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Front page illustration: The graph shows a snapshot of the Zeus P2P botnet,
drawn after a first sinkholing initiative in April 2012. Gray nodes represent Zeus
P2P bots and the blue nodes in the middle of the graph are the sinkholing servers
that we used during our experiments. Although most bots know the sinkholes,
not all the bots are perfectly isolated, illustrating the difficulties in sinkholing
peer-to-peer botnets (see Chapter 6).



“A man should look for what is, and not for what he thinks should be.”
Albert Einstein (1879 – 1955)
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1
Introduction

1.1 Problem Definition

In 1986, the first-ever PC virus (c)Brain appeared, spreading via FAT-formatted
floppy disks. Since then, the motivation behind developing malicious software
(malware) shifted from fun/honor to a profit-oriented market organized in un-
derground communities. The monetization techniques of today’s malware are
manifold, ranging from illegitimate product advertisements, extortion, personal
data theft, system resources abuse, and markets for selling or renting infected
machines. Independent from the actual techniques used, malware evolved far
beyond simplistic and isolated pieces of software. As a side-effect of this develop-
ment, today’s malware requires, or at least strongly depends on, infrastructures
to command and control (C&C) the malware.

From a security perspective, these C&C infrastructures represent a possible
attack vector to mitigate the damage of malware. Consider, for example, a spam-
bot that receives a regular feed of spam templates from a central C&C server.
In such a case, the resilience of the spamming botnet heavily depends on the
availability of this particular C&C server. If defenders could control or terminate
this particular server, the operation of the botnet would cease. Although the PCs
would actually remain infected, in this trivialized scenario, the infection effects
are minimized.

As such, defenders have taken efforts to identify and publish lists of C&C end
points. Some C&C servers were taken offline due to public pressure of this kind.
Similarly, defenders disrupted individual botnets in immensely tedious initiatives
spanning both technical and legal entities. Despite these small successes, though,
the botnet problem remains and there are botnets that have been operational
for many years. While anecdotes about the resilience of botnets exist, only little
research has enlightened this problem domain. As a consequence, our community
lacks a profound understanding of the reasons for botnet resilience. In this thesis,
we focus on two particularly problematic fields that need further research.

First, it is largely unknown how attackers install malicious binaries on freshly
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2 CH. 1. INTRODUCTION

infected systems. This process, however, is an important part in the lifecycle
of botnets: it represents a major way of adding new bots to an existing bot-
net. A separation of tasks in the underground community fostered specialized
and well-organized groups that take care of the malware installation business.
Therefore, to understand the resilience of malware, we also have to analyze the
programs, techniques and infrastructures used for the malware installation pro-
cess. Only then can we understand how counter-measures can effectively and
efficiently thwart the continuous problem of botnets.

Second, once botnets are operating, botmasters do not want their networks
to be disrupted. To avoid single point of failures in botnet infrastructure, attack-
ers started using resilience schemes such as distributing redundant C&C servers
via DNS. These schemes significantly harden a botnet’s C&C infrastructures, but
still defenders can attack such botnets by shutting down C&C domains. Unfortu-
nately, these defensive techniques generally do not work for peer-to-peer botnets.
With only a few exceptions (such as the Storm botnet), little is known about
the actual resilience of peer-to-peer botnets, and we lack a terminology for and
measurements of peer-to-peer botnet resilience.

One way to tackle the two aforementioned problems is the use of static and
dynamic malware analysis. Malware analysis has provided valuable insights into
malware behavior. However, when using malware analysis techniques, one needs
to take care of some idiosyncrasies. For example, when dynamically analyzing
malware, we must ensure a realistic analysis environment that attackers cannot
easily circumvent. At the same time, to mitigate harm to others, we must not
allow unrestricted Internet access to the malware under analysis. A third problem
and one we discuss first in this thesis, is the lack of best practices or guidelines
for prudent malware experimentation.

1.2 Research Questions

This work seeks to explore the resilience of botnets. However, we cannot analyze
resilience without the ability to perform malware experiments. Unfortunately,
performing sound malware experimentation itself is challenging and little guid-
ance exists for such experiments. There is a trade-off between realistic malware
analysis and the risk of potential harm during malware analysis. Thus, as a first
research question, we explore how we can best use dynamic malware analysis to
monitor and analyze malware resilience:

Research Question 1. How can a dynamic malware analysis platform be de-
signed that allows for realistic and safe experiments? How can we ensure scien-
tifically sound use of malware analysis datasets?

When this question is answered, we can use the resulting malware analysis
system to measure and evaluate malware resilience. To do so, we first explore
the support infrastructures that are used to install malware. Botnets using these
infrastructures are responsible for a large fraction of the real-world malware in-
stallations. Resilient malware installation infrastructures enable attackers to in-
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stall and operate botnets that have even weak resilience designs. Therefore, our
next research question addresses the root cause for many malware families:

Research Question 2. Which techniques and infrastructures do attackers use
for installing malware on systems that were recently exploited? What causes the
resilience of these malware networks?

Finally, we turn to the resilience of the botnets themselves. Once the malware
is installed on the system, botmasters will use their C&C infrastructures to con-
trol the bots. From an attacker’s perspective, one way to mitigate the resilience
deficits of centralized botnet designs is the use of peer-to-peer mechanisms. Our
third research question addresses the analysis of botnets with distributed C&C
mechanisms:

Research Question 3. How are botnets designed that are largely independent
from centralized C&C infrastructures? Can we systematically describe the de-
fensive methods to disrupt peer-to-peer botnets, and how effective are such tech-
niques?

1.3 Contributions

The contributions of this thesis can be summarized as follows.

� We develop guidelines that help to use malware analysis in realistic, correct,
transparent and safe research experiments. We propose a dynamic analy-
sis system called Sandnet, which suits our needs for analyzing botnet
resilience following these guidelines. In addition, we evaluate the impor-
tance of our guidelines by running real-world experiments and surveying
experimental descriptions in the literature.

� We perform the first long-term and large-scale analysis of 23 malware down-
loader families, shedding light onto the techniques, protocols and infrastruc-
tures that attackers use during the malware installation process. We extend
Sandnet to re-analyze these malware downloaders periodically and pro-
pose two generic techniques to acquire malware binaries by abusing malware
downloaders.

� We analyze the resilience of both historic and existing peer-to-peer (P2P)
botnets. We propose a systematization for P2P botnet resilience analy-
sis. We discuss the P2P botnet resilience against reconnaissance measures,
such as identifying all infected hosts. Similarly, we analyze the mitiga-
tion resilience of existing P2P botnets by prototyping sinkholing strategies.
Finally, we discuss trends towards highly resilient P2P botnets, such as
reputation schemes and self-healing P2P protocols.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides detailed
background information about botnets and discusses recent developments that
are important in the context of this work. Part I then addresses the complexity
of establishing a dynamic analysis system that suits the task of analyzing the
resilience of botnets. Specifically, Chapter 3 proposes and discusses best practices
for creating and using malware datasets in scientific experiments. In Chapter 4,
we propose Sandnet, a dynamic malware analysis environment implementing
many of the proposed guidelines. Part II analyzes the resilience of botnets. In
particular, Chapter 5 includes our large-scale analysis of malware downloaders.
Chapter 6 characterizes and discusses the resilience of peer-to-peer botnets. We
conclude this thesis in Chapter 7.



2
Background

In this chapter, we detail background information required to understand our
analysis on botnet resilience. We first propose a model for the malware lifecycle.
Then we discuss the different botnet C&C architectures. Third, we define the
term resilience in the context of botnets and give examples of botnet resilience
evaluations in the past. Last, we describe the most common malware analysis
techniques, as we will often use such methods in this thesis.

2.1 The Malware Lifecycle

Malware often follows a systematic lifecycle that helps to understand its resilience.
We propose a malware lifecycle model in Figure 2.1, spanning five phases that
malware typically undergoes.

B) Installation phase

A) Exploit phase

C) Bootstrap phase

D) Execution phase

E) Termination phase

C&C servers

MI servers

Figure 2.1: The malware lifecycle and required infrastructures in each phase

5



6 CH. 2. BACKGROUND

We describe the five phases in the following:

A) In the exploit phase, a vulnerable system is exploited by attackers, gaining
basic access on the victim’s PC. Techniques to exploit systems are client-
side vulnerabilities such as drive-by downloads, where browser vulnerabili-
ties are exploited by malicious code embedded in websites [75]. The exploits
typically carry shellcode as payload, a small piece of software that is exe-
cuted right after the exploit [37, 53]. Alternatively, malware can actively
spread via spam attachments or file infections on, for example, memory
sticks.

B) Independently from the infection technique, in the installation phase, mal-
ware carrying the full functionality (as opposed to shellcode) is downloaded
from malware installation (MI) servers and installed on the victim system.
Consequently, MI servers represent a critical part of the malware infras-
tructure, as they are responsible for serving malicious binaries.

C) Once these binaries are launched, the bootstrap phase begins, in which the
malware initializes by contacting the command and control (C&C) infras-
tructure. By connecting to C&C infrastructures, malware specimen become
bots, that is, malware that can be remotely controlled by the botmaster.
During bootstrapping, a bot sends information of the infected system to
the C&C server, and it may check for available updates.

D) Shortly thereafter, the C&C infrastructure serves commands to the bot,
which is then in the execution phase. In this phase, the botmasters monetize
their attacks in a variety of ways, such as spamming, extorting victims of
DDoS attacks, offering proxy services, stealing personal data, or selling
further malware infections.

E) If malware is upgraded to a new version, if the system is disinfected, or if
the C&C infrastructure is not available anymore, the malware enters the
termination phase.

The lifecycle model helps to understand how important the malware infras-
tructures are. If these infrastructures fail, attackers cannot install malware, nor
can botmasters command their bots. As a consequence, attackers have invented
several strategies, techniques and network architectures to improve the resilience
of their botnets. Section 2.2 will explain the common botnet architectures, and
Section 2.3 will discuss strategies that attackers use to harden botnet resilience.

2.2 Botnet Architectures

When bots organize in groups that can be remotely controlled by attackers, we
term the originating network a botnet. As with normal networks, botnets are
also structured in various architectures. One inherent property of all botnet
architectures is that the network allows a botmaster to send commands to the
bots in some way. Similarly, although not a strict requirement in every botnet,
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most botnet designs also allow the bots to send feedback to the botmaster. But
apart from that, botnet architectures pre-define unique characteristics that are
important when analyzing botnet resiliences.

(a) Centralized (b) Semi-Distributed (c) Peer-to-Peer

Figure 2.2: Comparison of botnet architectures. Light nodes represent bots, dark nodes
represent C&C servers, and the person symbols represent botmasters.

Figure 2.2 shows the three botnet architectures commonly used by botmasters:
centralized, semi-distributed and peer-to-peer (P2P) botnets. We will describe
these three architectures in the following subsections.

Centralized Botnets

In centralized botnets, as shown in Figure 2.2(a), all bots connect to a single C&C
server. From an attacker’s perspective, this client-server architecture is trivial
to implement. The endpoint address of the C&C server is usually a hard-coded
string within malware binaries, and bots communicate with the servers over IRC,
HTTP or proprietary protocols. The main resilience bottleneck of a centralized
botnet is its centralized server. If defenders take control over or disrupt the
C&C server, the clients can neither request commands, nor send feedback to
the servers anymore. Defenders often aim to sinkhole a botnet, in that they
deploy infrastructures that mimic the existing C&C endpoints, for example, by
redirecting a C&C domain to a server controlled by the defender (the sinkhole).
When sinkholing a C&C endpoint, the defenders do not serve commands to the
bots, rendering them useless for the botmasters. At the same time, the defenders
can identify infected systems by looking at the sinkhole log files. We will analyze
the resilience of existing centralized botnets in depth in Chapter 5.

Semi-Distributed Botnets

Over the years, attackers noticed the drawbacks of centralized botnets and de-
veloped various strategies to distribute C&C servers. The goal was to mitigate
the single point of failure of centralized botnets, while retaining the client-server
model of centralized botnets. Figure 2.2(b) shows that in semi-distributed bot-
nets, the bots contact multiple different C&C servers.
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The semi-distributed design significantly improved botnet resilience and thus
raised the bar for botnet takedowns. Botmasters invented different schemes to
achieve a higher degree of distribution. Most trivial, bot binaries contain mul-
tiple server addresses, and in case one C&C is not reachable anymore, the bot
communicates with another. A special and more advanced kind of such distri-
bution is achieved by using domain name generation algorithms (DGAs). DGAs
precompute C&C server hostnames by algorithms that accept deterministic seeds
(such as the current date). The botmaster knows the DGA and needs to host
only the C&C server under one of the generated domains. A defender would need
to register up to hundreds of frequently changing C&C domains to fully disrupt
the botnet. The Torpig botnet is an example that DGAs do not guarantee bullet-
proof resilience, though. Stone-Gross et al. disrupted Torpig three consecutive
weeks by registering DGA-generated domains [86].

Attackers use DNS fast-flux networks as a complementary technique to in-
crease botnet resilience. In fast-flux, the set of C&C server IP addresses is rapidly
changed via DNS by either the bots or the botmaster. As opposed to DGAs, if
the botmaster controls the IP address fluctuation, defenders cannot compute the
future end points of C&C servers. In double fast-flux botnets, also the C&C
domain authoritative name servers are served round-robin, adding another layer
of fluctuation.

Summarizing, semi-distributed botnets are significantly more resilient than
centralized botnets, although they still have (redundant) centralized servers.

Peer-to-peer Botnets

Peer-to-peer (P2P) botnets are fully distributed botnets, in which the bots re-
trieve their commands from other bots via the P2P network. As Figure 2.2(c)
shows, P2P bots keep track of other bots in the botnet, following an architecture
without central servers. The lack of central components makes the resilience of
P2P architectures attractive for botmasters. In particular, the botnet continues
to operate even if a large number of bots are removed from it, and the P2P
network quickly heals itself from sudden network changes. On the other hand,
P2P networks are prone to other mitigation techniques, ranging from enumerat-
ing all infected bots to P2P-based sinkholing or P2P network partitioning. We
characterize P2P botnets and evaluate their resilience in Chapter 6.

2.3 Botnet Resilience

In this thesis, we use resilience as a measure for how difficult it is for defenders to
disrupt a botnet. Resilient botnets typically operate for a considerable time, that
is, spanning several years. Such botnets are responsible for large fractions of the
total amount of cybercrime nowadays, such as spam, DDoS attacks, data theft,
extortion, to name but a few. Understanding the reasons for botnet resilience
will help to mitigate these issues. Naming the factors for botnet resilience is
difficult, though, and is not purely technical. For example, journalists such as
Joseph Menn documented that although procedures for disrupting botnets were
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known, and the botmasters were identified, botnets kept operating because of
social factors such as bureaucratic burdens or political influences [64].

Still, as we will show, the design of a botmaster significantly influences the
resilience of botnets. In particular, we focus on analyzing the resilience of what
lets malware become a bot: its command and control architecture. Botnets
are heavily dependent on the C&C channels, given that it represents the way
how to control and thus monetize bots. Botnet takedowns in the past have
shown that a resilient C&C architecture is of utmost importance for botmasters.
Similarly, from a defender’s perspective, we need to understand the strategies
and techniques botmasters use to stealthen their botnets.

Srizbi, for example, is one of the largest existing botnets which has been re-
sponsible for massively sending spam. In November 2008, defenders analyzed
Srizbi’s semi-distributed C&C architecture. At that time, two active Srizbi C&C
servers were hosted by the former web hosting provider McColo. The detailed
and public C&C resilience analysis pressurized McColo to an extent that was
never before observed in the context of botnets. As a response, McColo’s BGP
peers stopped routing traffic for the provider responsible for such large amounts
of spam, effectively disconnecting Srizbi’s C&C architecture. Unfortunately, due
to its semi-distributed architecture, Srizbi returned to operation only a few weeks
after the takedowns. Although defenders were aware of the domain-name gen-
eration algorithm in place, they stopped registering the generated domains. In
turn, botmasters could register these C&C domains, re-gaining access to most of
the until then largely isolated bots.

Similarly, the peer-to-peer based spam bot Waledac was disrupted by Mi-
crosoft in Operation b49 in February 2010. Prior analysis of researchers showed
vulnerabilities in Waledac’s peer-to-peer component [84]. Specifically, by adding
fake P2P nodes to the network, the bots’ peerlists could be manipulated such
that bots would communicate with the defenders only. This way, and by shut-
ting down the additional layer of centralized C&C servers, Microsoft was able to
disrupt the botnet, causing another significant decrease in spam.

These examples show the importance of detailed botnet resilience analy-
sis. Only complete knowledge of the C&C architecture will allow for successful
counter-measures against botnets. Without resilience analysis, and just by termi-
nating single C&C servers, most botnets would not be disrupted and possibly not
even be disturbed in their operation. Then again, if successful, botnet takedowns
severely mitigate the damage that malware causes, like the massive decrease in
spam after the disruption of Srizbi or Storm.

2.4 Malware Analysis

We use two well-explored mechanisms to analyze botnet resilience: dynamic and
static malware analysis. This section shortly describes both techniques.

Static malware analysis refers to the analysis of the malware’s program logic
(i.e., its source code). Tools like The Interactive Disassembler (IDA) transform
bytecode into assembly or even high-level language source code. An analyst then
reads, annotates and interprets the code, often manually searching for important
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parts in the malware binary. The term static reflects that the malware is not
executed for analysis.

Dynamic malware analysis is a complementary technique and describes the
analysis of the malware behavior. To observe the behavior, a malware binary
is executed in an analysis environment. For manual dynamic analysis, analysts
use debuggers such as WinDbg or OllyDbg, which allow one to set breakpoints
on interesting program parts or single-step through the program. To cope with
the daily abundance of new malware binaries, researchers proposed systems to
automate dynamic analysis. In such automated dynamic analysis environments,
the malware behavior is recorded via, for example, hypervisors, system hooks, or
network taps.

In the context of botnet resilience analysis, we typically focus on analyzing the
C&C server architecture. For our resilience analyses, we will combine dynamic
and static malware analysis to get an accurate view of the C&C architectures.
While we will use off-the-shelf tools for the static analysis, we have specific re-
quirements for dynamic malware analysis. For example, the analysis should reveal
the C&C communication, but at the same time transparently redirect harmful
network traffic to local servers. Similarly, in some situations we demand special
network policies, such as blocking DNS traffic to trigger the malware’s backup
C&C channels. In addition, the C&C resilience analysis demands for parsers of
typical C&C network protocols such as DNS, IRC, and particularly HTTP.

When starting this thesis, a few automated malware analysis systems existed
already, though none of them completely satisfied our needs. Anubis [17], for
example, offers a public interface to upload unknown binaries that are executed
using a modified version of Qemu. ThreatExpert [5] offers similar services, par-
ticularly also detailing many of the host-level events such as file or Windows
registry modification. With Sandnet, we propose a complementary system of
this kind, with a special focus on C&C analysis.

In the next part, we will discuss malware analysis peculiarities that motivated
the development of Sandnet. We propose best practices on how to establish
correct, transparent and realistic malware datasets in a safe manner. With many
of the guidelines being implemented, we will use Sandnet to analyze botnet
resilience throughout this work.



Part I

Designing Sound Malware
Experiments
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Experimentation with Malware
Before we can analyze botnet resilience, we need a solid methodology for ana-

lyzing malware. Malware experimentation is challenging for a number of reasons.
When executed, malware exposes malicious behavior that must not leave lab
environments unfiltered. For example, we have to ensure that spam and DDoS
attacks are properly contained. At the same time, resilience analysis requires
realistic malware datasets that, for example, monitor the malware’s C&C com-
munication. As in other scientific fields, real-world experiments should possibly
validate measurements. Similarly, datasets must not be biased, for example, by
some malware families being significantly more present than others. These prob-
lems are not only important to us, but are also vital to other malware research
fields, such as malware clustering or botnet detection. In the first chapter of this
part, we therefore propose guidelines that the malware research community can
use for sound malware experimentation.

To monitor botnet resilience, we propose Sandnet, a dynamic malware anal-
ysis system in Chapter 4. The system implements most of the guidelines proposed
in Chapter 3. Sandnet is designed such that it can reliably monitor the resilience
of botnets over multiple years. Since we launched Sandnet in February 2010,
it automatically analyzes daily feeds of malware samples. In the long run, the
continuous malware execution allows us to monitor change in malware behavior
and botnet infrastructures.

Summarizing, the following two chapters provide the basis for the botnet
resilience analysis in this thesis.
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3
Guidelines for Malware Experimentation

Malware researchers rely on the observation of malicious code in execution to col-
lect datasets for a wide array of experiments, including generation of detection
models, study of longitudinal behavior, and validation of prior research. For such
research to reflect prudent science, the work needs to address a number of con-
cerns relating to the correct and representative use of the datasets, presentation
of methodology in a fashion sufficiently transparent to enable reproducibility, and
due consideration of the need not to harm others.

In this chapter we study the methodological rigor and prudence in 36 aca-
demic publications from 2006–2011 that rely on malware execution. 40% of these
papers appeared in the 6 highest-ranked academic security conferences. We find
frequent shortcomings, including problematic assumptions regarding the use of
execution-driven datasets (25% of the papers), absence of description of secu-
rity precautions taken during experiments (71% of the articles), and oftentimes
insufficient description of the experimental setup. Deficiencies occur in top-tier
venues and elsewhere alike, highlighting a need for the community to improve
its handling of malware datasets. In the hope of aiding authors, reviewers, and
readers, we frame guidelines regarding transparency, realism, correctness, and
safety for collecting and using malware datasets. We will use these guidelines
ourselves throughout this thesis to perform prudent botnet resilience analyses in
succeeding chapters.

3.1 Introduction

Observing the host- or network-level behavior of malware as it executes consti-
tutes an essential technique for researchers seeking to understand malicious code.
Dynamic malware analysis systems like Anubis [17], CWSandbox [94] and others
[32, 46, 54, 72, 79] have proven invaluable in generating ground truth charac-
terizations of malware behavior. The anti-malware community regularly applies
these ground truths in scientific experiments, for example to evaluate malware
detection technologies [12, 22, 38, 40, 50, 51, 57, 61, 82, 88, 99–101], to dissem-
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inate the results of large-scale malware experiments [15, 25, 79], to identify new
groups of malware [12, 18, 74, 78], or as training datasets for machine learning
approaches [44, 62, 68, 74, 77, 78, 87, 102]. However, while analysis of malware
execution clearly holds importance for the community, the data collection and
subsequent analysis processes face numerous potential pitfalls.

In this chapter we explore issues relating to prudent experimental evaluation
for projects that use malware-execution datasets, such as botnet resilience anal-
yses. Our interest in the topic arose while analyzing malware and researching
detection approaches ourselves, during which we discovered that well-working
lab experiments could perform much worse in real-world evaluations, i.e., the de-
tection rates in real networks were significantly lower than the rates stated in the
experimental evaluations included in the publications. Investigating these difficul-
ties led us to identify and explore the pitfalls that caused them. For example, we
observed that even a slight artifact in a malware dataset can inadvertently lead
to unforeseen performance degradation in practice. Similarly, we noticed that
monitoring botnet resilience demands for rigorously correct and sound datasets.

Thus, we highlight that performing prudent experiments involving such mal-
ware analysis is harder than it seems. Related to this, we have found that many
efforts frequently fall short of fully addressing existing pitfalls. Some of the short-
comings have to do with presentation of scientific work, that is, authors remaining
silent about information that they could likely add with ease. Other problems,
however, go more deeply, and bring into question the basic representativeness of
experimental results.

As in any science, it is desirable to ensure we undertake prudent experimental
evaluations. We define experiments reported in this chapter as prudent if they are
correct, realistic, transparent, and do not harm others. Such prudence provides
a foundation to objectively judge an experiment’s results, and only well-framed
experiments enable comparison with related work. As we will see, however, many
reported experiments could often have been improved in terms of transparency,
for example, by adding and explaining simple but important aspects of the ex-
periment setup. These additions render the papers more understandable, and
enable others to reproduce results.

In addition, we find that published work frequently lacks sufficient considera-
tion of experimental design and empirical assessment to enable translation from
proposed methodologies to viable, practical solutions. In the worst case, pa-
pers can validate techniques with experimental results that suggest the authors
have solved a given problem, but the solution will prove inadequate in real use.
In contrast, well-designed experiments significantly raise the quality of science.
Consequently, we argue that it is important to have guidelines regarding both
experimental design and presentation of research results.

We aim in this chapter to frame a set of guidelines for describing and design-
ing experiments that incorporate such prudence.To do so, we define goals that we
regard as vital for prudent malware experimentation: transparency, realism, cor-
rectness, and safety. We then translate these goals to guidelines that researchers
in our field can use.

We apply these guidelines to 36 recent papers that make use of malware
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Figure 3.1: Surveyed papers using malware execution, per year.

execution data, 40% from top-tier venues such as ACM CCS, IEEE S&P, NDSS
and USENIX Security, to demonstrate the importance of considering the criteria.
Figure 3.1 shows the number of papers we reviewed by publishing year, indicating
that usage of such datasets has steadily increased. Table 3.2 (on page 25) lists
the full set of papers. We find that almost all of the surveyed papers would have
significantly benefited from considering the guidelines we frame, indicating, we
argue, a clear need for more emphasis on rigor in methodology and presentation in
the subfield. We also back up our assessment of the significance of some of these
concerns by a set of conceptually simple experiments performed using publicly
available datasets.

We acknowledge that fully following the proposed guidelines can be difficult
in certain cases, and indeed this chapter comes up short in some of these regards
itself. For example, we do not fully transparently detail our survey datasets, as we
thought that doing so might prove more of a distraction from our overall themes
than a benefit. Still, the proposed guidelines can—when applicable—help with
working towards scientifically rigorous experiments when using malware datasets.

3.2 Designing Prudent Experiments

We begin by discussing characteristics important for prudent experimentation
with malware datasets. In formulating these criteria, we draw inspiration from
extensive experience with malware analysis and malware detection, as well as
from lessons we have learned when trying to assess papers in the field and—in
some cases—reproducing their results.

We group the pitfalls that arise when relying on data gathered from malware
execution into four categories. Needless to say, compiling correct datasets forms a
crucial part of any experiment. We further experienced how difficult it proves to
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ensure realism in malware execution experiments. In addition, we must provide
transparency when detailing the experiments to render them both repeatable and
comprehensible. Moreover, it is our opinion that legal and ethical considerations
mandate discussion of how to conduct such experiments safely, mitigating harm
to others. For each of these four “cornerstones of prudent experimentation,” we
now outline more specific aspects and describe guidelines to ensure prudence. As
we will show later, the following guidelines can be used to overcome common
shortcomings in existing experiments.

3.2.1 Correct Datasets

A) Check if goodware samples should be removed from datasets.
Whereas goodware (legitimate software) has to be present for example in
experiments to measure false alarms, it is typically not desirable to have
goodware samples in datasets to estimate false negative rates. However,
malware execution systems open to public sample submission lack control
over whether specimens submitted to the system in fact consist of mal-
ware; the behavior of such samples remains initially unknown rather than
malicious per se. (We explore this concern as one of our illustrative ex-
periments in Section 3.5.2.) We advocate that researchers use sources of
malware specimens gathered via means that avoid the possible presence
of goodware; explicitly remove goodware samples from their datasets; or
compile sample subsets based on malware family labels.

B) Balance datasets over malware families. In unbalanced datasets, ag-
gressively polymorphic malware families will often dominate datasets fil-
tered by sample uniqueness (e.g., MD5 hashes). Authors should discuss if
such imbalances biased their experiments, and, if so, balance the datasets
to the degree possible.

C) Check whether training and evaluation datasets should have dis-
tinct families. When splitting datasets based on sample-uniqueness, two
distinct malware samples of one family can potentially appear in both the
training and validation dataset. Appearing in both may prove desirable for
experiments that derive generic detection models for malware families by
training on sample subsets. In contrast, authors designing experiments to
evaluate on previously unseen malware types should separate the sets based
on families.

D) Perform analysis with higher privileges than the malware’s. Mal-
ware with rootkit functionality can interfere with the OS data structures
that kernel-based sensors modify. Such malware can readily influence mon-
itoring components, thus authors ought to report on the extent to which
malware samples and monitoring mechanisms collide. For example, kernel-
based sensors could monitor whenever malware gains equal privileges by
observing if it is loading a kernel driver. Ideally, sensors are placed at a
level where they cannot be modified, such as monitoring system calls with
a system emulator or in a VM.
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E) Discuss and if necessary mitigate analysis artifacts and biases.
Execution environment artifacts, such as the presence of specific strings
(e.g., user names or OS serial keys) or the software configuration of an
analysis environment, can manifest in the specifics of the behavior recorded
for a given execution. Particularly when deriving models to detect malware,
papers should explain the particular facets of the execution traces that a
given model leverages. Similarly, biases arise if the malware behavior in an
analysis environment differs from that manifest in an infected real system,
for example due to containment policies.

