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Abstract

This paper proposes a unified approach to Monte Carlo estimation
of sensitivity of European option premiums with respect to some arbi-
trary parameter. The classical framework assumes that the underlying
parameter is some intrinsic parameter of the model, e.g., interest rate,
volatility or time to maturity, in which case sensitivities are also known
as ”Greeks”. Intrinsic parameters only induce variability in the dynamic
of the stock-price(s) under consideration. The present approach allows
the parameter under discussion to induce variability in the payoff func-
tion and also in the exercise rule of the option. Our leading examples
come from the family of the so-called digital options, i.e., financial options
which pay off some (apriori) fixed amount of money provided that the
stock-price(s) at maturity lie in some certain region, such as (finite inter-
sections of) polyhedra and/or spheres, in the n-dimensional space, where
n ≥ 1 denotes the number of underlying assets. For such options, the
payoff and the exercise rule can be chosen independently. This approach
essentially relies on differentiation of multiple integrals with parameter
and appropriate formulas are established in a rather general setting. In
our leading examples the underlying parameter dictates the exercise rule,
i.e., integrals on moving domains have to be considered, and a direct ap-
peal to surface integrals must be made. General Monte Carlo integration
techniques for evaluating such integrals will be presented and illustrated
by some examples. Finally, the connection between the main results of
this paper and the concept of weak differentiation will be discussed.
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Introduction

A financial option is a contract written by a seller that conveys to the buyer the
right, but not the obligation, to buy or to sell a particular asset, shares of stock
or some other underlying security at some maturity time T , or earlier. In return
for granting this option, the seller collects a payment (the premium) from the
buyer. Option pricing, which is determining the fair premium to be paid for such
an option in a arbitrage-free market, along with hedging, is one of the key topics
in mathematical finance. For risk-managers, however, equally important is to
evaluate the sensitivity of the option premium w.r.t. various parameters such
as volatility, interest rate, maturity time or strike price. Sensitivities of option
premiums are known in the literature as Greeks (they are denoted by Greek
letters) and, due to their importance, they have received very much attention
in the mathematical finance literature in the last years.

By the most general definition, an option is characterized by a non-negative
random variable Z, completely determined by the evolution of stock prices up
to maturity T , which relates the profit of its holder to the (evolution of) stock
prices. The random variable Z can be, for instance, a function of the stock
price at time T (the simplest case) and, may involve several stock prices at
some specified intermediate times or, in the most general case, it may depend
on the whole evolution (sample path) of stock prices up to time T . Since an
option modeled by Z brings a profit of Z units at maturity, its fair premium is
given by the discounted expected value of Z, i.e.,

V := e−rTE[Z], (1)

with the interest rate r assumed to be constant in the time interval [0, T ].
A wide range of financial options, having maturity T , are described via a

payoff function ℘ : Rn → R and a feasibility function ψ : Rn → R, as follows:
the option entitles its holder to gain a profit of

Z = z(S) = ℘(S)1{ψ(S)>0} (2)

units by exercising the option at time T , where S is a n-dimensional vector
representing the stock prices of n underlying assets at time T . In words, the
option holder will obtain a profit specified by the payoff function ℘, conditioned
on the fact that the vector of stock-prices S lies within a pre-specified region in
R
n, called feasibility domain, at maturity time T . Therefore, the value of such

an option is given by

V = e−rTE [z(S)] = e−rTE
[

℘(S)1{ψ(S)>0}

]

. (3)

Equation (2) suggests that we are considering financial options which bring a
profit which can be expressed as a (measurable) function z of the terminal stock
price S. Since we are investigating differentiability properties of E[z(S)] w.r.t. a
parameter which appears either in the expression of z or in the distribution of
S, generically denoted by θ, it is desirable to make some suitable assumptions
over the function z. Assuming z to be a smooth function (in all variables) would
be too restrictive since it does not cover any realistic model. As it will be shown
later in this paper, it is more convenient to consider functions z which can be
written as products between a smooth function and the indicator function of a
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smooth domain. This is essentially the reason why we are considering functions
z which can be expressed by means of payoff and feasibility functions such as
in (2). For the time being we do not make any specific assumption over the
parameter θ. Later in this paper we will distinguish between the case when θ is
a parameter of the distribution of S (intrinsic parameter) and the case when θ
is a parameter of the payoff and/or feasibility functions (non-intrinsic).

Typically, the payoff function ℘ and the feasibility function ψ agree since,
for many usual financial options, the profit can be expressed as

max{℘(S), 0} = ℘(S)1{℘(·)>0}(S).

However, this is not always the case since there are options for which ℘ and
ψ may be different. Instances of such options are the so-called binary (digital)
options, e.g., the asset/cash-or-nothing options (AON/CON). The payoff of the
AON option is a function of S while for the CON option the payoff is constant.
Both options, however, pay off only if the vector of stock-prices S lies within
a certain region in R

n at the maturity time. Other (more complex) examples
are barrier and ladder options which differ from the AON/CON options in that
the payoff depends upon the whole evolution (is a path-functional) of the stock
prices up to maturity time and not only on its terminal value S.

Apart from a few well known types of options in a Black-Scholes market,
option prices (and, consequently, Greeks) can be very rarely obtained in closed
form expressions. Since the option price is, up to a multiplicative constant,
given by an expectation of a certain random variable, Monte Carlo simulation
seems to be the only reasonable way to estimate Greeks, since numerical meth-
ods involving numerical integration and/or algorithmic PDE solving become
infeasible for large n. There are, however, several long established methods for
estimating the sensitivity of V with respect to some specified parameter and in
what follows we give a brief overview of these methods.

Most popular methods rely on approximating the derivatives via finite-
differences (FD). That is, one uses the following approximation (for ε→ 0):

dV

dθ
≈ V (θ + ε)− V (θ − ε)

2ε
;

see, e.g., [15]. Note that this method requires re-simulation since both V (θ+ ε)
and V (θ − ε) are obtained by simulation. Another pitfall of the FD method is
that, although the estimates converge, as ε → 0, to the derivative V ′(θ) when
V is differentiable in θ, there is no clear indication on how small (close to 0) ε
should be and this is directly influencing unbiasedness of the estimate.

Given the shortcomings of the FD method, two so-called direct methods, i.e.,
no re-simulation is needed, known as infinitesimal perturbation analysis (IPA)
and score-function method (SF), respectively, were proposed; see, e.g., [2]. The
IPA method essentially requires path-wise differentiation while the SF method
requires differentiation of the density. Both methods lead to unbiased gradient
estimates. However, IPA method is applicable only when the profit function
Z is Lipschitz continuous w.r.t. θ, which is not the case in (3) since indicator
functions induce discontinuities on the boundary of the corresponding sets. By
differentiating the density, one can cope with this problem when the boundary
{s ∈ R

n : ψ(s) = 0} does not depend on the parameter of interest and it is
not charged by the distribution of S; see [10]. Therefore, the SF method can be
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applied. Unfortunately, in many applications the feasibility domain depends also
on the parameter of interest, as we will illustrate by means of several examples,
and this is where the methods enumerated above show their limitation. For a
detailed overview of these methods we refer to [5].

Estimation of Greeks can also be achieved by means of Malliavin weighting
function (MF). This is a quite modern technique, based on Malliavin calculus,
and determines a class of weighting functions which provide gradient estimates
for the Greeks when multiplied with the payoff function. For some pioneering
work on Malliavin Greek estimation we refer to [4]. The MF approach is essen-
tially an extension of the SF method. More specifically, it has been shown in [1]
that the score function appears as the Malliavin weighting function which in-
duces the smallest total variance. Nevertheless, like SF method, the MF method
does not cope with the case when the boundary of the feasibility set varies with
respect to the parameter of interest.

In the following we propose a solution to estimate the sensitivity of V in
(3) under some basic assumptions such as continuous differentiability of the
mappings ℘ and ψ. To explain the reasoning behind this method we will address
in the following the concept of weak differentiation of measures; see, e.g., [10]
and we will embed the problem into a more general one.

Assume that µθ is a probability distribution on R having density f(θ, x), for
x ∈ R, and X is a random variable distributed according to µθ. Then, if g is a
bounded and continuous function, we have

d

dθ
Eθ[g(X)] =

d

dθ

∫

g(x)f(θ, x)dx =

∫

g(x)
∂f

∂θ
(θ, x)dx, (4)

provided that f is continuous and its derivative ∂f
∂θ (θ, x) exists for almost all x

and is uniformly (w.r.t. θ) bounded by a Lebesgue integrable function g(x). At
this point one can still use the SF method; indeed, defining the score

Lθ(x) :=
∂

∂θ
(ln f(θ, x)) =

1

f(θ, x)
· ∂f
∂θ

(θ, x),

we see that Lθ is defined almost everywhere and, according to (4), satisfies

d

dθ
Eθ[g(X)] = Eθ[Lθ(X)g(X)].

On the other hand, by denoting µ′
θ(dx) :=

∂f
∂θ (θ, x)dx, i.e., the signed measure

with density ∂f
∂θ , we obtain the following identity

d

dθ
Eθ[g(X)] =

d

dθ

∫

g(x)µθ(dx) =

∫

g(x)µ′
θ(dx). (5)

The signed measure µ′
θ is called the weak derivative of µθ. It is unique and in

general it can be written as the re-scaled difference of two probability measures,
which makes (5) suitable for Monte Carlo simulation. This is known as the
measure-valued differentiation (MVD) technique and it also leads to unbiased
gradient estimation; see, e.g., [6, 7, 9, 10, 11]. Indeed, we have

d

dθ
Eθ[g(X)] = cθEθ

[

g(X+)− g(X−)
]

,
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provided that µ′
θ = cθ(µ

+
θ − µ−

θ ), where cθ > 0, µ±
θ are probability measures

and X± are random variables distributed according to µ±
θ , respectively.

