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Introduction 1
This thesis, as the title already suggests, considers the topic of patient
scheduling in different settings within health care. It is part of the larger
field of operations research applied to health care, which is just one of the
application areas of operations research and management science. This
application area has been growing rapidly since its inception in the 1950s,
and there is no sign that its growth is slowing down. Within health care
many different problems are being addressed using operations research
methods and probably many more that are not but could and should be
studied in a quantitative way. The large variation of problems leads to
quite an array of methods employed. In this thesis we study a number of
different problems that involve the scheduling of patients.

In this introduction we place the research this thesis contains in the
larger perspective of the field of health care OR, the historical develop-
ments in this field and in health care itself. We start with a short overview
of the development of health care OR and the main themes and issues that
have been studied and some of the challenges and open issues for health
care OR that we feel have not yet received adequate attention and that are
important issues for the near future. Then we give an overview of the pa-
tient scheduling problems that occur in health care and the OR methods
available to attack these problems. We end this introduction by giving an
outline of the remaining chapters in this thesis and describing how they
fit within the bigger picture.

1.1 OR and health care: a short overview

The field of operations research as applied to health care has existed just
about as long as operations research itself. Concerning health care, opera-
tions research is generally applied in two fields. One of these concerns the
actual care and treatments. An example is optimising the settings for ra-
diotherapy treatment of cancer cells. Work like this is often a collaboration
of mathematicians with physicians or medical researchers. The second ap-
plication area addresses the organisation of care and processes within and
between institutions. This thesis falls into the second field of applications
within health care.
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To the best of my knowledge the first paper that addresses the field as
such is by Norman Bailey [10]. This paper describes the main themes and
findings of a conference held in March of 1950. The author defines opera-
tions research in medicine as "concerned with the organisation of existing
clinical techniques and facilities so as to make them more widely available
to patients in need; with the replanning of wards, clinics and practices so
as to employ present resources to the greatest advantage; and with the
general administration and planning of medical services. All the disci-
plines of scientific research in general and medical research in particular
can be made to subserve these ends." The research efforts described here
are largely concerned with collecting data for specific objectives, such as
collecting data on time spent on different activities by nurses in order to
give a good description of the actual job of a nurse. Design and dimen-
sioning hospitals or departments is another important subject that Bailey
mentions. He stresses the importance of a multidisciplinary approach to
these issues.

From that time onward the number of papers and studies published
in this field has been growing at an increasing rate, and there is no reason
to expect this to change any time soon. The most recent comprehensive
literature review by Brailsford et al. [24] on simulation and modelling in
health care makes it clear that it has become impossible for a department,
let alone a single researcher, to stay current with the literature. This makes
good literature review papers all the more desirable. Sadly, there are not
that many that address the field as a whole. The general reviews we have
been able to find are not very recent, we have found one by Boldy and
O’Kane [21] from 1982, and an older one by Fries [44] from 1976 with an
update three years later [45].

How can the fast increase in attention for the field of health care OR be
explained? Probably at least part of it is due to the rising costs of health
care, both in absolute monetary value as in percentage of the gross do-
mestic product, in almost every developed country. This is due to the
ageing population, thanks to newly developed treatment methods. More
and more problems and diseases can now be treated. This increases the
costs directly, but also lengthens the patients’ lives which in turn leads to
more health care demands.

Another part may be due to the shortage of nursing and other person-
nel caused by the decreasing percentage of employed people in relation
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to the whole population. This means that the demand for care increases
more than the personnel available, regardless even of the costs of extra
staff. Some of this could be relieved by measures to make working in
health care more attractive, so as to get more young people into the pro-
fession, but the fact remains that more and more work will have to be done
per employee.

A third possible factor explaining the increasing interest in health care
OR could be technological advancements, which are changing the way
patient care is handled. Exciting examples are available from operations
being done long distance, with cameras and other equipment guiding the
doctor to new treatments with for instance stem cells. But some more
mundane developments can have even more impact on day to day events,
like patients with diabetes being able to do their own checks for blood
sugar at home and sending them to the doctor by phone or some web
interface instead of having to go to the hospital for checks.

These and other factors are constantly changing the processes and de-
mand for different types of care, and institutions and employees need to
adapt to those changes. The increasing costs and personnel shortages are
making it more and more necessary to do so in a way that uses available
resources effectively and efficiently.

There are a few topics that have received a lot of attention in the health
care OR literature. The most notable are the scheduling of treatments in
the operating theatre and scheduling for diagnostic facilities such as MRI
scanners. At probable reason for the popularity of surgery scheduling
in the literature is the fact that the operating theatre, with all its special
equipment and highly trained personnel, is the most cost-intensive de-
partment of a hospital, and it is used by roughly half of the patient who
stay in a hospital. This makes running an efficient operating theatre cru-
cial to a smooth and cost-effective organisation of a hospital. The attrac-
tion to researchers may also come from the many uncertain factors and
variables, which makes surgery scheduling an interesting problem. Three
recent overviews of the literature concerning surgery scheduling and op-
erating theatre management are May et al. [81], Guerriero and Guido [55]
and Cardoen et al. [27].

Appointment scheduling is also a widely studied topic, starting with
one of the first papers in health care OR by Welch and Bailey [106] where
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the well-known Bailey-Welch rule was first introduced. This problem is
further discussed in Chapter 2.

Another field that has received a lot of attention is the admission pro-
cess of patients to the hospital, or the use and dimensioning of hospital
wards. Many of these are either simulation studies or applications of
queueing theory.

Nurse scheduling is also a popular topic, particularly in the determin-
istic setting using combinatorial techniques. This is a challenging field,
because of the large number of variables and constraints. This problem
differs from those mentioned above in that most of the models used are
deterministic in nature. An overview of the literature on this problem is
Cheang et al. [29].

A few notable points emerge. The first of these is the apparent lack
of actual application or implementation of research findings in health care
organisations. This lack has been noted and lamented from the beginning
of the research in this field, and is still noted in the latest review by Brails-
ford et al. One explanation given is the fact that researchers are interested
in complex, new and challenging models and techniques and that this is
also where the research funding goes. As a result, certain techniques are
given a lot of attention. These more technical studies most often are not
directly applicable, but the interest of many researchers and providers of
funds appears to end here. Probably a lot of implementation is being done
by consulting firms or people working in health organisations themselves,
but these are based on simple models and techniques and are mostly not
written up for publication in scientific journals. Many can be found in
the so-called "grey" literature, that may well be even larger than the actual
scientific literature.

Another point to note is that almost all studies use either data analysis
and statistical methods or simulation as their main method. Of course the
spectrum of techniques available is much larger and many are also used,
but they come nowhere near the popularity of statistical analysis and sim-
ulation. A possible reason is that these methods can be applied in many
situations where other methods would be difficult to use because of the
size of the problem or assumptions that are necessary to use a method but
are not met in reality. Another reason could be that there are many soft-
ware tools available for data analysis and simulation, and less for other
methods. The upside of simulation as a method is the flexibility to incor-
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porate all kinds of details and the relative ease of explaining the model to
health professionals. On the other hand, analytical models may well be
more generic and require less data to give results. Also, usually all details
of an analytical model are made clear in papers, which is often not the case
with simulation models.

Finally, it is clear from the reviews that the models and analyses are
disproportionately directed at hospital care and much less at for example
care-at-home and nursing home. A possible reason for this is the fact that
processes at hospitals are often more complex than in other kinds of health
care institutions. Also hospitals are relatively expensive to operate and
have larger budgets, and so they have the funding for research and there
may be more gains to be made. The lack of hard data in many health care
settings probably plays a role as well. Nevertheless other kinds of care
have received limited attention and this is a gap to be addressed by the
operations research community.

Despite all the interest in health care OR over more than sixty years,
there are still some areas and issues that appear not to have received all
the attention needed. First, as was already mentioned, the large majority
of the literature concerns hospital care. It seems clear that other types of
care will be more and more in demand in the coming years with the ageing
population and the increase in the number of chronic health issues like
diabetes. This is especially the case for nursing homes and care-at-home.

The care in those institutions has different characteristics from those
in hospitals. For one, the length of time that patients stay within the sys-
tem can be very long, sometimes years as opposed to hours or days in the
case of hospitals. This leads to less turnover in the system. Another large
difference is the fact that care in nursing homes and home care is often re-
peated periodically, and does not consist of one-time events like surgeries.
Decisions made now can have an impact every day or week for the next
few years, so it is even more important to consider the longer-term effects
when for example prioritising patients for admission or making staffing
decisions.

These characteristics require different models to address problems like
the scheduling of activities or visits of employees to the patient, designing
good schedules for nurses and other staff and prioritising the admission of
patient groups to the facilities. Some of these problems are related to other
issues in OR. For example, the problem of scheduling and routing visits to
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patients by home-care nurses has been addressed using techniques from
the vehicle routing problem by for example Eveborn et al. [40]. But a lot
of these issues have not been sufficiently addressed, or even not at all as
in the case of admission prioritisation.

Another issue that has not received much attention in the literature is
the question of how to handle multi-step processes. Many of the ques-
tions discussed above consider one department or one resource. Optimis-
ing one part without relating it to other parts of the complete health care
system that the patients experience will almost certainly lead to subopti-
mal use of resources. However, most times the problems are complicated
enough as they are, and considering multiple steps is even harder. An-
other factor that explains this lack of attention in the literature may well
be the fact that when it comes to managing steps between organisations or
departments interests are often conflicting. This makes it difficult to for-
mulate a common goal, as many modelling techniques require, and leads
to issues when implementing changes to the system as a whole.

An example of a multi-step process are those of patients who first need
emergency care in a hospital after a brain seizure, and afterwards have to
rehabilitate for a few months in a separate facility. The coordination of
the transfers of these patients is not always as efficient as it should be,
because rehabilitation facilities treat many different types of patients that
arrive through various routes, and they do not have a (financial) incentive
to prioritise hospital patients over other patients. Also, rehabilitation is in
itself a multi-step process as patients receive care from various disciplines
during their stay.

Multi-step processes also occur within organisations. A good example
is patients who stay at an intensive care after a surgery or an emergency
admission, and when they recover can be moved to a normal ward. Even
processes like these are challenging to analyse and optimise. But the grow-
ing complexity of care and need for efficiency ask for good ways to han-
dle multi-step processes. An overview of the research done on processes
within one institution can be found in Vanberkel et al. [101].

Another challenge to the research community is the development of
models and solutions that strike a balance between being detailed enough
to be of practical value and generic enough to be applicable in different
organisations. Often studies reported are case studies where data is anal-
ysed and then a model is developed that best describes what happens in
this particular case. Due to the complexity of the care process in a particu-
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lar case, this is often a simulation model. This model is then analysed and
provides solutions or improvement steps. While this can be very valuable
for the organisation involved and maybe provide some insights for other
cases, the results cannot be easily used by other organisations to study and
solve their problems.

On the other hand there are studies in the literature that consider mod-
els that are interesting from a theoretical perspective, but need assump-
tions that are not met in practical situations. Examples are models that
require the duration of a hospital stay to be exponentially distributed, or
that take the length of a surgery as deterministic.

There is a need for models that hold a middle ground between these
two extremes. This may require closer collaboration between people from
health care and OR researchers.

A final challenge is related to this point. Since the origin of health
care OR, the lack of implementation of research results has been a point of
concern. This is still largely the case today. Both the scientific community
and the health care managers and professionals should work to change it.
This could be beneficial to everyone, including the patients. Models which
are sufficiently detailed but still generic can probably help to achieve this.

Patient scheduling problems appear in many different settings and
types of health care. Some of these have received a lot of attention al-
ready, while some are essentially new to the field. In all cases however,
we feel there is room for improvement to make the models more realis-
tic. This will hopefully make the results easier to implement so that the
research can actually achieve its desired effect of improving health care
processes. In the next section we introduce some of the most important
settings where patient scheduling plays a role.

1.2 Patient scheduling problems

Within the field of health care OR, patient scheduling problems are situ-
ated at the operational level, where day-to-day decisions are made. There
are different scheduling problems in each type of care institution or facility,
and also some problems that are common to all situations. In this section
we give an overview of the most important patient scheduling problems
in different sectors of health care.



8 Chapter 1: Introduction

Surgery scheduling
This area addresses the question of how to schedule surgical procedures
into the available time in one or more operating theatres. In most cases
there is a weekly repeating block schedule that states which specialism
or specialist is assigned the operating theatre with its staff at which days.
Then the surgeries belonging within each block need to be assigned a date
and time. Complicating factors are the stochastic duration of the surgeries,
the need to keep time available for emergency surgeries, and of course the
fact that before and after the surgery the patients require other resources
such as ward beds. The main (quantitative) criteria by which to judge a
schedule are the efficient usage of the time available, the overtime and the
fraction of scheduled surgeries that need to be cancelled or rescheduled,
and the waiting time for emergency surgeries.

Appointment scheduling
This problem occurs in a few different settings both in health care and in
other areas. In health care, good examples are the offices of general prac-
titioners and dentists, and outpatient clinics. In appointment scheduling
the goal is to schedule a certain number of appointments into a finite block
of time. Important performance criteria here are the waiting times of pa-
tients, the overtime at the end of the day and efficient use of the doctor’s
time. There can be more complicating factors than just the appointment
duration, such as emergency arrivals, patients who don’t show up for their
appointment, or patients who are late.

There are, of course, similarities with the surgery scheduling prob-
lem, since in both cases activities with an uncertain duration have to be
scheduled into a block of time of fixed length and overtime should be
minimised. The main difference lies in the fact that in surgery schedul-
ing the waiting time usually is of little importance, since the patients are
in the hospital anyway, and overtime is much more costly for an operating
theatre than for most appointment scheduling settings.

Elective admission scheduling
Admission scheduling is the question of how to decide which patient
should be scheduled for admission at which point in time. This is a com-
plex problem, because of the many sources of uncertainty in this situation
and the many different patient requirements such as maximum time to
admission. Uncertainties are for example the length of stay of a patient,
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emergency admissions that use the same wards, and often also the avail-
ability of nurses, or staffed beds. To add to the complexity many patients
need more resources than only a ward bed, for example some time in the
operating room or intensive care, or complex medical treatments for can-
cer that have to be prepared right before administering the treatment. So
in scheduling admissions, these other resources have to be taken into ac-
count. Important criteria to judge the quality of the admission schedule
are the occupancy of the beds, the number of emergency admissions that
have to be blocked and the number of admissions that have to be resched-
uled.

Priority scheduling
This problem occurs when there is a limited number of servers i.e. doctors
or beds, available, and patients of different types are waiting to be admit-
ted once a server becomes available. The question is how to decide which
patient to allocate the free server to, based on the number and the types of
patients waiting. This is different from admission scheduling in that the
admissions are not scheduled in advance, but are decided one by one each
time a patient leaves the system. Examples are emergency departments,
nursing homes and rehabilitation facilities. The goal here is to balance the
interests of various different types of patients, who can each differ in their
level of urgency. In many cases it is possible to keep a server idle even
when there are patients waiting, in order to serve really urgent patients
quickly when they arrive. Important performance measures are the occu-
pancy of the servers, the mean waiting times for each patient type, or the
fraction of patients that wait longer than some threshold value.

Home care visits and routing
In the setting of home care the scheduling of patient visits is combined
with a routing problem for the employees. The setting is usually that of
several nurses and other employees with different skill levels, that need
to visit patients at home to carry out one or more tasks. These tasks can
range from cleaning help to administering cancer treatments, and the skill
level determines which employee can perform which tasks. For each task
a certain time window is available in which the visit should take place.
The employees are given a schedule or route with an order and timeline
of the patients they will visit during their shift. Usually there are several
factors to be taken into account, like the number of different employees
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each patient sees, or the fact that employees with allergies cannot visit
patients who have a cat or dog. This problem is related to the well-known
problem of vehicle routing, and can be addressed using similar methods.

Chapter 2 discusses the problem of appointment scheduling. In Chap-
ter 3 the problem of admission scheduling is addressed. Both Chapter 4
and Chapter 5 deal with the problem of how to prioritise patients for ad-
mission in different settings.

1.3 Available methods

In this section we take a consider main methods and techniques available
for solving patient scheduling problems. The diversity of problems and
their characteristics discussed in the previous section leads to a diversity in
techniques used to solve them. All of these methods have their strengths
and limitations, and we discuss these together with the most important
applications of each method. From the literature review by Brailsford et
al. [24] we see that the most popular methods are statistical analysis and
modelling, followed by simulation. Mathematical modelling and optimi-
sation methods are used in only a small part of the literature.

Queueing analysis
Queueing systems are systems where customers, in health care most often
patients, arrive at a system and then receive some type of service from a
server. In health care the server often represents a doctor or a bed. Well-
known queueing models are the Erlang loss and delay models, both of
which assume patients arrive randomly according to a Poisson process.
Some queueing models can be analysed exactly, which means that there
exist closed-form expressions for important performance measures like
the mean waiting time, or the fraction of blocked customers. When this
is not possible, approximations can sometimes be developed. This is for
example the case when the arrival intensity varies, as is the case in emer-
gency departments.

Examples where queueing analysis has been used in health care are
deciding on the number of beds for a hospital ward and analysing the
waiting times in an emergency department. For scheduling problems
queueing models are sometimes used as an approximation for scheduled
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arrivals, or they can be used to evaluate a given schedule, possibly in com-
bination with some optimisation method. More examples of applications
of queueing analysis can be found in Green [53].

Mathematical programming
Mathematical programming is the name for a set of techniques to find
an optimal combination of multiple decision variables under a set of con-
straints. The form of the objective function often gives the name to the
technique, like in linear or quadratic programming. The decision vari-
ables can be real or integer valued. Methods to solve mathematical pro-
grams are widely available and can solve programs with many decision
variables, which makes it a very powerful set of techniques. The stochas-
tic nature of many health care settings is hard to incorporate when using
mathematical programming, which is often no issue for high level decision
making. Alternatively, it can be implicitly considered in the goal function.
A good example of an problem addressed using mathematical program-
ming within health care is surgery scheduling, see for example Beliën and
Demeulemeester [16] and Denton and Gupta [35].

Markov processes
Markov processes, especially Markov decision processes, are often used in
situations where something is measured or decisions are taken each time
something changes in the system. For example, when a new patient ar-
rives or a patient leaves the system. A Markov process is described by
a state space, an action space, a reward or cost function and transition
probabilities. In the case of decision processes, the transition rates can be
different for each action that can be chosen in a state. In reward processes
a reward is earned per unit of time the system spends in some state. These
processes can be used to track the number of customers waiting for ser-
vice, or to decide which of several types of patients to admit when a server
becomes available. Markov decision processes have been successfully ap-
plied to various diagnostic services, see for example Patrick et al. [89] and
Day et al. [34].

Simulation
When a situation or problem is hard to fit into one of the usual models, or
when the model becomes intractable due to a large number of variables,
simulation remains open as a way to analyse systems. The power of sim-
ulation lies in the flexibility to model assumptions or setups that are hard
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to fit into a queueing model. This makes it an excellent method to model
complex situations, and gain insight in the performance. Optimisation can
be done using simulation, but not using the same optimisation techniques
used in deterministic settings.

In health care simulation is often used to model processes that have
more than one step, for example an emergency department where first
the patients are triaged, then wait, see a doctor, have some tests done,
get treatment and are discharged or admitted to a ward. It has also been
used for all kinds of scheduling problems, from appointment scheduling
to designing a good staff schedule. A good overview of literature and
applications can be found in Jacobson et al. [66].

Several of these methods are used in this thesis. In Chapter 2 we use
local search for finding optimal schedules when all patients arrive on time,
and simulation for evaluating schedules in the case with non-punctual pa-
tients. In Chapter 3 we use queueing analysis and quadratic program-
ming for addressing the problem of elective admission scheduling. Then
in Chapters 4 and 5 we use Markov decision theory to study prioritisation
problems.

1.4 Outline of this thesis

In the remaining chapters in this thesis we treat the subject of patient
scheduling in a few different health care settings. The one thing that all
models in this thesis have in common, apart form the scheduling aspect,
is that every problem has been encountered in a practical setting. So the
models are not only interesting from a theoretical perspective, but also ad-
dress a real problem. Even though simplifications have been made, we
consider the models detailed enough to be of practical value while still
being sufficiently generic to be used by different organisations. Of course
actual implementation of these and many other models remains a chal-
lenge for organisations as well as for OR researchers.

Chapter 2 concerns one of the oldest problems in health care OR, that
of scheduling outpatient appointments. This problem occurs in many set-
tings within health care, and also in other areas of application. We extend
the literature by the incorporation of emergency arrivals into the model.
Also we address the issue of unpunctual patients, and how to anticipate
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this in a good schedule. This chapter is based on the work in Koeleman
and Koole [72] and [73].

In Chapter 3 the issue of scheduling elective admissions to hospital
wards is considered. A medical specialty usually schedules its own ad-
missions, or in some cases even individual physicians. This scheduling is
often done without considering the occupancy of the wards, and without
regard to other groups of patients that use the same wards. The main goal
for scheduling of surgical specialties is often to use the available time in
the operating theatre as efficiently as possible. These practices cause more
variation in demand for beds than is necessary, and so has a negative in-
fluence on performance and utilisation of beds. This chapter presents a
way to schedule admissions with the goal of aligning the demand for beds
with the number actually available, and reducing the unnecessary varia-
tion, without deteriorating the utilisation of operating room capacity. This
chapter is based on Bekker and Koeleman [14].

Chapter 4 treats the problem of how to prioritise patients in the setting
of home care and a rehabilitation facility, when there are several types of
patients with different service needs and waiting costs. All these patients
require service or treatment from different specialties during some length
of time. These are not one-time events, but they repeat, for example daily
or weekly during a patient’s rehabilitation process. In this chapter we
address this problem using Markov decision theory, and develop approx-
imation methods. This is necessary because the many variables lead to
intractable problems in most practical situations; the so-called curse of di-
mensionality. This chapter is based on the research in Koeleman et al. [71],
Koeleman and Bhulai [70] and Haensel et al. [57].

Chapter 5 deals with the question of how to prioritise in a setting with
one type of server and several patient types, where not the mean waiting
times are important but the fraction of patients that wait longer than some
target length of time. This situation occurs for example in an emergency
department, but is also applicable in situations outside of health care. Op-
timising such a metric does not work with standard models, so here a
special type of state space description is used in Markov decision theory
to handle the problem. This chapter is based on Bekker et al. [12].

Chapter 6 summarises the main points of the thesis, and contains a
discussion on the findings, their applicability, practical implications and
questions for future research.
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Outpatient appointment scheduling 2
Outpatient appointment scheduling is a subject of great interest to hospi-
tals and other medical institutions. Most doctors, dentists, general practi-
tioners and diagnostic facilities use appointments. Outside of the medical
world the problem occurs as well, for example in the scheduling of load-
ing and unloading ships. No wonder that the problem has been an object
of study for a long time, starting with the work of Welch and Bailey in
the early fifties [106]. From that time on many papers have been written
studying this appointment scheduling in many settings, and with many
different assumptions and methods.

The goal of appointment scheduling is to balance the interests of the
patients with those of the doctors. The patients want long intervals be-
tween appointments, as this minimises their waiting time. The doctors
on the other hand wish to have as little idle time and overtime as possi-
ble, and therefore they prefer shorter intervals between two consecutive
appointments.

If the durations of all appointments were known in advance with
complete certainty, and there were no no-shows and other unexpected
events, there would not be a problem at all. The challenge in appointment
scheduling comes from the different factors of uncertainty. Indeed, the
most obvious uncertain factor is the duration of the appointments. Gen-
erally something is known about the appointment durations, for example
an average duration with standard deviation or some idea about the form
of the probability distribution. Another factor of possible uncertainty is
the unpunctuality of patients, or even no-shows where the patient does
not show up at all. To have an effective schedule, this behaviour needs to
be taken into consideration to avoid unnecessary doctor idle time. If there
are also emergency arrivals, which have to be seen to as soon as possible,
this complicates the situation further.

2.1 Literature

As already noted above, there is a long history of research on appointment
scheduling. In this section we describe the main themes and results, and
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explain how the approach in this chapter adds to the existing literature
and results.

As noted above, the research on appointment scheduling started with
the work of Welch and Bailey. Their most famous result is the so-called
Bailey-Welch appointment rule, which states that two patients should
be planned at the start of the day, and the other patients evenly spaced
throughout the day, to offset the undesirable effects of no-shows, patient
lateness and the doctor starting late. They made the assumption that all
appointment durations were identically distributed and independent of
each other.

A large part of the literature concerns simulation models for evaluat-
ing the performance of appointment schedules, e.g.. Fetter and Thomp-
son [42] and Vissers and Wijngaard [104]. Ho and Lau [63] compare differ-
ent rules for making appointments in different settings using simulation,
and conclude that no single rule works best in all situations, though the
Bailey-Welch rule works fine in many cases.

Other works consider finding and optimal schedule, which minimises
some combination of the patient waiting time, doctor idle time and over-
time. Stein and Côté [100] use an analytical method for finding the optimal
schedule in a case with exponentially distributed service times and the re-
striction that the schedule be even-spaced. Wang [105] finds an optimal
schedule without this restriction and with a Coxian distribution for the
service times, and shows that this is an improvement over an even-spaced
schedule. He gives the optimal schedule in terms of inter-arrival times in
continuous form. For larger numbers of appointments he gives an approx-
imation for the optimal inter-arrival times.

One of the few practical implementations is the one by Rising et al. [94].
They try to smooth the number of appointments over the week and over
the day to accommodate the number of walk-in patients and emergencies,
and they find a good schedule by trial and error in a simulation model.
The implementation of their schedule gave good results in terms of wait-
ing times and overtime of clinics.

An overview of the important issues to consider when designing an
appointment system can be found in Gupta and Denton [56]. For a
thorough review of the literature on appointment scheduling we refer to
Cayirli and Veral [28]. They present the research done in the second half
of the last century and mention some directions for future work.
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The research presented in this chapter can be divided into two parts.
First, in Section 2.2, we present a method to find the optimal appointment
schedule in a situation with emergency arrivals and general service times.
It has been found by O’Keefe [87] that the coefficient of variation of the
service times in practice is considerably smaller than 1 (more in the order
of 0.5), as in the exponential distribution used in many studies. The exact
form of the distribution can differ, but Ho and Lau [63] find that only the
coefficient of variation has a significant influence on the performance of
the appointment schedule. According to Denton and Gupta [35] higher
moments of the service time distribution are only important in the case
were the costs of waiting time of patients are high relative to the cost of
server idle time. Emergency arrivals or other disturbances such as phone
calls are also known to have a considerable influence on the waiting times
of patients as discussed by O’Keefe [87], which can also be seen from our
experiments presented below.

The method we use here is a generalisation of the local search method
used by Kaandorp and Koole [69], who study the case with only sched-
uled arrivals and exponential service times. Because we use the amount
of work present in the system as a state description instead of the num-
ber of patients, the service times can have any positive distribution, and
can differ for the scheduled and the emergency patients. Related to [69]
is the work of Vanden Bosch et al. [103]. They solve the problem with Er-
lang distributed service times using a different method that is much faster.
Neither of these papers include emergencies. Begen and Queyranne [11]
include optimisation with emergencies, but only if they arrive during the
service of scheduled patients. This can be a restriction if the service times
of emergency patients are longer than that of scheduled patients. We do
not make this assumption.

In the somewhat related area of surgery scheduling more work has
been done on accounting for emergency arrivals. Examples are Gerchak
et al. [51] and Lamiri et al. [76]. However, this work differs by assuming
emergencies should be done on the same day instead of as soon as possi-
ble, as in the case of appointment scheduling.