F) Use caution when blending malware activity traces into benign
background activity. The behavior exhibited by malware samples exe-
cuting in dynamic analysis environments differs in a number of ways from
that which would manifest in victim machines in the wild. Consequently,
environment-specific performance aspects may poorly match those of the
background activity with which experimenters combine them. The result-
ing idiosyncrasies may lead to seemingly excellent evaluation results, even
though the system will perform worse in real-world settings. Authors should
consider these issues, and discuss them explicitly if they decide to blend
malicious traces with benign background activity.

3.2.2 Transparency

A) State family names of employed malware samples. Consistent mal-
ware naming remains a thorny issue, but labeling the employed malware
families in some form helps the reader identify for which malware a method-
ology works. As we illustrate in Section 3.5.3, employing a large number of
unique malware samples does not imply family diversity, due to the poten-
tial presence of binary-level polymorphism. If page-size limitations do not
allow for such verbose information, authors can outsource this information
to websites and add references to their paper accordingly.

B) List which malware was analyzed when. To understand and repeat
experiments the reader requires a summary, perhaps provided externally to
the paper, that fully describes the malware samples in the datasets. Given
the ephemeral nature of some malware, it helps to capture the dates on
which a given sample executed to put the observed behavior in context, say
of a botnet’s lifespan that went through a number of versions or ended via
a take-down effort.

C) Explain the malware sample selection. Researchers often study only
a subset of all malware specimens at their disposal. For instance, for sta-
tistically valid experiments, evaluating only a random selection of malware
samples may prove necessary. Focusing on more recent analysis results
and ignoring year-old data may increase relevance. In either case, authors
should describe how they selected the malware subsets, and if not obvious,
discuss any potential bias this induces. Note that random sample selections
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still may have imbalances that potentially need to be further addressed (see
guideline A.2).

D) Mention the system used during execution. Malware may execute
differently (if at all) across various systems, software configurations and ver-
sions. Explicit description of the particular system(s) used (e.g., “Windows
XP SP3 32bit without additional software installations”) renders experi-
ments more transparent, especially as presumptions about the “standard”
OS change with time. When relevant, authors should also include version
information of installed software.

E) Describe the network connectivity of the analysis environment.
Malware families assign different roles of activity depending on a system’s
connectivity, which can significantly influence the recorded behavior. For
example, in the Waledac botnet [84], PCs connected via NAT primarily sent
spam, while systems with public IP addresses acted as fast-flux “repeaters.”

F) Analyze the reasons for false positives and false negatives. False
classification rates alone provide little clarification regarding a system’s per-
formance. To reveal fully the limitations and potential of a given approach
in other environments, we advocate thoughtful exploration of what led to
the observed errors. Sommer and Paxson explored this particular issue in
the context of anomaly detection systems [80].

G) Analyze the nature/diversity of true positives. Similarly, true posi-
tive rates alone often do not adequately reflect the potential of a method-
ology [80]. For example, a malware detector flagging hundreds of infected
hosts may sound promising, but not if it detects only a single malware
family or leverages an environmental artifact. Papers should evaluate the
diversity manifest in correct detections to understand to what degree a
system has general discriminative power.

3.2.3 Realism

A) Evaluate relevant malware families. Using significant numbers of pop-
ular malware families bolsters the impact of experiments. Given the on-
going evolution of malware, exclusively using older or sinkholed specimens
can undermine relevance.

B) Perform real-world evaluations. We define a real-world experiment
as an evaluation scenario that incorporates the behavior of a significant
number of hosts in active use by people other than the authors. Real-world
experiments play a vital role in evaluating the gap between a method and
its application in practice.

C) Exercise caution generalizing from a single OS configuration. For
example, by limiting analysis to a single OS version, experiments may fail
with malware families that solely run or exhibit different behavior on disre-
garded OS versions. For studies that strive to develop results that generalize
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across OS versions, papers should consider to what degree we can generalize
results based on one specific OS version.

D) Choose appropriate malware stimuli. Malware classes such as keylog-
gers require triggering by specific stimuli such as keypresses or user inter-
action in general. In addition, malware often exposes additional behavior
when allowed to execute for more than a short period [79]. Authors should
therefore describe why the analysis duration they chose suffices for their ex-
periments. Experiments focusing on the initialization behavior of malware
presumably require shorter runtimes than experiments that aim to detect
damage functionality such as DoS attacks.

E) Consider allowing Internet access to malware. Deferring legal and
ethical considerations for a moment, we argue that experiments become sig-
nificantly more realistic if the malware has Internet access. Malware often
requires connectivity to communicate with command-and-control (C&C)
servers and thus to expose its malicious behavior. In exceptional cases
where experiments in simulated Internet environments are appropriate, au-
thors need to describe the resulting limitations.

3.2.4 Safety

A) Deploy and describe containment policies. Well-designed contain-
ment policies facilitate realistic experiments while mitigating the potential
harm malware causes to others over time. Experiments should at a mini-
mum employ basic containment policies such as redirecting spam and in-
fection attempts, and identifying and suppressing DoS attacks. Authors
should discuss the containment policies and their implications on the fi-
delity of the experiments. Ideally, authors also monitor and discuss security
breaches in their containment.

3.3 Methodology for Assessing the Guidelines

The previous section described guidelines for designing and presenting scientifi-
cally prudent malware-driven experiments. As an approach to verify if our guide-
lines are in fact useful, we analyzed in which cases they would have significantly
improved experiments in existing literature. This section describes our methodol-
ogy for surveying relevant publications with criteria derived from our guidelines.

3.3.1 Assessment Criteria

Initially, we establish a set of criteria for assessing the degree to which experi-
ments presented in our community adhere to our guidelines. We aim to frame
these assessments with considerations of the constraints the reviewer of a pa-
per generally faces, because we ultimately wish to gauge how well the subfield
develops its research output. Consequently, we decided not to attempt to re-
view source code or specific datasets, and refrained from contacting individual
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authors to clarify details of the presented approaches. Instead, our goal is to
assess the prudence of experiments given all the information available in a pa-
per or its referenced related work, but no more. We employed these constraints
since they in fact reflect the situation that a reviewer faces. A reviewer typically
is not supposed to clarify missing details with the authors (and in the case of
double-blind submissions, lacks the means to do so). That said, we advocate
that readers facing different constraints should contact authors to clarify lacking
details whenever possible.

Table 3.1 lists the guideline criteria we used to evaluate the papers. We
translate each aspect addressed in Section 3.2 into at least one concrete check
that we can perform when reading a given paper.1 We defined the assessment
criteria in an objective manner such that each item can be answered without
ambiguity. We also assign a three-level qualitative importance rating to each
check, based on our experience with malware execution analysis. Later on, this
rating allows us to weigh the interpretation of the survey results according to the
criteria’s criticality levels.

Criterion Gdl. Imp. Description

Correct Datasets

Removed goodware A.1)  Removed legitimate binaries from
datasets

Avoided overlays A.6)  Avoided comparison of execution
output with real system output

Balanced families A.2) G# Training datasets balanced in
terms of malware families

Separated datasets A.3) G# Appropriately separated training
and evaluation datasets based on
families

Mitigated artifacts/biases A.5) G# Discussed and if necessary miti-
gated analysis artifacts or biases

Higher privileges A.4) G# Performed analysis with higher
privileges than the malware

Transparency

Interpreted FPs B.6)  Analyzed when and why the evalu-
ation produced false positives

Interpreted FNs B.6)  Analyzed when and why the evalu-
ation produced false negatives

Interpreted TPs B.7)  Anal. the nature/diversity of true
positives

Listed malware families B.2) G# Listed the malware family names
Identified environment B.4) G# Named or descr. the execution env.
Mentioned OS B.4) G# Named the OS used during analysis

1Although the guideline “Choose appropriate malware stimuli” is in the Realism section, we
added the criterion “Mentioned trace duration” (as one possible criterion for this guideline) to
the Transparency category.
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Criterion Gdl. Imp. Description

Described naming B.1) G# Described the methodology of how
malware family names were deter-
mined

Described sampling B.3) # Detailed malware selection mecha-
nism

Listed malware B.1) # Listed which malware was when
analyzed

Described NAT B.5) # Described if NAT was used
Mentioned trace duration C.4) # Described for how long malware

traces were recorded.

Realism

Removed moot samples C.1)  Explicitly removed outdated or
sinkholed samples from dataset

Real-world FP exp. C.2)  Performed real-world evaluation
measuring wrong alarms or classi-
fications

Real-world TP exp. C.2)  Performed real-world evaluation
measuring true positives

Used many families C.1)  Evaluated against a significant
number of malware families

Allowed Internet C.5) G# Allowed Internet access to malware
Added user interaction C.4) # Explicitly employed user interac-

tion to trigger malware behavior
Used multiple OSes C.3) # Analyzed malware on multiple

OSes

Safety

Deployed containment D.1)  Deployed containment policies to
mitigate attacks during malware
execution

Table 3.1: List of criteria assessed during our survey. The second column names the
guideline from which we derived this criterion. The third column denotes the importance
that we devote to this subject:  is a must, G# should be done, and # is nice to have.

For an informal assessment of our approach, we asked the authors of two
papers to apply our criteria. The researchers were asked if the criteria were
applicable, and if so, if the criteria were met in their own work. During this cali-
bration process, we broadened the check to determine coverage of false positives
and false negatives, to allow us to perform a generic assessment. In addition, as
we will discuss later, we realized that not all criteria can be applied to all papers.
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3.3.2 Surveyed Publications

We assessed each of the guideline criteria against the 36 scientific contributions
(“papers”) in Table 3.2. We obtained this list of papers by systematically going
through all of the proceedings of the top-6 computer- and network-security con-
ferences from 2006–2011. 2 We added a paper to our list if any of its experiments
make use of PC malware execution-driven datasets. We then also added an arbi-
trary selection of relevant papers from other, less-prestigious venues, such that in
total about two fifth (39%) of the 36 surveyed papers were taken from the top-6
security conferences. We selected papers in August 2011, missing a few papers
that appeared in 2011, but were not public as of then. As Figure 3.1 shows, we
see increasing use of malware execution during recent years.

# 1st Author Venue Top
Paper Title

1 Lanzi [57] ACM CCS 2010 3

AccessMiner: Using System-Centric Models for Malware Protection
2 Morales [68] IEEE SecComm ’10

Analyzing and Exploiting Network Behaviors of Malware
3 Rieck [78] Journal of CompSec.

Automatic Analysis of Malware Behavior using Machine Learning
4 Bailey [12] RAID 2007

Automated Classification and Analysis of Internet Malware
5 Wurzing. [95] ESORICS 2009

Automatically Generating Models for Botnet Detection
6 Bayer [15] USENIX LEET 2009

A View on Current Malware Behaviors
7 Perdisci [74] NSDI 2010

Behavioral Clustering of HTTP-Based Malware and Signature Generation [...]
8 Kirda [50] USENIX Sec. 2006 3

Behavior-based spyware detection
9 Jang [45] ACM CCS 2011 3

BitShred: Feature Hashing Malware for Scalable Triage and Semantic Analysis
10 Zhang [101] ASIACCS 2011

Boosting the Scalability of Botnet Detection Using Adaptive Traffic Sampling
11 Gu [38] USENIX Sec. 2008 3

BotMiner: Clustering Analysis of Network Traffic for [...] Botnet Detection
12 Strayer [88] Adv. Info. Sec. 2008

Botnet Detection Based on Network Behavior
13 Gu [40] NDSS 2008 3

BotSniffer: Detecting Botnet C&C Channels in Network Traffic

2We determined the top-6 conferences based on three conference-ranking websites: (1) Mi-
crosoft Academic Search - Top Conferences in Security & Privacy (http://academic.research.
microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=2), (2) Guofei Gu’s
Computer Security Conference Ranking and Statistic (http://faculty.cs.tamu.edu/guofei/
sec_conf_stat.htm), and (3) Jianying Zhou’s Top Crypto and Security Conferences Ranking
(http://icsd.i2r.a-star.edu.sg/staff/jianying/conference-ranking.html). As all rank-
ings agreed on the top 6, we chose those as constituting top-tier conferences: ACM CCS, IEEE
S&P, NDSS, USENIX Security, and two conferences (Crypto and Eurocrypt) without publica-
tions in our focus. We defined this list of top-venues prior to assembling the list of papers in
our survey.

http://academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=2
http://academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=2
http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm
http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm
http://icsd.i2r.a-star.edu.sg/staff/jianying/conference-ranking.html
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# 1st Author Venue Top
Paper Title

14 Bowen [22] RAID 2010
BotSwindler: Tamper Resistant Injection of Believable Decoys [...]

15 Liu [61] ISC 2008
BotTracer : Execution-based Bot-like Malware Detection

16 Rieck [77] ACM SAC 2010
Botzilla: Detecting the ”Phoning Home” of Malicious Software

17 Stinson [82] DIMVA 2007
Characterizing Bots’ Remote Control Behavior

18 Lindorfer [60] RAID 2011
Detecting Environment-Sensitive Malware

19 Gu [39] USENIX Sec. 2007 3

Detecting Malware Infection Through IDS-Driven Dialog Correlation
20 Caballero [26] ACM CCS 2009 3

Dispatcher: Enabling Active Botnet Infiltration [...]
21 Kolbitsch [52] USENIX Sec. 2009 3

Effective and Efficient Malware Detection at the End Host
22 Balzarotti [13] NDSS 2010 3

Efficient Detection of Split Personalities in Malware
23 Stone-Gr. [87] ACSAC 2009

FIRE: FInding Rogue nEtworks
24 Bayer [16] ACM SAC 2010

Improving the Efficiency of Dynamic Malware Analysis
25 Kolbitsch [51] IEEE S&P 2010 3

Inspector Gadget: Automated Extraction of Proprietary Gadgets [...]
26 Jacob [44] USENIX Sec. 2011 3

JACKSTRAWS: Picking Command and Control Connections from Bot Traffic
27 Rieck [76] DIMVA 2008

Learning and Classification of Malware Behavior
28 Caballero [25] USENIX Sec. 2011 3

Measuring Pay-per-Install: The Commoditization of Malware Distribution
29 Yu [100] Journ. of Netwks 2010

Online Botnet Detection Based on Incremental Discrete Fourier Transform
30 Milani C. [67] IEEE S&P 2009 3

Prospex: Protocol Specification Extraction
31 Rossow [79] ACM BADGERS 2011

Sandnet: Network Traffic Analysis of Malicious Software
32 Bayer [18] NDSS 2009 3

Scalable, Behavior-Based Malware Clustering
33 Barford [14] USENIX HotBots 2007

Toward Botnet Mesocosms
34 Yen [99] DIMVA 2008

Traffic Aggregation for Malware Detection
35 Zhu [102] SecureComm 2009

Using Failure Information Analysis to Detect Enterprise Zombies
36 Livadas [62] IEEE LCN 2006

Using Machine Learning Techniques to Identify Botnet Traffic

Table 3.2: List of surveyed papers ordered by title. We shorten some titles with “[...]”
due to space limitations.
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The surveyed papers use malware datasets for diverse purposes. A significant
number used dynamic analysis results as input for a training process of malware
detection methods. For example, Botzilla [77] and Wurzinger et al. [95] use ma-
licious network traffic to automatically generate payload signatures of malware.
Similarly, Perdisci et al. [74] propose a methodology to derive signatures from
malicious HTTP request patterns. Livadas et al. [62] identify IRC-based C&C
channels by applying machine-learning techniques to malware execution results.
Zhu et al. [102] train SVMs to model the abnormally high network failure rates
of malware. Morales et al. [68] manually derive characteristics from malware
observed during execution to create detection signatures. Malheur [76, 78] can
cluster and classify malware based on ordered behavioral instructions as observed
in CWSandbox. Kolbitsch et al. [52] present a host-based malware detection
mechanism relying on system call slices as observed in Anubis.

In addition, we have surveyed papers that used malware execution solely to
evaluate methodologies. Most of these papers leverage malware traces to measure
true positive rates of malware detection mechanisms [22, 38–40, 50, 57, 61, 82, 88,
99–101]. Typically, the authors executed malware samples in a contained envi-
ronment and used the recorded behavior as ground truth for malicious behavior,
either via network traces (for assessing network-based IDSs) or via host behavior
such as system call traces (for system-level approaches). Similarly, researchers
have used malware execution traces for evaluating methodologies to understand
protocol semantics [26, 67], to extract isolated code parts from malware bina-
ries [51], to detect if malware evades contained environments [13], or to improve
the efficiency of dynamic analysis [16].

A third group of papers used malware traces to obtain a better understand-
ing of malware behavior. For example, JACKSTRAWS [44] leverages Anubis to
identify botnet C&C channels. Similarly, FIRE [87] identifies rogue networks by
analyzing malware communication end points. Caballero et al. [25] execute mal-
ware to measure the commoditization of pay-per-install networks. DISARM [60]
measures how different malware behaves in virtualized environments compared to
Anubis. Bayer et al. [18] and Jang et al. [45] present efficient clustering techniques
for malware behavior. Bailey et al. [12] label malware based on its behavior over
time. Finally, Bayer et al. [15] and Rossow et al. [79] analyze the behavioral pro-
files of malware samples as observed in Anubis and Sandnet. Also the botnet
resilience analysis in this thesis falls into this group.

3.3.3 Survey Methodology

To ensure consistency and accuracy in our survey results, two persons conducted
an initial survey of the full set of papers. Employing a fixed pair of reviewers
helps to ensure that all papers received the same interpretation of the guideline
criteria. When the two reviewers did not agree, a third person decided on the
specific case. In general, if in doubt or when encountering vague decisions, we
classified the paper as conforming with the guideline (“benefit of the doubt”).
Note that our assessments of the papers contain considerably more detail than
the simple statistic summaries presented here. If a paper lacked detail regarding
experimental methodology, we further reviewed other papers or technical reports
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describing the particular malware execution environment. We mark criteria re-
sults as “unknown” if after doing so the experimental setup remained unclear.

We carefully defined subsets of applicable papers for all criteria. For instance,
executions of malware recompiled to control network access do not require con-
tainment policies. Similarly, analyzing the diversity of false positives applies
only to methodologies that have false positives, while removing goodware sam-
ples matters only when relying on unfiltered datasets with unknown (rather than
guaranteed malicious) binaries. Also, removing outdated or sinkholed samples
might not apply if the authors manually assembled their datasets. Balancing
malware families is applicable only for papers that use datasets in classification
experiments and if authors average classification performances over the (imbal-
anced) malware samples. Moreover, we see a need to separate datasets in terms
of families only if authors suggest that a methodology performs well on previously
unseen malware types. We further define real-world experiments to be applicable
only for malware detection methodologies. These examples show that building
subsets of applicable papers is vital to avoid skew in our survey results. Conse-
quently, we note for all criteria the number of papers to which we deemed they
applied.

We also sometimes found it necessary to interpret criteria selectively to papers.
For example, whereas true-positive analysis is well-defined for assessing malware
detection approaches, we needed to consider how to translate the term to other
methodologies (e.g., malware clustering or protocol extraction). Doing so enabled
us to survey as many applicable papers as possible, while keeping the criteria
fairly generic and manageable. In the case of malware clustering techniques, we
translated recall and precision to true positive and false positive rate, respectively.
This highlights the difficulty of arriving at an agreed-upon set of guidelines for
designing prudent experiments.

3.4 Survey Observations

We divide our survey interpretation into three parts. First, in a per-guideline
analysis, we discuss to which extent specific guidelines were met. The subsequent
per-paper analysis assesses whether only a small fraction of all papers accounts
for the results, or if our findings hold more generally across all of the papers.
Finally, a top-venue analysis details how papers appearing in more competitive
research venues (as previously defined) compare with those appearing in other
venues.

Criterion All Top-Venue
Importance Papers Papers
Correctness App Ukwn OK App Ukwn OK
Removed goodware 9 0% 44% 4 0% 50%
 More than half potentially include experiments

with goodware samples in the datasets. In these
cases, authors seem to have mistakenly presumed
binaries from public binary execution environ-
ments as malicious.
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Criterion All Top-Venue
Importance Papers Papers
Correctness App Ukwn OK App Ukwn OK
Avoided overlays 7 0% 29% 4 0% 0%
 Five of the seven papers that perform real-world

experiments to measure true positives merged
traces from execution environments into real-
world ones.

Balanced families 13 0% 54% 2 0% 50%
G# Only half of the papers considered balancing train-

ing datasets based on malware families rather than
individual specimens, possibly biasing the detec-
tion models or testing datasets towards polymor-
phic families.

Separated datasets 8 0% 0% 1 0% 0%
G# No paper discussed issues regarding separating

training and testing datasets in terms of malware
families. This may invalidate experiments testing
if a methodology is generic.

Mitigated artifacts/bias 36 0% 28% 14 0% 50%
G# Less than a third discussed or removed arti-

facts/biases from the datasets. If present, such
artifacts/biases could significantly influence exper-
imental validity; only real-world assessment can
prove otherwise.

Higher Privileges 36 6% 75% 14 0% 86%
G# The quarter of papers that use data recorded at a

privilege level equal to that of the malware execu-
tion risk increased evasion.

Transparency App Ukwn OK App Ukwn OK
Interpreted FPs 25 n/a 64% 9 n/a 89%
 Of the papers that present false positive rates, a

third lacks details beyond the plain numbers.
Interpreted FNs 21 n/a 48% 7 n/a 57%
 In more than half of the cases, readers have to

speculate why false negatives occur.
Interpreted TPs 30 n/a 60% 11 n/a 55%
 Two out of five applicable papers do not interpret

true positives. This can hide vital information on
the basis and diversity of classifications.

Listed malw. families 36 n/a 81% 14 n/a 86%
G# Most papers adequately name the malware fami-

lies in their datasets. Seven papers rely on high
numbers of distinct samples instead, hiding on
which families experiments are based.
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Criterion All Top-Venue
Importance Papers Papers
Correctness App Ukwn OK App Ukwn OK
Identified environment 36 n/a 81% 14 n/a 79%
G# A minority of papers fail to name or describe the

execution environment used to capture malware
traces used during experiments.

Mentioned OS 36 n/a 64% 14 n/a 64%
G# A third do not mention the OS used during their

experiments.
Described naming 32 n/a 50% 12 n/a 58%
G# Only half described how the family labels for mal-

ware samples were obtained.
Described sampling 16 n/a 81% 5 n/a 60%
# A fifth of the papers using bulks of malware sam-

ples do not motivate how the subsets from all avail-
able reports of a dynamic analysis environment
were chosen.

Listed malware 36 n/a 11% 14 n/a 7%
# Almost all papers lack details on which particular

malware samples (e.g., distinct MD5 hashes) were
analyzed.

Described NAT 30 n/a 10% 11 n/a 9%
# Only three papers mention whether the execution

environment used NAT or if the infected machine
was assigned a public IP addresses.

Mentioned trace dur. 36 n/a 64% 14 n/a 57%
# A third do not mention for how long malware ex-

ecuted when capturing traces.
Realism App Ukwn OK App Ukwn OK
Removed moot sampl. 16 0% 0% 5 0% 0%
 No paper discussed excluding execution of out-

dated malware binaries or those with sinkholed
communications. As we illustrate in § 3.5.4,
such traces can make up a significant fraction of
recorded malware behavior.

Real-world FP exp. 20 0% 50% 6 0% 67%
 Only half of the malware detection papers include

real-world false positive experiments, vital for pru-
dently evaluating the overhead of wrong alarms.

Real-world TP exp. 20 0% 35% 6 0% 67%
 Most of the malware detection papers lack real-

world true positive experiments.
Used many families 36 1/8/745 14 1/8/745
 Minimum/median/maximum number of malware

families used in experiments.
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Criterion All Top-Venue
Importance Papers Papers
Correctness App Ukwn OK App Ukwn OK
Allowed Internet 36 6% 75% 14 0% 79%
G# A fifth of the papers either simulated the Inter-

net or modified bot source code to run without it,
raising concerns of the realism of experiments.

Added user interaction 36 0% 3% 14 0% 0%
# In only one case the authors explicitly deployed

sophisticated user interactions to trigger certain
malware behavior. The lack of such mention in
other papers may indicate that experiments lack
user-triggered behaviors such as keylogging.

Used multiple OSes 36 22% 19% 14 21% 29%
# Only about a fifth seemed to deploy their experi-

ments on multiple OSes.
Safety App Ukwn OK App Ukwn OK
Deployed containment 28 71% 21% 11 64% 27%
 The majority of papers did not explicitly men-

tion containment policies, and 77% lack a policy
description. This compromises transparency, and
hinders readers to judge if authors gave sufficient
consideration to mitigating malware attacks.

Table 3.3: Overview and short interpretation of survey results

3.4.1 Per-Guideline Analysis

Table 3.3 lists the results of our assessment methodology ordered by theme and
importance. The second major column includes statistics on all surveyed papers,
while the third major column represents data from publication at top-tier venues
only. App specifies the number of papers for which the criterion applied. OK
states the proportion of those applicable papers that adhered to the guideline,
whereas Ukwn specifies the proportion for which we could not assess the guideline
due to lack of experimental description.

Correctness

In this section we highlight instances of criteria that potentially call into question
the basic correctness of a paper’s results.

In five cases, we find papers that mix behavioral traces taken from malware
execution with traces from real systems. We find it difficult to gauge the degree
of realism in such practices, since malware behavior recorded in an execution
environment may deviate from the behavior exhibited on systems infected in the
wild. For instance, Celik et al. [28] have pointed out that time-sensitive features
such as frames per hour exhibit great sensitivity to the local network’s band-
width and connectivity latency; blending malware flows into other traces thus
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requires great care in order to avoid unnatural heterogeneity in those features.
Another difference is generally the lack of user interaction in malware execution
traces, which typically exists in real system traces. Consequently, we argue that
researchers should not base real-world evaluations on mixed (overlay) datasets.
On the positive side, two papers avoided overlay datasets and instead deployed
sensors to large networks for real-world evaluations [74, 77].

In two papers, the authors present new findings on malware behavior derived
from datasets of public dynamic analysis environments, but did not remove good-
ware from such datasets. Another two malware detection papers include poten-
tially biased false negative experiments, as the datasets used for these false neg-
ative evaluations presumably contain goodware samples. We illustrate in § 3.5.2
that a significant ratio of samples submitted to public execution environments
consists of goodware. Other than these four papers, all others filtered malware
samples using anti-virus labels. However, no author discussed removing outdated
or sinkholed malware families from the datasets, which has significant side-effects
in at least one such case.

Summarizing, at least nine (25%) distinct papers appear to suffer from clearly
significant problems relating to our three most basic correctness criteria. In ad-
dition, observing the range of further potential pitfalls and the survey results, we
speculate that more papers may suffer from other significant biases. For example,
in another 15 cases, the authors did not explicitly discuss the presence/absence
of sinkholed or inactive malware samples. In addition, three malware detection
papers do not name malware families, but instead use a diverse set of malware bi-
naries during experiments. We illustrate in § 3.5.3 that such datasets are typically
biased and potentially miss significant numbers of malware families. We further
observed seven papers with experiments based on machine learning that did not
employ cross-validation and thus potentially failed to generalize the evaluation to
other datasets. To name good examples, the authors in [52, 60, 76, 76, 78] chose a
subset of malware families and balanced the number of samples per family prior to
the training process. Similarly, we observed authors performing cross-validation
to avoid overfitting detection models [57, 76, 78, 95].

Lastly, nearly all of the papers omitted discussion of possible biases intro-
duced by malware execution, such as malware behavior that significantly differs
if binaries execute in a virtual machine [13, 60]. Typically, further artifacts or
biases, for example, due to containment policies exist when executing malware
as illustrated in § 3.5.5. We highlight the importance of real-world scenarios, as
they favor methodologies which evaluate against realistic and correct datasets.

Transparency

We observed two basic problems regarding transparent experiment descriptions
in our community. First, descriptions of experimental setups lack sufficient detail
to ensure repeatability. For example, 20% of the papers do not name or describe
the execution environment. For a third of the papers it remains unclear on which
OS the authors tested the proposed approach, and about a fifth do not name
the malware families contained in the datasets. Consequently, in the majority
of cases the reader cannot adequately understand the experimental setup, nor
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can fellow researchers hope to repeat the experiments. In addition, 75% do not
describe containment policies.