The theoretical part of the present work is motivated by the following sim-
ple, but intriguing, observation. It is still possible to have a representation as in
(5) even when f is not continuous, e.g., f(θ, x) is, as a function of x, the indi-
cator function of some θ-dependent domain multiplied by a some normalization
constant, i.e., some expression depending on θ, but not on x, such that µθ is
a probability distribution. In this case, even though the partial derivative ∂f

∂θ
exists almost everywhere, (4) fails to hold true. A standard example is that of
the uniform distribution on [0, θ], i.e.,

f(θ, x) = θ−11[0,θ](x),
∂f

∂θ
(θ, x) = − 1

θ2
1[0,θ](x), a.e.

Since the derivative ∂f
∂θ exists a.e., a naive application of (4) would lead to

d

dθ

(

1

θ

∫ θ

0

g(x)dx

)

= − 1

θ2

∫ θ

0

g(x)dx,

which, in general, is not true. In fact, by the Lebesgue integral rule, we obtain

d

dθ

(

1

θ

∫ θ

0

g(x)dx

)

=
1

θ
g(θ)− 1

θ2

∫ θ

0

g(x)dx. (6)

Therefore, the SF method is of no help in this situation but (6) shows that

µ′
θ =

1

θ
(δθ − µθ), (7)

where δθ denotes the Dirac distribution assigning mass 1 in θ, i.e., (5) holds
true for µ′

θ defined by (6). Therefore, the MVD method still applies here. As a
general rule, we conclude that weak derivatives of probability measures can be
evaluated by simply differentiating the density f(θ, x) w.r.t. θ when the support
of the distribution µθ does not depend on θ and by using the Lebesgue integral
rule when the support of µθ depends on θ; see [10]. In the first case the weak
derivative µ′

θ is absolutely continuous w.r.t. the Lebesgue measure and both SF
and MVD are applicable while in the latter case we obtain a singular component
of µ′

θ and only MVD works.
For practical reasons one would be interested in investigating weak differ-

entiability of multivariate, rather than univariate, distributions µθ. While the
extension of the “density differentiation method” to multivariate distributions is
straightforward, the generalization and interpretation of (6) in the multidimen-
sional case is not quite clear and part of the present work is aimed to clarify this
issue. In that sense, note that the uniform distribution presented above belongs
to the class of so-called truncated distributions, i.e., probability measures which
appear as conditional distributions induced by some measures on subsets of R.
In our case, the Lebesgue measure on R is conditioned on the interval [0, θ].
Moreover, θ appears as the only boundary point of [0, θ] which varies with θ.
Now the intuition becomes somewhat clearer. Specifically, we can postulate that
the weak derivative of a truncated distribution appears as a linear combination
between the truncated distribution itself and some distribution supported on
the “variable boundary” of the conditioning set.
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Similar issues have been tackled in [12] and [14]. In [12] a measure-theoretic
approach has been proposed for measures concentrated on n-dimensional poly-
hedra with variable (flat) boundaries while in [14] a pure analytical method
is used to derive gradients of integrals on variable multidimensional domains.
Here we propose a unified, general approach to this problem. A first step will
be to establish a multidimensional counterpart for the Lebesgue integral rule.
The formalism is as follows: we assume that Dθ is a piecewise smooth θ-variable
domain, i.e., a finite intersection of smooth domains, in R

n. To extend (6) to a
multi-dimensional setting, let ℓ denote the Lebesgue measure on R

n and define

µθ(dx) =
1

ℓ(Dθ)
1Dθ

(x)dx, f(θ,x) =
g(x)

ℓ(Dθ)
.

Then (6) generalizes to

d

dθ

∫

g(x)µθ(dx) =
d

dθ

∫

Dθ

f(θ,x)dx

=

∫

Dθ

∂f

∂θ
(θ,x)dx + ∂θℓ(Dθ) ·

∫

Bθ

f(θ,x)ςθ(dx), (8)

where, for simplicity, we denote by ∂θ the differentiation w.r.t. θ, Bθ denotes
the boundary of Dθ and ςθ a distribution supported on the boundary Bθ. In
general, Bθ is a k-dimensional smooth manifold (in general k < n; typically k =
n− 1), i.e., there exist a one-to-one parametrization of Bθ with k-dimensional
parameter1, so that ςθ is absolutely continuous with respect to the push-forward
of the k-dimensional Lebesgue measure through the parametrization mapping.
In accordance with the definition of the weak derivative, (8) reads

µ′
θ =

∂θℓ(Dθ)

ℓ(Dθ)
· (ςθ − µθ) (9)

and the analogy between (7) and (9) is clear now. However, it is not clear yet
how to describe/determine the component ςθ and this will be an important part
of the technical work in this paper.

The formula in (8) can be regarded as a general differentiation formula for
non-continuous, integrable functions and can be related to the concept of deriva-
tives of generalized functions (distributions) in functional analysis. Then the
product rule for generalized derivatives applies and yields

∂θ1Dθ
= ∂θ(ℓ(Dθ) · µθ) = ∂θℓ(Dθ) · µθ + ℓ(Dθ) · µ′

θ = ∂θℓ(Dθ) · ςθ,

i.e., ∂θℓ(Dθ) · ςθ appears as the generalized derivative of the indicator 1Dθ
.

Our next target will be to explain how the result can be adapted to simula-
tion and we illustrate, by means of some examples, how to evaluate (simulate)
the last integral appearing in (8). More specifically, we will show that one can
evaluate surface integrals in R

n by writing

∫

g(x)ςθ(dx) = Eθ[g(ϑ(Y ))],

1Such k is unique. Manifolds of dimension 0 are simple points and we regard the Dirac
distribution as the 0-dimensional Lebesgue measure.
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where x = ϑ(y) is a suitable parametrization of the boundary Bθ and Y has
uniform distribution on some k-dimensional manifold.

Eventually, we apply the results to estimation of option price’s sensitivities.
For instance, if the vector of stock prices in some financial market model has
the density ρ(θ,x) on R

n then the premium of some option specified by payoff
function ℘(θ, ·) and feasibility function ψ(θ, ·) is given, according to (3), by

V = e−rT
∫

℘(θ,x)ρ(θ,x)1Dθ
(x)dx,

where Dθ := {x ∈ R
n : ψ(θ,x) > 0}, i.e., Bθ = {x ∈ R

n : ψ(θ,x) = 0}. Again,
by the product rule, we obtain for the θ-sensitivity of V :

∂θV = e−rT ·
∫

Dθ

∂θ℘(θ,x)ρ(θ,x) + ℘(θ,x)∂θρ(θ,x) dx (10)

+ e−rT · ∂θℓ(Dθ)

∫

Bθ

℘(θ,x)ρ(θ,x)ςθ(dx). (11)

Note that the integral in (10) arises from the classical product differentiation
rule of the integrand in the expression of V while the integral in (11) appears
due to variability of the domain Dθ w.r.t. the parameter θ.

The paper is organized as follows: in Section 1 we provide some basic con-
cepts and notations which will be used throughout this paper. Section 2 provides
a general theory for differentiation of integrals on variable domains with smooth
boundaries. Some applications to financial options are presented in Section 3.
An overview of relevant results regarding Gaussian vectors and their distribu-
tions is given in the Appendix.

1 Preliminaries and Notations

To present our analysis we will use the following notation and terminology. We
consider the n-dimensional Euclidian space R

n on which R
n
+ denotes the cone

of positive elements, i.e.,

R
n
+ := {(x1, . . . , xn) ∈ R

n : xi > 0, ∀1 ≤ i ≤ n}.

On R
n we denote by 0 the null vector, i.e., 0 := (0, . . . , 0) and we say that

the vector v is positive (in notation: v > 0) if v ∈ R
n
+. This induces the

following order relation on R
n: x < y if y − x > 0. For x := (x1, . . . , xn),

y := (y1, . . . , yn) ∈ R
n we denote their Euclidian product by 〈· | ·〉. In formula,

〈x|y〉 := x1y1 + . . .+ xnyn.

Moreover, we denote by |x| the Euclidean norm of x := (x1, . . . , xn) ∈ R
n, i.e.,

|x| :=
√

〈x|x〉 =
√

x21 + . . .+ x2n.

For 0 6= x ∈ R
n we denote by −→x the direction of x, i.e., −→x := |x|−1x.

For a function f : Ω ⊂ R
n → R we denote by ∂f/∂xi, for 1 ≤ i ≤ n, the

partial derivative with respect to the coordinate xi; on several occasions we will
use alternative notations such as ∂xi

f or the short-hand notation ∂if , when the
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order of the arguments is clear. If the partial derivatives ∂f/∂xi exist for each
i we will use the notation ∇f , or ∇xf when f depends on multiple arguments,
for the gradient of f , i.e.,

∇f = ∇xf =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)

= (∂x1
f, . . . , ∂xn

f) = (∂1f, . . . , ∂nf) .

A mapping Φ : Ω ⊂ R
n → R

m will be called a vector field and it is usually
defined via its coordinate mappings φi : Ω → R, for 1 ≤ i ≤ m. The vector
field Φ is differentiable if all its coordinates φi are Fréchet differentiable. If
Φ := (φ1, . . . , φm) : Ω → R

m is a differentiable vector field we denote by Φ′ its
differential, which can be identified as the matrix Φ′ := [∂φi/∂xj]1≤i≤m,1≤j≤n
obtained from the m row-vectors {∇φi}1≤i≤m. For m = n, the Jacobian of Φ
in x is defined as the determinant of Φ′(x) and we adopt the following notation:

∂(φ1, . . . , φn)

∂(x1, . . . , xn)
:= det Φ′.