Then in the second part, in Section 2.3, uses a different method to ad-
dress the appointment scheduling problem, optimisation via simulation.
This choice was made for three reasons. First, we wanted to eliminate
the unrealistic assumption that all patients are punctual. Doing this leads
to difficulties in evaluating a given schedule numerically, let alone giving
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a closed-form expression for important performance criteria. A second
reason to switch to using simulation is the opportunity this gives to us-
ing other ways to measure performance than just expectations. In many
cases the fraction of time a given threshold value is exceeded is more in-
teresting, because these actually influence the cost of running the system
and patient and doctor satisfaction more than the averages. Think of the
fraction of time overwork is needed, or the fraction of patients that waits
longer than a certain amount of time. Also fairness can be taken into ac-
count, such as the difference in lowest and highest expected waiting times
per patient for a given time period. Finally, we have noted that analyti-
cal methods like local search can sometimes be quite slow and simulation
algorithms might give good results in less runtime.

A drawback is that there is no longer a guarantee that the solution
found is actually the optimal solution, like we prove for the local search
method. However, from the experiments we can see that often there is a
very small difference between the results from simulation and those from
local search, or even none at all.

The remainder of this chapter is organised as follows: in Section 2.2 we
describe the model and the local search method for finding the optimal
schedule, and in Section 2.3 we discuss the optimisation via simulation
approach. Both methods are illustrated with numerical examples. We end
this chapter with some conclusions and suggestions for future work in
Section 2.4.

2.2 The case with punctual patients

To model the problem we divide the day (or part of a day) that the doctor
is seeing patients into T intervals of length d minutes. In this time win-
dow we want to schedule N patients, and we assume emergency patients
arrive according to a Poisson process with rate λ per interval. This can
easily be generalised to interval-dependent arrival rates, but to avoid fur-
ther complication in notation we only present the results for homogeneous
emergency arrival processes.

Emergency patients are served as soon as possible, meaning that they
wait only for the current patient in service to be finished. If more than
one emergency patient is present, they are served in order of arrival. All
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scheduled patients wait for emergency patients arriving during their wait-
ing time, and they are also served in order of arrival.

Scheduled patients have a service time that has a known distribution
with mean βs, and emergency patients have a service time that is dis-
tributed according to a known distribution with mean βe. Each scheduled
patient is assumed to have a probability q of not showing up for his ap-
pointment.

The number of patients scheduled at the beginning of interval t is de-
noted by xt ∈ {0, . . . , N}, t = 1, . . . , T . A complete schedule is then de-
scribed by a vector x = (x1, . . . , xT ) with

∑T
t=1 xt = N .

Based on the schedule and the parameter values we calculate the ex-
pected waiting time W (x), the expected idle time I(x) and the expected
overtime O(x). Then the cost function for the schedule becomes C(x) =
αW (x)+βI(x)+γO(x), for any α, β, γ ≥ 0. The weights can be used to give
relative importance to the three objectives. We are looking to minimise this
cost function, so the problem then becomes

min{C(x)|
∑
t

xt = N, xt ∈ N0}.

In many cases it can be desirable to give longer waiting times or over-
time a higher weight; for example when we prefer two patients waiting
ten minutes to one patient waiting 20 minutes and one not waiting at all.
For this case we can define Wn(x) as the sum of the n-th power of the
waiting times, for n ≥ 1. Choosing n larger than 1 can lead to more fair-
ness in the schedule, with very high values of n being practically equal to
minimising the maximum waiting time over all patients.

If all patients that show up for their appointments do so exactly on
time, we can calculate the three parts of the cost function exactly. For the
case with early or late arrivals, this becomes impossible and we use sim-
ulation instead. For now, we assume all scheduled patients who actually
show up for their appointment to arrive exactly on time. To calculate the
results for a given schedule, we use the probabilities that there is a certain
amount of work in the system at the moment just before or just after an
arrival time. These are:

pt−(i) = P(i minutes of work in the system just before any arrivals at time t),

pt+(i) = P(i minutes of work in the system just after any arrivals at time t).
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The probabilities can be calculated as follows. Let

vk(i) = P(number of arriving minutes of work including emergency work is i |

k patients scheduled to arrive).

Then
p1−(0) = 1,

because we assume the system starts empty, and

p1+(i) = vx0(i),

pt−(0) =

d∑
k=0

p(t−1)+(k), t = 2, . . . , T + 1,

pt−(i) = pt−1+(i + d), t = 2, . . . , T + 1,

pt+(i) =

i∑
j=0

pt(j)vxt(i − j), t = 2, . . . , T.

To compute vk(i) we need to compute the number of minutes of arriv-
ing work coming from emergency patients and the k scheduled patients
for one interval, and then take the convolution of these two to get the dis-
tribution of the total amount of arriving work.

Let us first consider the amount of work related to emergency patients.
Because emergency patients are assumed to arrive according to a Poisson
process, but are modelled to only arrive at the start of intervals, the num-
ber arriving at the start of an interval has a Poisson distribution with ex-
pectation λ. The assumption is that if our intervals are small enough, the
difference between this method and arrivals at any moment will be neg-
ligible. Let the number of arriving emergency patients be Y . Then the
amount of work arriving is the Y -fold convolution of the vector represent-
ing the service time for emergency patients, s(Y )

e . In this vector the jth
elemen denotes the probability that the service time of an emergency pa-
tient is j minutes. Then the distribution of the amount of emergency work
arriving at the start of any interval is given by:

v0(i) =
∞∑
y=1

s(y)
e P(Y = y) =

 ∞∑
y=1

P(Y = y)s(y)
e


i

.
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The amount of work of a scheduled patient is 0 with probability q, the
probability of a no-show, and otherwise his service time distribution is
represented by the vector ss. This holds for every patient arriving at any
interval independently. So, if we denote by e0 the vector with 1 at the first
element and 0 at all other elements, the total amount of work arriving at a
given interval with k patients scheduled to arrive becomes:

vk(i) =

 ∞∑
y=1

P(Y = y)s(y)
e

 ∗ ((1 − q)ss + qe0)(k)


i

.

Note that if λ can differ from interval to interval, P(Y = y) becomes
time-dependent. This means that for every interval vk(i) needs to be com-
puted separately. The rest of the analysis is not influenced by this modifi-
cation.

The overtime is the expected amount of time the doctor has to work
later than time T + 1, or the scheduled end of the day. This is the same
as the expectation of the number of minutes of work in the system at time
T + 1:

O(x) =
∞∑
k=1

kp(T+1)−(k).

To calculate the expected idle time, we use the expected overtime. The
total time the doctor is working is this overtime plus the scheduled dura-
tion of the day, which is T ∗ d. From this we subtract the expected time the
doctor has to work, and we get:

I(x) = Td +

∞∑
k=1

kpT −(k) −Nβs − λTβe.

It should be noted that looking at idle time and overtime at the same
time does not make sense in this case, because they are strongly related.
They are however not equivalent, as time from the last service to the end
of the day is counted as idle time because the doctor has to wait for possi-
ble emergency arrivals. In most practical situations one of the two should
be chosen as a performance measure, according to the objective in the situ-
ation in question. For example, overtime can be very costly in some cases,
while in other cases high utilisation or low idle time is considered more
important. For this reason we include both overtime and idle time in our
analysis.
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The waiting time of a patient depends on the number of minutes of
work in the system at the time of his arrival, any patients arriving simul-
taneously with him, and any emergency patients arriving before the start
of his service. This makes it harder to compute the waiting time of a pa-
tient, as it depends not only on the amount of work present at the time of
his arrival, but also on the interval in which he arrives.

The first patient to arrive at any given interval waits for at least all the
work already present and the emergency work arriving simultaneously
with him. If we denote the waiting time of the ith patient in the schedule
by wi, this is given by:

P(w1 = k) =
k∑
j=0

p−t (j)v0(k − j).

For the ith patient to arrive at any interval the waiting time for the
service the i − 1 patients before him has to be added:

P(wi = k) =

k∑
j=0

P(wi−1 = j)P(ss = k − j).

Now that we know P(wi = k) we can compute the distribution of the
complete waiting time of patient i arriving at interval t with the following
iterative procedure. We first note that if the work present before a patient
arrives is less than the length of an interval, he only waits for this length
of time. Otherwise we have to add the probability of a given amount of
emergency work arriving later than this patient but still served earlier,
combined with the probability that this patient is actually still waiting at
that time. This can continue in the same way until the end of the day,
when no more emergency work arrives. Let wti(k) denote the probability
that the actual waiting time of patient i arriving at interval t is k minutes.
Then we can derive the values of wti(k) as follows:

(1) time = t.

(2) for k = 0, . . . , d − 1 wti(k + (time − t)d) = wi(k).

(3) w∗i (k) =
∑k

j=0wi(j + d)v0(k − j) for k = d, d + 1, . . ..

(4) wti(k) = w∗i (k), ∀k ≥ (time − t + 1)d − 1.
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(5) time = time + 1; if time = T + 1 then stop, else go back to step 2.

Even for relatively small numbers of patients to schedule and small in-
tervals to schedule them in, the number of possible schedules becomes too
large to make enumeration possible. The number of possible schedules is(
N+T−1
N

)
. This means that another method of finding the optimal schedule

has to be found.
The method we use here is local search, which has been used before

by Kaandorp en Koole [69] in a setting with exponential service times and
without emergencies. The local search method starts with some feasible
solution, and improves this step-by-step by finding the best solution in its
neighbourhood. This is repeated until a local optimum is reached. This
local optimum is not necessarily the overall best solution, but for a certain
suitable neighbourhood it can be shown that the local search algorithm
finds the global optimum starting from any initial solution.

The neighbourhood for the local search algorithm is chosen as follows.
Define

V ∗ =



u1,
u2,

...
uT−1,
uT


=



(−1, 0, . . . , 0, 1),
(1,−1, 0, . . . , 0),

(0, 1,−1, 0, . . . , 0),
...

(0, . . . , 0, 1,−1, 0),
(0, . . . , 0, 1,−1)


,

and take as the neighbourhood of a solution x all vectors of the form
x + v1 + · · · + vk with v1, . . . , vk ∈ V ∗ such that x + v1 + · · · + vk ≥ 0. Adding
one vector ut is equivalent to moving the arrival of one patient from in-
terval t to interval t − 1. The neighbourhood of x consists of all possible
combinations of these one-interval shifts of patient arrivals with respect to
x. The algorithm consists of the following steps:

(1) Start with some schedule x.

(2) For all U ( V ∗:

for y = x +
∑

v∈U v such that y ≥ 0 compute C(y);

if C(y) < C(x) then x := y and start again with step 2.

(3) x is the optimal schedule.



24 Chapter 2: Outpatient appointment scheduling

2.2.1 Multimodularity and local search
A property needed to prove that local search does indeed find the global
optimum is multimodularity. For completeness we repeat the definition
of multimodularity and its relations to local search, which were already
given in [69]. Let

V =



v0,
v1,
v2,
...

vm−1,
vm


=



(−1, 0, . . . , 0),
(1,−1, 0, . . . , 0),

(0, 1,−1, 0, . . . , 0),
...

(0, . . . , 0, 1,−1),
(0, . . . , 0, 1)


.

Then multimodularity is defined as follows:

2.2.1. Definition. A function f : Zm → R is called multimodular if for all
x ∈ Zm, v, w ∈ V, v 6= w,

f(x + v) + f(x + w) ≥ f(x) + f(x + v + w). (2.1)

We also need the concept of an atom, as it forms the basis of our neigh-
bourhood choice.

2.2.2. Definition. For some x ∈ Zm and σ a permutation of {0, . . . ,m}, the
atom S(x, σ) is defined as the convex set with extreme points x + vσ(0), x +

vσ(0) + vσ(1), . . . , x + vσ(0) + · · · + vσ(m).

In Koole and Van der Sluis [75] it is shown that for a multimodular
function f a certain point x is a global minimum if and only if f(x) ≤ f(y)
for all y 6= x such that y is an extreme point of S(x, σ) for some permuta-
tion σ.

This means that if we choose as neighbourhood for our local search
algorithm all extreme points of all atoms X(x, σ) for all possible permu-
tations σ, we are guaranteed to find the globally optimal solution if our
cost function is multimodular. The multimodularity of our cost function
is what we prove next.

Because in our problem xT is determined by xT = N −
∑T−1

t=1 xt for
given x1, . . . , xT−1, our problem is (T −1)-dimensional. The set of possible
solutions is {x ∈ ZT−1|x ≥ 0,

∑T−1
t=1 xt ≤ N}. This is of course not equal
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to ZT−1, but it is shown in Koole and Van der Sluis [75] that the above
theorem still holds for this subset of ZT−1.

This means that we have to prove that our cost function is multimodu-
lar for the (T −1)-dimensional problem, which is the same as showing that
the T -dimensional cost function satisfies Equation (2.2.1) with v, w ∈ V ∗.

2.2.3. Theorem. The cost function C(x) = αO(x) + βI(x) + γWn(x) is multi-
modular for all ui, uj ∈ V ∗ for which i 6= j, for all α, β, γ ≥ 0 and n ≥ 1.

Proof. We prove multimodularity separately for O(x), I(x) and W (x).
If two functions are multimodular then so is their sum, and that means
we have a multimodular cost function. The idle time is related to the
makespan, the timespan from the start of the schedule until the end of
service of the last patient, for which multimodularity is easier to prove
than for idle time. If the makespan is multimodular then so is the idle
time, which means that we have to prove the multimodularity of the wait-
ing time, overtime and the makespan for every possible i and j for which
1 ≤ i < j ≤ T . We use the coupling method to prove this; we compare the
different paths the system follows when patients are shifted to an earlier
time slot or not, for given realisations of the service times and emergency
arrivals. We then compare the numbers of minutes of work present to see
differences in the waiting time, overtime and makespan.

We distinguish a number of different cases. These cases differ in the
characteristics of their paths, and therefore need to be considered sepa-
rately. Let (1), (2), (3) and (4) represent the paths using schedule x, x + ui,
x + uj and x + ui + uj respectively, and let W(i), O(i) and M(i) represent the
waiting time , overtime and makespan for path i.

I: 2 ≤ i < j ≤ T
First we consider the case where 2 ≤ i < j ≤ T . See Figure 2.1 for an
illustration of the four paths. In this case schedules (1) and (3) are equal
up to time j − 1, and schedules (2) and (4) also follow the same path. Let
the sum of the n-th powers of the waiting times of all patients arriving
before or at time j − 1, without the shifted patient, be α1 in (1) and (3), and
α2 in (2) and (4). Now we have to make a distinction between the case
where all systems become empty at some point between times i and j − 1
and the case where this does not happen.

IA: systems empty between i and j − 1
If the system becomes empty, schedules (1) and (2) follow the same path
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Figure 2.1: Schedule for case I.

from that moment until the last patient finishes. The same holds for sched-
ules (3) and (4). Let the sum of the n-th powers of the waiting time of all
patients from the one shifted from j to j − 1 until the end of the schedule
be β1 in (1) and (2) and β2 in (3) and (4). Then for the waiting time we have

Wn
(2) + Wn

(3) = α2 + β1 + α1 + β2 = α1 + β1 + α2 + β2 = Wn
(1) + Wn

(4).

For the makespan and overtime we have that M(2) + M(3) = M(1) + M(4)

and O(2) + O(3) = O(1) + O(4), because the end of the schedule is the same
in (1) and (2), and also in (3) and (4).

IB: systems do not empty between i and j − 1
In this case the paths of the schedules do not become equal. But we can
see that the patient shifted from j to j −1 has a waiting time that is at most
d longer in (3) than it is in (1), and also at most d longer in (4) than in (2).
So if the waiting time of this patient in (1) is β1, than it is β1 +m in (3) with
0 ≤ m ≤ d, and if it is β2 in (2) then it is β2 + m in (4), while β1 ≥ β2.
For all patients arriving at time j and later, not considering the shifted
patient, the waiting times are longer in (1) than they are in (3), because
in (3) some work can potentially be done on the shifted patient already
between times j −1 and j. For the same reason, the waiting times for these
patients are longer in (2) than in (4). The difference in the waiting times for
each patient is larger between schedules (2) and (4) than between (1) and
(3), because just before the arrival of the patients at time j−1 more work is
present in (3) than there is in (4), so in schedule (4) potentially more work
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Figure 2.2: Schedule for case II.

can be done on the shifted patient between times j − 1 and j compared to
schedule (3). Let γi be the sum of the n-th powers of the waiting times of
all customers after the one shifted from j to j − 1 in schedule (i). Then we
have γ1 − γ3 ≤ γ2 − γ4. Now for the waiting time we get

Wn
(2) + Wn

(3) = α2 + βn2 + γ2 + α1 + (β1 + m)n + γ3

≥ α1 + β1 + γ1 + α2 + (β2 + d)n + γ4 = Wn
(1) + Wn

(4).

For the overtime and makespan we can use the same reasoning as for the
waiting times of the patients arriving after the one shifted from j to j − 1,
so we get M(2) + M(3) ≥M(1) + M(4) and O(2) + O(3) ≥ O(1) + O(4).

II: 1 = i < j ≤ T
Now we consider the case where 1 = i < j ≤ T . In this case the paths of
schedules (1) and (3) are equal up to time j − 1, and also schedules (2) and
(4) follow the same path up to that time. Let the sum of the n-th powers of
the waiting times of all patients arriving before or at time j − 1, excluding
the patient shifted from j to j − 1, be α1 in (1) and (3), and α2 in (2) and
(4). See Figure 2.2. Now we have to make a distinction between the case
where all systems empty at some point between times j and T and the
case where this does not happen.

IIA: systems empty between j and T
From the moment the system becomes empty until time T schedules (1)
and (2) follow the same path, and (3) and (4) follow the same path as well.
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Let the sum of the n-th powers of the waiting times of all patients starting
with the one shifted from j to j − 1 up to and including those arriving at
time T except the one shifted from 1 to T be β1 for schedules (1) and (2)
and β2 for (3) and (4).
For the patient shifted from 1 to T we can see that in schedule (2) there is
at least as much waiting time as in schedule (4), because in schedule (4)
the patient that is shifted from j to j − 1 can potentially start his service
earlier compared to schedule (2). In schedules (1) and (3) any waiting time
for this patient is included in α1. Let the n-th power of the waiting time of
this patient be γ1 in schedule (2), and γ2 in schedule (4), with γ1 ≥ γ2.

Wn
(2) + Wn

(3) = α2 + β1 + α1 + β2 + γ1

≥ α1 + β1 + α2 + β2 + γ2 = Wn
(1) + Wn

(4).

For the makespan and overtime we have thatM(2)+M(3) ≥M(1)+M(4) and
O(2) + O(3) = O(1) + O(4), because the end of the day is equal in schedules
(1) and (3), and the work can finish earlier in schedule (4) than in schedule
(2).

IIB: systems do not empty between j and T
When the system does not become empty the paths for the different sched-
ules do not become equal. In this case we can see that the patient shifted
from j to j − 1 has a waiting time that is at most d longer in (3) than it is in
(1), and also at most d more in (4) than in (2). So if the waiting time of this
patient in (1) is β1, than it is β1 + m in (3) with 0 ≤ m ≤ d, and if it is β2 in
(2) then it is β2 + m in (4), while β1 ≥ β2.
For all patients arriving at time j and later, not considering the shifted pa-
tient, the waiting times are longer in (1) than they are in (3), because in (3)
some work can potentially be done on the shifted patient already between
times j − 1 and j. For the same reason, the waiting times for these patients
are longer in (2) than in (4). The difference in the waiting times for each
patient is larger between schedules (2) and (4) than between (1) and (3),
because just before the arrival of the patients at time j − 1 more work is
present in (3) than there is in (4), so in schedule (4) potentially more work
can be done on the shifted patient between times j − 1 and j compared to
schedule (3). Let γi be the sum of the n-th powers of the waiting times of
all customers after the one shifted from j to j − 1 in schedule (i). Then we
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have γ1 − γ3 ≤ γ2 − γ4.
Now for the waiting time we get

Wn
(2) + Wn

(3) = α2 + βn2 + γ2 + α1 + (β1 + m)n + γ3

≥ α1 + β1 + γ1 + α2 + (β2 + d)n + γ4 = Wn
(1) + Wn

(4).

For the overtime and makespan we can use the same reasoning as for the
waiting times of the patients arriving after the one shifted from j to j − 1,
so we get M(2) + M(3) ≥M(1) + M(4) and O(2) + O(3) ≥ O(1) + O(4). �

2.2.2 Complexity
The complexity of local search algorithms depends on the number of eval-
uations necessary to check if a given solution is a local optimum. This
number is equal to the size of the neighbourhood. For an m-dimensional
problem with a multimodular cost function the number of neighbours is
2m+1 − 2, so for our problem this is 2T − 2.

This is polynomial in T , which means that it is not possible to check the
local optimality of a solution in polynomial time. So our local search algo-
rithm does not belong to the complexity class PLS as defined by Johnson et
al. [68], and we have to assume that (in the worst case) our algorithm has
an exponential running time. However, from the numerical experiments
we have performed it appears that the running times are still acceptable
for problems of realistic size. For example, the running times of the exper-
iments in Subsection 2.2.3 took one to two hours each. These experiments
are for the schedule of half a day, which is most often used in practice as a
time block for appointments. Of course this would be unacceptable for on-
line algorithms, but since the problem we study here provides a blueprint
for a schedule to use repeatedly this is no problem. Note that part of the
runtime depends on the granularity of the time units used in the calcula-
tions. For our experiments we used minutes as the units for the waiting
times, overtime and idle time, but if units of say five minutes are used the
running times would be much shorter.

The neighbourhood we use in the local search algorithm is exact, which
means that if a solution is better than any solution in the neighbourhood
it is a globally optimal solution. This guarantees that the algorithm con-
verges to the global optimum. It is also possible to use a smaller neigh-
bourhood. In this case take for a solution x as neighbourhood y = x + v
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for all v ∈ U in step two in the local search algorithm. This gives much
faster results, but there is no guarantee that the solution found is also the
optimal solution.

2.2.3 Numerical experiments
The starting point for our experiments is a half-day time window, or four
hours. This time is split up in 24 intervals of 10 minutes each, so T = 24
and d = 10. We want to schedule 240 minutes of work in this time period,
where each regular appointment takes on average 20 minutes, and each
emergency service takes on average 30 minutes. As already mentioned
above, it is not really logical in the case with emergencies to look at both
overtime and server idle time simultaneously, so we choose one of the
two here, namely the overtime. However, the results hold as well if the
idle time is taken into account instead.

In this subsection we first look at how standard even-spaced schedules
behave when service times have different distributions, and how perfor-
mance can be improved by changing the schedule. Then we consider the
influence of the amount of emergency work on the performance of the op-
timal schedule, and also at what times during the four-hour period space
should be reserved in the schedule. Then we study how the schedule
changes with the relative importance of patient waiting times and server
overtime, and how emergency arrivals influence the optimal schedule for
different weights of the two performance measures. Finally we look at
how the waiting times for different patients within the schedules compare
to each other.

Standard practice and variability in service times
The most commonly used schedule is the even-spaced schedule. How-
ever, the performance of this schedule degrades if there are emergency
arrivals and variability in service times. In Table 2.1 we compare the wait-
ing times and overtime using the standard schedule in the case with nine
scheduled patients and on average two emergency arrivals per half-day.
This leads to a Poisson distributed number of emergency arrivals per in-
terval with parameter 1

12 at each time interval. The service times are de-
terministic in the first case, exponentially in the second case and normally
distributed in the third case with standard deviation equal to that of the
exponential distribution.
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Distribution Waiting time Overtime

Deterministic 29.7 18.7

Exponential 44.0 39.8

Normal 30.6 20.2

Table 2.1: Performance of standard schedule with different service time

distributions

In the deterministic case the only variability is that of emergency ar-
rivals, and we can see that this already has a large impact on performance.
After all, without emergencies both the waiting time and the overtime
would be zero with deterministic service times. With the normal distri-
butions for the service times the performance is slightly worse, but in the
case with exponential service times the difference is much larger. This
might be because the probability of long service times is larger in this case
than with normally distributed service times. However, we can see from
the results that the largest part of the waiting times and overtime is caused
by the uncertainty in emergency arrivals.

In Table 2.2 we show the optimal schedule and the performances in the
same three cases. The three schedules are not equal in the three cases, so
the schedule is adjusted to the service time distribution. There is improve-
ment in performance for all three scenarios. Also, for these scenarios we
kept the weights for the overtime equal, but of course one could adjust
the schedule by changing these weights to reflect actual priorities. This
is not possible with a fixed schedule. Another thing to note is that these
results seem to contradict the statement of Denton and Gupta [35] that
higher moments only influence the optimal schedule when waiting costs
are high relative to the idle time costs, or in our case overtime costs.

To make the difference between the schedules more clear we depicted
the cumulative number of patients scheduled in Figure 2.3. From this pic-
ture we can see that in the case with exponential distributions the patients
are shifted more towards the start of the day. The cases with normal and
deterministic service times follow the same schedule for the first intervals,
and toward the end the patients in the case with normal service times are
shifted to earlier intervals compared to the deterministic case.
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Distribution Waiting time Overtime Optimal schedule

Deterministic 20.6 21.5 101010101000010101000010

Exponential 39.0 43.3 110101001001001001001000

Normal 22.6 23.8 101010100100100100100100

Table 2.2: Optimal schedules with different service time distributions
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Figure 2.3: Cumulative number of patients for different service time distribu-

tions

Influence of emergencies
We noted above that emergency arrivals can have a large impact on the
performance of the schedule. To further investigate how the performance
changes when adding emergency work, we look at three different scenar-
ios. The first one is the base scenario described above, with deterministic
service durations and 12 scheduled patients. In the second scenario we
schedule three patients less, and we expect on average 2 emergency ar-
rivals. In the third scenario we schedule 6 patients, and expect on average
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4 emergency arrivals. In all three scenarios the waiting time and overtime
have equal weight. We choose deterministic service times, so the emer-
gency arrivals are the only source of uncertainty and their influence can
be seen more clearly. The results and the optimal schedule in these scenar-
ios are given in Table 2.3.

Nr. emergencies Waiting time Overtime Optimal schedule

0 0.00 0.00 101010101010101010101010

2 20.59 21.40 101010101000010101000010

4 39.08 31.13 101010000100001000010000

Table 2.3: Influence of emergencies on schedule performance

The first scenario is the ideal scenario where the whole schedule is exe-
cuted according to plan, because there is no variation in either arrival mo-
ments or service durations. In this case the optimal scenario is of course to
schedule time equal to the service duration for all patients. In the second
and third scenario we can see that performance decreases with emergency
arrivals, as is to be expected. The open space in the schedule is concen-
trated more towards the end of the day than at the beginning, because
the probability that an emergency patient has arrived is very small early
in time and open space there would often lead to unnecessary server idle
time.

Relative importance of performance measures
Again we look at three different scenarios, all without emergencies and
now with exponential service times. We change the weights for the wait-
ing time and the overtime to see how the schedule and performance
change. The results can be seen in Table 2.4.

From the results we can see that for higher relative weight for the wait-
ing time, the arrival times for the patients move more towards the end of
the day. This gives longer interarrival times, and so less waiting time for
each patient. For the overtime we see exactly the opposite effect.

To make the difference between the schedules more clear, in Figure 2.4
we compare the cumulative number of patients that have been sched-
uled over time. From this picture it is clear that when the waiting time
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αW αL Waiting time Overtime Optimal schedule

1 1 28.18 35.26 201010101010100101010100

10 1 19.21 58.07 110100100101001001010102

1 10 46.92 28.12 211101101010100101000000

Table 2.4: Influence of weights on the optimal schedule
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Figure 2.4: Cumulative number of patients

is weighed more heavily, the number increases slower over time. In other
words, the patients are shifted more towards the end of the time available.

