
Forward Dynamics 421

421

JOURNAL OF APPLIED BIOMECHANICS, 2004, 20, 421-449
© 2004 Human Kinetics Publishers, Inc.

The authors are with the Faculty of Human Movement Sciences, Vrije Universiteit,
Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands.

Forward Dynamics of Two-Dimensional
Skeletal Models. A Newton-Euler

Approach

L.J. Richard Casius, Maarten F. Bobbert, and Arthur J. van Soest
Vrije Universiteit, Amsterdam

Mathematical modeling and computer simulation play an increasingly impor-
tant role in the search for answers to questions that cannot be addressed ex-
perimentally. One of the biggest challenges in forward simulation of the
movements of the musculoskeletal system is finding an optimal control strat-
egy. It is not uncommon for this type of optimization problem that the seg-
ment dynamics need to be calculated millions of times. In addition, these
calculations typically consume a large part of the CPU time during forward
movement simulations. As numerous human movements are two-dimensional
(2-D) to a reasonable approximation, it is extremely convenient to have a dedi-
cated, computational efficient method for 2-D movements. In this paper we
shall present such a method. The main goal is to show that a systematic ap-
proach can be adopted which allows for both automatic formulation and solu-
tion of the equations of kinematics and dynamics, and to provide some
fundamental insight in the mechanical theory behind forward dynamics prob-
lems in general. To illustrate matters, we provide for download an example
implementation of the main segment dynamics algorithm, as well as a com-
plete implementation of a model of human sprint cycling.

Key Words: human, segments, degrees of freedom, modeling, equations of
motion, motion simulation, kinematic constraints

The ability of human beings to control their movements to meet specific
goals is truly remarkable. In controlling movements, two systems are involved:
the nervous system and the musculoskeletal system. The nervous system sends
electrical signals to the muscles referred to as muscle stimulation, whereupon
muscles produce forces that actuate the skeleton. Generally the resulting move-
ment produces feedback, allowing the nervous system to adapt the muscle stimu-
lation. Figure 1 depicts the course of action schematically.

For some movements it is straightforward to define an objective performance
criterion, such as the maximum height reached in vertical jumping or the highest

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15476837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Casius, Bobbert, and van Soest422

power transferred to the crank in sprint cycling. Strictly speaking, the intrinsic
properties of the musculoskeletal system determine the theoretically maximum
achievement. Actual achievement, however, depends largely on the control of the
musculature (Bobbert & van Soest, 1994). Regardless of the strength of the muscles,
without optimal coordination the system does not realize its potential performance.
To study the relation between properties of the musculoskeletal system and the
maximum achievable performance, as well as coordination of the musculature, we
cannot rely solely on experiments with humans. Many variables of interest simply
cannot be observed or manipulated experimentally. Consider for example the fol-
lowing questions:

• What happens to the maximum jump height if the strength of a particular
muscle increases by 10%, and how should muscle stimulation be adapted to
produce maximum height?

• How should muscle stimulation be adapted to obtain maximum power out-
put when the height of a bicycle saddle is altered?

• What would happen to a cyclist’s maximum power output if the origin and
insertion of a particular muscle were situated differently?

Obviously such questions are difficult if not impossible to address experi-
mentally, either for ethical or practical reasons. Therefore, mathematical modeling
and computer simulation play an important role in the search for answers to these
questions. In forward simulation of the movements of the musculoskeletal system,
muscle stimulation as a function of time is the input, and the resulting movement
is the ultimate output. During a simulation, the researcher has full control of the
input and the parameters of the model, and full access to all variables. Given a set
of parameters, an optimal movement might be found by systematically trying dif-
ferent muscle stimulation patterns. This normally requires sophisticated optimiza-
tion techniques such as simulated annealing (Goffe et al., 1994) or genetic algorithms
(Soest & Casius, 2003). The modeling and simulation approach has successfully
been applied in different studies over the last decades. For example, several au-
thors have published on vertical or long jumping (Bobbert & van Soest, 1994;
Hatze, 1981a; Pandy et al., 1990) and sprint cycling (Neptune, 1999; Soest &
Casius, 2000). Due to the progress made in the field and the ever-increasing com-
puter power, its applicability is recognized by a steadily growing audience.

In this paper we shall focus on the skeletal system. (For those interested in
modeling the musculature, see Barret et al., 2002; Hatze, 1981b; Soest & Bobbert,
1993; Zajac & Gordon, 1989; Zajac & Winters, 1990). In the next section, the
equations of motion for a chain model of the skeleton are derived using the New-
ton-Euler approach. To solve the equations on a computer, the section on Generic

Figure 1 — Interaction between the nervous system and the musculoskeletal system.

Forward Dynamics 423

Algorithm turns them into an equivalent system A·x = b, and provides a generic
algorithm for automatically doing so. Although this paper focuses on forward dy-
namics, the algorithm is perfectly suitable for inverse dynamics or any mix of
forward and inverse dynamics. To perform a simulation, the section on Simulating
a Movement briefly introduces the differential equations that govern the motion of
the skeleton needed for numerical integration. This is followed with a section on
Kinematic Constraints which shows how kinematic acceleration constraints can
be added to the equations of motion to impose restrictions on the movement. The
final section is a comprehensive example concerning sprint cycling.

To illustrate the basic principles, example code is provided on an accompa-
nying web site (http://www.ifkb.nl/downloads/casius), written in Matlab (The
MathWorks, Inc.; http://www.mathworks.com). Owing to the compact matrix
manipulations, a rather complete example could be provided. The code has been
written with readability rather than efficiency as the main purpose, so for a basic
understanding one does not need prior knowledge of Matlab.

Newtonian Equations of Motion for a 2-D Chain Model

Isolating the skeletal system from Figure 1 leaves us with the system depicted in
Figure 2. The skeleton is actuated by forces generated by muscles, and by external
forces such as gravity. Given the current position and velocity of the skeleton, the
acceleration with respect to an inertial frame of reference, i.e., a frame of reference
fixed to earth, can be calculated. This is generally referred to as forward dynamics,
or also direct dynamics. As we shall not discuss muscle dynamics in this paper, the
mechanical effect of muscle forces is represented by net joint moments. In sys-
tems that do incorporate muscle dynamics, the calculation of net joint moments
from muscle forces is just an additional step taken prior to calculating the skeletal
dynamics. Thus, replacing muscle forces by net joint moments is not detrimental
to the discussion of skeletal dynamics.

Compared to inverse dynamics, that is, calculating net joint moments from
(experimental) kinematical data, forward dynamics is much more complicated
because, as a rule, it involves solving a system of coupled differential equations.
The main goal of this paper is to show that a systematic approach can be adopted
which allows for both automatic formulation and solution of the equations of kine-
matics and dynamics.

Actually, such an approach underlies several commercially available soft-
ware packages such as ADAMS (Automated Dynamical Analysis of Mechanical
Systems, Mechanical Dynamics Inc., Ann Arbor, MI), DADS (Dynamic Analysis

Figure 2 — Flow of
control in forward
dynamics.

..

.

.

Casius, Bobbert, and van Soest424

and Design System, Computer Aided Design Software Inc., Oakdale, IA), and SD/
FAST (PTC, Needham, MA). Notwithstanding the potential use in mechanical
engineering, commercial packages often lack the efficiency that can be obtained
by writing problem-specific software and do not always offer the flexibility de-
sired by biomechanical researchers (Bogert, 1990). Therefore several packages
have been developed in the academic world to meet specific needs, e.g., SPACAR
(Werff, 1977) and MUSK (Casius, 1995). Even if commercial packages are em-
ployed for biomechanical problems, the researcher should have good insight into
the theory underlying such computer programs.

Understanding equations of motion and solving differential equations via
numerical integration are of vital importance to the development of human models
and interpretation of the simulation results. In this paper we shall present a method
for solving forward dynamics problems that is particularly efficient for 2-D chain
models of the skeleton, which has successfully been applied in a variety of studies
such as vertical jumping (Soest et al., 1994), sprint cycling (Soest & Casius, 2000),
rowing (Soest & Smith, 2001), and postural control (Soest et al., 2003). Although
some aspects of other methods will be briefly mentioned, for a more elaborate
overview we refer to Haug (1989) and Schielen (1990).