IfW ⊂ R
n we call the mapping Φ : Ω →W a diffeomorphism if it is bijective and

both Φ and its inverse Φ−1 are differentiable on Ω; in particular, the inverse Φ−1

is also a diffeomorphism. If Φ : Ω → R
n is differentiable such that det Φ′ 6= 0 on

Ω then Φ : Ω → Φ(Ω) is a diffeomorphism; the converse implication, however,
holds true only if Ω and W are simply connected. We say that Φ is a Ck-
diffeomorphism, for k ≥ 1, if all the (mixed) kth-order derivatives of each φi,
for 1 ≤ i ≤ n, exist and are continuous.

On R
n we denote by {Πī : 1 ≤ i ≤ n} the family of the (n− 1)-dimensional

projectors, i.e., Πī : R
n → R

n−1 are defined by

∀1 ≤ i ≤ n : Πī(x1, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn),

and note that the mappings Πī : R
n → R

n−1 are differentiable vector fields, for
1 ≤ i ≤ n. Moreover, Π′

ī
can be obtained by removing the ith row from the

n-dimensional identity matrix.
A connected set H ⊂ Ω will be called a k-surface in Ω, for 1 ≤ k ≤ n, if for

each x ∈ H there exists an open set W ⊂ R
k and a differentiable vector field

ϑ = ϑx := (ϑx1 , . . . , ϑ
x
n) :W → H such that the matrix (ϑx)′ has full rank (that

is, rank (ϑx)′ = k) on W and x ∈ ϑx(W ). The mapping ϑx is usually called a
local parametrization of H. Intuitively, this means that, locally on H, exactly
k coordinates are independent, i.e., the projection of H on the corresponding k
directions is the image of a k-dimensional open set via a diffeomorphism, while
the remainder of n−k coordinates are uniquely determined by the k independent
ones. The number k is called the dimension of H and n − k is called the co-
dimension of H. It can be shown that the dimension k of a surface is uniquely
determined. By convention, a 0-surface is just a point. A (n−1)-surface is often
called a hyper-surface and is typically defined by

H = {x ∈ Ω : ψ(x) = 0}, (12)

where ψ : Ω → R is a differentiable function satisfying ∇xψ 6= 0 on Ω. The
parametrization ϑx : W → H is said to be (positively) oriented if the indepen-
dent coordinates xi1 = ϑxi1(w), . . . , xik = ϑxik(w) satisfy

∀w ∈ W :
∂(xi1 , . . . , xik )

∂(w1, . . . , wk)
(w) :=

∂(ϑxi1 , . . . , ϑ
x

ik
)

∂(w1, . . . , wk)
(w) > 0.
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Let H be a (smooth enough) k-surface in Ω. A canonical surface measure on
H, which will be denoted by σH and, intuitively, measures the k-dimensional
volume on H, can be defined by means of the Riemannian metric; the surface
measure σH is absolutely continuous with respect to the push-forward through ϑ
of the k-dimensional Lebesgue measure fromW onto H. In addition, its density
can be locally expressed by means of the local parametrization ϑx. However,
the surface measure does not depend on a particular parametrization in the
sense that any other (local) parametrization generates precisely the same surface
measure. If k = 0, i.e., if H = {x}, then the surface measure coincides with
the Dirac measure, denoted by δx. In Section 2.1 we will provide more details
on (n − 1)-dimensional surface measures and will present a general method to
evaluate integrals with respect to σH, for H defined by (12).

For an arbitrary set Ω ⊂ R
n we denote by Ω◦ the set of its interior points. By

Ω we denote the set of its adherent points and ∂Ω = Ω\Ω◦ denotes its boundary,
i.e., the set of points which are adherent to both Ω and its complementary ∁Ω.
Finally, we denote by ℓ the Lebesgue measure on R

n and let L1(Ω, ℓ) denote the
space of measurable functions which are Lebesgue integrable on Ω.

2 Differentiation Formulas for Integrals on Vari-
able Domains

Let Θ ⊂ R, Ω ⊂ R
n be open, connected and convex sets and f : Θ×Ω → R be

such that f(θ, ·) ∈ L1(Ω, ℓ) for each θ ∈ Θ. If D ⊂ Ω then

∂θ

∫

D

f(θ,x)dx =

∫

D

∂θf(θ,x)dx, (13)

provided that the derivative ∂θf(θ, ·) exists on Ω and satisfies some regularity
assumptions. More specifically, we require that there exists some neighborhood
V of θ such that

g(x) := sup
ζ∈V

|∂θf(ζ,x)| ∈ L1(Ω).

A successive application of the Mean Value and Dominated Convergence The-
orems show that differentiation and integration can be interchanged in (13).

Nevertheless, (13) fails to hold true when the domain of integration D de-
pends on θ and the natural question is how (13) generalizes to θ-variable do-
mains. The aim of this section is to provide an answer to this question.

Basic Setup: We assume that Θ ⊂ R and Ω ⊂ R
n are open, connected

sets, Θ being convex and, for θ ∈ Θ, we denote by L1
θ(Ω) the class of functions

f : Θ × Ω → R such that supζ∈V |f(ζ, ·)| ∈ L1(Ω), for some neighborhood V of
θ, and in general we will assume that f : Θ × Ω → R is a continuous function,
continuously differentiable w.r.t. θ, such that f ∈ L1

θ(Ω), ∂θf ∈ L1
θ(Ω).

Variability of the domain w.r.t. θ will be defined by means of a feasibility
function ψ : Θ×Ω → R, which will be assumed continuously differentiable such
that its gradient ∇xψ does not vanish on Θ×Ω, i.e., ∇xψ 6= 0. In addition, we
will require that there exist an open domain D ⊂ Ω with smooth boundary, such

that D ⊂ Ω and a continuously differentiable function Φ : Θ × Ω → Ω such that

for all θ ∈ Θ the mapping Φθ := Φ(θ, ·) : D → Dθ is a C2-diffeomorphism, i.e.,
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Dθ is a smooth transformation of some fixed domain2 D; see Figure 1. We will
also require that ℓ(Dθ) > 0 and will denote by Bθ the boundary of Dθ in Ω.
It is worth noting that Φθ maps the boundary ∂D onto ∂Dθ; more specifically,
Φθ : ∂D → ∂Dθ defines a bijection. Since most of our statements will deal
with differentiability in some specific point θ ∈ Θ, we will assume w.l.o.g. that3

D = Dθ and Φθ (for this fixed θ) is just the identity function.
Finally, assuming that ψ is such that Dθ = {x ∈ Ω : ψ(θ,x) > 0}, we have

Bθ = {x ∈ Ω : ψ(θ,x) = 0}. (14)

Indeed, the direct inclusion in (14) is true in general. On the other hand, the
condition ∇xψ 6= 0 on Θ × Ω ensures that, for fixed θ, the function ψ(θ, ·) has
no stationary points in Ω. Now if x ∈ Ω is such that ψ(θ,x) = 0 then it is
either a boundary point for Dθ or a local minimum for ψ(θ, ·) in Ω. But the
second possibility is already ruled out by our assumption. Consequently, any
x ∈ Ω satisfying ψ(θ,x) = 0 belongs to the boundary of Dθ and this shows the
converse inclusion, hence the equality, in (14).

R
n

D Dθ

Dθ+h

Ω

Φθ+h

Φθ

6•
P

6•
Q

Figure 1: An example of θ-variable domain Dθ, diffeomorphic to a fixed one
D. The arrows indicate the normal component of the velocity at the boundary
in the corresponding points. When the direction pointing outwards the domain
Dθ is considered the velocity is positive in P and negative in Q.

2.1 The Main Result

We consider first one-dimensional parameters, the extension to the multi-dimensional
case is straightforward. More specifically, we assume that Θ ⊂ R is an open

2In fluid dynamics such a phenomenon is called moving flux and models the time/space
evolution of some deformable volume. Mathematically, it is described by the position Φ(θ, ·)
and velocity ∂θΦ(θ, ·) of individual particles, at time θ.

3One may always choose D = Dθ and define the family of C2-diffeomorphisms {Φ̃ϑ}ϑ∈Θ

as Φ̃ϑ := Φϑ ◦ Φ−1

θ
: D̃ → Dϑ, which also satisfies the assumptions.
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interval on the real line and we investigate wether the derivative

∂θ

∫

f(θ,x)1{ψ(θ,·)>0}(x)dx (15)

exists, in which case, we are interested in estimating its value. In the multi-
dimensional case one can obtain similar results concerning directional derivatives
by using a proper parametrization of the model.

Starting point of our analysis is the following technical result which extends
the well known Leibniz integral rule to multivariate functions. While in one
dimension the result is known in real analysis as the differentiation rule for
integrals with variable endpoints, in two and three dimensions, this result is
better known in the field of fluid dynamics as the Reynolds Transport Theorem.
For a general statement and proof, in the n-dimensional case, we refer to [3].

Lemma 1 Let Θ ⊂ R be an open interval and Ω ⊂ R
n be an open connected

subset. Let D ⊂ Ω be a connected domain with smooth boundary such that
D ⊂ Ω and suppose that there exists a continuously differentiable vector field
Φ : Θ× Ω → Ω such that for each θ ∈ Θ the mapping

Φθ := Φ(θ, ·) : D → Dθ := Φθ(D) ⊂ Ω,

is a C2-diffeomorphism. Then for each continuous function f : Θ × Ω → R,
continuously differentiable on Ω with respect to θ, such that f ∈ L1

θ(Ω) and
∂θf ∈ L1

θ(Ω), it holds that

∂θ

∫

Dθ

f(θ,x) dx =

∫

Dθ

∂θf(θ,x) dx+

∫

Bθ

f(θ,x)〈ẋ|~nx〉σθ(dx), (16)

where4 ẋ is a short-hand notation for ∂x
∂θ = ∂Φ

∂θ (θ,x), ~nx denotes the unit normal
vector at the surface Bθ in x, pointing outwards the domain Dθ and ”σθ(dx)”
denotes the infinitesimal area unit on Bθ; that is, if ϑx : W → ∂Dθ, where
W ⊂ R

n−1, is an oriented (local) parametrization of Bθ in x then5

σθ(dx) :=

∣

∣

∣

∣

∣

n
∑

i=1

(−1)i−1 ∂(ϑ
x
1 , . . . , ϑ

x

i−1, ϑ
x

i+1, . . . , ϑ
x
n)

∂(w1, . . . , wn−1)
νi

∣

∣

∣

∣

∣

dw (17)

with w := (w1, . . . , wn−1) ∈ V and ~nx := (ν1, . . . , νn).

