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INTRODUCTION
When living creatures have a surplus of  food at their dis-
position, they start to hoard energy for future scarce times. 
The breakthrough in agriculture and founding of  villages 
around 9500 BC in several independent parts of  the world 
not only laid the pavement for modern society, but also 
gave people the opportunity to cultivate and store more 
food than needed for their support and their families. This 
excess of  energy has led to the current situation nowadays 
where the caloric availability exceeds the caloric needs by 
far. The human body still possesses the quality to store 
excess energy in adipocytes, a quality that now works in 
its disadvantage. The extreme storage of  excess energy 
and a reduction in physical activity have led to a world-
wide epidemic of  obesity. The World Health Organization 
(WHO) estimated that the number of  overweight (BMI > 
25) individuals is over one billion, of  whom 300 million 
are obese (BMI > 30)[1]. In future prospects, this number 
will increase further[2,3]. Although the biggest concern of  
most obese or overweight persons is about their appear-
ance, obesity has been recognised as a pathogenic factor 
for a vast array of  other pathologiesc, such as Diabetes 
mellitus, Insulin resistance, Hypertension, Dyslipidemia, 
Endocrine changes, Kidney stones, Cancer (overall and 
specific), Coronary disease, Heart failure, Myocardial stea-
tosis, Atrial fibrillation/flutter, Stroke, Venous thrombosis, 
Hepatobiliary disease, GERD/esophageal cancer, Oste-
oarthritis, Skin changes, Gout, Dementia, Psychosocial etc. 
A subset of  diseases often occurring in the same patient 
have been clustered, now known as the metabolic syn-
drome[4-6]. Vehement research has unravelled major parts 
of  the pathophysiological mechanisms underlying obesity 
and metabolic syndrome, although many issues have not 
been explained yet[7,8]. It has been shown that non-alcohol-
ic fatty liver disease (NAFLD) has a strong relation with 
metabolic syndrome[9-16]. NAFLD mainly with accumula-
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Abstract
Estimates of people suffering from overweight (one 
billion) and obesity (300 million) are increasing. The 
accumulation of triglycerides in the liver, in the absence 
of excess alcohol intake, has been described in the early 
sixties. It was not until 1980, however, that Ludwig 
et al named this condition nonalcoholic steatohepatitis 
(NASH). Subsequently, nonalcoholic fatty liver disease 
(NAFLD) has been used as a general name for conditions 
ranging from simple steatosis through steatohepatitis to 
end-stage liver disease (cirrhosis). Many studies have 
demonstrated the significant correlation with obesity and 
insulin resistance. Other studies have revealed a signifi-
cant correlation between hepatic steatosis, cardiovascu-
lar disease and increased intima-media thickness. WHO 
estimated that at least two million patients will develop 
cirrhosis due to hepatic steatosis in the years to come. 
Longitudinal cohort studies have demonstrated that 
those patients with cirrhosis have a similar risk to devel-
op hepatocellular carcinoma as those with other causes of 
cirrhosis. Taken all together, NAFLD has become the third 
most important indication for liver transplantation. There-
fore, training programmes in internal medicine, gastroen-
terology and hepatology should stress the importance of 
diagnosing this entity and treat properly those at risk for 
developing complications of portal hypertension and con-
comittant cardiovascular disease. This review will focus on 
the clinical characteristics, pathophysiology, imaging tech-
niques and the readily available therapeutic options.
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tion of  triglycerides in the liver, in the absence of  excess 
alcohol intake, has been described in the early sixties[17,18]. 
It was not until 1980, however, that Ludwig et al named 
this condition non-alcoholic steatohepatitis (NASH)[19]. 
Subsequently, NAFLD has been used as a general name 
for conditions ranging from simple steatosis through 
steatohepatitis to end-stage liver disease (cirrhosis)[20]. The 
first is rather benign[21,22], the second is of  significant clini-
cal importance[23] and the last one has an increased risk of  
hepatocellular carcinoma[24,25]. An almost universal associa-
tion with hepatic and adipose tissue insulin resistance (IR) 
has been established in a number of  studies[26-34]. Browning 
et al[35] used 1H-NMR-spectroscopy to measure the hepatic 
triglyceride content in a multi-ethnic urban US population-
based study. Hepatic steatosis was found in 31% of  their 
population and increased up to 67% in obese subjects. 
Other studies[36-38] have confirmed this positive correlation 
between BMI, waist-to-hip-ratio and hepatic steatosis. A 
few studies  focusing on the natural history of  NAFLD 
showed that only 1%-5% of  patients with simple steatosis 
eventually develop actual cirrhosis[39,40]. WHO estimated 
that at least 2 million people will develop cirrhosis due to 
hepatic steatosis. Taken all together, NAFLD has become 
the third most important indication for liver transplanta-
tion and will become the leading indication in the next 
decades. In this respect, the finding of  NASH in young 
obese children is very alarming[41]. Training in paediatrics, 
internal medicine, gastroenterology and hepatology should 
emphasize the awareness of  this entity to avoid complica-
tions of  portal hypertension, minimize the need for liver 
transplantation and prevent the associated cardiovascular 
disease. 

This review will focus on the clinical characteristics, 
pathophysiology, imaging techniques and therapeutic op-
portunities of  this disease.

