, i.e. core temperature is no longer elevated, while skin temperature is still somewhat 

increased due to the overshoot in heat dissipation4,5,7,8,9,10,19,20,22,23,36. Thus, because of the re-

stricted interval of increased sleep propensity, this procedure may be applied to enhance sleep 

onset and improve sleep in the first hours of the night. But it is unlikely to show an effect on com-

plaints of early morning awakening, which may only be alleviated using direct skin temperature 

manipulation, as demonstrated in our laboratory studies (Chapter 8, this thesis)31. 

 

 

 
 

Fig. 2.  Relationship between skin temperature and resting blood flow velocity (CBV) in one nail-
fold capillary of a healthy 37-year-old man. Notice the marked increase in CBV occurring 
at 34˚C. Figure and legend text above are after Fagrell and Intaglietta13, who investigated 
the effect of skin warming on skin blood flow. The figure illustrates that warming the skin 
to at least 34˚C can dramatically increase skin blood flow and may theoretically improve 
heat loss to the environment. 

 

An important question is whether skin temperature control to promote sleep would be necessary 

at all? If one examines time lapse videos of sleeping humans it seems evident that people, during 

brief arousals from sleep, apply behavioral thermoregulation by kicking away the blankets or du-

vet to expose limbs to the cooler environment alternating with covering oneself to create a warm 

microclimate. But what if this behavior is somehow compromised? Or what if there is a deficit in 

the conscious or unconscious evaluation of the most appropriate temperature. It has never been 

evaluated systematically whether nocturnal thermoregulatory behavior differs between insom-
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niacs and people without sleep complaints. We have an indication however, that at least some 

phenotypes of insomnia may not recognize the most comfortable thermal microclimate that is 

conductive to sleep33. Interestingly, these observations were recently supported by our finding2 

that the severity of their sleep complaints correlated with structural abnormalities in the part of 

the orbitofrontal cortex that is essential for the evaluation of comfort11,34. 

Skin warming may thus be helpful for some insomnia phenotypes. However, we have unpublished 

data suggesting that in some insomniacs, metabolic heat production and heat dissipating mechan-

isms are both elevated. In this case, further enhancement of heat dissipation may not be possible 

or useful. Any endeavor to evaluate the application of skin temperature control to promote sleep 

in insomniacs may thus profit from rigorous phenotype profiling and selection. Since the reliable 

long-term assessment of skin temperature in field studies has recently become as feasible as acti-

graphic assessments of sleep-wake rhythms has been for many years38,43,45,46, it would be of value 

to assess skin temperature profiles in large cohorts of people with and without sleep complaints. 

In addition, web-based surveys [like www.sleepregistry.orgsee 44] for multivariate assessment of 

insomnia phenotypes could include extensive questioning on subjective thermosensitivity and 

behavioral thermoregulation. Concertedly, we estimate that it will be feasible within years to 

support the sleep of at least a subgroup of insomniacs using mild skin temperature manipulations. 
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Lichte opwarming van de huid, een methode om slaap en waak-
zaamheid te veranderen zonder medicijnen.  
 

 

Ondanks medicatie, gedragstherapie en tal van huis-, tuin- en keukenmiddeltjes blijft het tobben 

voor wie kampt met slaapproblemen. Om goed in slaap te komen en in slaap te blijven, moeten 

zowel het lichaam en de geest tot rust kunnen komen. Een lichaamsproces dat parallel loopt aan 

de overgang tussen slaap en waken is de variatie in kerntemperatuur (de temperatuur in het li-

chaam). Gedurende de nacht is de kerntemperatuur lager dan overdag. De temperatuur van de 

huid laat het tegengestelde patroon zien: warmer gedurende de nacht, en kouder overdag. Uit 

literatuur was al bekend dat slaap gekoppeld is aan het verloop van de kerntemperatuur, maar 

het was Van Someren die in 2000 stelde dat vooral de huidtemperatuur van invloed is op de neu-

ronale activiteit van slaapregulerende hersengebieden. De bevindingen in dit proefschrift laten 

zien dat een minimale wijziging van de huidtemperatuur inderdaad een groot positief effect op 

slaap kan hebben.  

 

In hoofdstuk 1 wordt de huidopwarmingshypothese en de relatie tussen met slaap, waakzaam-

heid en thermoregulatie nader uitgelegd. Het blijkt dat informatie over temperatuur en aanstu-

ring van slaap en waakzaamheid in hetzelfde gebied van de hersenen (pre-optisch gebied van de 

anterieure hypothalamus) verwerkt worden. Een koude huid lijkt slaap tegen te gaan en waak-

zaamheid (vigilantie) te bevorderen, terwijl een warme huid slaap lijkt te bevorderen en de vigi-

lantie te doen afnemen.  