In [3] the result presented in Lemma 1 is stated in a much more general
setting involving concepts such as differential form, exterior derivative and in-
terior product and the proof essentially relies on Stokes’ Theorem. In order to
avoid a rather technical exposition of the above concepts, we have presented
here a simpler version of this result, adjusted to our needs. The following result
establishes the theoretical fundament of our framework.

Theorem 1 Let Θ ⊂ R, Ω ⊂ R
n be open and connected and ψ : Θ × Ω → R

be continuously differentiable, such that ∇xψ 6= 0 on Θ× Ω. If f : Θ× Ω → R

4In fluid dynamics the vector field ẋ is referred to as “Eulerian velocity at the boundary”
or, simply, “Euler derivative”. The Euler derivative

5Such a parametrization ϑx exists and the representation in (17) is invariant on ϑx.
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is continuous and continuously differentiable w.r.t. θ, such that f ∈ L1
θ(Ω) and

∂θf ∈ L1
θ(Ω) then it holds that

∂θ

∫

Dθ

f(θ,x) dx =

∫

Dθ

∂θf(θ,x) dx+

∫

Bθ

f(θ,x)∂ψθ (x)σθ(dx). (18)

where ∂ψθ (x) denotes the projection of the velocity ẋ onto the normal direction
to the surface Bθ in x, i.e.,

∂ψθ (x) := 〈ẋ|~nx〉 =
∂θψ

|∇xψ|
(θ,x). (19)

Proof: For x ∈ Bθ we have ψ(θ,x) = 0, for any θ ∈ Θ. Therefore, differen-
tiating w.r.t. θ we obtain

∂θψ + 〈∇xψ|ẋ〉 = 0. (20)

Since the normal direction to the surface {x : ψ(θ,x) = 0} is that of the gradient
∇xψ which, in our case, points towards the interior of the domain Dθ (the sense
of increment of ψ should be inside the domain {x : ψ(θ,x) > 0}), it follows that
~nx = −∇xψ/|∇xψ|. Hence, we conclude from (20) that

〈ẋ|~nx〉 = −〈∇xψ|ẋ〉
|∇xψ|

=
∂θψ

|∇xψ|
= ∂ψθ (x)

and the conclusion follows from Lemma 1. �

If Ω is a bounded domain, i.e., ℓ(Ω) <∞, by taking f = 1 in (18) yields

∂θℓ(Dθ) =

∫

Bθ

∂ψθ (x)σθ(dx). (21)

Assume that ψ is strictly increasing w.r.t. θ, i.e., ∂θψ > 0 and ∂θℓ(Dθ) 6= 0.
Then, for any bounded and continuous g it holds that

∂θ

∫

Dθ

g(x)

ℓ(Dθ)
dx =

∂θℓ(Dθ)

ℓ(Dθ)

[

∫

Bθ

g(x)
∂ψθ (x)

∂θℓ(Dθ)
σθ(dx) −

∫

Dθ

g(x)
1

ℓ(Dθ)
dx

]

,

and we obtain the representation asserted in (9), with

ςθ(dx) := 1Bθ
(x)

∂ψθ (x)

∂θℓ(Dθ))
· σθ(dx),

which, by (21), is a probability measure.
Extensions of the statement in Theorem 1 to multi-dimensional parameters,

in terms of directional derivatives and gradient are straightforward. The result
in Theorem 1 can be also extended to domains with piecewise smooth boundary.
More specifically, if ψ1, . . . , ψm are feasibility functions satisfying the assumed
regularity conditions and one defines the domain

Dθ := {x ∈ Ω : ψj(θ,x) > 0, ∀1 ≤ j ≤ m},

then the boundary Bθ consists of all those x’s in Ω for which ψj(θ,x) ≥ 0, for
all j’s and such that there exists (at least) one index j0 such that ψj0(θ,x) = 0.
For some nonempty index set J ⊂ {1, 2, . . . , n} we denote

B
J
θ := {x ∈ Ω : ψj(θ,x) = 0 (j ∈ J) & ψj(θ,x) > 0 (j /∈ J)}.

12



It is easy to see that {BJ
θ }J 6=∅ is a partition of Bθ and if I ⊂ J then B

I
θ and B

J
θ

are supported by the same hyper-surface, hence a consistent concept of surface
measure on Bθ can be defined based on the canonical surface measures on each
supporting surface {x ∈ Ω : ψj(θ,x) = 0}. A formula similar to (18) also holds
in this case; however, the surface density on each B

J
θ , with #J ≥ 2 will be

given by the minimal velocity ∂
ψj

θ , for j ∈ J . Although the intuition behind
this result is rather clear, the proof (in general) is rather technical and is beyond
the purpose of this paper to present it. The particular case when all ψj ’s are
linear in x, i.e., Dθ has flat boundaries, has been treated in [12].

2.2 Application and Examples

We have applied Lemma 1 to the domain Dθ = {x ∈ Ω : ψ(θ,x) > 0} and
we have proved that (18) holds true for a suitable function f . While the first
integral in the r.h.s. of (18) poses no problems, being a standard Lebesgue-
Riemman integral, the natural question here is what is and how to deal with
the second one6? The measure σ is often called the surface measure on the
hyper-surface Bθ. Hence the question is how to calculate integrals with respect
to the surface measure? In the following we aim to provide a satisfactory answer
to this question.

Let us ignore for a while the parameter θ, which in (18) is fixed, and assume
that ψ : Ω → R is a continuously differentiable function. We start by noting
that, by assumption, ∇xψ 6= 0 on Ω. This means that, if we fix some x ∈ Ω,
there exist 1 ≤ i ≤ n such that ∂iψ(x) 6= 0 and we can assume w.l.o.g. that
i = n. Consequently, the mapping ψ defines a hyper-surface of dimension n− 1
in R

n by the equation ψ(x1, . . . , xn) = 0. Indeed, by the Implicit Function
Theorem (see, e.g., [13]) it follows that there exist a local parametrization xn =
ϑn(x1, . . . , xn−1) around

7 x, i.e.,

x = ϑ(x1, . . . , xn−1),

where ϑ := (ϑ1, . . . , ϑn) : W ⊂ Πn̄(Ω) → Ω with ϑi(x1, . . . , xn−1) = xi, for
1 ≤ i ≤ n. Note that such a parametrization is always positively oriented since

∂(ϑ1, . . . , ϑn−1)

∂(x1, . . . , xn−1)
= det In−1 = 1.

A surface of dimension 0, which is obtained for n = 1, is nothing but a point.
Indeed, if ψ : Ω ⊂ R → R is a continuously differentiable function with ψ′(x) 6= 0
then it defines a local bijection. Hence, the equation ψ(x) = y, for some y in
the range of ψ, defines the 0-dimensional surface consisting of the point ψ−1(y).
A measure on such a surface will be then given by a Dirac measure assigning
mass to the corresponding point (possibly) multiplied by a weight (which may
also depend on the point of reference).

6The second integral in (18) is a surface integral. For the particular cases n = 2 and
n = 3 there are well known formulas (especially in some fields of physics and engineering) for
calculating such integrals.

7It can be easily extended to the maximal connected component where ∂nψ does not
vanish. By the assumed continuity of the derivatives this maximal component includes a
neighborhood of x. For this reason we drop the superscript x.
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Going back to the general case, the Jacobians of the transformations in (17)
are given by

∀1 ≤ i ≤ n :
∂(ϑ1, . . . , ϑi−1, ϑi+1, . . . ϑn)

∂(x1, . . . , xn−1)
=

{

(−1)n+i−1 ∂ϑn

∂xi
, 1 ≤ i ≤ n− 1,

1, i = n.

Recalling that ϑn gives the nth coordinate xn as a function of (x1, . . . , xn−1),
determined from ψ(x1, . . . , xn−1, xn) = 0, we obtain by implicit differentiation

∀1 ≤ i ≤ n− 1 :
∂ϑn
∂xi

= −
(

∂ψ

∂xn

)−1
∂ψ

∂xi
. (22)

On the other hand, since ~n = −∇xu/|∇xu|, it follows from (17) that

σθ(dx) =

∣

∣

∣

∣

∣

(−1)n−1

|∇xψ|

[

(

∂ψ

∂xn

)

+
n−1
∑

i=1

(−1)2i−1 ∂ψ

∂xi

∂ϑn
∂xi

]∣

∣

∣

∣

∣

(θ,x) dx1 . . . dxn−1

=

∣

∣

∣

∣

∣

(−1)n−1

|∇xψ|

[

(

∂ψ

∂xn

)

+

(

∂ψ

∂xn

)−1 n−1
∑

i=1

(

∂ψ

∂xi

)2
]∣

∣

∣

∣

∣

(θ,x) dx1 . . . dxn−1,

where the last equality follows from (22). Therefore, one concludes that

σθ(dx) =

∣

∣

∣

∣

∇xψ

∂nψ

∣

∣

∣

∣

(θ,x) dx1 . . . dxn−1. (23)

Consequently, the last integral in the r.h.s. of (18) can be re-written as follows:
∫

Bθ

f(θ,x)∂ψθ (x)σθ(dx) =

∫

Πn̄Bθ

[

f · ∂θψ

|∂nψ|

]

(θ,w, ϑn(w)) dw, (24)

where Πn̄ denotes the (n− 1)-dimensional projection and ∂nψ = ∂ψ/∂xn.