CLINICAL CHARACTERISTICS
Most patients with NAFLD are asymptomatic and the 
symptoms are usually non specific when they occur. 
Frequent complaints are fatigue and vague right upper 
quadrant abdominal discomfort. Because of  the latter, st-
eatosis is often found at ultrasound examinations made for 
suspicion of  biliary disease. Ultrasound abnormalities and 
elevated alanine transaminase (ALT) levels are often found 
at routine check-up or when patients present themselves 
with physical complaints due to other diseases. Given 
that NAFLD is widely accepted as a part of  metabolic 
syndrome, or at least being related with it, most patients 
present with other pathologies linked to this syndrome. 
Once other pathologies (Table 1) are ruled out as a cause 
of  steatosis, NAFLD can be allocated as the most com-
mon cause for elevated ALT levels and/or steatosis. Mildly 
raised levels of  ALT have been found in hospitalized 
NASH patients, but not higher than four times the up-
per limit of  normal (ULN)[42-46]. These levels fluctuate but 
never return to normal values. Abnormal AST levels have 
also been found, especially in cirrhotic patients. Gamma-
glutamyl transpeptidase (γGT) and alkaline phosphatase 
levels can increase although in unknown frequency. In 
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conclusion, these mild laboratory abnormalities would not 
be very helpful in diagnosing this disease due to their low 
sensitivity and specificity.  

At more advanced disease stages, liver stigmata like 
jaundice, spider naevi and erythema palmare may develop. 
In these patients, laboratory abnormalities are consistent 
with progressed liver disease. 

PATHOPHYSIOLOGY
Healthy subjects
Within the body’s system, the liver plays a crucial role in 
controlling fatty-acid and triglyceride (TG) metabolism 
by synthesizing, storing, secreting and oxidizing free fatty 
acids (FFA). The liver responds to and manages fatty acids 
that originate from ingested foods, adipose stores and its 
own de novo production. Oxidation of  FFA is considered 
the main energy source for gluconeogenesis in a fasting 
state. TG is incorporated into very low dense lipopro-
tein (VLDL) particles while being transported out of  the 
liver to peripheral tissues. Fatty acids are mainly stored 
in adipose tissues of  human beings. In healthy individu-
als, fasting lipolysis causes release of  TG into the plasma 
nonesterified fatty acid (NEFA) pool, while adipocytes will 
take up fatty acids. Postprandial pancreas-released insulin 

Table 1  Possible causes for steatosis hepatis

Causes

Metabolic
Abetalipoproteinemia
Glycogen storage diseases
Weber-Christian disease
Wolmans disease
Acute fatty liver of pregnancy
Lipodystrophy
Iron overload syndromes
α-1-antitripsin deficiency

Nutritional
Malnutrition
Total parenteral nutrition
Severe weight loss
Refeeding syndrome
Jejuno-ileal bypass
Gastric bypass
Jejunal diverticulosis with bacterial overgrowth

Inflammatory
HIV1

Chronic Hepatitis C infection
Drugs

Methotrexate
Diltiazem
HAART2

Amiodarone
Glucocorticoids

Toxins
Alcohol
Environmental hepatotoxins (e.g. toxic mushroom)
Wilsons disease

Autoimmune
Autoimmune hepatitis
Celiac disease

1HIV: Human immunodeficiency virus; 2HAART: Highly active anti-retroviral 
therapy.



increases lipogenesis and decreases lipolysis and fatty acid 
oxidation in mitochondria. The second source of  fatty 
acids contributing to the total liver supply is hepatic de novo 
lipogenesis (DNL). In healthy individuals, this source is a 
minor contributor while fasting and insulin levels are low. 
The third source of  fatty acids is the absorption of  dietary 
fats. 

In 1998, Day et al[47] launched the “two-hit-theory”, 
stating that two succeeding wallops have to be delivered 
to the liver to cause NASH. The first hit, development of  
hepatic steatosis, is the accumulation of  TG consisting of  
3 fatty acids and a glycerol backbone, in the hepatocytes. 
The development of  hepatic steatosis is a form of  ectopic 
lipid accumulation, resulting from a disturbance in the 
balance between supply, formation, consumption and he-
patic oxidation or disposal of  TG. Consumption includes 
mitochondrial β-oxidation, production of  ketone bodies, 
and secretion of  TG in VLDL particles. Many animal and 
human studies have shown that there is an inextricable 
relation between obesity and insulin resistance (IR)[48-52]. IR 
is a key pathogenic factor for the development of  hepatic 
steatosis[26-34]. 

Insulin resistance 
Insulin resistance (IR) is the disruption of  signalling path-
ways in cells, leading to a diminished ability to execute 
normal cellular responses to insulin. For details of  the 
insulin pathway, the reader is referred to excellent reviews 
by Herman et al[53] and Taniguchi et al[54]. In summary, the 
insulin receptor is tyrosine-phosphorylated upon binding 
to insulin, which in turn causes tyrosine phosphorylation 
of  the insulin receptor substrate (IRS) proteins. There are 
two important IRS: IRS-1 and IRS-2. IRS-1 is the initiator 
in the pathway of  glucose metabolism. Upon phosphoryla-
tion, IRS-1 induces stimulation of  the phosphatidylinositol 
3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway, 
resulting in recruitment of  glucose transporters (GLUT). 
IRS-2 cranks up lipid metabolism in cells and is a main 
regulator in DNL via sterol regulatory element binding 
protein 1c (SREBP-1c). SREBP-1c is a member of  the 
SREBP family, a group of  transcription factors that play a 
fundamental role in cellular lipid metabolism[55]. Three dif-
ferent SREB proteins have been identified. These SREB 
proteins activate the complete program of  cholesterol and 
fatty acid synthesis in the liver[56]. SREBP-1c is the iso-
form that plays a role in synthesis of  fatty acids and TG in 
the liver, by stimulating the formation of  enzymes, most 
important acetyl CoA carboxylase (AAC) and fatty acid 
synthase (FAS)[57]. Most SREBP-1c- stimulated enzymes 
are also regulated by carbohydrate response element bind-
ing protein (ChREBP)[58]. For a long time, it was assumed 
that a defect in muscle tissue is the first step in the origina-
tion of  insulin resistant states. In the last decade, however, 
this doubtful honour shifted towards the adipocyte. Be-
sides the lump storage of  fat, in the mid 90’s, the exocrine 
functions of  fat were recognised, and it became clear that 
fat is the choirmaster in the aetiology of  IR[59]. It has been 
found that mice lacking GLUT4 in adipocytes develop IR 
in muscle and liver tissue[60], suggesting that fat cells secrete 
a substance that can induce IR in other tissues. 