 

In hoofdstuk 2 wordt een overzicht gegeven van de fysiologische principes van temperatuur-

waarneming en temperatuurregulatie en de verandering hierin binnen de dag (24 uur) en over de 

duur van het leven. Op oudere leeftijd zijn de temperatuurwaarneming, de warmteproductie, de 

centrale temperatuur regulatie, en de capaciteit om warmte te behouden en af te geven niet 

meer optimaal. Dit resulteert uiteindelijk in een afgevlakt 24-uurs temperatuurritme in ouderen. 

Dit kan, gezien de relatie tussen slaap en kerntemperatuur weer een gevolg hebben voor de slaap 

van ouderen.  

 

De huidopwarmingshypothese werd in dit proefschrift getoetst in diverse populaties. Gezonde 

jongeren werden onderzocht om meer inzicht te krijgen in de fysiologische en psychologische 

effecten van temperatuurmanipulatie op slaap en vigilantie. Ouderen werden onderzocht om 

inzicht te krijgen in de effecten van temperatuurmanipulatie op slaap in een populatie waar de 
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thermoregulatie niet optimaal is. Ouderen met slaapproblemen en de narcolepsiepatiënten ten-

slotte, werden onderzocht om inzicht te krijgen in de effecten van temperatuurmanipulatie op 

slaap in populaties waar zowel de thermoregulatie als de slaap niet optimaal is. Alle vier groepen 

doorliepen hetzelfde onderzoeksprotocol. 

Om subtiele temperatuurveranderingen op de huid te bewerkstelligen werd een pyjama met in-

geweven flexibele buisjes aangesloten op een systeem dat water van een gecontroleerde tempe-

ratuur door de buisjes pompt (hoofdstukken 4-9). De veranderingen in huidtemperatuur waren zo 

gering (tussen de 0.4°C en 0.7°C) dat er geen thermoregulatoire reactie van het lichaam optrad 

(d.w.z. het lichaam ondernam geen poging zelf weer de temperatuur te veranderen). Tijdens deze 

verandering van huidtemperatuur werd zowel de micro- en macro-structuur van de slaap geme-

ten in de nacht. Daarnaast werd overdag op verschillende tijdstippen de inslaapneiging en de 

waakzaamheid/vigilantie gemeten.  

 

In een toegepaste studie, beschreven in hoofdstuk 3, werden eenvoudige manieren om de huid-

temperatuur van de voeten te veranderen, zoals warme bedsokken en een warm voetenbad voor 

het slapen, gebruikt. Gemeten werd of verwarming van de voeten alleen inslaapneiging kon ver-

beteren. Bij gezonde jongeren bleek het dragen van al dan niet verwarmde bedsokken tijdens het 

inslapen het meest effectief. Bij de gezonde ouderen daarentegen was het dragen van de niet 

verwarmde bedsokken tijdens het inslapen en het warme voetenbad voorafgaand aan de slaap-

poging het meest effectief. Bij de ouderen met slaapklachten verkortte geen de interventies de 

inslaaptijd. Inslaaptijd bleek daarnaast korter wanneer de opwarmsnelheid van de voet groter 

was, zij het alleen bij de jongeren. In beide groepen ouderen werd deze relatie niet gevonden en 

het bleek dat bij ouderen de voeten tijdens de poging om in slaap te vallen minder snel opwar-

men dan de voeten van de jongeren. 

 

In de hoofdstukken 4, 6 & 8 worden de effecten van temperatuurmanipulaties bij jongeren be-

schreven. Alle temperatuurmanipulaties hadden een effect op de beleving van de temperatuur. 

Alle warme condities werden als minder comfortabel en warmer beoordeeld. De milde verwar-

ming van de huid van de romp, armen en benen zorgde, zoals verwacht, voor een afname van de 

inslaaptijd (met 26%) tijdens de inslaapmomenten overdag (hoofdstuk 4) en een 67% snellere 

afname van de waakzaamheid gedurende een 7 minuten durende vigilantietaak (hoofdstuk 6). 

Veranderingen van de temperatuur van de handen en voeten en van de kerntemperatuur hadden 

geen effect op inslapen of vigilantie. 