Example 1 The half-space determined by a variable hyperplane: Let Θ = R,
Ω = R

n, for some n ≥ 1, and let b : Θ → R, a := (a1, . . . , an) : Θ → R
n \ {0}

be smooth functions. Take ψ(θ,x) = b(θ) − 〈a(θ)|x〉, i.e., Dθ appears as the
half-space Sθ with location parameter b(θ) and orientation parameter a(θ), i.e.,

Sθ := {x ∈ R
n : b(θ)− 〈a(θ)|x〉 > 0},

whose boundary is given by the hyperplane Hθ := {x ∈ R
n : 〈a(θ)|x〉 = b(θ)}.

In addition, we have ∂θψ(θ,x) = b′(θ)− 〈a′(θ)|x〉, where a′ = (a′1, . . . , a
′
n), and

∇xψ(θ,x) = −a(θ) which yields

∂ψθ (x) =
b′(θ)− 〈a′(θ)|x〉

|a(θ)| .

Fix θ and assume that an(θ) 6= 0. Using the parametrization ϑn : Rn−1 → R,

ϑn(x1, . . . , xn−1) =
b(θ)− 〈(a1, . . . , an−1)(θ)|(x1, . . . , xn−1)〉

an(θ)
,

it follows from Theorem 1 and (24) that

∂θ

∫

Sθ

f(θ,x)dx =

∫

Sθ

∂θf(θ,x)dx +
1

|an(θ)|

∫

Rn−1

b′(θ) · f(θ,w, ϑn(w))dw

− 1

|an(θ)|

∫

Rn−1

〈a′(θ)| (w, ϑn(w))〉 · f(θ,w, ϑn(w))dw,
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for suitable f : R × R
n → R, where w = Πn̄(x) = (x1, . . . , xn−1). In this case

note that we have a global parametrization ϑ :W = R
n−1 → Hθ.

Example 2 The disc with variable origin and radius: Let us choose Θ = (0,∞),
Ω = R

n \ {0}, for some n ≥ 1, r : Θ → (0,∞) and k := (k1, . . . , kn) : Θ → R
n

be some smooth functions. Define

ψ(θ,x) = r(θ)2 − |x− k(θ)|2.

That is, we obtain Dθ as the disc Dn
θ := {x ∈ R

n : |x− k(θ)| < r(θ)} centered
in k(θ) with radius r(θ). Therefore, ∂Dn

θ = Bnθ := {x ∈ R
n : |x− k(θ)| = r(θ)}

and by letting k′ = (k′1, . . . , k
′
n) we have

∂θψ(θ,x) = 2r′(θ)r(θ) +
〈

k′(θ)
∣

∣

∣

−−−−−→
x− k(θ)

〉

, ∇xψ(θ,x) = −
(−−−−−→
x− k(θ)

)

,

which yields ∂nψ(θ,x) = −(xn − kn(θ))/r(θ), for x ∈ Bnθ . Therefore, we obtain

∀x ∈ Bnθ :
∂θψ

|∂nψ|
(θ,x) =

2r′(θ)r(θ)2 + 〈k′(θ) |x− k(θ) 〉
|xn − kn(θ)|

. (25)

Now consider the parametrizations xn = ϑ±n (x1, . . . , xn−1) defined as

ϑ±n (w) = kn(θ) ±
√

r(θ)2 − |w −Πn̄k(θ)|2,

for w := (x1, . . . , xn−1) ∈ Πn̄Bnθ = {w ∈ R
n−1 : |w − Πn̄k(θ)| < r(θ)},

which are valid whenever xn 6= kn(θ); the latter condition fails on some set of
dimension (n−2), hence σ-negligible. Note, that none of the above parametriza-
tions can be extended to the whole boundary Bnθ and one has to consider sepa-
rately the two hemispheres determined from the conditions xn > kn(θ) (resp.
xn < kn(θ)) when calculating the integral in (24). More specifically, take
xn = ϑ+n (x1, . . . , xn−1) for the hemisphere {x ∈ Bnθ : xn > kn(θ)} and xn =
ϑ−n (x1, . . . , xn−1) for the hemisphere {x ∈ Bnθ : xn < kn(θ)}. Then

∂θψ

|∂nψ|
(θ,w, ϑ±(w)) =

2r′(θ)r(θ)2 +
∑n−1

i=1 [wi − ki(θ)]k
′
i(θ)

√

r(θ)2 − |w −Πn̄k(θ)|2
± k′n(θ), (26)

for any w ∈ Πn̄Bnθ = Dn−1
θ . Consequently, for suitable f : (0,∞)×R

n → R
n, if

G±
n (θ,w) := f(θ,w, ϑ+n (w)) ± f(θ,w, ϑ−n (w)), we conclude from (24) and (26)

that

∂θ

∫

Dn
θ

f(θ,x)dx =

∫

Dn
θ

∂θf(θ,x)dx

+

∫

Dn−1

θ

G+
n (θ,w)

2r′(θ)r(θ)2 +
∑n−1

i=1 [wi − ki(θ)]k
′
i(θ)

√

r(θ)2 − |w −Πn̄k(θ)|2
dw

+

∫

Dn−1

θ

G−
n (θ,w) k′n(θ)dw.

Of course, the above formula simplifies considerably when r or (some compo-
nents of) k do not depend on θ. In fact, since the role of xn in this parametriza-
tion can be played by any other xi, if there is a component ki of k not depending
on θ, or, at least satisfying k′i(θ) = 0, one can simplify the calculations by taking
xi as a function of w = Πīx on Bnθ and, in this way, G−

i (θ, ·) = 0, hence the
last integral in the last display vanishes.
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3 Application to Multi-Asset Digital Options

In this section we explain how the result derived in previous section can be
applied to obtain gradient estimates for option premiums in the general Black-
Scholes framework.

In the following, we consider a Black-Scholes model consisting of n bonds,
in which the stock prices satisfy

∀1 ≤ i ≤ n : Si(t) = si exp

((

r − σ2
i

2

)

t+ σi
√
tXi

)

, (27)

at any time t ≥ 0. In (27) r denotes the risk-free rate, si = Si(0) > 0, σi > 0,
for 1 ≤ i ≤ n, denote the initial price and the volatility, respectively, of the
ith bond and X := (X1, . . . , Xn) is a non-degenerate Gaussian n-dimensional
vector with probability (Lebesgue) density given by

∀x ∈ R
n : γ(x|0,R) := 1

√

(2π)n detR
exp

(

−x∗R−1x

2

)

; (28)

here the superscript ∗ stands for the transpose operation and R := [̺ij ]1≤i,j≤n
denotes the “instantaneous” correlation matrix of the n Wiener processes gov-
erning the price dynamics of the n stocks. Note that, in this context, R is
a symmetric, positive definite n × n matrix and its diagonal elements satisfy
̺ii = 1, for 1 ≤ i ≤ n, while the non-diagonal elements are bounded by 1, i.e.8,
|̺ij | < 1, for 1 ≤ i < j ≤ n. When the n stocks vary independently then R
reduces to the identity matrix. In fact,

∀i, j : ̺ij := E[XiXj ] =
1

t
Cov

[

σ−1
i lnSi(t), σ

−1
j lnSj(t)

]

.

In the following we fix some arbitrary time horizon t > 0 and we denote by
S := (S1, . . . , Sn) the vector of stock prices at time t, i.e., the vector having
as components Si(t) in (27). Note that the vector S = (S1, . . . , Sn) has the
property that (lnS1, . . . , lnSn) is Gaussian with mean µ = (µ1, . . . , µn) and
covariance matrix C = [cij ]1≤i,j≤n given by

∀i, j : µi := ln si +

(

r − σ2
i

2

)

t, cij := tσiσj̺ij . (29)

Therefore, S follows a multivariate log-normal distribution on R
n
+ with density

ρ(x|µ,C) = 1√
detC

(

n
∏

i=1

1(0,∞)(xi)

xi
√
2π

)

· exp
(

− (µ− lnx)∗C−1(µ− lnx)

2

)

,

(30)
where x := (x1, . . . , xn) and lnx := (ln x1, . . . , lnxn). For ease of notation, we
denote by Σ the diagonal matrix with elements σi, for 1 ≤ i ≤ n, on the main
diagonal and note that C = t · ΣRΣ. Since, by assumption, all σ’s are strictly
positive it follows that Σ is a nonsingular matrix; in fact, its inverse Σ−1 is
a diagonal matrix with elements σ−1

i on the main diagonal. In particular, it

8Actually we have |̺ij | ≤ 1 but the additional non-degeneracy condition ensures that the
inequality is strict for i 6= j.
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follows that C is non-singular, hence (30) makes sense. Denoting now by ¯̺ij the
elements of R−1 we have

C−1 = t−1 · Σ−1R−1Σ−1 =

[

¯̺ij
tσiσj

]

1≤i,j≤n

. (31)

By a European-style option with maturity time t we mean a financial option
which entitles its owner to a profit g(S), where g is a measurable function, by
exercising the option at time t. The present value (premium) of such an option
will be given by

V = e−rtE[g(S)] = e−rt
∫

Rn

g(x)ρ(x|µ,C)dx. (32)

The parameters appearing in the expressions of µ and C will be called intrinsic
parameters of the model, since they appear in the distribution of the vector
S, and any other parameter (induced by g), such as strike price, will be called
non-intrinsic parameters. Typically, the profit brought by a European option
can be expressed as

g(S) = ℘(S)1{ψ(S)>0}, (33)

where ℘ is a smooth payoff function and ψ is some (piecewise) smooth feasibility
function, none of them depending on intrinsic parameters. For instance, given
a strike-price K, if we let

℘(S) = ψ(S) = S −K,

we recover the classical European call on a single asset. By changing S−K into
K−S we obtain the European put. In multi-asset models the so-called rainbow
options, which arise as a class of generalizations of the European call/put options
on a single asset, are modeled in the same way. More specifically, their payoff
can be expressed as in (33), or a sum of similar expressions. For instance, by
letting in (33)

℘(S) = ψ(S) = max{S1, . . . , Sn} −K,

we obtain the maximum option and by changing the maximum to minimum in
the above expression we obtain the minimum option. Furthermore, if we denote
by | · |p the p-norm on R

n, i.e.,

∀x ∈ R
n : |x|p :=

(

n
∑

i=1

|xi|p
)1/p

,

by letting in (33) ℘(S) = ψ(S) = |S−k|p−K, for some positive vector k ∈ R
n
+,

we obtain the pyramid rainbow option, for p = 1, and the Madonna rainbow
option, for p = 2, etc.