Adipocytes excrete a number of  bioactive peptides 
that are collectively called “adipokines”. Leptin (Greek for 
‘thin’), discovered by Zhang et al in 1994[61] is the prototype, 
but since then other adipokines, such as adiponectin[62], 
ghrelin[63], resistin[64] and recently retinol binding protein 4 
(RBP4)[65], have been identified and characterized. RBP4 
works partly by blocking the action of  insulin in muscle 
and liver[65,66]. Depending on the amount of  lipids, a stored 
adipocyte releases adipokines when its maximum storage 
is reached (leptin, RBP4) or more capacity available (adi-
ponectin). Each adipocyte secretes a small amount of  these 
peptides into its direct surroundings. In obese states, adi-
pocytes also excrete inflammatory cytokines[52]. It has been 
found that TNF-α is over expressed in obese people[67]. 
Since this discovery, more inflammatory mediators have 
been recognised and investigated[68]. Excretion of  inflam-
matory cytokines attracts macrophages, probably as a natu-
ral response to the clearance of  the extreme swollen body 
and malfunctioning of  fat cells. Macrophages themselves 
also release inflammatory substances. In the copious blood 
flow in adipose tissue, these peptides readily manoeuvre 
into the blood, which enables them to exert a number of  
endocrine and autocrine functions. Together, all adipocytes 
make up the largest endocrine organ resulting in a con-
siderable influence of  adipokines on body function[69-71]. 
Especially because adipocytes grow and proliferate in an 
overfed situation, this will lead to more excreted adipok-
ines navigating lipids to certain specific areas of  the body. 
Muscle and liver tissue are the main sites for ectopic fat ac-
cumulation[72]. In myocytes and hepatocytes, FFA cause IR 
in genetically susceptible subjects through defects in the 
insulin signalling pathway. Although the search for specific 
defects in the pathogenesis is complicated by the complex-
ity of  insulin signalling cascades, one of  the major prob-
lems is a disturbance in the IRS1/PI3-kinase/Akt/GLUT 
pathway. IRS-1 tyrosine phosphorylation leads to serine 
phosphorylation, thereby interrupting the pathway for the 
transport of  glucose via the GLUT transporters to the 
membrane. A number of  inflammatory kinases have been 
found to induce this inhibitory serine phosphorylation, 
such as IKB-kinase-β (IKK-β), jun-kinase-1 (JNK-1) and 
suppressor-of-cytokine-signalling-3 (SOCS3). Interestingly, 
SOCS3 receptors have also been found in the hypothala-
mus, where it may be involved in leptin signalling. JNK-1 is 
found to be an important mediator in the development of  
inflammation in obese tissue[73]. Özcan et al[74] found that 
the protein is triggered by endoplasmatic reticulum (ER) 
stress. In obese states, the metabolic demand on the ER, is 
maximal and sometimes even more. As a response to the 
continuously high workload, the ER initiates a complex 
response system, referred to as the unfolding protein re-
sponse (UPR). This UPR leads to the activation of  JNK-1, 
IKK-β and TNF-α. More evidence comes available that 
the ER in this way translates the metabolic stress into an 
inflammatory signal. 

Interestingly, it has been found that in hepatic IR 
states, the IRS-2 signalling is relatively intact, insulin down-
regulates the IRS-2 receptor, resulting in over-expression 
of  SREBP-1c and up-regulation of  DNL[75].
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Supply
Plasma FFA: The plasma nonesterified fatty acid (NEFA) 
pool contributes to the majority of  fatty acids that flow 
to the liver in the fasting state, thus providing the bulk of  
FFA secreted by the liver in VLDL particles[76]. The storage 
of  TG and FFA in adipose tissue is mediated by insulin, 
especially in visceral fat. In healthy individuals, consump-
tion of  a meal induces an increase in plasma insulin con-
centration and subsequent suppression of  adipocyte lipol-
ysis, thereby reducing the plasma NEFA pool. Adipose 
tissues, especially visceral adipocytes, function as a depot 
for energy that can be released in times of  need. IR devel-
ops after long-term excess energy intake, thus decreasing 
the inhibitory effects of  insulin on peripheral lipolysis and 
increasing the availability of  FFA. FFA is released into the 
blood stream by flow of  visceral adipocytes to the liver 
without any circumbendibus. Paradoxically, the contribu-
tion of  FFA derived from the plasma pool flowing into the 
liver is relatively smaller in NAFLD patients compared to 
healthy subjects. This is due to the increased contribution 
of  other mechanisms in these patients. 

Dietary fat intake: Dietary fats are supplied to the liver 
by two different routes. Chronic intake of  energy-enriched 
food challenges the processing capacity of  adipocytes, 
with an overflow of  NEFA into the plasma as a result[77]. 
Lipid accumulation in non-adipose tissue, mainly muscle 
and the liver, is a characteristic of  obesity, but is also seen 
in lipodystrophy. Where in obesity the adipocytes overflow, 
in lipodystrophy there are no or insufficient adipocytes to 
store lipids, both being a factor for the increased ectopic 
lipid accumulation. A second route is via remnant chylomi-
crons. FFA and monoglycerides are absorbed separately 
and packaged into TG in intestinal epithelial cells. They 
are then secreted in chylomicrons (lipoproteins with a 
very high lipid content), which release FFA to adipose and 
muscle cells, mediated by lipoprotein lipase. Chylomicrons 
depleted of  most lipids (known as chylomicron remnants) 
are absorbed by the liver. Studies have shown that in the 
remnant delivered to the liver, up to 50% of  the FFA can 
still present, which then have to be processed by the liver. 
Dietary fat intake is responsible for approximately 15% of  
the FFA supply to the liver[78].