Second, we find the majority of papers do not provide complete descriptions
of experimental results. That is, papers frequently fail to interpret the numeric
results they present, though doing so is vital for effectively understanding the
importance of the findings. Consider the simple case of presenting detection
rates. In which exact cases do false positives occur? Why do some malware
families raise false negatives while others do not? Do the true positives cover
sufficient behavioral diversity?

Realism

Our survey reveals that only a minority of papers includes real-world evaluations,
and very few papers offer significant sample sizes (e.g., in numbers of hosts) for
such experiments. The lack of real-world experiments makes it hard to judge
whether a proposed methodology will also work in practice. We find that authors
who do run real-world experiments often use locally accessible networks (e.g., a
university campus, or a research lab). Doing so does not constitute a problem per
se, but authors often base such experiments on the untenable assumption that
these environments do not contain malware activity. In eight cases, authors used
university networks for a false positive analysis only, although their methodology
should also detect malware in such traces.

We noted a further eight papers that model malicious behavior on malware
samples controlled by the authors themselves. Without justification, it seems
unlikely that such malware samples behave similarly to the same samples when
infecting victim machines in the wild. The malware execution environment may
introduce further biases, for example, via author-controlled servers that may
exhibit unrealistically deterministic communication patterns. All of these cases
lack representative real-world evaluations, which could have potentially offset
these criteria.

We find that the typical paper evaluates its methodology against eight (me-
dian) distinct malware families, and five (14%) evaluated using only a single
family. Similarly, two thirds of the surveyed malware detection methodologies
evaluated against eight or fewer families. There may be a good reason for not
taking into account further families, for example, if no other malware families
are applicable for a specific experiment. In general, however, we find it difficult
to gauge whether such experiments provide statistically sound results that can
generalize.

Safety

Most papers did not deploy or adequately describe containment. More than two
thirds (71%) completely omit treatment of any containment potentially used dur-
ing the experiments. The reasons for this may be that authors rely on referencing
to technical reports for details on their containment solution. We found, however,
that only few such reports detail the containment policies in place. Two papers
state that the authors explicitly refrained from deploying containment policies.
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Figure 3.2: Guideline violations related to applicable criteria, separated into (1) all
10 most important criteria (left), (2) transparency/safety (middle), and (3) correct-
ness/realism (right). Each dot represents one paper, darker dots cover more papers.

3.4.2 Per-Paper Analysis

The preceding discussion has shown the high potential of our guidelines for im-
proving specific prudence criteria. As a next step, we analyze how many papers
can in total benefit from significant improvements.

To do so, Figure 3.2 details how many of the most important criteria ( in
Table 3.1)3 a paper violated. The fewer criteria a paper met, the more its ex-
periments could have been improved by using our guidelines. The figure shows
that only a single paper fulfilled all of the applicable guidelines. More than half
(58%) of the papers violate three or more criteria. In general, the plot shows a
correlation between the number of violated criteria and the number of applicable
criteria. This means that our guidelines become increasingly important when
designing more complex experiments.

We then separate the results into presentation and safety issues (middle graph)
and incorrect or unrealistic experiments (right graph). We find that lacking trans-
parency and safety constitutes a problem in half of the cases. Far more papers
(92%) have deficiencies in establishing correct datasets and realistic experiments.
Note that this does not imply that the experiments suffer from heavy flaws. It
does flag, however, that many papers remain silent about important experimen-
tal descriptions. In addition, this analysis shows that experiments in applicable
papers could be significantly improved in terms of correct datasets and realistic
experiments.

In some cases, malware datasets were reused in related papers (such as [45]),
often inheriting problems from the original experiments. In such cases, issues
are mostly with the original paper. However, we knowingly did not remove
such papers, as we wanted to survey the use instead of the creation of malware
datasets.
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Figure 3.3: Violations at top-tier venues compared with other venues.

3.4.3 Top-Venue Analysis

We now ask ourselves if experiments presented at top-tier conferences appear to
be more prudent than others. To measure this, Figure 3.3 compares results for the
ten most important guidelines ( in Table 3.1). We do not observe any obvious
prudence tendency towards top-tier conferences or other venues. The first strong
difference regards the prevalence of real-world experiments: while more papers
presented at top-tier venues include real-world scenarios, authors base these on
potentially skewed overlay datasets (e.g., mixing malware traces in real traces).
Second, we observed more papers interpreting false positives at top-tier confer-
ences than at other venues. However, while the number and ratios of violations
slightly differ across the criteria, the violations generally remain comparable. We
therefore conclude that research published in top-tier conferences would equally
benefit from our guidelines as papers presented at other venues. Thus, these
shortcomings appear endemic to our field, rather than emerging as a property of
less stringent peer review or the quality of submitted works.

3.5 Experiments

We now conduct four experiments that test four hypotheses we mentioned in pre-
vious sections. In particular, we will analyze the presence of (1) goodware, (2)
malware family imbalances, (3) inactive and sinkholed samples, and (4) artifacts
in malware datasets taken from contained environments that accept public sub-
missions. Similar datasets were used in many surveyed experiments, raising the
significance of understanding pitfalls with using such datasets. As we will show,
our illustrative experiments underline the importance of proper experiment de-
sign and careful use of malware datasets. At the same time, these experiments
show how we can partially mitigate some of the associated concerns.

3We note that we devised the importance ranking prior to conducting the analyses in this
section.
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3.5.1 Experimental Setup

We conducted all malware execution experiments in Sandnet [79] (Chapter 4),
using a Windows XP SP3 32bit virtual machine connected to the Internet via
NAT. We deploy containment policies that redirect harmful traffic (e.g., spam,
infections) to local honeypots. We further limit the number of concurrent con-
nections and the network bandwidth to mitigate DoS activities. An in-path
honeywall NIDS watched for security breaches during our experiments. Other
protocols (e.g., IRC, DNS or HTTP) were allowed to enable C&C communica-
tion. The biases affecting the following experiments due to containment should
thus remain limited. We did not deploy user interaction during our experiments.
As Windows XP malware was most prevalent among the surveyed papers, we did
not deploy other OS versions during dynamic analysis.

We base experiments 3.5.2 and 3.5.3 on 44,958 MD5 distinct malware sam-
ples and a diverse set of more than 100 malware families. We received these
samples as a snapshot of samples submitted to a large public dynamic analysis
environment during Jan.1–30, 2011. The samples originated from a diverse set of
contributors, including security companies, honeypot infrastructures, and spam
traps. To analyze the dynamic malware behavior in experiments 3.5.5 and 3.5.4,
we randomly chose 10,670 of these 44,958 samples. We executed this subset of
samples and recorded the malware’s network traces at the Internet gateway. An
execution typically lasts for at least one hour, but for reasons of scale we stopped
execution if malware did not show network activity in the first 15 minutes. The
reader can find the data regarding execution date, trace duration, MD5 hashes,
and family names of the malware samples used in the experiments at our web-
site.4 As we use the following experiments to measure the presence of imbalances,
goodware, sinkholing and artifacts, we explicitly did not clean up our dataset in
this regard.

3.5.2 Legitimate Samples Under Analysis

Experiments that erroneously consider legitimate software samples as malware
suffer from bias. For example, when evaluating detection accuracies, legitimate
software may cause false positives. Similarly, surveys of malicious behavior will
exhibit bias if the underlying dataset contains legitimate software. Thus, in
this experiment, we test our hypothesis that goodware is significantly present
in datasets from dynamic analysis systems that offer public sample submission
routines.

To give lower bounds for the ratio of goodware, we queried the MD5 hash
sum of all 44,958 binaries in two whitelists during the first week in November
2011. First, we query Shadowserver.org’s bin-test [91] for known software. Sec-
ond, we consulted Bit9 Fileadvisor [20], a file reputation mechanism also used
by anti-spam vendors. bin-test revealed 176 (0.4%) goodware samples. The Bit9
Fileadvisor recognized 2,025 (4.5%) samples. In combination, both lists revealed
2,027 unique binaries as potentially being benign. As Bit9 also includes mali-
cious software in their database, we inspected a small sample of the 2,027 known

4See http://christian-rossow.de/publications/datasets/ieee12.htm

http://christian-rossow.de/publications/datasets/ieee12.htm


36 CH. 3. GUIDELINES FOR MALWARE EXPERIMENTATION

binaries to estimate the ratio of goodware in the hits. In particular, we manually
analyzed a subset of 100 randomly selected matches and found 78 to be legitimate
software. Similarly, we cross-checked the 2,027 binaries via VirusTotal and found
that 67.5% did not trigger any anti-virus detection. Estimating more conserva-
tively, we use the minimum ratio of goodware samples (67.5%) to extrapolate the
number of goodware samples within the 2,027 “whitelisted” samples. This trans-
lates to a lower bound of 1,366 (3.0%) goodware samples in our total dataset.
We can also approximate an upper bound estimate regarding the prevalence of
nonmalicious samples by observing that 33% of the samples that were scanned
by VirusTotal were not detected by any of the 44 vendors listed at VirusTotal.
We therefore conclude that the ratio of legitimate binaries (3.0%–33%) may bias
experiments.

3.5.3 Distribution of Malware Families

In this experiment we test our hypothesis stating that polymorphic malware man-
ifests in an unduly large portion in randomly collected sets of malware samples.
We used the VirusTotal labels obtained in Experiment 3.5.2 and counted the oc-
currences of malware families for each anti-virus vendor. To obtain the malware
family names, we parsed the naming schemes of three anti-virus vendors (Avira,
Kaspersky and Symantec) commonly used to assign malware labels.

The CDF in Figure 3.4 shows the relationship of malware families to preva-
lences of families in our dataset. Ideally, a multi-family malware corpus stems
from a uniform distribution, that is, each malware family contributes the same
number of samples. In our dataset, randomly collected from a dynamic analysis
environment that publicly offers a sample submission routine, we find this goal
clearly violated: some malware families far dominate others. For example, when
relying on Kaspersky, almost 80% of the malware samples belong to merely 10%
of the families. In the worst case, this would mean that experiments performing
well with 4/5’s of the samples may not work with 90% of the remaining mal-
ware families. In summary, unless researchers take corresponding precautions,
polymorphic malware families can disproportionately dominate randomly drawn
corpora of malware samples.

3.5.4 Inactive or Sinkholed Samples

The identification of correctly functioning malware samples poses one of the major
challenges of automated dynamic analysis. Large fractions of analyzed samples
do not exhibit any behavior [79]. Further complicating things, even if network
communication manifests, it remains unclear whether it constitutes successful
operation and representative behavior. During recent years, Shadowserver.org,
Spamhaus, and other individuals/organizations have exercised take-overs of bot-
net infrastructure or botnet-employed domains. Such achievements can perturb
empirical measurement as a side effect: takedowns introduce “unnatural” activity
in collected datasets [48].

To assess the magnitude of these issues, we analyzed which of the 10,670
executed samples showed network activity, but apparently failed to bootstrap
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Figure 3.4: Family imbalances in randomly chosen malware samples

malicious activities. We used Avira to identify the malware families. Only 4,235
(39.7%) of the 10,670 samples showed any network activity. Of these samples, we
found that of the 22 families with at least 5 distinct samples showing any HTTP
activity, 14 (63%) included samples that had only failing HTTP communication
(HTTP response codes 4XX/5XX). Similarly, of the most prevalent 33 families
that used DNS, eight (24%) contained samples that did not have any other com-
munication than the (typically failed) DNS lookups. We observed such inactive
samples to be more prevalent in some families (e.g., Hupigon 85%, Buzus 75%),
while other families (e.g., Allaple 0%) were less affected.

Next, we tried to quantify the effects of sinkholed malware infrastructure. We
contacted various security organizations to obtain information about sinkholed
C&C servers. These contacts enabled us to obtain sinkholing patterns of four
different organizations operating sinkholing infrastructure. We then searched for
these patterns for sinkholed samples among the 4,235 samples showing network
activity. Most significantly, we found that during 59 of the 394 Sality executions
(15%) and 27 of the 548 Virut executions (5%), at least one sinkholed domain was
contacted. Although we are aware of additional malware families in our dataset to
have sinkholed domains (e.g., Renos/Artro, Gozi, TDSS, SpyEye, ZeuS, Carperb,
Vobfus/Changeup, Ramnit, Cycbot), we could not spot sinkholing of these in our
sample dataset. Combining this data, this translates to the observation that at
least eleven of the 126 active families (8.7%) in our dataset are potentially affected
by sinkholing.

In summary, execution of inactive or sinkholed samples will not yield repre-
sentative activity, highlighting the need for authors to consider and quantify their
impact.

3.5.5 Artifacts

Due to the specific setups of malware execution environments, the artifacts intro-
duced into recorded malware traces can be manifold. For example, network traffic
contains specific values such as the environment’s IP address or the Windows user
name. We found such easy-to-spot artifacts widespread across many malware
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families. Specifically, we analyzed which of the recorded network traces contain
the contained environment’s IP address, Windows user name, or OS version. For
instance, more than 10% of all Virut samples that we executed transmitted the
bot’s public IP address in plaintext. Similarly, one in five Katusha samples sent
the Windows user name to the C&C server. The use of “Windows NT 5.1.2600”
as HTTP User-Agent, as for example by Swizzor (57%) or Sality (52%), likewise
occurs frequently. These illustrative examples of payload artifacts are incom-
plete, yet already more than a third (34.7%) of the active malware families in our
dataset communicated either Sandnet’s external IP address, our VM’s MAC
address, the VM’s Windows username, or the exact Windows version string in
plaintext in at least one case.

More dangerous types of biases may hide in such datasets, unbeknownst to
researchers. For instance, methodologies relying on time-based features should
consider artifacts introduced by specific network configurations, such as limited
bandwidth during malware execution. Similarly, containment policies may bias
the analysis results. For example, we have observed spambots that cease running
if a containment policy redirects their spam delivery to a local server that simply
accepts all incoming mail.

In general, it is hard to measure the exact ratio of malware families generating
any artifact. Some artifacts, such as limited bandwidth or particular system
configurations such as installed software, are inherent to all malware families.
Consequently, authors need to carefully consider artifacts for each experiment.
The best advice to preclude artifacts is to either carefully and manually assemble
a dataset, or to perform representative real-world experiments.

3.6 Related Work

Prudent experiments Kurkowski et al.’s survey [56] of the technical qual-
ity of publications in the Mobile Ad Hoc Networking community inspired our
methodology. As their survey’s verification strategies do not immediately apply
to our community’s work, we needed to establish our own review criteria. Krish-
namurthy and Willinger [55] have identified common methodological pitfalls in a
similar fashion to ours, but regarding Internet measurements. They established
a set of standard questions authors ought to consider, and illustrate their appli-
cability in a number of measurement scenarios. Closer to our research, Aviv and
Haeberlen have discussed a set of challenges in evaluating botnet detectors in
trace-driven settings [10], and proposed distributed platforms such as PlanetLab
as a potential enabler for more collaborative experimentation and evaluation in
this space. Moreover, Li et al. [59] explored difficulties in evaluating malware
clustering approaches. Supporting our observations, they observed that using
balanced and well-designed datasets have significant effects on evaluation results.
They then show the importance of creating ground truths in malware datasets,
broaching concerns related to some guidelines in this chapter.

Perhaps most closely related to our effort is Sommer and Paxson’s approach
to explaining the gap between success in academia and actual deployments of
anomaly-based intrusion detection systems [80]. The authors find five reasons:



3.7. CONCLUSION AND DISCUSSION 39

(1) a very high cost of errors; (2) lack of training data; (3) a semantic gap between
results and their operational interpretation; (4) enormous variability in input
data; and (5) fundamental difficulties for conducting prudent evaluations. In fact,
anomaly detection research has suffered from these problems for decades, whereas
experiments with malware datasets are being increasingly applied. Consequently,
our work complements theirs in that we shift the focus from anomaly detection
to malware experiments in general.

Dynamic analysis evasion Malware datasets typically stem from dynamic
analysis in specially prepared environments [17, 32, 46, 72, 79, 94]. To ensure
diverse datasets, malware must not evade dynamic analysis. Others have studied
the extent to which malware can detect and evade dynamic analysis [29, 60, 73].
Chen et al. present a taxonomy of dynamic analysis fingerprinting methods and
perform an analysis to which extend these are used [29]. Paleari et al. present
methods to automatically generate tests that effectively detect a variety of CPU
emulators [73]. Most recently, Lindorfer et al. [60] analyzed how and to which
extent malware samples evade Anubis.

Survey on malware detection systems Stinson and Mitchell [83] presented
a first approach to evaluate existing botnet detection methodologies. They focus
on possible evasion methods by evaluating six specific botnet detection method-
ologies. Their survey is orthogonal to ours, as we explore how authors design
experiments with malware datasets. Further, we provide guidelines how to de-
fine prudent experiments that evaluate methodologies in absence of any evasion
techniques. In addition, we assist researchers in designing experiments in general
rather than evaluating specific methodologies.

3.7 Conclusion and Discussion

In this chapter we have devised guidelines to aid in designing prudent malware-
based experiments. We assessed these guidelines by surveying 36 papers on mal-
ware analysis. We identified shortcomings in most papers from both top-tier and
less prominent venues. Consequently, we argue that our guidelines could have
significantly improved the prudence of most of the experiments we surveyed.

The observed shortcomings in experimental evaluation likely arise from several
causes. Researchers may not have developed a methodical approach for presenting
their experiments, or may not see the importance of detailing various aspects of
the setup. Deadline pressures may lead to a focus on presenting novel technical
content as opposed to the broader evaluation context. Similarly, detailed analyses
of experimental results are often not given sufficient emphasis. In addition, page-
length limits might hamper the introduction of important aspects in final copies.
Finally, researchers may simply overlook some of the presented hidden pitfalls of
using malware datasets.

Many of these issues can be addressed by devoting more effort to presentation,
as our transparency guidelines suggest. Improving the correctness and realism of



40 CH. 3. GUIDELINES FOR MALWARE EXPERIMENTATION

experiments is harder than it seems, though. For instance, while real-world sce-
narios are vital for realistic experiments, conducting such experiments can prove
time-consuming and may raise significant privacy concerns for system or net-
work administrators. Furthermore, it is not always obvious that certain practices
can lead to incorrect datasets or lead to unrealistic scenarios. For example, it
requires great caution to carefully think of artifacts introduced by malware exe-
cution environments, and it is hard to understand that, for example, experiments
on overlay datasets may be biased. The significance of imprudent experiments
becomes even more important in those instances where current practices inspire
others to perform similar experiments—a phenomenon we observed in our survey.

While many of our guidelines are not new, we witnessed possible improve-
ments to experiments for every one of the criteria. We believe this approach
holds promise both for authors, by providing a methodical means to contemplate
the prudence and transparent description of their malware experiments, and for
readers/reviewers, by providing more information by which to understand and
assess such experiments. Given their positive impact, we will do a best-effort
to follow the guidelines in this thesis, striving for realistic analyses on botnet
resilience.



4
Dynamic Malware Analysis with Sandnet

Dynamic analysis of malware is widely used to obtain a better understanding of
unknown software. Existing dynamic-analysis systems mainly analyze host-level
activities of malware and limit the analysis period to a few minutes. However,
to analyze the resilience of C&C infrastructure, we need detailed analysis of a
malware’s network behavior. Moreover, as the previous chapter has shown, it
requires great care to create correct malware datasets in a safe manner. In this
chapter, we propose a dynamic analysis environment called Sandnet. With
Sandnet, we provide a comprehensive overview of typical malware network be-
havior by discussing the results we obtained during the analysis of more than
100,000 malware samples. This chapter will provide an in-depth analysis of the
two protocols that are most popular among malware authors, DNS and HTTP,
providing first insights into botnet C&C channels.

4.1 Introduction

Dynamic analysis has proven to be a well-established and effective tool to un-
derstand the workings of malicious software [17, 78, 94]. Understanding the
behavior of malware provides insights into damage functionalities of malware,
upcoming techniques, and underground economy trends. In addition, it gives the
opportunity to develop novel countermeasures specifically built on top of that
understanding. Current analysis systems are mainly specialized in monitoring
system-level activities, such as manipulation of Windows registry keys and ac-
cesses to the file system. Little effort has been devoted to understanding the
network behavior exposed by malware. In fact, similarly to system-level activi-
ties, network-level activities also show very distinct behaviors that can back up
the insights provided by system-level analysis. Moreover, detailed analyses of
C&C channels help to understand their resilience. Lastly, understanding the net-
work behavior of malware helps to develop novel approaches to collect, classify
and eventually mitigate malicious software. Driven by these observations, we
focus our research on dissecting, analyzing, and understanding the behavior of
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malicious software as observed at the network level.
As we will show later, the observed malware behavior highly depends on

the duration of the dynamic analysis. Current systems try to analyze as many
malware samples as possible in a given period of time. This results in very short
analysis periods, usually lasting only a few minutes, which makes it difficult to
observe malicious network behavior that goes beyond the bootstrapping process.
From a network behavior point of view, however, the post-bootstrap behavior is
often more interesting than what happens in the first few minutes. A thorough
analysis is key to understanding the highly dynamic workings of malware, which
is frequently observed to be modular and often undergoes behavior updates in a
pay-for-service model.

This chapter presents an in-depth analysis of malware network behavior that
we gathered with a new system called Sandnet from February 2010 to January
2011. Sandnet [3] is an analysis environment for malware that complements
existing systems by a highly detailed analysis of malicious network traffic. With
Sandnet, we try to address limitations we see in publicly available dynamic
analysis systems. While existing systems usually execute a malware sample for a
few minutes, we analyze each sample for at least one hour. Moreover, Sandnet
implements policies that can trigger specific C&C behavior important for analyz-
ing botnet resilience. For example, Sandnet can block DNS requests of bots to
trigger backup C&C channels. Using the data collected through Sandnet, we
provide a comprehensive overview of network activities of current malware.

This chapter is structured as follows. In Section 4.2, we will give an overview
of Sandnet. Section 4.3 describes the dataset our analysis is based on. We
will then provide a general malware network traffic overview in Section 4.4. In
Section 4.5, we will analyze the usage of the DNS protocol by malware. Section
4.6 describes the usage of the HTTP protocol by malware. We will discuss related
work in Section 4.7 and show future work in Section 4.9.

4.2 System Overview

In Sandnet, malware is analyzed in execution environments known as sandpup-
pets consisting of a (virtualized) hardware and a software stack. Currently, we
use VMs with Windows XP SP3 based on VirtualBox as sandpuppets. The ma-
chines are infected immediately after booting using batch scripts and gracefully
shut down after a configurable time interval, which is typically one hour. Each
sandpuppet is configured to have a local IPv4 address and a NATed Internet
connection. A local DNS resolver is preconfigured.

Figure 4.1 shows the system overview of Sandnet. The sandherder is a
Linux system hosting the sandpuppet virtual machines. Besides virtualization,
the sandherder also records, controls and proxies network traffic to the Internet.
We limit the potential damage of running malware samples by transparently redi-
recting certain traffic (e.g., spam, infections) to local sinkholes or honeypots. For
example, SMTP traffic is captured at a local mail server that forges the IP address
and even SMTP welcome banner of the original MX server. In addition, we limit
the number of concurrent connections, the network bandwidth and the packet
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rates per sandpuppet to mitigate DoS activities. Internet connectivity parame-
ters such as bandwidth and packet rate are shared fairly among the sandpuppets
to avoid inter-execution artifacts. The current Sandnet setup comprises five bot
sandherders with four sandpuppets each, resulting in twenty sandpuppets dedi-
cated to malware analysis. Herders and sandpuppets can easily be added due to
a flexible and distributed design.

Sandherder #1

Sandnet
Controller

…

VM VM VM Proxy

Spamtrap Honeypot

Sandherder #5

VM VM VM Proxy

Web

VM

VM

Figure 4.1: System overview of Sandnet

After executing a malware binary, we dissect the recorded network traffic for
further analysis. A flow extractor converts raw .pcap-files into UDP/TCP flows.
A flow is a network stream identified by the usual 5-tuple (layer 4 protocol, source
IP addr., destination IP addr., source port, destination port). For TCP, a flow
corresponds to a reassembled TCP connection. For UDP, a flow is considered to
be a stream of packets terminated by an inactivity period of 5 minutes. Our expe-
rience shows that this timeout length is a reasonable mechanism to compensate
the lack of UDP flow termination frames. Additionally, we use payload-based
protocol detection in order to determine the application-level protocol of a flow.
We define a flow to be empty, if no UDP/TCP payload is transmitted in it.

Automated execution of malware raises some ethical concerns, though. Given
unrestricted network connectivity, malware could potentially harm others on the
Internet. Possible attack scenarios are, but not limited to, Denial-of-Service at-
tacks, spam or infection of other hosts. We tried to find the right balance between
ethical concerns when designing Sandnet and restricting the Internet connectiv-
ity. Technically, we integrated certain honeywall techniques. The harm of DoS
attacks is limited by network level rate-limiting, spam is transparently redirected
to local mail servers and protocols known to be used for infection are redirected
to local honeypots. Sandnet is closely monitored during execution. Admittedly,
it is technically impossible to completely prevent all possible attacks. However,
we are convinced that within the bounds of what is possible we implemented
a huge part of mitigation techniques and that the value of Sandnet strongly
outweighs the reasonably limited attack potential.
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4.3 Dataset

In order to study malicious network traffic, we analyzed malware samples that
were provided to us by partner research institutions. For each sample we acquire
A/V scan results from VirusTotal [2]. 85% of the samples that we executed had
at least one scan result indicating malware (see Figure 4.2). In order to avoid
accidental benign samples we collated our set of samples with a list of known
software applications using Shadowserver’s bintest [91]. We randomly chose the
samples from a broad distribution of all malware families. We tried to mitigate
side-effects of polymorphism by extracting the family name of a given malware
sample’s A/V labels and limit the number of analyses per malware family. For our
analysis we defined the following set of samples. We analyzed a total of 104,345
distinct samples (in terms of MD5 hashes) from February 2010 to January 2011. A
complete list of all samples can be found at the URL http://christian-rossow.

de/files/dataset-sandnet-chapter.txt, including MD5 checksums, malware
families based on anti-virus scans and dates of malware analysis. Samples were
executed with regard to their age. On average, the samples were executed about
7.8 days after submission. We prefer newer samples for execution in Sandnet,
but re-scheduling of older samples (see Chapter 5) increases the average sample
age during execution.
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Figure 4.2: Histogram on the number of VirusTotal labels per sample in Sandnet

4.4 Network Statistics Overview

Of the 104,345 samples, the subset SNet of 45,651 (43.8%) samples exhibited some
kind of network activity.

The network traffic caused by these samples sums up to more than 70 million
flows and a volume of 207 GB. It remains an open issue to understand why a
majority of the samples did not show any network activity. We suspect that most
of the inactive samples a) are invalid PE files, b) operate on a local system only
(e.g., disk encryption), c) are active only if there is user activity, or d) detected
that they are being analyzed and stopped working.

http://christian-rossow.de/files/dataset-sandnet-chapter.txt
http://christian-rossow.de/files/dataset-sandnet-chapter.txt
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Table 4.1 is a complete list of the ISO/OSI layer-7 protocol distribution ob-
served in Sandnet. Protocol inspection reveals that a typical sample in SNet

uses DNS (92.3%) and HTTP (58.6%). IRC is still quite popular: 8% of the
samples exposed IRC. Interestingly, SMTP only occurred in 3.8% of the samples
in SNet, indicating that traditional SMTP spam is a less popular monetization
technique.