To see if the same principles hold in the case with emergencies, we
also give the results for three scenarios with 2 and 4 expected emergency
arrivals, again with exponential service times. The results can be seen in
Table 2.5. We can see from the results that the performance generally gets
worse on both waiting time and overtime as the portion of emergency
work increases. It turns out that the scheduling principles that hold in
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Emergencies αW αL Waiting time Overtime Optimal schedule

0 1 1 28.18 35.23 201010101010100101010100

2 1 1 39.00 43.26 110101001001001001001000

4 1 1 49.72 52.15 110010001000001000010000

0 10 1 19.21 58.07 110100100101001001010102

2 10 1 30.86 60.60 110010001000100010010011

4 10 1 43.01 66.32 110000100000000100000101

0 1 10 46.92 28.12 211101101010100101000000

2 1 10 58.83 36.14 211010101001001000000000

4 1 10 68.06 45.12 210100100100000000000000

Table 2.5: Influence of weights on the optimal schedule

the case without emergencies have an even stronger influence if there are
emergencies: more emphasis on waiting time moves arrivals towards the
start of the schedule, and more emphasis on overtime has the opposite
effect.

No-shows and emergencies
The effect of no-shows and emergency arrivals are opposite in some sense;
emergency arrivals cause more work than scheduled, while no shows de-
crease the amount of work that has to be done. On the other hand, since
both factors are usually accounted for in the schedule somehow, they both
have the effect of adding uncertainty to the process. So it would be inter-
esting to see what will happen if both occur.

In Table 2.6 we compare the effect of no-shows and emergencies for
different distributions of the service times. The mean service times are the
same as in the other experiments. The parameters are chosen in such a
way that the total amount of work is equal in each case to ensure a fair
comparison. The weights for waiting time and overtime are equal in all
cases.

In general we can see that having emergency arrivals is worse for per-
formance than no-shows. Having both at the same time will not cancel out
the effects of either, but rather has an even larger effect on performance,
although this effect will not be as large as the sum of the effects of both.
Having only no-shows already gives results that are a lot worse than the
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Nr. sched Nr. em No-show % Dist WT OT Optimal schedule

12 0 0 Det 0 0 101010101010101010101010

16 0 25 Det 16.74 17.69 201020101010201010201010

9 2 0 Det 20.6 21.5 101010101000010101000010

12 2 25 Det 27.67 27.58 201010101001010101001010

12 0 0 Exp 28.18 35.23 201010101010100101010100

16 0 25 Exp 33.79 39.10 211101101011010110101100

9 2 0 Exp 39.0 43.3 110101001001001001001000

12 2 25 Exp 42.77 47.14 210101010100101010010100

12 0 0 Norm 4.00 7.09 101010101010101010101010

16 0 25 Norm 17.92 19.35 201101101101011011011010

9 2 0 Norm 22.6 23.8 101010100100100100100100

12 2 25 Norm 29.03 27.67 201010101010010101010100

Table 2.6: No-shows and emergencies

case without no-shows and the same expected amount of work. The same
has already been noted about emergencies. For both emergencies and no-
shows the effect is larger when the variation in service times is smaller.
This might be because variation in service times does have a smoothing
effect throughout the time period.

Waiting times per patient
The objective function contains the expected waiting time averaged over
all scheduled patients. It does not take into account how the total waiting
time is distributed over the patients. We consider a case with 9 scheduled
patients and on average 2 emergency patients per day, and determinis-
tic service times and exponential and normal distributions for the service
times with equal variances. In Table 2.7 we show the expected waiting
times for the nine scheduled patients with the patients numbered in order
of arrival when using the optimal schedule shown in Table 2.2.

We see in all three cases that the waiting times differ considerably per
patient. The first patients have low expected waiting times, since they
only wait if there is an emergency arrival immediately at the start of the
day. In all three cases the waiting time per patient then increases rapidly
and stabilises or decreases slightly for the last patients. As we had already
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Distribution 1 2 3 4 5 6 7 8 9

Deterministic 3.33 9.99 16.65 23.28 29.85 21.04 27.23 32.81 21.13

Exponential 3.20 21.57 32.58 42.70 45.76 48.72 51.07 52.51 52.90

Normal 3.21 11.25 18.84 26.16 27.23 28.51 29.35 29.66 28.94

Table 2.7: Expected waiting times per patient

seen for the average waiting times, those with exponentially distributed
service times are much higher than in the case with normally distributed
served times.

2.3 Adding early and late arrivals

In the previous section we described a method for finding the optimal
schedule with the assumption that every patient who shows up for his ap-
pointment does so exactly on time. When we add early and late arrivals
to the model the cost function is not multimodular in this case. The reason
for this is that now shifts of patients from one time slot to the preced-
ing slot can cause changes in the order in which the patients are served.
This means that the cost function is no longer more or less smooth. So we
have no analytic method for evaluating schedules, let alone finding opti-
mal schedules. Here we use simulation as a method to evaluate a given
schedule. First we explain how the different performance measures are
calculated in the simulation. We assume that patient unpunctuality fol-
lows some known distribution with the scheduled arrival time as a refer-
ence point. We take this distribution to be identical for all patients and
independent of the scheduled appointment time and of the arrivals of all
other patients. From research it is known that most patients arrive early,
see for example Brahimi and Worthington [23], so the mean of the distri-
bution should probably have a negative value.

The reason why it is not as straightforward to evaluate the perfor-
mance of a given schedule as it was in the case of punctual patients is
that the order in which the patients are being seen is no longer necessarily
equal to the scheduled order. If one patient is late and the one scheduled
next is early, the later patient might arrive first. Then, when an appoint-
ment finishes, the doctor has a choice between waiting for the patient with
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the earlier appointment time to show up or start the next patient’s ap-
pointment. The first choice leads to more idle time and overtime as well
as increased waiting time later in the day, while the second option can lead
to unfairness if one patient is really early and the other one is not actually
late for his appointment time. And even if both patients are present in the
waiting room there is a choice between sticking with the scheduled order
or to see patients in order of arrival.

Here we make the following choice for the order of service: when an
appointment ends, the doctor sees the patient with the earliest appoint-
ment time from all patients who are present in the waiting room. If there
is no patient in the waiting room, the doctor has idle time until a patient
arrives and he starts that patient’s appointment. We made this choice be-
cause in this way we have the fairness of sticking as close to the schedule
as possible without any avoidable idle time. In a case with emergency ar-
rivals, all emergency patients take precedence over the scheduled patients
in choosing the next patient to see.

Now we have to define how to calculate the idle time, overtime and
waiting time. To start with overtime, this is again defined as the time
the doctor spends working after the scheduled end point of the period.
Note that if the unpunctuality distribution has no cutoff point there could
potentially be patients arriving later than this time point. We make the
extra assumption that the distributions are chosen in such a way that this
does not occur, but an alternative would be to just have the doctor choose
to stop as soon the waiting room becomes empty after the end of the clinic
day.

For the doctor idle time we again use the end time of the day plus
the overtime, minus the expected amount of work. This is the same as in
the case without early and late arrivals. If an unpunctuality distribution is
chosen in such a way that there is a possibility of patients arriving after the
scheduled end time, the expected amount of work needs to be decreased
by the expected number of patients arriving after this time times the mean
appointment duration for scheduled appointments. Again, idle time and
overtime should not be used at the same time to evaluate a schedule be-
cause they are two ways of looking at the same thing.

The last point we need to discuss is the computation of the waiting
time. There are two ways to measure the waiting time for a given patient.
The first is to start counting from the moment the patient arrives, regard-
less of the scheduled time. So if a patient is very early, it might result in a
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long waiting time even though the schedule would not give this result if
the patient had been on time. The other way to measure waiting time is
from the maximum of the scheduled time and the time the patient arrives.
We choose the latter in our experiments.

2.3.1 Optimisation via simulation
Now that we can evaluate a given schedule, we can use optimisation via
simulation techniques to find optimal or near-optimal solutions. As a side
note, there is no agreement in the literature on the term for this set of
techniques; other terms that are used are “optimisation for simulation”
and “simulation optimisation”. All these terms are used for the same set
of techniques and theories.

The range of techniques available for optimisation via simulation is
large and varied. The reason that they are not equal to optimisation meth-
ods used in a deterministic setting is that there is a difference between
finding an optimal solution and estimating the objective function value
for the optimal solution. In a deterministic problem both are done simul-
taneously. If simulation is used to evaluate solutions, computational effort
must be divided over both goals and it will always be impossible to decide
with absolute certainty if one solution is better than another. See Fu [47]
for a thorough discussion of this topic.

Good overviews of the available techniques are given by Andradót-
tir [8] and Fu [46]. A number of well-known techniques for optimisation
via simulation are only suitable for problems with continuous decision
variables. These methods are based on gradient estimations, and exam-
ples are finite difference stochastic approximation and simultaneous per-
turbation stochastic approximation.

Since the decision variables for the appointment scheduling problem
are discrete, these methods are not suitable for the problem at hand. It
would of course be possible to formulate the problem in a continuous way
using the appointment times of the individual patients as decision vari-
ables, but this would result in solutions with appointment times that have
to be rounded to be useful in practice. And if that is the case, it appears to
be more logical to work with discrete variables in the first place. There are
methods that can be used for both discrete and continuous problems, and
methods that are especially suited to discrete variables. We will discuss
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the most important of these two types of methods here and explain our
choices.

For problems with only a small number of possible solutions a suit-
able method to use is ranking and selection. This method is essentially a
way to divide limited computing budget over all possible solutions and
to maximise the probability of choosing the best solution. All solutions
are quickly simulated and the promising ones are given more computing
budget. This is of course only possible for problems with small solution
spaces, even with the more enhanced ranking and selection procedures
that have been proposed in the literature and that can handle more solu-
tions. For the problem considered here this method is not really suitable,
as the number of possible solutions grows exponentially both with the
number of intervals and the number of patients to be scheduled.

Other methods for optimising over discrete decision variables are often
some form of random search method. This term covers a whole range of
methods. A good overview can be found in Andradóttir [7]. There are
global and local random search methods. Both types have in common that
the algorithm starts with some solution, chooses a possible next solution
according to a sampling strategy, and then makes a decision about how to
proceed based on simulation results of the current and candidate solutions
according to a rule that may involve randomness. The many algorithms
differ in how they choose solutions to be considered, what the rule is that
determines the next step, and how the estimate for the optimal solution
and its objective function value are determined.

The important decisions to make in setting up a random search algo-
rithm are how to select one or more candidate solutions in each step of
the algorithm, the way of keeping track of and selecting the final solution
or answer, and how to allocate computing budget. In its simplest form,
the random search algorithm randomly draws one new candidate solu-
tion from the neighbourhood of the current solution, samples both current
and candidate solution a few times and chooses the one with the best av-
erage performance as the new current solution in the next step. The final
solution is then the solution the algorithm has visited most often during
the course of running. If the neighbourhood of a candidate consists of the
complete solution space the algorithm is called global random search, oth-
erwise it is a form of local random search. Both options were described by
Andradottir [5]. It has been shown a few years later by Andradóttir [6]
that these naive versions of random search can easily be improved by not
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keeping track of the number of times a solution has been visited by the
algorithm, but of the sample mean of each solution instead. When the
algorithms were first developed, this was harder because of the lack of
memory, but that problem has since been resolved.

The difference between local and global random search algorithms is
that in local search the candidate solutions are chosen randomly from a
certain neighbourhood of the current solution, instead of from the whole
solution space as in global random search algorithms. The choice of neigh-
bourhood is essentially open, as long as any solution can be reached from
any starting point with positive probability. The algorithms for global ran-
dom search are designed in such a way that in the limit, or in other words
with infinite computation effort, all solutions are visited and simulated
infinitely many times to completely ensure convergence to a global opti-
mum. In practice they give good results with finite computational effort
because they favour good solutions in the algorithm and estimate the op-
timal solution using information gathered along the way. But of course
actually visiting and making enough simulation runs for all possible solu-
tions is impossible for many problems, including the one considered here,
so that global convergence to the optimum has little practical value.

Another way to search for good solutions instead of through defini-
tion of a neighbourhood, is through some stochastic version of branch-
and-bound. The basic idea here is to divide the solution space into con-
tinuously smaller subsets, and choosing to explore one of these subsets in
more detail while also keeping an eye on the rest of the solution space. It is
therefore not the same as splitting the solutions space by relaxing integral-
ity constraints as is often done in deterministic problem solving. The best
known example of stochastic branch-and-bound methods are the nested
partitions method by Shi and Olafsson [98, 99] and Pichitlamken and Nel-
son [91].

Another possible method for finding solutions using simulation is the
ordinal optimisation approach described by Ho et al. [64]. This method
is very well suited to problems with a very large solution space, and no
known structure to the problem. The approach is based on the idea that
comparing solutions using simulation is much easier, i.e. faster, than ac-
curately estimating the performance of a solution. The other crucial point
is that it relaxes the goal of optimisation: we are no longer looking for
the very best solution, but for one of the top n% solutions. The method
consists of randomly selecting a reasonable number of solutions from the
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solution space and determining the best of them using simulations. Then,
for a given number of solutions drawn and an idea of the size of the so-
lution space, we can determine the probability that our selected best so-
lutions contain at least one of the overall top n% solutions. Note that this
does not mean that the performance of our selected solution is more than
a given percentage away from the optimal one, but only of the rank of the
solutions found.

We chose to use random search to address the appointment schedul-
ing problem with unpunctual patients. As was already explained above,
we feel it is more natural to use methods suited for optimising over dis-
crete variables. This rules out all gradient-based methods. The methods
of ranking and selection are not scalable enough to use in real-sized prob-
lems, so they are not that interesting in this case. The ordinal optimisation
method is suitable for our problem, but it does not make use of the struc-
ture in the form of the solutions, or schedules. The random search method
is also a natural extension of the local search algorithm used in the case
with all punctual patients. In Section 2.3.2 we give the details of the ran-
dom search algorithm used, and in Section 2.3.3 we present numerical ex-
periments to demonstrate the performance of the methods.

2.3.2 Random search algorithm
The first decision to be made in defining random search is how to define
the neighbourhood of a given solution. Because the structure of the prob-
lem and the solution is not known, we will not be able to use this informa-
tion in designing a good algorithm. From Section 2.2 we know that local
search works well for the same problem when all patients are assumed to
be punctual; it is guaranteed to find the optimal schedule within a reason-
able amount of time. With this knowledge, we decided to try a random
search algorithm with a similar neighbourhood.

We chose local random search over global random search because from
a practical viewpoint finding a good schedule in a reasonable running
time, even if not optimal, is more valuable than having guaranteed conver-
gence to the optimal schedule. The algorithm we use works as follows: we
start with a schedule chosen randomly from all possible schedules. This
schedule is simulated a few times, and a next schedule is chosen randomly
from a neighbourhood in which all schedules have equal probability of
being drawn. This is also simulated a few times, and then with a certain
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(high) probability we choose the best of the two solutions as the next one,
and with small probability we choose the other one. This ensures that
the algorithm improves steadily, but the small probability of choosing the
worse solution provides a way out of a local optimum.

As neighbourhood of a schedule we choose all possible schedules
made up of a shift of a patient from one interval to the one just before
it compared to the current schedule, or if the patient is now scheduled at
the first interval, to the last interval. Note that this is not the same neigh-
bourhood as used in Section 2.2, but smaller. We made this choice because
the performance of all schedules in the original neighbourhood would dif-
fer so much that the algorithm started to drift aimlessly as it were, and the
smaller neighbourhood does not result in that behaviour. Since it is still
possible to reach every possible schedule from any starting point, this re-
striction does not give any problems.

To decide on the final solution we use all information available up to
that point, as this is shown in [6] to accelerate the algorithm and to lead
to better results than just taking the final solution or the schedule visited
most often as the outcome of the algorithm. Information about the number
of times an algorithm is simulated and the average objective value over all
simulations is needed to compute this. It is only necessary to keep infor-
mation on schedules that have actually been visited; there is no need to
save information on all possible schedules which could become problem-
atic for real-sized problem instances. If necessary we can restrict the final
outcome to only those schedules that have been simulated a minimum
number of times, so as to lessen the influence of randomness in the per-
formance evaluations. Because of the higher probability of choosing the
better solution in each step of the algorithm these are probably the better
solutions in any case.

This algorithm can end up in a local optimum, and it might be very
hard to get out of there again if the difference in performance between this
local optimum and its neighbours is large. Whether this happens or not
depends on the randomness in the algorithm, but it can also be influenced
by the choice of the starting point. We don’t know the structure of the
value function over the solution space, so we cannot be sure that this does
not happen. This is why we choose to restart the algorithm a few times in a
new solution which is again randomly chosen from all possible schedules.
This gives a greater chance of finding a global optimum, and if not, then
at least a better local optimum.
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2.3.3 Numerical experiments
To demonstrate the performance of the algorithm described in the last sec-
tion, we perform some experiments with a very small example. In this
example we try to optimally schedule N = 3 patients in T = 6 time slots
of d = 10 minutes each. This combination of T and N leads to 56 possible
schedules. The reason for choosing such a small example is that we can
actually simulate the performance of all schedules often enough to be rea-
sonably certain which one is the optimal schedule. Then we can compare
the outcome of the optimisation algorithm to these results.

For the service time we assume an exponential distribution with a
mean of 20 minutes. For the non-punctuality we assume a normal dis-
tribution around the scheduled arrival time of the patient, with a mean of
10 minutes earlier and standard deviation 10. The arrival time and service
time are assumed independent of each other and of those of other patients.
The objective function is the sum of the total waiting time with weight
αW = 3 and the tardiness with weight αT = 1. The optimal schedule in
the case where all patients are punctual is 1-0-1-0-0-1, with an objective
value of 35.97. We can compare this with the results from the simulation
optimisation, but this schedule may not be optimal in the case with early
and late arrivals.

First we simulate each possible schedule a large number of times, to
see which results we would like to see from the optimisation algorithm.
The best schedules and their performance are shown in Table 2.8.

There is quite some variability in the performance of the schedules
from one simulation run to another. Also, we can see that the optimal
schedule in this case is 2-1-0-0-0-0. The schedule that is optimal in the case
with punctual arrivals is not among the ten best schedules. Next we run a
local random search algorithm ten times, and the results from the runs are
given in Table 2.9.

We can see that the algorithm does not find the optimal schedule, but it
finds the second-best one twice and the next one three times. The objective
values are very close, so the result is near-optimal.

Now we look at a larger problem, with 6 patients scheduled into 12
time slots and all other parameters the same as in the smaller example.
Again we run the local random search algorithm with ten randomly cho-
sen starting points, we get the results in Table 2.10.

In many of the resulting schedules there are no patients scheduled in
the first time slot. This can be explained by the large fraction of patients
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Schedule Mean Standard deviation

2-1-0-0-0-0 85.428 93.955

2-0-1-0-0-0 86.058 91.901

0-2-0-1-0-0 86.884 94.550

2-0-0-1-0-0 86.991 89.863

0-2-0-0-1-0 89.021 93.718

3-0-0-0-0-0 90.214 98.265

0-3-0-0-0-0 90.296 102.840

2-0-0-0-1-0 90.458 91.703

0-0-2-1-0-0 90.947 99.703

0-2-0-0-0-1 91.294 93.165

Table 2.8: The ten best schedules with mean and standard deviation of the

objective function after 100, 000 simulation runs.

that arrives early for their appointment. Then when two or more patients
are scheduled at the second time slot, there is a high probability that at
least one of them will already be present at the start of the day.

Of course in this case there are too many schedules to simulate them
all enough times to get a good estimate for the objective value. This means
that we do not know if the algorithm found the optimal schedule, or one
very close to optimal. But from the smaller example we get an indication
that the solutions found will be at least good enough for practical use.

2.4 Conclusions

In this chapter we have first presented a method for finding the optimal
appointment schedule in a setting with emergency arrivals or interrup-
tions when all patients who arrive do so exactly on time. The method
uses general service time distributions and can handle no-shows, which
makes it suitable for use in practice. It finds the optimal arrival times for a
weighted combination of patient waiting time, doctor idle time and over-
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Schedule Objective value

2-0-1-0-0-0 85.596

0-3-0-0-0-0 85.771

1-2-0-0-0-0 85.571

0-2-0-1-0-0 85.917

0-1-1-0-1-0 85.748

0-0-3-0-0-0 85.524

0-2-0-1-0-0 85.747

0-2-0-1-0-0 85.754

0-2-1-0-0-0 85.792

2-0-1-0-0-0 86.045

Table 2.9: The ten schedules and objective values resulting from ten ran-

dom search runs with random starting points.

time as the objective. The method makes use of a local search algorithm,
which for our multimodular objective function is guaranteed to find the
global optimum. From the numerical examples we presented, it can be
seen that in general more free space for emergencies is reserved towards
the end of the day, or in other words, the inter-arrival times increase over
the day. The same holds for space in the schedule reserved for dealing
with variation in the appointment durations.

Second, we studied the case where patients can arrive early or late for
their appointments. Here we used simulation to evaluate a given sched-
ule, and presented a simple but effective algorithm for finding good sched-
ules. This method used a similar neighbourhood as in the local search
algorithm to randomly explore the solution space. There is of course no
guarantee that the result is optimal, but numerical experiments show that
the results are near-optimal, and certainly good enough for practical use.

The simulation method is very flexible and can be used to optimise
more complex situations, for example a case where patients do not all have
equal service time distributions. Also, even while this algorithm seems to
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Schedule Objective value

0-2-0-1-0-1-0-1-0-1-0-0 122.887

0-0-0-0-4-0-1-0-0-0-1-0 110.500

2-1-1-0-0-0-0-1-1-0-0-0 115.073

0-0-3-1-0-1-0-1-0-0-0-0 120.121

0-0-3-0-1-1-0-0-1-0-0-0 123.213

0-0-2-1-0-1-0-1-0-1-0-0 118.751

2-1-0-1-0-0-0-0-0-0-0-2 126.491

0-3-1-0-1-0-0-0-0-0-0-1 111.190

3-0-1-0-0-0-0-0-0-1-0-1 119.293

0-0-2-1-0-1-0-0-1-1-0-0 122.859

Table 2.10: The ten schedules and objective values resulting from ten ran-

dom search runs with random starting points for a larger problem.

be very effective in finding near-optimal solutions, there are other meth-
ods that might do so as well. A logical candidate would be the nested par-
titions algorithm mentioned before. It remains to be seen whether these
are also faster than the random search algorithm presented here.
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Elective admission scheduling 3
This chapter treats the problem of scheduling patient admissions to the
wards in a hospital. With the growing demand for health care resources,
the pressure on the efficient usage of the available bed capacity on the
wards is increasing, and the admission scheduling has a large influence
on the efficiency. The workload at clinical wards is often highly variable,
leading to the need for extra capacity to respond to peaks in demand for
beds. In addition to these extra capacity requirements, the variability in
workload has other negative side effects. Litvak et al. [77] show that re-
ducing variability in bed demand helps to reduce the stress of the nursing
staff and to improve the safety of patients.

Surprisingly, studies have shown that the variation in the number of
scheduled patients admitted is generally at least as large as the variation in
the number of emergency admissions, and often larger, see e.g. McManus
et al. [83] and de Bruin et al. [25]. The variability in admissions leads to
highly variable bed occupancy. The admission process is also largely af-
fected by the schedule of the Operating Theater (OT). The OT schedule
allocates the available operating time to the different surgical disciplines,
but, in most cases, it does not specify which or how many procedures are
to be executed in the allocated times and so the number of patients ad-
mitted on every weekday can vary significantly. This OT schedule results
in a weekly bed occupancy pattern, but the number of occupied beds on
each day can still vary significantly from week to week. Moreover, during
the weekend the number of elective admissions is generally very small,
leading to extra workload fluctuations over the week.

A simple way to reduce the variability would be to admit a fixed num-
ber of patients every day of the week. This could be implemented using a
fixed quotum for the number of daily admissions, thereby removing any
unnecessary variation in demand. The remaining variation would solely
be due to emergency arrivals and variations in the length of stay in the
hospital.

The absence of a substantial number of scheduled admissions during
the weekend complicates the use of a fixed quotum per day. In addition,
it is current practice in most hospitals that the number of staffed beds is
lower during weekends, partly because of higher staffing costs. A fixed
daily quotum (for every day of the week) would not accommodate this,
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but yields the same expected bed demand every day of the week. An al-
ternative approach is to use different admission quota for the days of the
week, taking differences in length of stay (LOS) between patient types into
account. In this chapter we determine the number of scheduled admis-
sions for every day of the week, with the objective of keeping the bed de-
mand as close as possible to a predetermined target load. This target can
be different for every day of the week, thereby accommodating a lower
number of staffed beds during the weekends. The result will be a set of
quota for the number of scheduled admissions for different patient types
on every day of the week.

The main goal of this chapter is to determine admission quota for
scheduled admissions and the impact of variability in the number of ad-
missions on the required bed capacity. First, we study approximations for
determining the impact of the daily variability in the number of admis-
sions, for both stationary and time-dependent admissions with a weekly
pattern. This results in intuitive approximations for the variability in bed
demand and for blocking probabilities. Second, we use these results in
an optimisation model that minimises the weighted deviations of the load
from a predetermined target load, which can differ from day to day. We
incorporate emergency arrivals, routing of patients over different wards
and multiple patient types, each type having a specific phase-type LOS
distribution. Our primary focus is on bed demand, where the surgery
scheduling may be included as a constraint.

Patient scheduling has received quite some attention in the literature,
mostly focusing on the scheduling of surgeries. An example of work that
studies surgery scheduling in combination with bed usage is Beliën and
Demeulemeester [16], who try to level the bed usage by finding the best
allocation of OT time blocks to surgical disciplines. They view the number
of patients admitted on a day as a stochastic variable with a distribution
depending on the specialty that used the OT. Van Oostrum et al. [88] find
the optimal so-called master surgical schedule, in which they schedule all
regularly performed surgeries on a specific day in the planning cycle, with
a combination of OT time usage and the maximum number of beds needed
on every day as the objective function. They treat the length of stay as de-
terministic, with the length depending on the type of surgery performed.
Vanberkel et al. [102] study the effect of a given surgical schedule on the
usage of beds, taking emergency arrivals and different ward types into ac-
count as well. However, they do not use an optimisation algorithm and
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only try to improve step-by-step by trial and error. Their approach has
been applied in practice with good results.

Gallivan and Utley [49] present a generic model for determining the
distribution of bed occupation for a given cyclic admission schedule. They
give an example of how these results could be used in an optimisation con-
text. They restrict themselves to a single ward. Adan et al. [1] present a
case study in which they apply an optimisation model. They consider both
the OT usage and several other types of resources, such as different wards
visited by patients consecutively. A weighted combination of the overutil-
isation and underutilisation of all these resources is minimised, in both a
deterministic and a stochastic version. The stochastic version cannot be
solved to optimality due to its size in their case study setting, although
they do believe that taking randomness into account is important.

The remainder of this chapter is organised as follows. We start with
quantifying the impact of variability on the required bed capacity. In Sec-
tion 3.1 we use approximation methods for analysing models with non-
Poisson arrivals and we analyse time-dependent arrivals, to allow for a
weekly arrival pattern, in Section 3.2. In Section 3.3 we discuss admission
scheduling that results in a stable bed demand by applying a Quadratic
Programming model. We conclude with Section 3.4 where we discuss the
contribution of this chapter and describe the main practical insights that
can be derived.

3.1 Variability in scheduled admissions

The arrival process of emergency admissions is generally well approxi-
mated by a Poisson process. Although elective admissions are scheduled,
our experience is that the variability in the number of elective admissions
is at least as large as the variability in the number of unscheduled ad-
missions, which is also supported by various studies, see e.g. [25, 83].
Given the variability in both types of admissions, the Erlang loss (or de-
lay) model is often well applicable for giving insight in the implications of
capacity decisions for clinical wards, see for example [25, 82].

In this section we quantify the impact of a more stable (elective) arrival
stream and the corresponding appropriate capacity. Equally, this may be
used to determine a target load in Section 3.3. We build on approximations
in the literature to analyse models with a general stationary arrival process
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that is not necessarily Poisson. The approximations described here are fur-
ther adjusted in Section 3.2, where we study systems with non-stationary
arrivals.