De novo  lipogenesis (DNL): The term lipogenesis refers 
to the biosynthesis of  lipids. DNL indicates that synthesis 
of  fatty acids occurs in various non-fat precursors. Most 
important precursors are glucose, aminoacids and ethanol 
which produce acetyl-CoA during their catabolism and are 
therefore susceptible to conversion to fatty acids in the 
intermediary metabolism. SREBP-1c plays a key role in the 
regulation of  DNL and is activated by insulin, endocan-
nabinoid receptor CB-1[79], liver X receptor (LXR)-α[80], 
oxysterol binding protein[81] and suppressor of  cytokine 
signalling (SOCS)-3[82]. Leptin and glucagon have antago-
nising effects. The suppressing effect of  leptin on SREBP-
1c seems paradoxal, as obese persons often exhibit high 
levels of  leptin and high expression of  SREBP-1c. This is 
the consequence of, on the one hand, an increase in leptin 
production by the expanding mass of  fat cells, and on the 

other hand, a decrease in leptin sensitivity[83].
LXR-α is an oxysterol-activated nuclear receptor. 

Activation of  LXR-α induces SREBP-1c transcription 
through the co-activation of  retinoid X receptor (RXR)-α. 
Grefhorst et al[84] showed that exogenous administration of  
LXR-α ligands results in extensive hepatic steatosis. 

The observation of  an increase in appetite in associa-
tion with the use of  cannabis has lead to the hypothesis 
that the endocannabinoid pathway might play a role in 
energy intake and fat metabolism. The most prominent re-
ceptors are the cannabinoid receptor 1 (CB-1) and cannab-
inoid receptor 2 (CB-2). CB-2 is mostly expressed in the 
immune system, while CB-1 is found to be involved in the 
SREBP-1c pathway in liver and brain. In these pathways, 
the effect of  CB-1 is twofold that of  CB-2. Regulation of  
the hypothalamic-driven feeding behaviour[85,86], has direct 
effects on energy intake. A second effect is on hepatic fatty 
acid synthesis, hepatic TG quantity and activation of  the 
released fatty acids from adipose tissue[79,87].

SOCS3 is an adipocyte-excreted cytokine that up-
regulates hepatic SREBP-1c. Although the mechanisms 
have not been fully elucidated, TNF-α, interleukin (IL)-6 
and leptin seem to augment excretion of  SOCS3, whereas 
adiponectin is found to have inhibitory effects[82]. In 
healthy individuals, DNL is a minor supplier of  fatty acids 
to hepatocytes in the fasting state, when insulin levels are 
low. Less than 5% of  the total supply of  fatty acids origi-
nates from DNL. In the postprandial state, insulin stimu-
lates DNL which then accounts for over 26% of  the FFA 
supplies. This more or less diurnal rhythm is not seen in 
NAFLD patients where the contribution of  DNL is con-
tinuously 26%[78]. 

Oxidation
In normal conditions, mitochondria take up FFA as a sub-
strate for β-oxidation while fasting fatty acid oxidation is 
the main substrate for the production of  energy used in 
gluconeogenesis. In IR states, the amount of  FFA available 
for oxidation exceeds the mitochondrial capacity. A bulk 
of  acetyl CoA enters the citric acid cycle, resulting in the 
delivery of  electrons to the respiratory chain, where they 
generate reactive oxygen species (ROS).

Outflow
In physiological conditions, transport of  TG from hepa-
tocytes occurs through formation of  VLDL by the ER in 
two steps. The first step is the lipidation of  apolipoprotein 
B (ApoB), which creates a so-called pre-VLDL. This 
l ipidation of  ApoB is catalyzed by the microsomal 
triglyceride transfer protein (MTTP). The pre-VLDL is 
transported to the smooth ER and further lipidated before 
its migration to the cell membrane again. MTTP is the 
catalysor in this process. The second step is progression of  
ApoB to pre-VLDL, which is dependent on the amount 
of  TG available. If  insufficient lipids are available, the 
ApoB protein will degrade. Insulin is a strong promotor 
of  ApoB degradation via the PI3K pathway and can thus 
influence the number of  VLDL particles synthesized. 
SREBP-1c inhibits the formation of  MTTP, thereby 
reducing the amount of  VLDL particles produced. In IR 
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states, the PI3K pathway is eliminated to a certain extent 
but the up-regulated SREBP-1c leads to a decrease in 
VLDL synthesis. The size of  the particle is dependent on 
the amount of  TG stored in cells. It has been shown that 
VLDL particles in fatty livers are sufficiently larger, most 
likely as a result of  the decreased production[84]. It is likely 
that export of  TG is impaired in IR states.