Chain Model of the Skeleton

For simplicity, a skeletal model will be restricted to a 2-D chain of rigid segments.
The rigidity assumption is customary in simulation studies, as it is believed that
the movement of parts within a body segment is negligible compared to interseg-
mental motion. In passing, there is evidence that representing human segments as
rigid bodies is not appropriate during impact (Dickenson et al., 1985; Gruber et al.,
1987; 1998; Liu & Nigg, 2000). The assumption of two-dimensionality is clearly
more restrictive. However, the examples in the previous section show that simple,
well-defined movements in 2-D space are perfectly suitable for studying many
aspects about the properties and coordination of the musculoskeletal system, sim-
ply because numerous human movements are 2-D to a reasonable approximation
(e.g., jumping, lifting, rowing, postural control, cycling). Thus it is convenient to
have a dedicated, computational efficient method for 2-D movements. Especially
when simulations involve optimization of, say, an optimal control strategy, com-
putational efficiency is extremely important (Soest & Casius, 2000, 2003).

Although the 2-D method presented in this paper can theoretically be gener-
alized to 3-D analyses, the complexity should not be underestimated, and for that
matter Kane’s method may be a better choice (Yamaguchi, 2001). Nonetheless,
the mechanical fundamentals of 2-D methods presented here provide insight into
the theory underlying 3-D methods as well. The final assumption concerns the
way the segments are attached to make up a chain. All segments are connected in
hinge joints. This implies that translational motion within a joint is neglected.

Figure 3 shows a side view of a person performing a vertical squat jump. It
also outlines a chain model of the skeleton. The segments are numbered from 1 to
n, the joints from 1 to n+1, where n equals the number of segments. The first
segment represents the feet, the second the lower legs, the third the upper legs, and
the fourth the head, arms, and trunk (HAT). The circles represent the joints. The
end joints—virtual joints—are used to connect the ends of the chain to the envi-
ronment. In this example the first joint connects the feet to the floor. In this context

Forward Dynamics 425

we say the joint axis is fixed. The next three joints represent the ankle, knee, and
hip joint. Since the end of the chain is airborne, the final joint is not shown in this
example, but we still refer to it as a joint, which in this case is free. Although the
first joint axis is fixed in this example, this is not a necessity. Both ends of the
chain can be free, making the whole system airborne. Likewise, both ends of the
chain may be attached to the environment. Intermediate joint axes can also be
fixed, although from a computational point of view it may be more efficient to
split the chain into two parts that happen to be attached to the same point. The
implementation of the skeletal dynamics described below allows joint axes to change
from fixed to free during a simulation. As a rule, the opposite is not the case, as this
would require the implementation of impact dynamics (Gerritsen et al., 1995).

As a more complex example of a skeletal model, Figure 4 shows a cyclist.
The hip joint axis is fixed, representing that the cyclist is attached to the saddle. At
the hip joint, the chain branches off: one branch constitutes the second leg, the
other the HAT segment. Although branches are not formally discussed, in the sec-
tion on Branches we shall present a simple trick to implement them within the
framework of the chain model. Note that a segment does not necessarily represent
a human part. In Figure 4a the first and last segments represent a crank. One end of

Figure 3 — Four-segment chain
model of a human performing a
vertical jump squat (arms akimbo).

Figure 4 — Two skeletal models of
a cyclist. Left: Two cranks are
modeled that are fixed at the same
point. Right: Only one crank is
modeled, which is fixed at the
rotational axis.

Casius, Bobbert, and van Soest426

each crank is fixed at exactly the same position; i.e., the first and last joint in the
chain coincide. Later we shall see that provisions must be made to ensure that both
cranks rotate at equal speeds around this point. Figure 4b shows a more elegant
solution, in which only one crank is modeled. Both feet are connected to this crank.
The center of gravity, which coincides with the rotational axis, is fixed to the envi-
ronment.

Skeletal Parameters, Position, and Degrees of Freedom

Assuming that the center of gravity of a segment is located on the line between its
adjacent joints, the intrinsic properties of an individual segment can be described
by four parameters: mass (m), length (,), distance from proximal end to the center
of gravity (d) (see Figure 5), and moment of inertia relative to center of gravity (j).
The orientation of a segment is given by its segment angle (ϕ), which is defined as
the angle between the positive x-axis and the line from proximal to distal joint.
Figure 5 shows that counterclockwise angles are taken to be positive. Given all
segment angles, the position of any point in the chain relative to any other can be
calculated. In Figure 5 for example, if (x1, y1) is the position of CoG1 and (x2, y2)
the position CoG2, then:

x2 = x1 + (,1 – d1) · cos (w1) + d2 · cos (w2)
y2 = y1 + (,1 – d1) · sin (w1) + d2 · sin (w2)

Consequently, if the position of an arbitrary point with respect to the environment
is known in addition to the segment angles, the position and orientation of the
body is fully established.

The minimum number of coordinates needed to specify the position and
orientation of all segments is called the number of degrees of freedom (DF) of the
mechanical linkage. For an n-segment chain model, DF is at most n+2: n angular
coordinates, and two Cartesian coordinates (an x- and y-coordinate) are sufficient
to establish the orientation and position of the whole body. In many cases DF is

Figure 5 — CoG1 and CoG2 are the
centers of gravity. In this paper,
proximal refers to particles more
ahead in the chain, while distal refers
to particles more behind. Thus, d1 is
the distance from the proximal end of
Segment 1 to CoG1, while ,1 – d1 is the
distance from CoG1 to its distal end.

Forward Dynamics 427

even lower due to (kinematic) constraints imposed on the system. In Figure 3 for
example, the first segment is connected to the floor, so the x- and y-position of the
first joint are no longer free. Consequently, two DF are lost, and the four segment
angles alone make up a minimal set of coordinates that specify the position and
orientation of the whole body. However, instead of the first segment angle, we
could also take the x-coordinate of the second joint, or the y-coordinate, or one of
the coordinates of the center of gravity, etc.

Any minimal set that specifies the position and orientation of the whole
body is called a set of generalized coordinates (i.e., any mixture of angular and
Cartesian coordinates is allowed) (Zajac & Winters, 1990; Zatsiorsky, 1998). The
notion of DF is important in the field of motion simulations, as it equals the mini-
mum number of equations of motion needed to model the motor task in question.
Several methods for deriving a system of equations of motion are based on the
concept of generalized coordinates, such as the commonly used Lagrangian meth-
ods and Kane’s method (Kane & Levinson, 1985; Yamaguchi, 2001). In the next
section we shall present a different approach, generally referred to as the Newton-
Euler method.

Equations of Motion

The key step of the Newton-Euler method is to break down the system into indi-
vidual segments. For each segment, a free body diagram is constructed showing
all forces and moments acting on it. From the previous section we know that the
DF of an n-segment chain in 2-D space equals n+2. Thus, for an isolated segment,
DF = 1+2 = 3. Consequently we need three equations of motion for each segment.
Regarding the linear accelerations of a segment, equations are derived using
Newton’s second law; for the angular acceleration, an Euler equation is used. If

.
x
.
c

and
.
y
.
c denote the linear accelerations of the center of gravity, and ϕ.. the segment

angular acceleration, we get:
Σ Fx = m ·

.
x
.
c

Σ Fy = m ·
.
y
.
c

Σ M = j · ϕ..

The first two equations hold for any free body diagram, whereas the third
only applies to rigid (i.e., nondeformable) bodies. All moments and forces that
may act on a segment can conveniently be represented by the three forces and the
three moments shown in Figure 6. First, reaction forces from adjacent segments
(or the environment) act on both ends of the segment. Second, a net joint moment
acts about both ends of the segment. In musculoskeletal models, a net joint mo-
ment represents the sum of moments of all forces produced by the muscles and
passive structures that span the joint, calculated relative to the joint rotational axis.
Finally, all external forces (e.g., gravity) can be represented by a net external force
that applies at the center of gravity, together with a net external moment that repre-
sents the actual point of application of this force.

When two segments are assembled, they exert a force on each other. Sup-
pose that Segments 1 and 2 are connected in a hinge joint (Figure 7). Let F1,2 be the
force exerted by Segment 1 on Segment 2, and F2,1 the force exerted by Segment 2
on Segment 1. We do not need to represent both forces. After all, from Newton’s
third law of action and reaction, it follows that: F2,1 = –F1,2. Therefore we only

Casius, Bobbert, and van Soest428

Figure 6 — Forces and moments acting on a
segment. Fr1 and Fr2 denote joint reaction
forces, and M1 and M2 the net moments about
the joints. Fext represents the external forces
that apply at the center of gravity, and Mext the
external moment that acts from the
environment.

Figure 7 — Left: Two segments connected in a hinge joint, where action = – reaction. Note
that the joints connect in J2 but have been drawn separately for readability. Right: Horizontal
and vertical components of the forces acting on the first segment.