Protocol Samples Flows Volume IP addr. Dst Domains

DNS 42,143 11,845,193 3.7 GB 241,126 14,732

HTTP 26,738 13,492,189 110 GB 36,921 55,032

Unknown 18,349 32,265,514 24 GB 9,145,625 86,523

Flash 5881 299986 32 GB 2955 2205

SSL 5104 79344 1.9 GB 2278 1622

SMB 4275 8,602,414 6.1 GB 7,253,975 10

IRC 3657 169,833 0.1 GB 564 554

SMTP 1715 3,155,014 20 GB 282,401 118,959

MPEG 1162 2200 0.2 GB 58 44

SSDP 885 1861 <0.1 GB 2 0

Quicktime 389 1222 8.3 GB 62 41

FTP 243 7523 <0.1 GB 159 121

NetBIOS 184 134,600 <0.1 GB 108,909 0

TDS 163 1086 <0.1 GB 44 36

NTP 102 2950 <0.1 GB 13 5

STUN 68 276 <0.1 GB 19 8

TFTP 48 12,492 0.6 GB 19 0

PPLIVE 37 1481 0.1 GB 1321 0

Gnutella 32 20,545 0.2 GB 15,640 0

DDL 28 277 <0.1 GB 52 35

Bittorrent 26 1180 0.1 GB 588 32

Mysql 21 33 <0.1 GB 12 7

Table 4.1: Sandnet: Distribution of ISO/OSI layer 7 protocols

As DNS and HTTP are by far the most widely used protocols in Sandnet
traffic, we will inspect these in more detail in Table 4.2. Table 4.2 also compares
our protocol statistics with data based on Anubis provided by Bayer et al. [15]
in 2009. When comparing the results, the samples we analyzed showed increased
usage of all protocols. However, the ranking and the proportion of the protocols
remain similar. We suspect this increase is a) due to a relatively long execution of
malware samples and b) caused by a growing usage of different application-level
protocols by malware.

30.1% of the flows were empty (no payload was transmitted). We verified
that the vast majority of these flows originate from TCP port scans, most being
redirected to our local honeypot. Already 90% of the empty flows targeted Net-
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Protocol Reference Sandnet

DNS 44.5 % 92.3 %

HTTP 37.6 % 58.6 %

IRC 2.3 % 8.0 %

SMTP 1.6 % 3.8 %

Table 4.2: Sandnet: Layer-7 protocol distribution compared with Bayer et al. [15]

BIOS/SMB services. The remaining empty flows are normally distributed over
lots of different ports.

Of the remaining flows with payload (69.9%), for 22.8% no well-known pro-
tocol could be determined. Over 60% of these flows account for NetBIOS or
SMB-related communication (mostly scanning) according to the destination port.
Again, the remaining flows with failed protocol detection are normally distributed
across many destination ports.

Payload-based protocol detection is a big advantage if protocols are used over
other than their well-known ports. We found that 12.8% of SNet use protocols
over other than the well-known ports. We speculate that in these cases malware
tries to communicate via ports opened in the firewall, independent from the actual
communication protocol. For instance, we regularly found IRC bots connecting
to IRC servers listening on TCP port 80. Thus, nonstandard port usage might
serve as a malware classification or detection feature. The top-3 affected protocols
are listed in Table 4.3.

Protocol SNet Samples Distinct Ports

HTTP 8.17 % 303

IRC 7.13 % 174

Flash 0.91 % 9

Table 4.3: Top 3 protocols over nonstandard ports

As additional analysis, we found out that a longer analysis period is indeed
helpful for a better understanding of malware behavior. To judge on this, we
performed two measurements each after an analysis period of 5 minutes and
after 1 hour. First, we found out that only 23.6% of the communication endpoints
that we have seen samples connecting to were contacted in the first 5 minutes
of analysis. We then calculated that only a minor fraction (6.1%) of all flows
started within the first 5 minutes. Lastly, we found that 4.8% of the samples
started using a new protocol after 5 minutes that they have not used in the first
minutes.
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4.5 DNS

DNS is by far the most prevalent layer-7 protocol in Sandnet network traffic and
gives an interesting insight into malware activity. The subset of samples using
DNS is denoted by SDNS.

4.5.1 DNS Resolution

Although all sandpuppets have their Windows stub resolver point to a working
DNS resolver, we observed malware that used a different resolver or even carried
its own iterative resolver. We developed the following heuristic in order to detect
executions that carry an iterative resolver. An execution is considered as carrying
an iterative resolver if there is an incoming DNS response from a server other
than the preconfigured DNS resolver with a referral concerning a TLD (a resource
record of type NS in the authority section) and the Recursion Available flag set
to 0. We cross checked the resulting executions whether at least one of the DNS
root servers had been contacted via DNS.

We can only speculate on the reasons why the preconfigured local DNS re-
solver is avoided. Using one’s own resolver has advantages, though. Resolution
of certain domains might be blocked at the preconfigured resolvers in some en-
vironments (e.g., corporate ones). Additionally, using custom resolvers avoids
leaving traces in logs or caches of the preconfigured resolver. Moreover, if the
Windows stub resolver is configured to use custom resolvers, local queries can be
modified at will. This could be used for phishing attacks (redirect to a proxy)
or to prevent A/V software from updating. Furthermore, preconfigured resolvers
might be rate-limited.
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Figure 4.3: Violin plot of DNS activity end distribution

We found that 99% of the samples in SDNS use the preconfigured resolver.
Given this high ratio, a DNS resolver indeed turns out to be an interesting source
for network-based malware detection. In fact, Bilge et al. [19] and Antonakakis et
al. [8] proposed DNS-based malware detection approaches. However, 3% of SDNS

perform recursive DNS resolution with other resolvers than the preconfigured one
(termed foreign resolvers in the following). Only 2% of SDNS expose iterative
DNS resolution. Note that the sets are not disjunct, as an execution may exhibit
multiple resolution methods or resolvers. We speculate that this is due to the
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fact that malware occasionally downloads and executes multiple binaries, each of
which might have different resolution methods. The foreign resolvers used include
Google’s Public DNS (used by 0.38%) as well as OpenDNS (0.25%). However,
there is a large number of foreign resolvers that are used less frequently. One
resolver that was located in China got our attention because queries for well-
known popular domains such as facebook.com and youtube.com resolved into
arbitrary IP addresses with no recognizable relation to the domain. We consider
this to be an artifact of the so-called Great Firewall of China [30]. In total, 932
of 5092 (18.3%) distinct DNS servers were used recursively at least once and thus
can be regarded as publicly available recursive DNS resolvers.

Furthermore, we looked into the activity distribution of the different resolu-
tion methods (see Figure 4.3). The preconfigured resolver (PCR) was typically
used throughout the whole analysis period. The end of the usage of foreign re-
solvers (FR) is widespread over time, leaning toward the end of the analysis.
Interestingly, iterative resolution appears to end much sooner compared to the
other resolution methods.

4.5.2 DNS TTL Analysis

The Time-To-Live parameter was of special interest to us, as it could be an
indicator of fast flux usage. Fast flux is used as a means to provide flexibility
among the C&C infrastructure of bots [41].
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Figure 4.4: CDF of DNS TTL per domain

Figure 4.4 shows that 10% of all domains have a maximum TTL of 5 minutes
or less. As spotted elsewhere [41], we expected domains with a small TTL and
a large set of distinct answer records to be fast-flux candidates. However, when
inspected manually, we found many domains of content distribution networks and
large web sites. Using small TTLs seems to have become common among web
hosters. As a result, the distinction between malicious fast-flux networks and
legitimate hosting services becomes much more difficult. A couple of responses
with a TTL of zero looked themselves like C&C communication. This way, we
found Feederbot [31], the first publicly discussed botnet that used DNS as C&C
channel. Feederbot’s responses can be characterized by atypically TXT record
values. The TTL of zero prevents caching of these responses, effectively causing
the resolver to always fetch the newest response from the authoritative DNS
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server. All in all, DNS suits well as a low-profile, low-bandwidth C&C channel
in heavily firewalled environments. Only our detailed malware network behavior
understanding has enabled for such an in-depth analysis of Feederbot.

4.5.3 DNS Message Error Rate

In order to measure DNS-transaction failure, we defined the DNS request error
rate as the number of DNS requests that were not successfully resolved over the
total number of DNS requests. When aggregating the DNS message error rate
per sample, we realized that for 10.1% of the samples in SNet all of their DNS
resolution attempts fail. However, the majority of the samples in SNet (60.3%)
have all DNS queries successfully resolved. The complete CDF is provided in
Figure 4.5. Zhu et al. suggested the high rate of NXDOMAIN as one feature to
detect malware samples [102]. Our results indicates that this is possible only for
the minority of malware samples. However, the high DNS message error rates
of a few samples may indicate the usage of domain name generation algorithms
(DGAs). Malware using DGAs often fails to find randomly chosen DGA gener-
ated C&C domains, as botmasters typically register only a small fraction of all
generated domain names. The fact that 60% of the samples never fail in name
lookups indicates that most malware families either do not use DGAs at all, or
only fall back to this mode when the primary C&C channel is not reachable
anymore. However, it also shows that the high DNS-failure rates of particular
malware families may in fact identify DGA variants, as shown by Antonakakis et
al. [9].
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Figure 4.5: CDF of DNS message error rate

4.5.4 Resource Record Type Distribution

Figure 4.6 shows the distribution of the Resource Record types of the query
section. Obviously, A records dominate DNS queries in Sandnet traffic, followed
by queries for MX records. All samples in SDNS have queried for an A record at
least once. The high prevalence of A records is expected as A records are used
to translate domain names into IP addresses. Furthermore, 2.3% of the samples
in SDNS queried blacklists. MX records have been queried by far fewer samples
(8%). Interestingly, when comparing the MX query rate with SMTP activity, we
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have seen both: samples that performed MX lookups but had no SMTP activity
and samples that successfully used SMTP but showed no MX queries at all. We
assume that in the latter case, the required information on the MX destinations
is provided via other means, for example, the C&C channel.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A MX TXT PTR

ra
tio

 o
f s

am
pl

es

DNS RR type

Figure 4.6: DNS Resource Record distribution among samples

4.5.5 Resolution for Other Protocols

DNS, though itself a layer-7 protocol, plays a special role as it provides resolution
service to all other layer-7 protocols. We analyzed how malware uses DNS before
connecting to certain destinations. 23% of the samples in SDNS show at least
one flow without prior DNS resolution of the destination (DNS flows and scans
excluded). In such a case either the destination’s IP address is known (e.g., hard-
coded in the binary) or resolution takes place via some other mechanism than
DNS. Furthermore, 2.3% of the samples in SDNS queried blacklists (26% of these
also sent spam).

4.6 HTTP

HTTP traffic sums up to 88 GB inbound and 21 GB outbound, which makes
HTTP by far the most prevalent protocol in Sandnet measured by traffic. The
subset of samples using HTTP is denoted by SHTTP. Given the high detail
of the OpenDPI protocol classification, additional protocols that are carried in
HTTP traffic are treated separately and thus contribute additional traffic: The
Macromedia Flash protocol sums up to an additional 32 GB, video streams like
MPEG and Apple Quicktime sum up to an additional 9 GB. We observed that
the protocols carried in HTTP are usually caused by embedded objects included
in websites that are visited by samples.

The immense potential abuse of HTTP-driven services motivated us to per-
form an in-depth analysis of typical malware HTTP traffic. Not only botnets
started using HTTP as C&C structures. To name but a few, click fraud (i.e., the
abuse of advertising services), mail address harvesting, drive-by downloads and
DoS attacks on web servers are malicious activities of a wide range of malware
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authors. Of all samples with network activity (SNet), the majority of 58.6% ex-
posed HTTP activity. This section provides details to which extent, how, and
why malware typically utilizes the HTTP protocol.

4.6.1 HTTP Requests

The analyzed samples typically act as HTTP clients and contact HTTP servers,
mainly because the Sandnet communication is behind a NAT gateway. Figure
4.7 gives a general overview of how many HTTP requests malware typically made
during the analysis period. The number of requests gives us a lead for which role
malware has. Click fraud campaigns or DoS activities cause a large number of
requests. Malware update functionality and C&C channels potentially need little
HTTP activity only. About 65% of the samples in SHTTP made more than 5
HTTP requests. 16.3% of the samples in SHTTP made only one HTTP request
and then stopped their HTTP activity, although 70% of these samples continued
with other network activity. We manually checked a fraction of these cases and
found that many samples use HTTP to load second-stage binaries and continue
with non-HTTP based damage functionality.
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Figure 4.7: Histogram of HTTP request distribution

The GET request method was used by 89.5% of the samples in SHTTP. We
observed that 72% of the samples in SHTTP additionally included GET parame-
ters. Analyzing just the fraction of GET requests with parameters, GET requests
have on average 4.3 GET parameters. The average size of a GET parameter was
12 characters for the key and 33.3 characters for the value. Although other means
(such as steganography) allow to pass data to the sever, GET parameters seem
to remain a popular method. On average, we have observed 1966 GET requests
per sample with at least one request parameter. Interestingly, the number of
unique GET parameter keys used by a sample is significantly lower than the
total number of GET parameters per sample. This trend is particularly strong
for samples with many parametrized GET requests and indicates that parameter
keys are reused for follow-up requests. On average, the ratio between the num-
ber of distinct GET parameter keys and the total number of GET parameters is
merely 1:16. Perdisci et al. have shown that such detailed analyses help to detect
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malicious HTTP requests [74].
The POST request method was used by 56.3% of the samples in SHTTP.

The average body size of POST requests is 739 bytes. We manually inspected
a randomly chosen fraction of POST bodies to find out for what purpose mal-
ware uses POST requests. A large fraction of the inspected POST requests was
used within C&C communication with a botnet server. We commonly observed
that data passed to the server was base64-encoded and usually additionally ob-
fuscated/encrypted. In addition, we frequently saw POST requests directed to
search engines.

42% of the samples in SHTTP used both POST and GET requests. Only 0.9%
of the samples in SHTTP showed HEAD requests at all. All other HTTP methods
were used by less than 0.1% of the samples in SHTTP and seem insignificant.

4.6.2 HTTP Request Headers

Table 4.4 lists the 30 most popular HTTP request headers as observed in Sand-
net. These HTTP headers include common headers usually used by benign web
browsers. In total, we have observed 144 unique HTTP request headers. At
a closer look at these, we identified a significant amount of misspelled or cus-
tom headers (excluding all extension headers, that is, those starting with ’X-’ ).
Manual inspection shows that many of the less-frequently used headers look sus-
picious. Merely 5.7% of all samples in SHTTP sent an HTTP request without
any header at all. Consequently, analyzing HTTP request headers could be a
promising angle for network-based malware detection.

User-Agent

In benign applications, the HTTP User-Agent header specifies which exact web
browser (including its version number) is requesting web content. However,
HTTP clients and thus also malware can customize the User-Agent values in
the header. Table 4.5 gives a detailed list of the 30 most popular raw User-
Agent strings observed in Sandnet. Most samples (98.6% of SHTTP) specified
a User-Agent header at least once.

In an approach to get an overview of actual user agents we developed heuristics
to filter the User-Agent list. First, we observed that 29.9% of the samples in
SHTTP specified wrong operating systems or Windows versions in their forged
HTTP User-Agent headers. Next, we identified that at least 13.4% of the samples
in SHTTP claim to use nonexisting browser versions (e.g., wget 3.0 or Mozilla 6.0 ).
In addition, we saw that 37.8% of the samples in SHTTP specified malformed or
very short and to us unknown User-Agent values. In total, 67.5% of the samples
in SHTTP transmitted at least once a suspicious User-Agent string. Over the
whole analysis period, only 31% of the samples in SHTTP specified apparently
correct User-Agent strings.

This result suggests that most samples have their own HTTP components
which are bad in forging real web browsers. Interestingly, about half (50.6%) of
the samples in SHTTP change or alternate the User-Agent header during their
analysis period. We hypothesize that this is due to the modular architecture of
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HTTP Header Samples HTTP Requests

Host 27,771 21,054,208

User-Agent 26,359 20,923,840

Connection 21,205 20,570,434

Cache-Control 18,529 1,346,260

Accept 18,483 20,554,040

Content-Length 14,811 977,547

Accept-Encoding 14,406 19,424,065

Content-Type 14,135 1,033,111

Accept-Language 11,382 18,319,897

Referer 10,079 18,311,670

Cookie 10,075 10,939,127

If-Modified-Since 5462 3,044,837

If-None-Match 4696 1,005,364

x-flash-version 4386 464,334

Pragma 4290 73,427

x-requested-with 2079 14,329

Range 1597 15,451

If-Range 1006 3882

Unless-Modified-Since 962 3868

Accept-Charset 922 69,908

X-Agent 658 36,302

Keep-Alive 642 87,149

X-Moz 511 517

Table 4.4: Sandnet: HTTP headers

malware, where the modules have inconsistent User-Agent strings. Furthermore,
based on this observation, we suspect that malware adapts the User-Agent header
(and possibly other headers) depending on the target website.

Localization Headers

HTTP requests typically include headers that tell the server which languages
and character sets the client requests (Accept-Language and Accept-Charset).
We inspected these two localization headers and compared them with the locale
setting of the sandpuppets (German). While the Accept-Charset header was
used by 0.35% of the samples in SHTTP, the Accept-Language values are more
interesting to analyze: In total, 44.3% of the samples in SHTTP included Accept-
Language as an HTTP request header. Of these samples, 24.1% did not respect
the locale setting and specified a non-German language. Chinese (zh) and English
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User Agent Requests Samples

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident) 17,193,201 11,168

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0) 861,353 5628

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident) 1,937,020 5376

Microsoft-CryptoAPI/5.131.2600.5512 17,581 3485

Mozilla/6.0 (Windows; wget 3.0) 12,851 3242

Download 5022 2042

Mozilla/4.0 (compatible; MSIE 8.0.6001; Windows NT 5.1) 23,022 1802

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 12,569 1546

ClickAdsByIE 0.7.3 34,615 1208

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) 69,078 992

XML 3403 891

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 1714 849

PinballCorp-BSAI/VER STR COMMA 3454 771

Mozilla/3.0 (compatible; Indy Library) 71,971 761

Microsoft Internet Explorer 8652 750

gbot/2.3 22,791 694

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET) 23,772 608

5327 589

NSISDL/1.2 (Mozilla) 692 535

Microsoft-ATL-Native/9.00 3827 524

Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.2.6) Gecko 31,078 514

Mozilla/4.0 (compatible) 6004 487

Mozilla/4.0 (compatible; MSIE 8.0; 10.1.53.64; Windows NT 5.1) 884 426

NSIS Inetc (Mozilla) 515 403

wget 3.0 3917 339

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET) 946 311

opera 946 300

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9) Gecko 6764 300

Table 4.5: Sandnet: HTTP User-Agent header

(en) are the foreign languages specified most frequently, followed by Russian (ru).
We speculate that in these cases malware authors forge HTTP headers either as
observed at their own local systems or with respect to the target website. This
would depict yet another indicator that malware carries its own (possibly self-
made) HTTP implementation. Another reason could be that malware authors
explicitly specify foreign languages to hoax web servers.

4.6.3 HTTP Responses

In Sandnet, all HTTP responses observed originated from HTTP servers on the
Internet that were contacted by a sample. Therefore, the following analysis is not
an analysis of the samples themselves, but may give indications to which type of
servers malware communicates.

We observed that 97.8% of the HTTP requests were answered with an HTTP
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response. We define the HTTP error rate as the ratio between failed responses
(HTTP status codes 4XX and 5XX) and all responses. Figure 4.8 shows a dis-
tribution of the sample-wise HTTP error rate. Only a small fraction (less than
10%) of samples never succeed in obtaining web content. Most samples have a
relatively small error ratio, indicating the web sites requested by the samples are
still in place. We will give an overview of the requested servers in Section 4.6.6.
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Figure 4.8: Distribution of HTTP error rates among samples

4.6.4 HTTP Response Headers

As opposed to HTTP request headers, response headers are set by servers and are
not chosen by the malware samples. Analyzing the headers helps us to understand
which servers are contacted by malware samples and gives information about the
type of the retrieved content.

Content-Type

The Content-Type header shows which type of web content was retrieved by the
samples. Figure 4.9 shows that most samples at least retrieve web sites with
Content-Type text/*. By far the most popular content-type of textual responses
is text/html. However, only about half of all samples retrieved rich documents
with Content-Type set to images/* (48%) or application/* (59.4%). 23.9% of the
HTTP active samples with more than a single request got textual responses only.
We see two reasons for such presumably light HTTP clients: First, spidering web
sites without loading images is much more efficient. Second, we hypothesize that
a considerable number of samples lacks a full-blown HTTP implementation that
can recursively fetch objects embedded in web sites.

Server

The Server HTTP response header indicates which type of web server is respond-
ing to the malware’s HTTP request. Note that the content of this header can
again be forged. Moreover, the majority of contacted web servers is presumably
benign. However, when manually inspecting the HTTP Server response header,
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we spotted servers that presented suspicious banner strings. Table 4.6 summa-
rizes the list of the 30 most popular server types observed in Sandnet.

4.6.5 HTTP Responses with PE Binaries

After compromising a system with minimized exploits, attackers usually load
so-called second-stage binaries. These binaries carry the actual malware func-
tionality rather than just the exploit with minimized shell-code. We will discuss
malware downloaders in more detail in Chapter 5. In this chapter, we will analyze
HTTP plaintext malware binary downloads only.

We identified unencrypted downloads of Windows executable files by search-
ing for valid headers of Microsoft’s Portable Executable (PE) file format. All
Windows executables are in the PE format, which can be identified by two con-
stant bytes in the beginning of the header. We extracted all binaries downloaded
via HTTP by matching HTTP response bodies against these two bytes. This
straightforward extraction of PE binaries already discovered that 16.7% of the
samples in SNet loaded additional PE files. We observed that 19% of these sam-
ples load binaries for multiple times - occasionally even more than 100 times. We
verified that the five binaries downloaded most often were not corrupt and lack
reasonable explanations why the binaries were downloaded that often. In total,
we detected 42,295 PE headers, resulting in 17,676 unique PE files.
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Server Ratio (%) Servers

Apache 68.4 326,237

Microsoft-IIS 49.4 102,652

nginx 40.9 108,104

Golfe 21.4 20,534

lighttpd 21.4 32,934

YTS 20.0 28,320

sffe 19.4 15,128

GFE 18.3 21,089

Apache-Coyote 17.6 41,875

QS 15.4 6906

PWS 14.7 16,297

DCLK-AdSvr 13.9 6782

cafe 13.7 11,399

AmazonS3 13.7 17,203

ADITIONSERVER 1.0 10.9 6092

AkamaiGHost 10.3 3520

Cookie Matcher 10.1 4011

gws 9.5 6075

VM BANNERSERVER 1.0 9.4 2620

CS 9.1 3987

Adtech Adserver 8.9 4842

CacheFlyServe v26b 8.0 2242

RSI 7.8 2196

yesup httpd 89 7.8 2160

yesup httpd 103 7.7 2151

Resin 7.7 4375

ECS (fra 6.7 7615

Oversee Turing v1.0.0 6.1 2579

JBird 6.0 1987

TRP Apache-Coyote 5.7 1966

Table 4.6: Sandnet: HTTP server banners

Figure 4.10 shows that most of the samples load more than a single PE binary.
For readability of the graph we precluded 21 samples that loaded more than 100
and up to 1080 unique PE binaries.

The maximum size of a downloaded binary was 978 kB, the average size is
144 kB. Table 4.7 summarizes the Content-Type values of all HTTP responses
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that contain PE binaries. Most samples retrieve reasonable Content-Type values
from the server. However, a significant number of servers tries to camouflage
PE binary downloads as text, HTML, JavaScript or image files. We will analyze
this behavior and discuss PE file downloads via encrypted communication in
Chapter 5.

Content-Type # Binaries # Samples

application/octet-stream 6468 5908

text/plain 356 1716

application/x-msdownload 732 1082

application/x-msdos-program 550 786

image/gif 177 402

image/jpeg 390 365

text/plain; charset=UTF-8 166 344

text/html 776 326

application/x-javascript 190 78

image/png 68 55

Table 4.7: Sandnet: HTTP Content-Type header values of PE downloads

4.6.6 HTTP Servers

We next analyze which HTTP servers are visited by malware. Table 4.8 lists the
40 most popular domains ordered by the number of different samples visiting a
server. Many HTTP requests were put to presumably benign web sites. The
next sections briefly discuss why malware contacts these services.

Ad Services

We identified a significant number of ad service networks in the list of popular
domains. Of the top-40 domains in Table 4.8, we manually identified 32 domains
that are related to ads. Thousands of different malware samples use these ser-
vices. A possible reason for this is that ads are also included in benign websites
and crawlers follow the ads. However, after manually exploring the HTTP traffic
of particular samples we assume that the reason for the popularity of ad services
is vicious: click fraud. We leave it up to future work to analyze and mitigate the
abuse of ad services by malware samples in greater detail.

Public Web APIs

Similarly to its popularity among benign users, Yahoo’s and particularly Google’s
public Web APIs are present in Sandnet traffic, too. We suspect there are two
reasons behind the popularity of these or similar services. First, some of these
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HTTP domain # Samples

www.google-analytics.com 5286

ad.yieldmanager.com 5046

cookex.amp.yahoo.com 4716

content.yieldmanager.com 4655

ak1.abmr.net 4288

pixel.quantserve.com 4050

content.yieldmanager.edgesuite.net 4009

edge.quantserve.com 3957

ad.doubleclick.net 3677

ad.harrenmedianetwork.com 3470

ad.103092804.com 3458

s0.2mdn.net 3370

ib.adnxs.com 3280

pixer.meaningtool.com 3219

ad-emea.doubleclick.net 2972

www.google.com 2940

ad.harrenmedia.com 2920

www.mupimg.de 2823

imagesrv.adition.com 2770

www.mupads.de 2759

view.atdmt.com 2754

ad.xtendmedia.com 2726

cm.g.doubleclick.net 2669

googleads.g.doubleclick.net 2657

fpdownload2.macromedia.com 2619

www.myroitracking.com 2573

serw.clicksor.com 2489

ad.adition.net 2468

ads.clicksor.com 2466

ad.tlvmedia.com 2449

ad.adserverplus.com 2414

b.scorecardresearch.com 2376

pub.clicksor.net 2375

ajax.googleapis.com 2335

img.billiger.de 2308

Table 4.8: Sandnet: HTTP servers contacted most frequently

www.google-analytics.com
ad.yieldmanager.com
cookex.amp.yahoo.com
content.yieldmanager.com
ak1.abmr.net
pixel.quantserve.com
content.yieldmanager.edgesuite.net
edge.quantserve.com
ad.doubleclick.net
ad.harrenmedianetwork.com
ad.103092804.com
s0.2mdn.net
ib.adnxs.com
pixer.meaningtool.com
ad-emea.doubleclick.net
www.google.com
ad.harrenmedia.com
www.mupimg.de
imagesrv.adition.com
www.mupads.de
view.atdmt.com
ad.xtendmedia.com
cm.g.doubleclick.net
googleads.g.doubleclick.net
fpdownload2.macromedia.com
www.myroitracking.com
serw.clicksor.com
ad.adition.net
ads.clicksor.com
ad.tlvmedia.com
ad.adserverplus.com
b.scorecardresearch.com
pub.clicksor.net
ajax.googleapis.com
img.billiger.de


60 CH. 4. DYNAMIC MALWARE ANALYSIS WITH SANDNET

services are ubiquitous on the Internet. For example, a wide variety of web sites
include Google Analytics to record statistics on the visitor behavior. Each time
a sample visits such a web site and follows the embedded links, it will contact
Google. As most of such services are open to anyone, we also suspect malicious
usage of Google’s and Yahoo’s services by malware samples to be a reason for their
popularity. A typical scenario that we observed was the abuse of search engines
as a kind of C&C engine. In this case the malware searched for specific keywords
and fetched the web sites suggested from the search results. Moreover, we have
observed malware using the search engines to harvest new e-mail addresses for
spamming campaigns. In general, benign human interaction with these services
is particularly hard to be distinguished from abuse, especially from the client-
perspective. We assume this is one of the main reasons malware authors use
these HTTP-based services.

PE File Hosters

Based on the set of PE files that malware samples downloaded, we analyzed the
file hosting servers. Table 4.9 lists the most popular of all 1823 PE file hosters
that we identified. 42.3% of the samples that downloaded PE files contacted the
PE host directly without prior DNS resolution. This proves that still a significant
number of malware samples include hard-coded IP addresses to download bina-
ries. We further observed that a significant fraction of the URIs requested from
file servers are dynamic, although frequently only the parameters change. This
observation may be important for blacklists trying to block entire URIs instead
of IP addresses or domains.

HTTP C&C Servers

HTTP based botnets such as Torpig [86] switched from the classical IRC pro-
tocol to using HTTP. While manually inspecting Sandnet HTTP traffic, we
occasionally encounter C&C traffic. What we see most is that samples include
infection status information in their GET request parameters. Whereas some
samples include clear-text status information, we have observed many samples
started encoding and encrypting the data exchanged with the server. However,
we found it difficult to automatically spot C&C servers without knowing the
command syntax of specific botnets. The big difference to IRC is that HTTP is
a prevalent protocol on clean, noninfected systems and is thus harder to spot in
the volume of HTTP data. Encouraged by the results reported by Cavallaro et
al. [27] and Perdisci et al. [74], we believe that clustering the network behaviors
of malware may help us in spotting generic C&C communication channels.