For the Erlang loss model, the capacity is fixed at s beds. Patients are
assumed to arrive according to a Poisson process with an average of λ
per day. An arriving patient is admitted in case a bed is available and
refused otherwise. An admitted patient stays for a stochastic duration (the
length of stay) at the ward with an average of β days. By Little’s formula,
the above implies that the offered load is ρ := λβ, which represents the
average number of occupied beds in case there would always be sufficient
capacity.

ThisM/G/s/smodel has been well studied. The probability that an ar-
riving patient is refused, also called the blocking probability, is then given
by

B(s, ρ) =
ρs/s!∑s
k=0 ρ

k/k!
.

Moreover, the offered load (number of patients present in case of sufficient
capacity) has a Poisson distribution, which can be well approximated by
a normal distribution for ρ not too small. In particular, for the Poisson
distribution the mean and variance are equal, which directly yields that
the variance of the offered load can then be approximated by ρ.

To obtain insight in the impact of scheduled admissions it is required
to eliminate the assumption of Poisson arrivals, which is crucial for most
queueing models. This elimination leads to a G/G/s/s queue.

We approximate the G/G/s/s queue using its infinite-server counter-
part G/G/∞. We assume a stationary arrival process, where arrivals oc-
cur at rate λ. The coefficient of variation of the interarrival time is denoted
by ca. The service times (lengths of stay) are assumed to be independent
and identically distributed with mean β. We also introduce the so-called
Gini coefficient, which surprisingly appears in the approximations. This
measure is related to the Lorenz curve, which is used in economics to rep-
resent the inequality in the distribution of wealth or income among the
citizens of a country. Here we use it for the inequality in the length of
stay S among patients (see also [25]). The Gini coefficient is defined as
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the area under the Lorenz curve. For piecewise differentiable probability
distributions, the Gini coefficient (G), proposed in [37], is given by

G = 1 −
1

ES

∫ ∞
0

P(S > y)2dy.

For example, for a deterministic distribution we have G = 0, and for an
exponential distribution G = 1

2 . In [25], the Gini coefficients are given for
the LOS at different wards.

We start with an approximation for the number of busy servers, or
rather the variance and distribution of the number of busy servers, for
a G/G/∞ system in heavy traffic. If we use the heavy-traffic approxi-
mation established in [22], we have that the number of busy servers Xρ

approaches a normal distribution in the limit when the load ρ = λβ of the
system tends to infinity:

Xρ − ρ√
ρz
→ N(0, 1), as ρ→∞,

with

z = 1 + (c2
a − 1)

1

ES

∫ ∞
0

P(S > y)2dy

= 1 + (c2
a − 1)(1 −G), (3.1)

where the second equality follows directly from the representation of the
Gini coefficient. We note that only the first equality seems to be available
in the literature, and the interesting and useful relation to the Gini coef-
ficient has not yet been observed. The z is a measure of the peakedness
of the arrival process and the service times, see [108] for a more elaborate
discussion. Here, the variance of the number of busy servers is zρ. From
the peakedness we can see that the variance increases with the squared
coefficient of variation of the interarrival times c2

a as is to be expected, but
it can either increase or decrease in the Gini coefficient depending on the
sign of (c2

a−1). This means that reducing the variability in LOS is only ben-
eficial in cases where the arrival process is already quite stable, implying
that hospital managers should focus first on stabilising the arrival process
before stabilising the LOS distribution. Note that the point at which (c2

a−1)
changes signs corresponds to a Poisson arrival process.

The variability in offered load is of prime importance for the required
amount of capacity. Based on the square root staffing rule, see e.g. [60,
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109], the required number of beds is typically the mean offered load (ρ)
plus a constant times the standard deviation in offered load (

√
zρ). The

latter term corresponds to buffer capacity to deal with variability in bed
demand. The value of the constant depends on the service level target,
but is often chosen to be between 1 and 2.

The most natural performance measure for the G/G/s/s queue is the
blocking probabilityBc. In [108] the Hayward approximation is proposed,
which is given by

Bc = Bc(s, ρ, z) ≈ B(
s

z
,
ρ

z
). (3.2)

In other words, we use the regular Erlang loss formula, but first divide
both the number of servers and the load of the system by the peakedness
z. This requires an extension of the Erlang loss formula to non-integer
values for the number of servers, see [67].

From this approximation, it follows that the fraction of blocked ar-
rivals increases as the peakedness increases. Hence, the loss probability
increases with the coefficient of variation of the interarrival times, but can
either increase or decrease with the Gini coefficient depending on the vari-
ability in the arrival process, just as the variance of the number of busy
servers in the system with infinite capacity.

We have performed some numerical experiments to obtain insight in
the impact of elective admissions on the bed occupancy in hospitals. Since
the Hayward approximation is available in the literature, it is not our goal
to carry out an extensive numerical analysis. As a base example, we con-
sider an average-sized ward with 28 beds, see [25]. We present exper-
iments with three different distributions for the length of stay, all with
mean 4. The LOS at clinical wards can typically be represented by expo-
nential or hyper-exponential distributions, whereas the deterministic LOS
is included to obtain insight in the impact of the LOS characteristics. We
consider (mixed) deterministic and Poisson arrivals, representing sched-
uled and emergency admissions. The average number of arrivals per day
is 41/7, giving an average offered load of about 23.43.

The standard deviation in offered load and the fraction of refused ad-
missions (blocking probability) for the different scenarios may be found
in Table 3.1. These values have been calculated using approximations and
have been verified by simulation. We see that the standard deviation in
offered load and the loss percentage increase with the share of Poisson
arrivals.
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Arrivals LOS Stdev. offered load Loss fraction

Det det 0 0.00 %

exp 3.42 2.51 %

H2 (p1 = 0.1) 3.93 3.63 %

Det + Poisson det 3.42 2.51 %

exp 4.19 4.24 %

H2 (p1 = 0.1) 4.41 4.75 %

Poisson any dist 4.84 5.80 %

Table 3.1: The fraction of refused admissions for (mixed) stationary ar-

rivals.

In some scenarios, patients visit a number of successive wards be-
fore leaving the clinic. Heavy-traffic approximations for such networks
are complicated, see [52, 107] for some extensions to networks. For some
cases, the variability of downstream wards can easily be identified assum-
ing sufficient capacity. For Poisson arrivals (unscheduled admissions) the
number of patients in each node of the network has a Poisson distribu-
tion [79]. Furthermore, in case the LOS of the preceding wards are deter-
ministic (e.g. pre-surgery admissions), the variability in admissions of the
downstream ward inherits the variability of the original arrival process.

To illustrate the impact of a very regular admission schedule on down-
stream wards, we consider a specific tandem of two infinite server queues.
We only consider deterministic external arrivals that arrive at queue 1 with
an average of 41/7 arrivals per day. Each patient moves from queue 1 to
queue 2 after which he/she leaves the network. We focus on queue 2 and
choose an average length of stay (ALOS) of 4 for this queue leading to
an average offered load of 23.43, such that the results for queue 2 may be
compared to those of Table 3.1. The standard deviations of the offered load
for queue 2 can be found in Table 3.2, which were determined using simu-
lations. Note again that Poisson arrivals would lead to a Poisson number
of patients present, yielding a standard deviation of 4.84.
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Queue 1 Queue 2 LOS distribution

ALOS LOS distribution det exp H2 (p1 = 0.1)

1 exp 2.40 3.74 4.18

H2 (p1 = 0.1) 2.33 3.75 4.16

3 exp 3.62 4.11 4.38

H2 (p1 = 0.1) 3.31 4.04 4.35

5 exp 4.01 4.27 4.61

H2 (p1 = 0.1) 3.76 4.16 4.47

1,3,5 det 0 3.42 3.93

Table 3.2: Standard deviation offered load to queue 2.

Clearly, the variability in offered load for queue 2 is considerably larger
than for queue 1, except for deterministic ALOS at queue 1. The results
show that the standard deviation in offered load increases with both the
ALOS of queue 1 and the squared coefficient of variation of the service
times of queue 2. It is interesting to note that a more variable service time
at queue 1 compared to an exponential distribution, i.e. H2 (p1 = 0.1), may
reduce the variability in offered load at queue 2, in particular as the ALOS
gets larger. More practically, we see that the impact of a regular admission
schedule rapidly fades out for wards further down the health chain unless
the length of stay is more or less fixed for the upstream wards.

3.2 Impact of time-dependent admissions

In this section, we assume that the arrival process at a ward depends on
the day of the week. This case is of particular interest in view of the sched-
ule of elective patients at the OT. For example, it is well known that the
number of arrivals is generally smaller during the weekend than on week-
days since hardly any elective procedures are scheduled during the week-
end, see e.g. [25, 54]. The assignment of OT sessions to surgical disciplines
typically also leads to differences in the number of arrivals.
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We assume that there is a periodic (cyclic) arrival pattern. Let T be
the length of a cycle and denote the average number of arrivals during
[a, b] by λ(a, b), a ≤ b. We are mainly interested in the weekly pattern, i.e.,
T = 7. Let λd = λ(d− 1, d) denote the average number of arrivals at day d,
d = 1, . . . , 7, where we denote Monday by day 1. Also, let λ̄ be the average
number of arrivals per day. As in Section 3.1, we assume that the capacity
is fixed at s operational beds.

Again, we use the infinite server queue (G/G/∞) as a basis for ap-
proximating the number of occupied hospital beds. In particular, the mean
number of occupied beds is ρ = λ̄β and the variance (in heavy-traffic) is
zλ̄, where z is called the peakedness reflecting the variability in arrival and
LOS processes. Similar to [65], we assume that the variability in arrivals
consists of a random and predictable part. We decompose the peakedness
into a random and predictable part as well, yielding

z = zrand + zpred

= 1 + (c2
a − 1)(1 −G) + zpred, (3.3)

where the first part (zrand) is the same as in Section 3.1. We note that the
fraction of refused admissions can be determined again using the Hay-
ward approximation, see Section 3.1. It easily follows that the loss fraction
becomes larger for time-dependent arrivals (compared to a stationary ar-
rival process) due to the increased peakedness.

We determine the second part (zpred) of (3.3) based on a deterministic
fluid approximation, see [79]. Specifically, let zpred = Var[m(t)]/E[m(t)]
withm(t) the mean number of busy servers at time t in the G/G/∞ queue:

m(t) = E
[∫ t

t−S
λ(s)ds

]
=

∫ ∞
0

λ(t − s)P(S > s)ds, (3.4)

where λ(s) is the arrival rate at time s (see e.g. [79]). From (3.4) we see that
the mean number of occupied beds depends on the full distribution of S,
the LOS. That is, the ALOS or first two moments of the LOS distribution
are not sufficient to determine the mean number of occupied beds at a
particular point in time.

Of prime interest in the present setting is the case T = 7 with arrival
rates λd, d = 1, . . . , 7 and an exponential (or hyper-exponential) LOS dis-
tribution. The case of an exponential LOS distribution can be used as a
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building block for more involved service time distributions and (feed for-
ward) networks, see Appendix 3.A.

Exponential LOS
For later use, we indicate mexp(t) for the mean number of busy servers
in case of exponential service times. For convenience, consider the time
instants d = 1, 2, . . . , 7 corresponding to the end of each day. Then, using
(3.4), we directly obtain the recursive relation, for d ∈ N,

mexp(d) =

∫ 1

s=0
λde

−µsds +

∫ ∞
1

λ(d − s)e−µsds

=
λd
µ

(1 − e−µ) + e−µ
∫ ∞

0
λ(d − 1 − u)e−µudu

=
λd
µ

(1 − e−µ) + e−µmexp(d − 1), (3.5)

where the final step follows from (3.4), see also [13].
Using the above relation n times, we have

mexp(d) =
1

µ
(1 − e−µ)

n−1∑
i=0

λd−ie
−µi

+ e−µnmexp(d − n).

Taking n = T and using the periodicity of the arrival rate and, hence,
mexp(d) = mexp(d − T ), yields

mexp(d) =
1

µ

1 − e−µ

1 − e−Tµ

T−1∑
i=0

λd−ie
−µi. (3.6)

LOS as sum of exponentials
Here, we assume that the LOS can be expressed as a sum of exponential
terms: P(S > t) =

∑J
j=1 pje

−µjt. This directly applies to hyper- and hy-
poexponential LOS distributions. For the former, we have 0 < pj < 1 and∑J

j=1 pj = 1, whereas the tail distribution for the latter is given by (3.17).
Note that these cases may be equivalently interpreted as parallel and tan-
dem networks where the LOS in each node is exponentially distributed.
The hypoexponential case may be primarily applied for modelling series
of subsequent wards, whereas the hyper-exponential distribution often
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provides a better fit for the LOS distribution compared to the exponen-
tial.

For the mean number of occupied beds, we have

m(t) =

∫ ∞
v=0

λ(t − v)

 J∑
j=1

pje
−µjv

dv =

J∑
j=1

pjm
exp
j (t).

Now, the predictable variation in the number of occupied beds is approx-
imated by

zpred =
1

T − 1

T∑
d=1

(m(d) − m̄)2 /m̄, (3.7)

where m̄ =
∑T

d=1m(d)/n = λβ is the average occupancy with m(d) given
by (3.6). We note that this may seem involved at first glance, but zpred

may easily be computed in e.g. a spreadsheet. Moreover, this derivation
provides the basis for scheduling elective admissions as presented in Sec-
tion 3.3.

3.2.1. Remark. A different approach in case of time-dependent arrivals
is the stationary process approximation, see [80]. The main idea of that
approach is to capture the additional variability in the arrival process in c2

a,
i.e., the time-dependent process is approximated by a stationary process
that is more variable. The disadvantage of this approach is that the impact
of the service time (LOS) distribution on non-stationary arrivals cannot
always be properly taken into account.

To verify the modified peakedness approximation (3.3) numerically,
we consider the following modification of the clinical ward introduced in
Section 3.1. The average number of arrivals during weekdays and during
the weekend is assumed to be 7 and 3, respectively. The ALOS is 4 days
again, yielding an average load of roughly 23.43. For now, we assume the
number of operational beds fixed at 28. In Table 3.3, we present approx-
imation and simulation results for the standard deviation in offered load
and the fraction of refused admissions for different LOS distributions and
for both a deterministic and a Poisson arrival process. As can be observed
from Table 3.3, the approximations are quite similar to the simulation re-
sults, indicating that the modified peakedness approximation (3.3) works
well.
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Stdev. offered load Loss fraction

Arrivals LOS Approx Simulation Approx Simulation

Det det 3.60 3.21 2.89 % 2.44 %

exp 3.91 3.80 3.58 % 3.36 %

H2 (p1 = 0.1) 4.31 4.26 4.52 % 4.10 %

Det + Poisson det 5.00 4.66 6.18 % 6.09 %

exp 4.61 4.54 5.24 % 5.22 %

H2 (p1 = 0.1) 4.76 4.63 5.61 % 5.52 %

Poisson det 6.03 5.76 8.76 % 9.6 %

exp 5.20 5.11 6.67 % 6.75 %

H2 (p1 = 0.1) 5.15 5.05 6.57 % 6.71 %

Table 3.3: The fraction of refused admissions for time-dependent arrivals.

Clearly, the weekly arrival pattern leads to increased variability in of-
fered load and refused admissions compared to stationary arrivals (Ta-
ble 3.1). This weekly pattern is most prominent for a deterministic LOS
[13, 33]. As a consequence, the impact of the variability in LOS distribu-
tion on the offered load can go either way depending on the type of arrival
process. This further strengthens the conclusion from Section 3.1 that the
arrival process is of primary importance for a stable bed occupancy and
should be considered first before focusing on the variability in LOS.

Health chains
In Section 3.1 we illustrated that the benefits of a relatively stable arrival
process to the first ward rapidly fades out for downstream wards due to
the variability in LOS (except for deterministic LOS). Here we give an ex-
ample of the opposite effect in case of time-dependent arrivals. In partic-
ular, we consider two wards in tandem with sufficient capacity (infinite
number of servers) in which the arrival process to the first ward is as de-
scribed above. The LOS at both wards is exponentially distributed, where
the LOS at ward 2 equals 4. The weekly pattern in average offered load
can be found in Figure 3.1 for an ALOS of 1, 3 and 5 days at ward 1. We
also included the case in which the LOS at ward 1 equals 0, meaning that
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Figure 3.1: The average offered load across the week for ward 2 in a tandem

with different ALOS at ward 1.

there effectively is a single ward. The different ALOS of ward 1 has the
following implications for ward 2: (i) the peak in offered load shifts due
to the LOS at ward 1, and (ii) the difference in average offered across the
week becomes smaller as the ALOS at ward 1 increases. Combined with
the observations from Section 3.1, we note that, for non-deterministic LOS,
the arrival process to downstream wards tend to look more like a station-
ary Poisson process.

3.3 Scheduling elective admissions

In most hospitals patient admission scheduling is done per medical disci-
pline and independently of possible effects on the bed occupancy at clin-
ical wards or intensive care units. As indicated, this often leads to high
variability in bed occupancy and weekly patterns in the number of pa-
tients present at wards. The latter is also caused by the reduced number
of (elective) admissions during the weekend (see Section 3.2). One way
to deal with this weekly pattern is to adapt the staffing according to the
offered load as in, e.g., [13] or [41]. A different approach is to schedule
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admissions such that undesired predictable fluctuations in the bed occu-
pancy are avoided as much as possible. In this section, we propose a quan-
titative method for the latter option.

Specifically, the scheduling of elective admissions is done in two steps:

Step 1: Determine target load for each day, m∗(d), d = 1, . . . , T .

Step 2: Determine an admission schedule such that the difference be-
tween the offered load and target load is minimised, using an opti-
misation model.

We note that Sections 3.1 and 3.2 play a key role in Steps 1 and 2, re-
spectively. Here, we restrict ourselves to a single ward and K types of pa-
tients. This may, for instance, represent a ward for one medical discipline
with various procedures leading to structural differences in the length of
stay. This is just a base example and the model may be extended in various
directions along the same lines. For implementation purposes, focusing
on a single medical discipline may be a good starting point, as admissions
are now generally scheduled per medical discipline and coordination be-
tween disciplines is not yet common. Moreover, in case the offered loads
of all disciplines are well balanced, this immediately holds for the overall
offered load.

We assume that the length of stay of patient type k is exponentially
distributed with ALOS 1/µk. (Here we use exponential LOS, for hypo- or
hyper-exponential LOS one ward is represented by more than one node.)
Let the average number of admissions on day d of type k be λkd and let the
offered load of patients of type k on day d be mk(d). The target number of
admissions for type k during T days is denoted by Λk.

Step 1: Target load
Determining the target load mainly concerns a managerial decision at a
tactical level. It involves two parts: (i) The capacity in relation to vari-
ability in offered load, and (ii) the weekly pattern for available number of
beds. Regarding (i), the models discussed in Section 3.1 can be applied to
support decisions related to the trade-off between occupancy levels and
blocking probabilities. More specifically, the average load per day m∗

may be determined using (3.2). For instance, for a given throughput the
required capacity may be determined such that the blocking probability
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does not exceed some target. Alternatively, given a fixed capacity, a tar-
get occupancy level may be determined such that the blocking probability
does not exceed some chosen value.

The number of available beds depends on the staffing, which is not
necessarily the same for every day of the week. A typical example for (ii)
is a different staffing during weekdays compared to the weekend, which
generally means that during the weekend some beds are closed due to re-
duced bed demand (that is a consequence of the limited number of sched-
uled admissions). Denote the target load on day d by m∗(d), d = 1, . . . , T .
Clearly, it should hold that m∗ =

∑
dm
∗(d)/T . The target load during a

cycle should also be equal to the offered load following from the admis-
sion target and corresponding ALOS, i.e., m∗(d) should satisfy

m∗ =
1

T

T∑
d=1

m∗(d) =
1

T

K∑
k=1

Λk ×
1

µk
.

For identical targets on all days, we evidently have m∗(d) ≡ m∗. In case
the number of open beds during the weekend is reduced by x (assuming
that T is a multiple of 7), it follows after some straightforward calculations
that

m∗(d) = m∗ +
2

7
x for d multiple of 1, . . . , 5

m∗(d) = m∗ −
5

7
x for d multiple of 6, 7

Step 2: Optimal admission schedule
In this step, we translate the admission scheduling into a mathematical
model, using results from Section 3.2. Specifically, we formulate the prob-
lem as a Quadratic Programming model with linear constraints, which is
in the spirit of [1]. (We note that it can be formulated as a Linear Program
as well using a different objective function.) The key element is that the
time-dependent offered load as determined in Section 3.2 is linear in λd.

The objective here is to minimise the total squared deviation of the
offered load from the target load. This is represented in (3.8) where the
squared deviation between the target and offered load is summed over all
days of the planning cycle.

The offered load for each patient type for the first (3.11) and all con-
secutive days (3.12) of the planning cycle are derived from the time-
dependent analysis in Section 3.2, i.e., Equation (3.6) for exponential LOS.
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Note again that the full LOS distribution is required to determine the mean
offered loads, and not just the average LOS. The total offered load on a par-
ticular day is the sum of the loads generated by the different patient types,
as can be seen in (3.10).

The constraint (3.9) assures that the total number of scheduled admis-
sions is equal to the target number of admissions for each patient type.
The number of admissions on each day should be non-negative, as repre-
sented by (3.13). Moreover, it might be desirable or current practice that no
scheduled admissions occur on some days, for instance, during the week-
ends or on days when no OT-time is available for a certain patient type.
For such days, λkd should be set to 0, as represented in (3.14).

Finally, we note that the choice of decision variables depends on
whether patients of type k, k = 1, . . . ,K, represent scheduled or un-
scheduled admissions. In case type k patients are scheduled, then λkd,
d = 1, . . . , T are decision variables, whereas the λkd should be determined
from historical data in case of emergency admissions. (For the latter,mk(d)
can also be determined directly from the data.)
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Minimise
T∑
d=1

[m(d) −m∗(d)]2 (3.8)

subject to
T∑
d=1

λkd = Λk, k = 1, . . . ,K (3.9)

m(d) =

K∑
k=1

mk(d), d = 1, . . . , T (3.10)

mk(1) =
1

µk
1 − e−µ

k

1 − e−Tµk

T−1∑
i=0

λk1−ie
−µki, k = 1, . . . ,K (3.11)

mk(d) =
λkd
µk

(
1 − e−µ

k
)

+ e−µ
k
mk(d − 1), d = 2, . . . , T,

k = 1, . . . ,K (3.12)

λkd ≥ 0, d = 1, . . . , T,

k = 1, . . . ,K (3.13)

(case-dependent) λkd = 0, for some d ∈ {1, . . . , T},
k ∈ {1, . . . ,K} (3.14)

As mentioned, the admissions scheduling can be modeled as a Linear
Programming problem by modifying the objective function. In that case,
the objective (3.8) is to minimise

∑T
d=1 |m(d) −m∗(d)|, which can be made

linear using standard LP arguments. Here we opt for a quadratic objective
function because we assume that the consequences of a deviation from the
target load will not be linear in the size of the deviation. It is considerably
more difficult for the medical staff to handle larger deviations.

Extensions and modifications
The QP model as introduced above is an elementary model that may be ex-
tended in different directions depending on the specific situation. Two im-
portant extensions are multiple (consecutive) wards and the impact of the
Operating Theater for surgical patients. These extensions are discussed
below.

A prime example where multiple wards are involved concerns medi-
cal disciplines for which a considerable fraction of the patients needs care
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at an ICU, after which they join the Normal Care Unit. The development
of clinical pathways has also increased the interests in health chains. The
time-dependent performance of health chains may again be found in Sec-
tion 3.2 and Appendix3.A, which is one of the key elements to extent the
QP model, i.e., extend (3.11) and (3.12). Moreover, the objective function
should then be modified such that the sum of the deviations from the
target load of each ward is minimised. Depending on its type, different
wards may be assigned a different weight to represent its relative impor-
tance. For example, the weight for an ICU will typically be larger than the
weight for other wards, as ICU capacity is more costly and the options for
the transfer of patients in case of insufficient capacity are limited.

For surgical patients, the number of admissions is restricted due to the
schedule of the OT. In general, each surgical discipline is assigned one or
more rooms for some specific days, i.e., the OT sessions. For a given OT
schedule, the maximum number of admissions of type k on some day d
thus depends on the surgical time of type k patients and the available OT
time for the medical discipline of type k. Such restrictions can be straight-
forwardly included in the QP and thus easily allow for modifications in
the admission planning without (strongly) affecting the OT schedule. Fi-
nally, we like to emphasise that the admission scheduling applies to both
surgical and non-surgical patients.

We will describe some numerical experiments to illustrate the process
outlined above. The scenario for these experiments is comparable to the
scenarios considered for the analysis of stationary and time-dependent ad-
missions. Specifically, emergency patients arrive with an average of 3 per
day and have an ALOS of 4 days. For the elective patients, we assume that
two groups can be distinguished: patients with short (ALOS of 2 days) and
long (ALOS of 6 days) hospital stay. These groups can, for instance, be de-
termined based on medical procedures. The target number of admissions
for both groups is 10 patients per week. For simplicity, the length of stay
is exponentially distributed for all groups.

We consider three different target scenarios: no reduction of beds dur-
ing the weekend and closing 2 and 4 beds during the weekend. For all
scenarios, no elective admissions during the weekend are allowed. The
required number of elective admissions that follow from solving the QP
are given in Table 3.4. The resulting offered loads, along with the targets,
are displayed in Figure 3.2. We note that the presented numbers of ad-
missions in Table 3.4 are fractional. To find the admission quota, these



3.4 Scheduling elective admissions 67

numbers could be rounded to the nearest integer. If it is infeasible to guar-
antee identical number of elective admissions for each patient group for
a considerable time period, the “admission planner” could work with a
small bandwidth. In practical situations the fractional numbers therefore
provide a guideline in which direction the actual numbers of admissions
should deviate from the prescribed admission quota.

Weekend reduction Mon Tue Wed Thu Fri Sat Sun

No weekend reduction short 5.2 3.6 1.2 0 0 0 0

long 0 0 2.2 3.0 4.7 0 0

Reduction of 2 beds short 6.2 3.8 0 0 0 0 0

long 0 0.1 3.6 3.0 3.3 0 0

Reduction of 4 beds short 4.0 3.2 0.5 1.0 1.1 0 0

long 3.3 0.3 2.9 2.1 1.4 0 0

Table 3.4: Elective admission quota for different bed occupancy targets.

Observe that in all scenarios, the target and offered load are not iden-
tical for all days of the week. Because there are no admissions during the
weekend, there is limited control over the offered load during that period.
For instance, in all cases the load decreases considerably from Saturday to
Sunday. To compensate for the relatively small load on Sunday, the num-
ber of admissions is largest on Mondays for all three scenarios. In case the
reduction in beds is limited (here 0 or 2), the patients with relatively long
hospital stay should be admitted at the end of the week, often on Fridays,
thereby filling the beds during the weekend. As a consequence, the pa-
tients with short hospital stay are mainly admitted at the beginning of the
week, often on Monday.

We note that aiming for a constant bed occupancy target might be un-
desirable in this example. For the scenario of no weekend reduction, the
offered load has a peak on Friday that is implicitly caused by the rela-
tively large target during the weekend. In case 2 beds are closed dur-
ing the weekend, there remains a smaller peak in offered load on Friday,
whereas this peak is absent in the scenario where 4 beds are closed. Al-
though we presented a specific case, the admission principles apply to a
broader health care setting.
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Figure 3.2: The target load and offered load across the week for different target

scenarios.

3.4 Practical implications and discussion

The main goal of this chapter is to provide quantitative methods to deter-
mine admission quota for scheduled admissions and to analyse the impact
of variability in scheduled admissions on the required bed capacity. For
the impact of variability, we used approximation methods that build on
heavy-traffic results in the literature and presented an interesting relation
to the Gini coefficient. Moreover, we modified this peakedness approxi-
mation to allow for time-dependent arrivals, which is exploited in the step
of admission scheduling. In particular, the admission quota for scheduled
patients are determined using a QP model minimising the difference be-
tween the expected and desired occupancy.