Forward Dynamics 429

define a single joint reaction force at each of the n+1 joints in our n-segment chain.
Throughout the text, Fri will be used to denote the joint reaction force at joint i,
exerted by segment i–1 on segment i. For the most proximal joint, the reaction
force is exerted by the environment, and for the most distal joint the force is ex-
erted on the environment. For the net joint moments a similar argument holds. In
Figure 7, the net joint moment that acts about the distal end of Segment 1 must
equal the net joint moment that acts about the proximal end of Segment 2, albeit
they work oppositely. Consequently we need to deal with only n+1 net joint mo-
ments. We shall use Mi to denote the net moment that acts about the proximal end
of segment i (see Figure 7).

To write down the equations of motion in scalar form, all forces that act on a
segment are decomposed in a horizontal and vertical component, as was done for
the first segment in Figure 7. Concerning the signs, forces directed along the posi-
tive x-axis and y-axis are taken to be positive; moments are taken to be positive if
they cause a counterclockwise acceleration. To specify the position of the system
with respect to the environment, we shall use the x- and y-coordinate of the first
joint in the chain. In this context the first joint will be referred to as the base of the
chain, and its position will be denoted by (x, y).

Given Figure 7, we will formulate the equations of motion for a two-seg-
ment body. Since we have three equations of motion for each segment, we cannot
have more than three unknowns. With regard to forward dynamics, in addition to
the horizontal and vertical reaction force at the proximal joint, the angular accel-
eration of the segment acts as the third unknown. One problem concerns the linear
accelerations in the first two equations. At first they also seem to be unknown.
However, they can be expressed in terms of the segment angles, segment angular
velocities, segment angular accelerations, and the linear accelerations of the base.
Using the chain rule and product rule of differentiation, the horizontal accelera-
tions can be expressed as:

Similarly, the vertical accelerations can be expressed as:

For the moment we shall assume that the base is fixed, so both
.
x
.
 and

.
y
.
 are zero. As

noted, the segment angular accelerations ϕ..
1
 and ϕ..

2
 are unknown during forward

dynamics. This implies that segment angles ϕ
1
 and ϕ

2
 and segment angular veloci-

ties ϕ.
 1
 and ϕ.

 2
 have to be known or we would still end up with more than three

unknowns per segment. As will become apparent, they constitute the vector of

Casius, Bobbert, and van Soest430

state variables. Initial values for the state variables must be specified before (nu-
merical) integration can take place, and thereafter the integration routine gradually
updates these variables until some desired state or time has been reached. In terms
of the integration routine, the vector of state variables is the integration constant.
Now that we know how the linear accelerations can be expressed in the unknowns
ϕ..

1
 and ϕ..

2
, we can write the equations of motion. For the first segment they read:

where pi = ,i – di, and .x.1 and .y.1 are as derived above. Similarly, for the second
segment we get:

If we substitute the expressions for the horizontal accelerations in the correspond-
ing two equations, and move the unknown terms to the left and the known terms to
the right, we arrive at:

Likewise, the equations concerning the vertical accelerations are found:

Finally, after reshuffling the known and unknown terms, the rotational equations
look like:

Clearly a pattern shows in these equations. We do not need to puzzle over a poten-
tial third segment in the chain; the equations of motion for an extra segment can be
written readily:

+ +

++

Forward Dynamics 431

In the above equations for the two-segment body, some terms on the left side con-
tain the reaction force Fr3, which we defined earlier as the reaction force of the 2nd
segment on the 3rd segment. These terms have only been included to show the
regularity of the equations. Since the 3rd segment does not exist, the distal end of
the 2nd segment is free, so Fr3 (and also M3) is zero. Thus, the only unknowns at
the left side of the equations are indeed Fr1

x, Fr2
x, Fr1

y, Fr2
y, ϕ..1, and ϕ..2.

In the previous section we argued that the two segment angular accelera-
tions alone make up a generalized set of coordinates for a two-segment body of
which the first joint axis is fixed. The minimum number of equations needed to
model this system should therefore be two. Apparently we have four equations
more than needed. As the linear acceleration of any joint can be expressed in terms
of the segment angular accelerations (as we did earlier for the center of gravity), it
follows from F = m·a that reaction forces can also be expressed in terms of seg-
ment angular accelerations. Subsequently, the result can be substituted in the rota-
tional equations to reduce our number of equations to two. The equation itself will
of course be much more complicated, and the reaction forces will have to be calcu-
lated from the segment angular accelerations afterward. In this paper we shall
continue to work with the 3·n equations that result from the Newton-Euler ap-
proach, and “let the machine do the dirty work” (Kernighan & Plauger, 1978). In
the next section we will present a generic algorithm to automatically derive the
equations of motion and solve for the unknowns, given a particular set of known
variables.

Generic Algorithm for Solving the Equations of Motion

Matrix Notation of the Equations of Motion

First we shall rewrite in matrix form the equations of motions for the two-segment
body of the previous section, so they can easily be solved on a computer by means
of Gaussian elimination (Strang, 1980). Given that Fr3

x = Fr3
y = M3 = 0, the six

equations for horizontal and vertical accelerations and rotations turn into:

Casius, Bobbert, and van Soest432

In the A matrix we can identify several blocks that can easily be expanded if an
extra segment is added to the chain. We shall take this up in the next section.

Generic Algorithm for Skeletal Dynamics

To allow for a translational displacement of the whole body with respect to the
environment, we have introduced the most proximal point of the chain, i.e., the
first (virtual) joint, as the base. So far we have assumed the base was fixed. Although
the number of DF for an n-segment chain in two dimensions with fixed base is only n,
3·n equations of motions were needed using the Newton-Euler approach. Theo-
retically the base does not have to be fixed, so the number of DF may increase to
n+2. To allow for a free base, we include the position and velocity of the base in
the vector of state variables (i.e., they have to be known), and the acceleration of
the base may act as unknown, analogous to the rotational displacements.

Surprisingly, the number of equations remains 3·n if the base is free. In fact
the equations of motion do not change at all! It seems we now have a problem.
After all, we introduced two additional unknowns,

.
x
.
 and

.
y
.
, so it seems we end up

with a system of 3·n equations in 3·n+2 unknowns, which cannot be solved. How-
ever, if the base is free (i.e., the system is airborne), the ground reaction forces
must be zero. In other words, the variables Fr1

x and Fr1
y are no longer unknown! In

summary, if the base is fixed, .
x
. and .y. are known (viz. zero), and Fr1

x and Fr1
y are

unknown. If the base is free, Fr1
x and Fr1

y are known (viz. zero), and
.
x
.
 and

.
y
.
 are

unknown. By appropriately exchanging known and unknown variables, the num-
ber of unknowns remains 3·n.

The idea to exchange known and unknown variables can be extended fur-
ther. Given 3·n equations of motion for a n-segment body, we can have at most 3·n
unknowns. A close look at our equations reveals that we have a pool of no less than
7·n+5 variables, namely:

n+1 horizontal joint reaction forces, n+1 vertical joint reaction forces,
n+1 joint moments, n horizontal external forces, n vertical external forces,
n external moments, n segment angular accelerations,
1 horizontal base acceleration, and 1 vertical base acceleration.

Although for forward dynamics problems the unknowns are more or less
defined, in principle any of these variables may be unknown. As we can have at
most 3·n unknowns, the only restriction we must impose is that at least 4·n + 5 of
the variables be known. Given the values for 4·n + 5 variables, the equations of
motion can be written in the matrix form A·x = b, as we did in the previous section.
All terms containing an unknown are moved to the left side of the equations; they
will form matrix A. All other terms are moved to the right side of the equations;

Forward Dynamics 433

they will form the inhomogeneous column vector b. This way we can construct a
generic algorithm capable of calculating forward dynamics, inverse dynamics, and
any mixture of both.