4.7 Related Work

The malware phenomenon has been considerably studied over the last years by
researchers and security practitioners. Numerous techniques have been proposed
to collect malware via honeypots like Nepenthes [11], analyze malware [17, 27,
35, 72, 74, 94], or detect malware [27, 74].
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PE File Server #S #B

64.79.86.26 775 1340

66.96.221.102 681 1063

ku1.installstorm.com 487 944

origin-ics.hotbar.com 483 483

64.191.44.9 480 727

img.ub8.net 458 460

pic.iwillhavesexygirls.com 437 478

64.120.232.147 431 747

origin-ics.clickpotato.tv 390 390

p2pshares.org 389 391

sky.installstorm.com 363 363

208.43.146.98 331 531

file0129.iwillhavesexygirls.com 323 853

173.45.70.226 315 437

173.45.70.227 313 444

dl.ghura.pl 302 302

122.224.6.48 300 553
#S = number of samples contacting file hoster

#B = number of binaries downloaded

Table 4.9: Sandnet: HTTP servers hosting PE binaries

64.79.86.26
66.96.221.102
ku1.installstorm.com
origin-ics.hotbar.com
64.191.44.9
img.ub8.net
pic.iwillhavesexygirls.com
64.120.232.147
origin-ics.clickpotato.tv
p2pshares.org
sky.installstorm.com
208.43.146.98
file0129.iwillhavesexygirls.com
173.45.70.226
173.45.70.227
dl.ghura.pl
122.224.6.48
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For instance, Perdisci et al. [74] present an interesting system to cluster
network-level behavior of malware by focusing on similarities among malicious
HTTP traffic traces. Similarly, Cavallaro et al. [27] present cluster-based analy-
ses aimed at inferring interesting payload-agnostic network behaviors of malicious
software. While Sandnet is currently limited to analyzing a large corpus of net-
work protocols, it is clear how the adoption of similar cluster-level analyses can
provide better understandings of the network behaviors of unknown software.

Anubis [15, 17] and CWSandbox [94] are probably the closest works related
to our research. Although they both provide interesting—but basic—network
statistics, their main goal is to provide insights about the host behaviors of
unknown—potentially malicious—software. In this context, Sandnet comple-
ments Anubis and CWSandbox results by providing an in-depth analysis of the
network behaviors of the analyzed samples. We will use the network behavior
analysis that we obtain from Sandnet to understand botnet resilience in this
thesis.

4.8 Discussion

We have designed Sandnet such that it mostly conforms to the guidelines in
Chapter 3. For example, to ensure realistic experiments, we aim to maximize
the diversity of malware families that we analyze by using multiple sources of
malware samples. Consequently, we saw the need to filter legitimate software
from our dataset and used a variety of checks to exclude benign samples. To
mitigate the damage of malware executed in Sandnet, we deployed containment
policies that filter harmful traffic such as spam or DDoS attacks. But at the same
time Sandnet remains a realistic malware-analysis environment. Bots can still
access their C&C servers as if they were executed on real systems.

However, a few guidelines were not yet explicitly addressed in the design of
Sandnet. For example, this chapter analyzed malware samples using a Windows
XP VM behind a NAT gateway only, such that we cannot give an overview of
how malware for Windows Vista/7 with public Internet access would behave.
Similarly, the statistics in this chapter are not balanced over malware families.

Parts of these decisions were made to remain comparable to similar work, such
as data derived from Anubis by Bayer et al. [15]. In addition, the results pre-
sented in this chapter predate the publication of our work presented in Chapter 3.
This does by no means invalidate the results presented in this chapter. In fact,
the experiences we made during the work presented in this chapter significantly
influenced the development of the guidelines for malware experimentation. More-
over, dynamic analysis environments and the succeeding data analysis undergo
steady developments. For example, we added support for Windows Vista/7 and
Windows XP 64bit to Sandnet in October 2012, and we integrated sandpuppets
with public IP addresses in Sandnet. Having said this, some of the guidelines
presented in Chapter 3 do not apply to analyzing Sandnet data itself. For ex-
ample, an evaluation of false positives or true positives was not relevant in this
chapter. In the following chapters, we will use Sandnet for analyzing botnet
resilience, imposing specific requirements on the analysis datasets. Assembling
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balanced, correct and realistic datasets is a laborious task, and we need to take
such experimental specifics into account. We will therefore discuss how we as-
semble our datasets in each of the subsequent chapters individually.

4.9 Conclusion

In this chapter, we have presented Sandnet, a system to dynamically analyze
the network behavior of malware. We gave a comprehensive overview of network
traffic exposed by more than 100k malware samples that we analyzed between
Februar 2010 and January 2011. Our in-depth analysis of DNS and HTTP traffic
has shown novel malware trends and led to numerous inspirations to combat and
analyze malware. The provided data complements related work that is either
outdated, analyzes particular malware families only, or focuses mainly on the
host behavior of malware.

In subsequent chapters, we will use Sandnet to analyze the resilience of
malware families. The design of Sandnet, particularly its in-depth analysis of
C&C communication, allows us to easily identify and monitor malware families.
In Sandnet, we classify unknown malware samples by, for example, applying
payload signatures. Similarly, we can automatically execute malware samples of
a specific family on a regular basis, observing its changes over time. These fine-
grained analyses sets Sandnet apart from other malware analysis environments,
which makes it suitable for the following botnet resilience research.
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Botnet Resilience Analysis
In Part I, we have established a solid methodology for malware analysis. We

will now use these insights to analyze the resilience of botnets.
In Chapter 5, we explore the resilience of malware installations networks.

Malware downloaders are one of the root causes for botnets, as they offer other
botmasters an easy way of buying new bots for their botnet. Hence, the resilience
of botnets also largely depends on the availability of malware downloaders. Re-
lated work by Caballero et al. details the monetization of malware downloaders
in pay-per-install markets [25]. However, little research was done to understand
if and why these networks are resilient. To close this gap, we monitor 23 malware
downloaders over multiple years. Our observations will detail some techniques
that botmasters use to keep their malware downloader networks operational on
long term.

In Chapter 6, we will then analyze the resilience of peer-to-peer (P2P) bot-
nets. Feeling the pressure by takedowns of centralized botnets, botmasters de-
signed C&C architectures that are largely independent from C&C servers. Con-
sequently, P2P botnets can be highly resilient, as they lack a single point of
failure. However, with Waledac and Storm, two P2P botnets were successfully
disrupted by abusing weaknesses in the P2P protocols. Following these first real
P2P botnets, a number of academic, supposedly more resilient P2P botnet de-
signs were proposed. Since then, more than ten new P2P botnets appeared in the
wild, with a variety of proprietary P2P protocols. We will analyze the resilience
of these fairly undocumented P2P botnets, showing that they are more resilient
than preliminary P2P botnet designs.
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5
Resilience Analysis of Malware Downloaders

Malware downloaders are malicious programs with the goal to subversively down-
load and install malware (eggs) on a victim’s machine. When reflecting the
malware lifecycle model (Section 2.1 on page 5), malware downloaders and the
corresponding malware installation infrastructure manifest the installation phase
of many malware families. Therefore, in this chapter, we will analyze the re-
silience of malware downloaders and their infrastructures. In particular, we ana-
lyze and characterize 23 Windows-based malware downloaders. We first show a
high diversity in downloaders’ communication architectures (e.g., P2P), carrier
protocols and encryption schemes. Using dynamic malware analysis traces from
over two years, we observe that 11 of these downloaders actively operated for at
least one year, and identify 18 downloaders to be still active. We then describe
how attackers chose resilient server infrastructures. For example, we reveal that
20% of the C&C servers remain operable on long term. Moreover, we observe
steady migrations between different domains and domain registrars, and notice
attackers to deploy critical infrastructures redundantly across providers. After
revealing the complexity of possible counter-measures against downloaders, we
present two generic techniques enabling defenders to actively acquire malware
samples. To do so, we leverage the publicly accessible downloader infrastructures
by replaying download dialogs or observing a downloader’s process activities from
within the Windows kernel. With these two techniques, we successfully milk and
analyze a diverse set of eggs from downloaders with both plain and encrypted
communication channels.

5.1 Introduction

A crucial part in a malware’s lifecycle is to spread, for example, via spam, drive-
by downloads or exploiting vulnerabilities. Whereas malware such as worms
spreads on its own, attackers have begun to separate the task of infecting victim
systems and the exploitation or “monetization” of the infected systems. Recent
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investigations to this business, known as “Pay-per-Install” (PPI), have shown the
vast potential of this kind of malware distribution model. Caballero et al. [25]
analyzed PPI networks by infiltrating and by becoming member of a handful
of PPI programs. The authors showed that PPI networks are responsible for
installing a diverse set of malware on infected systems.

Technically, the PPI scheme is only a subset of the malware type that we
term a downloader. A downloader is a malicious program with the purpose to
subversively download and install malware on a victim’s machine. The specifics
of PPI networks allow attackers to get paid on a per-system and per-affiliate
basis, but the effect of PPI or, more generally, downloaders is comparable: Once
a downloader is executed, and no matter if related to a PPI network or not, the
running system will typically be compromised with additional malware families.
Thus, downloaders represent a simple yet widely used way to spread new malware,
typically as part of a service model within the underground community.

In this chapter, we outline and analyze the landscape of what we think rep-
resents a snapshot of prevalent and current downloaders. We identified 23 down-
loaders, of which many – to the best of our knowledge – have not yet been doc-
umented. We characterize these downloaders concerning their communication
model. For example, we discuss the communication architectures of downloaders
and outline the techniques used to encrypt or even camouflage the malicious ac-
tivities. We then use dynamic analysis traces to provide a long-term monitoring
analysis on these 23 downloaders, identifying 18 downloaders that are still op-
erational as of writing this paper. In addition, we show that eleven downloader
families are actively distributing malware for more than a year.

Motivated by this observation, we investigate how attackers ensure the re-
silience of downloader infrastructures. Contrary to our expectation that IP ad-
dress blacklists would force attackers to change their infrastructure frequently,
we show that 219 C&C servers (20%) were operational for more than four weeks.
For the remaining servers, we analyze how attackers use DNS and IP address
fluxing to operate their downloaders, suggesting that isolating downloader in-
frastructures is much harder than it seems.

As a third part of our analysis, we propose two automated methods to ex-
tract the downloaded malware (eggs) in a generic and scalable fashion. We hope
that these techniques will support future efforts in analyzing downloaders with-
out the manual effort of reverse engineering particular downloader families. We
evaluate these two techniques both on downloaders with plaintext and encrypted
communication, acquiring a diverse set of malware in the wild.

5.2 Malware Downloaders

Malware defense mechanisms, especially anti-virus, have forced attackers to de-
velop increasingly complex malware. This complexity has motivated attackers to
specialize and separate duties. For example, services to stealthily install malware
on computers may be provided by one group, while other fraudsters specialize
in sending spam, and a third group could focus on keylogging. In this work,
we focus on the service of installing new malware on systems via downloaders.



5.2. MALWARE DOWNLOADERS 71

Downloader

C&C Server

Download Server

C&C Channel

Download Channel

Figure 5.1: Downloader architecture: Seperation between C&C and download channel.

Downloaders are malicious programs that are instrumented to load additional
malware via the Internet, which is in turn executed on the victim’s system.

5.2.1 Downloader Architectures

Figure 5.1 illustrates the architecture of a downloader. Once executed, a down-
loader contacts its command-and-control (C&C) server(s) via C&C channels.
After receiving download instructions, it then establishes at least one download
channel to load malware (eggs) via the network.

C&C Channels

A downloader’s C&C channel is used to get lists of URLs (or similar address in-
formation) where eggs can be downloaded from. Next to download instructions,
the C&C channel can be used to report back to the C&C server if the down-
load succeeded. In addition, as shown by Caballero et al. [25], C&C channels
may exchange affiliate IDs in the economical model of pay-per-install download-
ers. Moreover, downloaders send details about the infected host using the C&C
channel, such as the OS version, user name or device IDs.

We characterize C&C channels by the carrier protocol they use to transfer
commands. Typical examples for carrier protocols are IRC, HTTP (e.g., if C&C
messages are in the HTTP body) or plain TCP/UDP. The information exchanged
on C&C channels is critical and highly subjective to counter-measures such as
signature-based IDSs, and thus more advanced downloaders encrypt their C&C
channel. During our investigations, we also observed downloaders that carry hard
coded download URLs in their binaries. We excluded such downloaders from our
analysis because of their simplicity and transitory nature.

Download Channels

We found the C&C and download channels to be typically well separated. A
typically distinguishing characteristic between C&C and download channels is
the number of bytes transferred. C&C commands tend to be small, while eggs
– no matter if encrypted or not – have significantly larger file sizes. In addition,
download channels may have different carrier protocols and encryption schemes
than the C&C channel of the same family. For example, as we will show, some
downloaders camouflage their downloads in seemingly legitimate web traffic.



72 CH. 5. RESILIENCE ANALYSIS OF MALWARE DOWNLOADERS

5.2.2 Related Work

First steps to analyze specific downloaders were made by Caballero et al. by an-
alyzing four pay-per-install (PPI) programs [25]. PPI downloaders, a subset of
downloaders in general, are based on an economical model cashing out attackers
for installing malware on a freshly infected system. Caballero et al. implemented
so called milkers to download eggs from these four PPI networks, and systemati-
cally analyze the ecosystem behind these networks. They show in depth how egg
families relate to download programs, and identified that kinds of malware (e.g.,
DDoS) were distributed in download campaigns.

Our work was inspired by Caballero et al., and we seek for a broader charac-
terization of downloaders. In fact, we found ourselves at a position not knowing
the magnitude and different types of downloaders currently active in the wild.
We identify that the number and kinds of downloaders is significantly higher
than expected. To the best of our knowledge, we are the first to approach a char-
acterization of downloaders. We then also seek to answer the fundamental but
yet unanswered question of how attackers build up infrastructures that are suffi-
ciently resilient for long-term operations of downloaders. We expand a malware
acquisition technique as proposed in Botlab [46] with replaying network dialogs
as proposed by Newsome et al. [71]. While Botlab fetches malware from URLs
found in spamfeeds, our technique repeatedly acquires malware from downloader
URLs. Existing systems like ThreatExpert [5] or Anubis [17] can already analyze
malware in general, but we are the first to analyze the behavior and infrastruc-
tures of downloaders over multiple executions and on long-term.

5.3 Analysis of the Downloader Landscape

In this section, we characterize and describe the 23 downloaders identified as part
of this work, which we will then further analyze later in this chapter.

5.3.1 Dataset Description

We base our analysis on malware reports from Sandnet (Chapter 4). We as-
sembled our dataset such that they conform to most guidelines presented in
Chapter 3. The following description of the dataset covers these guidelines in de-
tail. Sandnet executes and dynamically analyzes malware using Windows XP
SP3 32bit virtual machines connected to the Internet via NAT. The data obtained
from this specific setting can thus not be used to generalize to the download land-
scape on operating systems, although we manually verified that some downloaders
also run on alternative operating systems (e.g., Windows Vista/7) and on 64bit
architectures. During malware execution, we deploy containment policies that
redirect harmful traffic (e.g., spam, infections) to local honeypots. We further
limit the number of concurrent connections and the network bandwidth to mit-
igate DoS activities. An in-path honeywall NIDS watched for security breaches
during our experiments. Other protocols (e.g., IRC, DNS or HTTP) were allowed
to enable C&C communication. We consider the biases affecting the following
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experiments due to containment to be negligible. Specifically, given our long
measurement period of one hour per malware sample, we did not observe any
incomplete download behavior in our trace. Assuming that downloaders silently
operate without the user’s consent, we did not deploy user interaction during our
experiments.

Our dataset consists of 243,000 MD5 unique malware samples analyzed in
Sandnet at least once between February 2010 and February 2012. We gratefully
received these samples from a variety of sources, including samples submitted
to public dynamic analysis environments, feeds by security companies, our own
honeypot infrastructures and spamtraps. While we cannot prove that this dataset
covers all relevant malware families, it shows a diversity of 38,000 unique malware
labels (according to Kaspersky). We extracted the malware family names from
these labels and found over 1800 malware families in our dataset, likely covering
all relevant malware families.

From this diverse set of samples, we scheduled a random selection on a daily
basis, without giving any emphasis to particular malware families. To trigger the
malware behavior, we then executed these samples for at least one hour. Obvi-
ously, only a minor fraction of these malware samples are in fact downloaders. To
build up a dataset covering the most relevant downloaders we followed a threefold
approach. First, we consulted literature research and asked A/V vendors for their
expert knowledge on recent and prevalent downloaders. Second, in our dataset
covering millions of malware samples, we searched for prevalent A/V labels sug-
gesting the malware is a downloader. Third, we manually inspected a random
subset of the Sandnet analysis reports for downloader behavior. We manu-
ally filtered legitimate programs in our dataset of potential downloaders, such as
Windows Update, Google Updater or programs to update system drivers.

For each identified downloader, we systematically searched for related analysis
reports in Sandnet. Typically, we used payload or behavioral signatures to
classify and recognize a particular downloader. In rare cases, where a downloader
family did not expose any signature, we carefully assembled sets of domains and
IP addresses to recognize downloader traffic. Using these techniques, we are
able to detect all previous and upcoming executions of a particular downloader
family. A list of MD5 binary checksums for each downloader family can be found
at http://christian-rossow.de/files/dataset-downloader-chapter.txt.

5.3.2 Downloaders Overview

The resulting dataset provides an empirical overview of existing downloaders.
Table 5.1 lists the downloaders that we monitor as part of this work. While
this is not necessarily complete, it shows a large diversity in terms of different
downloader characteristics. The attributes in Table 5.1 form two groups: The
left-hand attributes characterize the C&C channel, while the right-hand columns
characterize the download channel. We labeled three downloaders with generic
names (dldr-#1 to dldr-#3), as anti-virus vendors either assigned too generic or
contradictory labels for those.

http://christian-rossow.de/files/dataset-downloader-chapter.txt
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C&C Channel Download Channel
Family arch Pl? Prot. DNS Pl? Prot. DNS
Renos/Artro cent 7 HTTP 3 7 HTTP 3
Sality cent 7 HTTP 3 7 HTTP 7
dldr-#1 cent 7 HTTP 3 7 HTTP 3
Cycbot/Gbot cent 7 HTTP 3 7 HTTP-inl 3
Karagany cent 7 HTTP 3 7 HTTP-inl 3
Gamarue cent 7 HTTP 3 3 HTTP-inl 3
Dofoil cent 7 HTTP 3 3 HTTP 3
Emit cent 7 HTTP 3 3 HTTP 3
GoldInstall cent 7 HTTP 3 3 HTTP 3
Rodecap cent 7 HTTP 3 3 HTTP 3
Virut (crypt C&C) cent 7 TCP 3 3 HTTP 3
TDSS cent 7 TLS 3 7 HTTP 3
Winwebsec cent 3 HTTP 7 3 HTTP 7
Dabvegi cent 3 HTTP 3 7 HTTP 3
Buzus cent 3 HTTP 3 7 HTTP 3
dldr-#3 cent 3 HTTP 3 3 HTTP 3
Zwangi cent 3 HTTP 3 3 HTTP 3
Harnig/LoaderAdv cent 3 HTTP 3 3 HTTP-inl 3
dldr-#2 cent 3 HTTP 3 3 HTTP-inl 3
Virut (plain C&C) cent 3 IRC 3 3 HTTP 3
Vobfus/Changeup cent 3 TCP 3 3 HTTP 3
Sality P2P P2P 7 UDP 7 7 TCP 7
Zeus P2P P2P 7 UDP 7 7 TCP 7

Table 5.1: Overview of downloaders under our analysis. Columns 2–5 characterize the
C&C channel, columns 6–9 characterize the download channel. “Pl?” shows if the com-
munication channel was in plain text, and “DNS?” shows if names of the communication
end points were resolved via DNS prior to contacting them.

Carrier Protocols

A first distinction between the downloaders can be made in terms of the car-
rier protocol, that is, the protocol used to communicate with C&C or download
servers. To understand and also classify downloaders, we had to reassemble and
parse numerous carrier protocols (UDP, TCP, DNS, HTTP, IRC, TLS). For ob-
fuscated protocols, we define the carrier protocol to be the underlying protocol
of the C&C protocol, for example, “HTTP” for GoldInstall or Renos/Artro and
“TCP” for the encrypted variant of Virut C&C. Interestingly, Table 5.1 shows
that C&C channels are not necessarily designed in the same way as download
channels. For example, five downloaders use obfuscated or encrypted C&C chan-
nels, but at the same time have plaintext HTTP download channels. Another five
downloaders do not separate between C&C and download channels, abbreviated
by “inl” to show that malware is served inline with the C&C protocol.
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Communication Architectures

As Table 5.1 suggests, almost all downloaders deploy a centralized C&C archi-
tecture. Two exceptions are Sality P2P and Zeus P2P. Sality uses a hybrid C&C
architecture, that is, some samples use a centralized HTTP-based C&C channel
while others receive their commands via a peer-to-peer network. Zeus P2P is a
pure P2P based bot with download functionality. Such distributed networks are
attractive to attackers, as the C&C infrastructure cannot be disrupted by taking
offline single C&C servers. Both Sality P2P and Zeus P2P initialize their C&C
channel by contacting tens to hundreds of P2P bootstrapping nodes. While Zeus
is primarily used for ID theft, we also observed it to download and execute other
types of malware.

DNS

Table 5.1 reveals that most downloaders use DNS to resolve the names of their
C&C and/or download servers. However, downloader families such as Winweb-
sec and the P2P-driven downloaders avoid DNS resolution for both C&C and
download servers. We speculate that such downloaders either have no technical
need for DNS, such as for the P2P architectures, or want to foil malware do-
main blacklists. From the attacker’s point of view, another disadvantage of using
DNS is that taking down domains exposes an additional point of failure in the
communication chain. However, on the other hand, DNS would allow to quickly
redirect to different IP addresses of download servers. This dilemma basically
boils down to: Who is more resilient, the hoster (IP) or the DNS provider (do-
main)? We try to shed light onto different resilience strategies in Section 5.4. The
fact that most downloaders use DNS resolution shows that developing mitigation
techniques based on DNS is promising. However, although we see downloaders
using DNS, they may also have a backup communication channel, for example,
using hard-coded IP addresses [70].

Intuitively, one may think that downloaders use DNS to quickly react on server
takedowns. Fast flux [69], domain flux and the business of bullet-proof DNS
hosting would support this intuition. As we figured, however, some downloaders
do not (need to) change DNS records of particular C&C domains. Consequently,
while the usage of domains evolved over time, the IP addresses resolved by these
domains were relatively static. We will further analyze these observations in
Section 5.4.1.

Communication Encryption

Defense mechanisms such as network-based intrusion detection systems or anti-
virus scanners scan for URLs and file contents downloaded from the Internet. As
a consequence, downloaders deploy a wide set of schemes to obfuscate or encrypt
their communication channels. A distinction can be made between deploying
well-known or custom encryption techniques. For example, the TDSS downloader
relies on TLS within its C&C channel, thus preventing from eavesdropping on
C&C communication [36]. Similarly, we observed that Renos/Artro encrypts
using RC4 with a key hard-coded in the samples.
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In contrast, other downloaders use custom encryption/obfuscation algorithms.
To give insights, we reverse engineered specific downloader families. For exam-
ple, Emit deploys an XOR shifting technique to obfuscate traffic. Similarly, Virut
picks a random session key and the C&C servers derive these session keys by per-
forming a known-plaintext attack on the ciphertext of the first message sent from
the bot to the server. The session key itself is thus never transmitted. Indepen-
dent from the cryptographic strength of a particular algorithm, understanding
and possibly decrypting the ciphertexts often requires tremendous reverse engi-
neering efforts.

Steganography

Attackers further disguise the egg downloads with steganography. While encryp-
tion prevents eavesdroppers to read exchanged data, steganography tries to hide
the existence of egg downloads. We have spotted camouflage techniques used by
downloaders that could be interpreted as first steps towards steganography. For
example, Renos/Artro hides its eggs in valid GIF files. Although these files look
like regular legitimate pictures, eggs are carried as part of the files. Using custom
routines, the downloader transforms these files to correct PE binaries.

Downloaders Using Public Services

Most downloaders rely on their own infrastructure for hosting malicious software.
However, we also observed that particular downloaders make use of publicly
accessible services. For example, dldr-#1 retrieves its malicious files from a large
public file clouding provider. From a defender’s perspective, it is much harder to
block access to legitimate services, as a distinction between legitimate or malicious
downloads from such sources raises big challenges.

Tracking Mechanisms

Among the plaintext downloaders, we could observe downloaders that are client-
aware. That is, attackers derive pseudo-unique IDs per system, such as its MAC
address, the gateway’s public IP address or the Windows serial. The C&C servers
can then keep track of which clients contacted them, and serve binaries accord-
ingly. Similarly to, for example, Torpig [86], the downloader victims are presum-
ably identified to track the number of infections, either to keep an overview or
to use this data for payment (e.g., PPI). Another reason would be to observe
and defend against potential abuses of the downloader infrastructures (see Sec-
tion 5.5). To work around this in our setup, we are modifying fixed strings such
as the MAC address for every malware execution in Sandnet since ever.

5.3.3 Downloader Lifetime

With our understanding that downloaders are a fundamental part of the malware
lifecycle, we now analyze the lifetimes of the downloaders. For this lifetime
analysis, we are not interested in a particular downloader binary (identified by
the MD5 hash sum). Instead, we analyze when a particular downloader family
appears in our dataset, and how long its C&C or download activities continue.
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As a first step, we used the mechanisms described in Section 5.3.1 to identify
downloaders of a particular family in our dataset. We specifically designed our
signatures to match evolutions of particular downloaders. For example, GoldIn-
stall, a PPI program with diverse affiliation programs [25], was covered by a single
signature. We then had to filter C&C flows that reached the C&C server, but
the C&C server responded with non-C&C data (e.g., HTTP 404 responses). We
enhanced our signatures with heuristics verifying that an end point shows active
C&C communication, filtering out a significant amount of sinkholed communica-
tion.
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Figure 5.2: Lifetime of downloaders, as observed in Sandnet, from Feb 2010 until
Feb 2012. The numbers in brackets represent the number of active executions of this
downloader in Sandnet.

Figure 5.2 shows the resulting activity plot. To increase readability, we con-
nected two markers if the gap between these two downloader occurrences in our
dataset was less than four weeks. Due to a maintenance period in Sandnet,
the graph lacks activity measures between 03/02/2011 and 08/04/2011. Overall,
however, the graph shows that at least 11 of the 23 downloaders (48%) have been
operational for more than a year. In addition, 18 downloaders (78%) were still
active as of the analysis in this chapter (04/2012). Given that some downloaders
are more present in our sample feeds than others, and given that our measure-
ment period started in Feb 2010, the resulting data represents lower bounds of
the actual downloader lifetimes. We even noticed that some downloader families
were discussed by the community prior to our measurement period, indicating
that the lifetimes of some downloaders is significantly longer than two years. We
therefore speculate that in fact even more downloaders were successfully oper-
ated in the long term. This poses a long-lasting threat to our community, as
apparently downloaders are largely and continuously used to infect PCs.

A few downloaders, such as Dofoil or Gamarue appeared first in our dataset
in 2011, underlining active developments in the malware scene. The reasons why
other downloaders ceased operation during the measurement period are twofold.
First, in case of GoldInstall, C&C servers were not responsive for weeks, poten-
tially indicating a downloader was abandoned or undergoes a major evolution.
Second, as of August 2011, all specimen of Renos/Artro in our dataset were
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sinkholed by Shadowserver or Spamhaus.

5.4 Downloader Resilience

Seeing the significant lifetimes of downloaders, and knowing that defenders try to
mitigate the threats of malware in general, we asked ourselves: How do attackers
ensure such a high and long-term resilience of their downloader infrastructures?
In this section, we will investigate the critical infrastructures used by attack-
ers to operate their downloaders, that is, C&C servers and download servers,
respectively.

5.4.1 C&C Infrastructure

C&C servers are vital to instrument the downloaders with new download instruc-
tions, and thus represent a sensitive part in the architecture of downloaders. From
a downloader’s perspective, two infrastructural services are crucial. First, most
downloaders depend on DNS resolution prior to contacting their C&C server.
Second, C&C servers obviously need to be reachable and service correctly. From
a defender’s perspective, both hosts (IP addresses) and domains represent van-
tage points to detect and/or disrupt downloaders.