Our second aim is to derive generic practical insights that apply to
almost all hospital situations. A first major observation is that more varia-
tion in admissions leads to a higher variability in bed demand and to more
refused admissions for a hospital ward. Variation in the LOS can have neg-
ative consequences as well, but its influence depends on the variability of
the arrivals. Only for stable arrival processes reducing the variation in
LOS leads to a less variable bed occupancy. Hence, stabilising the bed oc-
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cupancy is best achieved by starting to smoothen the admissions. Along
the same lines, the most time-stable performance is achieved when the
arrivals to the hospital are as evenly distributed over the week as possi-
ble. A very uneven weekly pattern will increase variability in bed demand
and the probability of refused admissions just as a variable arrival process
will. If there is a clear weekly pattern, a LOS that is very stable can even
be detrimental. Here, again, one should start by smoothing the admission
pattern.

In practice, patients often visit more than one type of ward during their
stay in the hospital.The variation in demand at the first ward influences
that on subsequent wards. For relatively stable admissions, the variabil-
ity in bed demand on the second ward is at least as large as that on the
first one. Typically, for subsequent wards the bed occupancy starts to look
more like the occupancy generally seen for emergency patients. In situa-
tions with a weekly admission pattern, a peak in demand on the first ward
will be noticeable for the second ward as well, but with a shift in the time
on which it occurs. The weekly pattern on the second ward becomes less
noticeable as the LOS in the first ward becomes more variable.

In addition to smoothing the arrival process, it is also possible to sched-
ule the arrivals in a better way. The first decision needed is the number of
beds that will be staffed every weekday, e.g., how many beds are closed
during the weekend. In general, in absence of scheduled admissions dur-
ing the weekend, it is advisable to close beds during that period. The
case where no beds are closed during the weekend and scheduled admis-
sions are absent might lead to unused capacity. Scheduling patients with
a longer expected LOS on Fridays can help to minimise this unused ca-
pacity, as such patients will stay throughout the weekend. The optimal
schedules generated by our optimisation model typically show such pat-
terns (although the pattern is clearly affected by the number of closed beds
during weekends). The drawback is that this often results in peak demand
on Friday itself.

Another general rule is that more admissions should be scheduled on
Mondays compared to the other weekdays, to fill the ward after the week-
end. Because patients with a longer LOS are mainly scheduled at the end
of the week, the patients scheduled for Mondays typically have a shorter
LOS. Tuesday through Thursday are often comparable and roughly have
about the same number of admissions scheduled.
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After developing this method, we worked with a hospital to imple-
ment the principles in practice. A few notable points we want to make
here concern the results and limitations of the method. First, we have no-
ticed that the method can lead to good results in terms of either less bed
usage or increasing the number of patients treated without extra resources.
The possible bed reduction was in the order of 10 percent for most special-
ties. We also noticed that having enough patients on a waiting list is key
to successful implementation, so coordination with clinic sessions is nec-
essary to influence and smoothen the numbers and types of referrals for
surgery and thus admission. A last notable point that even when restric-
tive constraints were needed in the optimisation part, improvements were
visible just from adhering to a schedule even though the schedule itself
could have been better. This means that part of the gains are due to reduc-
ing the variation in arrivals, apart from scheduling the optimal number of
arrivals.

We like to stress that the models presented are of a generic nature and
can easily be implemented in e.g. an Excel spreadsheet to model the char-
acteristics of a specific ward or hospital (or a specific time scale). Such
models are of a deductive nature, based on a set of general principles and
logical inference to derive new insights or improve decision making, see
also Gallivan [48] for a further discussion on the role of models in health
care. By definition, these models are based on assumptions regarding the
structural characteristics of patient flows and admissions and, therefore,
do not capture all decisions made at a hospital. A particular topic that is
not captured by the models presented here is the possible dependence of
the discharge process on the day of week or the occupancy. Although it is
not clear whether it is desirable to incorporate such dependencies in the
structural organisation of health care processes, this provides an interest-
ing topic for further research.

3.A Phase type LOS and feed forward networks

In this section, we consider a feed forward network of nodes with an ex-
ponential LOS. This may be equivalently interpreted as a single node with
a (specific) phase type LOS distribution. For convenience, we assume that
the LOS rates are different for each node.



3.A Phase type LOS and feed forward networks 71

First, we define some notation, in line with Section 3.2, and restate part
of a more general result of [79]. Let J be the number of nodes and let λj(t)
be the external arrival rate to node j at time t. A patient goes from node
i to node j with probability pij and leaves the network from node i with
probability 1 −

∑
j 6=i pij . Denote a generic LOS at node j by Sj and let µj

be its LOS rate.
The main goal is to determine the mean number of occupied beds at

time t for node j (mj(t)). We first restate (part of) a more general result of
Massey and Whitt, see [79, Theorem 1.2]:

3.A.1. Theorem. In the (Mt/GI/∞)J)/M model, the number of occupied beds
Qj(t) at time t, 1 ≤ j ≤ J , are independent Poisson random variables with finite
means

mj(t) = E[Qj(t)] = E

[∫ t

t−Sj

λ+
j (u)du

]
, (3.15)

where λ+
j is the aggregate-arrival-rate function to node j, defined as the minimal

non-negative solution to the system of input equations, for 1 ≤ j ≤ J ,

λ+
j (t) = λj(t) +

J∑
i=1

E[λ+
i (t − Si)]pij . (3.16)

For optimisation purposes and for applications in health care, we are
interested in more explicit results. Therefore, we make several assump-
tions, while maintaining a sufficiently generic framework for modelling
in practical situations. We assume that all Sj are exponential, i.e., we re-
strict ourselves to phase-type LOS distributions. For convenience, we also
assume here that all µj ’s are different. Finally, we consider a feed forward
network meaning that pij = 0 for j ≤ i and 1 ≤ i ≤ J .

Below, we express mj(t) in terms of single nodes with exponential
LOS, which are essentially used as building blocks. To do so, we decom-
pose the patient flows into all possible routes through the network (that
have non-zero probability). A patient on route r then uses a subset of the
nodes {1, . . . , J}. Specifically, patients on route r = {n1, . . . , nf} arrive at
the first node n1 with rate λn1(t)pr, where pr = pn1n2 · · · pnf−1nf

represents
the fraction of traffic coming from node n1 going through nf via route r.

Now, consider node j and truncate the network at node j, i.e., consider
the network consisting of nodes {1, . . . , j}. Let rj be a route in the trun-
cated network that goes through node j and let Rj be the set of possible
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routes going through j. We add a subscript s if route rj starts at node s
(we denote rjs and useRjs again to denote the set of possible routes). Using
(3.15), (3.16) and the feed forward structure, we have

mj(t) = E

[∫ t

t−Sj

(
λj(u) +

j∑
i=1

E[λ+
i (u − Si)]pij

)
du

]

= E

[∫ t

t−Sj

λj(u)du

]
+ E

[∫ t

t−Sj

j−1∑
i=1

pijE[λ+
i (u − Si)]du

]

= mexp
j (t) + E

∫ t

t−Sj

∑
rjs∈Rj

p
rjs
E[λs(u −

∑
l∈rjs

Sl)]du


= mexp

j (t) +

j−1∑
s=1

∑
rjs∈R

j
s

p
rjs
E

∫ t

t−Sj

λs(u −
∑
l∈rjs

Sl)du

 ,
where the final step follows from interchanging integrals and sum. Note
that the value of the expectation is similar to the mean load in node j for
a tandem network (or a single node with a hypoexponential LOS). Using
the tail distribution of a hypoexponential random variable (3.17), we get,
after some rewriting,

E

∫ t

t−Sj

λs(u −
∑
l∈rjs

Sl)du


= E

∫ t

t−(
∑

l∈rjs
Sl+Sj)

λs(u)du

 − E

∫ t

t−
∑

l∈rjs
Sl

λs(u)du


=

∏
l∈rjs−{j}

µl
µl − µj

mexp
{λs(·),µj}(t) +

∑
i∈rjs−{j}

µi
µj − µi

∏
l∈rjs−{j}

µl
µl − µi

mexp
{λs(·),µi}(t),
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where mexp
{λs(·),µj}(t) is the mean load at time t for a single node with expo-

nential LOS at rate µj and arrival rate function λs(·). Combining the above
yields

mj(t) = mexp
j (t) +

j−1∑
s=1

∑
rjs∈R

j
s

p
rjs

( ∏
l∈rjs−{j}

µl
µl − µj

mexp
{λs(·),µj}(t)

+
∑

i∈rjs−{j}

µi
µj − µi

∏
l∈rjs−{j}

µl
µl − µi

mexp
{λs(·),µi}(t)

)
.

Again, the mean offered load at some node may seem involved at first
glance, but we can still express it in terms of single exponential nodes.
For a feed forward network of size J we require the time-dependent ana-
lysis of at most J ! exponential single nodes (for j = 1, . . . , J , we need
mexp
{λs(·),µj}(·), with s = 1, . . . , j). However, the actual required number of

single exponential nodes strongly depends on the routing probabilities in
a specific practical situation and will often be much smaller than J !.

3.A.2. Example. An important special case is a tandem network of J
nodes in series. Assuming here that all customers arrive at the first node,
the sojourn time is then the convolution of J exponentials, which has a
hypoexponential distribution, i.e.,

P(S > t) =

J∑
j=1

∏
n6=j

µn
µn − µj

e−µjt. (3.17)

In this case, the mean number of occupied beds in node j reads

mj(t) =

j−1∏
l=1

µl
µl − µj

mexp
j (t) +

j−1∑
i=1

µi
µj − µi

j−1∏
l 6=i

µl
µl − µi

mexp
i (t).
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Admission control for health care 4
Demand for health care keeps growing all the time, while budgets are be-
ing cut. This is not only the case in hospitals, but in all other types of
facilities as well. This makes efficient use of available personnel very im-
portant, as personnel usually takes up a very large part of the expenses in
health care. One of the ways to improve efficient and effective use of per-
sonnel, is to prioritise the entrance of patients into the facility in the right
way. In this chapter we study the problem of admission control in home
care and for rehabilitation facilities.

Advances in health care have led to an increasing number of elderly peo-
ple in society who want to continue living in their own homes while need-
ing medical care and care-at-home services (e.g., housekeeping and per-
sonal care). This trend has led to a situation in which home care providers
are faced with a larger number of patients. At the same time, home care
providers have to provide care-at-home services with fewer resources be-
cause of changing organisation and finance structures and increased com-
petition. Therefore, efficient workforce management is essential to pro-
vide a high quality of service against low operational costs.

In practice, efficient workforce management is hard to achieve. The
care-at-home sector typically has a very unpredictable demand for ser-
vice. Moreover, the duration of the service is highly volatile. This creates
a tension between the size of the workforce and the operational costs. On
the one hand, having a lot of home care personnel leads to a very good ser-
vice quality: all demand can be satisfied directly and no patient is turned
down. However, the operational costs are high and much of the person-
nel will have a lot of idle time and low productivity. On the other hand,
having too few personnel leads to low operational costs, but also a deteri-
oration in quality of service.

Rehabilitation care facilities face similar problems, though for slightly dif-
ferent reasons. Over the last few years there have been quite a few changes
in the organisation of rehabilitation care, and some changes are still to
come. The largest of these changes concerns the structuring of the financial
revenues rehabilitation facilities receive from the Dutch government and
insurance agencies. In the past rehabilitation facilities were reimbursed
for every treatment they administered to patients, but in the new system
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patients are all diagnosed according to a fixed classification, and for ev-
ery patient diagnosis the facility receives a fixed amount of money. This
change of course leads to a necessity for rehabilitation facilities to work
in an efficient way, while still providing good quality care. This system is
not unique to rehabilitation care; the same system was also introduced in
hospitals recently.

Again the largest part of the cost in rehabilitation consists of person-
nel cost. Almost all rehabilitation patients need a number of specialties
for their treatment, for example a physiotherapist, a social worker and a
doctor. The treatment of the patient by all these different groups of per-
sonnel needs to be coordinated for the treatment to be effective. There are
many different groups of patients, all with their own need for the types
and intensity of treatment and with different lengths of stay in the system.
This means that deciding upon a good mix of personnel specialties is not
an easy task.

On top of that there are also constraints on the waiting times that are
deemed acceptable for patients. These can differ per group of patients,
from a few days if the patients is currently staying in the hospital and the
hospital bed is needed, to several weeks for less urgent patient groups. A
patient can only enter the system if there is capacity available for all spe-
cialties he needs for his treatment. If one is not available the patient has to
wait, and personnel from the other specialties experience some idle time,
or may start treating another patient for whom all capacity is available. All
of this leads to the problem of prioritising the patients for admission to the
facility, so as to balance the waiting times of the patients already present
and the waiting times of those arriving in the future with the efficient use
of personnel.

The personnel planning problem is not unique to the health care sector.
Many other service providers are faced with this challenging problem,
e.g., call centers (Aksin et al. [2] and Gans et al. [50]) and public trans-
port (Petrovic and Berghe [90]). For the problem in health care see Burke
and Petrovic [26]. Ernst et al. [39] present a comprehensive collection of
some 700 papers on personnel scheduling in different application areas.
These surveys show that most of the literature on personnel planning
in health care systems deal with appointment scheduling, shift schedul-
ing, cyclic rostering, hospital admission and bed planning. This is mostly
done in a deterministic setting for which mathematical and integer pro-
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gramming methods, set covering and partitioning, local and tabu search
techniques are used. The papers that deal with stochastic health care
systems (mostly, appointment scheduling and hospital planning) use lo-
cal search, genetic programming, simulation techniques, Markov decision
theory, and queueing theory (see, e.g., the survey paper [39] and the spe-
cial issues [26, 90] with the references therein).

The care-at-home sector has received little attention in the literature.
Moreover, it faces challenges that the other industries do not have. First,
patients have very specialised needs for home care so that home care
providers are faced with a large number of very different patient and ser-
vice profiles. Second, a patient may require a number of hours of home
care in a week, but needs to receive that for several weeks consecutively.
Hence, enough personnel capacity has to be available so that a patient will
continue to receive home care once admitted. These two distinguishing
features in a stochastic setting add additional complexity to the person-
nel planning problem, which makes many of the modelling and solution
techniques intractable.

The literature on workforce management in a home care personnel
planning setting can be categorised into two groups: the first group de-
scribes the imminent shortage of skilled nurses and other health workers
in the coming years due to the ageing population, and the important fac-
tors for organisations in attracting new staff and retaining their current
staff. Ellenbecker [38] mentions having a realistic workload and a sta-
ble schedule as important factors in keeping personnel retention at low
levels. Flynn and Deatrick [43] also mention having a realistic workload,
adequate staffing levels, and scheduled days off as important factors for
the nurses. The second group of articles focuses on daily scheduling and
routing of nurses. Cheng [30] models this problem as a vehicle routing
problem with time windows using a mixed integer program. Bertels and
Fahle [17] study the rostering and routing problem simultaneously. They
choose not to obtain optimal solutions, because of the large computation
times. Instead, they present several good solutions, by modelling different
requirements by hard and soft constraints. Eveborn et al. [40] describe a
decision support system for planning home care routes. This lets the user
attach priorities to different aspects of the solution, such as travel times
and preferred staff members to visit certain patients. The literature on
home care personnel planning is largely deterministic in nature and does
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not deal with the stochastic nature of the demand and service required
that is perceived in practice.

Rehabilitation care also has not attracted much attention in the litera-
ture. There are a few studies on scheduling the treatment of patients inside
a facility, focusing on the scheduling of appointments of patients with ser-
vice providers. One of these is the work of Ogulata et al. [86], who propose
a three-step model for the highly demanded physiotherapy, consisting of
first selecting which patients to treat, then balancing the workload of the
patients among the therapists and finally scheduling appointments over
the working days. The work of Chien et al. [31] presents an approach to
schedule different treatments of patients with different service providers,
where they take into account any precedence constraints between these
treatments. They model the problem as a hybrid job shop scheduling prob-
lem and solve it using a genetic algorithm. A model for balancing resource
allocation among different types of patients has been studied not for reha-
bilitation but for care to the mentally handicapped by Heiner et al. [61].
They present a model for deciding how much of any resources to allocate
to the different groups, while maximising the efficiency and effectiveness
of care and also taking the fairness of the allocation into account.

The problem at hand here is an admission control problem. This prob-
lem arises in other areas than health care as well, for example in call cen-
tres. Models have been developed to deal with this problem: see, e.g.,
Altman [3] for examples in telecommunications, Gans et al. [50] in call
centres, etc. The problem here differs from the models in the literature in
the sense that patients need more than one type of server, i.e. specialties,
simultaneously. In other settings there might be different customer types
and several types of servers that can serve each customer type, but each
customer needs only one server. This means that the problem of admission
control for the rehabilitation setting does not fit into these models.

To our best knowledge no attention so far has been given in the lit-
erature to prioritising admissions to health facilities. A reason for the
scarcity of literature in this area might be the complexity of the problem.
The admission control problem can be modelled in e.g. the framework of
Markov decision problems (see Puterman [93]), but suffers at the same
time from a high-dimensional state space prohibiting the derivation of
optimal solutions for already moderately-sized problem instances. This
so-called curse of dimensionality can be addressed by applying approx-
imation techniques, such as Approximate Dynamic Programming, that
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lead to near-optimal solutions (see, e.g., Bertsekas and Tsitsiklis [18] and
Powell [92]). The key idea of these techniques is to reduce the state space
by replacing an exact step in the algorithm by an approximation, such as
simulation, stochastic approximation or statistical learning. These approx-
imations work fairly well when the problem under study has nice struc-
tural properties related to monotonicity. However, the personnel planning
problem that we study lacks this feature as was shown in a special case of
our model in Miller [84], Ross and Tsang [95], and Altman et al. [4].

In this chapter, we aim to provide a model to deal with the patient prioriti-
sation problem in care-at-home and rehabilitation facilities in a stochastic
setting. We assume that patients arrive according to a Poisson process and
that they can differ in the length, types and intensity of care they require.
We cast the problem as a Markov decision problem as this is sufficiently
flexible to deal with different patient and service profiles in a decision
framework. The objective in this system is to schedule the different types
of patients such that a weighted waiting time is minimised.

For the somewhat simpler problem of home care the model still re-
mains sufficiently tractable (see Powell [92] for issues on modelling and
computation). We study the monotonicity properties of the Markov de-
cision model. These results are used to derive optimal patient admission
policies, given the demand for service. Moreover, we study the perfor-
mance of these policies so that the size of the workforce can be determined.

The general model, used for the rehabilitation setting, is computation-
ally intractable, since the state space is too large due to the need to store in-
formation on all the different types of patients. We develop approximation
techniques to solve the admission control problem. Moreover, we compare
the results with ordinal optimisation techniques to verify the quality of the
results.

The model provides a first step in the workforce planning process; af-
ter the capacity has been derived by the model, one needs to make rosters
in which individual personnel members are assigned tasks. Moreover,
one needs to make efficient routes from the care-at-home facility to the pa-
tients, or appointments for their therapy treatments. These problems are
not taken into account in our model, since many algorithms and software
packages already exist to deal with this.

We start with giving a full problem description in Section 4.1. Then
we consider the home care model, which is in fact a special case of the
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more general model. In Secion 4.2 we describe this special case, and then
study some structural properties of the value function and the state space.
In Sections 4.3 and 4.4 we describe two different approaches to solve the
more general rehabilitation care model, where there is no longer any struc-
ture in the value function or optimal policy. In all three sections we give
some numerical examples to demonstrate the quality of the solutions.

4.1 Model formulation

We consider a care facility at which patients arrive requesting service from
different specialties simultaneously for a specific duration. We assume
that the facility has M different specialties and that there are Cm servers
available for specialtym,m = 1, . . . ,M . These servers do not represent the
number of different employees with a certain specialty, but we represent
each unit of available time for a given specialty as a server. So if there are
three employees with specialty m that have in total, say, 80 hours a week
available for patient care, that would give Cm = 80.

The different combinations of services that can be requested are
grouped into patient profiles or types, of which we assume that there are
K. Patients arrive at the facility according to a Poisson process with rate λ,
and an arriving patient has type k with probability pk, k = 1, . . . ,K. Upon
arrival of a patient with profile k, the patient requests cmk servers of spe-
cialty m. The service time has a Coxian distribution with r phases, where
a patient of type k has service rate µki in phase i, i = 1, . . . , r, and goes
to the next phase with probability pki. This means that during the length
of time a patient stays at the facility, which has a Coxian distribution, he
will continuously occupy cmk servers. The facility is constrained to serve at
maximum a total of N patients simultaneously if capacity permits.

The care facility is subject to holding costs ak for each patient in the
queue with profile k, and holding costs 1 for each patient in treatment. The
aim of the care facility is to minimise the long-term average costs for the
system by optimally matching the capacity of the resources to the requests
of the patients. Thus, at each arrival one needs to decide if the patient is
going to be served immediately or if the patient is to be put on a waiting
list. This decision also has to be taken when a patient finishes his treatment
and leaves the facility. To answer this decision problem, we model the care
facility as a continuous-time Markov decision problem.
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Let S = NK × {0, . . . , N}K×r denote the state space of the system, with
~s = (~q, ~x) ∈ S where qk denotes the number patients of type k waiting
in the queue (of infinite size) and xki denotes the number of patients of
type k in phase i of their service time. Let V (~s) be a real-valued function
defined on the state space. This function will play the role of the rela-
tive value function, i.e., the asymptotic difference in total costs that results
from starting the process in state ~s instead of some reference state. The
long-term average optimal actions are a solution of the optimality equa-
tion (in vector notation) g + V = TV , with g the long-term average costs
incurred in the system and with T the dynamic programming operator
acting on V (~s) defined as follows

TV (~s) = TV (~q, ~x) =

K∑
k=1

akqk +

K∑
k=1

r∑
i=1

xki + λ

K∑
k=1

pkH(~q + ek, ~x)+

K∑
k=1

r−1∑
i=1

µkixki
(
pkiV (~q, ~x − eki + eki+1) + (1 − pki)H(~q, ~x − eki)

)
+

K∑
k=1

µkrxkrH(~q, ~x − ekr) +

(
1 − λ −

K∑
k=1

r∑
i=1

µkixki

)
V (~q, ~x),

(4.1)

where

H(~s) = H(~q, ~x) = min{V (s′) = V (~q′, ~x′) | q′k +

r∑
i=1

x′ki = qk +

r∑
i=1

xki

for k = 1, . . . ,K, and x′ki = xki for k = 1, . . . ,K, i = 2, . . . , r,

and x′k1 ≥ xk1 for k = 1, . . . ,K, and
K∑
k=1

r∑
i=1

x′kic
k
m ≤ Cm

for m = 1, . . . ,M}. (4.2)

The first term in the expression V (~s) models the holding costs for patients
in the queue, whereas the second term models the holding costs for pa-
tients who are in service. The third term models the arrivals of patients to
the system. The next three terms describe how patients move through the
different phases of the Coxian service distribution: the first models the ad-
vance of a phase, the second the termination after completing a phase, and
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the last the service at the last phase. Finally, the last term models the uni-
formisation constant (see Section 11.5 of Puterman [93]). To this end, we
assume that the uniformisation constant λ +

∑K
k=1

∑r
i=1 µkiN = 1; we can

always get this by scaling. Uniformising is equivalent to adding dummy
transitions (from a state to itself) such that the rate out of each state is equal
to 1; then we can consider the rates to be transition probabilities.

The function H(~s) models the decision making in the patient prioriti-
sation problem. The first term in the condition models the fact that there
is no difference in the number of patients in the system and queue before
and after decision making. The next two conditions ensure that patients
cannot change their phases due to the admission actions, and thus only
the number of patients in the first phase can increase. Finally, the last
condition requires that the admission actions do not violate the capacity
constraint.

The optimality equation g + V = TV is hard to solve analytically in
practice. Alternatively, the optimal actions can also be obtained by recur-
sively defining

Vi+1 = TVi, (4.3)

for i = 0, . . . and arbitrary V0. For i → ∞, the maximising actions con-
verge to the optimal ones (for existence and convergence of solutions and
optimal policies we refer to Puterman [93]). Note that the optimal actions,
which can be derived from the function H(·), completely depend on the
relative value function V (·). Hence, in Section 4.3 we will focus on the rel-
ative value function V (·), and adopt approach (4.3) for deriving the struc-
ture of the optimal policy and to numerically compute optimal policies.

4.2 Home care: state space aggregation

In this section we address a special case of the model described above, that
is relevant for home care facilities. In this case, there is only one specialty,
so M = 1, and each patient of type k requires home care for ck time units
per week. We assume that patients stay in the system during a time that
has an exponential distribution with parameter µk. For this special case,
we also assume that there is a possibility to reject patients. We can now
simplify the model description for this section.



4.2 Home care: state space aggregation 83

Denote by ~x = (x1, . . . , xK) the state of the home care employees, i.e.,
xk is the number of patients of class k in service for k = 1, . . . ,K. When
the state vector ~x is given, then the spare capacity in the system is given
by cap(~x) = S −

∑K
k=1 ck ·xk. Now, let us suppose that a patient from class

k arrives. The facility has several options to deal with this request. First,
consider the scenario in which there is insufficient service capacity avail-
able (thus, cap(~x) < ck). Then the facility can reject the request, but can
also decide to admit the patient so that the patient is put on a waiting list
for home care. For this purpose, let ~q = (q1, . . . , qK) denote the number of
patients of each class that are on the waiting list. In case there is sufficient
capacity (i.e., cap(~x) ≥ ck), the facility has three options. First, it can again
reject the request, because it expects other arrivals of patients that might
conflict with the current request (this can happen, especially, when ck is
large), it can put the patient on the waiting list, or it can admit the patient
immediately so that its service can start without delay. We assume that the
waiting list can only hold B patients. If a patient is required to wait while
the waiting list already hasB patients, then the patient is rejected anyway.

We assume that the system is subject to rejection costs rk for request
k with k = 1, . . . ,K, and that there are costs for having a patient in the
system (either waiting or in service). We are interested in finding a pol-
icy that balances the rejection costs and the average number of patients
in the system by minimising the joint cost function. To this purpose,
we denote the state of the care-at-home facility by (~x, ~q) with state space
S =

{
(~x, ~q)

∣∣ ∑K
k=1 ck · xk ≤ S,

∑K
k=1 qk ≤ B

}
. When a patient of class k

arrives, the optimal action can be determined by the minimising action in
Ha given by: Ha(~x, ~q, k) =
V (~x, ~q) + rk, if cap(~x) < ck,

∑K
k=1 qk = B,

min{V (~x, ~q) + rk, V (~x, ~q + ek)}, if cap(~x) < ck,
∑K

k=1 qk < B,

min{V (~x, ~q) + rk, V (~x + ek, ~q)}, if cap(~x) ≥ ck,
∑K

k=1 qk = B,

min{V (~x, ~q) + rk, V (~x, ~q + ek), V (~x + ek, ~q)}, otherwise,

with ek the vector with zeros and a one at the k-th entry. The terms
V (~x, ~q) + rk, V (~x, ~q + ek), and V (~x + ek, ~q) represent the value of reject-
ing, delaying, and admitting a patient, respectively. A similar result holds
when a patient no longer requires service so that home care capacity be-
comes available. In that case, a patient that is delayed can be taken into
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service. We denote by Hd the term that deals with the actions after a de-
parture of a patient given by: Hd(~x, ~q) =

min(
~x′,~q′
)
∈S

{
V (~x′, ~q′)

∣∣x′k ≥ xk for k = 1, . . . ,K,
K∑
k=1

(xk + qk) =
K∑
k=1

(x′k + q′k)

}
.