Let us name this algorithm segdyn. It takes as input parameters two arrays of
length 7·n + 5. The first array will be named K, the second V. The elements in K can
take on the Boolean truth-values TRUE or FALSE. The elements in V represent
the variables, so they take on floating point values. The idea is that the elements in
K tell us which variables are known and which are not, and that V contains the
appropriate values for the known variables. More precisely, if K[i] equals TRUE,
V[i] should contain the appropriate value for the ith variable. The order of vari-
ables should be predefined. Assume we agree to the following order:

Initially we consider all variables unknown. Thus the equations of motion
are written such that all terms which contain a variable from V appear at the left,
and only terms that do not contain any variable from V appear at the right. The
initial vector of unknowns, which we shall refer to as x’, just equals V. The initial
matrix containing the multipliers of the unknown variables, say A’, will be a 3·n 3
7·n+5 matrix. After all, since the column vector of unknowns x’ has dimension
7·n+5, the rows of A’ must contain 7·n+5 elements. The matrix A’ is big and might
look quite complex, but it is nothing more than the matrix A given for the two-
segment body in the section on Equations of Motion, extended with the multipliers
for the forces and moments that were previously part of the right side. For a gen-
eral n-segment body, several blocks can be identified in A’:

Casius, Bobbert, and van Soest434

The beautiful thing about A’ is that all blocks but 5 and 7 are very simple and do
not change over time. With the system A·x = b as a guide, they can readily be
identified. For a 3-segment body they read:

During simulations, algorithm segdyn need only fill in these blocks once. Subse-
quent invocations of segdyn only require updating Blocks 5 and 7. These blocks
need updating because they depend on the current orientation of the skeleton.
Closely following A·x = b again, we arrive at the following blocks for a n-segment
body:

The initial column vector of inhomogeneous terms, say b’, is similar to the column
vector that was given for the two-segment body in the section Equations of Mo-
tion, except that all terms containing a force or a moment are left out. For a general
n-segment body, we get the following 3·n column vector b’:

Forward Dynamics 435

Given the system A’·x’ = b’, constructing the actual system A·x = b is straight-
forward. We loop sequentially through the array of truth-values K, and if the ith
element happens to be TRUE, the ith column of A’ is removed; furthermore, this
column is multiplied with the ith value of the vector V (i.e., with the known value
for the ith variable), and the resulting column is subtracted from b’. In other words,
we gradually move the known terms of A’·x’ to the right side b’. The result will be
a 3·n column vector b’ holding solely known terms, and a 3·n 3 3·n matrix A’,
which precisely match the vector b and the matrix A we were looking for. The
resulting square system has a unique solution that can be obtained through Gaussian
elimination, for example with the LINPACK routines GEFA and GESL (Dongarra
et al., 1979), and the ith value in the resulting vector x will then contain the appro-
priate value for the ith element in V whose truth-value in K was set to FALSE. An
example implementation of this algorithm, segdyn, can be found at http://www.ifkb.nl/
downloads/casius

Simulating a Movement Via Numerical Integration

From the right side b, and Blocks 5 and 7 given in the section on Generic Algo-
rithm, it follows that the segment angles and segment angular velocities must be
known in order to solve the equations of motion. At the start of a simulation, at t =
t0, these values should be made available by the user. Thereafter the segment angles
change because of the angular velocities, which in turn change due to the angular
accelerations imposed by the moments acting on the segments. The same holds for
the base position; the new position depends on the base velocity, which in turn
depends on the base acceleration imposed by the forces acting on the segments. In
formal terms we are dealing with a system of coupled second-order ordinary dif-
ferential equations (ODEs). Assuming that all external forces and moments are
either constant or a function of the current state, for any time t, we may write:

Casius, Bobbert, and van Soest436

where ϕi (t0), ϕ
.
 i (t0), x(t0), y(t0), x

.
(t0), and y

.
(t0) are known. The variables ϕi, ϕ

. i, x ,
y, x

.
 and y

.
 will be referred to as state variables (technically they are the state vari-

ables of the equivalent set of coupled first-order ODEs we shall run into shortly)
and their values at t = t0 make up the initial state.

To compute solutions of first-order ODEs, many efficient numerical inte-
gration routines are available. Therefore our set of coupled second-order ODEs
needs to be rewritten as an equivalent set of first-order ODEs. To that purpose we
introduce the auxiliary variables ωi, vx, and vy, and turn the second-order ODEs in
the following set of coupled first-order ODEs:

Given these first-order ODEs, we can apply a numerical integration routine to find
a value for each state variable at any given moment.

Kinematic Constraints

As noted in the section on Skeletal Parameters, an n-segment body in two dimen-
sions has at most n+2 degrees of freedom. In this case both ends of the chain may
move freely. When the base is fixed, DF are lost. The motion is limited due to the
kinematic constraints imposed on the system. As we saw earlier, the base can be
fixed by swapping the base accelerations to known (viz. zero) and the joint reac-
tions forces that act on the base to unknown. To prescribe a segment angular accel-
eration, a similar approach can be taken. The angular acceleration is marked as
known, and a previously known variable, for example the segment’s external mo-
ment, is switched to unknown. Kinematic acceleration constraints like these are
special in that they involve exactly one of the 7·n + 5 variables listed in the section
on Generic Algorithm. Thus no additional equations are needed. However, in many
motor tasks the 3·n equations of motion are simply not sufficient to express all
necessary information. These situations demand constraint equations to be added
to the system A·x = b.

Constrained multibody systems have been studied extensively, and many meth-
ods have been developed for dealing with them. If we limit ourselves to constraints
that can be expressed as a function of the state variables (often called holonomic
constraints), we generally have to deal with a set of governing equations consisting of
n differential equations of motion, together with a set of m algebraic constraints. Such
systems of mixed equations are called differential-algebraic equations, or DAEs
for short. The problem with these systems is that they typically are difficult to
solve numerically (Brenan et al., 1989). Formerly the constraint equations were
differentiated to reduce the DAEs to ODEs so as to apply standard numerical inte-
gration routines. The major drawback of this method is that due to the numerical

Forward Dynamics 437

error, the state variables do not satisfy the kinematic constraints, and drift away. To
defy these problems, Baumgarte (1972) introduced a stabilization method based
on feedback control, and Park and Chiou (1988) took a similar approach based on
a penalty form of the constrained equations. Closely related to the penalty method
is the Lagrange multiplier technique (Shabana, 1989). A different method is the
coordinate partitioning method (Wehage & Haug, 1982), which uses the m con-
straint equations to reduce the system of n constrained equations to a system of n-
m independent equations. For an overview of many methods and their pros and
cons, we refer to Schielen (1990).

In the next section we shall take a different approach and show that all con-
straints that can be expressed in terms of the 7·n + 5 variables outlined in the
section on Generic Algorithm can naturally be incorporated into our system A’·x’ =
b’, so that the segdyn algorithm will automatically generate the proper system A·x
= b. This method is easy to understand, and also to implement, and it superbly
reveals the power of the system A’·x’ = b’. The potential flaw is that the constraints
on positional level are enforced through accelerations constraints, and thus are
subject to violations due to numerical error. Even very small errors in the desired
acceleration of a specific point in a multibody chain can quickly lead to problems,
since they lead to cumulative errors in velocity and position. A supposedly fixed
point, i.e., zero velocity, will quickly drift from its desired position if the error in
the acceleration is too large at any instant during a simulation. After all, an error in
the acceleration will lead to a nonzero velocity, and the velocity will remain non-
zero, causing the position to change during each integration step. Therefore it is
theoretically unsound to impose positional constraints by plainly applying accel-
eration constraints. We will discuss this later.

Constraint Equations

As a first example, consider a two-segment body with fixed base. Suppose the
column vector x of unknowns reads: [Fr1

x, Fr2
x, Fr1

y, Fr2
y, ϕ..1, ϕ

..
2]T. To state that the

angular acceleration of the second segment should be 2·π rad/s2, we could mark it
as known and let Mext2 take its place in x, as described above. Alternatively, we
could add the following constraint to the equations of motion: ϕ..2 = 2·π. This re-
quires adding the row [0 0 0 0 0 1] to the matrix A, and 2·π to the right side b. We
now end up with a system of 3·n+1 equations in 3·n unknowns, which has infi-
nitely many solutions. The best we can do is calculate a least-squares solution,
which minimizes the sum of squared violations of the equations (e.g., Strang, 1980,
section 3.2–3.5). This is normally not what we want during forward dynamics, so
an extra unknown should be added, for example Mext2 mentioned above. The terms
involving this particular unknown have to be added to the equations of motion.
Things can be simplified by making use of the general implementation outlined in
the section on Generic Algorithm. Given the matrix A’ and the initial right side b’,
we can make use of the vector x’ which consists of all possible 7·n+5 variables. We
add a row to A’ and b’, mark the variable Mext2 in the vector K as unknown, and the
proper system A·x = b will then automatically be generated by the software!

Obviously, adding equations is not very useful if we can just exchange known
and unknown variables, but it does provide a method for imposing kinematic con-
straints if this is not possible. For example, suppose we would like to fix the end of
the chain. In setting up the initial state vector, we can make sure the initial velocity
of the end-point is zero, for example by setting ϕ.