Differentiating V in (32) w.r.t. some intrinsic parameter essentially reduces
to differentiating the density ρ in (30) w.r.t. the corresponding parameter since
the set of discontinuities of g, which is

{x ∈ R
n : ψ(x) = 0},

has null Lebesgue measure and does not depend on intrinsic parameters. Con-
sequently, the “density-differentiation” methods apply in this case yielding un-
biased gradient estimates. To illustrate the utility of our approach, in our ap-
plications we focus on sensitivities w.r.t. non-intrinsic parameters of the model,
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e.g., parameters induced by the exercise condition of a given option. That is,
we assume that ℘ and ψ are functions of stock-price(s) and some parameter θ,
in which case we have

V (θ) = e−rtE [℘(θ,S) I{ψ(θ,S) > 0}] . (34)

To estimate ∂θV we apply Theorem 1 for f(θ,x) := ℘(θ,x)ρ(x) and

Dθ := {x : ψ(θ,x) > 0}. (35)

Moreover, bearing in mind the result in Theorem 1, we see that when the payoff
and decision (exercise) functions agree, i.e., ℘ = ψ, the payoff function ℘ is null
on the boundary Dθ, so that the surface integrand in (18) vanish and a gradient
estimate for ∂θV can be obtained from

∂θV = e−rt
∫

Dθ

∂θ℘(θ,x)ρ(x)dx = e−rtE [∂θ℘(θ,S) I{S ∈ Dθ}] ,

since θ is assumed to be a non-intrinsic parameter, i.e., ρ does not depend
on θ. A standard example is that of a European put with strike-price θ, i.e.,
℘(θ, S) = ψ(θ, S) = θ − S, for which we have

∂θV = e−rtE [I{S < θ}] = e−rtP {S < θ} .

Motivated by these remarks we will only consider options for which the payoff
and exercise functions do not agree. This type of options are commonly known
as binary or digital options. Apparently there is no clear distinction between
the two concepts, both names being given to options described by discontinuous
profit function which pay off only when the stock-price(s) at maturity lie in
some feasibility region, although it is widely accepted that for a binary option
the payoff is fixed once the option has been written whereas for a digital option
the payoff is agreed upon at the maturity, provided that the stock-price(s) have
reached the feasibility region. To comply with this definitions, we call binary an
option with constant payoff function (in many cases ℘ = 1) and we call digital
an option for which the payoff function ℘ depends on the stock-price(s). Hence,
from a mathematical point of view, binary options are particular cases of digital
ones and their premium is given by

V = e−rtP {ψ(θ,S) > 0} .

Most digital options are obtained from classical options, by changing the payoff
function, and their name is typically given in accordance with the exercise rule
(the type of the feasibility domain). Their binary counterparts are obtained
simply by setting the payoff equal to 1 (or some other constant). Common ex-
amples of digital options are digital spread-options, asset-or-nothing options, gap
options and super-shares. In this section we aim to illustrate the applicability
of the method presented in this paper to sensitivity analysis (w.r.t. boundary
parameters) of premiums of such options.

In order to make our approach fruitful for Monte-Carlo simulation one has
to find a suitable interpretation, in terms of expected values, of the surface
integrals appearing in differentiation formulas in Section 2. More specifically,
consider an option with payoff function ℘ and smooth feasibility function ψ,
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its premium being given by (34). For the time being, assume that ℘ does not
depend on θ, i.e.,

V (θ) = e−rtE [℘(θ,S) I{ψ(θ,S) > 0}] = e−rtE [℘(S) I{S ∈ Dθ}] , (36)

with Dθ being defined in (35). By Theorem 1, we conclude that

∂θV = e−rt∂θ

∫

Dθ

℘(x)ρ(x)dx = e−rt
∫

Bθ

℘(x)ρ(x)∂ψθ (x)σθ(dx).

Provided that a global9 parametrization ϑn : Πn̄Bθ → Bθ is available, giving
the nth component on the boundary Bθ, we obtain from (24)

∂θV = e−rt
∫

Πn̄Bθ

℘(w, ϑn(w))ρ(w, ϑ(w))
∂θψ

|∂nψ|
(w, ϑn(w))dw,

with w := (x1 . . . , xn−1) ∈ Πn̄Bθ. Now note that ρ appears as the joint den-
sity of (w, xn), hence, if ρn̄ denotes the marginal density of (x1, . . . , xn−1) and
ρn|n̄(·|w) denotes the conditional density of xn given (x1, . . . , xn−1) = w, we
conclude that ρ(w, ϑ(w)) = ρn|n̄(ϑ(w)|w) · ρn̄(w). In fact, we proved that

Λn(θ,Sn̄) := ℘(Sn̄, ϑn(Sn̄))ρn|n̄(ϑn(Sn̄)|Sn̄)
∂θψ

|∂nψ|
(θ,Sn̄, ϑn(Sn̄))1Πn̄Bθ

(Sn̄),

where Sn̄ = (S1, . . . , Sn−1), is an unbiased gradient estimator for ertV , i.e.,

∂θV = e−rt∂θE [℘(S) I{S ∈ Dθ}] = e−rtE[Λn(θ,Sn̄)]. (37)

Of course, the role of n in the above reasoning can be played by any other index i
and the result remains valid after making the necessary changes. Moreover, the
result in (37) extends to domains with piecewise smooth boundaries and payoff
functions which depend on θ in accordance with the results presented in Section
2. Equation (37) relates surface integrals, appearing when differentiating option
premiums w.r.t. boundary parameters, to expected values, so that sensitivities of
option premiums can be estimated using Monte Carlo methods. In the following
we derive closed-form expressions for such Λ for three types of digital options.

3.1 The Digital Spread-Option

A digital spread-option involves two underlying assets, i.e., S := (S1, S2), and
a threshold θ > 0. It entitles its holder to a profit of ℘(S) > 0, provided that
S2 − S1 > θ. In formula:

ψ(θ,x) := x2 − x1 − θ.

The premium of such option is then given by

V = e−rtE [℘(S) I{S ∈ Dθ}] ,

where Dθ := {x ∈ R
2
+ : ψ(θ,x) = x2 − x1 − θ > 0} has the boundary given by

Bθ := {x ∈ R
2
+ : x2 − x1 = θ}. In order to derive an expression for Λ which

9On can split the boundary into several “maximal parametrizations” in order to reduce
the problem to global ones.
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satisfies (37), we note that ∂θψ = −1, ∂x2
ψ = 1 and on Bθ we have the global

parametrization x2 = ϑ(x1) := θ + x1 for any x1 ∈ Π2̄Bθ, i.e., x1 > 0. Finally,
to derive the conditional density of S2 given S1 = x1, we note that, in this case,
the matrix R satisfies

R :=

[

1 ̺
̺ 1

]

⇒ R−1 =
1

1− ̺2

[

1 −̺
−̺ 1

]

,

where ̺ = ̺12 = ̺21 ∈ (−1, 1). Consequently, according to (31),

C−1 =
1

t(1− ̺2)

[

σ−2
1 ̺(σ1σ2)

−1

̺(σ1σ2)
−1 σ−2

2

]

.

Hence, by Corollary 1; see the Appendix, the conditional density ρ2|1(x2|x1) is
given by

ρ2|1(x2|x1) =
√

1− ̺2

σ2x2
√
2πt

exp






−

(

µ2−ln x2

σ2

− ̺ µ1−ln x1

σ1

)2

2t(1− ̺2)






1(0,∞)(x2),

for any x2 > 0, with µ1, µ2 given by (29). Finally, we conclude that

Λ2(θ, S1) =
−
√

1− ̺2

σ2
√
2πt

℘(S1, θ + S1)

θ + S1
exp






−

(

µ2−ln(θ+S1)
σ2

− ̺ µ1−lnS1

σ1

)2

2t(1− ̺2)






.

If, for instance, ℘ = 1 and the stocks are varying independently, i.e., ̺ = 0,
hence V = e−rtP{S2 > θ + S1}, then the expression of Λ2 reduces to

Λ2(θ, S1) =
−1

σ2
√
2πt (θ + S1)

exp

(

−µ2 − ln(θ + S1)

2σ2
2t

)

.

Exactly the same result is obtained by direct computation, using the fact that

P{S2 > θ + S1} = E

[

1

σ2
√
2πt

∫ ∞

ln(θ+S1)

exp

(

− (µ1 − ln x)2

2σ2
2t

)

dx

]

;

indeed, the θ-derivative of the above integrand coincides with Λ2(θ, S1).

3.2 The Digital Madonna Rainbow Option

Let us consider a digital option on n assets which pays off some amount ℘(S)
when ‖S‖2 does not exceed a certain threshold θ > 0. We formalize that by
taking in (36)

ψ(θ,x) := θ2 − ‖x‖22 = θ2 − x21 + . . .+ x2n.