Note the Hd allows multiple patients to be admitted into the system, since
it could happen that a patient with a large service utilisation has left. This
event could free up capacity for multiple patients with a relatively small
demand for capacity. The first condition between the brackets ensures that
new patients are admitted, whereas the second condition makes sure that
the total number of patients in both situations are equal so that no patients
are rejected.

To fully control the system one needs a patient admission policy. This
policy can be determined if the relative value function is known. Let g de-
note the long-term average cost in the system. For simplicity we assume
that λ+Smax{k=1,...,K}{µk} < 1; without loss of generality, we can always
achieve this by scaling. The relative value function can now be determined
by solving the optimality equation (in vector notation) g +V = TV , where
T is the dynamic programming operator acting on V (~x, ~q) defined as fol-
lows

TV (~x, ~q) =
K∑
k=1

(xk + qk) +

K∑
k=1

λpkHa(~x, ~q, k) +

K∑
k=1

xkµkHd(~x − ek, ~q) +

(
1 − λ −

K∑
k=1

xkµk

)
V (~x, ~q).

The first term in the equality counts the number of patients in service and
on the waiting list. The second term models the arrivals of patients and
the optimal admission policy. The third term deals with the situation in
which a home care service ends and a patient departs the system. The last
term is the dummy term that follows from uniformisation of the system.

In the remainder of this section we study the optimal scheduling poli-
cies for the care-at-home problem. We distinguish between two cases: one
with no waiting room for arriving patients, and one with waiting room.
The case without waiting room has been studied in literature before in the
setting of bandwidth allocation in telecommunication systems. We pro-
vide an overview of the results in the literature for this case. The case with
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waiting room is inherently more complex and has been given little atten-
tion in the literature. We provide monotonicity results for this case and
characterise part of the optimal policy.

4.2.1 The case with no waiting room
In this section we analyse the care-at-home model that has been described
in the previous section. However, before studying the general model, we
first study the case with no waiting, i.e., B = 0. The optimality equations
then reduce to

g + V (~x) =
K∑
k=1

xk +

K∑
k=1

λpk

[
1{cap(~x)<ck}[V (~x) + rk] +

1{cap(~x)≥ck}min{V (~x) + rk, V (~x + ek)}
]

+

K∑
k=1

xkµkV (~x − ek) +

(
1 − λ −

K∑
k=1

xkµk

)
V (~x).

In case the policy is always to accept when possible, then the system re-
duces to the multi-rate blocking model. This is an extension of the Erlang
blocking model and has been well-studied in a telecommunications set-
ting. In this setting there is a certain amount of bandwidth (home care ser-
vice capacity) available that arriving Internet requests (patients) can use.
The Internet requests require part of the bandwidth (the number of hours
per week) for a certain duration (the number of weeks consecutively). The
model under this policy has a product-form solution for its steady-state
distribution. Thus, let ρk = λpk/µk for k = 1, . . . ,K. Then the probability
of being in state ~x ∈ S is given by π(~x) and has the form

π(~x) = π(x1, . . . , xK) =
1

G

K∏
k=1

ρxkk
xk!

with G =
∑
~x∈S

K∏
k=1

ρxkk
xk!

.

Let Sk denote the subset of states in which a call of class k is admitted to
the system, i.e., Sk = {~x ∈ X | cap(~x) ≥ ck}. Then the blocking probability
of a call of class k is given byBk = 1−

∑
~x∈Sk

π(~x). However, the numerical
evaluation can be a problem and the Kaufman-Robert recursion alleviates
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this problem. The long-term average cost g can then be efficiently calcu-
lated by g =

∑K
k=1Bkrk. The model with B = 0 which we study is an

extension of the multi-rate blocking model. Blocking a patient of class k
brings with it a cost of rk that can be different for each class. The optimal
policy with these different cost rates is usually different than the policy
used in the multi-rate blocking model.

In case ck ≡ 1 and µk ≡ µ, it is known that trunk reservation is opti-
mal (Miller [84]). However, in a more general setting, Ross and Tsang [95]
showed that the trunk reservation policy is not optimal anymore. Under
the assumption that ck ≤ ck+1 and µk ≥ µk+1, Altman et al. [4] derived a
stochastic ordering of the patient classes such that priority is given to the
patient class with the smallest index. If in addition we make the assump-
tion that rk ≤ rk+1, then it can be shown that the trunk reservation policy is
optimal again. The more general case with no assumptions has only been
studied in a fluid model, in which the authors showed the optimality of
trunk reservation.

4.2.2 The general case with a waiting room
In this section we treat the care-at-home model in which patients are al-
lowed to wait as well. This case is significantly more difficult than the
case previously discussed. Unlike the case with no waiting room, there is
very limited literature available on the care-at-home model with waiting
room. Therefore, we start with some structural properties of the relative
value function V , which gives us insight into the structure of the optimal
policy. We start by showing that V is an increasing function in all of its
components. This is formalised by the following lemma.

4.2.1. Lemma (increasingness). For all (~x, ~q) ∈ S and (~x + ek, ~q) ∈ S we have

V (~x + ek, ~q) ≥ V (~x, ~q),

for k = 1, . . . ,K. Similarly, for all (~x, ~q) ∈ S and (~x, ~q + ek) ∈ S we have

V (~x, ~q + ek) ≥ V (~x, ~q),

for k = 1, . . . ,K.
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Proof. The proof is by induction on n in Vn. Define V0(~x, ~q) = 0 for all
states (~x, ~q) ∈ S. Then, clearly, V0(~x, ~q) is increasing in all components of ~x
and ~q. Now, assume that the statement of the lemma holds for Vn for some
n ∈ N. Now, we prove that Vn+1(~x, ~q) satisfies the increasingness property
as well. Therefore, fix k ∈ {1, . . . ,K} and assume that (~x + ek, ~q) ∈ S, then

Vn+1(~x + ek, ~q) − Vn+1(~x, ~q) = 1 +

K∑
j=1

λpj
[
Ha(~x + ek, ~q, j) −Ha(~x, ~q, j)

]
+

K∑
j=1

xjµj
[
Hd(~x + ek − ej , ~q) −Hd(~x − ej , ~q)

]
+ µkHd(~x, ~q)

+

(
1 − λ −

K∑
j=1

(xj + 1{j=k})µj

)[
Vn(~x + ek, ~q) − Vn(~x, ~q)

]
− µkVn(~x, ~q).

The first term of the righthand-side equals 1, since that is exactly the dif-
ference in the number of patients in both systems. The second term deals
with the arrivals. Note that the optimal action in Ha(~x + ek, ~q, j) can be
used in Ha(~x, ~q, j) as well (possibly as a suboptimal action). In doing so,
we get that Ha(~x + ek, ~q, j) − Ha(~x, ~q, j) ≥ 0 due to the induction hypoth-
esis. The same holds for the term dealing with actions after departures.
The fourth term cancels the sixth term. For the fifth term the induction
hypothesis directly applies.

Now assume that (~x, ~q + ek) ∈ S, then

Vn+1(~x, ~q + ek) − Vn+1(~x, ~q) = 1 +

K∑
j=1

λpj
[
Ha(~x, ~q + ek, j) −Ha(~x, ~q, j)

]
+

K∑
j=1

xjµj
[
Hd(~x − ej , ~q + ek) −Hd(~x − ej , ~q)

]
+

(
1 − λ −

K∑
j=1

xjµj

)[
Vn(~x, ~q + ek) − Vn(~x, ~q)

]
.

The first term of the righthand-side equals 1, since that is exactly the dif-
ference in the number of patients in both systems. The second term deals
with the arrivals. Note that the optimal action in Ha(~x, ~q + ek, j) can be
used in Ha(~x, ~q, j) as well (possibly as a suboptimal action). In doing so,
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we get thatHa(~x, ~q+ek, j)−Ha(~x, ~q, j) ≥ 0 due to the induction hypothesis.
A similar remark holds for the next term with only a slight difference. In
case the optimal action in Hd(~x − ej , ~q + ek) serves qk + ek patients of type
k, then the (sub)optimal action in Hd(~x − ej , ~q) should serve qk patients
of type k. The resulting state will differ by 1 for xk while qk is equal and
so the induction hypothesis still applies. For the last term the induction
hypothesis directly applies.

We conclude, by taking the limit of n → ∞, that V (~x, ~q) is increasing
in xk and qk for all k = 1, . . . ,K. �

For the special case where all service needs of all classes of patients are
equal, we can give a very simple rule that gives optimal results. This rule
states that after a departure the patient with the smallest expected service
time is taken into service. This minimises the number of patients in the
system, and thus also the total rejection and holding costs.

4.2.2. Theorem. Assume that ck = 1 for all k = 1, . . . ,K. Suppose that µk >

µk+1. Then, the optimal scheduling policy schedules people with the smallest
index first.

Proof. Because the theorem only concerns actions taken just after a depar-
ture, only Hd needs to be taken into account. Also, because the number of
servers needed is equal for all types of patients, only one new patient will
be taken into service at the same time after a departure and no room needs
to be saved for patients with large service requirements. So what we need
to prove is that V (~x + ei, ~q − ei) ≤ V (~x + ej , ~q − ej) if i < j.

The proof is by induction on n in Vn. Define V0(~x, ~q) = 0 for all states
(~x, ~q) ∈ S. Then, clearly, V (~x + ei, ~q − ei) ≤ V (~x + ej , ~q − ej) holds for all
values of i and j. Now, assume that the statement of the theorem holds for
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Vn for some n ∈ N. Now, we prove that Vn+1(~x, ~q) satisfies the theorem as
well. Therefore assume that (~x + ei, ~q − ei), (~x + ej , ~q − ej) ∈ S, then

Vn+1(~x + ei, ~q − ei) − Vn+1(~x + ej , ~q − ej) = 0

+

K∑
k=1

λpk
(
Ha(~x + ei, ~q − ei, k) −Ha(~x + ej , ~q − ej , k)

)
+

K∑
k=1

xkµk
(
Hd(~x + ei − ek, ~q − ei) −Hd(~x + ej − ek, ~q − ej)

)
+ µiHd(~x, ~q − ei) − µjHd(~x, ~q − ej)

+
(
1 − λ −

K∑
k=1

xkµk
)(
Vn(~x + ei, ~q) − Vn(~x + ej , ~q − ej)

)
− µiVn(~x + ei, ~q − ei) + µjVn(~x + ej , ~q − ej).

The first term of the right-hand side is 0 since the total number of patients
present in the system is equal in both cases. The second term deals with
arrivals. The optimal action that is chosen inHa(~x+ei, ~q−ei, k) can also be
chosen in Ha(~x+ ej , ~q − ej , k), although it is not necessarily optimal. Then,
by the induction hypothesis, Ha(~x + ei, ~q − ei, k) −Ha(~x + ej , ~q − ej , k) ≥ 0.
The same goes for the third term dealing with departures, with the added
remark that in the case when in Hd(~x + ei − ek, ~q − ei) chooses to take qi
patients of type i in service, then in the other case qi − 1 patients of that
type should be taken into service. Then the induction hypothesis can be
applied. To the sixth term the hypothesis can be applied directly. For the
fourth, fifth, seventh and eighth term some rewriting is needed:

µiHd(~x, ~q − ei) − µjHd(~x, ~q − ej) − µiVn(~x + ei, ~q − ei) + µjVn(~x + ej , ~q − ej)

= −µi
(
Vn(~x + ei, ~q − ei) −Hd(~x, ~q − ei)

)
+ µj

(
Vn(~x + ej , ~q − ej)

−Hd(~x, ~q − ei)
)
.

We know that µi > µj . This is smaller than 0 because the difference be-
tween Vn(~x+ei, ~q−ei) and Vn(~x+ej , ~q−ej) or between taking a type i or type
j patient into service is smaller than the difference between Hd(~x, ~q − ei)
and Hd(~x, ~q − ej), the optimal action on departure of a type i or type j
patient respectively.

Then, by taking the limit of n→∞, V (~x + ei, ~q − ei) ≤ V (~x + ej , ~q − ej)
if µi > µj . �
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The next theorem shows that if the service requirements are equal for
all types of patients, it is never optimal to leave a patient in the queue
while there are servers available. So in this case the optimal policy will
be a work-conserving policy. This also follows from intuition, because to
minimise the number of patients present in the system you will serve them
as quickly as possible once they have been admitted.

4.2.3. Theorem. Assume that ck = 1 for all k = 1, . . . ,K. Then an optimal
policy will schedule patients in service while there are idle servers available.

Proof. We need to prove that upon arrival, if a server is available, the
patient will use this server. This means that we need that V (~x + ek, ~q) ≤
V (~x, ~q + ek).

Again this proof is by induction on n in Vn. Define V0(~x, ~q) = 0 for all
states (~x, ~q) ∈ S. Then of course V0(~x + ek, ~q) ≤ V0(~x, ~q + ek) holds. Now
assume the proposition holds for some n ∈ N. Now we prove that for n+ 1
the statement holds as well. For n + 1 we have

Vn+1(~x, ~q + ek) − Vn+1(~x + ek, ~q) =

K∑
j=1

λpj
(
Ha(~x, ~q + ek, j) −Ha(~x + ek, ~q, j)

)
+

K∑
j=1

xjµj
(
Hd(~x − ej , ~q + ek) −Hd(~x + ek − ej , ~q)

)
− µkHd(~x, ~q)

+
(
1 − λ −

K∑
j=1

xjµj
)(
Vn(~x, ~q + ek) − Vn(~x + ek, ~q)

)
+ µkVn(~x + ek, ~q).

The first term concerns the arrivals. It is easily seen that when taking the
same action in the second part as is optimal in the first part, the term
satisfies the statement using the induction hypothesis. The second term
deals with actions after departures. Because of the induction hypothesis,
as many patients as possible are taken into service. This means that the re-
sulting state will be the same in both cases, and the second term is equal to
zero. To the fourth term the induction hypothesis can be applied directly.
The third term is smaller than the fifth term as a result of Lemma 4.2.1.
This means that Vn+1(~x, ~q + ek) − Vn+1(~x + ek, ~q) ≥ 0 and the proof is com-
plete. �
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4.2.3 Numerical experiments
In this section we perform numerical experiments to illustrate the results
of the previous sections. We discuss how the optimality equations have
been solved efficiently to derive the optimal policies numerically. We start
with a discussion on parallelisation of the implementation that has been
crucial to the computations.

Parallelisation
In order to accommodate for the heavy use of memory when using value
iteration, the dynamic program has been parallelised with MPI so that it
can be run on the DAS-3 cluster computer [32]. However, this is not a
straightforward procedure.We now explain how this was done and how
parallelisation yields a gain in performance.

The calculation steps in value iteration are very similar to the steps
used in Successive Overrelaxation (SOR). The SOR algorithm is used for
calculating the value of a stable state in a two-dimensional matrix, in
which the edges are given an initial value, and the other points are cal-
culated using their neighbouring values. The total workload is divided
block-wise over the available processors of the cluster computer, limit-
ing the inter-processor communication to the neighbouring rows of these
blocks. Using this scheme, each processor only needs a fraction of the
data. The main difference between the SOR algorithm and our value iter-
ation algorithm is that the matrix in our problem is not two-dimensional.
This shifts the focus from computation speed to memory use. In fact, for
K = 4 and B = 13, the memory requirements are about 45 Gigabytes
(assuming that the relative value function evaluated in a particular state
requires a double to store its value).

The parallel program has been engineered to make optimal use of the
memory while retaining most of the computational speed. In the value
iteration algorithm, new values of the relative value function are commu-
nicated and stored directly into the neighbouring blocks, without the use
of additional communication buffers. Overall, the parallel version of value
iteration uses significantly more memory than the sequential version, be-
cause some values in a block need to be replicated. The sequential pro-
gram has a memory usage Useq that is roughly of the size

Useq = 2 × 16 × (max{B,S} + 1)2K bytes. (4.4)
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The parallel version needs additional 2 × 16 × (maxB,S)2K−1 bytes per
processor for communication. While this increases the memory usage a
bit, the parallel version allows us to divide this memory in blocks over
the available processors. The memory requirements Upar of the parallel
version with p processors is then given by

Upar =
Useq + 2 × 16 × p × (max{B,S} + 1)2K−1

p
bytes. (4.5)

Figure 4.1 illustrates the memory requirements for various problems with
a state space that has eight dimensions. Similarly, Figure 4.2 shows the
speedup in computation time as more processors are utilized in the cluster
computer.

CPUs problem size Useq Upar

(×100, 000) (in Gb) (in Gb)

4 0.65 0.002 0.001

5 3.91 0.012 0.004

10 1,000.00 3.050 0.610

12 4,300.00 13.120 2.190

13 8,157.00 24.894 3.830

14 14,758.00 45.040 6.430
 0

 10000

 20000

 30000

 40000

 50000

 0  2  4  6  8  10  12  14M
em

or
y 

us
e 

pe
r p

ro
ce

ss
or

 (i
n 

m
eg

ab
yt

es
).

Index size for a four-class delay model.

Memory use measurements of a delay model with MPI.

Sequential
Parallel

Figure 4.1: Memory requirement for various eight-dimensional problems

CPUs time speedup

1 64.17 0.00

2 57.81 1.11

4 32.29 1.99

8 18.60 3.45

16 11.07 5.79

32 5.87 10.94
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Figure 4.2: Results of the speedup for a four-dimensional problem, S = 32
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In this section we describe some experiments we did to show how the
model performs. For both the case with and without a waiting room we
have performed experiments with the same parameters with regard to de-
mand and number of servers available, so as to make the two cases com-
parable.

Scenario analysis
In the remainder of this subsection, we describe several scenarios and
compare the results and analyse the structure of the optimal policy. The
scenarios we consider are given in Table 4.1. We keep the number of arriv-
ing patients and the total workload offered (almost) the same, but increase
the number of different classes of patients, with the number of servers re-
quested for each class equal to the class number. This approach will enable
us to study the influence of the variability of patient demand on the per-
formance of the system. The scenarios also reflect the fact seen in practice
that patients requiring more time per week tend both to be more rare and
to have a longer service time. As these patients are also generally more
urgent, they also have higher rejection costs.

In the results we can see that the average cost when using the optimal
policy increases with the variation in service requirements of the patients.
This is of course to be expected, because reservation of larger numbers of
servers is necessary for patients that need a larger number of servers, and
this causes other patients to wait for a longer period of time. However, the
increase in cost is not as high as might have been expected.

Table 4.2 also shows the results for our heuristic, which is the best
trunk reservation policy. With a trunk reservation policy we mean a policy
in which some patient classes are blocked as a certain number of servers
are occupied. For each patient class but the one with the highest priority
there is such a threshold. As can be seen the relative difference in average
cost between the optimal policy and the best trunk reservation policy is
very small. This means that the trunk reservation policy is a very good
practical alternative to the optimal policy, as it is almost as good but much
easier to compute, visualise and implement.

One last remark we want to make is a point about actions taken upon
departure of a patient. If a patient who uses a high number of servers
leaves the system, it is possible to take into service a number of patients
with lower service requirements. This can be seen in the expression forHd.
However, from our experiments it has become clear that the average cost
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scenario pk ck βk = 1/µk rk scenario pk ck βk = 1/µk rk

1 0.7 1 22 1 5 0.2 1 1 1

0.3 2 28 2 0.2 2 2 2

2 0.5 1 10 1 0.1 3 2 3

0.3 2 20 2 0.1 4 2 4

0.2 3 25 3 0.05 5 5 5

3 0.3 1 5 1 0.05 6 5 6

0.2 2 10 2 0.05 7 5 7

0.2 3 12 3 0.05 8 5 8

0.2 4 15 4 0.05 9 5 9

0.1 5 15 5 0.03 10 5 10

4 0.2 1 2 1 0.03 11 10 11

0.2 2 3 2 0.03 12 10 12

0.1 3 5 3 0.03 13 10 13

0.1 4 5 4 0.03 14 15 14

0.1 5 5 5 0.03 15 15 15

0.1 6 5 6

0.05 7 10 7

0.05 8 10 8

0.05 9 15 9

0.05 10 15 10

Table 4.1: Scenarios for experiments with λ = 5.

does not increase significantly if it is assumed that at most one new patient
is taken into service after a departure. The optimal policy differs only in
very few cases, and then only at the boundaries of the state space. It does
however speed up the computation significantly to make this assumption.

4.3 Rehabilitation model: Approximate Dynamic

Programming

In this section and the next one we study the extended model with more
than one specialty. For this more general model, the approach of the previ-
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scenario optimal heuristic

1 27.611 0.52%

2 31.408 0.78%

3 31.593 0.83%

4 37.884 1.30%

5 38.778 1.82%

Table 4.2: Results for the different scenarios

ous section will not work as well, because there is more information in the
state space. Aggregating too much leads to bad results, and without this
aggregation the state space is not reduced enough to make for a tractable
model. For this reason, we use two different approaches that do work well
for this more extended case. In this section we use a method that replaces
one step by an approximation. In the next section we describe a stochastic
programming method that changes the stochastic aspects of the model to
make the problem deterministic.

The model described in Section 4.1 gives a complete description of the
system dynamics and also provides a recipe to obtain the optimal state-
dependent actions. However, the recipe is numerically intractable, since
the state space is of order NK × {0, . . . , N}K×r. The memory requirements
for already moderate values of K, N , and r become the bottleneck and
prohibit the derivation of the optimal policy.

In this section, we develop an approximate dynamic programming al-
gorithm which does not suffer from the dimensionality problem of the
original problem formulation. In principle, one can apply sophisticated
approximate dynamic programming techniques to achieve this by exploit-
ing structural properties of the relative value function (such as increasing-
ness, convexity, sub/supermodularity, etc.). However, it has already been
shown that there is little structure in the relative value function, since the
problem can be reduced to a stochastic knapsack problem (when r = 1
and M = 1) that does not have these structural properties either (see,
e.g., Ross and Tsang [95] and Altman et al. [4]). Therefore, we adopt the
approach outlined in Powell [92] to derive an efficient algorithm which
yields near-optimal results. This means there is a trade-off in the com-
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putational complexity and the quality of the resulting policy. In order to
study this trade-off in more detail, we now present our description of the
approximation.

In the optimality equation (4.1) we modelled the system dynamics
through the transition probabilities whenever an action is taken. The tran-
sition probabilities model the new state ~s′ after an action a has been ap-
plied in state ~s. However, there is an intermediary state, the so-called
post-decision state ~̃s, before reaching the final ~s′. The post-decision state is
the state just after an action has been taken, but before any other event has
occurred. The post-decision state provides a new way to look at the de-
cision problem such that the dimensionality can be handled. The method
consists of five steps.

(1) Start with a pre-decision state ~s.

(2) Solve the deterministic optimisation problem using an approximate
value function:

ṽ(~s) = min
~a

{ K∑
k=1

akqk +

K∑
k=1

r∑
i=1

xki + V (~̃s |~s,~a)
}
, (4.6)

where ~a is the decision vector that is allowed in state ~s.

(3) Update the value function approximation V (~̃s) by

(1 − α)V (~̃s) + αṽ(~s). (4.7)

(4) Obtain a Monte Carlo sample using the transition probabilities to
generate the next pre-decision state ~s′.

(5) Return to step 1.

In our case, in step (1) we start with an empty system as pre-decision
state. Our initial form for V (~s) is given by V (~s) =

∑K
k=1 akqk +∑K

k=1

∑r
i=1 xki, which represents the direct costs. This choice is based

upon a first-order guess of the relative value function, which does reflect
the costs that are obtained in the different states. In step (3) we use an up-
date rule based on the bias-adjusted Kalman filter. This results in adaptive
step sizes αn based on n data points that are given by

αn = 1 −
σ2

(1 + θn)σ2 + βn
, (4.8)
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where σ2 is the variance of the observation noise, and βn is the bias mea-
suring the difference between the current estimate of the value function
and the true value function. The values of θn can be recursively computed
by

θn =

{
α2
n−1, n = 1,

(1 − αn−1)2θn−1 + α2
n−1, n > 1.

(4.9)

In step (4) we draw randomly the next event according to the transition
probabilities to determine the next pre-decision state.

The advantage of using the post-decision variable in the optimisation
is that the problem instance now belongs to the realm of combinatorial
optimisation. This can be done very efficiently. In the next section, we
study the performance of this algorithm with respect to the optimal policy.

4.3.1 Numerical results
We evaluate the performance of our approximations extensively by nu-
merical experiments. We do this by comparing the long-run average costs
to the performance of the optimal policy (OPT) and to the performance
of the approximate dynamic programming algorithm (ADP). We gener-
ate 100 random instances for different parameter values and compare the
performance of these algorithms.

First, we describe the setup of the experiments. We look at a problem
withK = 2 patient types andM = 2 disciplines, respectively. In all cases we
have that λ is uniformly drawn from [1, 5]. Service durations are Gamma
distributed with mean µi in [8, 15], which is then approximated by a Cox(5)
distribution using the EM-algorithm described by Asmussen et al. [9] to
obtain the parameters used in model (4.1). The probability pk is random
and drawn from [0, 1]. The factors ckm are also drawn from a set of fixed
values (of which the parameters are outlined below between brackets) and
determine the factors ak by ak =

∑M
m=1 c

k
m/µk. The other settings are

given by

(C1, C2) = (20, 20) and c =

(
1 {0, . . . , 3}

{0, . . . , 3} 1

)
,

where {·} denotes a set from which uniformly a value is drawn. We ran-
domly generate 100 parameter settings.



98 Chapter 4: Admission control for health care

1
2

3
4

5
6

comparison w.r.t. OPT

ADP

Figure 4.3: Comparison of the ADP algorithm for different settings.

Figure 4.3 shows the comparison of the different algorithms for these
settings. The relative difference between the two algorithms is listed on
the y-axis and is computed as

performance(ADP) − performance(OPT)
performance(OPT)

.

In the boxplot, the thick line represents the median, surrounded by the
25% and the 75% quartile. This range is also called the IQR, the inter-
quartile range. The whiskers represent the 1.5 · IQR range (cut off by the
last point that falls into that range) in which most of the points fall. In
case the points do not fall into this range, the points can be considered as
outliers.

In order to assess the quality of the ADP in a different manner, we also
compare the relative difference of the ADP to the performance of Ordinal
Optimisation (OO) methods (see Ho et al. [64]). The idea in ordinal op-
timisation is to randomly generate policies (drawn uniformly), say a 100
policies, and assess their performance by simulation. When the perfor-
mance is sorted and a graph is drawn, the shape of the curve provides a
clear indication of the difficulty of the problem. E.g., a shape that follows
a square-root shape denotes that in the policy space there are a few good
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Figure 4.4: Comparison of the ADP algorithm with OO.

policies as compared to the majority of other policies; hence, the problem
is hard. An inverted square-root shapes usually denotes that the problem
is insensitive to minor change in the policy as many policies have similar
performance.

We apply the ordinal optimisation technique in our example as well.
We randomly generate 100 policies which are drawn as follows. In each
state ~swe determine the setA~s of all allowed actions. A policy is drawn by
drawing uniformly an action from A~s for each state. We include to the set
of 100 policies also the policy that is generated from the ADP algorithm as
first policy. This allows us to compare the results of OO with the ones ob-
tained from ADP. Figure 4.3.1 displays the relative difference of the ADP
and OO results. As the shape of curve shows, this admission control prob-
lem belongs to this set of hard problems in which very few good policies
exist.

The figures clearly show that ADP consistently has a very good per-
formance with little variance. The average deviation with respect to OPT
is less than 3% over the whole range of the experiments. Unfortunately,
the comparison cannot be done for larger systems as the optimal policy is
already numerically intractable for larger systems. However, the approxi-
mate dynamic programming method is scalable and is shown to have very
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good performance, making it an excellent alternative to control larger sys-
tems.

4.4 Alternative: stochastic programming approach

In this section we address the home care scheduling problem from Sec-
tion 4.3 using stochastic programming. The model formulation is the same
as the one used in the previous section. This method addresses the prob-
lem of the state space dimensionality by reducing the complexity in the
model by replacing the stochasticity with scenarios. This gives us the op-
portunity to generate near-optimal solutions because all patient informa-
tion is retained in the model. The method can also scale well for large
problem instances.