 1 = ϕ. 2 = 0. Yet if we apply forces

Casius, Bobbert, and van Soest438

and moments to the system, it will surely start to move, so we need a way to
enforce zero-acceleration during the simulation. Unfortunately, neither the hori-
zontal nor the vertical acceleration are part of the 7·n+5 variables. However, from
the section on Equations of Motion we know how to express these linear accelera-
tions in terms of the segment angular accelerations:

where (
.
x
.
,
.
y
.
) is the base acceleration and (

.
x
.
end,

.
y
.
end) is the acceleration of the end-

point in the chain. Thus, to impose zero-acceleration of the end-point (i.e., .
x
.
end =.

y
.
end = 0), the following equations must be added:

Given the order of the variables in the vector V that we agreed upon in the section
on Generic Algorithm,

V[1] ... V[n + 1]: Fr1
x, Fr2

x, ..., Frn
x+1

...

V[5n + 4] ...V[6n + 3]: Mext1, Mext2, ..., Mextn

V[6n + 4] ... V[7n + 3]: ϕ..1, ϕ
..

2..., ϕ
..

n

V[7n + 4]:
.
x
.

V[7n + 5]:
 .
y
.

it follows that the rows which have to be added to A’ begin with 6·n +3 = 15 zeros,
followed by the terms that multiply the variables at the left side of the constraint
equations:

The known terms from the right side of the constraint equations are added to b’:

Finally we add two unknowns to the system. The obvious variables of choice are
the reaction forces at the end of the chain, which were set to zero when the joint
was free: K[n+1] = 0 and K[2·n+2] = 0. In the segdyn algorithm, constraints should
be added after A’ and b’ have been set up, and before the elements of K are used to
construct the proper system A·x = b (see section on Model Consisting of One Leg).
Note that in contrast to the previous example, the constraint equations depend on
the current value of ϕi and ϕ. i Thus they must be updated after every integration step.

Theoretically the acceleration of any joint (or center of gravity) can be pre-

Forward Dynamics 439

scribed this way. However, for the intermediate joints a problem arises. First, the
reaction forces at an intermediate joint are already unknown, so they cannot be
used to extend the number of unknowns. Second, if the acceleration of an interme-
diate joint is prescribed, the action = –reaction principle no longer holds. Actually
the first problem results from the second. Since the action = –reaction principle no
longer holds, separate reaction forces are needed for the connected segments. The
forces acting on the proximal segment are needed to make sure that the prescribed
accelerations are met for the distal point of this segment. Likewise, the proximal
end of the distal segment can only obey the prescribed accelerations through the
forces acting on this particular segment. The forces at both segments are com-
pletely unrelated.

A simple but inelegant workaround would be to mark as unknown the exter-
nal forces acting on the center of gravity of one of the segments. This will not
affect the movement but it does have some drawbacks. First, since the action =
–reaction principle is still violated, the joint reaction forces no longer represent
what they stand for. They now represent the forces that act on one of the segments
to ensure that the constraints are not violated. Of course this is rather a matter of
bad terminology than a serious problem. Second, the forces acting on the other
segment to ensure that the constraints are not violated are not explicitly available.
Although the external forces contain the appropriate values to satisfy the equa-
tions, the “real” external forces, like gravity, are ignored. That is, the external
forces represent the net result of the “real” external forces and the forces needed to
satisfy the kinematic constraints. Finally, in complex applications, constraints may
be added from different parts in the software. Some constraints may even be trig-
gered by external events. By haphazardly changing variables to unknown, con-
flicts can occur.

An appropriate solution to remove the latter two drawbacks would be to
extend the segdyn algorithm in such a way that the most typical kinematic con-
straints, such as prescribing rotational and translation accelerations, are handled
automatically. Internally, six additional variables per segment could be defined:
four constraint forces (two acting on the proximal joint and two acting on the
center of gravity) and two constraint moments (one acting from the proximal joint
and one acting from the environment). The number of variables would become
13·n + 5, but write access to the 6·n constraint variables could be reserved exclu-
sively to the algorithm. Initially they would be marked known (viz. zero). Only
when a kinematic constraint is added, the appropriate variable is changed to un-
known and treated like the other forces and moments (i.e., terms that multiply the
variable end up in the matrix A, and the variable itself ends up in the vector x). The
above procedure is followed in MUSK (Casius, 1995).

Accuracy of Acceleration Constraints

As said before, it is theoretically unsound to impose positional constraints by plainly
applying acceleration constraints; at least some kind of iterative refinement may
be necessary. However, many years of experience have led us to believe that the
state of the art of hardware and (numerical) software does allow for plain use of
acceleration constraints in many practical situations, although care should be taken.
When using numerical methods, numerical errors are unavoidable but they can be
minimized. To reduce round-off error, one should always use at least double preci-
sion floating point calculations. Depending on the sophistication of the compiler/

Casius, Bobbert, and van Soest440

interpreter, special care should be taken when writing down expressions, which
may also be helpful for gaining speed of execution (Burden & Faires, 1989; Stoer
& Bulirsch, 1980; Wilkinson, 1963).

To avoid large round-off errors during Gaussian elimination, one should use
a robust algorithm, preferably one provided by (or originated from) a sound math-
ematical library. As it is, naive application of Gaussian elimination results in a
very poor algorithm when run on a computer (Strang, 1980, pp. 42-43). Most im-
portant, one should use an integration routine suitable for the kind of differential
equations that need to be solved, preferably one that can guard the accuracy (alter-
natively, one should use a conservatively small integration step). Finally, even if
all precautions are taken, one should always double check to be sure that the con-
straints are indeed not violated during the simulation. Several sophisticated meth-
ods correct the value of the state variables after each integration step to satisfy the
constraint equations. A drawback of this method may be that it is not always evi-
dent if a simulation ran correctly. The method outlined in the previous section does
not control the violations of the equations in any way. Therefore it is always trivial
to check if serious numerical error entered into a simulation by inspecting the
desired positions and velocities. In other words, constraint violations are always
explicitly visible. In the section on Sprint Cycling we shall build a complete model
of a human cyclist and elaborate on the accuracy of kinematic acceleration con-
straints in practice.

Branches

Acceleration constraints also provide a way to implement branches within the frame-
work of the chain model. To illustrate this, recall the model from Figure 3. A simple
trick to attach a second leg to this model is to divide the trunk segment by two
equally heavy trunk segments, with equally large moments of inertia. The proxi-
mal end of the second trunk segment is then attached to the distal end of the first
one; that is, the chain is just extended with the newly created segment. The initial
angle of the second trunk segment is set to the angle of the first one minus π, so
both segments overlap exactly. The initial angular velocities of the segments should
be equal to each other. Finally, to ensure that the overlap is preserved, a kinematic
constraint is needed to impose that the accelerations of both segments are equal at
any given time during the simulation. To that purpose we need to add the con-
straint equation ϕ..t1 – ϕ..t2 = 0, where ϕ..t1 is the angular velocity of the first trunk
segment and ϕ..t2 is that of the second. Unquestionably, this is very plain and surely
there is a more elegant method to implement branches; nonetheless, in the section
on Model Consisting of Two Legs we shall use it to model the two-legged cyclist
from Figure 4.

Sprint Cycling: A Comprehensive Example

Model Consisting of One Leg

For the study about human sprint cycling described in Soest and Casius (2000), the
software package MUSK (Casius, 1995) was used. The skeletal model reflected
the experimental setup from Beelen et al. (1994), in which the participants had to
pedal at a fixed crank angular velocity so as to maximize the time average of the
power transferred to the crank. The velocity of the crank was controlled by exter-

Forward Dynamics 441

nal equipment, regardless of the forces the cyclist produced, so the legs could be
assumed to be mechanically decoupled. Therefore the model was restricted to a
single leg, and power output was doubled assuming left-right symmetry. A sche-
matic representation of the model is given in Figure 8. The skeletal part consisted
of five segments: the crank, foot, lower leg, upper leg, and head-arms-trunk segment.
The latter segment was only necessary to have the hip spanned by muscles; its initial
angle was set to 1.1 rad and kept constant during the entire simulation.The MUSK
input file, cycle.dat, can be found at http:www.ifkb.nl/downloads/casius. Given this
input, the equations of motion and the kinematic constraints are automatically de-
rived in MUSK. The aim of this section is to rebuild the model in Matlab.

Several kinematic constraints must be defined. To fix the proximal end of
the crank, zero-accelerations of the base must be imposed. To reflect that the cy-
clist remains seated on the saddle (in the experimental setup the cyclists were
strapped to the saddle, preventing them from being lifted due to extremely high
reaction forces), challenging kinematic constraints are needed. In addition to the
linear acceleration constraints, the angular acceleration of the crank is set to zero.
In the initial state vector, the angular velocity will be set to –4·π rad/s, so the aim of
this acceleration constraint is to preserve this clockwise rotation of 120 rpm dur-
ing the entire simulation (as noted, the cyclists had to pedal at a fixed crank angu-
lar velocity). Finally, the angular acceleration of the last segment is set to zero,
reflecting the fact that cyclists do not substantially move the upper body when
holding the handle.