From hepatic steatosis to NASH
Steatohepatitis is characterized microscopically by hepatic 
fat accumulation, mixed lobular inflammation, ballooning 
degeneration of  hepatocytes, Mallory bodies, glycogenated 
hepatocyte nucle i , and per ice l lu lar f ibros is. The 
characteristic “chicken wire” pattern of  pericellular fibrosis 
affects portal areas only at later stages. Accumulation of  
FFA and TG in hepatocytes by mechanisms described 
above spreads over the bed for the second hit in Day’
s widely accepted theory[42]. By far, not all fatty livers 
progress to steatohepatitis[39,88]. Although a considerable 
amount of  evidence is available for environmental influ-
ences, there is inevitably a genetic compound that con-
tributes to the origination and progression of  the disease. 
Factors responsible for the progression from simple fatty 
liver to NASH are extensively researched. TNF-α expres-
sion, lipid peroxidation and mitochondrial dysfunction 
are likely to be involved. The mechanism is triggered and 
starts a sequence that leads to inflammatory response and 
release of  inflammatory cytokines, eventually resulting in 
the development of  fibrosis and cirrhosis. Since the lipid-
laden liver of  steatotic patients does not increase in size, 
the entire lipid content must come in place of  existing 
structures and compress them somewhat. To resolve this 
disadvantageous condition, hepatocytes need to clear FFA 
and TG, for which they can use two mechanisms. The first 
is the above described excretion of  TG through formation 
of  VLDL particles. It is postulated that this mechanism is 
impaired in hepatic steatosis. The other mechanism is the 
metabolism of  FFA by mitochondrial β-oxidation[89]. In 
summary, these metabolic changes in steatotic livers result 
in the formation of  reactive oxygen species (ROS) by mito-
chondria as a result of  increased mitochondrial β-oxidation, 
hepatic microsomal cytochrome P450 2E1(CYP2E1) up-
regulation and formation of  Kupffer cell ROS.

The mechanism by which mitochondrial β-oxidation is 
up-regulated in steatotic livers still remains unclear, but it is 
thought that especially DNL-derived FFA and peroxisome 
proliferator-activated receptor (PPAR)-α are important 
stimulators of  carnitine palmitatoyltranferase-1 (CPT-1) 
responsible for the entry of  FFA into mitochondria. The 
massive influx of  FFA from peripheral tissue and mostly 
the increased DNL within hepatocytes exceeds the meta-
bolic capabilities of  mitochondria, with the formation of  
ROS and an inflammatory response as a result. 

CYP2E1 is predominantly found in the ER, but sig-
nificant amounts are present in the cytosol and mitochon-
dria where it stimulates microsomal fatty acid oxidation. 
Increased CYP2E1 activity and expression are found in 
NASH patients[90], but the mechanisms behind this remain 
unclear. Recently Rahman et al found that CCAAT/En-
hancer binding protein (C/EBPbeta) expression may be 

an important factor in the upregulation of  CYP2E1[91]. 
Other authors have postulated the influence of  IR[92,93] and 
increased ketogenesis[94]. 

In various models, steatosis endotoxin receptors on 
Kupffer cells are increased, which may trigger the assem-
blage of  NAD(P)H oxidase on the plasma membrane of  
hepatocytes and thereby causing ROS formation[95].

The surplus of  FFA within the liver causes the forma-
tion of  excess amounts of  ROS. Mitochondria in non-fat-
laden hepatocytes also produce rather large amounts of  
ROS, but enzymatic processes can change ROS into “safe 
water”. Excessive ROS formation can lead to an over-
burden of  this escape mechanism and ROS can leave the 
mitochondria. In the cytosol, ROS enhances lipid peroxi-
dation products and mitochondrial DNA (mtDNA). In-
creased mitochondrial ROS formation could also directly 
oxidize mitochondrial DNA, proteins and lipids, and trig-
ger hepatic TNF-α formation by activating nuclear factor 
(NF)-κB and deplete antioxidants, thus further increasing 
mitochondrial ROS formation. Induction of  the inflam-
matory cascade can also be the result of  the reduced avail-
ability of  anti-inflammatory products as adiponectin[96].

Another worsening and possible triggering factor might 
be the tumour necrosis factor (TNF)-α[97,98]. In obese and 
IR patients, serum levels of  TNF-α are proportionally 
increased and one of  the striking differences between pa-
tients with NASH and those with simple steatosis is the 
serum level of  TNF-α[99]. Not hepatic, but mainly adipose 
tissue is the main supplier of  TNF-α. In normal condi-
tions, hepatocytes that frequently come into contact with 
a variety of  endo- and exotoxins are not very sensitive to 
TNF-α, but in NASH patients it might be possible that 
the increased levels cause leakage of  the mitochondrial 
outer membrane and thereby increasing ROS formation[89]. 
TNF-α also has direct effects on IRS phosphorylation and 
stimulates SOCS3 formation via interleukin 6 (IL-6) and 
inhibitory κB-kinase (IKK), thereby worsening IR and st-
eatosis[100,101] (Figure 1).

DIAGNOSIS
General
As noted before, NAFLD patients are mostly asympto-
matic because slightly elevated liver enzymes are acciden-
tally found. There is some debate about the question when 
further investigations are performed, especially in liver bi-
opsy. Generally, it is reasonable to undertake action when 
the ALT level is > 2 × ULN measured at two different oc-
casions[102].  When the diagnosis of  NAFLD is considered, 
it is important to exclude other pathological conditions 
that are associated with elevated ALT levels and/or stea-
tosis (Table 1). It is especially difficult to find the differ-
ence between alcoholic and non-alcoholic liver diseases, as 
not all patients are honest about their alcohol intake and 
there is no adequate diagnostic difference between the two 
diseases. An abdominal ultrasound is performed to exclude 
hepatobiliary obstructions or tumours. 