Stochastic programming (SP) is an approach for solving optimisation
problems under uncertainty, which uses distributional information on the
random parameters involved. The goal of this method is to find a solution
to the problem at hand that is feasible for almost all realisations of the ran-
dom process and at the same time maximises or minimises the expectation
of some criterion function. A general introduction to the field of stochastic
programming is given by Ruszczyński and Shapiro [96]. Stochastic pro-
gramming is applied to stochastic scheduling by Birge and Dempster [20],
who investigate approximations at different levels of the decision hierar-
chy. Examples of other applications are power production and trading,
see Schultz et al. [97], and revenue management, see Haensel et al. [58].

We will first introduce the stochastic programming formulation, and
then we give some numerical examples to show the effectiveness of the
method.

4.4.1 Stochastic programming formulation
In this section, we reformulate the Markov decision model into a stochastic
programming model such that the detailed information on patient charac-
teristics is used while retaining tractability of the model. The key idea in
doing so is to remove the stochasticity in the Markov decision model by
studying realisations of the stochastic variables in the process. These re-
alisations are called scenarios. For each scenario, the problem becomes a
deterministic problem that can be solved in a mathematical programming
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setting. By studying several scenarios, the influence of the nature of the
replaced variables can be studied so that a robust policy can be obtained.

Before going to the stochastic programming formulation, we sum-
marise the notation that we used in the previous section. Note that some
variables are slightly reformulated, and that some variables have a more
general definition.

• K ∈ N – number of patient types

• M ∈ N – number of treatment disciplines

• T ∈ N – considered time horizon (in weeks)

• µ ∈ NM – estimated treatment duration per patient type (in whole
weeks)

• c ∈ RM×K – patient type × discipline matrix

• cap ∈ RT×K – capacity per discipline and time stage

• α ∈ RK – importance weight per patient type
αk = µk ·

∑M
m=1 cm,k, ∀k = 1, . . . ,K

In our stochastic programming setting, we model the stochastic patient
arrival process as a discrete-time stochastic process on a probability space
(Ω,F , P ). We approximate the random arrival process per time unit and
patient type by a sample of S demand scenarios ds ∈ NT×K , s = 1, . . . , S,
each being realised with probability πs. The duration of the treatment is
random as well and we model this randomness by a set of L possible per-
turbation factors Λk,l each realised with probability λk,l (k = 1, . . . ,K and
l = 1, . . . , L). To illustrate this with a small example: Consider two patient
types with µ = {2, 4}. Three possible treatment duration perturbations
(L = 3) could be given by:

Λ =

(
−1 0 1
−2 0 2

)
, and λ =

(
0.3 0.4 0.3
0.25 0.5 0.25

)
.

This means that patients of type 1 have a treatment duration of one week
(= µ1+Λ1,1 = 2+(−1)) with probability 0.3, with probability 0.4 two weeks
and with probability 0.3 a treatment duration of three weeks.
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Patient scheduling model without waiting queues
We first model the system with no queues, i.e., arriving patients are either
taken into treatment or rejected upon arrival. The objective of the model
is to minimise the number of rejected patients, where each patient type is
weighted according to its importance factor α. The objective then takes
the following form

minimise
S∑
s=1

πs ·
T∑
t=1

K∑
k=1

αk · rs,t,k, (4.10)

where rs,t,k denotes the number of rejected patients of type k in scenario s
at time t.

At each time stage, arriving patients are either accepted and taken into
treatment or they are rejected:

as,t,k + rs,t,k = ds,t,k, ∀s = 1, . . . , S, t = 1, . . . , T, k = 1, . . . ,K,
(4.11)

where as,t,k denotes the accepted patients of type k in arrival scenario s at
time t, and rs,t,k denotes the rejected patients.

The decision or control variable is the acceptance limit ut,k, which is de-
fined as the maximum number of patients of type k to be accepted (taken
into treatment) at time t. Thus, the following constraint needs to be ful-
filled:

as,t,k ≤ ut,k, ∀s = 1, . . . , S, t = 1, . . . , T, k = 1, . . . ,K. (4.12)

We define OldPatt1,k as the number of patients of type k who are already
in treatment at time t1: (∀t1 = 1, . . . , T,∀k = 1, . . . ,K) by

OldPatt1,k ≥
L∑
l=1

t1−1∑
t2=t1−µk+Λk,l+1

λk,l · ut2,k. (4.13)

The variable UsedDist,k,m denotes the number of expected units of disci-
pline m which are in use by patient type k at time t: (∀t = 1, . . . , T, ∀k =
1, . . . ,K, ∀m = 1, . . . ,M ) and is defined by

UsedDist,k,m = (ut,k + OldPatt,k) · ck,m. (4.14)
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The total number of used discipline quantities at each time t is constrained
by the available capacity modelled as

K∑
k=1

UsedDist,k,m ≤ cap(t,m), ∀t = 1, . . . , T, m = 1, . . . ,M. (4.15)

Finally, we have some non-negativity and integrality conditions

ut,k,UsedDist,k,m ∈ N, ∀s, t, k,m, (4.16)
ut,k, as,t,k, rs,t,k ≥ 0, ∀s, t, k,m. (4.17)

Since we start with an empty system, we need to force

ut,k = 0, ∀t ≤ 0, ∀k, (4.18)
as,t,k = 0, ∀t ≤ 0, ∀s, k, (4.19)

OldPat1,k = 0, ∀k. (4.20)

As output of the optimisation model, we obtain the optimal acceptance
policy ût,k for each patient type at each time. We can further retrieve the
expected capacity utilisation per discipline and time, as well as the result-
ing rejections for each patient arrival scenario ds.

Patient scheduling model with a queue per patient type
In a system with a queue no patient is completely rejected. Patients are
entering their designated queue (per patient type) and within each queue
we work with a FCFS acceptance policy only constrained by the accep-
tance limit ut,k per time and patient type. To model the queue we need
to introduce an additional variable Qs,t,k, which denotes the queue size in
scenario s at time t for patient type k.

The accept-reject constraints in (4.11) have to be extended with the
queue variable. Patients which are not taken into service at time t − 1,
represented by rs,t−1,k, are now blocked from the start of treatment at t − 1
but remain in the system (∀s = 1, . . . , S, ∀t = 1, . . . , T,∀k = 1, . . . ,K).
Hence, we have

Qs,t,k = rs,t−1,k + ds,t,k, (4.21)
Qs,t,k = as,t,k + rs,t,k. (4.22)
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So the full program with a queue takes the following form:
objective function

minimise
S∑
s=1

πs ·
T∑
t=1

K∑
k=1

αk · rs,t,k (4.23)

subject to (∀s = 1, . . . , S, ∀t = 1, . . . , T,∀k = 1, . . . ,K, ∀m = 1, . . . ,M )

Qs,t,k = rs,t−1,k + ds,t,k (4.24)
Qs,t,k = as,t,k + rs,t,k (4.25)
as,t,k ≤ ut,k (4.26)

OldPatt1,k ≥
L∑
l=1

t1−1∑
t2=t1−µk+Λk,l+1

λk,l · ut2,k (4.27)

UsedDist,k,m = (ut,k + OldPatt,k) · ck,m (4.28)
K∑
k=1

UsedDist,k,m ≤ cap(t,m) (4.29)

ut,k,UsedDist,k,m ∈ N (4.30)
ut,k, as,t,k, rs,t,k, Qs,t,k ≥ 0 (4.31)

For a start with an empty system at t = 1, we need to force additional
constraints

ut,k = 0, ∀t ≤ 0, ∀k,
as,t,k = 0, ∀t ≤ 0, ∀s, k,

OldPat1,k = 0, ∀k,
rs,0,k = 0, ∀s, k.

The current formulation does not distinguish between waiting times
of patients in the queue, i.e., there is no difference between the case of ten
patients waiting one week or one patient waiting ten weeks. Obviously,
we would like to distinguish between these two cases. Therefore, we ex-
tend the model so that we can differentiate waiting patients to a certain
level. Waiting patients are divided into two groups, patients waiting one
week and patients waiting two weeks or more.

We introduce an additional variable LongWaits,t,k, which denotes the
number of patients of type k at time t in scenario s who have been waiting
at least at time t − 1 and t. This is mathematically expressed by
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LongWaits,t,k = max{0, rs,t−1,k − as,t,k}. (4.32)

In order to solve the problem with standard MIP solving techniques,
we need to linearise the maximum constraint at the cost of additional
variables. Hence, Equation (4.32) is rewritten as (∀s = 1, . . . , S, ∀t =
1, . . . , T,∀k = 1, . . . ,K)

LongWaits,t,k − ẑs,t,k = rs,t−1,k − as,t,k, (4.33)
LongWaits,t,k − žs,t,k = 0, (4.34)

0 ≤ ẑs,t,k ≤ (1 − zs,t,k) · κ, 0 ≤ žs,t,k ≤ zs,t,k · κ, (4.35)
zs,t,k ∈ {0, 1}, (4.36)

with κ being a sufficiently large constant. The optimisation model is now
able to distinguish between patients waiting only one time stage in the
queue or two and more. A further differentiation of waiting times is pos-
sible by a repetition of the same approach and at the cost of introducing
additional variables.

The problem formulation enables us to solve the problem with respect
to two objective functions:

Objective 1: Minimising the number of waiting patients in the queue:

minimise
S∑
s=1

πs ·
T∑
t=1

K∑
k=1

αk · rs,t,k. (4.37)

Objective 2: Minimising the number of patients in queue waiting for two
time stages or longer:

minimise
S∑
s=1

πs ·
T∑
t=1

K∑
k=1

αk · LongWaits,t,k. (4.38)
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Both objectives are subject to the following constraints:
(∀s = 1, . . . , S, ∀t = 1, . . . , T,∀k = 1, . . . ,K, ∀m = 1, . . . ,M )

Qs,t,k = rs,t−1,k + ds,t,k (4.39)
Qs,t,k = as,t,k + rs,t,k (4.40)
as,t,k ≤ ut,k (4.41)

LongWaits,t,k − ẑs,t,k = rs,t−1,k − as,t,k (4.42)
LongWaits,t,k − žs,t,k = 0 (4.43)

0 ≤ ẑs,t,k ≤ (1 − zs,t,k) · κ, 0 ≤ žs,t,k ≤ zs,t,k · κ (4.44)
zs,t,k ∈ {0, 1} (4.45)

OldPatt1,k ≥
L∑
l=1

t1−1∑
t2=t1−µk+Λk,l+1

λk,l · ut2,k (4.46)

UsedDist,k,m = (ut,k + OldPatt,k) · ck,m (4.47)
K∑
k=1

UsedDist,k,m ≤ cap(t,m) (4.48)

ut,k,UsedDist,k,m ∈ N (4.49)
ut,k, as,t,k, rs,t,k, Qs,t,k ≥ 0 (4.50)

4.4.2 Numerical Examples
In this section, we evaluate the performance of our stochastic program-
ming model by numerical experiments. We also evaluate the complexity
of the models under both the objectives (4.37) and (4.38). The computation
is performed by FICO Xpress-IVE 1.20.01 (optimizer version 20.00.05). We
first start with describing our input data.

Input data
As illustrative example, we consider a model with 2 patient types, 3 treat-
ment disciplines, a planning period of 10 weeks, and 3 demand scenarios.
The estimated treatment duration per patient type is given by the vector
µ, the perturbation factors by Λ with corresponding probability λ, and
the available capacity by ct. The number of perturbations L and the cor-
responding values and probabilities need to be estimated from historical
patient data; for the sake of illustration we work with L = 3.
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K = 2, M = 3, T = 10, S = 3,

µ =
(

2 3
)
, Λ =

(
−1 0 1
−1 0 1

)
, λ =

(
0.3 0.4 0.3
0.25 0.5 0.25

)
.

The available capacity per discipline is equal for all times stages t and
given by

capt,· =
(

40 40 10
)
, ∀t = 1, . . . , T.

The patient type × discipline matrix is

c =

(
1 3 1
2 2 0

)
.

The patient arrival scenarios are generated by Monte Carlo simulation,
where the arrival process of patients of type one (k=1) is assumed to be
Poisson(3) distributed and the arrivals of patients of type 2 (k=2) are as-
sumed to follow a Poisson(5) distribution.

Results
First, we solve the stochastic programming problem with no waiting
queues, as described in Section 4.4.1. The problem is solved for several
S values, in the range between 3 and 160. The results of the test are shown
in Figure 4.5.

The objective values (objval) computed by the SP model (4.10) are com-
pared with simulation results. The simulated objective values are obtained
by applying the computed acceptance levels u in a patient simulation tool
and iterating 10,000 times. We find that the best acceptance level is al-
ready computed with S = 20, as seen in the fourth plot which compares
the simulation results with the best simulation result over all test cases.
The gap between the computed and simulated objective value is gener-
ally decreasing in the number of considered scenarios S. The computation
times naturally increase in S. However, we observe only a small growth
until S = 130 and afterwards a larger increase in computation time.

The optimal S depends on the actual considered problem and the
choice of S requires some testing. A common way to reduce the number
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Figure 4.5: Results of SP without waiting queues for different S values.

of considered scenarios in the optimisation model without losing distribu-
tional information, is to apply scenario reduction algorithms, as discussed
in Heitsch and Römisch [62]. Such algorithms create scenario trees by
deleting scenarios with small Kantorovic distances to its neighbours and
add their probability to the closest neighbour scenario. Such algorithm
and their application are out of the scope of this chapter. In the following,
we will work with S = 10.

Let us now concentrate on solving the SP problem with waiting
queues. We start with the objective function (4.37), which minimises the
total number of patients waiting in the queue.

# constraints = 1540, # variables = 1525,
Obj Value = 742, comp. time = 41.4 sec.

The results are shown in Table 4.3–4.5. The expected waiting times for
patients of type one is 1.46 time stages and for patients of type two 0.58
time stages. The distribution of the estimated patients per waiting time
are given in Table 4.4. The expected capacity utilisation per discipline and
time is given in Table 4.5.
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t ut,1 ut,1 AQS k = 1 AQS k = 2 ANLW k = 1 ANLW k = 2

1 4 6 0 0.7 0 0

2 2 6 0.6 0.7 0 0

3 2 2 1.1 4.2 0 0.1

4 2 6 1.8 2.6 0 0.3

5 2 5 2.6 2.5 0.4 0.5

6 2 4 4.1 2.6 1.1 0.8

7 2 4 5.5 4.1 2.6 0.7

8 2 5 6.6 3.9 3.7 0.9

9 2 5 7.8 3.6 4.8 1.1

10 0 7 11.1 2.6 7.8 0.9

Table 4.3: Results of optimisation run 1, w.r.t. objective (4.37).
Abbreviation: AQS - average queue size, ANLW - average number of long

waiting patients

If we solve the SP problem with respect to objective function (4.38) -
minimising the number of long waiting patients:

# constraints = 1540, # variables = 1525,
Obj Value = 247.6, comp. time = 530 sec.

The results are shown in Table 4.6-4.8. The computation time increases by
almost a factor of 13, compared to objective (4.37). This can be explained
by the fundamental increase in complexity, because the LongWait vari-
ables and thus the binary z variables are now directly influencing the ob-
jective function. The expected waiting times for patients of type one is 1.26
time stages and for patients of type two 0.85 time stages. The distribution
of the estimated patients per waiting time are given in Table 4.7. The ex-
pected capacity utilisation per discipline and time is given in Table 4.8.

The performance of the stochastic programming algorithm is very
good with low running times. In fact, the algorithm is scalable enough
for practical purposes, whereas the Markov decision problem is already
intractable for this example.
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patient type k = 1 patient type k = 2

wait 0: 2.48 8.45

wait 1: 3.07 5.64

wait 2: 1.82 1.62

wait 3: 1.22 0.07

wait 4: 0.56 0

wait 5: 0.2 0

wait 6: 0 0

wait 7: 0 0

wait 8: 0 0

wait 9: 0 0

wait 10: 0 0

Table 4.4: Expected number of patients and waiting time, generated by the

results of optimisation run 1 - objective (4.37).

4.5 Conclusions and further research

In this chapter we have discussed and studied a model for home and reha-
bilitation care, used to prioritise admissions of patients of different types.
We formulated the model as a Markov decision problem. Because of the
large size of the state space, approximations are necessary to obtain re-
sults. The home care model is a special case of the more general model for
rehabilitation care. The difference lies in the fact that for home care there
is only one specialty. For this case we were able to prove some mono-
tonicity properties of the value function, and the structure of the optimal
policy for some cases. The experiments showed that a simple trunk reser-
vation model gives very good results. Both for this heuristic and for the
optimal policy, computation times were quite short. For obtaining the op-
timal policy parallel computing was used to handle to the large memory
requirements.

For the more general model with more than one specialty, there are
no longer any nice structural properties. Neither will obtaining the opti-
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t m = 1 m = 2 m = 3

1 0.31 0.42 0.23

2 0.54 0.7 0.31

3 0.59 0.78 0.36

4 0.71 0.89 0.36

5 0.75 0.93 0.37

6 0.76 0.94 0.38

7 0.73 0.92 0.39

8 0.74 0.93 0.39

9 0.79 0.99 0.39

10 0.82 0.92 0.2

Table 4.5: Expected capacity utilisation per discipline, generated by the

results of optimisation run 1 - objective (4.37).

mal policy be possible, because parallelisation will not reduce the memory
requirements enough. Instead, we studied two different approximation
approaches, that both show good results.

The first approach uses stochastic programming. We have shown that
the stochastic programming formulation works well and has the poten-
tial to scale while retaining short computation times. The second method
uses approximate dynamic programming with good results. This is also
scaleable in the problem instance. In both cases simulations were used
to compare the performances with, as deriving an optimal policy is not
possible.

There are some additions to the model that are interesting to address
in future work. One of these is that in practice patient needs may change
over time while they are in service. In general, patients need less inten-
sive treatment when their condition progressively improves. Adding this
to the model would mean that patients are allowed to change their type
while residing in the system.

An extension that would be especially useful for the home care prob-
lem is that of different skill levels. This means that there are employees
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t ut,1 ut,1 AQS k = 1 AQS k = 2 ANLW k = 1 ANLW k = 2

1 4 6 0.4 1.9 0 0

2 2 6 0.6 1 0 0

3 2 2 1.4 4.7 0 0.1

4 2 6 1.9 3.3 0 0.3

5 2 5 2.7 2.8 0.4 0.5

6 2 4 4.1 2.6 1.1 0.8

7 2 4 5.7 4.3 2.6 0.7

8 3 4 5.8 5.1 2.9 1.4

9 3 3 6.3 7 3.2 2.5

10 3 4 6.7 7.8 3.4 3

Table 4.6: Results of optimisation run 2, w.r.t. objective (4.38).
Abbreviation: AQS - average queue size, ANLW - average number of long

waiting patients

with different skill levels, and patients need a minimum skill level but per-
sonnel with a higher level can also perform that care, if at a higher cost.
This works differently from the general model for rehabilitation care, be-
cause in that case each type of care can only be performed by one specialty,
so at the moment this is not taken into account.

Another point to make the model more suitable for practice would be
to consider other performance measures, for example the percentage of
patients that wait more than a certain length of time. This might be a
better target for the optimal policy, since the mean waiting time gives no
information on the variability in the waiting times for individual patients.
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patient type k = 1 patient type k = 2

wait 0: 2.08 5.48

wait 1: 4.16 7.62

wait 2: 1.88 2.28

wait 3: 1.06 0.4

wait 4: 0.16 0

wait 5: 0 0

wait 6: 0 0

wait 7: 0 0

wait 8: 0 0

wait 9: 0 0

wait 10: 0 0

Table 4.7: Expected number of patients and waiting time, generated by the

results of optimisation run 2 - objective (4.38).

t m = 1 m = 2 m = 3

1 0.24 0.33 0.19

2 0.53 0.69 0.32

3 0.58 0.76 0.35

4 0.71 0.89 0.37

5 0.76 0.95 0.38

6 0.78 0.98 0.39

7 0.74 0.93 0.38

8 0.72 0.95 0.48

9 0.66 0.92 0.53

10 0.68 0.96 0.57

Table 4.8: Expected capacity utilisation per discipline, generated by the

results of optimisation run 2 - objective (4.38).
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Time constraints in emergency departments 5
Emergency departments (EDs) are important to a hospital for a number of
reasons. A large part of the patients enter the hospital after a visit to the
ED. They arrive without any appointment, and require more prompt at-
tention than elective patients. Good access to the ED is both important for
the patient and for the hospital as ED congestion leads to patients aban-
doning (or leaving without being seen) and ambulances rerouting to other
hospitals.

One of the most important factors of patient satisfaction is the time
they spend waiting in the emergency department. Also patient safety and
personnel productivity are heavily influenced by the waiting time in the
ED, see for example Derlet and Richards [36]. In many countries, emer-
gency departments have a set-hour target in which they have to treat pa-
tients and then either admit them to a ward or discharge them. In the
Netherlands this target is four hours. In general, EDs distinguish between
two or more classes of patients with different emergency categories, rang-
ing from patients who have to be treated immediately to those who can
wait for a longer period of time. Upon arrival at the hospital, a triage pro-
cess is used to decide to which emergency class a patient belongs. Every
class of patients can have a different target for the time in which the pa-
tient should be seen by a doctor, and not meeting this target can be worse
for one class of patients than for another class. EDs must prioritise the
patients of all categories in the right way considering their waiting time
targets, while also keeping the total time spent in the ED within the time
limit, with limited available resources.

This leads to a prioritisation problem: which patient should be treated
next when a doctor finishes the treatment of a patient? This prioritisation
problem in itself is not unusual; there are many situations where this oc-
curs, both in health care and in other settings such as call centres. There-
fore this problem has been widely studied. What distinguishes the ED
setting from most other settings where prioritisation is an issue, is the fact
that it is not the mean waiting time of each patient class that is important
but instead the fraction of patients from each class that do not start their
treatment on time.

The mathematical modelling literature on patient prioritisation in EDs
is rather scarce due to the complexity of the problem. There are some pa-
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pers in which data analysis is performed to study how well EDs perform
regarding their waiting times and the four-hour target (see, e.g., Locker
and Mason [78]). The complexity in mathematical modelling lies within
the fact that many decision models cannot take tail probabilities of the
waiting time into account, rendering them void for realistic ED modelling.
In this chapter, we overcome these difficulties by combining several tech-
niques within the framework of Markov decision processes (MDP).

In the resulting Markov decision problem the goal is to minimise the
fraction of patients that is not taken into service within the target time.
To do this, it would be most effective to keep information on the waiting
time of all the patients in the state space. However, this is not possible
in practice. Instead, we use the state space description used by Koole et
al. [74], where the state describes either the number of available servers or
the current waiting time of the patient first in line. So we leave the infor-
mation about the other patients out of the state space. This description of
the state makes it possible to formulate the problem as a Markov decision
process, and allows us to optimise the desired criterion. This we can do
by including costs whenever a patient that starts treatment has waited too
long, and no costs when the waiting time falls within the set target.

With this formulation, we find a closed-form expression for a system
with a single patient type by viewing the Poisson equations as difference
equations. Then we can use this expression in a one-step policy improve-
ment approach. This approach has been shown to give good results in
cases where a good approximation of the value function is available, see
for example Bhulai [19] and Haijema and Van der Wal [59].

The outline of this chapter is as follows: in Section 5.1 we analyse a
model with a single patient type and multiple servers, and derive an ex-
pression for the value function. Then in Section 5.2 we use this result to
give a near-optimal policy. We demonstrate the performance of the solu-
tion with some numerical examples. Finally in Section 5.3 we discuss the
results and directions for possible future work.

5.1 Analysis of a single queue

As the starting point for finding a good admission policy in the case with
several patient types, we first provide a detailed description and analysis
for a model with one patient type.
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We are interested in dynamic control problems in which the objective
of the system is to constrain the waiting time W of customers, more pre-
cisely, the service level in the system is defined as to minimise P(W >

α). Most standard techniques in stochastic optimisation are not well-
equipped to handle such problems. Therefore, we present an alternative
computational method for the calculation of the service level in this iso-
lated Erlang delay model. This derivation will be a key building block
for more complex decision models in the next sections. The alternative
method is based on the analysis of the waiting time of the customer that is
at the head of the queue using the Erlang approximation (EA), see Bekker
et al. [15] and Nielsen et al. [85].

Let us first consider the case where our multi-server queue is non-
empty. The main idea is that we analyse the waiting time of the customer
that is first in line (FIL). This so-called FIL-process is linearly increasing
until a service completion occurs, which happens with rate sµ. Upon a
service completion, the FIL-process has a negative jump as the second cus-
tomer in line (if any) now becomes the first customer in line. So the jump
size is determined by the inter-arrival time. Note that the FIL-process is a
Markov process.

5.1.1 Dynamic programming
To cast the model into a dynamic programming framework, we discretise
time into periods of length 1/γ. The parameter γ governs the accuracy of
the discretisation. The FIL waiting time now increases by 1 at an exponen-
tial rate γ, where state k ∈ {1, . . .} represents that the customer at the head
of the queue has waited k − 1 phases. Upon service completion, it follows
from properties of the Poisson arrival process (see Nielsen et al. [85]) that
the Markov chain jumps to state y according to

px,y =

1 −
∑x−1

h=0

(
λ
λ+γ

)(
γ
λ+γ

)h
, y = 0,(

λ
λ+γ

)(
γ
λ+γ

)x−y
, y = 1, . . . , x.

(5.1)

Now, consider the case that there are no customers in line. We extend
the state space to X = {−s,−(s − 1), . . . , 0, 1, . . .} to take the number of oc-
cupied servers into account. Here, state x ∈ {−s, . . . , 0} denotes that there
are s + x servers occupied and no customers are waiting. The transition
rates of the resulting Markov process can be found in Nielsen et al. [85].
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Let n represent the acceptable waiting time, e.g., n is determined as γα.
Then, the cost of a customer exceeding his acceptable waiting time can be
expressed in the state variable by c(x) = 1{x > n}. Hence, the triplet
(X , p, c) enables us to use techniques from dynamic programming for op-
timal control in problems where the waiting time should not exceed some
threshold with a certain probability.

Let V (x) be a real-valued function defined on the state space. This
function will play the role of the relative value function, i.e., the asymp-
totic difference in total costs that results from starting the process in state
x instead of some reference state. Furthermore, let g denote the long-term
average costs. The dynamic programming Poisson equations can then be
formulated by

g + τV (x) = λV (x + 1) + (x + s)µV (x − 1) + (τ − λ − (x + s)µ)V (x), (5.2)

for −s ≤ x ≤ 0. For states x ≥ 1, we have

g + τV (x) = γV (x + 1) + sµ

1{x>n} +

x∑
y=0

px,yV (y)


+ (τ − γ − sµ)V (x). (5.3)

Note that τ is the uniformisation constant, defined by τ = max{λ, γ} + sµ.
Uniformising is equivalent to adding dummy transitions (from a state to
itself) such that the rate out of each state is constant (see Section 11.5 of
Puterman [93]).

5.1.2 Performance analysis
In this subsection, we investigate the accuracy of the discretised approx-
imation of the state space as a function of γ. Specifically, we derive the
probability that the FIL process upon service initiation is in a state of at
least n, approximating the probability that the waiting time is at least n/γ.
Let Wapp be the approximation of the waiting time by assuming that the
waiting time in some state j ≥ 0 is deterministic and identical to j/γ. This
differs from Nielsen et al. [85], where the waiting time in state j is approx-
imated by an Erlang random variable. Our approximation is considerably
simpler.

The following proposition gives the tail distribution of Wapp, enabling
us to determine an appropriate value for γ. Large values of γ yield better
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approximations, but lead to longer computation times. The proposition
below can help in making this trade-off.