The initial state vector for the model consists of five segment angles, five
segment angular velocities, a horizontal and vertical base position, and a horizon-
tal and vertical base velocity. In the original model, the height of the saddle with
respect to the base was based on the geometry of a bicycle. Since the position of
the hip joint coincides with the saddle, there is only one DF left for the segment
angles of the foot, lower leg, and upper leg, given a particular orientation of the
crank. That is, for any particular crank angle, two of the three segment angles
mentioned above directly follow from the third. The same holds for the angular
velocities. Given an angular velocity for, say, the foot, the angular velocities of the
upper and lower leg are laid down. The last point is very important. If the initial
segment angular velocities of the foot and lower extremities are not carefully cho-

Figure 8 — Musculoskeletal model of a
one-legged cyclist.

Casius, Bobbert, and van Soest442

sen, the hip will drift away with constant velocity during the simulation. Zero-
acceleration of the hip is enforced by kinematic constraints, but zero-velocity at
the start of the simulation has to be enforced by carefully specifying the initial
angular velocities of the segments.

To build the Matlab program, we shall make use of the general skeletal dy-
namics program, segdyn, to generate the 15 equations of motion. For this purpose
the arrays V and K have to be set up properly. The various kinematic constraints
(except to fix the base) will all be implemented by adding equations to the system
A’·x’ = b’, even if they can be realized by adapting V and K. To get some action out
of the cyclist, we need to apply net joint moments around the ankle, knee, and hip
joint. In the original program these moments are delivered by the muscles. Since
we do not implement muscle dynamics in this paper, the net joint moments that
were delivered during a full revolution of the crank (i.e., 0.5 s) have been written
to a file called mom.mat, with a fixed step size of 0.1 ms. After loading this file at
the start of the program, the variable mom will contain 5001 rows of three num-
bers; the numbers in row i are the net joint moments around the ankle, knee and
hip joint at t = (i–1) / 10000 s. The complete listing of the cycle program is given at
http://www.ifkb.nl/downloads.casius and its main parts will be explained below.

The cycle program uses a slightly modified version of the segdyn program:
one extra line is added that calls the routine in which all kinematic constraints are
added to the system A’·x’ = b’ (in the code, A’ is called Atmp, and b’ just b; further-
more, ls is short for ,*sin, lc for ,*cos, phidsqr for ϕ. . 2, and ni for n*i):

[K, Atmp, b] = add_cycle_constraints (K, Atmp, b, ls, lc, phidsqr)

In total, we need to add four constraints to the equations of motion. Two of them
concern a segment angular acceleration: the angular acceleration of both the first
and last segment should be zero. These constraints are straightforward, because
the segment angular accelerations are part of the 7·n+5 variables. From the section
on Generic Algorithm we know that

V[6n + 4] ... V[7n + 3]: ϕ..1, ϕ
..

2 ..., ϕ
..

n

To enforce zero-acceleration of the first segment (the crank), we create a vector of
7·n+5 zeros, and replace the element in position 6·n+4 with a 1. This vector consti-
tutes the left side of the constraint equation, so it will be added to Atmp. The right
side of the constraint equation, which represents the desired acceleration (i.e., zero),
has to be added to the vector b. The constraint for the last segment is treated analo-
gously:

ccrankphidd = zeros (1,n7+5);
ctrunkphidd = zeros (1,n7+5);
ccrankphidd(n6+4) = 1;
ctrunkphidd(n7+3) = 1;
Atmp = [Atmp; ccrankphidd; ctrunkphidd];
b = [b; 0; 0];

Note that the rows added to Atmp and b solely contain numbers. Therefore if we
would store Atmp and b at the start of the simulation, these equations would not
need updating (just as most of the blocks in Atmp would not need updating once
they have been set up). In addition to these equations, we also have to add two

Forward Dynamics 443

unknowns to the system. The obvious variables of choice are the external mo-
ments, which were set to zero in the main program. In the array V, the external
moments reside at elements n·5+4 ... n·6+3, so we update K as follows:

K(n5+4) = 0;
K(n6+3) = 0;

Finally, we need to add two constraints to impose zero linear accelerations of the
hip joint. These constraints are considerably more complicated. The linear accel-
erations of the hip can be expressed in terms of segment angular accelerations as
follows (see sections on Equations of Motion, and Constraint Equations):

Given that .x.hip = .y.hip = 0, we arrive at the following constraint equations after
moving the unknown terms to the left side:

Thus we have to loop over four segments to obtain the required equations:

cax = zeroes (1,n7+5);
cay = zeroes (1,n7+5);
rhsax = 0;
rhsay = 0;
cax (n7+4) = 1; % hor. base accel.
cay (n7+5) = 1; % vert. base accel.
for i = 1:4

cax (n6+3+i) = –ls(i);
rhsax = rhsax + lc(i)*phidsqr(i);
cay (n6+3+i) = lc(i);
rhsay = rhsay + ls(i)*phidsqr(i);

end
Atmp = [Atmp; cax; cay];
b = [b; rhsax; rhsay];

Clearly these constraints need updating after each integration step, since the ele-
ments depend on the current orientation and angular velocity of the first four seg-
ments. For simplicity, we will use the horizontal and vertical external force of the
last segment as the new unknowns, but do recall from the section on Kinematic
Constraints that this is not elegant:

K(n4+3) = 0;
K(n5+3) = 0;

Because the rotational acceleration equations neither directly nor indirectly
depend on any state variable, they are not hard to satisfy. The kinematic constraints
on the hip, however, are a different matter. In order to simulate more than one full
crank cycle, we have run some tests with the original MUSK program, which has

––

Casius, Bobbert, and van Soest444

the additional advantage that the simulations can be run much faster (considerably
faster than real time on a moderately fast computer). Two integration methods
were used (Stoer & Burlisch, 1980) and STEP (Shampine & Gordon, 1975). With
Heun’s method, four step sizes were used (dt = 1e-3, 2e-4, 5e-4, and 1e-4), and
with STEP, eight fault tolerances (eps = 1e-3, 1e-4, ... , 1e-10); the lower the toler-
ance, the more integration steps are used. For each test, 10 crank revolutions were
simulated. The position and velocity of the hip after 10 revolutions, as well as the
power delivered to the crank during the last revolution, are reported in Table 1. For
low integration accuracies, the cumulative error clearly shows in the hip position.
The calculated power is also not very accurate when integration is sloppy.

With Heun’s method, the deviation of the hip position is only in terms of
micrometers when a step size of 0.2 ms or lower is used. With STEP, the deviation
does not even show in the 8th decimal place when using a fault tolerance of 1e-6 or
lower. In conclusion, even acceleration constraints that depend on various seg-
ment angles and segment angular velocities can adequately be used to impose
constraints on position and velocity. However, and we cannot emphasize this too
often, theoretically this is not guaranteed, so during each simulation one should
check to see if the constraints are indeed not violated.

As a final remark, you may wonder how to calculate the power that is deliv-
ered to the crank. One possible answer lies in the (unknown) external moment that
acts on the crank, which is precisely the variable that maintains zero-acceleration
of the crank, i.e., nullifies the work that is transferred to the crank by the cyclist.
Call this variable Mc, name the angular velocity of the crank ϕ. c, and define P(t) to
be the product of –Mc and ϕ. c at time t. Then, P(t) is the instantaneous power
delivered to the crank, and the work W that is transferred to the crank during the
full revolution is given by:

and thus also:

where t0 = 0 s, tn = 0.5 s, and ∆t = 0.5/n s. For sufficiently small integration steps,
this work can readily be calculated once we realize that routine segdyn_cycle re-
turns the current value of Mc, in Vnew(29) (in the code, Vnew is a copy of V with
all unknowns replaced by the calculated values):

Mold = Vnew(29); W = 0; cnt = 1;
while ...
 ...
 if (cnt <= 5001)
 ...
 [stated, Vnew, ok] = segdyn_cycle(state, segparms, K, V);
 ...
 W = W – 0.5 * (Vnew(29) + Mold) * delta_time * state(6);
 Mold = Vnew (29);
 end
end

Forward Dynamics 445

Ta
bl

e
1

A
cc

ur
ac

y
of

 A
cc

el
er

at
io

n
C

on
st

ra
in

ts
 o

n
th

e
H

ip
 D

ur
in

g
10

 F
ul

l C
ra

nk
 R

ev
ol

ut
io

ns
 o

f 0
.5

 s

A
cc

ur
ac

y

In
te

gr
at

io
n

P
ow

er
H

ip
 p

os
iti

on
 (

m
)

H
ip

 v
el

oc
ity

 (
m

/s
)

M
et

ho
d

(e
ps

 /
dt

)
st

ep
s

(W
)

x
y

V
x

Vy

S
T

E
P

1e
-3

81
57

10
84

.5
–0

.1
42

45
22

8
0.