Imaging techniques
Ultrasonography, computerized tomography (CT) scan, 
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and magnetic resonance imaging (MRI) can all be used to 
diagnose hepatic steatosis. Ultrasonography, the most com-
monly used and least expensive method, can be used to 
diagnose moderate to severe steatosis. Studies in the 1980’
s found that its sensitivity and specificity vary from 60% 
to 94% and 88% to 95%, respectively. Palmentieri et al[103] 
investigated a subgroup of  patients with hepatic steatosis 
> 30%, showing that the sensitivity and specificity of  US 
increase up to 90% and 97% , respectively. Although the 
diagnostic capacity of  ultrasonography increases with higher 
degrees of  steatosis[103-105], accurate quantification of  hepatic 
fat and comparison between simple hepatic steatosis and 
steatohepatitis are impossible. Un-enhanced CT imaging can 
accurately detect and quantify the amount of  steatosis in 
patients[106,107]. Grey scales (representing the amount of  ra-
diation absorbed) of  the liver and spleen are measured and 
expressed in Houndsfield units (HU). For quantification of  
the amount of  fat-infiltrated hepatocytes, the difference in 
grey scale between the liver and spleen can be measured in 
HU. This measurement correlates well with the percentage 
of  hepatocytes with fatty infiltration[107], where the hepatic 
attenuation decreases with the increased fat. For steatosis > 
33%, the sensitivity and specificity are 82%-93% and 100%, 
respectively[106]. There is no difference in diagnostic value be-
tween a non-contrast CT scan and a contrast-enhanced one, 
with specifically more attenuation in the blood vessels than 
in the liver parenchyma. Contrast-enhanced CT scan does 
not provide more information. In fact, its sensitivity and 
specificity for steatosis are lower than those of  un-enhanced 
CT imaging. Another drawback of  contrast-enhanced CT 
scan of  steatosis is the greater difficulty in its measurement 
due to the more complicated protocol. 

The most accurate available technique for detection 
and quantification of  hepatic steatosis is NMR[108-110]. T1-
weighted dual-echo chemical shift gradient- echo NMR is 
commonly used to obtain images. The main advantage of  

this technique is the possibility of  acquiring in-phase (water) 
and opposed-phase (fat) images in one breath hold, there-
by reducing the influence of  breathing movements and 
contrast absorption. Besides, this technique is useful for 
follow-up due to the lack of  the use of  fluoroscopy. Quali-
tative measurement or detection of  steatosis is assessed on 
opposed-phase images. On T1- weighted images, a shorter 
relaxation time represents the higher signal intensity (SI). 
In healthy individuals, the SI of  the liver is higher than that 
of  the spleen. Steatosis causes a drop in SI on opposed-
phase images. When SI of  the liver equals to that of  the 
spleen, a diagnosis of  mild steatosis is made. Moderate or 
severe steatosis is diagnosed when SI of  the liver is less 
than that of  the spleen. Quantification of  steatosis is pos-
sible with MRI by calculating the mean SI of  the liver on 
in-phase and opposed-phase images. A number of  regions 
of  interest (ROI) are drawn in sections of  the liver, from 
which the mean can be calculated. Using the same method, 
the mean SI of  the spleen or fat issue surrounding the liver 
can be calculated as a reference. The difference in SI on 
opposed-phase and in-phase images can be calculated and 
expressed as a percentage of  fatty infiltration of  the liver. 
MRI shows a good correlation with histological examina-
tion, the sensitivity and specificity of  MRI are 100% and 
92.3%, respectively[110].

Another relatively new NMR technique under develop-
ment, widely used to quantify hepatic triglyceride content, 
is magnetic resonance spectroscopy (MRS)[111,112]. MRS of   
in vivo biological tissues was first reported in 1973 and used 
in the field of  chemistry before NMR was introduced in 
hospitals. The principle of  MRS is based on the differences 
in resonance frequencies of  protons. The electron cloud 
surrounding molecules shields protons to varying degrees 
depending on the specific molecule structure and the specif-
ic position of  protons in the molecule. This shielding causes 
protons in different molecules or even in different places 
of  the same molecule to have a slightly different resonance 
frequency. Instead of  using resonance frequencies for creat-
ing anatomical images, the differences in spectroscopy fre-
quency are used to identify different chemical compounds. 
By using these differences, protons in water molecules can 
be differentiated from protons in lipids. Quantifying the 
amount of  a certain biochemical component is possible 
by calculating the area under the “fat resonance peak” and 
comparing it to the “water resonance peak” (Figure 2).

Technically, coronal, axial and sagital images of  the liv-
er are acquired and a volume of  interest is defined, avoid-
ing major blood vessels and bile ducts. 

Unfortunately, to date, no conventional diagnostic im-
aging method that can accurately distinguish NASH from 
simple steatosis is available[111,113]. Transient elastography 
(fibroscan) is a technique under development. Studies in 
chronic hepatitis C (CHC) patients showed that cirrhosis 
(severe fibrosis) can adequately be distinguished from mild 
fibrosis, but this accuracy is much less in distinguishing 
various degrees of  fibrosis[114]. Another drawback of  the 
fibroscan method is that it is difficult to use and inaccurate 
in obese patients. A combination of  serologic markers is 
under investigation to assess the severity of  fibrosis[115]. Al-
though results seem promising, further study is wanted. 
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Figure 1  Pathogenesis of nonalcoholic steatohepatitis during insulin resistance. 
FFA is supplied to the liver through dietary intake, and lipolysis in adipocytes via 
chylomicron remnants. Transcription of SREBP-1c is chronically up-regulated 
resulting in DNL. Simultaneous inhibition of VLDL synthesis results in disruption 
of triglycerides export. The surplus of fatty acids is stored in triglycerides or 
metabolized via peroxisomal and mitochondrial oxidation. The excessive 
oxidation will lead to production of ROS and oxidative stress. This will trigger the 
inflammatory response and apoptosis as well activation of stellate cells.
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THERAPEUTIC OPTIONS
Life style modifications and weight reduction
Since the majority of  patients suffer from obesity, insulin 
resistance and concomitant cardiovascular disease, weight 
reduction of  approximately 10% has been advised by the 
American Gastroenterological Association[116]. An analysis 
by Wang et al[117] of  all published articles and meeting 
abstracts have revealed no randomized controlled trials. 
Besides, the use of  variable primary endpoints and control 
groups worsened the analysis of  this comprehensive 
review. Although on a theoretical basis, reduced caloric 
intake, exercise and weight loss would eventually improve 
hepatic steatosis, very scarce evidence is available to 
support this hypothesis. The limited data are due to the 
small number and lack of  histological evidence. Recently, 
Huang et al[118] analyzed the effect of  a 12-mo standardized 
nutritional counseling in 16 of  23 patients and found 
that the mean weight reduction is 2.9 kg with histological 
improvement in 9 patients. 