5.1.1. Proposition. For the M/M/s queue with ρ < 1, the tail probability of the
waiting time is approximated by

P(Wapp > α) =
1

1 − ρ
(λ + γ)π(0)

γ + λπ(0)

(
1 +

−sµ(1 − ρ)α

α(sµ + γ)

)αγ
,

where

π(0) =
(sρ)s

s!

(
s−1∑
i=0

(sρ)i

i!
+

(sρ)s

s!

γ + ρλ

γ

1

1 − ρ

)−1

. (5.4)

Proof. Let π(·) be the stationary distribution of the Markov chain that de-
scribes the waiting time of the patient first in line. Using a level crossing
argument and the geometric form of px,y it follows that, for i ≥ 1,

γπ(i) = sµ
∞∑

j=i+1

π(j)

(
γ

λ + γ

)j−i
. (5.5)

The left-hand side corresponds to upcrossings of level i, whereas the right-
hand side corresponds to downcrossings. From (5.5) it is straightforward

to show that π(i) = π(1)
(
λ+γ
sµ+γ

)i
. Similarly, using level crossings again,

we have

λπ(0) = sµ
∞∑
j=1

π(j)

(
γ

λ + γ

)j
=
sµ + γ

λ + γ
γπ(1),

where the second equality follows from substituting the result for π(i)
given above. The analysis of the states {−s, . . . , 0} is identical to the or-
dinary M/M/s queue. Finally, using normalisation, we obtain that, for
i ≥ 1,

π(i) =
λ

γ
π(0)

(
λ + γ

sµ + γ

)i
,

with π(0) as in (5.4).
For the waiting time, we need to consider the states of the Markov

chain at epochs of service initiations, which can either be arrival epochs
with available servers or service completion epochs with customers in the
queue. Let W̃ denote the state of the system just before a service initiation.
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Using the conditioning also used by Nielsen et al. [85], we get, after some
rewriting, that

P(W̃ > n) =

∞∑
i=n+1

sµπ(i)

λ
∑−1

j=−s π(j) + sµ
∑∞

j=1 π(j)

= sµ
λ

γ
π(0)

∞∑
i=n+1

(
λ + γ

sµ + γ

)i
×

1

λ − λπ(0) + (sµ − λ)
∑∞

j=1 π(j)

= sµ
λ

γ
π(0)

λ + γ

sµ − λ

(
λ + γ

sµ + γ

)n
×

1

λ − λπ(0) + λπ(0)(λ + γ)/γ

=
1

1 − ρ
(λ + γ)π(0)

γ + λπ(0)

(
λ + γ

sµ + γ

)n
.

Finally, we take n = γα yielding the result. �

From Proposition 5.1.1 it follows that the approximating waiting time
converges to the waiting time in the M/M/s queue as γ → ∞. Moreover,
it is not required that n is a multiple of 1/γ. Thereby, we may obtain an
approximation of the tail probability for any α ≥ 0.

5.1.2. Remark. In [85] the waiting time distribution for the EA has only
been derived in closed form for the M/M/1 case. For comparison, we here
give the result for the multi-server queue. Let WEA denote the waiting
time for the EA. Assuming that the waiting time in state i upon a service
initiation has an Erlang distribution consisting of i periods, each with rate
γ, we obtain from a similar analysis as in the proof of Proposition 5.1.1 that

P(WEA > α) =
1

1 − ρ
(λ + γ)π(0)

γ + λπ(0)
exp

(
−

γ

sµ + γ
sµ(1 − ρ)α

)
,

with π(0) as in (5.4).

5.1.3 The value function
As a first step in the optimisation framework, we need to determine the
relative value function V (x) for every state x ∈ {−s, . . .}. In this subsec-
tion, we derive a closed-form expression for V (·). In particular, we con-
sider the cases with and without waiting customers separately. We first
deal with the case of −s ≤ x ≤ 0.
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5.1.3. Proposition. The relative value V (x) for x = −s, . . . , 0 is given by

V (x) =
g

λ

x+s∑
i=1

i−1∑
k=0

(i − 1)!

(i − k − 1)!

(µ
λ

)k
.

Proof. This result follows directly from the relative value function of the
M/M/s queue for 0 ≤ x ≤ s as given by Bhulai [19]. �

Now, consider the situation that there are customers waiting in the
queue, i.e., x ≥ 1. The relative value function V (·) then satisfies the fol-
lowing equation

g + τV (x) = γV (x + 1)

+ sµ

1{x>n} +

x∑
y=0

px,yV (y)

 + (τ − γ − sµ)V (x),

where 1{} is the indicator function. The first term on the right-hand side
represents an increment in the waiting time of the first customer in line.
The second term on the right-hand side corresponds to a service comple-
tion, where a penalty of 1 is incurred if the state is above n. In addition,
the Markov chain then jumps to state y according to px,y. The final term is
due to uniformisation.

5.1.4. Theorem. For x ≥ 1 the relative value function is

V (x) = V (0) +
g

γsµ(1 − ρ)2

[
λx(ρ − 1) + (λ + γ)

(
sµ + γ

λ + γ

)x
− (λ + γ)

]
+
g

λ

[
λ − γ −

γ

ρ

s−1∑
k=0

(s − 1)!

(s − k − 1)!

(µ
λ

)k] 1

γ(ρ − 1)

×

[
γ(ρ − 1)

sµ + γ
1{x=0} − ρ +

λ + γ

sµ + γ

(
sµ + γ

λ + γ

)x]
− 1{x>n} ×

1

γ(1 − ρ)2

[
λ(x − n − 1)(ρ − 1)

+(λ + γ)

(
sµ + γ

λ + γ

)x−n−1

− (λ + γ)

]
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Proof. For convenience, we may here assume that V (0) = 0. The case that
V (0) 6= 0 is directly obtained by adding V (0) to the relative value function
V (x). First, rewrite the equation for V (·) as

g + (γ + sµ)V (x) = γV (x + 1) + sµ

1{x>n} +

x∑
y=0

px,yV (y)

 . (5.6)

To determine V (·), we use generating functions. Define G(z) =∑∞
x=0 V (x)zx as the generating function of V (·). Note that for x = 0

we need to use Equation (5.2), because Equation (5.6) does not hold in this
case. Multiplying both sides of (5.6) by zx and summing yields

g

1 − z
− g + (γ + sµ)G(z) − (γ + sµ)V (0) = γ

G(z)

z
− γ

V (0)

z
− γV (1)

+
sµzn+1

1 − z
+ sµ

λ

λ + γ

1

1 − γz/(λ + γ)
G(z) + sµ

γz

λ + γ − γz
V (0),

where the final terms follow from substituting the geometric form of px,y
and interchanging the summations. With V (0) = 0, then this gives

g

1 − z
− g + (γ + sµ)G(z) =

γ

z
G(z) − γV (1) +

sµzn+1

1 − z
+ sµ

λ

λ + γ

1

1 − zγ/(λ + γ)
G(z). (5.7)

Rearranging terms gives

G(z) =

(
sµzn+1 − g

1 − z
+ g − γV (1)

)
z

γ

γz − λ − γ
(z − 1)(sµz + γz − λ − γ)

. (5.8)
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The denominator of the final fraction on the right-hand side of (5.8) has
two roots: 1 and (λ + γ)/(sµ + γ) < 1. Using partial fraction expansion, we
may rewrite (5.8) as

G(z) =

(
sµzn+1

1 − z
−

g

1 − z
+ g − γV (1)

)
1

γ(λ − sµ)
(5.9)

×

(
γ(λ − sµ)

sµ + γ
−

λ

1 − z
+

(λ + γ)sµ

sµ + γ

1

1 − z(sµ + γ)/(λ + γ)

)
=: sµ

zn+1

1 − z
1

γ(λ − sµ)
H(z) (5.10)

+(g − γV (1))
1

γ(λ − sµ)
H(z) (5.11)

−
g

1 − z
1

γ(λ − sµ)
H(z) (5.12)

withH(z) defined as the transform between the second pair of large brack-
ets in (5.9). Note that the product of two transforms corresponds to con-
volution. Also observe that zn+1/(1 − z) is the transform of a function that
equals 1 on {n + 1, n + 2, . . .} and 0 elsewhere. Since H(z) corresponds
to a transform that is 0 on {. . . ,−1, 0} it follows that zn+1/(1 − z) × H(z)
is 0 on {0, . . . , n}. The value function V (x) for x ∈ {1, . . . , n} is thus
completely determined by (5.11) and (5.12). We start with the inverse of
(5.12). Applying inversion and working out the convolutions, we obtain,
for x ∈ {1, . . . , n},

V (x) =
g

γ(λ − sµ)

(
−
γ(λ − sµ)

sµ + γ
+ λ

x∑
k=0

1 −
x∑
k=0

(λ + γ)sµ

sµ + γ

(
sµ + γ

λ + γ

)k)
=

g

γ(λ − sµ)

×

−γ(λ − sµ)

sµ + γ
+ λ(x + 1) −

λ + γ − (sµ + γ)
(
sµ+γ
λ+γ

)x
λ − sµ

(λ + γ)sµ

 .

Rewriting the above yields the first line of the expression in Theorem 5.1.4.
Now, for x > n we additionally require the inverse of (5.10). Similar to the
inverse of (5.12), the inverse of (5.10), for x > n, reads

−sµ
γ(λ − sµ)

(
−
γ(λ − sµ)

sµ + γ
+ λ

x∑
k=n+1

1 −
x∑

k=n+1

(λ + γ)sµ

sµ + γ

(
sµ + γ

λ + γ

)x−k)
.
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For (5.11) finally, the inverse is

(g − γV (1))
1

γ(λ − sµ)

(
γ(λ − sµ)

sµ + γ
1{x=0} − λ +

(λ + γ)sµ

sµ + γ

(
sµ + γ

λ + γ

)x)
.

If we write the Poisson equation for x = 0, we get

g + (λ + sµ)V (0) = λV (1) + sµV (−1).

Then we can use Proposition 5.1.3 to write V (−1) as

V (−1) = V (0) −
g

λ

s−1∑
k=0

(i − 1)!

(i − k − 1)!

(µ
λ

)k
.

Using V (0) = 0, we then have

g − γV (1) = g −
γ

λ
(g − sµV (−1)).

If we put this into the inverse of (5.11) , rewriting and combining the three
transforms, we obtain the final result. �

5.2 One-step policy improvement

We have obtained expressions for the value function of a system with one
type of patients for every state. The next step is to use these results to
find near-optimal policies for cases with more patient types. We use one-
step policy improvement for this purpose. This method needs an approx-
imation for the value function in each state as a starting point. This is
then used to make a decision in the improvement step. In this section
we describe how we use the expressions derived in the previous section
to approximate a system with two patient types, and give the optimality
equations used in the improvement step.

We are considering a system with two patient types with separate
queues. Both patient types arrive according to a Poisson process and have
exponential service times. Let λ1, λ2 denote the arrival rates of patients of
type 1 and 2 respectively, and let µ1, µ2 be the service rates of the patients.
Note that the service times depend on the patient type, not on the servers.
The patients have a target waiting time denoted by n1, n2 respectively, and
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the costs of waiting longer than this target is weighed by w1, w2. Note that
we use here ni as the waiting time target expressed in the number of time
units waited, which are exponentially distributed with parameter γ. To
get the same result choose ni = αiγ.

We have a group of S servers which can choose from both queues when
they finish the treatment of a patient, or when there is an arrival and they
are not occupied at that moment. It is also possible for a server to stay
idle, even if there are patients waiting. This may happen for example if
one class of patients has a very short target time, and the other one a much
longer one. If there are no patients of the first type, it might be better to
keep a server free in case a patient of the first type arrives.

To find an approximation of the value function in the case with two
patient types, we have to incorporate the number of servers occupied by
each type of patient into the state space. This is necessary because the
service times differ with the patient type. So we define the state space
X = (x1, s1, x2, s2), where xi denotes the waiting time of the first patient in
line of type i, and si denotes the number of servers occupied with patients
of type i. So every time a patient is taken into service si increases by 1,
and when a patient finishes his service si is decreased by 1. Note that
all servers assigned to one of the queues are always occupied, so there is
no need for the negative part of the state space as used previously. If a
servers is idle, it is not assigned to either queue in the approximation, i. e.
s1 + s2 < S.

Effectively this means that we are ignoring the servers that are not
occupied by a patient. This makes it possible to assign less servers to
the two queues than S even when there are patients waiting, or in other
words, to keep a server idle. We define Vλ,µ,n(x, s) as the value func-
tion of a system with one queue, parameters λ, µ and n, x the waiting
time of the patient first in line, and s available servers. Then the value
function for the complete system is approximated by V (x1, s1, x2, s2) =
Vλ1,µ1,n1(x1, s1) + Vλ2,µ2,n2(x2, s2).
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Now it remains to define the optimality equations for the improvement
step. We have to distinguish four different cases based on the values of x1

and x2. First for x1 > 0 and x2 > 0 we have

V (x1, s1, x2, s2) = γHw,w(x1 + 1, s1, x2, s2) + s1µ1Hw,w(x1, s1 − 1, x2, s2)

+γHw,w(x1, s1, x2 + 1, s2) + s2µ2Hw,w(x1, s1, x2, s2 − 1)

+(1 − 2γ − s1µ1 − s2µ2)V (x1, s1, x2, s2).
(5.13)

For x1 > 0 and x2 = 0 we have

V (x1, s1, x2, s2) = γHw,nw(x1 + 1, s1, x2, s2) + s1µ1Hw,nw(x1, s1 − 1, x2, s2)

+λ2Hw,w(x1, s1, x2 + 1, s2) + s2µ2Hw,nw(x1, s1, x2, s2 − 1)

+(1 − γ − s1µ1 − λ2 − s2µ2)V (x1, s1, x2, s2).
(5.14)

For x1 = 0 and x2 > 0 we have

V (x1, s1, x2, s2) = λ1Hw,w(x1 + 1, s1, x2, s2) + s1µ1Hnw,w(x1, s1 − 1, x2, s2)

+γHnw,w(x1, s1, x2 + 1, s2) + s2µ2Hnw,w(x1, s1, x2, s2 − 1)

+ + (1 − λ1 − s1µ1 − γ − s2µ2)V (x1, s1, x2, s2).
(5.15)

For x1 = 0 and x2 = 0 we have

V (x1, s1, x2, s2) = λ1Hw,nw(x1 + 1, s1, x2, s2)) + s1µ1V (x1, s1 − 1, x2, s2)

+λ2Hnw,w(x1, s1, x2 + 1, s2) + s2µ2V (x1, s1, x2, s2 − 1)

+(1 − λ1 − s1µ1 − λ2 − s2µ2)V (x1, s1, x2, s2).
(5.16)
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with Hw,w(x1, s1, x2, s2) =

min

{
V (x1, s1, x2, s2) + P1{x1>T∧x2>T},

x1∑
i=0

[
px1,iV (i, s1 + 1, x2, s2) + w11{x1>n1}

]
,

x2∑
i=0

[
px2,iV (x1, s1, i, s2 + 1) + w21{x2>n2}

]}
if s1 + s2 < S,

V (x1, s1, x2, s2) otherwise,
(5.17)

Hw,nw(x1, s1, x2, s2) =

min

{
V (x1, s1, x2, s2) + P1{x1>T∧x2>T},

x1∑
i=0

[
px1,iV (i, s1 + 1, x2, s2) + w11{x1>n1}

]}
if s1 + s2 < S,

V (x1, s1, x2, s2) otherwise,
(5.18)

and finally Hnw,w(x1, s1, x2, s2) =

min

{
V (x1, s1, x2, s2 + P1{x1>T∧x2>T}),

x2∑
i=0

[
px2,iV (x1, s1, i, s2 + 1) + w21{x2>n2}

]}
if s1 + s2 < S,

V (x1, s1, x2, s2) otherwise.
(5.19)

Here the functions Hw,w(x1, s1, x2, s2), Hw,nw(x1, s1, x2, s2) = and
Hnw,w(x1, s1, x2, s2) define the possible actions you can take in each
situation. For example in Hw,w(x1, s1, x2, s2), which is used when there
are patients waiting of both types, the possible actions are first to do
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nothing, second to take a patient of type 1 into service, and finally to take
a patient of type 2 into service. These actions are of course only possible if
s1 + s2 < S, i.e., when there is a server available.

The value P can be considered a penalty for letting the waiting times
increasing more than some maximum value T . This has been introduced
so that the optimal policy will not be never to take any patient into service.
Without this addition, that would be the optimal policy. The values for P
should be significantly higher than the values for w1 and w2 to have the
desired effect. Also T should be large enough not to influence the actual
policy, so significantly above n1 and n2. For px1,i use Equation (5.1) with
parameters λ1 and µ1, and for and px2,i with parameters λ2 and µ2.

Note that we have here given only the equations for a situation with
two patient types. It is possible to generalise this to systems with more
patient types using similar equations.

5.2.1 Numerical examples
In this section we illustrate the one-step improvement approach with some
numerical results. We consider a system with two patient types as de-
scribed in the previous section, for a few different parameter settings. All
examples are chosen sufficiently small to actually compute the optimal
policy and the associated long-term average costs. This means that we
can compare the results for the one-step improved policy with the actual
optimal values and see how much of an error we make when using the
approximation.

See Table 5.1 for the results. We denote the long-term average costs
of the optimal policy by g∗ and those of the one-step improved policy by
gospi. In all experiments we chose γ = 50 and P = 10000.

From the results we can see that the long-term average costs for the
policy after one policy-improvement step are very close to the long-term
average costs for the optimal policy. Of course the examples here are very
small, but these examples indicate that the approach taken in this chapter
would also give good results in larger problem instances, where comput-
ing the optimal policy is not practical any more.
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S λ1 λ2 µ1 µ2 n1 n2 w1 w2 gospi g∗

2 1.0 1.0 3.0 2.0 10 10 1.0 1.0 0.3945 0.3990

2 2.0 1.0 3.0 2.0 25 50 1.0 1.0 0.3213 0.3217

2 2.0 1.0 3.0 2.0 25 50 1.0 5.0 0.3213 0.3219

2 2.0 1.0 3.0 2.0 25 100 1.0 1.0 0.3213 0.3217

3 2.0 1.0 3.0 2.0 10 10 1.0 5.0 0.5825 0.5831

Table 5.1: Numerical results of one-step policy improvement.

5.3 Conclusions and directions for further work

In this chapter we have presented a method for fractions of patients wait-
ing longer than a certain goal, instead of the mean waiting times. This
method is based on approximating the waiting times of all patients in the
queues by keeping track of the patient who is first in line. We have de-
rived an expression for the value function of a system with only one pa-
tient type, and demonstrated how this can be used to derive good policies
for systems with more than one patient type. We have demonstrated the
efficacy of this approach with some numerical examples.

In this thesis we focus on health care situations exclusively, but we
can imagine more situations where a model like this could be interesting
to apply. One obvious example is call centres, where patients are often
ranked by importance.

The examples shown in the previous section are very small, and are
meant only to show the efficacy of the one-step policy improvement ap-
proach. It would however be interesting to see what effect different pa-
rameter values would have on the long-term average costs of the system.
Also the policy itself deserves attention in future work.

For further research within health care one possible extension could
be an extra type of patient representing the severest type of emergency
patient, that would preempt any ongoing treatment and cannot wait for
even the shortest amount of time. This would be useful for example in
the case of patients with heart failure. This could be done for example
by adding a type with a very high weight and a very small waiting time
target which will probably result in idling servers. This can also be done
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by modifying the Poisson equations or the service time distribution of the
other patients.

Another useful possibility is the inclusion of abandonments, or pa-
tients leaving without treatment. This is a problem often encountered with
the less severe patients, and occurs more often the longer the waiting time
is. This can be a performance measure in itself, and will of course change
the dynamics of the system as well.



Conclusions 6
In the last four chapters we have discussed four different scheduling prob-
lems in healthcare. These were addressed using different methodologies.

In Chapter 2 we considered the problem of appointment scheduling,
which occurs in many settings. We have presented some analytical results
and an algorithm for finding the optimal schedule for the case with the
limiting assumption that all patients are punctual in case they show up
for their appointment. If this assumption is not realistic enough, we can
use simulation-based methods to find good schedules. While there are no
absolute guarantees about the quality of the solutions, the results are good
enough for practical use.

Next, in Chapter 3 we have presented a method to analyse the bed
demand for a given admission schedule, and described a method to find
the optimal admission schedule to match bed demand to availability. This
allows for a smoother demand for beds and improved performance of a
hospital ward. Any special constraints can easily be taken into account
in the optimisation method, and it is small enough to be implemented in
something like an Excel spreadsheet. This, together with the flexibility of
the method, makes is suitable for use in hospitals as it is, although the
organisational side of implementation can be challenging. The results that
have been achieved in one hospital look promising.

Then, in Chapter 4 the problem of prioritising patients for admission
in home and rehabilitation care was solved using Markov decision the-
ory. We used the number of time units available for care each week as
the number of servers, and divided the patients into groups based on the
number of time units of care they need per week. For rehabilitation care
we needed to take a number of different server types into account as well.
Our goal was to minimise the weighted average waiting time over all pa-
tient groups. Because of the large state space we needed to use approxi-
mation techniques, which gave good results.

Finally in Chapter 5 we look at a prioritisation problem again, but this
time we optimise not the average waiting time but the fraction of patients
who wait longer than some set threshold or target. This problem is often
seen in emergency departments, but there are many other possible settings
both within and outside of health care. To do this we use Markov decision
theory again, while taking the waiting time for the patient who is first in
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line as the state description. Then we use approximation techniques, be-
cause for several patient types the problem quickly becomes too large to
solve directly. Small examples indicate that this gives near-optimal results.
We are aware that the process at an emergency department usually con-
sists of several steps and involves more than one health care professional,
but we still believe that this model provides insight and policies for pri-
oritising patients. It can also serve as a starting point for further analysis
of a more complicated model.

We can see that in all cases significant improvements can be made by
using techniques from operations research, and that the models can be
flexible and generic enough to be used in practice. Sometimes assump-
tions are made that may not be completely realistic, or at least not in all
cases, so there is still room for improvement. A good example of this is the
assumption of stationary arrivals in Chapter 5, and the fact that the num-
ber of hours of care needed per week is fixed over time in Chapter 4. But in
every case we were able to make less constrictive assumptions than previ-
ous models from the literature, making the models more realistic. And the
models give good insight in any case, even when the assumptions don’t
hold completely.

The other big thing still remaining to do is to test these models out in
practice. We were able to do this with the results from Chapter 3, with
good results. The challenge in implementing the results often lies not
only in having a good enough model, but also in making an actual lasting
change in an organisation. This can be a challenge even when the results
of the model are very clear and simple. This is a matter outside the scope
of this thesis, but it is good to keep in mind when working with people
from health care institutions on their problems. This should always be the
ultimate goal when modelling health care processes.
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Samenvatting (Dutch Summary)

Een zorgvuldige oplossing: het plannen van patiënten
Zoals de titel al enigszins verraadt, gaat dit proefschrift over het plannen
van patiënten in verschillende situaties binnen de gezondheidszorg. Het
plannen van patiënten is een heel breed onderwerp, en er zijn heel veel
situaties te verzinnen waarin er gepland moet worden. Een gemeenschap-
pelijk kenmerk in alle gevallen is dat er een balans gevonden moet worden
tussen de wachttijden en andere servicecriteria voor de patiënten aan de
ene kant, en de hoeveelheid en benutting van de capaciteit aan de andere
kant. Als de duur van alle opnames, afspraken en dergelijk nu van tevoren
perfect voorspelbaar waren, was het plannen een heel stuk eenvoudiger.
Helaas is dit vrijwel nooit het geval, en daarom moet in elke situatie met
deze variaties rekening gehouden worden.

Dit proefschrift is opgedeeld in zes hoofdstukken. In het eerste hoofd-
stuk wordt ingegaan op de rol van operations research in het algemeen,
en plannen of scheduling binnen de gezondheidszorg in het bijzonder.
Ook behandelen we verschillende technieken die bij dergelijke proble-
men bruikbaar zijn. Dan volgen vier hoofdstukken die elk een apart
planningsprobleem behandelen. In het laatste hoofdstuk worden de con-
clusies op een rijtje gezet. De vier inhoudelijke hoofdstukken zijn als volgt
ingedeeld:

In hoofdstuk 2 wordt het probleem behandeld hoe het beste afspraken
gepland kunnen worden binnen een dagdeel. Dit probleem doet zich bij-
voorbeeld voor op een polikliniek. Omdat het niet zeker is hoe lang een
afspraak exact gaat duren, moeten de wachttijden van de patiënten afge-
wogen worden tegen de uitloop en wachttijd van de arts. In het eerste
deel wordt dit probleem aangepakt met een local search-aanpak, voor het
geval dat er spoedgevallen tussendoor kunnen komen, die vrijwel direct
behandeld moeten worden. Hierbij nemen we aan dat sommige patiën-
ten niet komen op hun afspraak, maar dat alle patiënten die komen ex-
act op tijd zijn. In het tweede deel maken we de situatie iets realistischer
door deze laatste aanname te laten vallen. Hiervoor werkt de local search-
techniek niet meer, en daarom gebruiken we optimalisatie via simulatie
om het probleem te bekijken. Hiermee hebben we geen garantie meer dat
de optimale oplossing gevonden wordt, maar experimenten tonen aan dat
deze aanpak heel goed werkt.
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Het zo goed mogelijk plannen van opnames op een ziekenhuisafdeling
is het onderwerp van hoofdstuk 3. Op elke ziekenhuisafdeling is sprake
van variatie in de vraag naar bedden. Dit is variatie gedurende de dag en
de week, en over de verschillende weken. Een groot deel van deze vari-
atie wordt veroorzaakt door spoedgevallen en een onvoorspelbare ligduur
van de patiënten, maar het grootste deel is vaak veroorzaakt door een
onevenwichtige planning. In dit hoofdstuk beschrijven we een manier
om de variatie te meten en voorspellen, en vervolgens gebruiken we dit
om een optimale planning voor de opnames te bepalen. Het doel bij het
maken van deze planning is de vraag naar bedden zo dicht mogelijk te
laten aansluiten bij een doelwaarde voor elke dag van de week. Hierdoor
wordt de variatie kleiner, en hoeven er dus minder patiënten geweigerd
of op een andere afdeling geplaatst te worden.

Hoofdstuk 4 gaat over prioriteren van patiënten die wachten op thuis-
of revalidatiezorg. Deze patiënten hebben meestal elke week zorg nodig,
waarbij per patiënt de hoeveelheid en de soorten zorg die deze nodig
heeft kan verschillen. We delen de beschikbare tijd per week en per soort
medewerker op in uren, en definiëren patiënttypes die elke week hetzelfde
aantal uren zorg nodig hebben van de verschillende soorten medewerk-
ers, gedurende de hele periode dat zij zorg krijgen. Dan gebruiken we
Markov beslissingsprocessen om een optimale prioriteringsstrategie te
bepalen, waarbij de wachttijd van de patiënten gewogen naar type gemi-
nimaliseerd wordt.

In hoofdstuk 5 ten slotte bekijken we een situatie waarin niet de gemid-
delde wachttijd van belang is, maar het percentage patiënten dat te lang
wacht. Het is echter niet mogelijk om de actuele wachttijden van alle
wachtende patiënten bij te houden om daarop te gaan sturen; hiervoor
is namelijk meer geheugen nodig dan waar de meeste computers over
beschikken, en bovendien wordt het bepalen van een goede strategie bin-
nen een redelijke tijd onmogelijk. We gebruiken daarom een benadering
van de wachttijd van de patiënt die het langste wacht van elk type om
het hele systeem mee te benaderen, en vervolgens gebruiken we Markov
beslissingstheorie om de wachttijden van de verschillende typen patiën-
ten te balanceren. Elk type patiënten kan hierbij een eigen verdeling voor
de behandelduur hebben, en eventueel een verschillende waarde voor de
toegestane wachttijd.
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