De verwarming van de handen en voeten van jongeren tijdens hun nachtelijke slaap zorgde voor 

een afname in de relatieve proportie lichte slaap (slaapstadia S1 en S2) en een toename van de 

REM-slaap. Gelijktijdig zorgde een verwarming van de romp, armen en benen tijdens de nachtelij-
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ke slaap voor een afname in de relatieve proportie wakker en S1, en toename van de lichte (S2) 

en de diepe slaap (hoofdstuk 8). Concluderend: lichte huidverwarming versnelt het inslaapproces, 

verdiept de slaap en vermindert de vigilantie van jongeren. 

 

In de hoofdstukken 5, 6 & 8 worden de effecten van temperatuurmanipulaties bij gezonde oude-

ren beschreven. Bijna alle temperatuurmanipulaties hadden een effect op de beleving van de 

temperatuur. Alle warme condities werden als warmer en minder comfortabel beoordeeld, alleen 

het verwarmen van de handen en de voeten werd niet als warmer beoordeeld. Ook in deze groep 

zorgde een verwarming van de romp, armen en benen zorgde voor een verkorting van de inslaap-

tijd (van 18%) overdag (hoofdstuk 5) en een 50% snellere afname van de waakzaamheid geduren-

de de vigilantietaak (hoofdstuk 6). Veranderingen van de temperatuur van de handen en voeten 

en van de kerntemperatuur hadden ook in deze populatie geen effect.  

De verwarming van de handen en voeten tijdens de nachtelijke slaap zorgde voor een afname in 

de relatieve proportie wakker en S1, en toename van de lichte slaap (S2) en de REM-slaap. Gelijk-

tijdig zorgde een verwarming van de romp, armen en benen tijdens de nachtelijke slaap ook voor 

een afname in de relatieve proportie wakker en S1, en toename van de lichte (S2) en de diepe 

slaap (hoofdstuk 8).  

Concluderend: evenals bij jongeren versnelt een lichte huidopwarming het inslaapproces, ver-

diept het de slaap en vermindert het de vigilantie van ouderen.  

Hiermee laat deze studie zien dat een milde verwarming van de huid een oplossing kan bieden 

voor de twee meest gerapporteerde slaapproblemen van ouderen, namelijk het minder diep sla-

pen en vroeger ontwaken. De verwarming van de huid leidde in deze studie tot verdubbeling van 

de hoeveelheid diepe slaap over de hele nacht en een vermindering van de kans op vroeg ontwa-

ken van 58% tot 4%. Vergeleken met de andere groepen was het effect van de nachtelijke huid-

verwarming zelfs het sterkst in deze groep van ouderen zonder slaapproblemen.  

 

In de hoofdstukken 5, 6 & 8 worden de effecten van subtiele temperatuurmanipulaties bij oude-

ren met slaapklachten onderzocht. Op één na had geen enkele van de temperatuurmanipulaties 

een effect op de beleving van de temperatuur. Alleen de kerntemperatuurverwarming werd door 

deze oudere insomniepatiënten beoordeeld als warmer. Dit verminderd vermogen om de tempe-

ratuurverandering waar te nemen, is een opmerkelijk verschil met de andere onderzochte popu-

laties. Bij insomniepatiënten kan het niet adequaat kunnen beoordelen van hun thermische staat 

wellicht een rol spelen in het ontstaan en het in stand houden van hun slaapprobleem. Ondanks 

de verminderde temperatuurperceptie is de huidverwarming wel effectief: lichte verwarming van 

de huid van de romp, armen en benen gecombineerd met een kleine verlaging van de kerntempe-

ratuur zorgde voor een verkorting van de inslaaptijd van 28% overdag (hoofdstuk 5). Verwarming 
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van de huid van de huid van de romp, armen en benen zorgde voor 3% tragere reactietijden gedu-

rende de vigilantietaak (hoofdstuk 6). Veranderingen van de temperatuur van de handen en voe-

ten had geen effect. 

De verwarming van de handen en voeten van de ouderen met slaapproblemen tijdens de nachte-

lijke slaap zorgde voor een afname in de relatieve proportie S1 en REM slaap, en toename van de 

lichte slaap (S1) en de diepe slaap. Gelijktijdig zorgde een verwarming van de romp, armen en 

benen tijdens de nachtelijke slaap ook voor een afname in de relatieve proportie wakker en lichte 

slaap (S1 & S2), en toename van de diepe slaap en REM slaap (hoofdstuk 8). Concluderend: Lichte 

huidverwarming versnelt het inslaapproces, verdiept de slaap en vermindert de vigilantie bij ou-

deren met slaapklachten, ondanks de sterk verminderde temperatuurperceptie.  