No data are available on the long-term effect of  
weight loss on liver-related diseases such as cirrhosis or its 
complications.

Pharmacological interventions
Drug-induced weight reduction: The only two registered 
drugs for pharmacological weight reduction, Orlistat (n = 4)  
and Sibutramine (n = 1), have been investigated in a few 
small non-randomized studies[119-123]. Orlistat, a gastric and 
pancreatic lipase inhibitor resulting in fat malabsorption 
(approximately 30%), has been studied in one case se-
ries[119], three pilot studies[120,121,123] and one RCT[124]. Over-
all, patients can achieve impressive weight loss (10-15 kg) 
with improvements in liver enzymes but variable results in 
histology. 

Sibutramine, a serotonin and norepinephrin reuptake 
inhibitor, acts on enhancing satiety via central mechanisms. 
There is only one published study on NAFLD in 25 pa-
tients demonstrating weight loss, improvement in liver en-
zymes and hepatic steatosis on ultrasound. Unfortunately, 
repeated liver biopsy was not performed. 

Antioxidants: Since the pathogenesis of  NAFLD is thought 
to be in a two-hit fashion, it is believed that oxidative stress 

causes a second hit leading to inflammation. In vitro and  
in vivo animal and human studies[125,126] have been performed 
on the effects of  vitamins E and C as antioxidants. The 
promising results in one study were counteracted by another. 
Harisson et al[126] reported that a between group analysis 
cannot show any beneficial effect of  the combination 
of  vitamins E and C after 6 mo, compared to placebo. 
Recently, Lirussi et al[127] identified 6 trials that were analyzed 
according to the intention-to-treat principle and found that 
despite the significant improvements in liver enzymes and 
minor adverse events, radiological and histological data are 
too limited to support or repudiate the use of  antioxidants 
in patients with NAFLD.

Ursodeoxycholic acid (UDCA): UDCA, approved as a 
drug of  choice in treatment of  patients with PBC, exerts 
its effect by reducing the portion of  hydrophobic bile acids 
contributing to oxidative stress. Four clinical trials[128-131], of  
which only one assessed histology[129] and had a low-bias 
risk, have been conducted. No significant differences in the 
degree of  steatosis, inflammation or fibrosis could be found 
between the treated and placebo groups. Unfortunately, 
these studies had no heterogeneity with respect to inclusion 
criteria, sample size, duration of  treatment and methods of  
outcome assessment. Therefore, the Cochrane analysis by 
Orlando et al[132] concludes that the data are insufficient to 
use UDCA in treatment of  patients with NAFLD. 

Metformin: Metformin, a biguanide, has been shown to 
be an effective drug for the treatment of  patients with type 
2 diabetes mellitus[133]. Its administration improves hepatic 
steatosis and hepatomegaly. In addition to this observation, 
human pilot studies performed with variable results[134,135] 
could not demonstrate a beneficial effect of  metformin 
compared to a calorie-restricted diet. Similar to the previous 
mentioned therapies, histological data are limited to support 
an association between improvements in liver enzymes and 
histological findings.  

Thiazolidinediones (TZD): This class of  agents acts as 
agonists of  the peroxisome proliferator-activated receptor 
gamma on ameliorating insulin resistance and glucose 
and lipid metabolism. The first generation of  TZD, e.g. 
troglitazone, appears to be effective on ALT levels, although 
it has been withdrawn from the market due to its severe 
hepatotoxicity[136,137]. In addition, the second generation of  
TZD (pioglitazone and rosiglitazone) is safer. A Cochrane 
analysis by Angelico et al[138], (excluding trials treating 
patients with type 2 diabetes mellitus) extracted only one 
RCT by Sanyal et al[139], showing that combination therapy 
with vitamin E and pioglitazone is significantly superior to 
vitamin E alone in terms of  the degree of  hepatic steatosis, 
but not other histological variables.

An open label trial of  rosiglitazone in 26 biopsy-proven 
NASH[140] and two pilot studies with pioglitazone[141,142]  
(n = 73) during 48 wk demonstrated improvements both 
in liver chemistry and in histological features like steatosis, 
necroinflammation and fibrosis. Weight gain seems to 
be the most important adverse event. Recently, the use 
of  rosiglitazone has been associated with the slightly 

Figure 2  Spectrum of a fatty liver measured by 1H-magnetic resonance 
spectroscopy. The water peak is at 4.3 ppm. 1: Residual water partially suppressed; 2: 
Glycerol/phospholipids; 3: (-CH2-)n of saturated fat.
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increased bone loss in postmenopausal women and elderly 
diabetics[143-145] and an increased risk of  cardiovascular 
events, i.e. myocardial infarction[143,146,147]. Further research 
focusing on larger randomized controlled trials with this 
class of  drugs will be valuable. 

Lipid lowering drugs: Use of  statins or fibrates has 
not been investigated in large randomized trials. Primary 
endpoints of  these studies are liver enzymes but not 
histology. No definite conclusions can be made from these 
limited studies[121,148]. 