80
89

60
26

0.
00

00
80

95
–0

.0
00

11
66

9
1e

-4
16

22
8

10
76

.8
–0

.1
42

69
92

0
0.

80
92

90
61

0.
00

00
00

15
–0

.0
00

00
05

3
1e

-5
20

58
6

10
76

.4
–0

.1
42

70
03

0
0.

80
92

90
61

0.
00

00
00

01
–0

.0
00

00
01

6
1e

-6
22

07
6

10
76

.6
–0

.1
42

70
02

4
0.

80
92

93
28

0.
00

00
00

01
–0

.0
00

00
00

0
1e

-7
24

67
3

10
76

.4
–0

.1
42

70
02

4
0.

80
92

93
27

0.
00

00
00

00
0.

00
00

00
00

1e
-8

27
97

1
10

76
.5

–0
.1

42
70

02
4

0.
80

92
93

27
–0

.0
00

00
00

0
0.

00
00

00
00

1e
-9

33
80

2
10

76
.5

–0
.1

42
70

02
4

0.
80

92
93

27
–0

.0
00

00
00

0
0.

00
00

00
00

1e
-1

0
43

25
4

10
76

.5
–0

.1
42

70
02

4
0.

80
92

93
27

–0
.0

00
00

00
0

0.
00

00
00

00

H
E

U
N

1e
-3

50
00

10
97

.7
–0

.1
42

81
49

8
0.

80
93

49
18

0.
00

00
00

03
0.

00
00

21
49

5e
-4

10
00

0
10

81
.5

–0
.1

42
72

70
8

0.
80

92
96

87
0.

00
00

00
60

0.
00

00
01

05
2e

-4
25

00
0

10
76

.5
–0

.1
42

70
47

5
0.

80
92

93
50

0.
00

00
00

02
–0

.0
00

00
00

1
1e

-4
50

00
0

10
76

.5
–0

.1
42

70
13

8
0.

80
92

93
33

–0
.0

00
00

00
1

–0
.0

00
00

00
0

N
o

te
: T

w
o

in
te

gr
at

io
n

m
et

ho
ds

 w
er

e
us

ed
: S

T
E

P
 (

S
ha

m
pi

ne
 &

 G
or

do
n,

 1
97

5)
 a

nd
 H

eu
n’

s
m

et
ho

d.
 D

ep
en

di
ng

 o
n

th
e

in
te

gr
at

io
n

m
et

ho
d,

 th
e

ac
cu

ra
cy

 w
as

 v
ar

ie
d

ei
th

er
 th

ro
ug

h
th

e
ab

so
lu

te
 fa

ul
t t

ol
er

an
ce

e

p
s (

S
T

E
P

)
or

 th
e

fix
ed

 s
te

p
si

ze

d
t (

H
eu

n’
s

m
et

ho
d)

 (
C

ol
. 2

).
 T

ot
al

 n
um

be
r

of
in

te
gr

at
io

n
st

ep
s

an
d

th
e

po
w

er
 d

el
iv

er
d

to
 th

e
cr

an
k

ar
e

lis
te

d
in

 3
rd

 a
nd

 4
th

 c
ol

um
ns

. P
os

iti
on

 a
nd

 v
el

oc
ity

 o
f t

he
 h

ip
 a

t t
h

e
en

d
of

 th
e

si
m

ul
at

io
n

ar
e

lis
te

d
in

 th
e

fin
al

 c
ol

um
ns

. A
t t

he
 s

ta
rt

 o
f t

he
 s

im
ul

at
io

n
th

e
po

si
tio

n
of

 th
e

hi
p

w
as

 (
-0

.1
42

70
02

4,
 0

.8
09

29
32

7
)

m
.

Casius, Bobbert, and van Soest446

Note that we store the crank moment after each integration step, to be able to use
the avarage moment during a time interval. At the end of the program, the time
average of the power transferred to the crank is calculated by dividing the total
work by the total time (= 0.5 s), and to account for two legs, the result is multiplied
by two:

s = sprintf (‘Simulation finished at %.2f; Power: %f’, time, 2*(W/time)); disp (s);

Using the net moments from the input file and a step size of 0.1 ms, this results in
a power of 1076.3 W. Using a step size of 1.0 ms also results in a power output of
1076.3 W. This is considerably closer to the truth than the value listed in Table 1,
because the net joint moments in the input file are not affected by the sloppy inte-
gration, whereas the solution of the differential equations corresponding to the
muscle dynamics used in Table 1 is.

Model Consisting of Two Legs

To attach a second leg to the cyclist of the previous section, we shall use the trick
outlined in the section on Branches. First we divide the trunk segment in two equally
heavy trunk segments with equally large moments of inertia. The proximal end of
the second trunk segment is attached to the distal end of the first one. The initial
angle of the second trunk segment is set to the angle of the first one minus π, so
both segments exactly overlap. The initial angular velocity of the second trunk is
set to zero, equal to that of the first one.

Second, to ensure that the overlap is preserved, a kinematic constraint is added
to impose that the accelerations of both segments are equal at any given time dur-
ing the simulation. For this model, the trunk angle is supposed to be fixed, so we
only need an additional constraint to enforce zero-acceleration of the second trunk,
analogously to the constraint equation for the first trunk in the previous section:

ctrunk2phidd = zeros (1,n7+5);
ctrunkphidd(n7+4) = 1;
Atmp = [Atmp; ctrunk2phidd];
b = [b; 0];
K(n6+4) = 0; % external moment of second trunk becomes unknown

Note that in case the orientation of the trunk segment is not fixed, we need to add
a constraint that enforces the angular accelerations of both trunk segments to be
equal during the entire simulation.

Third, the segments that make up the second leg are attached to the chain.
Note that the “second trunk segment,” as well as the segments that make up the
second leg, are sort of upside-down in the chain. After all, the proximal end is still
defined as the end closest to the base. Therefore a vertical orientation of, say, the
second lower leg corresponds with an angle of –1/2·π rather than 1/2·π. Further-
more, the distances from the proximal end to the center of gravity differ for corre-
sponding segments from both sides of the body. For example, if , and d are the
parameters for the first lower leg, then, assuming symmetrical legs, the distance
from the proximal end to the center of gravity for the second lower leg would
become , – d, an unpleasant but inevitable consequence of the use of formal defi-
nitions in setting up the chain.

Forward Dynamics 447

Finally, some adaptations must be made concerning the crank. In the ap-
proach taken in Figure 4a, two cranks are modeled. In addition to the linear accel-
eration constraints to fix the end-point of the chain (similar to those of the hip),
this requires a constraint that imposes equal acceleration of both cranks. As the
legs are no longer assumed to be mechanically decoupled, this has to be enforced
by adding the equation ϕ..crank1 – ϕ..crank2 = 0. The external moment around one of the
cranks may be used as an additional unknown, whereas the external moment around
the other crank can be used to apply some kind of resistance, such as speed-depen-
dent air friction.

The approach taken in Figure 4b only requires a single crank. In this model,
care should be taken that the initial position and velocity of the end-points of the
chain (the base, and the toes of the second leg) are equal. Furthermore, two com-
plex constraint equations are needed to maintain equal position and velocity of
both end-points. The joint reaction forces at the end of the chain are the obvious
candidates for extending the number of unknowns. Clearly the approach consist-
ing of two cranks is computationally less efficient than the model consisting of a
single crank. The former approach requires 30 equations of motion and three kine-
matic constraints, whereas the latter approach only requires 27 equations of mo-
tion and two kinematic constraints.

As a side note, the power transferred to the crank cannot be calculated as
before, since the external moment around the crank no longer nullifies the work
delivered by the cyclist. Fortunately, the reaction forces that act upon the crank
provide us with the same information. At time t, the instantaneous power P(t)
delivered to the crank is given by:

P(t) = x. c1(t)·Fc1
x (t) + y

.
c1(t)·Fc1

y (t) + x. c2(t)·Fc 2
x (t) + y.c2(t)·Fc 2

y (t)

where x
.
 c1 and y

.
c1 are the velocities of one end-point of the crank, Fc1

x and Fc1
y are the

reaction forces that act on this end-point, x
.
 c2 and y

.
c2 are the velocities of the other

end-point of the crank, and Fc 2
x and Fc 2

y are the reaction forces that act upon this
point. Thus, the work Wi transferred to the crank during the ith interval [ti-1, ti] is
given by: Wi = 0.5·(P(ti–1) + P(ti))·(ti – ti–1).