Downloader IPs ASes Domains TLDs Timespan
Family # LL # LL # LL # LL M/Y - M/Y
Buzus 2 1 1 1 3 2 2 1 01/12 - 02/12
Cycbot/Gbot 145 48 56 36 2347 57 6 6 10/10 - 02/12
Dabvegi 5 4 4 3 5 4 3 3 11/11 - 01/12
dldr-#1 69 19 4 2 5 2 3 2 01/12 - 02/12
dldr-#2 41 11 21 5 45 12 7 4 06/10 - 02/12
dldr-#3 10 1 2 1 10 2 4 2 08/10 - 01/12
Dofoil 12 2 7 2 16 0 3 0 06/11 - 02/12
Emit 7 2 2 1 9 4 1 1 06/11 - 02/12
Gamarue 80 3 57 3 12 1 4 1 11/11 - 02/12
GoldInstall 12 5 7 3 13 8 3 2 05/10 - 01/12
Harnig/LoaderAdv 24 11 6 1 42 32 1 1 03/10 - 01/11
Karagany 2 0 1 0 7 0 2 0 12/11 - 02/12
Renos/Artro 27 5 12 3 75 0 3 0 06/10 - 02/12
Rodecap 8 4 2 2 5 4 3 3 06/10 - 02/12
Sality Centr. 239 62 125 47 243 59 31 18 06/11 - 02/12
Sality P2P 9849 1457 900 424 0 0 0 0 11/11 - 02/12
TDSS/Alureon 28 8 21 8 28 3 1 1 08/10 - 02/12
Virut (crypt C&C) 20 6 11 6 44 10 3 2 02/10 - 02/12
Virut (plain C&C) 14 4 9 4 3 3 1 1 02/10 - 02/12
Vobfus/Changeup 19 8 14 7 17 13 3 3 05/10 - 02/12
Winwebsec 5 2 4 2 0 0 0 0 10/10 - 02/12
Zeus P2P 2140 31 446 21 0 0 0 0 08/11 - 02/12
Zwangi 97 7 4 1 10 1 1 1 10/10 - 02/12

Table 5.2: Statistics on the C&C server distribution infrastructure per downloader
family. LL=Long Lasting, i.e., IP addresses/domains had an uptime of more than 4
weeks. In each such case, we increase the corresponding AS/TLD counter by one also.

We use the data obtained in Section 5.3.3 for further analyzing the C&C in-
frastructure. In particular, we aggregate the number of domains and IP addresses
used by a downloader as observed in Sandnet. While this does not necessarily
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give a complete view on the IP addresses and domains used by a downloader, the
numbers can serve as lower bounds. Table 5.2 shows that the resilience strate-
gies differ between the downloaders. In the second major column, we summarize
statistics on the specific C&C server IP addresses of a downloader, plus its Au-
tonomous System (AS). In the third major column, Table 5.2 lists the number
of C&C domains per downloader. We highlighted domains or IP addresses that
we have seen in active use for at least four consecutive weeks in Table 5.2 in the
columns annotated with “LL” (long lasting).

Table 5.2 reveals that most downloaders use multiple C&C server hosts, and
tend to distribute their servers across network boundaries. For example, Virut has
been in operation during our entire analysis period with about 20 IP addresses
in eleven ASes. We speculate that spreading server locations among multiple
ASes is a strategic decision by the attackers. The more responsible parties and
different national regulations are in place, the higher the complexity for defenders
to take actions against specific downloaders. In that sense, Cycbot/Gbot stands
out with 146 servers, hosted in more than 50 different networks. Observing such
a large diversity may indicate that Cycbot/Gbot is in fact a malware toolkit with
downloader functionality, which results in many smaller infrastructures indepen-
dent from each other. We verified that the Cycbot/Gbot instances in our dataset
used different IP addresses at approximately the same time. Another interesting
case is dldr-#1, which appears to operate many C&C servers on its own. But
instead it uses a large public file sharing company and this hoster’s load bal-
ancing techniques, hiding eggs in seemingly benign Bitmap image files. As we
are interested in all C&C activities of a downloader, we manually inspected all
cases where possibly benign IP addresses or domains (e.g., image hosters) were
involved and we explicitly did not exclude them from Table 5.2 if we also detected
C&C.

Outstanding are the P2P variants of Zeus and Sality, with more than thou-
sands of different C&C “server” hosts each. For these families, we consider P2P
neighbors that respond to P2P-related UDP requests as active. The large number
of ASes involved, 900 for Sality P2P and 446 for Zeus P2P, show that provider-
driven initiatives against these P2P networks cannot disrupt the C&C infrastruc-
tures of these families. Interestingly, and particularly for Sality P2P, we saw a
large fraction of P2P nodes to be lasting for more than four weeks. We first
thought this may indicate that defenders joined this particular P2P network, but
the high number of long-lasting ASes speaks against this. We will analyze P2P
bots in Chapter 6 more extensively.

The analysis on the domains used by downloaders provides further interest-
ing insights. Zwangi, for example, heavily rotates its C&C IP addresses typically
within four /22 networks. Similarly, Gamarue deploys one particular domain
pointing to highly fluctuating IP addresses in over 50 different ASes. In both
cases the IP addresses are typically reused, that is, DNS is used to steer down-
loaders towards a rotating set of C&C servers. On the other hand, we observed
downloaders for which the set of IP addresses was relatively constant, but the
domains to resolve these IP addresses changed over time. For example, Virut
used 45 domains to resolve to its 20 C&C servers, and Renos/Artro pointed its
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136 domains to 38 IP addresses. Related to the previous observation that attack-
ers settle their C&C servers in multiple networks, we also show that – for most
downloaders – a diverse set of Top-Level Domains (TLDs) is chosen. Usually,
these C&C domains are even registered across many continents, mostly including
European, South-/North-American, and Asian registrars. Again, involving mul-
tiple domain registrars is presumably a strategic decision in order to complicate
sinkholing operations.

It can be seen that a large fraction of C&C servers (20%) remains operable
for more than four weeks. Similarly, 217 domains pointing to active C&C servers
(7%) remain in active use for at least four weeks. The observed long-levity
enables defenders to take actions against downloaders, such as using domain or
IP-address blacklists. On the other hand, the involvement of numerous registrars
and providers shows how complex takedown efforts can be.

As a case study, we compared the usage time spans of Virut’s C&C server
domains (Figure 5.3(a)) with the usage time spans of the egg download server
domains (Figure 5.3(b)). Both figures reveal that Virut seems to have a subset of
stable domains that have been used throughout the last two years and that are
still in active use, for both C&C and egg servers. In addition, several domains
have been used only for certain periods. However, the sets of domains for C&C
and egg distribution are distinct, that is, we have not witnessed domains being
used for both, C&C and egg distribution. Interestingly, we observed a churn of
Virut C&C server domain names between June 2011 and January 2012. Our
initial hypothesis that these domains were used as backup C&C domains was
proven wrong, as many other domains have been actively in use during that
period. In addition, our passive DNS database in Sandnet revealed that not a
single DNS resolution request for a Virut C&C domain resulted in NXDOMAIN
or an empty answer section. Despite its technical simplicity, Virut thus exhibits
a remarkable C&C- and egg-server resilience.

5.4.2 Download Server Infrastructure

The second pillar of a downloader’s infrastructure is the resilience of download
servers. We will now analyze the infrastructures of downloaders with plaintext
download channels. We focus on plaintext downloaders, as we could map down-
load channels to downloaders in these cases with high accuracy. Table 5.3 shows
statistics on the egg distribution infrastructure for these downloader families. On
purpose, we do not consider the C&C infrastructure here, except – unavoidably
– in cases where the egg sample download is part of the C&C channel (see “inl”
marker in Table 5.1). Two thirds of the observed plaintext downloader families
exhibit more than ten distinct IP addresses for their download servers. A similar
trend is observed concerning the domain names – only the Winwebsec family
does not use DNS in the egg download process.

Per downloader family, the maximum uptime expresses the maximum time
span where one single egg-server IP address has been witnessed as serving egg
samples. Note that, in comparison to Table 5.2, the measurement in Table 5.3 is
restricted to a family’s egg servers and omits its C&C infrastructure. We consider
an IP address or domain as long lasting if it serves eggs for at least four weeks.
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Figure 5.3: Virut’s C&C (above) and egg (bottom) server usage by domain over time.
Colors/markers denote top-level domains.
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Downloader IPs Domains Eggs Max. Packers
Family # LL # LL # #MD5s Uptime Detected
dldr-#2 26 7 44 10 1029 110 561 d. b,t,u,f,h,y
dldr-#3 8 1 9 1 648 158 114 d. u,s,d,n,p,c,e
Dofoil 14 1 29 0 103 93 96 d. u,c,Y
Emit 6 2 27 0 5938 698 183 d. u,p
GoldInstall 70 25 63 16 13155 971 592 d. u,b,s,v,p,w,n,N
Harnig/LoaderAdv 31 12 46 23 1731 735 185 d. u,o,f,p,d,N,b,n,M
Rodecap 2 2 8 2 286 23 445 d. u,a
Virut (crypt C&C) 30 8 25 6 3852 293 459 d. u,x,n,s,d
Vobfus/Changeup 15 7 34 3 2005 424 77 d. u
Winwebsec 6 1 1 1 80 22 58 d. n/a
Zwangi 86 2 8 1 263 138 49 d. n/a

Table 5.3: Statistics on the egg sample distribution infrastructure per down-
loader family. LL=Long Lasting, i.e., uptime of more than 4 weeks. Packers:
u=UPX, t=Themida, p=PECompact, e=PEtite, b=BobPack/Bobsoft, a=Armadillo,
s=ASPack/ASProtect, x=EXECryptor, h=Thinstall, n=NsPack, f=FSG, d=D1S1G,
v=Upack, c=CrypKey, o=ProActivate, y=XtremeProtector, w=WinUpack, N=NET
MS, M=MoleBox, Y=y0dasCrypter

Table 5.3 shows that over the whole monitoring period, only a small fraction of
the IP addresses is actually long lasting. In the cases that we manually inspected,
we observed that downloaders typically move their download servers from time
to time. For each downloader family of Table 5.3, we manually inspected the
egg-server usage over time for both, domains and IP addresses. Interestingly, all
downloader families exhibit similar egg-server usage patterns where the migra-
tion from one domain to another is clearly visible. The same applies to the IP
addresses of egg servers, however, egg-server domains typically change more often
than IP addresses. Some of the highly resilient download servers even have been
serving eggs for more than a year.

For the downloader family Emit, Figure 5.4(a) shows each egg-server domain
on the y-axis and the associated usage time spans. Note that the domain names
have been pseudonymized. The egg-server domains show hardly any overlap in
their usage time spans. In addition to the usage time span, the marker and the
color denote the top-level domain. We observe that not only does the egg server
move from one domain to another, as indicated by the changing pseudonyms.
Download servers also migrate from one top-level domain to another, initially
from .com to .org, then to .pl, and finally to .us. This pattern shows that –
in order to strive for a takedown of this downloader’s egg-serving infrastructure
on the DNS level – many different registrars from varying time zones would be
required to cooperate.

Figure 5.4(b) shows Vobfus/Changeup, which exhibits a strong domain mi-
gration pattern for its download servers. In this case, the domain names are
typically used only for a couple of days, and never reused. Not as consistent
as Emit, but still, Vobfus exhibits sequential top-level domain migration, too,
although a few top-level domains are used in parallel.
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Figure 5.4: Download server usage by domain over time for two downloaders. Domain
names have been pseudonymized. Marker styles and colors distinguish the download
server’s top-level domain.
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5.5 Egg Acquisition and Analysis

After investigating the downloader infrastructure, we will now analyze the down-
loaded eggs. Such an analysis allows us to draw conclusions on how attackers
operate the egg infrastructure, for example, by using polymorphism and aggres-
sively repacking served samples. We will begin with presenting two techniques
how to acquire eggs from both plaintext and encrypted downloaders. The re-
sulting dataset of actively acquired eggs will then serve to give first insights into
evasive techniques used by downloaders.

5.5.1 Egg Acquisition Techniques

All downloader infrastructures have one necessity in common: these services
must be publicly accessible, as (with the exception of targeted attacks) fraud-
sters aim for large-scale deployment of their malware. Consequently, attackers
cannot easily deploy client authentication mechanisms that prevent their infras-
tructures from being “abused,” raising the difficulty for attackers to control who
is accessing the infrastructures. We exploit these necessities to obtain eggs for
the downloaders under our analysis. We present two techniques that enable us
to acquire the downloaded eggs for downloaders with plaintext and encrypted
communication, respectively. Previous efforts analyzing a few specific download-
ers [25] did not require automated egg acquisition techniques. However, given our
significantly larger sample set, we seek for a more scalable solution to analyze
downloaders. Our techniques may be a potential enabler for future research on
malware acquisition methods, as they require only little manual effort compared
with reverse engineering.

Plaintext Downloaders

For plaintext downloaders, we exploit the fact that eggs are downloaded without
disguising or encrypting the communication. Methodically, we replay the egg-
download dialog towards each download server and require new egg samples this
way. For example, in case of HTTP, once the download server and the egg’s URI
is known to defenders, downloads can be repeated regularly. We implemented a
dialog repeater that takes pairs of HTTP request and communication end point
as input, that is, payload bytes with a destination IP address and port. For
each such pair, the repeater replays the dialog towards the specified destination
once an hour, typically resulting in HTTP responses. We feed the repeater with
input pairs by searching for requests by downloaders in our dataset that led to egg
downloads. Given the prevalence of HTTP in our dataset, we did not incorporate
further network protocols to the dialog repeater.

In order to avoid such mechanisms, fraudsters could potentially use blacklists
of IP addresses of known malware analysis systems [1]. For an attacker, it is
straightforward to block all requests from systems as ours. Consequently, instead
of using a single Internet outbreak and IP address, we established a proxy network
to route the traffic through our home DSL lines. In contrast to well-known proxies
such as Tor or open proxies, end-user IP addresses seem to stem from realistic end
users and – in our case – even change daily. We made sure that our ISPs did to
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interfere with our measurements by comparing outputs of multiple proxy hosts.
Despite its simplicity, as we will show, the repeater is a well-working mechanism
to acquire new eggs.

Encrypted Downloads

A drawback of the dialog repeater is that it cannot download eggs via encrypted
download channels. Even if the download succeeds, we could not make use of the
encrypted egg. Therefore, as a complementary technique, we leverage the actual
downloader to acquire eggs. The intuition behind this method is simple: when-
ever a downloader is executed, it will download and execute previously unknown
malware samples. We instrumented our Sandnet VMs with a kernel-based Win-
dows system driver that records the file images whenever new processes are forked
or system drivers are loaded. For each potential egg being executed, the kernel
driver computes the MD5 checksum and records the new processes’ image.

However, monitoring new processes results in a large number of legitimate
system files to be interpreted as potential egg. To filter legitimate system files,
we built a whitelist of trusted system files by scanning all files of a clean Sand-
net VM. In addition, as a further filter to catch only actually dropped and not
modified system files, we manually assembled patterns for the file paths where
each downloader is storing its eggs. We specifically discard eggs that we identify
as exact or repacked/modified copies of the downloader program itself. To do so,
we correlate the time when data was received from the network with the time
when the new process was forked. After adding the kernel driver to Sandnet,
we additionally scheduled the execution of downloader families with encrypted
download channels on a daily basis for seven weeks starting in January 2012.

5.5.2 Egg Sample Distribution

In addition to our passive Sandnet database, we use both active techniques
described to obtain a comprehensive egg dataset. Thus, for the plaintext down-
loaders, we identified the download channels and describe the downloader infras-
tructures and their uptime. Table 5.3 (page 82) shows the egg distribution per
downloader family that exhibit plaintext egg downloads. The number of suc-
cessful egg downloads as well as the number of MD5-unique egg samples differs
widely among the plaintext downloader families. Whereas for GoldInstall more
than 13,000 egg downloads completed successfully, the number of unique egg
samples is much smaller. Other families such as Dofoil show that a significant
fraction of the successful egg downloads expose differing MD5s. This indicates
that not all downloaders aggressively repack the served eggs.

Table 5.4 summarizes our experiments of actively milking encrypted down-
loaders in Sandnet. For each downloader, we name the number of executions
in Sandnet and show the number of eggs and unique eggs, respectively. For
nine of ten downloaders, our technique was able to trace eggs. Despite its short
runtime and the relatively small number of execution per downloader, we were
able to acquire a high diversity of eggs. For example, although Zeus P2P is well
known as a banking trojan, we can confirm Symantec’s recent observation [58]
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Family Execs Eggs MD5s Packers
Buzus 316 1898 329 b,u,p
Cycbot/Gbot 181 1030 374 u,c
Dabvegi 278 271 8 unknown
dldr-#1 14 10 3 t
Karagany 256 242 178 z
Renos/Artro 320 2454 23 u
Sality 261 241 59 u
Sality P2P 250 0 0 n/a
TDSS/Alureon 226 652 79 n/a
Zeus P2P 224 221 101 n/a

Table 5.4: Downloaded egg samples from the encrypted downloaders from Dec ’11 to Feb
’12. Packers: u=UPX, t=Themida, p=PECompact, b=BobPack/Bobsoft, c=CrypKey,
z=StealthPE.

that it also downloads non-Zeus samples. For Sality P2P, we have observed ac-
tive downloads, but our kernel-level monitor did not observe these eggs to be
executed. Renos/Artro drops malware, although our Renos samples were effec-
tively sinkholed since August 2011. The low number of executions of dldr-#1
is due to scheduling this downloader only recently. As a particularly interesting
case, TDSS/Alureon dropped all recorded executables by extracting the original
sample. In addition to the loaded eggs, however, we recorded that in about half
of the executions a kernel driver was loaded, showing that our kernel-based anal-
ysis techniques may also work with downloaders that carry rootkits capability
themselves.

5.5.3 Polymorphism

Malware is well known for polymorphism in order to evade antivirus signatures.
An interesting question in the context of downloaders is if and how polymorphic
code is used. We approached this aspect in two ways. First, we classified all egg
samples using yara [6] and packer-identification rules in order to assign which
packer was used to (re)pack an egg sample. In addition, we submitted the egg
samples to our sample sharing partners and Virustotal. In turn, querying Virus-
total, we assigned A/V labels to the egg samples in order to see how over 40 A/V
vendors name the eggs.

Sample Packing

A large fraction of the egg samples were successfully classified using yara packer
rules. Tables 5.3 and 5.4 show the number of distinct packers for the eggs of each
downloader family. The dominating packers are based on UPX. However, many
different packers can be found, such as Armadillo, Themida, ASPack, ASProtect,
NsPack and PECompact. In addition, some eggs, such as those of Winweb-
sec, were packed with unknown packers. The fact that the egg packers vary
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throughout one downloader family, supports the assumption that there are mul-
tiple “clients” per downloader and that it is likely not the download server that
repacks the eggs. Instead, we assume that the clients make packed eggs available
to the downloaders. In this context, we consider a client to be an attacker willing
to distribute malware via downloaders.

Repacking

Eggs are repacked to successfully evade signature-based A/V. For those families
that have plaintext egg downloads, based on Sandnet and dialog repeater traces,
we estimate lower bounds on which downloader families distribute polymorphic
eggs. In this context, we define an egg to be repacked if different content – in
terms of MD5 hash – is served for what can be considered the same egg sample
– based on (approximate) file size and A/V label. Thus, for each downloader
family, we consider an egg to be repacked if we observe egg downloads with at
least eight distinct MD5 egg hashes all having (nearly) the same file size and the
same A/V label, within a time span of one month. On average, our filter criteria
translate to a repacked egg sample at least once every four days. Furthermore, to
ensure statistical significance, we limit our dataset for this experiment to families
with at least 90 distinct eggs. Of those nine families, we observed eight to exhibit
repacked samples. Note that we do not consider repacking to be a property of the
downloader family. Instead, we assume that the clients of these downloaders take
care of the repacking of their eggs. Wheres at least one client of Emit reached
a maximum repacking rate of once every 17 minutes, dldr-#3 repacked only up
to once every 2.5 days. For GoldInstall, we measured repacking once a day, and
one of the Dofoil clients repacked its eggs once every hour.

This confirms similar analyses by Cabellero et al. [25], only that two download-
ers in our dataset (Emit, Dofoil) deploy overly aggressive repacking. Employing
our dialog repeater, we looked for server-side polymorphism where the egg sam-
ple is repacked upon each request. In particular, we tried to measure whether
the repacking of Emit eggs takes place via on-the-fly server-side polymorphism,
but unfortunately the egg servers were not been reachable anymore during this
experiment.

5.6 Discussion

Our analysis provides detailed, novel and important insights into the resilience of
malware downloaders. Revealing the possibility to monitor downloaders may mo-
tivate attackers to switch to more advanced techniques. However, given the large
numbers of long-term operating downloaders, we see the need to raise attention
to this problem domain. Our work also aims to highlight relevant downloader
families, such as P2P- or rootkit-driven downloaders, fostering future research on
potentially previously unknown malware families.

Obviously, our techniques to automatically milk downloaders are evadable by
attackers. While it is straightforward to evade our dialog repeater, evading our
kernel-based driver requires more thoughts, though. For example, we face the risk



88 CH. 5. RESILIENCE ANALYSIS OF MALWARE DOWNLOADERS

that our current setup may fail for kernel-level rootkits such as TDSS. Similarly,
we had to exclude one particular downloader (Wintrim) from our analysis, as
it detects virtual machines before unpacking itself. However, hardened dynamic
analysis as with Ether [32], hardware-based hosts [49], or developing resilient
kernel drivers would be effective against attackers’ moves.

During dynamic analysis, and particularly when allowing network access to
malware, we potentially risk to harm others. However, in a best effort to drop all
harmful traffic, we strictly control and monitor Sandnet’s activity. As a con-
sequence, we have not observed a single abuse complaint concerning Sandnet
so far. Furthermore, a particular risk of executing downloaders is to – uninten-
tionally – financially support PPI downloaders, in that attackers are paid for
installations. However, the cash flow in this case is that attacker A (whose down-
loader is executed in Sandnet) is paid by attacker B (who asked for his malware
being dropped), not causing harm to any innocent uninvolved individual. In fact,
analyzing and abusing these PPI cash flows is an interesting future work topic
itself.

5.7 Conclusion

We identified and characterized 23 downloader families, showing that the down-
loader landscape is diverse in terms of architectural design, communication pro-
tocols and encryption schemes being used. We observed that many downloaders
– albeit sometimes simple – have been actively operated for more than a year.
Motivated by this observation, we analyze how attackers ensure the resilient oper-
ation of their downloader infrastructure. For example, we show that downloaders
migrate their C&C servers aggressively among different Autonomous Systems, of-
ten involving multiple countries. Similarly, we observed downloaders not only to
alter the C&C domains frequently, but also to involve diverse domain registrars.
As a byproduct of our analysis, we revealed further details on the workings of
downloaders, such as server-side polymorphism. These observations show that
mitigating the problem of downloaders is more difficult than it might seem. To
foster future research in this area, and as an automated mechanism to acquire
previously unseen malware samples, we present two generic techniques which
extract downloaded eggs from any downloader.



6
Resilience Analysis of Peer-to-Peer Botnets

The previous chapter has shown the resilience of malware installation infrastruc-
tures, which are typically used to create or to enlarge botnets. This chapter will
focus on the resilience of botnets themselves1. In particular, we discuss botnets
that are explicitly designed to be highly resilient: peer-to-peer (P2P) botnets.
The resilience of centralized botnets depends on the availability of a few C&C
domains or C&C servers. P2P botnets, on the other hand, do not rely on central
servers that are present in centralized or semi-distributed botnet architectures. In
this chapter, we provide an overview of ten P2P botnet variants, of which six are
still being operated. We assess the resilience of these P2P botnets by prototyping
mitigation strategies such as sinkholing. The systematic resilience analysis aims
to assist security researchers in evaluating mitigation strategies against future
P2P botnets.

6.1 Introduction

Botnets have since many years been used by fraudsters with financial motivations.
In the past, defenders could often disrupt these mostly centralized botnets by ter-
minating command and control (C&C) servers or C&C domains. As a response,
attackers have developed new and supposedly more resilient botnet topologies,
such as highly distributed networks lacking central components. These topologies
remove the single point of failure, and botnet takedowns require new strategies.
One type of distributed botnets are peer-to-peer (P2P) botnets, where each bot
stays in contact with other bots to exchange commands, lacking central servers.

This redundancy advantage over centralized botnets may suggest clear trends
towards P2P botnets. In a few cases, such as with Storm/Peacomm and Waledac,
defenders could infiltrate the P2P botnets and disrupt their operation. Yet,
largely unnoticed in academia, a number of new P2P botnets such as Zeus P2P,

1Some analyses in this chapter base on reverse engineering efforts by Dennis A. Andriesse
and Tillmann Werner, who we thank for their contributions.
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Sality, ZeroAccess, Hlux or Miner, have emerged. These botnets have been op-
erational for as long as five years, deploying a variety of custom P2P protocols.
In most cases, the population sizes of these botnets are unknown, nor does any
evidence about the resilience of these botnet designs exist. To fill these gaps, we
characterize four historic and six existing P2P botnet protocols. With this char-
acterization, we provide an overview of P2P botnets and compare their design
evolution. We classify the known P2P botnets into structured and unstructured
networks, and describe advantages of both design choices.

We then analyze the resilience of these P2P botnets. To guide future research
in the area of P2P botnet mitigations, we discuss four different aspects of P2P
botnet resilience: (1) We evaluate the reconnaissance resilience, that is, to which
degree botnets can deter defenders from enumerating bots in their networks.
(2) We characterize C&C resilience, describing how the C&C layer of the P2P
botnet is secured against abuse by others. (3) We show the sinkholing resilience,
by prototyping and successfully testing attacks to mitigate existing P2P botnets.
(4) We discuss if defenders can split the botnet into small unusable subnetworks
by evaluating the partitioning resilience of P2P botnets.

Our practical resilience assessments give detailed insights into the proprietary
C&C protocols of P2P botnets. With this C&C knowledge, we measure the
population of seven P2P botnets, and identify botnet families spanning more than
a million of infections. Motivated by this, we test and elaborate how defenders
can sinkhole existing P2P botnets. In fact, we develop attack prototypes that
helped to prepare sinkholing operations against two bot families and in total eight
disjoint botnets. Our systematic resilience analyses aim to foster future efforts
to mitigate the threats of P2P botnets.

However, we also observe trends towards highly resilient P2P botnets that
have significant improvements over historic P2P botnet protocols. For example,
we analyze the peer reputation scheme of Sality, and discuss the effects of self-
healing P2P protocols as exhibited by ZeroAccess. Seeing these innovations, it is
unclear if sinkholing can be successful in the future. To inspire future research,
we will discuss alternative P2P botnet mitigation strategies.

The remainder of this chapter is structured as follows: Section 6.2 gives back-
ground information about P2P botnets and Section 6.3 describes existing P2P
botnets. In Section 6.4, we measure the botnet populations to show their magni-
tudes. Section 6.5 provides a structured resilience analysis of historic and current
P2P botnets. Section 6.6 discusses implications of our results. We outline related
work in Section 6.7 and conclude our work in Section 6.8.

6.2 Preliminaries

Traditionally, botnets were purely centralized and had a single, non-redundant
C&C server. Once defenders shut down this C&C server, the operation of the
botnet was ceased immediately, as the bots could not be commanded anymore.
To achieve better robustness, botmasters followed two distinct strategies. First,
botmasters designed what we term semi-distributed botnets. Such botnets remain
centralized, but improve the robustness of the C&C infrastructure with redun-
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dancy. For example, botmasters started to announce redundant C&C servers
by fluctuating DNS records (fast-flux) [69], or introduced domain-name gener-
ation algorithm (DGA) to have changing C&C server end points over time [9].
Although these techniques require small modification to the C&C channels, the
typical client-server patterns are similar to centralized botnets.