 

In de hoofdstukken 7 & 9 worden de effecten van subtiele temperatuurmanipulaties bij  narco-

lepsiepatiënten beschreven. Voor narcolepsiepatiënten, die vaak verminderde waakzaamheid en 

verhoogde slaperigheid overdag rapporteren, is het bevorderen van de waakzaamheid en het 

tegengaan van de slaperigheid overdag van groot belang. In deze groep zou het koelen van de 

huid en het verhogen van de kerntemperatuur voor deze verbetering moeten zorgen. 

De kerntemperatuurmanipulaties en de temperatuurmanipulaties van de huid van de romp, ar-

men en benen hadden een effect op de beleving van de temperatuur, de temperatuurmanipula-

ties van de huid van de handen en voeten hadden dat niet. De verwarming van de kerntempera-

tuur en de proximale huidtemperatuur werden als minder comfortabel en warmer beoordeeld. 

Het koelen van de handen en voeten zorgde voor het verlengen van de waaktijd met 24% tijdens 

de waaktesten overdag (hoofdstuk 7). Een lichte verwarming van de kerntemperatuur zorgde 

voor een 25% langzamere afname van de waakzaamheid gedurende de vigilantietaak (hoofdstuk 

7). De veranderingen van de temperatuur van de romp, armen en benen had geen effect. 

Narcoleptiepatiënten rapporteren een verstoring van de nachtelijke slaap. Tijdens hun slaap is de 

huidtemperatuur van hun handen en voeten relatief hoog. Door de manipulaties is getracht de 

temperatuur van de handen en voeten te normaliseren tot een huidtemperatuur niveau zoals 

deze bij gezonde mensen gebruikelijk is. Daarnaast werd ook de temperatuur van de romp, armen 

en benen licht verhoogd om de slaap te verbeteren, net zoals beschreven bij de hierboven ge-

noemde groepen.  

Het koelen van de handen en voeten tijdens de nachtelijke slaap zorgde voor een afname in de 

relatieve proportie wakker en lichte slaap (S1), en toename van de diepe slaap en de REM slaap. 

Gelijktijdig zorgde een verwarming van de romp, armen en benen tijdens de nachtelijke slaap 

voor een afname in de relatieve proportie wakker, en toename van de diepe slaap (hoofdstuk 9). 

Concluderend: het koelen van de huid van de handen en voeten verlengt de waaktijd, het verho-

gen van de kerntemperatuur verbetert de vigilantie en de combinatie van handen en voeten koe-
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len met het verwarmen van de huid van de armen, benen en romp herstelt de nachtelijke slaap in 

narcolepsie patiënten. 

 

In hoofdstuk 10 worden de onderzoeksresultaten samengevat. Op basis van het onderzoek kun-

nen we het volgende concluderen  

1. Lichte opwarming van de huid, binnen de thermoneutrale zone, versnelt het inslaap- pro-

ces, verdiept de slaap en vermindert de vigilantie. 

2. Het effect van huidtemperatuurmanipulatie op inslaapneiging en vigilantie tijdens de dag 

is sterker dan het effect van kerntemperatuurmanipulatie. 

3. Het effect van het veranderen van de huidtemperatuur van de romp, benen en armen op 

slaap en vigilantie is sterker dan het effect van manipulatie van de distale huid. 

4. De sterkte van effect van huidtemperatuurmanipulaties op slaap en vigilantie is niet gere-

lateerd aan de ernst van het slaapprobleem, het zou eerder gerelateerd kunnen zijn aan 

de sterkte van verwarming in relatie tot de thermoregulatoire staat van het lichaam. 
 

De resultaten uit dit proefschrift zijn verwerkt in een model voor huidtemperatuur en slaap en 

vigilantieregulering. Er is zowel voor slaap als voor vigilantie een optimale range van huidtempe-

raturen. Huidtemperaturen buiten deze range hebben een sterk negatief effect op slaap en vigi-

lantie. Gezien de resultaten is een toepassing van lichte manipulatie van huidtemperatuur als 

middel om slaap of vigilantie te beïnvloeden goed denkbaar. De haalbaarheid zal afhangen of men 

in staat is een systeem te maken dat op subtiele wijze temperatuurveranderingen kan induceren, 

rekening houdend met de momentane huidtemperatuur.  
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