To conclude this section, note that it is even possible to model freewheeling
for this two-legged cyclist. The trick is to define a virtual crank that can be coupled/
decoupled to the real crank by means of appropriate kinematic constraints. Though
this goes far beyond the scope of this paper, we mention it to indicate how sophis-
ticated a simple 2-D chain model can become by applying kinematic constraints.

Summary

Many aspects regarding the properties and coordination of the musculoskeletal
system can be adequately studied by performing simulations of relatively simple
2-D chain models of the skeleton. Generally a chain model consisting of n bodies
has n+2 degrees of freedom. The minimum number of equations of motion is there-
fore also n+2. In the Newton-Euler approach a free body diagram is constructed
for each segment. Although we end up with exactly three equations of motion per
segment, the equations are relatively simple and a lot of information becomes
available after the equations are solved. Due to the regularity of the equations,
they can automatically be derived once the intrinsic parameters of the segments
are known. By transforming the system of equations to the matrix form A·x = b,

Casius, Bobbert, and van Soest448

sound routines can be applied to solve the system. To perform a simulation, one
must apply a numerical integration to solve the differential equations that describe
how position and velocity of the segments depend on the acceleration. Finally, the
general structure of the system A·x = b allows for a natural way to incorporate
kinematic acceleration constraints. If care is taken, such constraints can adequately
be used to impose constraints on position and velocity.

References

Barret, R., van Soest, A.J., & Neal, R. (2002). A computer graphics model of muscle activa-
tion and contraction dynamics. Sports Biomechanics, 105, 121.

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynamic sys-
tems. Computer Methods and Applications to Mechanical Engineering, 1, 1-16.

Beelen, A., Sargeant, A.J., & Wijkhuizen, F. (1994). Measurement of directional force and
power during human submaximal and maximal isokinetic exercise. European Jour-
nal of Applied Physiology, 68, 177-181.

Bobbert, M.F., & van Soest, A.J. (1994). Effects of muscle strengthening on vertical jump
height: A simulation study. Medicine and Science in Sports and Exercise, 26, 1012-
1020.

Bogert, A.J. v.d. (1990). Musculoskeletal modelling: The DADS experience. ISB Newslet-
ter, 39, 4-6.

Brenan, K., Campbell, S., & Petzold, L. (1989). Numerical solutions of initial-value prob-
lems in differential-algebraic equations. New York: Elsevier.

Burden, R.L., & Faires, J.D. (1989). Numerical analysis (4th ed.). Boston: PWS-Kent.
Casius, L.J.R. (1995). MUSK: A software system that supports computer simulations of

large-scale realistic models of the neuro-musculo-skeletal system (Final report of
Cray Reasearch Grants Program CRG 94.15). Vrije Universiteit, Faculty of Human
Movement Sciences.

Dickenson, J.A., Cook, S.D., & Leinhard, T.M. (1985). The measurements of shock waves
following heel strike when running. Journal of Biomechanics, 18, 415-422.

Dongarra, J.J., Bunch, J.R., Moler, C.B., & Stewart, G.W. (1979). LINPACK user’s guide.
Philadelphia: Society for Industrial and Applied Mathematics.

Gerristen, K.G.M., van den Bogert, A.J., & Nigg, B.M. (1995). Direct dynamics simulation
of the impact phase in heel-toe running. Journal of Biomechanics, 28, 661-668.

Goffe, W.L., Ferrier, G.D., & Rogers, J. (1994). Global optimization of statistical functions
with simulated annealing. Journal of Econometrics, 60(1/2), 65-100.

Gruber, K., Denoth, J., Stuessi, E., & Ruder, H. (1987). The wobbling mass model. Biome-
chanics X-B, Vol. 6b, 1095-1105.

Gruber, K., Ruder, H., Denoth, J., & Schneider, K. (1998). A comparative study of impact
dynamics: Wobbling mass model versus rigid body models. Journal of Biomechan-
ics, 31, 439-444.

Hatze, H. (1981a). A comprehensive model for human motion simulation and its applica-
tion to the take-off phase of the long jump. Journal of Biomechanics, 14, 135-142.

Hatze, H. (1981b). Myocybernetic control models of skeletal muscle: Characteristics and
applications. Pretoria: University of South Africa.

Haug, J.H. (1989). Computer-aided kinematics and dynamics of mechanical systems. Vol.
1: Basic methods. Needham Heights, MA: Allyn & Bacon.

Kane, T.R., & Levinson, D.A. (1985). Dynamics: Theory and application. New York:
McGraw-Hill.

Forward Dynamics 449

Kernighan, B.W., & Plauger, P.J. (1978). The elements of programming style. New York:
McGraw-Hill.

Liu, W., & Nigg, B.M. (2000). A mechanical model to determine the influence of masses
and mass distribution on the impact force during running. Journal of Biomechanics,
33, 219–224.

Neptune, R.R. (1999). Optimization algorithm performance in determining optimal controls in
human movement analyses. Journal of Biomechanical Engineering, 121, 249-252.

Pandy, M.G., Zajac, F.E., Eunsup, S., & Levine, W.S. (1990). An optimal control model for
maximum-height human jumping. Journal of Biomechanics, 23, 1185-1198.

Park, K.C., & Chiou, J.C. (1988). Stabilization of computational procedures for constrained
dynamical systems. Journal of Guidance, Control, and Dynamics, 11, 365-370.

Schielen, W. (Ed.) (1990). Multibody systems handbook. Berlin: Springer Verlag.
Shabana, A. (1989). Dynamics of multibody systems. New York: Wiley.
Shampine, L.F., & Gordon, M.K. (1975). Computer solution of ordinary differential equa-

tions. The initial value problem. San Francisco: W.H. Freeman.
Soest, A.J.v., & Bobbert, M.F. (1993). The contribution of muscle properties in the control

of explosive movements. Biological Cybernetics, 69, 195-204.
Soest, A.J.v., Bobbert, M.F., & Ingen Schenau, G.J.v. (1994). A control strategy for the

execution of explosive movements from varying starting positions. Journal of Neu-
rophysiology, 71, 1390-1402.

Soest, A.J.v., & Casius, L.J.R. (2000). Which factors determine the optimal pedaling rate in
sprint cycling? Medicine and Science in Sports and Exercise, 32, 1927-1934.

Soest, A.J.v., & Casius, L.J.R. (2003). The merits of a parallel genetic algorithm in solving
hard optimization problems. Journal of Biomechanical Engineering, 125, 141-146.

Soest, A.J.v., Haenen, W.P., & Rozendal, L.A. (2003). Stability of bipedal stance: The contri-
bution of cocontraction and spindle feedback. Biological Cybernetics, 88, 293-301.

Soest, A.J.v., & Smith, R.M. (2001). Does the “no-slide-shooting” constraint limit rowing
performance? Paper presented at the Proceedings of the VIIIth International Sympo-
sium on Computer Simulation in Biomechanics, Milano, Italy.

Stoer, J., & Bulirsch, R. (1980). Introduction to numerical analysis. New York: Springer-
Verlag.

Strang, G. (1980). Linear algebra and its applications (2nd ed.). New York: Academic Press.
Wehage, R.A., & Haug, E.J. (1982). Generalized coordinate partitioning for dimension re-

duction in analysis of constrained dynamic systems. Journal of Mechanical Design,
104, 247-255.

Werff, K.v.d. (1977). Kinematic and dynamic analysis of mechanisms, a finite element ap-
proach. PhD Thesis, Delft University of Technology, Delft.

Wilkinson, J.M. (1963). Rounding errors in algebraic processes. Englewood Cliffs, NJ:
Prentice Hall.

Yamaguchi, G.T. (2001). Dynamic modeling of musculoskeletal motion. A vectorized approach
for biomechanical analysis in three dimensions. Norwell, MA: Kluwer Academic.

Zajac, F.E., & Gordon, M.E. (1989). Determinig muscle’s force and action in multi-articu-
lar movement. Exercise and Sport Science Reviews, 17, 187-230.

Zajac, F.E., & Winters, J.M. (1990). Modeling musculoskeletal movment systems: Joint
and body-segment dynamics, musculotendinous actuation and neuromuscular con-
trol. In J.M. Winter & S.L.-Y. Woo (Eds.), Multiple muscle systems (pp. 121-148).
New York: Springer Verlag.

Zatsiorsky, V.M. (1998). Kinematics of human motion. Champaign, IL: Human Kinetics.