6.2.1 P2P Botnet Architecture

As an alternative botnet architecture, malware authors started to deploy peer-
to-peer (P2P) botnets. A P2P botnet does not (entirely) rely on centralized
servers for its primary C&C channel, but has ways to spread C&C commands
via client-to-client communication. As there is no single point of failure in P2P
networks, defenders cannot disrupt the botnet by terminating a few hosts only.
In P2P botnets, a bot stores end points of a subset of all other bots (peers) in a
peerlist. A bot then contacts end points in this peerlist, for example, to pull C&C
commands or to update its peerlist. This typically results in a directed graph.
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Figure 6.1: P2P Botnet Graph Example

Figure 6.1 shows an example P2P botnet consisting of five peers with IDs
A – E. The peerlist of peer A lists the peer IDs (unique identifier of a peer) and
end point addresses (IPv4 addresses and – optionally – ports) of peers B and D.
In this example, peer D does not store A in its peerlist, rendering the network in
a directed graph.

Graph theory helps to analyze the resilience of the P2P networks. For exam-
ple, peer A has in-degree two, as peers B and E know about it. Similarly, peer
A has an out-degree of two, as it has peers B and D in its peerlist. Whereas
the out-degree shows how well-connected a bot is to other bots, the in-degree
measures the popularity of a bot. For example, peers with an out-degree of zero
could not pull commands anymore. Similarly, peers with an in-degree of zero will
never receive messages from others.
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6.2.2 P2P Botnet Taxonomy

Although the basic design principle of peerlists is inherent to all P2P botnets, a
clear distinction can be made between structured and unstructured P2P botnets.
Both designs have unique strategies for exchanging C&C commands, and thus
require different angles for resilience analysis.

Structured P2P Botnets

Structured P2P botnets are similar to existing P2P networks, like many popu-
lar file-sharing networks. Structured botnets rely on a Distributed Hash Table
(DHT) to route requests through the network. Structured botnets are typically
pull-based, that is, the botmaster stores commands in the DHT and the bots
regularly pull information from peers. Bots can also store, for example, stolen
data in the DHT, removing the need for centralized dropzones. The details differ
per DHT implementation, but the basic concept is as follows.

A bot chooses a unique identifier in the DHT space and publishes itself on the
DHT network. To store data in the DHT, a unique identifier IDdata in the DHT
space is assigned to each piece of data. Then n nodes with IDs close to IDdata are
responsible for hosting this data. To request this data, a peer recursively asks
neighbors that are close to IDdata, eventually converging to peers hosting the
data. A P2P botnet can leverage this concept for exchanging C&C commands
via the DHT. For example, the botmaster can include an algorithm to compute
data IDs dependent on the current time in the bot binaries. Whenever a bot
searches for an ID, the botmaster can publish a command in the DHT with the
matching ID. The bot can then retrieve the command by searching for IDs derived
from the ID generation algorithm.

Unstructured P2P Botnets

Unstructured P2P botnets, on the other hand, do not store information in a DHT.
Instead, unstructured networks rely on sending or receiving commands via gos-
siping. In push-based unstructured P2P botnets, bots forward a command that
they received from a neighbor node to other peers in their peerlist. To prevent
message loops in such broadcasts, time-to-live (TTL) values can be included in
the gossip messages. Only peers with a positive in-degree will receive such com-
mands. In pull-based unstructured P2P botnets, bots regularly ask peers for new
commands, indicating the need for high out-degrees to retrieve new commands.
As commands need to be requested to propagate through the network, commands
on pull-based network typically spread slower than on push-based networks.

6.3 Overview of P2P Botnets

This section provides an overview of P2P botnet families that arose between
begin-2007 and mid-2012. We carefully assemble this set of P2P bots by both
reading literature and searching for P2P-related behavior in Sandnet (see de-
scription in Chapter 4). We used traffic analysis to identify P2P bots in Sandnet



6.3. OVERVIEW OF P2P BOTNETS 93

traffic. For example, we search for malware with a large set of contacted hosts,
or inspect malware samples that have many outgoing connection without prior
DNS resolution. This way, we identified all publicly known P2P botnets that
arose since 2010. From our dataset of P2P bots, we explicitly exclude bots that
use P2P communication as their backup C&C channel, such as TDL-4 [36] and
Conficker.C [34, 90]. As we will not use dynamic malware analysis to analyze P2P
bots in the following sections, we will not discuss the relevance of the guidelines
presented in Chapter 6 here.

6.3.1 P2P Botnet Characteristics

In this work, we closely analyze ten P2P botnet variants, of which six were
still active as of September 2012. Figure 6.2 shows the life span of the botnets
under analysis. The start of a new botnet is derived from the date a botnet was
publicly discussed for the first time. A botnet’s lifetime ends when the botnet was
successfully sinkholed or when the botmasters terminated the botnet. Figure 6.2
shows that the minimum P2P botnet lifetime is eight months. Some P2P bots,
such as Sality or ZeroAccess, have been operational for up to five years. We are
not aware of sinkholing attempts against the four active P2P botnet families:
Zeus, ZeroAccess, Sality, and the most recent Hlux version.

Zeus

Miner

Hlux

ZeroAccess v2

ZeroAccess v1

Waledac

Sality v4

Sality v3

Storm

Jan 2007 Jan 2008 Jan 2009 Jan 2010 Jan 2011 Jan 2012

active
disabled

abandoned

Figure 6.2: History and recent developments of new P2P botnets

Figure 6.2 also shows the evolution of a particular botnet crew. The code
similarity in Storm, Waledac and Hlux strongly indicates that all bots were de-
veloped by the same botnet crew [24]. Waledac was introduced by the Storm
authors about two years after the appearance of Storm to address resilience vul-
nerabilities [84, 89]. About two years after its introduction, the Waledac bot-
net was disrupted and succeeded by Hlux. Despite successful sinkholing efforts
against the first two Hlux variants, a third Hlux variant is still operational [92].

Table 6.1 helps to understand the nature of these P2P botnets. For exam-
ple, ZeroAccess and Sality are malware downloaders and thus drop “only” other
kinds of malware. We speculate that this explains why ZeroAccess and Sality
largely stay under the radar, as they do not cause direct harm to infected clients.
On the other hand, Hlux and particularly Zeus directly harm their victims by,
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for example, stealing and abusing banking accounts or spamming. Table 6.1
also details the botnets’ P2P command routing layer. Storm used Overnet, a
Kademlia-based network for its communication and was the only P2P botnet
that ever purely relied on existing P2P networks. All other P2P botnets under
analysis use proprietary unstructured P2P protocols.

Botnet From To Proto Routing Monetization

Hlux 12/10 - Propr. Router peers Spam, DDoS
Miner 08/11 03/12 Propr. Gossiping Bitcoins, spam
Sality v3 01/09 - Propr. Gossiping PPI
Sality v4 11/10 - Propr. Gossiping PPI
Storm 01/07 12/08 Overnet DHT searches Spam
Waledac 12/08 02/10 Propr. Router peers Spam
ZeroAccess v1 06/09 - Propr. Gossiping PPI
ZeroAccess v2 02/12 - Propr. Gossiping PPI
Zeus 09/11 - Propr. Gossiping Banking trojan

Table 6.1: Overview of P2P botnets, their protocol and monetization

6.3.2 Botnet Descriptions

We will now describe the most important details of the individual P2P botnets.
For more extensive analyses of individual botnets, we will refer the interested
reader to technical reports.

Storm

Storm (a.k.a. Peacomm) was a structured P2P botnet using the Overnet protocol,
a Kademlia implementation. In fact, the first version of Storm used an existing
Overnet network, and the bots added themselves to the existing DHT. In Storm,
botmasters stored spam templates at deterministically computable IDs in the
DHT. In turn, the bots requested these commands by looking up the computable
IDs. Storm was significantly disrupted in 2008, when Holz et al. continuously
replaced Storm’s commands with bogus commands [42].

Sality P2P

Sality P2P appeared with its second version in 2008 and is a variant of the cen-
tralized Sality malware downloader. Sality uses an unstructured P2P network in
a pull-based manner. Peers regularly check if their neighbors promote previously
unseen files, and if so, they download and install these files [33]. We distinguish
between two separate Sality networks, consisting of peers only with version three
or version four, respectively. Both networks share the same P2P protocol and
differ mainly in the file downloading mechanism.
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Waledac

Waledac is assumed to be the successor of Storm [84]. Waledac had centralized
peers in its upper layer, which served spam templates to peers in the lower hier-
archy. These lower peers form the majority in the network and were connected
via an unstructured P2P network. The lower peers exchanged lists of peers in
the upper layer using pull-based communication. In February 2010, Waledac was
sinkholed via manipulated peerlists by Stock et al. [84].

ZeroAccess

ZeroAccess (a.k.a. Sirefef) is a malware downloader with an unstructured P2P
C&C architecture. It exists in at least two variants and is organized in at least
seven disjoint networks. The older variant, ZeroAccess v1, is pull-based, and
bots regularly consult their neighbors for malware installation instructions. The
newer variant, ZeroAccess v2, uses both push- and pull-based communication.
New peers are broadcast to the network (push), whereas the malware download
commands are requested from other peers (pull) [63, 96].

Hlux

Hlux (a.k.a. Kelihos) is an unstructured P2P botnet mainly used for spamming
and ID theft [24], but its entire malicious functionality was never fully analyzed.
Hlux is assumed to be the successor of Waledac. Kaspersky successfully mitigated
the first two variants of Hlux by manipulating the peerlists. The two variants were
sinkholed in September 2011 and March 2012 respectively, each time abusing the
pull-based P2P protocol. A succeeding third Hlux variant is still operated [92].

Miner

Miner was an unstructured P2P botnet that included three libraries for mining
Bitcoins (a digital currency). The Miner botnet consisted of two almost disjoint
networks with about 38,000 non-NATed peers according to Kaspersky [93]. Ac-
cording to Crowdstrike, Miner ceased to operate around 03/2012, presumably
due to insufficient monetization of mining bitcoins.

Zeus P2P

The C&C servers of most centralized Zeus botnets were increasingly being tracked
and taken down by defenders [7]. As a consequence, attackers adapted the leaked
Zeus source code to launch a P2P-based Zeus (a.k.a. Gameover bot) in August
2011. Zeus P2P is an unstructured P2P network having a pull- and push-based
command architecture. Zeus’s configuration files are pulled from peers with more
recent versions, containing, for example, browser hooks used to steal personal
data. Dropzone locations for receiving the stolen data are pushed via gossiping.
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6.4 P2P Botnet Populations

From a defender’s perspective, the ability to enumerate individual P2P bots is a
significant advantage over centralized botnets. This P2P exploration procedure,
also known as crawling, is exceedingly helpful for many reasons. First, crawling
measures the number of infected systems in a P2P botnet. Size estimations help
defenders to shift focus to more prevalent botnets, or observe significant changes
in the botnet dimensions over time. Second, several organizations are inter-
ested in lists of infected clients. For example, ISPs or CERTs can alert infected
customers. Similarly, in case of banking trojans such as Zeus, banks or credit-
card companies can verify their transactions by checking the client’s IP address.
Lastly, crawling is typically required for P2P botnet mitigation techniques.

6.4.1 Crawling Peculiarities

As most P2P botnets deploy proprietary P2P protocols (Section 6.3), crawling
P2P networks requires a deep understanding of the protocol peculiarities. We
therefore manually reverse engineered bot binaries in depth, thankfully assisted
by early-on reversing results [23, 24, 33, 58, 63, 89, 96]. We summarize our reverse
engineering insights that are relevant in the context of crawling in Table 6.2.

Botnet Bot IDs NATed Peers shared

Hlux pseudo-rnd 16b No newest 250
Miner none No all
Sality v3 not shared No 1 random active
Sality v4 not shared No 1 random active
Storm 16 bytes Yes 10 close to req. ID
Waledac 20 bytes No newest 100
ZeroAccess v1 not shared Yes all 256
ZeroAccess v2 not shared Yes newest 16
Zeus 20 bytes Yes 10 close to req. ID

Table 6.2: P2P botnet characteristics relevant for crawling. Legend: NATed = peers
behind NAT are maintained in peerlists.

Ideally, botnet population measurements count unique bot identifiers. How-
ever, Table 6.2 shows that only Waledac, Zeus and Hlux use truly unique identi-
fiers. ZeroAccess does not keep peer IDs in its peerlists, and a bot communicates
its own peer ID only in peerlist requests. Similarly, Sality deploys deterministic
ID calculations that cause many ID collisions. In these cases, we have to rely
on counting unique IP addresses for estimating network sizes. Second, the peer
selection algorithm for peerlist responses influences the way we can crawl the
network. For example, in Zeus, the peers whose IDs are closest to an arbitrary
search key are returned, asking for either random exploration or binary searches.
In ZeroAccess, the most recent peers are returned, meaning that it is better to
deploy breadth-first rather than depth-first crawls. Third, a nontrivial issue for
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estimating botnet sizes is that seven botnets do not maintain peers that are be-
hind a firewall or NAT gateway in their peerlist. However, these NATed hosts
participate in the P2P botnet, that is, they also receive commands. Similarly,
even if NATed peers are shared, crawlers cannot reliably determine if a peer is
active, or if the shared peerlist entry is outdated. The next section describes a
crawling strategy tackling these peculiarities.

6.4.2 Crawler Strategy

Algorithm 1 sketches our crawler design. Simple yet effective, it allows to count
all public peers in the network and keeps track of peers that actively responded
to our requests. The algorithm is initialized with a set of bootstrapping peers, for
example, extracted during dynamic analysis of a P2P bot. We then continuously
send requests to random peers to learn about other peers. In the unstructured
P2P botnets under analysis, we directly ask known bots for (parts of) their
peerlists, iteratively expanding knowledge of the entire network. In structured
networks, we would send random route requests, learning about nodes that are
close to the search hash. We mark peers that have ever responded to our requests
as active. This way, we can later distinguish between potential and verified bots.

peers← bootstrapping peers
while true do
if packet arrived at socket then

peerlistnew ← read from socket
find sender s in peers and mark s as active
peers← peers ∪ peerlistnew

else
send request to random peer p from peers

end

end

Algorithm 1: P2P Botnet Crawling Algorithm.

However desirable, performing accurate crawls of P2P botnets is not straight-
forward. Already the early-on experiences by crawling Storm in 2007 have shown
that the crawling results need to be carefully interpreted [48]. The following list
enumerates potential biases and counter-measures that we take to achieve correct
crawling results:

A) Infected dial-up users may frequently get new IP addresses, a
common practice observed, for example, at European ISPs. To
avoid double-counting nodes, we observe population developments over
time. Intuitively, the bias introduced by churn is negligible in the early
crawling phase. Similarly, if botnets use unique identifiers, we provide the
number of crawled IDs.

B) It is unknown when crawling converges towards the full list of
peers. P2P botnets undergo steady change, as peers continuously enter or
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leave the network. For example, infected PCs are switched on or turned
off during the crawl, or new infections join the botnet. To give accurate
numbers, we monitor if the change in botnet population stagnates to a
steady level, which may indicate that crawling has converged.

C) Other researchers or defenders may have injected fake peers to
the P2P network. While it is practically hard to identify fake nodes in the
network, we do our best to search for anomalies in the crawling results. For
example, we noticed that the Polish CERT was well-connected in Zeus, and
removed their fake peers from our counts after contacting them. Similarly,
we count only peers that follow the P2P protocol and respond to our peerlist
requests with valid replies.

D) Peers behind a firewall or NAT gateway cannot be contacted.
Although NATed peers do not respond to our requests, they may in fact be
active. To reliably count active peers, we count only peers that respond to
our peerlist requests. We ignore peers that are potentially online, but are
protected by a firewall or NAT gateway. Instead, we will extrapolate the
total botnet population by assuming ratios of NATed hosts.

6.4.3 Crawling Results

We implemented crawlers for eight disjoint P2P botnets that were active as of
September 2012. We seeded the initial crawler bootstrapping peers with data
from Sandnet. Per bot variant, we extracted IP addresses (and ports, if appli-
cable) of up to 100 recently active bots via dynamic analysis in Sandnet. We
launched the crawlers from a university network on a typical weekday (06/09/2012)
and let all crawlers run for at least 24 hours. As the crawled P2P botnets use UDP
for peerlist exchanges, our crawler risks packet losses if it requests for peerlists too
aggressively. For that reason, we rate-limited the request rate such that we did
not face packet loss when monitoring the 150 MBit/s uplink during the crawls.
Figure 6.3 shows our crawling results for the four botnet variants. The numbers
represent unique IP addresses of verified peers, that is, peers that responded to
our peerlist requests. Although this already excludes most NATed peers from
our measurements, we also explicitly removed active peers that did not initiate
communication from typical (bot type dependent) port ranges. Consequently,
our crawls set lower bounds for the botnet population.

Figure 6.3 depicts the population convergence over time. As expected, the
number of unique IP addresses increases even after 24 hours of crawling. In
fact, we included two lines for Zeus in Figure 6.3, one counting the number of
IP addresses (upper line), and another counting the number of unique node IDs
(lower line). While at the beginning of the crawl the discrepancy is negligible, IP
address churn significantly biases the results after 24 hours. This also confirms
observations that Stone-Gross et al. [85] made in a similar experiment, in which
they found that a day-long IP address count approximated the total botnet size
for the Torpig botnet. In Figure 6.4, we show which ratio of unique peers is found
in each hour, that is, we draw the derivative on the number of peers. Obviously,
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Figure 6.3: P2P Botnets Crawling Results

the largest increase of new peers happens in the first few hours. The number
of new peers found then stagnates after about 12 hours. We speculate that the
stagnated level of increase (about 2%–4%) is caused by both, IP address churn
and new infections joining the botnets.

We summarize our crawling results in Table 6.3. The first four columns show
the number of active peers (i.e., unique IP addresses) that we crawled after one
hour, 12 hours and 24 hours, respectively. To estimate the overall botnet popu-
lations, we also account for the number of NATed bots, which our crawlers did
not find (or explicitly filtered them out). Stone-Gross et al. have shown that
– in the case of the Torpig botnet – around 80% of the bots were NATed [85].
We thus conservatively estimate the minimum population popmin by multiplying
the number of peers found after 12 hours by five (assuming that 80% of all bots
are NATed). Stone-Gross et al. have also shown that NAT gateways are often
shared by multiple bot-infected PCs and thus state that IP address-based esti-
mates would underestimate the infection count by a factor of more than three
times. We estimate an upper bound popmax by multiplying the number of bots
found after 24 hours by ten (accounting for the fact that more than 80% of the
bots are NATed, that there are multiple bots behind one NATed IP address, and
that the 24-hour-long crawling process did not fully converge yet).

Table 6.3 that ZeroAccess v2 is by far the largest botnet, spanning up to 2.5
million infections in its four subnetworks. Of these peers, 1.67 million (65%) are
on 32-bit systems and 0.87 million (35%) are on 64-bit systems. Sality v4 seems
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Figure 6.4: P2P Botnets Crawling Convergence

to be the smallest P2P network with about 25,000 bots. This is quite surprising,
because – as we will show – the resilience of Sality v4 is significantly higher
than in the case of ZeroAccess. Similarly, for some reason, the Sality botmasters
decided not to migrate bots from the old protocol (v3) to the new protocol (v4).
Consequently, although it has significant improvements over version three, Sality
v4 remained relatively small over the years. Last, we estimate the population of
only the P2P variant of Zeus to about 145,000 infections.

6.5 P2P Botnet Resilience

The P2P botnet designs offer unique defensive measures that differ from coun-
termeasures against centralized or semi-distributed botnets. For example, re-
searchers can estimate P2P botnet sizes, ISPs can identify infected customers, or
authorities can potentially sinkhole the botnet. In this section, we evaluate the
resilience of P2P botnets against such countermeasures.

6.5.1 Reconnaissance Resilience

P2P botnet reconnaissance allows defenders to enumerate infected PCs, which
is typically also required to perform other mitigation strategies. Thus, from an
attacker’s perspective, it is desirable to prevent P2P botnet reconnaissance to
the highest degree possible. Table 6.2 (page 96) has shown that it is not always
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Botnet 1 hr 12 hrs 24 hrs popmin popmax

Sality v3 6768 29,688 36,415 150k 365k
Sality v4 546 1808 2490 10k 25k
ZeroAccess v2 16464 32,432 77,506 91,732 385k 920k
ZeroAccess v2 16465 14,116 33,766 38,067 170k 380k
ZeroAccess v2 16470 20,367 44,726 49,178 225k 490k
ZeroAccess v2 16471 29,155 65,332 75,553 325k 750k
Zeus 4611 8987 14,247 45k 140k

Table 6.3: Crawling results after 1 / 12 / 24 hours and botnet population estimations

possible to enumerate all bots in the existing P2P botnets using crawling. In
particular, botnets like Sality or ZeroAccess do not include NATed peers in their
peerlist. Consequently, crawling without further peerlist manipulations cannot
enumerate all active peers. Unfortunately, not disclosing NATed peers effectively
avoids reconnaissance for the majority of all bots. In these cases, defenders can
propagate a fake peer in the botnet. When such a fake peer gains popularity (high
in-degree) in the network, it will also be contacted by NATed peers. We leave such
implementations for future work. We further found that Zeus implements an IP-
address blacklist to exclude crawlers from the network. Peers are automatically
blacklisted if they request peerlists too frequently. In addition, Sality deploys a so
called “purity control” routine that verifies if a peer is adhering to the protocol
and comparing the version number of the remote peer. Such approaches can
significantly increase reconnaissance resilience in future P2P botnets.

However, the intrinsic requirements of P2P bots generally foster reconnais-
sance measures. For example, new bots need to get neighbor information to
bootstrap the network. Thus, P2P protocols typically deploy peerlist exchange
messages. Similarly, P2P botnets need to cope with changing end point addresses,
such as IP address churn. Consequently, P2P bots usually integrate or update
peers to their peerlist at some point. Depending on the strategy chosen to share
peerlist entries, it requires specific strategies to fully explore the peerlists of bots.
For example, when receiving peerlist requests, the Zeus bot returns peers close
to a search key. A binary search helps to exhaustively crawl peerlists of bots.
Summarizing, although technically possible, current P2P botnets only modestly
defend against crawling.

6.5.2 C&C Resilience

Once the C&C protocol of a P2P botnet is known, defenders or other fraudsters
may want to abuse the C&C for their purposes. For example, defenders may
want to send a command to stop spamming, or may want to launch disinfection
routines. Similarly, fraudsters could potentially abuse a P2P botnet (that they
do not “own”) by injecting own malicious commands.

Table 6.4 summarizes the C&C robustness of P2P botnets. All bots but Miner
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Botnet Crypto Signed Replay?

Hlux BF3D RSA2048 No
Miner None No Yes
Sality v3 RC4 RSA1024 No
Sality v4 RC4 RSA2048 No
Storm XOR No Yes
Waledac AES No Yes
ZeroAccess v1 RC4 RSA512 Yes
ZeroAccess v2 XOR RSA1024 No
Zeus chXOR RSA2048 Yes

Table 6.4: P2P-based C&C resilience characteristics. Legend: chXOR = chained XOR;
BF3D = Blowfish+3DES.

encrypt their C&C communication. Zeus and Sality encrypt in a way that even
identical C&C messages look arbitrary after encryption, effectively evading IDSs
that base on C&C payload signatures. In addition, we found that three botnets,
Miner, Storm and Waledac, did not sign the commands. In theory, given the sym-
metric encryption in these networks, defenders (or other attackers) could inject
custom commands. Last, although their commands are signed, Zeus and Ze-
roAccess v1 allow defenders to replay old commands. Depending on the recorded
commands, replaying C&C commands may help to disturb a P2P botnet.

6.5.3 Sinkholing Resilience

Sinkholing is a widely applied botnet mitigation strategy that can also be applied
to P2P botnets. With a P2P botnet sinkhole, bots communicate only to end
points controlled by defenders. Sinkholing is efficient, as it assumes that peerlists
can be manipulated via the botnet’s C&C protocol. Sinkholing neither requires
physical access to the infected hosts, nor entities such as A/V vendors or ISPs to
actively participate in the sinkholing efforts. The basic principle of sinkholing is
to manipulate the peerlists of bots such that all entries point to special servers.
Typically, to learn about new nodes in the P2P network, P2P botnets foresee
mechanisms to add of new entries to the peerlist. Moreover, to handle IP address
or port churn, most P2P-based C&C protocols include a mechanism to update
existing peerlist entries. Depending on the P2P protocol implementation, these
two techniques allow one to sinkhole a P2P botnet.

Table 6.5 summarizes the peerlist management strategies chosen by historic
(upper part) and existing (lower part) unstructured botnets. In particular, Ta-
ble 6.5 shows in which situations sinkhole entries can be added to the peerlists
and which existing peerlists entries can be overwritten. For all existing P2P bot-
nets, we can manipulate the peerlists of bots such that entries point to sinkhole
addresses. To practically verify the sinkholing resilience, we developed attack
prototypes for all existing unstructured P2P botnets.
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Botnet Add peers Overwrite peers Backup

Waledac if more recent all (500-1000) fast-flux
Miner never no Centr. C&C

Hlux if more recent half (250) fast-flux
Sality v3 if higher rep. 1 (IP spoofing) None
Sality v4 if higher rep. 1 (IP spoofing) None
ZeroAccess v1 if more recent all (256) None
ZeroAccess v2 if more recent 16 per message None
Zeus if |PL| < 50 10 per message DGA

Table 6.5: Peerlist management strategies of P2P botnets

Zeus

When receiving a request, the Zeus bot adds the sender to its peerlist if it knows
fewer than 50 peers. Once a peerlist is saturated with 50 entries, Zeus does not
add or replace entries. However, when receiving a request from a peer whose
unique ID is in a bot’s peerlist, a recipient would update the end-point address
for the peer ID of the sender. By spoofing node IDs, it is possible to redirect
existing peerlist entries to a sinkhole. In addition, bots also check the current
peerlist size, and request new nodes from the sinkhole if the size is below 25
entries. Summarizing, we see that one can introduce the sinkhole to a peerlist.

However, the Zeus P2P command layer remains active as long as peers have a
high out-degree. To successfully sinkhole Zeus, it is vital to remove or invalidate
all peerlist entries that do not point a sinkhole. We achieve this by invalidating
existing entries. In particular, when communicating with Zeus bots, we fake the
source bot ID in Zeus messages to overwrite Zeus’ peerlist entries with sinkhole IP
addresses. Whenever a Zeus message is from a source ID existing in the recipients
peerlist, the recipient will update the end point information to the sender’s ad-
dress. In addition, Zeus frequently tries to contact and validate existing entries,
and deletes manipulated entries that are not reachable anymore. Our prototype
has shown that we can remove all entries from the Zeus peerlists this way.

Sality

Like with Zeus, it is straightforward to add a sinkhole address to the peerlist of
Sality bots. Unlike any other P2P botnet, Sality deploys a reputation scheme per
entry in its peerlist. Peers gain reputation if they are reachable and strictly follow
the most recent Sality P2P protocol dialect, or lose reputation otherwise. This
reputation scheme becomes important when observing how Sality adds peers to
its peerlist. In particular, if the list is saturated (1000 entries), Sality replaces
the peer with the lowest reputation with the new peer. This way we can replace
only peers with low reputation scores.

The main sinkholing challenge is to remove entries with a high reputation
from the peerlist. To replace these peers, we use Sality’s peer announcement
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mechanism to update the port of existing peerlist entries. IP spoofing enables
us to invalidate existing peerlists entries as follows: when Sality receives an an-
nouncement message from an IP address that is in its peerlist, but the source port
differs, Sality verifies if the announced bot is reachable. Once the verification pro-
cess succeeds, the bot updates the peer’s port to an incorrect value, invalidating
the entry for future reputation checks. This way, eventually, the reputation of
manipulated peerlist entries will decrease. Similarly, this attack effectively cuts
off Sality’s communication channel to other bots, as the only valid entries point
to sinkholes. However, from a practical point of view, this process may take years
to finish, making it unlikely that the attack succeeds.

ZeroAccess

ZeroAccess allows defenders to add new peers to the peerlist as long as the new
peers are more recent than existing entries. As a peerlist response also contains
the age of peerlist entries, in our attack scenario, we set the timestamp to the
maximum value. These fake entries then have a high likelihood to be merged into
the recipient’s peerlist. The two ZeroAccess variants differ in the way in which
fake peerlists can be sent to the bots. In the earlier ZeroAccess version, peerlists
can be served only to peers when they request a peerlist from a sinkhole. In
the more recent ZeroAccess version, peerlist messages will be accepted by peers
even though they did not request them. Either way, our prototype efficiently
succeeded to replace entire peerlists of ZeroAccess bots.