Then Dθ is the interior of the “positive region” of the disc with radius θ, i.e.,

Dθ :=
{

x ∈ R
n
+ : x21 + . . .+ x2n < θ2

}

.

Hence, we are dealing with a put option. The boundary Bθ is then given by10

Bθ :=
{

x ∈ R
n
+ : x21 + . . .+ x2n = θ2

}

10In fact, the boundary of Dθ contains also parts of the hyper-planes corresponding to
xi = 0. However, we are not interested in these parts of the boundary since they do not
depend on θ. In fact, to comply with the theory put forward in Section 2, the velocity at the
boundary in these points is 0, hence the corresponding surface integrals vanish.
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and admits the global parametrization11

xn = ϑn(w) =
√

θ2 − (x21 + . . .+ x2n−1) =
√

θ2 − ‖w‖22,

which, cf. Example 2, is valid for

w := (x1, . . . , xn−1) ∈ Πn̄Dθ = {(x1, . . . , xn−1) ∈ R
n−1
+ : x21 + . . .+ x2n−1 < θ2}.

Moreover, by Corollary 2 in the Appendix, the conditional density ρn|n̄(·|w),

for w ∈ R
n−1
+ , is given by

ρn|n̄(xn|w) =

√
¯̺nn

σnxn
√
2πt

exp






−

(

∑n
j=1 ¯̺jn

(µj−lnxj)
σj

)2

2t ¯̺nn






1(0,∞)(xn),

where R−1 = [¯̺ij ]1≤i,j≤n and µ is given by (29). Taking now into account that
∂θψ(θ,x) = 2θ and ∂nψ(θ,x) = −2xn, we conclude from (37) that

Λn(θ,Sn̄) =
θ

√

θ2 − ‖Sn̄‖22
℘

(

Sn̄,
√

θ2 − ‖Sn̄‖22
)

ρn|n̄

(

√

θ2 − ‖Sn̄‖22
∣

∣

∣

∣

Sn̄

)

.

The expression in the last display provides an estimator for the sensitivity
w.r.t. θ of the digital Madonna rainbow (put) option. An estimator for the
sensitivity of the corresponding call option, obtained for ψ(θ,x) = ‖x‖22 − θ2,
is the negative of the expression of Λn(θ,Sn̄) in the last display. This can be
either seen from the fact that the premiums of the call and put options sum up
to a constant (w.r.t. θ) or directly deduced by repeating the above arguments
for the new ψ. Finally, note that if one replaces n by any index i = 1 . . . n the
corresponding estimator Λi(θ,Sī) has the same properties.

3.3 The Asset/Cash-or-Nothing Option

The AON/CON options derive from classical puts and calls and classify accord-
ingly. Namely, if θ := (θ1, . . . , θn) ∈ R

n
+ is a positive vector, they bring some

profit only if the vector of stock prices at time t satisfies S ≤ θ, i.e., if Si ≤ θi,
for any 1 ≤ i ≤ n, for a AON put and S ≥ θ for a AON call. Therefore, the
feasibility region for the AON call is given by12

(0, θ) := (0, θ1)× . . .× (0, θn),

and the payoff function may depend on the vector S, at most. The AON option
is a digital option and one can define its binary counterpart, the cash-or-nothing
option, by replacing ℘ by a constant, e.g., ℘ = 1.

Let ℘ : Rn → R be a continuous function and consider the AON option
which pays ℘(S) units if the vector of stock prices is in the domain (0, θ). Then
its premium is given by

V (θ) = e−rtE[℘(S) I{S < θ}].
11A global parametrization can be chosen because all components xi, in particular xn, are

non-negative on Dθ.
12We can switch between S > θ and S ≥ θ since the distribution of S is continuous.
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We want to estimate the sensitivity of V w.r.t. θ, i.e., the partial derivatives
∂θiV (θ), for 1 ≤ i ≤ n. Let i = n, take Ω =

∏n−1
j=1 (0, θj) × (0,∞) and let

ψ(θ,x) = θn − xn. Note that the variable boundary of the domain is given by

{x ∈ Ω : xn = θn} ⊂ Hn := {x ∈ R
n : xn = θn}.

Hence, the boundary of the domain is supported by the hyperplane Hn and
admits the global parametrization ϑn(x1, . . . , xn−1) = θn, on

∏n−1
j=1 (0, θj). In

addition, for any x ∈ Hn we have ∂θnψ(θ,x) = 1 and ∂xn
ψ(θ,x) = −1, hence

Λn(θ,Sn̄) = ℘(Sn̄, θn)ρn|n̄(θn|Sn̄)
n−1
∏

j=1

I{Sj < θj},

where, in accordance with Corollary 2 (see the Appendix) we have

ρn|n̄(θn|Sn̄) =
√
¯̺nn

σnθn
√
2πt

exp






−

(

¯̺nn
µn−ln θn

σn
+
∑n−1

j=1 ¯̺jn
µj−lnSj

σj

)2

2t ¯̺nn






.

A similar expression can be obtained for each partial derivative ∂θiV (θ), for any
1 ≤ i ≤ n, by replacing in the above reasoning n by i. Finally, for the AON
put, one should take the negative of the sensitivity of the AON call.

Conclusions and Future Research

In this paper we have developed a methodology for estimating sensitivity of
option premiums, using Monte-Carlo simulation, in a rather general framework.
The theoretical fundament for this methodology relies on establishing differ-
entiation formulas for integrals with parameter, when the parameter may also
induce variability of the integration domain. As pointed out in Section 3, our
framework contains most common situations in financial pricing, e.g., sensi-
tivity w.r.t. intrinsic parameters (Greeks). Apart from establishing a multi-
dimensional version of the differentiation rule for integrals on moving domains
(itself a result with a significant theoretical value which is scarcely available in
the literature in such an elementary and intuitive form) which leads to a unified
approach to gradient estimation of option premiums, the main contribution of
this paper is that it extends the classical procedures to the study of the sensitiv-
ity of multi-asset digital/binary options w.r.t. non-intrinsic parameters. That
is, if ℘(θ, ·) is a payoff function and Dθ is the exercise domain of the financial
option then one can determine a measurable function F , depending on ℘ and
the ”dynamics” of the domain Dθ only, satisfying

∂θE [℘(θ,S) I{S ∈ Dθ}] = E [∂θ℘(θ,S) I{S ∈ Dθ}+ F (θ,S)] .

Recall that if the function ℘(θ, ·) is identically null on (the variable part of) the
boundary of Dθ then F (θ,S) = 0; in principle, F (θ,S) can be derived whenever
the joint density of the vector of stock prices is known. This technique of
transforming surface integrals into (proper) expected values is a novelty, to the
best of author’s knowledge. As illustrated in Section 3, closed form expressions
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for F can be found in most of the cases and they can be easily implemented
whenever conditional distributions of stock prices can be computed.

An interesting topic for further research is to extend this methodology to
sensitivity of barrier options, i.e., financial options for which the exercise rule
depends upon the whole path of stock prices up to maturity and not only on the
final value. For instance, consider a financial option on a single asset which pays
at maturity t some amount of money, which may, or may not depend on S(t),
only if the stock-price, which is currently s, will not exceed a certain threshold
θ > s up to maturity. In other words, the option becomes void if at some
moment τ < t we have S(τ) ≥ θ even if at maturity we have S(t) < θ.

From a measure-valued differentiation perspective, the results in this paper
establish weak differentiability, as well as the expression of the weak derivatives,
of a wide class of truncated distributions in the multi-dimensional Euclidian
space. In practice, if X is some random vector and Dθ is some variable domain
satisfying some regularity assumptions, such that P(X ∈ Dθ) > 0 locally, i.e.,
for all θ’s in some open set, then it turns out that the conditional distribution
P(X ∈ ·|X ∈ Dθ) is weakly differentiable and

∂θE [f(X)|X ∈ Dθ] = ∂θ
E [f(X) I{X ∈ Dθ}]

P(X ∈ Dθ)

can be expressed as the re-scaled difference between two stochastic experiments,
out of which one is the original one, i.e., E[f(X)|X ∈ Dθ]. Identifying and de-
veloping interesting applications of this result is also a topic for future research.
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Appendix: Gaussian Vectors

The random vector13 X := (X1, . . . , Xn)
∗ will be called a Gaussian vector if for

any β ∈ R
n the random variable β∗X has normal distribution. Equivalently,

X is Gaussian if and only if there exist µ := (µ1, . . . , µn) ∈ R
n and a symmet-

ric, positive semi-definite matrix Σ = [σij ]1≤i,j≤n such that the characteristic
function φ of X satisfies

∀β ∈ R
n : φ(β) := E

[

ei β
∗

X

]

= exp

(

i β∗µ− 1

2
β∗Σβ

)

. (38)

When the vector X is non-degenerate, i.e., Σ is non-singular, its probability
density is given by

∀x ∈ R
n : γ(x|µ,Σ) := 1

√

(2π)n detΣ
exp

(

−1

2
(x− µ)∗Σ−1(x− µ)

)

. (39)

The vector µ is called the mean of X and the matrix Σ is called the covariance
matrix of X since we have

∀1 ≤ i, j,≤ n : E[Xi] = µi, E[(Xi − µi)(Xj − µj)] = σij .

The components X1, . . . , Xn are mutually independent if and only if the matrix
Σ is diagonal. The following result shows that the marginal distribution of every
sub-vector of X is Gaussian.

Lemma 2 If X := (X1, . . . , Xn)
∗ is a n-dimensional Gaussian vector then, for

any 1 ≤ i1 < . . . < ik ≤ n, for k ≤ n, Y := (Xi1 , . . . , Xik)
∗ is a k-dimensional

Gaussian vector. If X has mean µ and covariance matrix Σ then the mean and
covariance matrix of Y are obtained by removing from µ and Σ, respectively,
the rows/columns corresponding to indices j /∈ {i1, . . . , ik}.