Adipokines: As mentioned before, adipocytes act as 
hormonal active tissue producing cytokines, like leptin, 
resistin, adiponectin and tumor necrosis factor-α 
(TNF-α). It was reported that levels of  TNF-α are 
increased in patients with NASH[99]. TNF-α, as a potential 
proinflammatory cytokine, promotes insulin resistance 
and thereby hepatic steatosis[101]. Some animal and even 
fewer human studies focusing on the effect of  blocking 
this adipocytokine showed that patients treated with 
pentoxifyllin for 6 or 12 mo have a significant improvement 
in liver enzymes[149,150]

Administration of  synthetic adiponectin, exposing 
opposite effects to TNF-α, in two animal models can 
ameliorate hepatomegaly, steatosis and elevated ALT-
levels[151].

Leptin, a 16-kDa protein hormone, has been shown 
to play a pivotal role in energy homeostasis by activating 
and inhibiting certain neurons[152]. It has been shown 
that administration of  leptin infusions in patients with 
generalized lipodystrophy significantly ameliorates insulin 
resistance, glucose and triglyceride levels as well as hepatic 
steatosis[153,154]. No such studies have been performed yet 
in NAFLD patients.

Resistin, another adipocytokine, is a subject of  contro-
versy regarding to its causal role in obesity and type 2 
diabetes mellitus. Due to this controversy, no published 
data are available about its beneficial effects on inhibition 
of  resistin. 

FUTURE DIRECTIONS
Up until now, the exact treatment strategy for the treatment 
of  patients with NAFLD has not been well established 
in RCT. Research topics in this field are challenging. In 
the United States and Europe, some research groups are 
focusing on comparing different treatment options and 
identifying those patients most in need for treatment. 
Evolving new imaging techniques like proton magnetic 
resonance spectroscopy might differentiate between those 
patients having type 1 NAFLD (defined as simple steatosis 
without features of  inflammation) and type 2 NAFLD 
(containing patients with variable grades of  inflammation 
and fibrosis eventually resulting in cirrhosis). 

Several registered drugs aiming at improving metabolic 
syndrome should be further investigated on their exact 
anti-steatotic effects. The most promising drugs are insulin 
sensitizers (especially Thiazolidinediones), which should be 
further investigated in a larger RCT aiming at establishing 

the optimal dosage, time of  treatment and adverse effects.
Since the discovery of  two cannabinoid receptor 

antagonist receptors (CB1 and CB2) in the late 1980’s 
and the beginning of  the 1990’s in the brain[155,156] and 
gastrointestinal tract[157], it has gained more and more 
interests from both researchers and clinicians. CB1 has 
been extensively found in the central nervous system, 
affecting many neurological and psychological phenomena, 
like appetite, mood and spatial coordination of  muscle 
tone[158]. In contrast, CB2 detected in peripheral cells of  the 
immune system (lymphocytes, monocytes and neutrophils) 
exerts additional effects on the gut (inhibition of  motility) 
and vasodilation[159,160]. Research in animal models revealed 
that activation of  the endocannabinoid system leads 
(partially) to the development of  portal hypertension and 
arterial hypotension through macrophages and platelets 
activated by bacterial lipopolysacharides[161,162]. Secondly, 
anandamide, an endogenous ligand for CB-receptors, 
appears to be up-regulated in patients with endotoxic 
shock[163] and subsequently hepatocellular apoptosis has 
been linked to anandamide and its lipid-lipid plasma 
membrane interaction, resulting in enhanced susceptibility 
to oxidative stress[164]. Thirdly, another hypothesis is that 
an activated CB-system may have influence on hepatic 
encephalopathy[165]. In humans, endocannabinoids 
have been used in the treatment of  three patients with 
cholestatic-related intractable pruritus[166]. SR141716A 
(Rimonabant, Sanofi-Aventis, Paris, France) under 
investigation may be used in the treatment of  patients with 
obesity and metabolic syndrome[167]. In obese Zucker rats, 
administration of  this drug could ameliorate markers of  
hepatic damage (defined as increased liver enzymes, focal 
hepatic TNF-α and decreased adiponectin), and decrease 
hepatomegaly[167]. Preliminary results in humans are 
promising since the used drug is safe, effective in achieving 
weight reduction and amelioration of  the lipid profile and 
metabolic syndrome[85,168,169]. 

In conclusion, the development of  drugs acting 
both on the cannabinoid system influencing the central 
nervous system through inhibition of  appetite and on 
the peripheral tissue ameliorating hepatic hemodynamics, 
inf lammation and weight reduction accompanying 
improvement in metabolic syndrome, will lead to new 
research aims in the field of  hepatology. In particular, the 
development and conductance of  RCT with synthetic, 
non-psychotropic cannabinoids might result in optimizing 
treatment strategies for patients with NASH.

CONCLUSION
Nonalcoholic fatty liver disease, especially nonalcoholic 
steatohepatitis, forms a definite threat to human health. 
With the increase in obesity, an increase in NAFLD 
patients can be expected, eventually leading to an increased 
number of  liver transplantations. Pathophysiological 
mechanism is the subject of  research all around the world, 
leading to a continuous current of  new evidence and more 
knowledge about the complex mechanisms behind the 
disease. At the same time, diagnostic methods for detecting 
steatosis and steatohepatitis are under development. 
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1H-magnetic resonance spectroscopy is accurate in the 
detection and quantification of  fat in the liver, but the 
eagerly wanted non-invasive tool for the detection of  
fibrosis or inflammation in steatotic livers is not available. 
Therapeutic options do increase. Weight loss by dietary and 
lifestyle intervention remains the cornerstone of  treatment, 
but motivated patients can be supported by medications. 
Most promising results are found with thiazolidinediones, 
but recent upheaval around rosiglitazone means a setback 
of  this drug. 
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