Unfortunately, sinkholing ZeroAccess also requires a minimization of the in-
degree of all peers. Both ZeroAccess variants deploy a self-healing protocol,
that is, peerlists are restored by broadcasting non-NATed peers to all neighbors.
When receiving a propagation message, ZeroAccess merges both the sender and
the propagated peer into its peerlist. As a consequence, nodes receiving such
broadcasts, that is, all non-NATed peers, effectively restore their peerlists. A
complete ZeroAccess sinkholing evaluation thus requires manipulation of many
peerlists simultaneously, which we did not integrate in our prototype sinkhole
due to possible collateral damage. Still, we have shown that all NATed peers,
the vast majority of the bots, can be sinkholed.

Hlux

Hlux, in all its three versions, has major resilience weaknesses. Similar to Ze-
roAccess, Hlux merges new peers to its peerlist, favoring more recent peers. To
sinkhole Hlux, we can connect to any existing bot and push an arbitrary peerlist,
replacing half of the remote peer’s peerlist. Kaspersky’s sinkholing attempts
against the first two Hlux versions support these claims [24]. In the third version,
the Hlux botmasters introduced a multi-layer obfuscation of the P2P messages.
However, the P2P protocol and architecture remained the same, enabling for
similar attacks as with the first two Hlux versions.

For all sinkholing operations, it is typically infeasible to directly manipulate
peerlists of NATed peers. A NAT gateway typically does not accept any incoming
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packet if the stream was not initiated by the local system. However, NATed peers
will soon learn about sinkholes via peerlist requests issued towards non-NATed
peers. When NATed peers contact a sinkhole, the sinkhole can interact with the
NATed peer from this moment on. If the P2P protocol allows it, the sinkhole can
then manipulate the NATed peers’ peerlists.

Similarly, it is important to consider backup C&C channels of P2P botnets.
For example, if a Zeus bot has an empty peerlist, it tries to receive new peerlists
from DGA-generated domains. Similarly, Miner and Hlux contained mechanisms
to contact (hard coded) centralized C&C servers in case their out-degree is zero.
However, our sinkholing prototypes can take these backup channels into account
and adapt the strategies accordingly.

Summarizing, sinkholing is a complex but effective mitigation technique against
unstructured P2P botnets. Our attack prototypes have shown that none of the
existing botnets are designed sufficiently resilient to withstand sinkholing. How-
ever, we can recognize a clear tendency towards more resilient P2P botnets that,
for example, deploy reputation schemes or avoid modifying saturated peerlists.
In particular, it requires only minor changes to both the Zeus and Sality proto-
cols to circumvent sinkholing. We will discuss possible P2P botnet evolutions in
Section 6.6.

6.5.4 Partitioning Resilience

Partitioning is a technique to split P2P botnets into many small, separately con-
nected networks. In contrast to sinkholing, partitioning attacks do not insert
fake entries to peerlists. Instead, partitioning is based on the fact that the bot-
master has to inject commands in all network partitions to reach all peers. If the
botmaster does not track all bots, it loses contact to a significant fraction of the
bot population. Technically, like sinkholing, partitioning also requires peerlist
manipulations. A defender can manipulate peerlists such that bots, for example,
only know peers in their bot-ID or IP-address proximity. Assume, for simplicity,
a uniform distribution of bots across the IP-address space. A defender can then,
for example, create 212 = 4096 logical subnetworks of a botnet by pointing bots
only to peers in the same /12 IP-address network.

However, it is significantly harder to evaluate the success of partitioning than
for sinkholing. Partitioning does not produce direct feedback such as bots con-
tacting the sinkhole. For this reason, we did not practically evaluate whether
partitioning the botnets is feasible. Similarly, partitioning is less efficient, as
no sinkhole participates in peerlist manipulations. On the other hand, parti-
tioning has important benefits. First, partitioning does not require resources
for sinkholes, such as bandwidth or IP addresses. Moreover, partitioning is less
conspicuous than sinkholing, as all peerlist entries point to normal peers. For
the same reason, botmasters cannot easily deploy reactive measures such as IP-
address blacklists. Lastly, it is possible to combine sinkholing and partitioning.
For example, one could sinkhole only a subset of peers, and partition all other
bots such that they peer only with this sinkholed subset.
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6.6 Discussion

We have shown prototypes for crawling, sinkholing and partitioning existing P2P
botnets. Given these neutral facts, this section discusses how to proceed with
this knowledge. For example, is P2P botnet sinkholing an ethical measure that
advances security research? And, for the future, which alternatives exists for
mitigating resilient P2P botnets?

Discussions on botnet takedowns often argue that attacks on P2P botnets
provoke the creation of newer and more advanced botnets. In fact, we have ob-
served that Storm was succeeded by Waledac, and later Hlux succeeded Waledac.
Similarly, after sinkholing the first two Hlux variants, shortly thereafter new bot-
nets with almost equal architecture arose. Two lessons can be learned from these
observations. First, botnet successors typically have similar (nonresilient) archi-
tectures, although the attacks were discussed publicly and attackers could have
learned from them. This shows that, so far, the strategies for botnet takedowns
need to be only slightly changed to cope with adapted architectures of new bot
variants. Consequently, a thorough sinkholing strategy that is adapted for fu-
ture bot variants may eventually cease a botnet operation. Our systematic P2P
botnet resilience evaluation aims to assist in future mitigation strategies.

Second, as long as malware-installation markets such as pay-per-install exists,
attackers can spawn new botnets in a short time. Most botnets attacked so
far, P2P-based or not, were botnets with direct harm. For example, Storm /
Waledac / Hlux were spambots, and Torpig / Zeus are banking trojans. Malware
downloaders such as Sality / ZeroAccess only cause indirect harm, in that they
install other malware (e.g., bots with direct harm) on infected systems. Research-
wise, sinkholing a combination of both types of botnets could deliver important
insights. This way it could be analyzed if botmasters can still easily acquire new
infections, as some parts of their typical installation chain (malware downloaders)
are disrupted.

Moreover, it is unclear if botnet sinkholing is ethical and legal. On the one
hand, sinkholing can mitigate the harm of a botnet affecting millions of victims.
Still, how far may defenders go in their activities? Is peerlist manipulation already
too intrusive? Are defenders allowed to impersonate IP addresses (i.e., spoof IP
packets) for the good? Who has the authority to give defenders legal backup
when performing sinkhole operations? A major difference to centralized botnets
is the lack of responsibility in P2P botnets. In centralized botnets, C&C-domain
registries or C&C-server hosting providers may be held responsible for operating
the C&C infrastructure, while a central responsibility for distributed botnets
simply does not exist. We clearly need further assistance to cope with these
responsibility and legal issues for future botnets.

Lastly, we would like to foster a discussion about the resilience of future
P2P botnets. By no means do our results prove that any future P2P botnet
will offer angles for mitigation attempts. In fact, some botnets could improve
their resilience with only minor tweaks. We would then face botnets that can-
not be sinkholed, asking for alternative approaches to mitigate such networks.
While controversial, a new field of research could analyze weaknesses in bot com-
mand signatures or malware binary vulnerabilities to disinfect clients remotely.
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However, despite their weak resilience schemes, current P2P botnets have been
operational for longer than a year, and their revenues probably exceed their costs.
We thus cannot foresee if botmasters see even a need to design more resilient P2P
botnets. In any case, our attack categorization aims to assist in complex future
P2P botnet mitigation efforts. If eventually a bullet-proof P2P botnet arises, we
at least provide a systematic approach to evaluate the botnet resilience.

6.7 Related Work

Most related to this work are very detailed malware analysis reports published
by others [23, 24, 33, 34, 58, 63, 89, 96]. We thankfully used initial reverse engi-
neering insights from these reports, largely assisting our manual code analysis. In
this work, we focus on the resilience of the P2P architectures. Thus, we extend
the current insights from initial reports with P2P protocol analyses and assess
the resilience of these architectures.

Other researchers have already shown that sinkholing operations can be suc-
cessful. Holz et al. presented their crawling and sinkholing results from the Storm
bot [42]. In addition, they discussed general resilience weaknesses of structured
P2P botnets. We showed in Section 6.3 that Storm was in fact the last structured
P2P botnet, prompting for more research about unstructured P2P botnets. Stock
et al. presented their sinkholing results from Waledac, the first-ever attacked un-
structured P2P botnet [84]. We were motivated by the success of these two cases
and provided an overview of further existing P2P botnets. In addition, we an-
alyze if similar mitigation techniques can be applied to other existing botnets.
Furthermore, we compare the botnet population of current botnets with P2P
botnets in the past.

The problem of crawling P2P botnets was first addressed by Kanich et al. [48],
who present advice for future enumeration attempts based on the lessons learned
by crawling the Storm botnet. An alternative approach to enumerate all infected
PCs (included NATed hosts) for structured P2P botnets was proposed by Kang
et al. [47]. In their system, the authors introduce many fake nodes that listen
for search requests, which could be adapted to unstructured P2P botnets. How-
ever, to not threaten future sinkhole attempts, we chose to enumerate hosts with
less intrusive crawls that do not require peerlist manipulations. In contrast to
the system proposed by Kang et al. [47], our botnet population estimations in
Section 6.4 are immune to such poisoning attempts, as we verify whether peers
respond to our requests.

Another branch of research analyzes if and how highly resilient P2P botnets
can be designed. For example, Starnberger et al. propose Overbot [81], a struc-
tured P2P botnet design trying to hide the identities of bots in existing P2P
networks. Similarly, Yan et al. propose the structured P2P botnet design Rat-
Bot [97]. In RatBot, bots in the structured P2P botnet randomly send command
requests with spoofed IP addresses, injecting noise to the number of crawled
peers. Yan et al. propose AntBot [98], a structured P2P botnet which relies on
trustful communication based on a secret key shared between the botmaster and
the bots. We are not aware of existing P2P botnets that base on ideas from
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these academic proposals, though. About a year after Sality appeared with its
reputation scheme, Hund et al. introduced Rambot [43], an unstructured P2P
botnet with proof-of-work and peer reputation scheme.

6.8 Conclusion

P2P botnet architectures have the potential to be much more resilient than cen-
tralized botnets, as they lack single point of failures. In fact, we have shown
how popular P2P botnets have become over the years: as of September 2012, we
have observed 12 disjoint active P2P botnets, using six distinct proprietary P2P
protocols. When monitoring only eight of these botnets on a normal weekday,
we counted multiple millions of infections.

Motivated by these insights, we evaluated the resilience of these P2P botnets
against reconnaissance, C&C abuse, sinkholing and partitioning. We reverse
engineered the bots and prototyped sinkholing attacks against all active P2P
botnets. Some of these prototypes are currently integrated to actual sinkholing
attempts. However, we also found that P2P botnets increased their resilience by
introducing self-healing P2P protocols and reputation schemes. Although bullet-
proof P2P botnet designs do not exist yet, future P2P botnets may demand for
new mitigation techniques.
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7
Conclusions and Future Work

7.1 Conclusions

Botnets have been a major security threat since many years, but until now lit-
tle research was done to understand the resilience of these malicious networks.
However, botnet resilience causes botnets to remain operable in the long term,
continuously harming end users by attacks like DDoS, spam, identity theft or
extortion. With the contributions in this thesis, we improve the current state of
botnet resilience research. We have estimated the resilience of botnets, and we
have explored techniques that botmasters use to improve botnet resilience.

In Chapter 3, we showed how to perform malware analysis for sound scien-
tific experimentation. We developed guidelines that enabled us to analyze botnet
resilience in a safe, transparent, realistic and scientifically correct manner. Our
survey on 36 academic publications highlighted the importance of such guide-
lines, as most of the surveyed papers would also have benefited from similar best
practices. We used these guidelines to design a dynamic malware analysis sys-
tem called Sandnet. Since we launched Sandnet in February 2010, it greatly
assisted us in analyzing botnet resilience, as described in Chapter 4.

When we started analyzing botnet resilience, we soon observed that not only
the botnet resilience determines how long and successful botnets are operated.
Instead, as long as botmasters can buy new installs on the underground market,
the root cause and the problem of botnets will persist. We thus separated the
actual botnet resilience analysis into two chapters.

In Chapter 5, we described the methodology of 23 malware downloader fam-
ilies. Malware downloaders are one of the main sources for new malware instal-
lations on the underground market. We showed that malware downloaders are
used to persistently drop thousands of malware samples. The resilience of these
downloader networks is achieved both via technical and organizational means.
Technically, attackers encrypt and try to hide C&C channels, often separating
C&C infrastructures from malware hosting infrastructures. Next to technical
measures, malware downloaders also systematically fluctuate their C&C hosting
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providers and C&C domain registrars. Consequently, malware downloaders can
reliably feed new installations to botmasters, remaining a root cause for botnets.

But even without such continuous feeds of new infections, Chapter 6 has
shown that botnets themselves can be highly resilient. We compared the re-
silience of six existing peer-to-peer (P2P) botnets with historic P2P botnets. We
successfully prototyped mitigation techniques for each of the botnets, preparing
sinkholing operations against botnets such as Zeus and ZeroAccess. Despite these
successes, though, we observed a tendency towards more resilience P2P botnets.
Botmasters increasingly deploy mitigation defenses such as reputation schemes
or P2P protocols with self-healing peerlists. In addition, we found P2P botnets
that use secondary C&C channels as backup if their P2P C&C component is
mitigated by defenders. Overall, while current P2P botnets still offer resilience
weaknesses, only minor changes in P2P protocols would render such networks
highly resilient.

Summarizing, we have analyzed resilience techniques that botmasters use to
successfully operate their botnets for many years. As we have shown, botnets
rarely show single point of failures. Even if C&C server takedowns cause a
botnet to disrupt temporarily, eventually the botmaster will use its remaining
infrastructures to reactivate the network, buying new malware installs if neces-
sary. Consequently, operations to successfully disrupt botnets must mitigate all
communication means simultaneously. However, C&C servers and C&C domains
are hosted by many different institutions, often spanning multiple time zones and
varying legislations. Given these complex designs, the resilience analyses in this
thesis can greatly help to assist in understanding the overall botnet resilience for
future mitigation operations.

7.2 Future Work

One goal of this work has been to understand the resilience of botnets. After
we fulfilled this goal for a large number of botnets, a possible next step is to
collaborate in botnet mitigation operations that abuse the resilience weaknesses
that we found. Although botnet takedowns were analyzed in the past, research-
wise, we can still learn from such operations. For example, it is yet unclear how
and how fast botnets are rebuilt once they are taken down. We plan to measure
this in the future, in particular, by disrupting two botnets simultaneously: one
with direct harm, and at the same time, disrupting the botnet that helps to spread
installations to the former one. We could then measure the effect by observing
evolutions of either botnet. Similarly, as of now, little data exists on takedowns
of malware downloader botnets such as Sality or ZeroAccess. A possible research
project could analyze the economy behind such takedowns, as losing and buying
bot installations financially affects botmasters.

In this thesis, we focused our P2P resilience analysis on P2P botnets. How-
ever, numerous other legitimate systems are based on P2P architectures, such
as the VoIP software Skype [66] or file sharing networks like BitTorrent [21].
Applying our P2P resilience analysis to these networks is an interesting research
question itself. A research project could investigate whether such large-scale P2P
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systems have similar resilience weaknesses.
As we have shown, we may encounter future botnets that cannot be disrupted

at the C&C network layer anymore. It is an open research question how to
mitigate the harm of such botnets. One possible research direction is exploring
ways how to remotely disinfect victims’ systems. Until now, malware removals are
performed on the host by anti-virus products or tools like Microsoft’s Malicious
Software Removal Tool (MSRT) [65]. However, particularly bots with server
functionalities such as P2P bots may have vulnerabilities that allow for remote
disinfection. Similarly, by refactoring cryptographic keys or finding weaknesses in
the command layer of botnets, it may be possible to inject disinfection commands
to the bots. Although controversially discussed, these methods may be the only
way to enforce disruptions of future botnets. We see the exploration of such
proactive malware disinfection routines as another research project.

Lastly, botnet resilience is also determined by the human factor. Botnets
can persist only because most users are not aware of the malware that is hidden
on their systems. So far, only little research explored how to reliably inform
infected users. Our P2P botnet crawling has identified millions of infections,
and we have shared this data with security organizations such as CERTs and
Shadowserver [4]. Yet a large fraction of users remain unnoticed, not knowing
they risk losing data or participating in attacks like spam or DDoS. Until now,
there is no viable solution to inform infected users. Designing a trustful, secure,
and reliable infection alert system remains an open research question.
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Glossary

A/V Anti-virus: An A/V vendor offers security solutions against viruses, often
by searching for known A/V signatures in binaries. 43, 71, 83, 84, 100

AS Autonomous system: A collection of connected Internet Protocol routing
prefixes, often similar but not limited to an ISP. 76

CERT Computer Emergency Response Team: A team handling computer secu-
rity incidents for specific networks. 93, 95, 111

DDoS Distributed Denial of Service (attack): An attack, by which multiple
remote-controlled systems simultaneously add a high load (in terms of band-
width, connections, HTTP requests, etc.) towards one target, with the goal
to disrupt its service. 6, 13, 70, 109, 111

DGA Domain Generation Algorithm: A botnet can use a DGA to compute its
C&C domains dynamically, for example, based on a function that takes the
current date as seeding input. 7, 8, 48, 102

DHT Distributed Hash Table: Decentralized system providing lookup services
similar to a hash table. 90, 92

ISP Internet Service Provider: An organization that provides access to the In-
ternet, for example, to end users. 82, 93, 95, 98, 100, 121

MD5 Message-Digest Algorithm 5: A typical cryptographic hash function, trans-
forming a file to a 128bit checksum. 18, 34, 35, 43, 71, 74, 82, 84

NAT Network Address Translation: The process of modifying IP address infor-
mation in IP packet headers while in transit across a traffic routing device.
19, 22, 34, 50, 70, 94–98, 101, 102, 104
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NIDS Network intrusion detection system: An independent system that identi-
fies intrusions or attacks by examining network traffic. 34, 70

OS Operating System, for example, Windows XP or Red Hat Linux. 18, 20, 34,
69

PE Portable Executable: File format for executable files on Microsoft Windows
operating systems. 55, 58

PPI Pay-per-install: An underground service, in which an affiliate is paid for
malware installations on exploited systems. 67, 68, 70, 85

SVM Support Vector Machine: A supervised learning model used for classifica-
tion or regression analysis. 26

TLD Top Level Domain: One of the domains at the highest level in the DNS
hierarchy, for example, .com or .nl. 77

TTL Time to live: In the context of DNS, TTL refers to the time a DNS response
record may be cached. In the context of the IP protocol and P2P botnets,
TTL refers to the maximum number of hops a packet is routed before it is
dropped. 48, 90

VM Virtual Machine, for example, based on VirtualBox or VMware. 18, 37, 42,
82

.com
.nl


Summary

Botnets, networks of remotely controllable malware-infected PC systems, impose
a threat to millions of users by attacks such as spam, identity theft, or denial of
service. While we aware of botnets in general, there is no solid understanding
of the resilience of these malicious networks. For example, it is unclear how
botmasters ensure that botnets remain operational for many years. Similarly,
our community does not know which botnets operate for how long and how
many infected PCs are part of these botnets.

In this thesis, we aim to improve the current state of botnet resilience research.
To bootstrap our botnet resilience analysis, Chapter 3 discusses how to perform
malware analysis for sound scientific experimentation. We propose guidelines
that enable us to analyze botnet resilience in a safe, transparent, realistic and
scientifically correct manner. By surveying 36 academic publications that perform
malware experimentation, we highlighted the importance of such guidelines. Most
of the surveyed papers would also have benefited from similar best practices. We
then used these best practices to propose a dynamic malware analysis system
called Sandnet in Chapter 4. We launched Sandnet in February 2010 as a
supportive tool to analyze botnet resilience in this thesis.

A complete botnet resilience analysis has to cover two sides of the botnet
problem. In particular, botnet resilience is also determined by the infrastruc-
tures attackers use to create or enlarge such networks. This thesis has shown
that botnets rarely spread themselves anymore, but use malware installation in-
frastructures to obtain new infected PCs. Thus, next to botnet resilience itself,
we also have to analyze the resilience of malware installation networks. This
thesis separates the botnet resilience analysis into two parts.

First, in Chapter 5, we outline the workings of 23 malware downloader fami-
lies. These malware downloaders, as we have shown, persistently drop thousands
of malware samples. Attackers use technical and organizational means to im-
prove the resilience of these networks. Technically, attackers encrypt and try to
hide C&C channels, often separating C&C infrastructures from malware hosting
infrastructures. Next to technical measures, malware downloaders also systemat-
ically fluctuate their C&C hosting providers and C&C domain registrars. With
these techniques, malware downloaders remain a persistent root cause for suc-
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cessful botnet operations. Levering the necessity of malware downloaders to host
their infrastructures publicly, we propose two new techniques to automatically
acquire malware samples from these infrastructures.

In Chapter 6, we show that botnet architectures themselves can be highly
resilient. In particular, we highlight recent trends in the development of peer-
to-peer (P2P) botnets, which are explicitly designed to be highly resilient. We
compare the resilience of six existing P2P botnets with historic P2P botnets.
To test the botnet resilience, we prototype mitigation techniques for each of the
botnets. These prototypes have helped to prepare sinkholing operations against
P2P botnets such as Zeus and ZeroAccess. Overall, though, we observed trends
towards highly resilient P2P botnets that cannot easily be attacked anymore.
For example, botmasters use reputation schemes or deploy P2P protocols with
self-healing peerlists that mitigate sinkholing attempts. In addition, P2P botnets
back off to using secondary C&C backup channels if their P2P C&C component
fails. We find that only minor changes in P2P protocols would render such
networks highly resilient. As a consequence, we expect further P2P botnets in
the near future.

Overall, we analyzed techniques that botmasters use to successfully operate
their botnets for many years. Our observations imply that botnet mitigations
strategies have to go far beyond disruptions of single C&C servers or C&C do-
mains. Such one-off initiatives would only cause temporary botnet disruptions,
and botmasters will use their remaining infrastructures to reactivate the botnets.
However, botnet resilience is also determined by relatively easy organizational de-
cisions by the botmasters. For example, if C&C end points are hosted at multiple
sites, mitigation efforts have to involve institutions in varying time zones and leg-
islations. Our resilience analyses assists in the complex problem of understanding
the overall botnet resilience. Such resilience analyses are, for example, helpful for
future botnet mitigation operations. Our discussion raises awareness of these re-
silient botnets, fostering research to explore alternative counter-measures against
these networks.



Samenvatting

Titel: Een evaluatie van de robuustheid van botnets door
middel van malware analyse

Botnets, netwerken van op afstand bedienbare met malware-gëınfecteerde PC
systemen, vormen een bedreiging voor miljoenen gebruikers door het versturen
van spam, het stelen van gevoelige gegevens of het onbereikbaar maken van es-
sentile services. De onderzoeksgemeenschap is zich bewust van de mogelijkheden
van botnets in het algemeen, echter is er geen voldoende inzicht in de veerkracht
van deze kwaadaardige netwerken. Zo is het onduidelijk hoe botmasters ervoor
zorgen dat botnets gedurende vele jaren operationeel blijven, hoe lang botnets
operationeel zijn en hoeveel gëınfecteerde PCs deel uitmaken van deze netwerken.

In dit proefschrift willen wij de manier van onderzoek naar de veerkracht van
botnets verbeteren. Als eerste hebben we onderzocht hoe experimenten met bot-
nets kunnen worden uitgevoerd op een wetenschappelijk verantwoorde manier.
In hoofdstuk 3 bespreken wij richtlijnen die ons in staat stellen botnets te anal-
yseren in een veilige, realistische omgeving en op een transparante wetenschap-
pelijk correcte manier. Door middel van een literatuurstudie, bestaande uit 36
wetenschappelijke publicaties waarin malware experimenten worden beschreven,
onderbouwen wij het belang van dergelijke richtlijnen. Uit dit onderzoek con-
cluderen wij dat het merendeel van de bestudeerde publicaties profijt zouden
hebben gehad bij het volgen van de voorgestelde richtlijnen. Vervolgens hebben
we gebruik gemaakt van deze richtlijnen om Sandnet, een dynamische malware
analyse systeem dat wordt besproken in hoofdstuk 4, te ontwikkelen. We lanceer-
den Sandnet in februari 2010 als een ondersteunende tool bij het uitvoeren van
analyses naar botnets.

Een compleet onderzoek naar de veerkracht van botnets dient twee kanten
van het botnet probleem te belichten. De veerkracht van botnets wordt namelijk
mede bepaald door de infrastructuur waarvan de aanvallers gebruik maken of
waarmee huidige kwaadaardige netwerken worden uitgebreid. In dit proefschrift
laten wij zien dat botnets zelden zelf verspreiden, maar gebruik maken van een
malware installatie infrastructuur om nieuwe PC systemen te infecteren. Dus
om een compleet beeld te schetsen, moeten we ook de veerkracht van malware
installatie infrastructuren analyseren. In dit proefschrift wordt het onderzoek
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naar de veerkracht van botnets daarom in twee delen behandeld.
In het eerste deel, behandeld in hoofdstuk 5, bespreken we de werking van

23 malware downloaders. Deze malware downloaders installeren voortdurend
massaal malafide programma’s op al gëınfecteerde PC systemen. Om deze mal-
ware installatie infrastructuren te beschermen combineren aanvallers zowel tech-
nische als organisatorische maatregelen. Technische maatregelen zijn het coderen
en verborgen houden van C&C-kanalen, maar vaak scheiden aanvallers ook de
C&C-infrastructuur van de malware installatie infrastructuren. Naast technische
maatregelen zorgen malware downloaders ervoor dat hun C&C hosting providers
en C&C domein registrars systematisch veranderen. Het toepassen van deze tech-
nieken door malware downloaders is een van de redenen dat botnets zo succesvol
blijven. Wij stellen twee nieuwe technieken voor die gebruik maken van de pub-
lieke aard van de malware installatie infrastructuren om automatisch malware
samples te verzamelen voor verdere analyse.

In hoofdstuk 6 laten we zien dat botnet architecturen zeer veerkrachtig kun-
nen zijn. In het bijzonder behandelen wij de huidige trend in de ontwikkeling
van peer-to-peer (P2P) botnets, die speciaal zijn ontworpen om zeer veerkrachtig
te zijn. We vergelijken het herstelvermogen van zes bestaande P2P botnets met
historische P2P botnets als deze doelbewust worden verstoord. Om de veerkracht
van deze P2P botnets te testen hebben wij prototypes ontwikkeld die de botnets
verstoren. Deze prototypes hebben geholpen om sinkholing operaties voor te
bereiden tegen succesvolle P2P botnets zoals Zeus en ZeroAccess. Uit onderzoek,
met gebruik van deze prototypes, blijkt dat deze trend van zeer veerkrachtige
P2P botnets leidt tot kwaadaardige netwerken die niet meer gemakkelijk kun-
nen worden verstoord. Botmasters gebruiken bijvoorbeeld reputatie regelingen
of implementeren P2P protocollen met zelfherstellende peerlists wat sinkholing
pogingen beperkt. Daarnaast vallen P2P botnets terug op secundaire C&C back-
up kanalen bij het falen van hun P2P C&C component. Uit ons onderzoek blijkt
dat met slechts kleine aanpassingen van de P2P-protocollen dergelijke netwerken
zeer veerkrachtig worden. Als gevolg hiervan verwachten wij een opkomst van
P2P botnets in de nabije toekomst.

Wij hebben met name technieken onderzocht die botmasters gebruiken om
succesvol hun botnets operationeel te houden voor vele jaren. Onze waarnemin-
gen impliceren dat botnet ontmantel strategien veel verder moeten gaan dan het
buitenwerking stellen van enkele C&C servers of C&C domeinen. Zulke initi-
atieven leiden alleen tot tijdelijke verstoring van een botnet en botmasters zullen
gebruik maken van hun resterende infrastructuur om de botnets weer operation-
eel te maken. Deze veerkracht van botnets wordt mede bepaald door relatief
eenvoudig organisatorische maatregelingen van de botmasters. Bijvoorbeeld, als
C&C eindpunten worden gehost op meerdere plaatsen, dan moeten meerdere
partijen in verschillende tijdzones en wetgevingen samenwerken om de botnet
te ontmantelen. Onze analyses geven inzicht in de algehele veerkracht van bot-
nets. Dergelijke analyses zijn bijvoorbeeld nuttig bij toekomstige pogingen om
botnets te ontmantelen. Onze discussie maakt mensen bewust van de veerkracht
van botnets en stimuleert het onderzoek naar alternatieve methoden om deze
kwaadaardige netwerken te ontmantelen.
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