Proof: We can assume w.l.o.g. that ij = j, for 1 ≤ j ≤ k. By taking in (38)
β = (ξ, 0, . . . , 0)∗, where ξ ∈ R

k is arbitrary, we obtain for the characteristic
function of Y

E

[

ei ξ
∗

Y

]

= E

[

ei β
∗

X

]

= exp

(

i β∗µ− 1

2
β∗Σβ

)

.

To conclude the proof, note that the r.h.s. above equals

exp



i

n
∑

j=1

βjµj −
1

2

n
∑

i,j=1

βiσijβj



 = exp



i

k
∑

j=1

βjµj −
1

2

k
∑

i,j=1

βiσijβj



 ,

since, by assumption, βj = 0 for j > k. �

Corollary 1 If X := (X1, . . . , Xn)
∗ is a n-dimensional Gaussian vector with

mean µ and covariance matrix Σ then any component Xi, for 1 ≤ i ≤ n, is
normally distributed with mean µi and variance σii.

13In this section all vectors are assumed to be column-vectors and the superscript t denotes
the transposition operator.
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Proof: It is immediate from Lemma 2. �

In the following we only consider non-degenerate Gaussian vectors. That is,
we assume that the covariance matrix Σ is positive definite, hence non-singular,
and the density is given by (39).

Lemma 3 Let X := (X1, . . . , Xn)
∗ be a n-dimensional Gaussian vector with

mean µ and covariance matrix Σ and let Xn̄ := (X1, . . . , Xn−1)
∗. Let us con-

sider the matrix Σn̄ := [σij ]1≤i,j≤n−1 and the vectors µn̄ := (µ1, . . . , µn−1)
∗ and

l := (σ1n, . . . , σn−1n)
∗, i.e.,

µ =

[

µn̄
µn

]

, Σ =

[

Σn̄ l

l∗ σnn

]

.

Then the conditional distribution of Xn w.r.t. Xn̄ = ξ is normal with mean
m(ξ) and variance σ2 where

∀ξ ∈ R
n−1 : m(ξ) := µn + (ξ − µn̄)

∗Σ−1
n̄ l, σ2 := σnn − l∗Σ−1

n̄ l. (40)

Prroof: We start by noting that since Σ is a positive definite matrix so
is Σn̄ which shows that Σn̄ is non-singular and it makes sense to consider its
inverse in (40). By Lemma 2 we know that Xn̄ is a Gaussian vector having
density

γ (ξ|µn̄,Σn̄) =
1

√

(2π)n−1 detΣn̄
exp

(

−1

2
(ξ − µn̄)

∗Σ−1
n̄ (ξ − µn̄)

)

, (41)

for ξ ∈ R
n−1 and by assumption; see (39), the density of X is given by

∀x ∈ R
n : γ (x|µ,Σ) = 1

√

(2π)n detΣ
exp

(

−1

2
(x− µ)∗Σ−1(x − µ)

)

. (42)

The conditional density of Xn w.r.t. Xn̄ can be calculated by dividing the ex-
pression in (42), for x = (ξ, x), by the expression in (41). That is, we obtain

fXn
(x|Xn̄ = ξ) =

γ(ξ, x|µ,Σ)
γ(ξ|µn̄,Σn̄)

.

Hence, in accordance with (41) and (42), the conclusion is equivalent to

(x− µ)∗Σ−1(x − µ)− (ξ − µn̄)
∗Σ−1

n̄ (ξ − µn̄) = σ−2(x−m(ξ))2, (43)

for x = (ξ, x) ∈ R
n and detΣ = σ2 detΣn̄. Consider now the partitioning

Σ−1 =

[

A b

b∗ c

]

,

where A is a (n−1)-dimensional square matrix, b is a (n−1)-dimensional vector
and c is a real number. Note that such a partitioning is possible since Σ−1 is a
symmetric matrix. The l.h.s. in (43) then equals

c(x− µn)
2 + 2(x− µn)(ξ − µn̄)

∗b+ (ξ − µn̄)
∗
(

A− Σ−1
n̄

)

(ξ − µn̄). (44)

Now note that

In = Σ · Σ−1 =

[

Σn̄ l

l∗ σnn

]

·
[

A b

b∗ c

]

,
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where, for n ≥ 1, we denote by In the unit n-dimensional matrix. Writing
explicitly the above equality yields the following linear system















Σn̄A+ lb∗ = In−1, (Eq. 1),
Σn̄b+ cl = 0, (Eq. 2),
Al+ σnnb = 0, (Eq. 3),
b∗l+ cσnn = 1, (Eq. 4).

If c = 0 then, since Σn̄ is non-singular, we conclude from (Eq. 2) that b = 0,
which violates (Eq. 4). Hence, we have c > 0. Dividing (Eq. 2) by c, we obtain

Σn̄b = −cl ⇒ l = −c−1Σn̄b. (45)

Substituting this value of l in (Eq. 1) we obtain

Σn̄A− c−1Σn̄bb
∗ = In−1 ⇒ Σ−1

n̄ = A− c−1bb∗. (46)

Substituting now the above value in (44) we obtain for the expression in (44)

c
[

(x − µn) + c−1(ξ − µn̄)
∗b
]2

= c(x−m(ξ))2, (47)

since (45) implies b = −cΣ−1
n̄ l. Now, substituting this value in (Eq. 4) yields

1 = c
(

σnn − l∗Σ−1
n̄ l
)

= cσ2 ⇒ c = σ−2. (48)

Finally, substituting this value in (47) proves (43). To conclude the proof, we
note that

(

σnn − l∗Σ−1
n̄ l
)

is the Schur complement of Σn̄ in Σ; see [?], hence

detΣ =
(

σnn − l∗Σ−1
n̄ l
)

detΣn̄ = σ2 detΣn̄,

where, for establishing the last equality, we used again (Eq. 4). �

Remark 1 Lemma 3 actually gives the conditional density of Xn given Xn̄.
By a symmetry argument, a result similar to that in Lemma 3 holds true for
any component Xi. More specifically, in (40) one replaces Σn̄ by Σī, obtained
by removing the ith row and the ith column of Σ, l by the ith column of Σ from
which σii is removed and µn̄ is replaced by µī, obtained by removing µi out of
µ.

Remark 2 Analyzing the proof of Lemma 3; in fact, equations (45) and (48),
we note that the conditional density of Xn given Xn̄ = ξ can be easier ex-
pressed in terms of the inverse of the covariance matrix. Namely, if X is a
non-degenerate gaussian vector with mean µ and covariance (non-singular) ma-
trix Σ, such that

Σ−1 =

[

A b

b∗ c

]

,

then the conditional density of Xn given Xn̄ = ξ is Gaussian with parameters
(m(ξ), σ2) given by

m(ξ) := µn − c−1(ξ − µn̄)
∗b, σ2 = c−1. (49)

In equivalent formulation, if the Gaussian vector X has mean µ and covariance
matrix B−1, then the “conditional parameters” in (49) are given by

m(ξ) := µn − b−1
nn(ξ − µn̄)

∗bn, σ
2 = b−1

nn ,
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where B = [bij ]1≤i,j≤n and bn is the vector obtained by removing bnn from the
last column of B, i.e.,

bn = (b1n, . . . , bn−1n)
∗.

By Remark 1, a similar fact holds true for any index i instead of n.

We say that a random vector S := (S1, . . . , Sn) ∈ R
n
+ is (non-degenerate)

log-normal with parameters µ ∈ R
n and Σ, where Σ is a symmetric n × n

matrix, if the random vector X := (X1, . . . , Xn) with components Xi := lnSi is
a (non-degenerate) Gaussian vector with mean µ and covariance matrix Σ. In
the particular case n = 1, the density of a log-normal variable with parameters
µ and σ2 is given by

fµ,σ2(ξ) :=
1

σξ
√
2π

exp

[

− (µ− ln ξ)2

2σ2

]

1(0,∞)(ξ).

The next statement follows immediately from Lemmas 2, 3 and Remark 2.

Corollary 2 If S is a non-degenerate log-normal n-dimensional vector with
parameters µ and Σ then the vector Sn̄ := (S1, . . . , Sn−1) is also log-normal
with parameters obtained from µ, resp. Σ, by removing the nth element, resp.
nth row and column. Furthermore, if B = Σ−1, the conditional density of Sn,
given that Sn̄ = (ξ1, . . . , ξn−1), is also log-normal with parameters

m(ξ1, . . . , ξn−1) := µn + b−1
nn

n−1
∑

i=1

(µi − ln ξi)bin, σ
2 = b−1

nn ,

where B = [bij ]1≤i,j≤n and bn = (b1n, . . . , bn−1n)
∗. Furthermore, the condi-

tional density of Sn, given that Sn̄ = (ξ1, . . . , ξn−1), can be expressed as

ρn|n̄(ξn|ξ1, . . . , ξn−1) =

√
bnn

ξn
√
2π

exp

[

− (
∑n

i=1(µi − ln ξi)bin)
2

2bnn

]

1(0,∞)(ξn).

By a symmetry argument, the above formula remains valid if n is replaced by
any index i = 1, 2, . . . , n− 1, after performing necessary modifications.

Acknowledgments

The author wishes to express his gratitude to Dr. Bernd Heidergott (VU Uni-
versity Amsterdam) for taking the time to read the material and for providing
valuable suggestions for improving the manuscript.

27



References

[1] Benhamou, E. Optimal weighting Malliavin function for the estimation of
Greeks. Mathematical Finance, 13, pp. 37–53, 2003.

[2] Broadie, M. and Glasserman, P. Estimating security price derivatives using
simulation. Management Science, 42(2), pp. 269–285, 1996.

[3] Flanders, H. Differentiation under the integral sign. The American Math-
ematical Monthly, 80(6), pp. 615–627, 1973.
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